xref: /linux/kernel/rcu/tree.c (revision 4cb584e0ee7df70fd0376aee60cf701855ea8c81)
1 /*
2  * Read-Copy Update mechanism for mutual exclusion
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, you can access it online at
16  * http://www.gnu.org/licenses/gpl-2.0.html.
17  *
18  * Copyright IBM Corporation, 2008
19  *
20  * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21  *	    Manfred Spraul <manfred@colorfullife.com>
22  *	    Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23  *
24  * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25  * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26  *
27  * For detailed explanation of Read-Copy Update mechanism see -
28  *	Documentation/RCU
29  */
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <linux/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/export.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/percpu.h>
45 #include <linux/notifier.h>
46 #include <linux/cpu.h>
47 #include <linux/mutex.h>
48 #include <linux/time.h>
49 #include <linux/kernel_stat.h>
50 #include <linux/wait.h>
51 #include <linux/kthread.h>
52 #include <linux/prefetch.h>
53 #include <linux/delay.h>
54 #include <linux/stop_machine.h>
55 #include <linux/random.h>
56 #include <linux/trace_events.h>
57 #include <linux/suspend.h>
58 
59 #include "tree.h"
60 #include "rcu.h"
61 
62 #ifdef MODULE_PARAM_PREFIX
63 #undef MODULE_PARAM_PREFIX
64 #endif
65 #define MODULE_PARAM_PREFIX "rcutree."
66 
67 /* Data structures. */
68 
69 /*
70  * In order to export the rcu_state name to the tracing tools, it
71  * needs to be added in the __tracepoint_string section.
72  * This requires defining a separate variable tp_<sname>_varname
73  * that points to the string being used, and this will allow
74  * the tracing userspace tools to be able to decipher the string
75  * address to the matching string.
76  */
77 #ifdef CONFIG_TRACING
78 # define DEFINE_RCU_TPS(sname) \
79 static char sname##_varname[] = #sname; \
80 static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
81 # define RCU_STATE_NAME(sname) sname##_varname
82 #else
83 # define DEFINE_RCU_TPS(sname)
84 # define RCU_STATE_NAME(sname) __stringify(sname)
85 #endif
86 
87 #define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
88 DEFINE_RCU_TPS(sname) \
89 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
90 struct rcu_state sname##_state = { \
91 	.level = { &sname##_state.node[0] }, \
92 	.rda = &sname##_data, \
93 	.call = cr, \
94 	.gp_state = RCU_GP_IDLE, \
95 	.gpnum = 0UL - 300UL, \
96 	.completed = 0UL - 300UL, \
97 	.orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
98 	.orphan_nxttail = &sname##_state.orphan_nxtlist, \
99 	.orphan_donetail = &sname##_state.orphan_donelist, \
100 	.barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
101 	.name = RCU_STATE_NAME(sname), \
102 	.abbr = sabbr, \
103 	.exp_mutex = __MUTEX_INITIALIZER(sname##_state.exp_mutex), \
104 	.exp_wake_mutex = __MUTEX_INITIALIZER(sname##_state.exp_wake_mutex), \
105 }
106 
107 RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
108 RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
109 
110 static struct rcu_state *const rcu_state_p;
111 LIST_HEAD(rcu_struct_flavors);
112 
113 /* Dump rcu_node combining tree at boot to verify correct setup. */
114 static bool dump_tree;
115 module_param(dump_tree, bool, 0444);
116 /* Control rcu_node-tree auto-balancing at boot time. */
117 static bool rcu_fanout_exact;
118 module_param(rcu_fanout_exact, bool, 0444);
119 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
120 static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
121 module_param(rcu_fanout_leaf, int, 0444);
122 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
123 /* Number of rcu_nodes at specified level. */
124 static int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
125 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
126 /* panic() on RCU Stall sysctl. */
127 int sysctl_panic_on_rcu_stall __read_mostly;
128 
129 /*
130  * The rcu_scheduler_active variable is initialized to the value
131  * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
132  * first task is spawned.  So when this variable is RCU_SCHEDULER_INACTIVE,
133  * RCU can assume that there is but one task, allowing RCU to (for example)
134  * optimize synchronize_rcu() to a simple barrier().  When this variable
135  * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
136  * to detect real grace periods.  This variable is also used to suppress
137  * boot-time false positives from lockdep-RCU error checking.  Finally, it
138  * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
139  * is fully initialized, including all of its kthreads having been spawned.
140  */
141 int rcu_scheduler_active __read_mostly;
142 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
143 
144 /*
145  * The rcu_scheduler_fully_active variable transitions from zero to one
146  * during the early_initcall() processing, which is after the scheduler
147  * is capable of creating new tasks.  So RCU processing (for example,
148  * creating tasks for RCU priority boosting) must be delayed until after
149  * rcu_scheduler_fully_active transitions from zero to one.  We also
150  * currently delay invocation of any RCU callbacks until after this point.
151  *
152  * It might later prove better for people registering RCU callbacks during
153  * early boot to take responsibility for these callbacks, but one step at
154  * a time.
155  */
156 static int rcu_scheduler_fully_active __read_mostly;
157 
158 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
159 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
160 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
161 static void invoke_rcu_core(void);
162 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
163 static void rcu_report_exp_rdp(struct rcu_state *rsp,
164 			       struct rcu_data *rdp, bool wake);
165 static void sync_sched_exp_online_cleanup(int cpu);
166 
167 /* rcuc/rcub kthread realtime priority */
168 #ifdef CONFIG_RCU_KTHREAD_PRIO
169 static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO;
170 #else /* #ifdef CONFIG_RCU_KTHREAD_PRIO */
171 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
172 #endif /* #else #ifdef CONFIG_RCU_KTHREAD_PRIO */
173 module_param(kthread_prio, int, 0644);
174 
175 /* Delay in jiffies for grace-period initialization delays, debug only. */
176 
177 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT
178 static int gp_preinit_delay = CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT_DELAY;
179 module_param(gp_preinit_delay, int, 0644);
180 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
181 static const int gp_preinit_delay;
182 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
183 
184 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT
185 static int gp_init_delay = CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY;
186 module_param(gp_init_delay, int, 0644);
187 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
188 static const int gp_init_delay;
189 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
190 
191 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP
192 static int gp_cleanup_delay = CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP_DELAY;
193 module_param(gp_cleanup_delay, int, 0644);
194 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
195 static const int gp_cleanup_delay;
196 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
197 
198 /*
199  * Number of grace periods between delays, normalized by the duration of
200  * the delay.  The longer the the delay, the more the grace periods between
201  * each delay.  The reason for this normalization is that it means that,
202  * for non-zero delays, the overall slowdown of grace periods is constant
203  * regardless of the duration of the delay.  This arrangement balances
204  * the need for long delays to increase some race probabilities with the
205  * need for fast grace periods to increase other race probabilities.
206  */
207 #define PER_RCU_NODE_PERIOD 3	/* Number of grace periods between delays. */
208 
209 /*
210  * Track the rcutorture test sequence number and the update version
211  * number within a given test.  The rcutorture_testseq is incremented
212  * on every rcutorture module load and unload, so has an odd value
213  * when a test is running.  The rcutorture_vernum is set to zero
214  * when rcutorture starts and is incremented on each rcutorture update.
215  * These variables enable correlating rcutorture output with the
216  * RCU tracing information.
217  */
218 unsigned long rcutorture_testseq;
219 unsigned long rcutorture_vernum;
220 
221 /*
222  * Compute the mask of online CPUs for the specified rcu_node structure.
223  * This will not be stable unless the rcu_node structure's ->lock is
224  * held, but the bit corresponding to the current CPU will be stable
225  * in most contexts.
226  */
227 unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
228 {
229 	return READ_ONCE(rnp->qsmaskinitnext);
230 }
231 
232 /*
233  * Return true if an RCU grace period is in progress.  The READ_ONCE()s
234  * permit this function to be invoked without holding the root rcu_node
235  * structure's ->lock, but of course results can be subject to change.
236  */
237 static int rcu_gp_in_progress(struct rcu_state *rsp)
238 {
239 	return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
240 }
241 
242 /*
243  * Note a quiescent state.  Because we do not need to know
244  * how many quiescent states passed, just if there was at least
245  * one since the start of the grace period, this just sets a flag.
246  * The caller must have disabled preemption.
247  */
248 void rcu_sched_qs(void)
249 {
250 	if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.s))
251 		return;
252 	trace_rcu_grace_period(TPS("rcu_sched"),
253 			       __this_cpu_read(rcu_sched_data.gpnum),
254 			       TPS("cpuqs"));
255 	__this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false);
256 	if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
257 		return;
258 	__this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false);
259 	rcu_report_exp_rdp(&rcu_sched_state,
260 			   this_cpu_ptr(&rcu_sched_data), true);
261 }
262 
263 void rcu_bh_qs(void)
264 {
265 	if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) {
266 		trace_rcu_grace_period(TPS("rcu_bh"),
267 				       __this_cpu_read(rcu_bh_data.gpnum),
268 				       TPS("cpuqs"));
269 		__this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false);
270 	}
271 }
272 
273 static DEFINE_PER_CPU(int, rcu_sched_qs_mask);
274 
275 static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
276 	.dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
277 	.dynticks = ATOMIC_INIT(1),
278 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
279 	.dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
280 	.dynticks_idle = ATOMIC_INIT(1),
281 #endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
282 };
283 
284 DEFINE_PER_CPU_SHARED_ALIGNED(unsigned long, rcu_qs_ctr);
285 EXPORT_PER_CPU_SYMBOL_GPL(rcu_qs_ctr);
286 
287 /*
288  * Let the RCU core know that this CPU has gone through the scheduler,
289  * which is a quiescent state.  This is called when the need for a
290  * quiescent state is urgent, so we burn an atomic operation and full
291  * memory barriers to let the RCU core know about it, regardless of what
292  * this CPU might (or might not) do in the near future.
293  *
294  * We inform the RCU core by emulating a zero-duration dyntick-idle
295  * period, which we in turn do by incrementing the ->dynticks counter
296  * by two.
297  *
298  * The caller must have disabled interrupts.
299  */
300 static void rcu_momentary_dyntick_idle(void)
301 {
302 	struct rcu_data *rdp;
303 	struct rcu_dynticks *rdtp;
304 	int resched_mask;
305 	struct rcu_state *rsp;
306 
307 	/*
308 	 * Yes, we can lose flag-setting operations.  This is OK, because
309 	 * the flag will be set again after some delay.
310 	 */
311 	resched_mask = raw_cpu_read(rcu_sched_qs_mask);
312 	raw_cpu_write(rcu_sched_qs_mask, 0);
313 
314 	/* Find the flavor that needs a quiescent state. */
315 	for_each_rcu_flavor(rsp) {
316 		rdp = raw_cpu_ptr(rsp->rda);
317 		if (!(resched_mask & rsp->flavor_mask))
318 			continue;
319 		smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */
320 		if (READ_ONCE(rdp->mynode->completed) !=
321 		    READ_ONCE(rdp->cond_resched_completed))
322 			continue;
323 
324 		/*
325 		 * Pretend to be momentarily idle for the quiescent state.
326 		 * This allows the grace-period kthread to record the
327 		 * quiescent state, with no need for this CPU to do anything
328 		 * further.
329 		 */
330 		rdtp = this_cpu_ptr(&rcu_dynticks);
331 		smp_mb__before_atomic(); /* Earlier stuff before QS. */
332 		atomic_add(2, &rdtp->dynticks);  /* QS. */
333 		smp_mb__after_atomic(); /* Later stuff after QS. */
334 		break;
335 	}
336 }
337 
338 /*
339  * Note a context switch.  This is a quiescent state for RCU-sched,
340  * and requires special handling for preemptible RCU.
341  * The caller must have disabled interrupts.
342  */
343 void rcu_note_context_switch(void)
344 {
345 	barrier(); /* Avoid RCU read-side critical sections leaking down. */
346 	trace_rcu_utilization(TPS("Start context switch"));
347 	rcu_sched_qs();
348 	rcu_preempt_note_context_switch();
349 	if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
350 		rcu_momentary_dyntick_idle();
351 	trace_rcu_utilization(TPS("End context switch"));
352 	barrier(); /* Avoid RCU read-side critical sections leaking up. */
353 }
354 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
355 
356 /*
357  * Register a quiescent state for all RCU flavors.  If there is an
358  * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
359  * dyntick-idle quiescent state visible to other CPUs (but only for those
360  * RCU flavors in desperate need of a quiescent state, which will normally
361  * be none of them).  Either way, do a lightweight quiescent state for
362  * all RCU flavors.
363  *
364  * The barrier() calls are redundant in the common case when this is
365  * called externally, but just in case this is called from within this
366  * file.
367  *
368  */
369 void rcu_all_qs(void)
370 {
371 	unsigned long flags;
372 
373 	barrier(); /* Avoid RCU read-side critical sections leaking down. */
374 	if (unlikely(raw_cpu_read(rcu_sched_qs_mask))) {
375 		local_irq_save(flags);
376 		rcu_momentary_dyntick_idle();
377 		local_irq_restore(flags);
378 	}
379 	if (unlikely(raw_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))) {
380 		/*
381 		 * Yes, we just checked a per-CPU variable with preemption
382 		 * enabled, so we might be migrated to some other CPU at
383 		 * this point.  That is OK because in that case, the
384 		 * migration will supply the needed quiescent state.
385 		 * We might end up needlessly disabling preemption and
386 		 * invoking rcu_sched_qs() on the destination CPU, but
387 		 * the probability and cost are both quite low, so this
388 		 * should not be a problem in practice.
389 		 */
390 		preempt_disable();
391 		rcu_sched_qs();
392 		preempt_enable();
393 	}
394 	this_cpu_inc(rcu_qs_ctr);
395 	barrier(); /* Avoid RCU read-side critical sections leaking up. */
396 }
397 EXPORT_SYMBOL_GPL(rcu_all_qs);
398 
399 static long blimit = 10;	/* Maximum callbacks per rcu_do_batch. */
400 static long qhimark = 10000;	/* If this many pending, ignore blimit. */
401 static long qlowmark = 100;	/* Once only this many pending, use blimit. */
402 
403 module_param(blimit, long, 0444);
404 module_param(qhimark, long, 0444);
405 module_param(qlowmark, long, 0444);
406 
407 static ulong jiffies_till_first_fqs = ULONG_MAX;
408 static ulong jiffies_till_next_fqs = ULONG_MAX;
409 static bool rcu_kick_kthreads;
410 
411 module_param(jiffies_till_first_fqs, ulong, 0644);
412 module_param(jiffies_till_next_fqs, ulong, 0644);
413 module_param(rcu_kick_kthreads, bool, 0644);
414 
415 /*
416  * How long the grace period must be before we start recruiting
417  * quiescent-state help from rcu_note_context_switch().
418  */
419 static ulong jiffies_till_sched_qs = HZ / 20;
420 module_param(jiffies_till_sched_qs, ulong, 0644);
421 
422 static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
423 				  struct rcu_data *rdp);
424 static void force_qs_rnp(struct rcu_state *rsp,
425 			 int (*f)(struct rcu_data *rsp, bool *isidle,
426 				  unsigned long *maxj),
427 			 bool *isidle, unsigned long *maxj);
428 static void force_quiescent_state(struct rcu_state *rsp);
429 static int rcu_pending(void);
430 
431 /*
432  * Return the number of RCU batches started thus far for debug & stats.
433  */
434 unsigned long rcu_batches_started(void)
435 {
436 	return rcu_state_p->gpnum;
437 }
438 EXPORT_SYMBOL_GPL(rcu_batches_started);
439 
440 /*
441  * Return the number of RCU-sched batches started thus far for debug & stats.
442  */
443 unsigned long rcu_batches_started_sched(void)
444 {
445 	return rcu_sched_state.gpnum;
446 }
447 EXPORT_SYMBOL_GPL(rcu_batches_started_sched);
448 
449 /*
450  * Return the number of RCU BH batches started thus far for debug & stats.
451  */
452 unsigned long rcu_batches_started_bh(void)
453 {
454 	return rcu_bh_state.gpnum;
455 }
456 EXPORT_SYMBOL_GPL(rcu_batches_started_bh);
457 
458 /*
459  * Return the number of RCU batches completed thus far for debug & stats.
460  */
461 unsigned long rcu_batches_completed(void)
462 {
463 	return rcu_state_p->completed;
464 }
465 EXPORT_SYMBOL_GPL(rcu_batches_completed);
466 
467 /*
468  * Return the number of RCU-sched batches completed thus far for debug & stats.
469  */
470 unsigned long rcu_batches_completed_sched(void)
471 {
472 	return rcu_sched_state.completed;
473 }
474 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
475 
476 /*
477  * Return the number of RCU BH batches completed thus far for debug & stats.
478  */
479 unsigned long rcu_batches_completed_bh(void)
480 {
481 	return rcu_bh_state.completed;
482 }
483 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
484 
485 /*
486  * Return the number of RCU expedited batches completed thus far for
487  * debug & stats.  Odd numbers mean that a batch is in progress, even
488  * numbers mean idle.  The value returned will thus be roughly double
489  * the cumulative batches since boot.
490  */
491 unsigned long rcu_exp_batches_completed(void)
492 {
493 	return rcu_state_p->expedited_sequence;
494 }
495 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
496 
497 /*
498  * Return the number of RCU-sched expedited batches completed thus far
499  * for debug & stats.  Similar to rcu_exp_batches_completed().
500  */
501 unsigned long rcu_exp_batches_completed_sched(void)
502 {
503 	return rcu_sched_state.expedited_sequence;
504 }
505 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed_sched);
506 
507 /*
508  * Force a quiescent state.
509  */
510 void rcu_force_quiescent_state(void)
511 {
512 	force_quiescent_state(rcu_state_p);
513 }
514 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
515 
516 /*
517  * Force a quiescent state for RCU BH.
518  */
519 void rcu_bh_force_quiescent_state(void)
520 {
521 	force_quiescent_state(&rcu_bh_state);
522 }
523 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
524 
525 /*
526  * Force a quiescent state for RCU-sched.
527  */
528 void rcu_sched_force_quiescent_state(void)
529 {
530 	force_quiescent_state(&rcu_sched_state);
531 }
532 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
533 
534 /*
535  * Show the state of the grace-period kthreads.
536  */
537 void show_rcu_gp_kthreads(void)
538 {
539 	struct rcu_state *rsp;
540 
541 	for_each_rcu_flavor(rsp) {
542 		pr_info("%s: wait state: %d ->state: %#lx\n",
543 			rsp->name, rsp->gp_state, rsp->gp_kthread->state);
544 		/* sched_show_task(rsp->gp_kthread); */
545 	}
546 }
547 EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
548 
549 /*
550  * Record the number of times rcutorture tests have been initiated and
551  * terminated.  This information allows the debugfs tracing stats to be
552  * correlated to the rcutorture messages, even when the rcutorture module
553  * is being repeatedly loaded and unloaded.  In other words, we cannot
554  * store this state in rcutorture itself.
555  */
556 void rcutorture_record_test_transition(void)
557 {
558 	rcutorture_testseq++;
559 	rcutorture_vernum = 0;
560 }
561 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
562 
563 /*
564  * Send along grace-period-related data for rcutorture diagnostics.
565  */
566 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
567 			    unsigned long *gpnum, unsigned long *completed)
568 {
569 	struct rcu_state *rsp = NULL;
570 
571 	switch (test_type) {
572 	case RCU_FLAVOR:
573 		rsp = rcu_state_p;
574 		break;
575 	case RCU_BH_FLAVOR:
576 		rsp = &rcu_bh_state;
577 		break;
578 	case RCU_SCHED_FLAVOR:
579 		rsp = &rcu_sched_state;
580 		break;
581 	default:
582 		break;
583 	}
584 	if (rsp != NULL) {
585 		*flags = READ_ONCE(rsp->gp_flags);
586 		*gpnum = READ_ONCE(rsp->gpnum);
587 		*completed = READ_ONCE(rsp->completed);
588 		return;
589 	}
590 	*flags = 0;
591 	*gpnum = 0;
592 	*completed = 0;
593 }
594 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
595 
596 /*
597  * Record the number of writer passes through the current rcutorture test.
598  * This is also used to correlate debugfs tracing stats with the rcutorture
599  * messages.
600  */
601 void rcutorture_record_progress(unsigned long vernum)
602 {
603 	rcutorture_vernum++;
604 }
605 EXPORT_SYMBOL_GPL(rcutorture_record_progress);
606 
607 /*
608  * Does the CPU have callbacks ready to be invoked?
609  */
610 static int
611 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
612 {
613 	return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
614 	       rdp->nxttail[RCU_DONE_TAIL] != NULL;
615 }
616 
617 /*
618  * Return the root node of the specified rcu_state structure.
619  */
620 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
621 {
622 	return &rsp->node[0];
623 }
624 
625 /*
626  * Is there any need for future grace periods?
627  * Interrupts must be disabled.  If the caller does not hold the root
628  * rnp_node structure's ->lock, the results are advisory only.
629  */
630 static int rcu_future_needs_gp(struct rcu_state *rsp)
631 {
632 	struct rcu_node *rnp = rcu_get_root(rsp);
633 	int idx = (READ_ONCE(rnp->completed) + 1) & 0x1;
634 	int *fp = &rnp->need_future_gp[idx];
635 
636 	return READ_ONCE(*fp);
637 }
638 
639 /*
640  * Does the current CPU require a not-yet-started grace period?
641  * The caller must have disabled interrupts to prevent races with
642  * normal callback registry.
643  */
644 static bool
645 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
646 {
647 	int i;
648 
649 	if (rcu_gp_in_progress(rsp))
650 		return false;  /* No, a grace period is already in progress. */
651 	if (rcu_future_needs_gp(rsp))
652 		return true;  /* Yes, a no-CBs CPU needs one. */
653 	if (!rdp->nxttail[RCU_NEXT_TAIL])
654 		return false;  /* No, this is a no-CBs (or offline) CPU. */
655 	if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
656 		return true;  /* Yes, CPU has newly registered callbacks. */
657 	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
658 		if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
659 		    ULONG_CMP_LT(READ_ONCE(rsp->completed),
660 				 rdp->nxtcompleted[i]))
661 			return true;  /* Yes, CBs for future grace period. */
662 	return false; /* No grace period needed. */
663 }
664 
665 /*
666  * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
667  *
668  * If the new value of the ->dynticks_nesting counter now is zero,
669  * we really have entered idle, and must do the appropriate accounting.
670  * The caller must have disabled interrupts.
671  */
672 static void rcu_eqs_enter_common(long long oldval, bool user)
673 {
674 	struct rcu_state *rsp;
675 	struct rcu_data *rdp;
676 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
677 
678 	trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
679 	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
680 	    !user && !is_idle_task(current)) {
681 		struct task_struct *idle __maybe_unused =
682 			idle_task(smp_processor_id());
683 
684 		trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
685 		rcu_ftrace_dump(DUMP_ORIG);
686 		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
687 			  current->pid, current->comm,
688 			  idle->pid, idle->comm); /* must be idle task! */
689 	}
690 	for_each_rcu_flavor(rsp) {
691 		rdp = this_cpu_ptr(rsp->rda);
692 		do_nocb_deferred_wakeup(rdp);
693 	}
694 	rcu_prepare_for_idle();
695 	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
696 	smp_mb__before_atomic();  /* See above. */
697 	atomic_inc(&rdtp->dynticks);
698 	smp_mb__after_atomic();  /* Force ordering with next sojourn. */
699 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
700 		     atomic_read(&rdtp->dynticks) & 0x1);
701 	rcu_dynticks_task_enter();
702 
703 	/*
704 	 * It is illegal to enter an extended quiescent state while
705 	 * in an RCU read-side critical section.
706 	 */
707 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
708 			 "Illegal idle entry in RCU read-side critical section.");
709 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),
710 			 "Illegal idle entry in RCU-bh read-side critical section.");
711 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),
712 			 "Illegal idle entry in RCU-sched read-side critical section.");
713 }
714 
715 /*
716  * Enter an RCU extended quiescent state, which can be either the
717  * idle loop or adaptive-tickless usermode execution.
718  */
719 static void rcu_eqs_enter(bool user)
720 {
721 	long long oldval;
722 	struct rcu_dynticks *rdtp;
723 
724 	rdtp = this_cpu_ptr(&rcu_dynticks);
725 	oldval = rdtp->dynticks_nesting;
726 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
727 		     (oldval & DYNTICK_TASK_NEST_MASK) == 0);
728 	if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
729 		rdtp->dynticks_nesting = 0;
730 		rcu_eqs_enter_common(oldval, user);
731 	} else {
732 		rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
733 	}
734 }
735 
736 /**
737  * rcu_idle_enter - inform RCU that current CPU is entering idle
738  *
739  * Enter idle mode, in other words, -leave- the mode in which RCU
740  * read-side critical sections can occur.  (Though RCU read-side
741  * critical sections can occur in irq handlers in idle, a possibility
742  * handled by irq_enter() and irq_exit().)
743  *
744  * We crowbar the ->dynticks_nesting field to zero to allow for
745  * the possibility of usermode upcalls having messed up our count
746  * of interrupt nesting level during the prior busy period.
747  */
748 void rcu_idle_enter(void)
749 {
750 	unsigned long flags;
751 
752 	local_irq_save(flags);
753 	rcu_eqs_enter(false);
754 	rcu_sysidle_enter(0);
755 	local_irq_restore(flags);
756 }
757 EXPORT_SYMBOL_GPL(rcu_idle_enter);
758 
759 #ifdef CONFIG_NO_HZ_FULL
760 /**
761  * rcu_user_enter - inform RCU that we are resuming userspace.
762  *
763  * Enter RCU idle mode right before resuming userspace.  No use of RCU
764  * is permitted between this call and rcu_user_exit(). This way the
765  * CPU doesn't need to maintain the tick for RCU maintenance purposes
766  * when the CPU runs in userspace.
767  */
768 void rcu_user_enter(void)
769 {
770 	rcu_eqs_enter(1);
771 }
772 #endif /* CONFIG_NO_HZ_FULL */
773 
774 /**
775  * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
776  *
777  * Exit from an interrupt handler, which might possibly result in entering
778  * idle mode, in other words, leaving the mode in which read-side critical
779  * sections can occur.  The caller must have disabled interrupts.
780  *
781  * This code assumes that the idle loop never does anything that might
782  * result in unbalanced calls to irq_enter() and irq_exit().  If your
783  * architecture violates this assumption, RCU will give you what you
784  * deserve, good and hard.  But very infrequently and irreproducibly.
785  *
786  * Use things like work queues to work around this limitation.
787  *
788  * You have been warned.
789  */
790 void rcu_irq_exit(void)
791 {
792 	long long oldval;
793 	struct rcu_dynticks *rdtp;
794 
795 	RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_exit() invoked with irqs enabled!!!");
796 	rdtp = this_cpu_ptr(&rcu_dynticks);
797 	oldval = rdtp->dynticks_nesting;
798 	rdtp->dynticks_nesting--;
799 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
800 		     rdtp->dynticks_nesting < 0);
801 	if (rdtp->dynticks_nesting)
802 		trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
803 	else
804 		rcu_eqs_enter_common(oldval, true);
805 	rcu_sysidle_enter(1);
806 }
807 
808 /*
809  * Wrapper for rcu_irq_exit() where interrupts are enabled.
810  */
811 void rcu_irq_exit_irqson(void)
812 {
813 	unsigned long flags;
814 
815 	local_irq_save(flags);
816 	rcu_irq_exit();
817 	local_irq_restore(flags);
818 }
819 
820 /*
821  * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
822  *
823  * If the new value of the ->dynticks_nesting counter was previously zero,
824  * we really have exited idle, and must do the appropriate accounting.
825  * The caller must have disabled interrupts.
826  */
827 static void rcu_eqs_exit_common(long long oldval, int user)
828 {
829 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
830 
831 	rcu_dynticks_task_exit();
832 	smp_mb__before_atomic();  /* Force ordering w/previous sojourn. */
833 	atomic_inc(&rdtp->dynticks);
834 	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
835 	smp_mb__after_atomic();  /* See above. */
836 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
837 		     !(atomic_read(&rdtp->dynticks) & 0x1));
838 	rcu_cleanup_after_idle();
839 	trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
840 	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
841 	    !user && !is_idle_task(current)) {
842 		struct task_struct *idle __maybe_unused =
843 			idle_task(smp_processor_id());
844 
845 		trace_rcu_dyntick(TPS("Error on exit: not idle task"),
846 				  oldval, rdtp->dynticks_nesting);
847 		rcu_ftrace_dump(DUMP_ORIG);
848 		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
849 			  current->pid, current->comm,
850 			  idle->pid, idle->comm); /* must be idle task! */
851 	}
852 }
853 
854 /*
855  * Exit an RCU extended quiescent state, which can be either the
856  * idle loop or adaptive-tickless usermode execution.
857  */
858 static void rcu_eqs_exit(bool user)
859 {
860 	struct rcu_dynticks *rdtp;
861 	long long oldval;
862 
863 	rdtp = this_cpu_ptr(&rcu_dynticks);
864 	oldval = rdtp->dynticks_nesting;
865 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
866 	if (oldval & DYNTICK_TASK_NEST_MASK) {
867 		rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
868 	} else {
869 		rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
870 		rcu_eqs_exit_common(oldval, user);
871 	}
872 }
873 
874 /**
875  * rcu_idle_exit - inform RCU that current CPU is leaving idle
876  *
877  * Exit idle mode, in other words, -enter- the mode in which RCU
878  * read-side critical sections can occur.
879  *
880  * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
881  * allow for the possibility of usermode upcalls messing up our count
882  * of interrupt nesting level during the busy period that is just
883  * now starting.
884  */
885 void rcu_idle_exit(void)
886 {
887 	unsigned long flags;
888 
889 	local_irq_save(flags);
890 	rcu_eqs_exit(false);
891 	rcu_sysidle_exit(0);
892 	local_irq_restore(flags);
893 }
894 EXPORT_SYMBOL_GPL(rcu_idle_exit);
895 
896 #ifdef CONFIG_NO_HZ_FULL
897 /**
898  * rcu_user_exit - inform RCU that we are exiting userspace.
899  *
900  * Exit RCU idle mode while entering the kernel because it can
901  * run a RCU read side critical section anytime.
902  */
903 void rcu_user_exit(void)
904 {
905 	rcu_eqs_exit(1);
906 }
907 #endif /* CONFIG_NO_HZ_FULL */
908 
909 /**
910  * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
911  *
912  * Enter an interrupt handler, which might possibly result in exiting
913  * idle mode, in other words, entering the mode in which read-side critical
914  * sections can occur.  The caller must have disabled interrupts.
915  *
916  * Note that the Linux kernel is fully capable of entering an interrupt
917  * handler that it never exits, for example when doing upcalls to
918  * user mode!  This code assumes that the idle loop never does upcalls to
919  * user mode.  If your architecture does do upcalls from the idle loop (or
920  * does anything else that results in unbalanced calls to the irq_enter()
921  * and irq_exit() functions), RCU will give you what you deserve, good
922  * and hard.  But very infrequently and irreproducibly.
923  *
924  * Use things like work queues to work around this limitation.
925  *
926  * You have been warned.
927  */
928 void rcu_irq_enter(void)
929 {
930 	struct rcu_dynticks *rdtp;
931 	long long oldval;
932 
933 	RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_enter() invoked with irqs enabled!!!");
934 	rdtp = this_cpu_ptr(&rcu_dynticks);
935 	oldval = rdtp->dynticks_nesting;
936 	rdtp->dynticks_nesting++;
937 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
938 		     rdtp->dynticks_nesting == 0);
939 	if (oldval)
940 		trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
941 	else
942 		rcu_eqs_exit_common(oldval, true);
943 	rcu_sysidle_exit(1);
944 }
945 
946 /*
947  * Wrapper for rcu_irq_enter() where interrupts are enabled.
948  */
949 void rcu_irq_enter_irqson(void)
950 {
951 	unsigned long flags;
952 
953 	local_irq_save(flags);
954 	rcu_irq_enter();
955 	local_irq_restore(flags);
956 }
957 
958 /**
959  * rcu_nmi_enter - inform RCU of entry to NMI context
960  *
961  * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
962  * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
963  * that the CPU is active.  This implementation permits nested NMIs, as
964  * long as the nesting level does not overflow an int.  (You will probably
965  * run out of stack space first.)
966  */
967 void rcu_nmi_enter(void)
968 {
969 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
970 	int incby = 2;
971 
972 	/* Complain about underflow. */
973 	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);
974 
975 	/*
976 	 * If idle from RCU viewpoint, atomically increment ->dynticks
977 	 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
978 	 * Otherwise, increment ->dynticks_nmi_nesting by two.  This means
979 	 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
980 	 * to be in the outermost NMI handler that interrupted an RCU-idle
981 	 * period (observation due to Andy Lutomirski).
982 	 */
983 	if (!(atomic_read(&rdtp->dynticks) & 0x1)) {
984 		smp_mb__before_atomic();  /* Force delay from prior write. */
985 		atomic_inc(&rdtp->dynticks);
986 		/* atomic_inc() before later RCU read-side crit sects */
987 		smp_mb__after_atomic();  /* See above. */
988 		WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
989 		incby = 1;
990 	}
991 	rdtp->dynticks_nmi_nesting += incby;
992 	barrier();
993 }
994 
995 /**
996  * rcu_nmi_exit - inform RCU of exit from NMI context
997  *
998  * If we are returning from the outermost NMI handler that interrupted an
999  * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
1000  * to let the RCU grace-period handling know that the CPU is back to
1001  * being RCU-idle.
1002  */
1003 void rcu_nmi_exit(void)
1004 {
1005 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1006 
1007 	/*
1008 	 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
1009 	 * (We are exiting an NMI handler, so RCU better be paying attention
1010 	 * to us!)
1011 	 */
1012 	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
1013 	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
1014 
1015 	/*
1016 	 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
1017 	 * leave it in non-RCU-idle state.
1018 	 */
1019 	if (rdtp->dynticks_nmi_nesting != 1) {
1020 		rdtp->dynticks_nmi_nesting -= 2;
1021 		return;
1022 	}
1023 
1024 	/* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
1025 	rdtp->dynticks_nmi_nesting = 0;
1026 	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
1027 	smp_mb__before_atomic();  /* See above. */
1028 	atomic_inc(&rdtp->dynticks);
1029 	smp_mb__after_atomic();  /* Force delay to next write. */
1030 	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
1031 }
1032 
1033 /**
1034  * __rcu_is_watching - are RCU read-side critical sections safe?
1035  *
1036  * Return true if RCU is watching the running CPU, which means that
1037  * this CPU can safely enter RCU read-side critical sections.  Unlike
1038  * rcu_is_watching(), the caller of __rcu_is_watching() must have at
1039  * least disabled preemption.
1040  */
1041 bool notrace __rcu_is_watching(void)
1042 {
1043 	return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
1044 }
1045 
1046 /**
1047  * rcu_is_watching - see if RCU thinks that the current CPU is idle
1048  *
1049  * If the current CPU is in its idle loop and is neither in an interrupt
1050  * or NMI handler, return true.
1051  */
1052 bool notrace rcu_is_watching(void)
1053 {
1054 	bool ret;
1055 
1056 	preempt_disable_notrace();
1057 	ret = __rcu_is_watching();
1058 	preempt_enable_notrace();
1059 	return ret;
1060 }
1061 EXPORT_SYMBOL_GPL(rcu_is_watching);
1062 
1063 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
1064 
1065 /*
1066  * Is the current CPU online?  Disable preemption to avoid false positives
1067  * that could otherwise happen due to the current CPU number being sampled,
1068  * this task being preempted, its old CPU being taken offline, resuming
1069  * on some other CPU, then determining that its old CPU is now offline.
1070  * It is OK to use RCU on an offline processor during initial boot, hence
1071  * the check for rcu_scheduler_fully_active.  Note also that it is OK
1072  * for a CPU coming online to use RCU for one jiffy prior to marking itself
1073  * online in the cpu_online_mask.  Similarly, it is OK for a CPU going
1074  * offline to continue to use RCU for one jiffy after marking itself
1075  * offline in the cpu_online_mask.  This leniency is necessary given the
1076  * non-atomic nature of the online and offline processing, for example,
1077  * the fact that a CPU enters the scheduler after completing the teardown
1078  * of the CPU.
1079  *
1080  * This is also why RCU internally marks CPUs online during in the
1081  * preparation phase and offline after the CPU has been taken down.
1082  *
1083  * Disable checking if in an NMI handler because we cannot safely report
1084  * errors from NMI handlers anyway.
1085  */
1086 bool rcu_lockdep_current_cpu_online(void)
1087 {
1088 	struct rcu_data *rdp;
1089 	struct rcu_node *rnp;
1090 	bool ret;
1091 
1092 	if (in_nmi())
1093 		return true;
1094 	preempt_disable();
1095 	rdp = this_cpu_ptr(&rcu_sched_data);
1096 	rnp = rdp->mynode;
1097 	ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
1098 	      !rcu_scheduler_fully_active;
1099 	preempt_enable();
1100 	return ret;
1101 }
1102 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
1103 
1104 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1105 
1106 /**
1107  * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
1108  *
1109  * If the current CPU is idle or running at a first-level (not nested)
1110  * interrupt from idle, return true.  The caller must have at least
1111  * disabled preemption.
1112  */
1113 static int rcu_is_cpu_rrupt_from_idle(void)
1114 {
1115 	return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
1116 }
1117 
1118 /*
1119  * Snapshot the specified CPU's dynticks counter so that we can later
1120  * credit them with an implicit quiescent state.  Return 1 if this CPU
1121  * is in dynticks idle mode, which is an extended quiescent state.
1122  */
1123 static int dyntick_save_progress_counter(struct rcu_data *rdp,
1124 					 bool *isidle, unsigned long *maxj)
1125 {
1126 	rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
1127 	rcu_sysidle_check_cpu(rdp, isidle, maxj);
1128 	if ((rdp->dynticks_snap & 0x1) == 0) {
1129 		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1130 		if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4,
1131 				 rdp->mynode->gpnum))
1132 			WRITE_ONCE(rdp->gpwrap, true);
1133 		return 1;
1134 	}
1135 	return 0;
1136 }
1137 
1138 /*
1139  * Return true if the specified CPU has passed through a quiescent
1140  * state by virtue of being in or having passed through an dynticks
1141  * idle state since the last call to dyntick_save_progress_counter()
1142  * for this same CPU, or by virtue of having been offline.
1143  */
1144 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
1145 				    bool *isidle, unsigned long *maxj)
1146 {
1147 	unsigned int curr;
1148 	int *rcrmp;
1149 	unsigned int snap;
1150 
1151 	curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
1152 	snap = (unsigned int)rdp->dynticks_snap;
1153 
1154 	/*
1155 	 * If the CPU passed through or entered a dynticks idle phase with
1156 	 * no active irq/NMI handlers, then we can safely pretend that the CPU
1157 	 * already acknowledged the request to pass through a quiescent
1158 	 * state.  Either way, that CPU cannot possibly be in an RCU
1159 	 * read-side critical section that started before the beginning
1160 	 * of the current RCU grace period.
1161 	 */
1162 	if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
1163 		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1164 		rdp->dynticks_fqs++;
1165 		return 1;
1166 	}
1167 
1168 	/*
1169 	 * Check for the CPU being offline, but only if the grace period
1170 	 * is old enough.  We don't need to worry about the CPU changing
1171 	 * state: If we see it offline even once, it has been through a
1172 	 * quiescent state.
1173 	 *
1174 	 * The reason for insisting that the grace period be at least
1175 	 * one jiffy old is that CPUs that are not quite online and that
1176 	 * have just gone offline can still execute RCU read-side critical
1177 	 * sections.
1178 	 */
1179 	if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
1180 		return 0;  /* Grace period is not old enough. */
1181 	barrier();
1182 	if (cpu_is_offline(rdp->cpu)) {
1183 		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
1184 		rdp->offline_fqs++;
1185 		return 1;
1186 	}
1187 
1188 	/*
1189 	 * A CPU running for an extended time within the kernel can
1190 	 * delay RCU grace periods.  When the CPU is in NO_HZ_FULL mode,
1191 	 * even context-switching back and forth between a pair of
1192 	 * in-kernel CPU-bound tasks cannot advance grace periods.
1193 	 * So if the grace period is old enough, make the CPU pay attention.
1194 	 * Note that the unsynchronized assignments to the per-CPU
1195 	 * rcu_sched_qs_mask variable are safe.  Yes, setting of
1196 	 * bits can be lost, but they will be set again on the next
1197 	 * force-quiescent-state pass.  So lost bit sets do not result
1198 	 * in incorrect behavior, merely in a grace period lasting
1199 	 * a few jiffies longer than it might otherwise.  Because
1200 	 * there are at most four threads involved, and because the
1201 	 * updates are only once every few jiffies, the probability of
1202 	 * lossage (and thus of slight grace-period extension) is
1203 	 * quite low.
1204 	 *
1205 	 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
1206 	 * is set too high, we override with half of the RCU CPU stall
1207 	 * warning delay.
1208 	 */
1209 	rcrmp = &per_cpu(rcu_sched_qs_mask, rdp->cpu);
1210 	if (ULONG_CMP_GE(jiffies,
1211 			 rdp->rsp->gp_start + jiffies_till_sched_qs) ||
1212 	    ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
1213 		if (!(READ_ONCE(*rcrmp) & rdp->rsp->flavor_mask)) {
1214 			WRITE_ONCE(rdp->cond_resched_completed,
1215 				   READ_ONCE(rdp->mynode->completed));
1216 			smp_mb(); /* ->cond_resched_completed before *rcrmp. */
1217 			WRITE_ONCE(*rcrmp,
1218 				   READ_ONCE(*rcrmp) + rdp->rsp->flavor_mask);
1219 		}
1220 		rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
1221 	}
1222 
1223 	/* And if it has been a really long time, kick the CPU as well. */
1224 	if (ULONG_CMP_GE(jiffies,
1225 			 rdp->rsp->gp_start + 2 * jiffies_till_sched_qs) ||
1226 	    ULONG_CMP_GE(jiffies, rdp->rsp->gp_start + jiffies_till_sched_qs))
1227 		resched_cpu(rdp->cpu);  /* Force CPU into scheduler. */
1228 
1229 	return 0;
1230 }
1231 
1232 static void record_gp_stall_check_time(struct rcu_state *rsp)
1233 {
1234 	unsigned long j = jiffies;
1235 	unsigned long j1;
1236 
1237 	rsp->gp_start = j;
1238 	smp_wmb(); /* Record start time before stall time. */
1239 	j1 = rcu_jiffies_till_stall_check();
1240 	WRITE_ONCE(rsp->jiffies_stall, j + j1);
1241 	rsp->jiffies_resched = j + j1 / 2;
1242 	rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
1243 }
1244 
1245 /*
1246  * Convert a ->gp_state value to a character string.
1247  */
1248 static const char *gp_state_getname(short gs)
1249 {
1250 	if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
1251 		return "???";
1252 	return gp_state_names[gs];
1253 }
1254 
1255 /*
1256  * Complain about starvation of grace-period kthread.
1257  */
1258 static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
1259 {
1260 	unsigned long gpa;
1261 	unsigned long j;
1262 
1263 	j = jiffies;
1264 	gpa = READ_ONCE(rsp->gp_activity);
1265 	if (j - gpa > 2 * HZ) {
1266 		pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x %s(%d) ->state=%#lx\n",
1267 		       rsp->name, j - gpa,
1268 		       rsp->gpnum, rsp->completed,
1269 		       rsp->gp_flags,
1270 		       gp_state_getname(rsp->gp_state), rsp->gp_state,
1271 		       rsp->gp_kthread ? rsp->gp_kthread->state : ~0);
1272 		if (rsp->gp_kthread) {
1273 			sched_show_task(rsp->gp_kthread);
1274 			wake_up_process(rsp->gp_kthread);
1275 		}
1276 	}
1277 }
1278 
1279 /*
1280  * Dump stacks of all tasks running on stalled CPUs.
1281  */
1282 static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
1283 {
1284 	int cpu;
1285 	unsigned long flags;
1286 	struct rcu_node *rnp;
1287 
1288 	rcu_for_each_leaf_node(rsp, rnp) {
1289 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1290 		if (rnp->qsmask != 0) {
1291 			for_each_leaf_node_possible_cpu(rnp, cpu)
1292 				if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu))
1293 					dump_cpu_task(cpu);
1294 		}
1295 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1296 	}
1297 }
1298 
1299 /*
1300  * If too much time has passed in the current grace period, and if
1301  * so configured, go kick the relevant kthreads.
1302  */
1303 static void rcu_stall_kick_kthreads(struct rcu_state *rsp)
1304 {
1305 	unsigned long j;
1306 
1307 	if (!rcu_kick_kthreads)
1308 		return;
1309 	j = READ_ONCE(rsp->jiffies_kick_kthreads);
1310 	if (time_after(jiffies, j) && rsp->gp_kthread &&
1311 	    (rcu_gp_in_progress(rsp) || READ_ONCE(rsp->gp_flags))) {
1312 		WARN_ONCE(1, "Kicking %s grace-period kthread\n", rsp->name);
1313 		rcu_ftrace_dump(DUMP_ALL);
1314 		wake_up_process(rsp->gp_kthread);
1315 		WRITE_ONCE(rsp->jiffies_kick_kthreads, j + HZ);
1316 	}
1317 }
1318 
1319 static inline void panic_on_rcu_stall(void)
1320 {
1321 	if (sysctl_panic_on_rcu_stall)
1322 		panic("RCU Stall\n");
1323 }
1324 
1325 static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
1326 {
1327 	int cpu;
1328 	long delta;
1329 	unsigned long flags;
1330 	unsigned long gpa;
1331 	unsigned long j;
1332 	int ndetected = 0;
1333 	struct rcu_node *rnp = rcu_get_root(rsp);
1334 	long totqlen = 0;
1335 
1336 	/* Kick and suppress, if so configured. */
1337 	rcu_stall_kick_kthreads(rsp);
1338 	if (rcu_cpu_stall_suppress)
1339 		return;
1340 
1341 	/* Only let one CPU complain about others per time interval. */
1342 
1343 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1344 	delta = jiffies - READ_ONCE(rsp->jiffies_stall);
1345 	if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1346 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1347 		return;
1348 	}
1349 	WRITE_ONCE(rsp->jiffies_stall,
1350 		   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1351 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1352 
1353 	/*
1354 	 * OK, time to rat on our buddy...
1355 	 * See Documentation/RCU/stallwarn.txt for info on how to debug
1356 	 * RCU CPU stall warnings.
1357 	 */
1358 	pr_err("INFO: %s detected stalls on CPUs/tasks:",
1359 	       rsp->name);
1360 	print_cpu_stall_info_begin();
1361 	rcu_for_each_leaf_node(rsp, rnp) {
1362 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1363 		ndetected += rcu_print_task_stall(rnp);
1364 		if (rnp->qsmask != 0) {
1365 			for_each_leaf_node_possible_cpu(rnp, cpu)
1366 				if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) {
1367 					print_cpu_stall_info(rsp, cpu);
1368 					ndetected++;
1369 				}
1370 		}
1371 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1372 	}
1373 
1374 	print_cpu_stall_info_end();
1375 	for_each_possible_cpu(cpu)
1376 		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1377 	pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
1378 	       smp_processor_id(), (long)(jiffies - rsp->gp_start),
1379 	       (long)rsp->gpnum, (long)rsp->completed, totqlen);
1380 	if (ndetected) {
1381 		rcu_dump_cpu_stacks(rsp);
1382 	} else {
1383 		if (READ_ONCE(rsp->gpnum) != gpnum ||
1384 		    READ_ONCE(rsp->completed) == gpnum) {
1385 			pr_err("INFO: Stall ended before state dump start\n");
1386 		} else {
1387 			j = jiffies;
1388 			gpa = READ_ONCE(rsp->gp_activity);
1389 			pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
1390 			       rsp->name, j - gpa, j, gpa,
1391 			       jiffies_till_next_fqs,
1392 			       rcu_get_root(rsp)->qsmask);
1393 			/* In this case, the current CPU might be at fault. */
1394 			sched_show_task(current);
1395 		}
1396 	}
1397 
1398 	/* Complain about tasks blocking the grace period. */
1399 	rcu_print_detail_task_stall(rsp);
1400 
1401 	rcu_check_gp_kthread_starvation(rsp);
1402 
1403 	panic_on_rcu_stall();
1404 
1405 	force_quiescent_state(rsp);  /* Kick them all. */
1406 }
1407 
1408 static void print_cpu_stall(struct rcu_state *rsp)
1409 {
1410 	int cpu;
1411 	unsigned long flags;
1412 	struct rcu_node *rnp = rcu_get_root(rsp);
1413 	long totqlen = 0;
1414 
1415 	/* Kick and suppress, if so configured. */
1416 	rcu_stall_kick_kthreads(rsp);
1417 	if (rcu_cpu_stall_suppress)
1418 		return;
1419 
1420 	/*
1421 	 * OK, time to rat on ourselves...
1422 	 * See Documentation/RCU/stallwarn.txt for info on how to debug
1423 	 * RCU CPU stall warnings.
1424 	 */
1425 	pr_err("INFO: %s self-detected stall on CPU", rsp->name);
1426 	print_cpu_stall_info_begin();
1427 	print_cpu_stall_info(rsp, smp_processor_id());
1428 	print_cpu_stall_info_end();
1429 	for_each_possible_cpu(cpu)
1430 		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1431 	pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
1432 		jiffies - rsp->gp_start,
1433 		(long)rsp->gpnum, (long)rsp->completed, totqlen);
1434 
1435 	rcu_check_gp_kthread_starvation(rsp);
1436 
1437 	rcu_dump_cpu_stacks(rsp);
1438 
1439 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1440 	if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
1441 		WRITE_ONCE(rsp->jiffies_stall,
1442 			   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1443 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1444 
1445 	panic_on_rcu_stall();
1446 
1447 	/*
1448 	 * Attempt to revive the RCU machinery by forcing a context switch.
1449 	 *
1450 	 * A context switch would normally allow the RCU state machine to make
1451 	 * progress and it could be we're stuck in kernel space without context
1452 	 * switches for an entirely unreasonable amount of time.
1453 	 */
1454 	resched_cpu(smp_processor_id());
1455 }
1456 
1457 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
1458 {
1459 	unsigned long completed;
1460 	unsigned long gpnum;
1461 	unsigned long gps;
1462 	unsigned long j;
1463 	unsigned long js;
1464 	struct rcu_node *rnp;
1465 
1466 	if ((rcu_cpu_stall_suppress && !rcu_kick_kthreads) ||
1467 	    !rcu_gp_in_progress(rsp))
1468 		return;
1469 	rcu_stall_kick_kthreads(rsp);
1470 	j = jiffies;
1471 
1472 	/*
1473 	 * Lots of memory barriers to reject false positives.
1474 	 *
1475 	 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1476 	 * then rsp->gp_start, and finally rsp->completed.  These values
1477 	 * are updated in the opposite order with memory barriers (or
1478 	 * equivalent) during grace-period initialization and cleanup.
1479 	 * Now, a false positive can occur if we get an new value of
1480 	 * rsp->gp_start and a old value of rsp->jiffies_stall.  But given
1481 	 * the memory barriers, the only way that this can happen is if one
1482 	 * grace period ends and another starts between these two fetches.
1483 	 * Detect this by comparing rsp->completed with the previous fetch
1484 	 * from rsp->gpnum.
1485 	 *
1486 	 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1487 	 * and rsp->gp_start suffice to forestall false positives.
1488 	 */
1489 	gpnum = READ_ONCE(rsp->gpnum);
1490 	smp_rmb(); /* Pick up ->gpnum first... */
1491 	js = READ_ONCE(rsp->jiffies_stall);
1492 	smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1493 	gps = READ_ONCE(rsp->gp_start);
1494 	smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1495 	completed = READ_ONCE(rsp->completed);
1496 	if (ULONG_CMP_GE(completed, gpnum) ||
1497 	    ULONG_CMP_LT(j, js) ||
1498 	    ULONG_CMP_GE(gps, js))
1499 		return; /* No stall or GP completed since entering function. */
1500 	rnp = rdp->mynode;
1501 	if (rcu_gp_in_progress(rsp) &&
1502 	    (READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
1503 
1504 		/* We haven't checked in, so go dump stack. */
1505 		print_cpu_stall(rsp);
1506 
1507 	} else if (rcu_gp_in_progress(rsp) &&
1508 		   ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1509 
1510 		/* They had a few time units to dump stack, so complain. */
1511 		print_other_cpu_stall(rsp, gpnum);
1512 	}
1513 }
1514 
1515 /**
1516  * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1517  *
1518  * Set the stall-warning timeout way off into the future, thus preventing
1519  * any RCU CPU stall-warning messages from appearing in the current set of
1520  * RCU grace periods.
1521  *
1522  * The caller must disable hard irqs.
1523  */
1524 void rcu_cpu_stall_reset(void)
1525 {
1526 	struct rcu_state *rsp;
1527 
1528 	for_each_rcu_flavor(rsp)
1529 		WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
1530 }
1531 
1532 /*
1533  * Initialize the specified rcu_data structure's default callback list
1534  * to empty.  The default callback list is the one that is not used by
1535  * no-callbacks CPUs.
1536  */
1537 static void init_default_callback_list(struct rcu_data *rdp)
1538 {
1539 	int i;
1540 
1541 	rdp->nxtlist = NULL;
1542 	for (i = 0; i < RCU_NEXT_SIZE; i++)
1543 		rdp->nxttail[i] = &rdp->nxtlist;
1544 }
1545 
1546 /*
1547  * Initialize the specified rcu_data structure's callback list to empty.
1548  */
1549 static void init_callback_list(struct rcu_data *rdp)
1550 {
1551 	if (init_nocb_callback_list(rdp))
1552 		return;
1553 	init_default_callback_list(rdp);
1554 }
1555 
1556 /*
1557  * Determine the value that ->completed will have at the end of the
1558  * next subsequent grace period.  This is used to tag callbacks so that
1559  * a CPU can invoke callbacks in a timely fashion even if that CPU has
1560  * been dyntick-idle for an extended period with callbacks under the
1561  * influence of RCU_FAST_NO_HZ.
1562  *
1563  * The caller must hold rnp->lock with interrupts disabled.
1564  */
1565 static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1566 				       struct rcu_node *rnp)
1567 {
1568 	/*
1569 	 * If RCU is idle, we just wait for the next grace period.
1570 	 * But we can only be sure that RCU is idle if we are looking
1571 	 * at the root rcu_node structure -- otherwise, a new grace
1572 	 * period might have started, but just not yet gotten around
1573 	 * to initializing the current non-root rcu_node structure.
1574 	 */
1575 	if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1576 		return rnp->completed + 1;
1577 
1578 	/*
1579 	 * Otherwise, wait for a possible partial grace period and
1580 	 * then the subsequent full grace period.
1581 	 */
1582 	return rnp->completed + 2;
1583 }
1584 
1585 /*
1586  * Trace-event helper function for rcu_start_future_gp() and
1587  * rcu_nocb_wait_gp().
1588  */
1589 static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1590 				unsigned long c, const char *s)
1591 {
1592 	trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1593 				      rnp->completed, c, rnp->level,
1594 				      rnp->grplo, rnp->grphi, s);
1595 }
1596 
1597 /*
1598  * Start some future grace period, as needed to handle newly arrived
1599  * callbacks.  The required future grace periods are recorded in each
1600  * rcu_node structure's ->need_future_gp field.  Returns true if there
1601  * is reason to awaken the grace-period kthread.
1602  *
1603  * The caller must hold the specified rcu_node structure's ->lock.
1604  */
1605 static bool __maybe_unused
1606 rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1607 		    unsigned long *c_out)
1608 {
1609 	unsigned long c;
1610 	int i;
1611 	bool ret = false;
1612 	struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1613 
1614 	/*
1615 	 * Pick up grace-period number for new callbacks.  If this
1616 	 * grace period is already marked as needed, return to the caller.
1617 	 */
1618 	c = rcu_cbs_completed(rdp->rsp, rnp);
1619 	trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1620 	if (rnp->need_future_gp[c & 0x1]) {
1621 		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1622 		goto out;
1623 	}
1624 
1625 	/*
1626 	 * If either this rcu_node structure or the root rcu_node structure
1627 	 * believe that a grace period is in progress, then we must wait
1628 	 * for the one following, which is in "c".  Because our request
1629 	 * will be noticed at the end of the current grace period, we don't
1630 	 * need to explicitly start one.  We only do the lockless check
1631 	 * of rnp_root's fields if the current rcu_node structure thinks
1632 	 * there is no grace period in flight, and because we hold rnp->lock,
1633 	 * the only possible change is when rnp_root's two fields are
1634 	 * equal, in which case rnp_root->gpnum might be concurrently
1635 	 * incremented.  But that is OK, as it will just result in our
1636 	 * doing some extra useless work.
1637 	 */
1638 	if (rnp->gpnum != rnp->completed ||
1639 	    READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) {
1640 		rnp->need_future_gp[c & 0x1]++;
1641 		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1642 		goto out;
1643 	}
1644 
1645 	/*
1646 	 * There might be no grace period in progress.  If we don't already
1647 	 * hold it, acquire the root rcu_node structure's lock in order to
1648 	 * start one (if needed).
1649 	 */
1650 	if (rnp != rnp_root)
1651 		raw_spin_lock_rcu_node(rnp_root);
1652 
1653 	/*
1654 	 * Get a new grace-period number.  If there really is no grace
1655 	 * period in progress, it will be smaller than the one we obtained
1656 	 * earlier.  Adjust callbacks as needed.  Note that even no-CBs
1657 	 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
1658 	 */
1659 	c = rcu_cbs_completed(rdp->rsp, rnp_root);
1660 	for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
1661 		if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
1662 			rdp->nxtcompleted[i] = c;
1663 
1664 	/*
1665 	 * If the needed for the required grace period is already
1666 	 * recorded, trace and leave.
1667 	 */
1668 	if (rnp_root->need_future_gp[c & 0x1]) {
1669 		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1670 		goto unlock_out;
1671 	}
1672 
1673 	/* Record the need for the future grace period. */
1674 	rnp_root->need_future_gp[c & 0x1]++;
1675 
1676 	/* If a grace period is not already in progress, start one. */
1677 	if (rnp_root->gpnum != rnp_root->completed) {
1678 		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1679 	} else {
1680 		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1681 		ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1682 	}
1683 unlock_out:
1684 	if (rnp != rnp_root)
1685 		raw_spin_unlock_rcu_node(rnp_root);
1686 out:
1687 	if (c_out != NULL)
1688 		*c_out = c;
1689 	return ret;
1690 }
1691 
1692 /*
1693  * Clean up any old requests for the just-ended grace period.  Also return
1694  * whether any additional grace periods have been requested.  Also invoke
1695  * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1696  * waiting for this grace period to complete.
1697  */
1698 static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1699 {
1700 	int c = rnp->completed;
1701 	int needmore;
1702 	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1703 
1704 	rnp->need_future_gp[c & 0x1] = 0;
1705 	needmore = rnp->need_future_gp[(c + 1) & 0x1];
1706 	trace_rcu_future_gp(rnp, rdp, c,
1707 			    needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1708 	return needmore;
1709 }
1710 
1711 /*
1712  * Awaken the grace-period kthread for the specified flavor of RCU.
1713  * Don't do a self-awaken, and don't bother awakening when there is
1714  * nothing for the grace-period kthread to do (as in several CPUs
1715  * raced to awaken, and we lost), and finally don't try to awaken
1716  * a kthread that has not yet been created.
1717  */
1718 static void rcu_gp_kthread_wake(struct rcu_state *rsp)
1719 {
1720 	if (current == rsp->gp_kthread ||
1721 	    !READ_ONCE(rsp->gp_flags) ||
1722 	    !rsp->gp_kthread)
1723 		return;
1724 	swake_up(&rsp->gp_wq);
1725 }
1726 
1727 /*
1728  * If there is room, assign a ->completed number to any callbacks on
1729  * this CPU that have not already been assigned.  Also accelerate any
1730  * callbacks that were previously assigned a ->completed number that has
1731  * since proven to be too conservative, which can happen if callbacks get
1732  * assigned a ->completed number while RCU is idle, but with reference to
1733  * a non-root rcu_node structure.  This function is idempotent, so it does
1734  * not hurt to call it repeatedly.  Returns an flag saying that we should
1735  * awaken the RCU grace-period kthread.
1736  *
1737  * The caller must hold rnp->lock with interrupts disabled.
1738  */
1739 static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1740 			       struct rcu_data *rdp)
1741 {
1742 	unsigned long c;
1743 	int i;
1744 	bool ret;
1745 
1746 	/* If the CPU has no callbacks, nothing to do. */
1747 	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1748 		return false;
1749 
1750 	/*
1751 	 * Starting from the sublist containing the callbacks most
1752 	 * recently assigned a ->completed number and working down, find the
1753 	 * first sublist that is not assignable to an upcoming grace period.
1754 	 * Such a sublist has something in it (first two tests) and has
1755 	 * a ->completed number assigned that will complete sooner than
1756 	 * the ->completed number for newly arrived callbacks (last test).
1757 	 *
1758 	 * The key point is that any later sublist can be assigned the
1759 	 * same ->completed number as the newly arrived callbacks, which
1760 	 * means that the callbacks in any of these later sublist can be
1761 	 * grouped into a single sublist, whether or not they have already
1762 	 * been assigned a ->completed number.
1763 	 */
1764 	c = rcu_cbs_completed(rsp, rnp);
1765 	for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
1766 		if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
1767 		    !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
1768 			break;
1769 
1770 	/*
1771 	 * If there are no sublist for unassigned callbacks, leave.
1772 	 * At the same time, advance "i" one sublist, so that "i" will
1773 	 * index into the sublist where all the remaining callbacks should
1774 	 * be grouped into.
1775 	 */
1776 	if (++i >= RCU_NEXT_TAIL)
1777 		return false;
1778 
1779 	/*
1780 	 * Assign all subsequent callbacks' ->completed number to the next
1781 	 * full grace period and group them all in the sublist initially
1782 	 * indexed by "i".
1783 	 */
1784 	for (; i <= RCU_NEXT_TAIL; i++) {
1785 		rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
1786 		rdp->nxtcompleted[i] = c;
1787 	}
1788 	/* Record any needed additional grace periods. */
1789 	ret = rcu_start_future_gp(rnp, rdp, NULL);
1790 
1791 	/* Trace depending on how much we were able to accelerate. */
1792 	if (!*rdp->nxttail[RCU_WAIT_TAIL])
1793 		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1794 	else
1795 		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
1796 	return ret;
1797 }
1798 
1799 /*
1800  * Move any callbacks whose grace period has completed to the
1801  * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1802  * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1803  * sublist.  This function is idempotent, so it does not hurt to
1804  * invoke it repeatedly.  As long as it is not invoked -too- often...
1805  * Returns true if the RCU grace-period kthread needs to be awakened.
1806  *
1807  * The caller must hold rnp->lock with interrupts disabled.
1808  */
1809 static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1810 			    struct rcu_data *rdp)
1811 {
1812 	int i, j;
1813 
1814 	/* If the CPU has no callbacks, nothing to do. */
1815 	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1816 		return false;
1817 
1818 	/*
1819 	 * Find all callbacks whose ->completed numbers indicate that they
1820 	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1821 	 */
1822 	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
1823 		if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
1824 			break;
1825 		rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
1826 	}
1827 	/* Clean up any sublist tail pointers that were misordered above. */
1828 	for (j = RCU_WAIT_TAIL; j < i; j++)
1829 		rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
1830 
1831 	/* Copy down callbacks to fill in empty sublists. */
1832 	for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
1833 		if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
1834 			break;
1835 		rdp->nxttail[j] = rdp->nxttail[i];
1836 		rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
1837 	}
1838 
1839 	/* Classify any remaining callbacks. */
1840 	return rcu_accelerate_cbs(rsp, rnp, rdp);
1841 }
1842 
1843 /*
1844  * Update CPU-local rcu_data state to record the beginnings and ends of
1845  * grace periods.  The caller must hold the ->lock of the leaf rcu_node
1846  * structure corresponding to the current CPU, and must have irqs disabled.
1847  * Returns true if the grace-period kthread needs to be awakened.
1848  */
1849 static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
1850 			      struct rcu_data *rdp)
1851 {
1852 	bool ret;
1853 	bool need_gp;
1854 
1855 	/* Handle the ends of any preceding grace periods first. */
1856 	if (rdp->completed == rnp->completed &&
1857 	    !unlikely(READ_ONCE(rdp->gpwrap))) {
1858 
1859 		/* No grace period end, so just accelerate recent callbacks. */
1860 		ret = rcu_accelerate_cbs(rsp, rnp, rdp);
1861 
1862 	} else {
1863 
1864 		/* Advance callbacks. */
1865 		ret = rcu_advance_cbs(rsp, rnp, rdp);
1866 
1867 		/* Remember that we saw this grace-period completion. */
1868 		rdp->completed = rnp->completed;
1869 		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1870 	}
1871 
1872 	if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
1873 		/*
1874 		 * If the current grace period is waiting for this CPU,
1875 		 * set up to detect a quiescent state, otherwise don't
1876 		 * go looking for one.
1877 		 */
1878 		rdp->gpnum = rnp->gpnum;
1879 		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1880 		need_gp = !!(rnp->qsmask & rdp->grpmask);
1881 		rdp->cpu_no_qs.b.norm = need_gp;
1882 		rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
1883 		rdp->core_needs_qs = need_gp;
1884 		zero_cpu_stall_ticks(rdp);
1885 		WRITE_ONCE(rdp->gpwrap, false);
1886 	}
1887 	return ret;
1888 }
1889 
1890 static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1891 {
1892 	unsigned long flags;
1893 	bool needwake;
1894 	struct rcu_node *rnp;
1895 
1896 	local_irq_save(flags);
1897 	rnp = rdp->mynode;
1898 	if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
1899 	     rdp->completed == READ_ONCE(rnp->completed) &&
1900 	     !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1901 	    !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1902 		local_irq_restore(flags);
1903 		return;
1904 	}
1905 	needwake = __note_gp_changes(rsp, rnp, rdp);
1906 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1907 	if (needwake)
1908 		rcu_gp_kthread_wake(rsp);
1909 }
1910 
1911 static void rcu_gp_slow(struct rcu_state *rsp, int delay)
1912 {
1913 	if (delay > 0 &&
1914 	    !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1915 		schedule_timeout_uninterruptible(delay);
1916 }
1917 
1918 /*
1919  * Initialize a new grace period.  Return false if no grace period required.
1920  */
1921 static bool rcu_gp_init(struct rcu_state *rsp)
1922 {
1923 	unsigned long oldmask;
1924 	struct rcu_data *rdp;
1925 	struct rcu_node *rnp = rcu_get_root(rsp);
1926 
1927 	WRITE_ONCE(rsp->gp_activity, jiffies);
1928 	raw_spin_lock_irq_rcu_node(rnp);
1929 	if (!READ_ONCE(rsp->gp_flags)) {
1930 		/* Spurious wakeup, tell caller to go back to sleep.  */
1931 		raw_spin_unlock_irq_rcu_node(rnp);
1932 		return false;
1933 	}
1934 	WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
1935 
1936 	if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1937 		/*
1938 		 * Grace period already in progress, don't start another.
1939 		 * Not supposed to be able to happen.
1940 		 */
1941 		raw_spin_unlock_irq_rcu_node(rnp);
1942 		return false;
1943 	}
1944 
1945 	/* Advance to a new grace period and initialize state. */
1946 	record_gp_stall_check_time(rsp);
1947 	/* Record GP times before starting GP, hence smp_store_release(). */
1948 	smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
1949 	trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
1950 	raw_spin_unlock_irq_rcu_node(rnp);
1951 
1952 	/*
1953 	 * Apply per-leaf buffered online and offline operations to the
1954 	 * rcu_node tree.  Note that this new grace period need not wait
1955 	 * for subsequent online CPUs, and that quiescent-state forcing
1956 	 * will handle subsequent offline CPUs.
1957 	 */
1958 	rcu_for_each_leaf_node(rsp, rnp) {
1959 		rcu_gp_slow(rsp, gp_preinit_delay);
1960 		raw_spin_lock_irq_rcu_node(rnp);
1961 		if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1962 		    !rnp->wait_blkd_tasks) {
1963 			/* Nothing to do on this leaf rcu_node structure. */
1964 			raw_spin_unlock_irq_rcu_node(rnp);
1965 			continue;
1966 		}
1967 
1968 		/* Record old state, apply changes to ->qsmaskinit field. */
1969 		oldmask = rnp->qsmaskinit;
1970 		rnp->qsmaskinit = rnp->qsmaskinitnext;
1971 
1972 		/* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1973 		if (!oldmask != !rnp->qsmaskinit) {
1974 			if (!oldmask) /* First online CPU for this rcu_node. */
1975 				rcu_init_new_rnp(rnp);
1976 			else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
1977 				rnp->wait_blkd_tasks = true;
1978 			else /* Last offline CPU and can propagate. */
1979 				rcu_cleanup_dead_rnp(rnp);
1980 		}
1981 
1982 		/*
1983 		 * If all waited-on tasks from prior grace period are
1984 		 * done, and if all this rcu_node structure's CPUs are
1985 		 * still offline, propagate up the rcu_node tree and
1986 		 * clear ->wait_blkd_tasks.  Otherwise, if one of this
1987 		 * rcu_node structure's CPUs has since come back online,
1988 		 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
1989 		 * checks for this, so just call it unconditionally).
1990 		 */
1991 		if (rnp->wait_blkd_tasks &&
1992 		    (!rcu_preempt_has_tasks(rnp) ||
1993 		     rnp->qsmaskinit)) {
1994 			rnp->wait_blkd_tasks = false;
1995 			rcu_cleanup_dead_rnp(rnp);
1996 		}
1997 
1998 		raw_spin_unlock_irq_rcu_node(rnp);
1999 	}
2000 
2001 	/*
2002 	 * Set the quiescent-state-needed bits in all the rcu_node
2003 	 * structures for all currently online CPUs in breadth-first order,
2004 	 * starting from the root rcu_node structure, relying on the layout
2005 	 * of the tree within the rsp->node[] array.  Note that other CPUs
2006 	 * will access only the leaves of the hierarchy, thus seeing that no
2007 	 * grace period is in progress, at least until the corresponding
2008 	 * leaf node has been initialized.
2009 	 *
2010 	 * The grace period cannot complete until the initialization
2011 	 * process finishes, because this kthread handles both.
2012 	 */
2013 	rcu_for_each_node_breadth_first(rsp, rnp) {
2014 		rcu_gp_slow(rsp, gp_init_delay);
2015 		raw_spin_lock_irq_rcu_node(rnp);
2016 		rdp = this_cpu_ptr(rsp->rda);
2017 		rcu_preempt_check_blocked_tasks(rnp);
2018 		rnp->qsmask = rnp->qsmaskinit;
2019 		WRITE_ONCE(rnp->gpnum, rsp->gpnum);
2020 		if (WARN_ON_ONCE(rnp->completed != rsp->completed))
2021 			WRITE_ONCE(rnp->completed, rsp->completed);
2022 		if (rnp == rdp->mynode)
2023 			(void)__note_gp_changes(rsp, rnp, rdp);
2024 		rcu_preempt_boost_start_gp(rnp);
2025 		trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
2026 					    rnp->level, rnp->grplo,
2027 					    rnp->grphi, rnp->qsmask);
2028 		raw_spin_unlock_irq_rcu_node(rnp);
2029 		cond_resched_rcu_qs();
2030 		WRITE_ONCE(rsp->gp_activity, jiffies);
2031 	}
2032 
2033 	return true;
2034 }
2035 
2036 /*
2037  * Helper function for wait_event_interruptible_timeout() wakeup
2038  * at force-quiescent-state time.
2039  */
2040 static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp)
2041 {
2042 	struct rcu_node *rnp = rcu_get_root(rsp);
2043 
2044 	/* Someone like call_rcu() requested a force-quiescent-state scan. */
2045 	*gfp = READ_ONCE(rsp->gp_flags);
2046 	if (*gfp & RCU_GP_FLAG_FQS)
2047 		return true;
2048 
2049 	/* The current grace period has completed. */
2050 	if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
2051 		return true;
2052 
2053 	return false;
2054 }
2055 
2056 /*
2057  * Do one round of quiescent-state forcing.
2058  */
2059 static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time)
2060 {
2061 	bool isidle = false;
2062 	unsigned long maxj;
2063 	struct rcu_node *rnp = rcu_get_root(rsp);
2064 
2065 	WRITE_ONCE(rsp->gp_activity, jiffies);
2066 	rsp->n_force_qs++;
2067 	if (first_time) {
2068 		/* Collect dyntick-idle snapshots. */
2069 		if (is_sysidle_rcu_state(rsp)) {
2070 			isidle = true;
2071 			maxj = jiffies - ULONG_MAX / 4;
2072 		}
2073 		force_qs_rnp(rsp, dyntick_save_progress_counter,
2074 			     &isidle, &maxj);
2075 		rcu_sysidle_report_gp(rsp, isidle, maxj);
2076 	} else {
2077 		/* Handle dyntick-idle and offline CPUs. */
2078 		isidle = true;
2079 		force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
2080 	}
2081 	/* Clear flag to prevent immediate re-entry. */
2082 	if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2083 		raw_spin_lock_irq_rcu_node(rnp);
2084 		WRITE_ONCE(rsp->gp_flags,
2085 			   READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
2086 		raw_spin_unlock_irq_rcu_node(rnp);
2087 	}
2088 }
2089 
2090 /*
2091  * Clean up after the old grace period.
2092  */
2093 static void rcu_gp_cleanup(struct rcu_state *rsp)
2094 {
2095 	unsigned long gp_duration;
2096 	bool needgp = false;
2097 	int nocb = 0;
2098 	struct rcu_data *rdp;
2099 	struct rcu_node *rnp = rcu_get_root(rsp);
2100 	struct swait_queue_head *sq;
2101 
2102 	WRITE_ONCE(rsp->gp_activity, jiffies);
2103 	raw_spin_lock_irq_rcu_node(rnp);
2104 	gp_duration = jiffies - rsp->gp_start;
2105 	if (gp_duration > rsp->gp_max)
2106 		rsp->gp_max = gp_duration;
2107 
2108 	/*
2109 	 * We know the grace period is complete, but to everyone else
2110 	 * it appears to still be ongoing.  But it is also the case
2111 	 * that to everyone else it looks like there is nothing that
2112 	 * they can do to advance the grace period.  It is therefore
2113 	 * safe for us to drop the lock in order to mark the grace
2114 	 * period as completed in all of the rcu_node structures.
2115 	 */
2116 	raw_spin_unlock_irq_rcu_node(rnp);
2117 
2118 	/*
2119 	 * Propagate new ->completed value to rcu_node structures so
2120 	 * that other CPUs don't have to wait until the start of the next
2121 	 * grace period to process their callbacks.  This also avoids
2122 	 * some nasty RCU grace-period initialization races by forcing
2123 	 * the end of the current grace period to be completely recorded in
2124 	 * all of the rcu_node structures before the beginning of the next
2125 	 * grace period is recorded in any of the rcu_node structures.
2126 	 */
2127 	rcu_for_each_node_breadth_first(rsp, rnp) {
2128 		raw_spin_lock_irq_rcu_node(rnp);
2129 		WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
2130 		WARN_ON_ONCE(rnp->qsmask);
2131 		WRITE_ONCE(rnp->completed, rsp->gpnum);
2132 		rdp = this_cpu_ptr(rsp->rda);
2133 		if (rnp == rdp->mynode)
2134 			needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
2135 		/* smp_mb() provided by prior unlock-lock pair. */
2136 		nocb += rcu_future_gp_cleanup(rsp, rnp);
2137 		sq = rcu_nocb_gp_get(rnp);
2138 		raw_spin_unlock_irq_rcu_node(rnp);
2139 		rcu_nocb_gp_cleanup(sq);
2140 		cond_resched_rcu_qs();
2141 		WRITE_ONCE(rsp->gp_activity, jiffies);
2142 		rcu_gp_slow(rsp, gp_cleanup_delay);
2143 	}
2144 	rnp = rcu_get_root(rsp);
2145 	raw_spin_lock_irq_rcu_node(rnp); /* Order GP before ->completed update. */
2146 	rcu_nocb_gp_set(rnp, nocb);
2147 
2148 	/* Declare grace period done. */
2149 	WRITE_ONCE(rsp->completed, rsp->gpnum);
2150 	trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
2151 	rsp->gp_state = RCU_GP_IDLE;
2152 	rdp = this_cpu_ptr(rsp->rda);
2153 	/* Advance CBs to reduce false positives below. */
2154 	needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
2155 	if (needgp || cpu_needs_another_gp(rsp, rdp)) {
2156 		WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2157 		trace_rcu_grace_period(rsp->name,
2158 				       READ_ONCE(rsp->gpnum),
2159 				       TPS("newreq"));
2160 	}
2161 	raw_spin_unlock_irq_rcu_node(rnp);
2162 }
2163 
2164 /*
2165  * Body of kthread that handles grace periods.
2166  */
2167 static int __noreturn rcu_gp_kthread(void *arg)
2168 {
2169 	bool first_gp_fqs;
2170 	int gf;
2171 	unsigned long j;
2172 	int ret;
2173 	struct rcu_state *rsp = arg;
2174 	struct rcu_node *rnp = rcu_get_root(rsp);
2175 
2176 	rcu_bind_gp_kthread();
2177 	for (;;) {
2178 
2179 		/* Handle grace-period start. */
2180 		for (;;) {
2181 			trace_rcu_grace_period(rsp->name,
2182 					       READ_ONCE(rsp->gpnum),
2183 					       TPS("reqwait"));
2184 			rsp->gp_state = RCU_GP_WAIT_GPS;
2185 			swait_event_interruptible(rsp->gp_wq,
2186 						 READ_ONCE(rsp->gp_flags) &
2187 						 RCU_GP_FLAG_INIT);
2188 			rsp->gp_state = RCU_GP_DONE_GPS;
2189 			/* Locking provides needed memory barrier. */
2190 			if (rcu_gp_init(rsp))
2191 				break;
2192 			cond_resched_rcu_qs();
2193 			WRITE_ONCE(rsp->gp_activity, jiffies);
2194 			WARN_ON(signal_pending(current));
2195 			trace_rcu_grace_period(rsp->name,
2196 					       READ_ONCE(rsp->gpnum),
2197 					       TPS("reqwaitsig"));
2198 		}
2199 
2200 		/* Handle quiescent-state forcing. */
2201 		first_gp_fqs = true;
2202 		j = jiffies_till_first_fqs;
2203 		if (j > HZ) {
2204 			j = HZ;
2205 			jiffies_till_first_fqs = HZ;
2206 		}
2207 		ret = 0;
2208 		for (;;) {
2209 			if (!ret) {
2210 				rsp->jiffies_force_qs = jiffies + j;
2211 				WRITE_ONCE(rsp->jiffies_kick_kthreads,
2212 					   jiffies + 3 * j);
2213 			}
2214 			trace_rcu_grace_period(rsp->name,
2215 					       READ_ONCE(rsp->gpnum),
2216 					       TPS("fqswait"));
2217 			rsp->gp_state = RCU_GP_WAIT_FQS;
2218 			ret = swait_event_interruptible_timeout(rsp->gp_wq,
2219 					rcu_gp_fqs_check_wake(rsp, &gf), j);
2220 			rsp->gp_state = RCU_GP_DOING_FQS;
2221 			/* Locking provides needed memory barriers. */
2222 			/* If grace period done, leave loop. */
2223 			if (!READ_ONCE(rnp->qsmask) &&
2224 			    !rcu_preempt_blocked_readers_cgp(rnp))
2225 				break;
2226 			/* If time for quiescent-state forcing, do it. */
2227 			if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
2228 			    (gf & RCU_GP_FLAG_FQS)) {
2229 				trace_rcu_grace_period(rsp->name,
2230 						       READ_ONCE(rsp->gpnum),
2231 						       TPS("fqsstart"));
2232 				rcu_gp_fqs(rsp, first_gp_fqs);
2233 				first_gp_fqs = false;
2234 				trace_rcu_grace_period(rsp->name,
2235 						       READ_ONCE(rsp->gpnum),
2236 						       TPS("fqsend"));
2237 				cond_resched_rcu_qs();
2238 				WRITE_ONCE(rsp->gp_activity, jiffies);
2239 				ret = 0; /* Force full wait till next FQS. */
2240 				j = jiffies_till_next_fqs;
2241 				if (j > HZ) {
2242 					j = HZ;
2243 					jiffies_till_next_fqs = HZ;
2244 				} else if (j < 1) {
2245 					j = 1;
2246 					jiffies_till_next_fqs = 1;
2247 				}
2248 			} else {
2249 				/* Deal with stray signal. */
2250 				cond_resched_rcu_qs();
2251 				WRITE_ONCE(rsp->gp_activity, jiffies);
2252 				WARN_ON(signal_pending(current));
2253 				trace_rcu_grace_period(rsp->name,
2254 						       READ_ONCE(rsp->gpnum),
2255 						       TPS("fqswaitsig"));
2256 				ret = 1; /* Keep old FQS timing. */
2257 				j = jiffies;
2258 				if (time_after(jiffies, rsp->jiffies_force_qs))
2259 					j = 1;
2260 				else
2261 					j = rsp->jiffies_force_qs - j;
2262 			}
2263 		}
2264 
2265 		/* Handle grace-period end. */
2266 		rsp->gp_state = RCU_GP_CLEANUP;
2267 		rcu_gp_cleanup(rsp);
2268 		rsp->gp_state = RCU_GP_CLEANED;
2269 	}
2270 }
2271 
2272 /*
2273  * Start a new RCU grace period if warranted, re-initializing the hierarchy
2274  * in preparation for detecting the next grace period.  The caller must hold
2275  * the root node's ->lock and hard irqs must be disabled.
2276  *
2277  * Note that it is legal for a dying CPU (which is marked as offline) to
2278  * invoke this function.  This can happen when the dying CPU reports its
2279  * quiescent state.
2280  *
2281  * Returns true if the grace-period kthread must be awakened.
2282  */
2283 static bool
2284 rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
2285 		      struct rcu_data *rdp)
2286 {
2287 	if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
2288 		/*
2289 		 * Either we have not yet spawned the grace-period
2290 		 * task, this CPU does not need another grace period,
2291 		 * or a grace period is already in progress.
2292 		 * Either way, don't start a new grace period.
2293 		 */
2294 		return false;
2295 	}
2296 	WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2297 	trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
2298 			       TPS("newreq"));
2299 
2300 	/*
2301 	 * We can't do wakeups while holding the rnp->lock, as that
2302 	 * could cause possible deadlocks with the rq->lock. Defer
2303 	 * the wakeup to our caller.
2304 	 */
2305 	return true;
2306 }
2307 
2308 /*
2309  * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
2310  * callbacks.  Note that rcu_start_gp_advanced() cannot do this because it
2311  * is invoked indirectly from rcu_advance_cbs(), which would result in
2312  * endless recursion -- or would do so if it wasn't for the self-deadlock
2313  * that is encountered beforehand.
2314  *
2315  * Returns true if the grace-period kthread needs to be awakened.
2316  */
2317 static bool rcu_start_gp(struct rcu_state *rsp)
2318 {
2319 	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
2320 	struct rcu_node *rnp = rcu_get_root(rsp);
2321 	bool ret = false;
2322 
2323 	/*
2324 	 * If there is no grace period in progress right now, any
2325 	 * callbacks we have up to this point will be satisfied by the
2326 	 * next grace period.  Also, advancing the callbacks reduces the
2327 	 * probability of false positives from cpu_needs_another_gp()
2328 	 * resulting in pointless grace periods.  So, advance callbacks
2329 	 * then start the grace period!
2330 	 */
2331 	ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
2332 	ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
2333 	return ret;
2334 }
2335 
2336 /*
2337  * Report a full set of quiescent states to the specified rcu_state data
2338  * structure.  Invoke rcu_gp_kthread_wake() to awaken the grace-period
2339  * kthread if another grace period is required.  Whether we wake
2340  * the grace-period kthread or it awakens itself for the next round
2341  * of quiescent-state forcing, that kthread will clean up after the
2342  * just-completed grace period.  Note that the caller must hold rnp->lock,
2343  * which is released before return.
2344  */
2345 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
2346 	__releases(rcu_get_root(rsp)->lock)
2347 {
2348 	WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
2349 	WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2350 	raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
2351 	rcu_gp_kthread_wake(rsp);
2352 }
2353 
2354 /*
2355  * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2356  * Allows quiescent states for a group of CPUs to be reported at one go
2357  * to the specified rcu_node structure, though all the CPUs in the group
2358  * must be represented by the same rcu_node structure (which need not be a
2359  * leaf rcu_node structure, though it often will be).  The gps parameter
2360  * is the grace-period snapshot, which means that the quiescent states
2361  * are valid only if rnp->gpnum is equal to gps.  That structure's lock
2362  * must be held upon entry, and it is released before return.
2363  */
2364 static void
2365 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
2366 		  struct rcu_node *rnp, unsigned long gps, unsigned long flags)
2367 	__releases(rnp->lock)
2368 {
2369 	unsigned long oldmask = 0;
2370 	struct rcu_node *rnp_c;
2371 
2372 	/* Walk up the rcu_node hierarchy. */
2373 	for (;;) {
2374 		if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
2375 
2376 			/*
2377 			 * Our bit has already been cleared, or the
2378 			 * relevant grace period is already over, so done.
2379 			 */
2380 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2381 			return;
2382 		}
2383 		WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2384 		rnp->qsmask &= ~mask;
2385 		trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
2386 						 mask, rnp->qsmask, rnp->level,
2387 						 rnp->grplo, rnp->grphi,
2388 						 !!rnp->gp_tasks);
2389 		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2390 
2391 			/* Other bits still set at this level, so done. */
2392 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2393 			return;
2394 		}
2395 		mask = rnp->grpmask;
2396 		if (rnp->parent == NULL) {
2397 
2398 			/* No more levels.  Exit loop holding root lock. */
2399 
2400 			break;
2401 		}
2402 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2403 		rnp_c = rnp;
2404 		rnp = rnp->parent;
2405 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2406 		oldmask = rnp_c->qsmask;
2407 	}
2408 
2409 	/*
2410 	 * Get here if we are the last CPU to pass through a quiescent
2411 	 * state for this grace period.  Invoke rcu_report_qs_rsp()
2412 	 * to clean up and start the next grace period if one is needed.
2413 	 */
2414 	rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
2415 }
2416 
2417 /*
2418  * Record a quiescent state for all tasks that were previously queued
2419  * on the specified rcu_node structure and that were blocking the current
2420  * RCU grace period.  The caller must hold the specified rnp->lock with
2421  * irqs disabled, and this lock is released upon return, but irqs remain
2422  * disabled.
2423  */
2424 static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
2425 				      struct rcu_node *rnp, unsigned long flags)
2426 	__releases(rnp->lock)
2427 {
2428 	unsigned long gps;
2429 	unsigned long mask;
2430 	struct rcu_node *rnp_p;
2431 
2432 	if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
2433 	    rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2434 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2435 		return;  /* Still need more quiescent states! */
2436 	}
2437 
2438 	rnp_p = rnp->parent;
2439 	if (rnp_p == NULL) {
2440 		/*
2441 		 * Only one rcu_node structure in the tree, so don't
2442 		 * try to report up to its nonexistent parent!
2443 		 */
2444 		rcu_report_qs_rsp(rsp, flags);
2445 		return;
2446 	}
2447 
2448 	/* Report up the rest of the hierarchy, tracking current ->gpnum. */
2449 	gps = rnp->gpnum;
2450 	mask = rnp->grpmask;
2451 	raw_spin_unlock_rcu_node(rnp);	/* irqs remain disabled. */
2452 	raw_spin_lock_rcu_node(rnp_p);	/* irqs already disabled. */
2453 	rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
2454 }
2455 
2456 /*
2457  * Record a quiescent state for the specified CPU to that CPU's rcu_data
2458  * structure.  This must be called from the specified CPU.
2459  */
2460 static void
2461 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
2462 {
2463 	unsigned long flags;
2464 	unsigned long mask;
2465 	bool needwake;
2466 	struct rcu_node *rnp;
2467 
2468 	rnp = rdp->mynode;
2469 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
2470 	if ((rdp->cpu_no_qs.b.norm &&
2471 	     rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) ||
2472 	    rdp->gpnum != rnp->gpnum || rnp->completed == rnp->gpnum ||
2473 	    rdp->gpwrap) {
2474 
2475 		/*
2476 		 * The grace period in which this quiescent state was
2477 		 * recorded has ended, so don't report it upwards.
2478 		 * We will instead need a new quiescent state that lies
2479 		 * within the current grace period.
2480 		 */
2481 		rdp->cpu_no_qs.b.norm = true;	/* need qs for new gp. */
2482 		rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
2483 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2484 		return;
2485 	}
2486 	mask = rdp->grpmask;
2487 	if ((rnp->qsmask & mask) == 0) {
2488 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2489 	} else {
2490 		rdp->core_needs_qs = false;
2491 
2492 		/*
2493 		 * This GP can't end until cpu checks in, so all of our
2494 		 * callbacks can be processed during the next GP.
2495 		 */
2496 		needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
2497 
2498 		rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2499 		/* ^^^ Released rnp->lock */
2500 		if (needwake)
2501 			rcu_gp_kthread_wake(rsp);
2502 	}
2503 }
2504 
2505 /*
2506  * Check to see if there is a new grace period of which this CPU
2507  * is not yet aware, and if so, set up local rcu_data state for it.
2508  * Otherwise, see if this CPU has just passed through its first
2509  * quiescent state for this grace period, and record that fact if so.
2510  */
2511 static void
2512 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
2513 {
2514 	/* Check for grace-period ends and beginnings. */
2515 	note_gp_changes(rsp, rdp);
2516 
2517 	/*
2518 	 * Does this CPU still need to do its part for current grace period?
2519 	 * If no, return and let the other CPUs do their part as well.
2520 	 */
2521 	if (!rdp->core_needs_qs)
2522 		return;
2523 
2524 	/*
2525 	 * Was there a quiescent state since the beginning of the grace
2526 	 * period? If no, then exit and wait for the next call.
2527 	 */
2528 	if (rdp->cpu_no_qs.b.norm &&
2529 	    rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr))
2530 		return;
2531 
2532 	/*
2533 	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2534 	 * judge of that).
2535 	 */
2536 	rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
2537 }
2538 
2539 /*
2540  * Send the specified CPU's RCU callbacks to the orphanage.  The
2541  * specified CPU must be offline, and the caller must hold the
2542  * ->orphan_lock.
2543  */
2544 static void
2545 rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
2546 			  struct rcu_node *rnp, struct rcu_data *rdp)
2547 {
2548 	/* No-CBs CPUs do not have orphanable callbacks. */
2549 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || rcu_is_nocb_cpu(rdp->cpu))
2550 		return;
2551 
2552 	/*
2553 	 * Orphan the callbacks.  First adjust the counts.  This is safe
2554 	 * because _rcu_barrier() excludes CPU-hotplug operations, so it
2555 	 * cannot be running now.  Thus no memory barrier is required.
2556 	 */
2557 	if (rdp->nxtlist != NULL) {
2558 		rsp->qlen_lazy += rdp->qlen_lazy;
2559 		rsp->qlen += rdp->qlen;
2560 		rdp->n_cbs_orphaned += rdp->qlen;
2561 		rdp->qlen_lazy = 0;
2562 		WRITE_ONCE(rdp->qlen, 0);
2563 	}
2564 
2565 	/*
2566 	 * Next, move those callbacks still needing a grace period to
2567 	 * the orphanage, where some other CPU will pick them up.
2568 	 * Some of the callbacks might have gone partway through a grace
2569 	 * period, but that is too bad.  They get to start over because we
2570 	 * cannot assume that grace periods are synchronized across CPUs.
2571 	 * We don't bother updating the ->nxttail[] array yet, instead
2572 	 * we just reset the whole thing later on.
2573 	 */
2574 	if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
2575 		*rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
2576 		rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
2577 		*rdp->nxttail[RCU_DONE_TAIL] = NULL;
2578 	}
2579 
2580 	/*
2581 	 * Then move the ready-to-invoke callbacks to the orphanage,
2582 	 * where some other CPU will pick them up.  These will not be
2583 	 * required to pass though another grace period: They are done.
2584 	 */
2585 	if (rdp->nxtlist != NULL) {
2586 		*rsp->orphan_donetail = rdp->nxtlist;
2587 		rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
2588 	}
2589 
2590 	/*
2591 	 * Finally, initialize the rcu_data structure's list to empty and
2592 	 * disallow further callbacks on this CPU.
2593 	 */
2594 	init_callback_list(rdp);
2595 	rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2596 }
2597 
2598 /*
2599  * Adopt the RCU callbacks from the specified rcu_state structure's
2600  * orphanage.  The caller must hold the ->orphan_lock.
2601  */
2602 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
2603 {
2604 	int i;
2605 	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2606 
2607 	/* No-CBs CPUs are handled specially. */
2608 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2609 	    rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
2610 		return;
2611 
2612 	/* Do the accounting first. */
2613 	rdp->qlen_lazy += rsp->qlen_lazy;
2614 	rdp->qlen += rsp->qlen;
2615 	rdp->n_cbs_adopted += rsp->qlen;
2616 	if (rsp->qlen_lazy != rsp->qlen)
2617 		rcu_idle_count_callbacks_posted();
2618 	rsp->qlen_lazy = 0;
2619 	rsp->qlen = 0;
2620 
2621 	/*
2622 	 * We do not need a memory barrier here because the only way we
2623 	 * can get here if there is an rcu_barrier() in flight is if
2624 	 * we are the task doing the rcu_barrier().
2625 	 */
2626 
2627 	/* First adopt the ready-to-invoke callbacks. */
2628 	if (rsp->orphan_donelist != NULL) {
2629 		*rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
2630 		*rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
2631 		for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
2632 			if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2633 				rdp->nxttail[i] = rsp->orphan_donetail;
2634 		rsp->orphan_donelist = NULL;
2635 		rsp->orphan_donetail = &rsp->orphan_donelist;
2636 	}
2637 
2638 	/* And then adopt the callbacks that still need a grace period. */
2639 	if (rsp->orphan_nxtlist != NULL) {
2640 		*rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
2641 		rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
2642 		rsp->orphan_nxtlist = NULL;
2643 		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2644 	}
2645 }
2646 
2647 /*
2648  * Trace the fact that this CPU is going offline.
2649  */
2650 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2651 {
2652 	RCU_TRACE(unsigned long mask);
2653 	RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
2654 	RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
2655 
2656 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2657 		return;
2658 
2659 	RCU_TRACE(mask = rdp->grpmask);
2660 	trace_rcu_grace_period(rsp->name,
2661 			       rnp->gpnum + 1 - !!(rnp->qsmask & mask),
2662 			       TPS("cpuofl"));
2663 }
2664 
2665 /*
2666  * All CPUs for the specified rcu_node structure have gone offline,
2667  * and all tasks that were preempted within an RCU read-side critical
2668  * section while running on one of those CPUs have since exited their RCU
2669  * read-side critical section.  Some other CPU is reporting this fact with
2670  * the specified rcu_node structure's ->lock held and interrupts disabled.
2671  * This function therefore goes up the tree of rcu_node structures,
2672  * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
2673  * the leaf rcu_node structure's ->qsmaskinit field has already been
2674  * updated
2675  *
2676  * This function does check that the specified rcu_node structure has
2677  * all CPUs offline and no blocked tasks, so it is OK to invoke it
2678  * prematurely.  That said, invoking it after the fact will cost you
2679  * a needless lock acquisition.  So once it has done its work, don't
2680  * invoke it again.
2681  */
2682 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2683 {
2684 	long mask;
2685 	struct rcu_node *rnp = rnp_leaf;
2686 
2687 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2688 	    rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
2689 		return;
2690 	for (;;) {
2691 		mask = rnp->grpmask;
2692 		rnp = rnp->parent;
2693 		if (!rnp)
2694 			break;
2695 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2696 		rnp->qsmaskinit &= ~mask;
2697 		rnp->qsmask &= ~mask;
2698 		if (rnp->qsmaskinit) {
2699 			raw_spin_unlock_rcu_node(rnp);
2700 			/* irqs remain disabled. */
2701 			return;
2702 		}
2703 		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2704 	}
2705 }
2706 
2707 /*
2708  * The CPU has been completely removed, and some other CPU is reporting
2709  * this fact from process context.  Do the remainder of the cleanup,
2710  * including orphaning the outgoing CPU's RCU callbacks, and also
2711  * adopting them.  There can only be one CPU hotplug operation at a time,
2712  * so no other CPU can be attempting to update rcu_cpu_kthread_task.
2713  */
2714 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2715 {
2716 	unsigned long flags;
2717 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2718 	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2719 
2720 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2721 		return;
2722 
2723 	/* Adjust any no-longer-needed kthreads. */
2724 	rcu_boost_kthread_setaffinity(rnp, -1);
2725 
2726 	/* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
2727 	raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2728 	rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
2729 	rcu_adopt_orphan_cbs(rsp, flags);
2730 	raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags);
2731 
2732 	WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
2733 		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
2734 		  cpu, rdp->qlen, rdp->nxtlist);
2735 }
2736 
2737 /*
2738  * Invoke any RCU callbacks that have made it to the end of their grace
2739  * period.  Thottle as specified by rdp->blimit.
2740  */
2741 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2742 {
2743 	unsigned long flags;
2744 	struct rcu_head *next, *list, **tail;
2745 	long bl, count, count_lazy;
2746 	int i;
2747 
2748 	/* If no callbacks are ready, just return. */
2749 	if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
2750 		trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
2751 		trace_rcu_batch_end(rsp->name, 0, !!READ_ONCE(rdp->nxtlist),
2752 				    need_resched(), is_idle_task(current),
2753 				    rcu_is_callbacks_kthread());
2754 		return;
2755 	}
2756 
2757 	/*
2758 	 * Extract the list of ready callbacks, disabling to prevent
2759 	 * races with call_rcu() from interrupt handlers.
2760 	 */
2761 	local_irq_save(flags);
2762 	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2763 	bl = rdp->blimit;
2764 	trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
2765 	list = rdp->nxtlist;
2766 	rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
2767 	*rdp->nxttail[RCU_DONE_TAIL] = NULL;
2768 	tail = rdp->nxttail[RCU_DONE_TAIL];
2769 	for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
2770 		if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2771 			rdp->nxttail[i] = &rdp->nxtlist;
2772 	local_irq_restore(flags);
2773 
2774 	/* Invoke callbacks. */
2775 	count = count_lazy = 0;
2776 	while (list) {
2777 		next = list->next;
2778 		prefetch(next);
2779 		debug_rcu_head_unqueue(list);
2780 		if (__rcu_reclaim(rsp->name, list))
2781 			count_lazy++;
2782 		list = next;
2783 		/* Stop only if limit reached and CPU has something to do. */
2784 		if (++count >= bl &&
2785 		    (need_resched() ||
2786 		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2787 			break;
2788 	}
2789 
2790 	local_irq_save(flags);
2791 	trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
2792 			    is_idle_task(current),
2793 			    rcu_is_callbacks_kthread());
2794 
2795 	/* Update count, and requeue any remaining callbacks. */
2796 	if (list != NULL) {
2797 		*tail = rdp->nxtlist;
2798 		rdp->nxtlist = list;
2799 		for (i = 0; i < RCU_NEXT_SIZE; i++)
2800 			if (&rdp->nxtlist == rdp->nxttail[i])
2801 				rdp->nxttail[i] = tail;
2802 			else
2803 				break;
2804 	}
2805 	smp_mb(); /* List handling before counting for rcu_barrier(). */
2806 	rdp->qlen_lazy -= count_lazy;
2807 	WRITE_ONCE(rdp->qlen, rdp->qlen - count);
2808 	rdp->n_cbs_invoked += count;
2809 
2810 	/* Reinstate batch limit if we have worked down the excess. */
2811 	if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
2812 		rdp->blimit = blimit;
2813 
2814 	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2815 	if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
2816 		rdp->qlen_last_fqs_check = 0;
2817 		rdp->n_force_qs_snap = rsp->n_force_qs;
2818 	} else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
2819 		rdp->qlen_last_fqs_check = rdp->qlen;
2820 	WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
2821 
2822 	local_irq_restore(flags);
2823 
2824 	/* Re-invoke RCU core processing if there are callbacks remaining. */
2825 	if (cpu_has_callbacks_ready_to_invoke(rdp))
2826 		invoke_rcu_core();
2827 }
2828 
2829 /*
2830  * Check to see if this CPU is in a non-context-switch quiescent state
2831  * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2832  * Also schedule RCU core processing.
2833  *
2834  * This function must be called from hardirq context.  It is normally
2835  * invoked from the scheduling-clock interrupt.
2836  */
2837 void rcu_check_callbacks(int user)
2838 {
2839 	trace_rcu_utilization(TPS("Start scheduler-tick"));
2840 	increment_cpu_stall_ticks();
2841 	if (user || rcu_is_cpu_rrupt_from_idle()) {
2842 
2843 		/*
2844 		 * Get here if this CPU took its interrupt from user
2845 		 * mode or from the idle loop, and if this is not a
2846 		 * nested interrupt.  In this case, the CPU is in
2847 		 * a quiescent state, so note it.
2848 		 *
2849 		 * No memory barrier is required here because both
2850 		 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2851 		 * variables that other CPUs neither access nor modify,
2852 		 * at least not while the corresponding CPU is online.
2853 		 */
2854 
2855 		rcu_sched_qs();
2856 		rcu_bh_qs();
2857 
2858 	} else if (!in_softirq()) {
2859 
2860 		/*
2861 		 * Get here if this CPU did not take its interrupt from
2862 		 * softirq, in other words, if it is not interrupting
2863 		 * a rcu_bh read-side critical section.  This is an _bh
2864 		 * critical section, so note it.
2865 		 */
2866 
2867 		rcu_bh_qs();
2868 	}
2869 	rcu_preempt_check_callbacks();
2870 	if (rcu_pending())
2871 		invoke_rcu_core();
2872 	if (user)
2873 		rcu_note_voluntary_context_switch(current);
2874 	trace_rcu_utilization(TPS("End scheduler-tick"));
2875 }
2876 
2877 /*
2878  * Scan the leaf rcu_node structures, processing dyntick state for any that
2879  * have not yet encountered a quiescent state, using the function specified.
2880  * Also initiate boosting for any threads blocked on the root rcu_node.
2881  *
2882  * The caller must have suppressed start of new grace periods.
2883  */
2884 static void force_qs_rnp(struct rcu_state *rsp,
2885 			 int (*f)(struct rcu_data *rsp, bool *isidle,
2886 				  unsigned long *maxj),
2887 			 bool *isidle, unsigned long *maxj)
2888 {
2889 	int cpu;
2890 	unsigned long flags;
2891 	unsigned long mask;
2892 	struct rcu_node *rnp;
2893 
2894 	rcu_for_each_leaf_node(rsp, rnp) {
2895 		cond_resched_rcu_qs();
2896 		mask = 0;
2897 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2898 		if (rnp->qsmask == 0) {
2899 			if (rcu_state_p == &rcu_sched_state ||
2900 			    rsp != rcu_state_p ||
2901 			    rcu_preempt_blocked_readers_cgp(rnp)) {
2902 				/*
2903 				 * No point in scanning bits because they
2904 				 * are all zero.  But we might need to
2905 				 * priority-boost blocked readers.
2906 				 */
2907 				rcu_initiate_boost(rnp, flags);
2908 				/* rcu_initiate_boost() releases rnp->lock */
2909 				continue;
2910 			}
2911 			if (rnp->parent &&
2912 			    (rnp->parent->qsmask & rnp->grpmask)) {
2913 				/*
2914 				 * Race between grace-period
2915 				 * initialization and task exiting RCU
2916 				 * read-side critical section: Report.
2917 				 */
2918 				rcu_report_unblock_qs_rnp(rsp, rnp, flags);
2919 				/* rcu_report_unblock_qs_rnp() rlses ->lock */
2920 				continue;
2921 			}
2922 		}
2923 		for_each_leaf_node_possible_cpu(rnp, cpu) {
2924 			unsigned long bit = leaf_node_cpu_bit(rnp, cpu);
2925 			if ((rnp->qsmask & bit) != 0) {
2926 				if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
2927 					mask |= bit;
2928 			}
2929 		}
2930 		if (mask != 0) {
2931 			/* Idle/offline CPUs, report (releases rnp->lock. */
2932 			rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2933 		} else {
2934 			/* Nothing to do here, so just drop the lock. */
2935 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2936 		}
2937 	}
2938 }
2939 
2940 /*
2941  * Force quiescent states on reluctant CPUs, and also detect which
2942  * CPUs are in dyntick-idle mode.
2943  */
2944 static void force_quiescent_state(struct rcu_state *rsp)
2945 {
2946 	unsigned long flags;
2947 	bool ret;
2948 	struct rcu_node *rnp;
2949 	struct rcu_node *rnp_old = NULL;
2950 
2951 	/* Funnel through hierarchy to reduce memory contention. */
2952 	rnp = __this_cpu_read(rsp->rda->mynode);
2953 	for (; rnp != NULL; rnp = rnp->parent) {
2954 		ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2955 		      !raw_spin_trylock(&rnp->fqslock);
2956 		if (rnp_old != NULL)
2957 			raw_spin_unlock(&rnp_old->fqslock);
2958 		if (ret) {
2959 			rsp->n_force_qs_lh++;
2960 			return;
2961 		}
2962 		rnp_old = rnp;
2963 	}
2964 	/* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2965 
2966 	/* Reached the root of the rcu_node tree, acquire lock. */
2967 	raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2968 	raw_spin_unlock(&rnp_old->fqslock);
2969 	if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2970 		rsp->n_force_qs_lh++;
2971 		raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2972 		return;  /* Someone beat us to it. */
2973 	}
2974 	WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2975 	raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2976 	rcu_gp_kthread_wake(rsp);
2977 }
2978 
2979 /*
2980  * This does the RCU core processing work for the specified rcu_state
2981  * and rcu_data structures.  This may be called only from the CPU to
2982  * whom the rdp belongs.
2983  */
2984 static void
2985 __rcu_process_callbacks(struct rcu_state *rsp)
2986 {
2987 	unsigned long flags;
2988 	bool needwake;
2989 	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2990 
2991 	WARN_ON_ONCE(rdp->beenonline == 0);
2992 
2993 	/* Update RCU state based on any recent quiescent states. */
2994 	rcu_check_quiescent_state(rsp, rdp);
2995 
2996 	/* Does this CPU require a not-yet-started grace period? */
2997 	local_irq_save(flags);
2998 	if (cpu_needs_another_gp(rsp, rdp)) {
2999 		raw_spin_lock_rcu_node(rcu_get_root(rsp)); /* irqs disabled. */
3000 		needwake = rcu_start_gp(rsp);
3001 		raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
3002 		if (needwake)
3003 			rcu_gp_kthread_wake(rsp);
3004 	} else {
3005 		local_irq_restore(flags);
3006 	}
3007 
3008 	/* If there are callbacks ready, invoke them. */
3009 	if (cpu_has_callbacks_ready_to_invoke(rdp))
3010 		invoke_rcu_callbacks(rsp, rdp);
3011 
3012 	/* Do any needed deferred wakeups of rcuo kthreads. */
3013 	do_nocb_deferred_wakeup(rdp);
3014 }
3015 
3016 /*
3017  * Do RCU core processing for the current CPU.
3018  */
3019 static __latent_entropy void rcu_process_callbacks(struct softirq_action *unused)
3020 {
3021 	struct rcu_state *rsp;
3022 
3023 	if (cpu_is_offline(smp_processor_id()))
3024 		return;
3025 	trace_rcu_utilization(TPS("Start RCU core"));
3026 	for_each_rcu_flavor(rsp)
3027 		__rcu_process_callbacks(rsp);
3028 	trace_rcu_utilization(TPS("End RCU core"));
3029 }
3030 
3031 /*
3032  * Schedule RCU callback invocation.  If the specified type of RCU
3033  * does not support RCU priority boosting, just do a direct call,
3034  * otherwise wake up the per-CPU kernel kthread.  Note that because we
3035  * are running on the current CPU with softirqs disabled, the
3036  * rcu_cpu_kthread_task cannot disappear out from under us.
3037  */
3038 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
3039 {
3040 	if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
3041 		return;
3042 	if (likely(!rsp->boost)) {
3043 		rcu_do_batch(rsp, rdp);
3044 		return;
3045 	}
3046 	invoke_rcu_callbacks_kthread();
3047 }
3048 
3049 static void invoke_rcu_core(void)
3050 {
3051 	if (cpu_online(smp_processor_id()))
3052 		raise_softirq(RCU_SOFTIRQ);
3053 }
3054 
3055 /*
3056  * Handle any core-RCU processing required by a call_rcu() invocation.
3057  */
3058 static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
3059 			    struct rcu_head *head, unsigned long flags)
3060 {
3061 	bool needwake;
3062 
3063 	/*
3064 	 * If called from an extended quiescent state, invoke the RCU
3065 	 * core in order to force a re-evaluation of RCU's idleness.
3066 	 */
3067 	if (!rcu_is_watching())
3068 		invoke_rcu_core();
3069 
3070 	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
3071 	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
3072 		return;
3073 
3074 	/*
3075 	 * Force the grace period if too many callbacks or too long waiting.
3076 	 * Enforce hysteresis, and don't invoke force_quiescent_state()
3077 	 * if some other CPU has recently done so.  Also, don't bother
3078 	 * invoking force_quiescent_state() if the newly enqueued callback
3079 	 * is the only one waiting for a grace period to complete.
3080 	 */
3081 	if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
3082 
3083 		/* Are we ignoring a completed grace period? */
3084 		note_gp_changes(rsp, rdp);
3085 
3086 		/* Start a new grace period if one not already started. */
3087 		if (!rcu_gp_in_progress(rsp)) {
3088 			struct rcu_node *rnp_root = rcu_get_root(rsp);
3089 
3090 			raw_spin_lock_rcu_node(rnp_root);
3091 			needwake = rcu_start_gp(rsp);
3092 			raw_spin_unlock_rcu_node(rnp_root);
3093 			if (needwake)
3094 				rcu_gp_kthread_wake(rsp);
3095 		} else {
3096 			/* Give the grace period a kick. */
3097 			rdp->blimit = LONG_MAX;
3098 			if (rsp->n_force_qs == rdp->n_force_qs_snap &&
3099 			    *rdp->nxttail[RCU_DONE_TAIL] != head)
3100 				force_quiescent_state(rsp);
3101 			rdp->n_force_qs_snap = rsp->n_force_qs;
3102 			rdp->qlen_last_fqs_check = rdp->qlen;
3103 		}
3104 	}
3105 }
3106 
3107 /*
3108  * RCU callback function to leak a callback.
3109  */
3110 static void rcu_leak_callback(struct rcu_head *rhp)
3111 {
3112 }
3113 
3114 /*
3115  * Helper function for call_rcu() and friends.  The cpu argument will
3116  * normally be -1, indicating "currently running CPU".  It may specify
3117  * a CPU only if that CPU is a no-CBs CPU.  Currently, only _rcu_barrier()
3118  * is expected to specify a CPU.
3119  */
3120 static void
3121 __call_rcu(struct rcu_head *head, rcu_callback_t func,
3122 	   struct rcu_state *rsp, int cpu, bool lazy)
3123 {
3124 	unsigned long flags;
3125 	struct rcu_data *rdp;
3126 
3127 	/* Misaligned rcu_head! */
3128 	WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
3129 
3130 	if (debug_rcu_head_queue(head)) {
3131 		/* Probable double call_rcu(), so leak the callback. */
3132 		WRITE_ONCE(head->func, rcu_leak_callback);
3133 		WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
3134 		return;
3135 	}
3136 	head->func = func;
3137 	head->next = NULL;
3138 	local_irq_save(flags);
3139 	rdp = this_cpu_ptr(rsp->rda);
3140 
3141 	/* Add the callback to our list. */
3142 	if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
3143 		int offline;
3144 
3145 		if (cpu != -1)
3146 			rdp = per_cpu_ptr(rsp->rda, cpu);
3147 		if (likely(rdp->mynode)) {
3148 			/* Post-boot, so this should be for a no-CBs CPU. */
3149 			offline = !__call_rcu_nocb(rdp, head, lazy, flags);
3150 			WARN_ON_ONCE(offline);
3151 			/* Offline CPU, _call_rcu() illegal, leak callback.  */
3152 			local_irq_restore(flags);
3153 			return;
3154 		}
3155 		/*
3156 		 * Very early boot, before rcu_init().  Initialize if needed
3157 		 * and then drop through to queue the callback.
3158 		 */
3159 		BUG_ON(cpu != -1);
3160 		WARN_ON_ONCE(!rcu_is_watching());
3161 		if (!likely(rdp->nxtlist))
3162 			init_default_callback_list(rdp);
3163 	}
3164 	WRITE_ONCE(rdp->qlen, rdp->qlen + 1);
3165 	if (lazy)
3166 		rdp->qlen_lazy++;
3167 	else
3168 		rcu_idle_count_callbacks_posted();
3169 	smp_mb();  /* Count before adding callback for rcu_barrier(). */
3170 	*rdp->nxttail[RCU_NEXT_TAIL] = head;
3171 	rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
3172 
3173 	if (__is_kfree_rcu_offset((unsigned long)func))
3174 		trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
3175 					 rdp->qlen_lazy, rdp->qlen);
3176 	else
3177 		trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
3178 
3179 	/* Go handle any RCU core processing required. */
3180 	__call_rcu_core(rsp, rdp, head, flags);
3181 	local_irq_restore(flags);
3182 }
3183 
3184 /*
3185  * Queue an RCU-sched callback for invocation after a grace period.
3186  */
3187 void call_rcu_sched(struct rcu_head *head, rcu_callback_t func)
3188 {
3189 	__call_rcu(head, func, &rcu_sched_state, -1, 0);
3190 }
3191 EXPORT_SYMBOL_GPL(call_rcu_sched);
3192 
3193 /*
3194  * Queue an RCU callback for invocation after a quicker grace period.
3195  */
3196 void call_rcu_bh(struct rcu_head *head, rcu_callback_t func)
3197 {
3198 	__call_rcu(head, func, &rcu_bh_state, -1, 0);
3199 }
3200 EXPORT_SYMBOL_GPL(call_rcu_bh);
3201 
3202 /*
3203  * Queue an RCU callback for lazy invocation after a grace period.
3204  * This will likely be later named something like "call_rcu_lazy()",
3205  * but this change will require some way of tagging the lazy RCU
3206  * callbacks in the list of pending callbacks. Until then, this
3207  * function may only be called from __kfree_rcu().
3208  */
3209 void kfree_call_rcu(struct rcu_head *head,
3210 		    rcu_callback_t func)
3211 {
3212 	__call_rcu(head, func, rcu_state_p, -1, 1);
3213 }
3214 EXPORT_SYMBOL_GPL(kfree_call_rcu);
3215 
3216 /*
3217  * Because a context switch is a grace period for RCU-sched and RCU-bh,
3218  * any blocking grace-period wait automatically implies a grace period
3219  * if there is only one CPU online at any point time during execution
3220  * of either synchronize_sched() or synchronize_rcu_bh().  It is OK to
3221  * occasionally incorrectly indicate that there are multiple CPUs online
3222  * when there was in fact only one the whole time, as this just adds
3223  * some overhead: RCU still operates correctly.
3224  */
3225 static inline int rcu_blocking_is_gp(void)
3226 {
3227 	int ret;
3228 
3229 	might_sleep();  /* Check for RCU read-side critical section. */
3230 	preempt_disable();
3231 	ret = num_online_cpus() <= 1;
3232 	preempt_enable();
3233 	return ret;
3234 }
3235 
3236 /**
3237  * synchronize_sched - wait until an rcu-sched grace period has elapsed.
3238  *
3239  * Control will return to the caller some time after a full rcu-sched
3240  * grace period has elapsed, in other words after all currently executing
3241  * rcu-sched read-side critical sections have completed.   These read-side
3242  * critical sections are delimited by rcu_read_lock_sched() and
3243  * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(),
3244  * local_irq_disable(), and so on may be used in place of
3245  * rcu_read_lock_sched().
3246  *
3247  * This means that all preempt_disable code sequences, including NMI and
3248  * non-threaded hardware-interrupt handlers, in progress on entry will
3249  * have completed before this primitive returns.  However, this does not
3250  * guarantee that softirq handlers will have completed, since in some
3251  * kernels, these handlers can run in process context, and can block.
3252  *
3253  * Note that this guarantee implies further memory-ordering guarantees.
3254  * On systems with more than one CPU, when synchronize_sched() returns,
3255  * each CPU is guaranteed to have executed a full memory barrier since the
3256  * end of its last RCU-sched read-side critical section whose beginning
3257  * preceded the call to synchronize_sched().  In addition, each CPU having
3258  * an RCU read-side critical section that extends beyond the return from
3259  * synchronize_sched() is guaranteed to have executed a full memory barrier
3260  * after the beginning of synchronize_sched() and before the beginning of
3261  * that RCU read-side critical section.  Note that these guarantees include
3262  * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3263  * that are executing in the kernel.
3264  *
3265  * Furthermore, if CPU A invoked synchronize_sched(), which returned
3266  * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3267  * to have executed a full memory barrier during the execution of
3268  * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
3269  * again only if the system has more than one CPU).
3270  *
3271  * This primitive provides the guarantees made by the (now removed)
3272  * synchronize_kernel() API.  In contrast, synchronize_rcu() only
3273  * guarantees that rcu_read_lock() sections will have completed.
3274  * In "classic RCU", these two guarantees happen to be one and
3275  * the same, but can differ in realtime RCU implementations.
3276  */
3277 void synchronize_sched(void)
3278 {
3279 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3280 			 lock_is_held(&rcu_lock_map) ||
3281 			 lock_is_held(&rcu_sched_lock_map),
3282 			 "Illegal synchronize_sched() in RCU-sched read-side critical section");
3283 	if (rcu_blocking_is_gp())
3284 		return;
3285 	if (rcu_gp_is_expedited())
3286 		synchronize_sched_expedited();
3287 	else
3288 		wait_rcu_gp(call_rcu_sched);
3289 }
3290 EXPORT_SYMBOL_GPL(synchronize_sched);
3291 
3292 /**
3293  * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
3294  *
3295  * Control will return to the caller some time after a full rcu_bh grace
3296  * period has elapsed, in other words after all currently executing rcu_bh
3297  * read-side critical sections have completed.  RCU read-side critical
3298  * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
3299  * and may be nested.
3300  *
3301  * See the description of synchronize_sched() for more detailed information
3302  * on memory ordering guarantees.
3303  */
3304 void synchronize_rcu_bh(void)
3305 {
3306 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3307 			 lock_is_held(&rcu_lock_map) ||
3308 			 lock_is_held(&rcu_sched_lock_map),
3309 			 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
3310 	if (rcu_blocking_is_gp())
3311 		return;
3312 	if (rcu_gp_is_expedited())
3313 		synchronize_rcu_bh_expedited();
3314 	else
3315 		wait_rcu_gp(call_rcu_bh);
3316 }
3317 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
3318 
3319 /**
3320  * get_state_synchronize_rcu - Snapshot current RCU state
3321  *
3322  * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3323  * to determine whether or not a full grace period has elapsed in the
3324  * meantime.
3325  */
3326 unsigned long get_state_synchronize_rcu(void)
3327 {
3328 	/*
3329 	 * Any prior manipulation of RCU-protected data must happen
3330 	 * before the load from ->gpnum.
3331 	 */
3332 	smp_mb();  /* ^^^ */
3333 
3334 	/*
3335 	 * Make sure this load happens before the purportedly
3336 	 * time-consuming work between get_state_synchronize_rcu()
3337 	 * and cond_synchronize_rcu().
3338 	 */
3339 	return smp_load_acquire(&rcu_state_p->gpnum);
3340 }
3341 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3342 
3343 /**
3344  * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3345  *
3346  * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3347  *
3348  * If a full RCU grace period has elapsed since the earlier call to
3349  * get_state_synchronize_rcu(), just return.  Otherwise, invoke
3350  * synchronize_rcu() to wait for a full grace period.
3351  *
3352  * Yes, this function does not take counter wrap into account.  But
3353  * counter wrap is harmless.  If the counter wraps, we have waited for
3354  * more than 2 billion grace periods (and way more on a 64-bit system!),
3355  * so waiting for one additional grace period should be just fine.
3356  */
3357 void cond_synchronize_rcu(unsigned long oldstate)
3358 {
3359 	unsigned long newstate;
3360 
3361 	/*
3362 	 * Ensure that this load happens before any RCU-destructive
3363 	 * actions the caller might carry out after we return.
3364 	 */
3365 	newstate = smp_load_acquire(&rcu_state_p->completed);
3366 	if (ULONG_CMP_GE(oldstate, newstate))
3367 		synchronize_rcu();
3368 }
3369 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3370 
3371 /**
3372  * get_state_synchronize_sched - Snapshot current RCU-sched state
3373  *
3374  * Returns a cookie that is used by a later call to cond_synchronize_sched()
3375  * to determine whether or not a full grace period has elapsed in the
3376  * meantime.
3377  */
3378 unsigned long get_state_synchronize_sched(void)
3379 {
3380 	/*
3381 	 * Any prior manipulation of RCU-protected data must happen
3382 	 * before the load from ->gpnum.
3383 	 */
3384 	smp_mb();  /* ^^^ */
3385 
3386 	/*
3387 	 * Make sure this load happens before the purportedly
3388 	 * time-consuming work between get_state_synchronize_sched()
3389 	 * and cond_synchronize_sched().
3390 	 */
3391 	return smp_load_acquire(&rcu_sched_state.gpnum);
3392 }
3393 EXPORT_SYMBOL_GPL(get_state_synchronize_sched);
3394 
3395 /**
3396  * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
3397  *
3398  * @oldstate: return value from earlier call to get_state_synchronize_sched()
3399  *
3400  * If a full RCU-sched grace period has elapsed since the earlier call to
3401  * get_state_synchronize_sched(), just return.  Otherwise, invoke
3402  * synchronize_sched() to wait for a full grace period.
3403  *
3404  * Yes, this function does not take counter wrap into account.  But
3405  * counter wrap is harmless.  If the counter wraps, we have waited for
3406  * more than 2 billion grace periods (and way more on a 64-bit system!),
3407  * so waiting for one additional grace period should be just fine.
3408  */
3409 void cond_synchronize_sched(unsigned long oldstate)
3410 {
3411 	unsigned long newstate;
3412 
3413 	/*
3414 	 * Ensure that this load happens before any RCU-destructive
3415 	 * actions the caller might carry out after we return.
3416 	 */
3417 	newstate = smp_load_acquire(&rcu_sched_state.completed);
3418 	if (ULONG_CMP_GE(oldstate, newstate))
3419 		synchronize_sched();
3420 }
3421 EXPORT_SYMBOL_GPL(cond_synchronize_sched);
3422 
3423 /* Adjust sequence number for start of update-side operation. */
3424 static void rcu_seq_start(unsigned long *sp)
3425 {
3426 	WRITE_ONCE(*sp, *sp + 1);
3427 	smp_mb(); /* Ensure update-side operation after counter increment. */
3428 	WARN_ON_ONCE(!(*sp & 0x1));
3429 }
3430 
3431 /* Adjust sequence number for end of update-side operation. */
3432 static void rcu_seq_end(unsigned long *sp)
3433 {
3434 	smp_mb(); /* Ensure update-side operation before counter increment. */
3435 	WRITE_ONCE(*sp, *sp + 1);
3436 	WARN_ON_ONCE(*sp & 0x1);
3437 }
3438 
3439 /* Take a snapshot of the update side's sequence number. */
3440 static unsigned long rcu_seq_snap(unsigned long *sp)
3441 {
3442 	unsigned long s;
3443 
3444 	s = (READ_ONCE(*sp) + 3) & ~0x1;
3445 	smp_mb(); /* Above access must not bleed into critical section. */
3446 	return s;
3447 }
3448 
3449 /*
3450  * Given a snapshot from rcu_seq_snap(), determine whether or not a
3451  * full update-side operation has occurred.
3452  */
3453 static bool rcu_seq_done(unsigned long *sp, unsigned long s)
3454 {
3455 	return ULONG_CMP_GE(READ_ONCE(*sp), s);
3456 }
3457 
3458 /*
3459  * Check to see if there is any immediate RCU-related work to be done
3460  * by the current CPU, for the specified type of RCU, returning 1 if so.
3461  * The checks are in order of increasing expense: checks that can be
3462  * carried out against CPU-local state are performed first.  However,
3463  * we must check for CPU stalls first, else we might not get a chance.
3464  */
3465 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
3466 {
3467 	struct rcu_node *rnp = rdp->mynode;
3468 
3469 	rdp->n_rcu_pending++;
3470 
3471 	/* Check for CPU stalls, if enabled. */
3472 	check_cpu_stall(rsp, rdp);
3473 
3474 	/* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3475 	if (rcu_nohz_full_cpu(rsp))
3476 		return 0;
3477 
3478 	/* Is the RCU core waiting for a quiescent state from this CPU? */
3479 	if (rcu_scheduler_fully_active &&
3480 	    rdp->core_needs_qs && rdp->cpu_no_qs.b.norm &&
3481 	    rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) {
3482 		rdp->n_rp_core_needs_qs++;
3483 	} else if (rdp->core_needs_qs &&
3484 		   (!rdp->cpu_no_qs.b.norm ||
3485 		    rdp->rcu_qs_ctr_snap != __this_cpu_read(rcu_qs_ctr))) {
3486 		rdp->n_rp_report_qs++;
3487 		return 1;
3488 	}
3489 
3490 	/* Does this CPU have callbacks ready to invoke? */
3491 	if (cpu_has_callbacks_ready_to_invoke(rdp)) {
3492 		rdp->n_rp_cb_ready++;
3493 		return 1;
3494 	}
3495 
3496 	/* Has RCU gone idle with this CPU needing another grace period? */
3497 	if (cpu_needs_another_gp(rsp, rdp)) {
3498 		rdp->n_rp_cpu_needs_gp++;
3499 		return 1;
3500 	}
3501 
3502 	/* Has another RCU grace period completed?  */
3503 	if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
3504 		rdp->n_rp_gp_completed++;
3505 		return 1;
3506 	}
3507 
3508 	/* Has a new RCU grace period started? */
3509 	if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
3510 	    unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */
3511 		rdp->n_rp_gp_started++;
3512 		return 1;
3513 	}
3514 
3515 	/* Does this CPU need a deferred NOCB wakeup? */
3516 	if (rcu_nocb_need_deferred_wakeup(rdp)) {
3517 		rdp->n_rp_nocb_defer_wakeup++;
3518 		return 1;
3519 	}
3520 
3521 	/* nothing to do */
3522 	rdp->n_rp_need_nothing++;
3523 	return 0;
3524 }
3525 
3526 /*
3527  * Check to see if there is any immediate RCU-related work to be done
3528  * by the current CPU, returning 1 if so.  This function is part of the
3529  * RCU implementation; it is -not- an exported member of the RCU API.
3530  */
3531 static int rcu_pending(void)
3532 {
3533 	struct rcu_state *rsp;
3534 
3535 	for_each_rcu_flavor(rsp)
3536 		if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
3537 			return 1;
3538 	return 0;
3539 }
3540 
3541 /*
3542  * Return true if the specified CPU has any callback.  If all_lazy is
3543  * non-NULL, store an indication of whether all callbacks are lazy.
3544  * (If there are no callbacks, all of them are deemed to be lazy.)
3545  */
3546 static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
3547 {
3548 	bool al = true;
3549 	bool hc = false;
3550 	struct rcu_data *rdp;
3551 	struct rcu_state *rsp;
3552 
3553 	for_each_rcu_flavor(rsp) {
3554 		rdp = this_cpu_ptr(rsp->rda);
3555 		if (!rdp->nxtlist)
3556 			continue;
3557 		hc = true;
3558 		if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
3559 			al = false;
3560 			break;
3561 		}
3562 	}
3563 	if (all_lazy)
3564 		*all_lazy = al;
3565 	return hc;
3566 }
3567 
3568 /*
3569  * Helper function for _rcu_barrier() tracing.  If tracing is disabled,
3570  * the compiler is expected to optimize this away.
3571  */
3572 static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
3573 			       int cpu, unsigned long done)
3574 {
3575 	trace_rcu_barrier(rsp->name, s, cpu,
3576 			  atomic_read(&rsp->barrier_cpu_count), done);
3577 }
3578 
3579 /*
3580  * RCU callback function for _rcu_barrier().  If we are last, wake
3581  * up the task executing _rcu_barrier().
3582  */
3583 static void rcu_barrier_callback(struct rcu_head *rhp)
3584 {
3585 	struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
3586 	struct rcu_state *rsp = rdp->rsp;
3587 
3588 	if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
3589 		_rcu_barrier_trace(rsp, "LastCB", -1, rsp->barrier_sequence);
3590 		complete(&rsp->barrier_completion);
3591 	} else {
3592 		_rcu_barrier_trace(rsp, "CB", -1, rsp->barrier_sequence);
3593 	}
3594 }
3595 
3596 /*
3597  * Called with preemption disabled, and from cross-cpu IRQ context.
3598  */
3599 static void rcu_barrier_func(void *type)
3600 {
3601 	struct rcu_state *rsp = type;
3602 	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
3603 
3604 	_rcu_barrier_trace(rsp, "IRQ", -1, rsp->barrier_sequence);
3605 	atomic_inc(&rsp->barrier_cpu_count);
3606 	rsp->call(&rdp->barrier_head, rcu_barrier_callback);
3607 }
3608 
3609 /*
3610  * Orchestrate the specified type of RCU barrier, waiting for all
3611  * RCU callbacks of the specified type to complete.
3612  */
3613 static void _rcu_barrier(struct rcu_state *rsp)
3614 {
3615 	int cpu;
3616 	struct rcu_data *rdp;
3617 	unsigned long s = rcu_seq_snap(&rsp->barrier_sequence);
3618 
3619 	_rcu_barrier_trace(rsp, "Begin", -1, s);
3620 
3621 	/* Take mutex to serialize concurrent rcu_barrier() requests. */
3622 	mutex_lock(&rsp->barrier_mutex);
3623 
3624 	/* Did someone else do our work for us? */
3625 	if (rcu_seq_done(&rsp->barrier_sequence, s)) {
3626 		_rcu_barrier_trace(rsp, "EarlyExit", -1, rsp->barrier_sequence);
3627 		smp_mb(); /* caller's subsequent code after above check. */
3628 		mutex_unlock(&rsp->barrier_mutex);
3629 		return;
3630 	}
3631 
3632 	/* Mark the start of the barrier operation. */
3633 	rcu_seq_start(&rsp->barrier_sequence);
3634 	_rcu_barrier_trace(rsp, "Inc1", -1, rsp->barrier_sequence);
3635 
3636 	/*
3637 	 * Initialize the count to one rather than to zero in order to
3638 	 * avoid a too-soon return to zero in case of a short grace period
3639 	 * (or preemption of this task).  Exclude CPU-hotplug operations
3640 	 * to ensure that no offline CPU has callbacks queued.
3641 	 */
3642 	init_completion(&rsp->barrier_completion);
3643 	atomic_set(&rsp->barrier_cpu_count, 1);
3644 	get_online_cpus();
3645 
3646 	/*
3647 	 * Force each CPU with callbacks to register a new callback.
3648 	 * When that callback is invoked, we will know that all of the
3649 	 * corresponding CPU's preceding callbacks have been invoked.
3650 	 */
3651 	for_each_possible_cpu(cpu) {
3652 		if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3653 			continue;
3654 		rdp = per_cpu_ptr(rsp->rda, cpu);
3655 		if (rcu_is_nocb_cpu(cpu)) {
3656 			if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
3657 				_rcu_barrier_trace(rsp, "OfflineNoCB", cpu,
3658 						   rsp->barrier_sequence);
3659 			} else {
3660 				_rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
3661 						   rsp->barrier_sequence);
3662 				smp_mb__before_atomic();
3663 				atomic_inc(&rsp->barrier_cpu_count);
3664 				__call_rcu(&rdp->barrier_head,
3665 					   rcu_barrier_callback, rsp, cpu, 0);
3666 			}
3667 		} else if (READ_ONCE(rdp->qlen)) {
3668 			_rcu_barrier_trace(rsp, "OnlineQ", cpu,
3669 					   rsp->barrier_sequence);
3670 			smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
3671 		} else {
3672 			_rcu_barrier_trace(rsp, "OnlineNQ", cpu,
3673 					   rsp->barrier_sequence);
3674 		}
3675 	}
3676 	put_online_cpus();
3677 
3678 	/*
3679 	 * Now that we have an rcu_barrier_callback() callback on each
3680 	 * CPU, and thus each counted, remove the initial count.
3681 	 */
3682 	if (atomic_dec_and_test(&rsp->barrier_cpu_count))
3683 		complete(&rsp->barrier_completion);
3684 
3685 	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3686 	wait_for_completion(&rsp->barrier_completion);
3687 
3688 	/* Mark the end of the barrier operation. */
3689 	_rcu_barrier_trace(rsp, "Inc2", -1, rsp->barrier_sequence);
3690 	rcu_seq_end(&rsp->barrier_sequence);
3691 
3692 	/* Other rcu_barrier() invocations can now safely proceed. */
3693 	mutex_unlock(&rsp->barrier_mutex);
3694 }
3695 
3696 /**
3697  * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
3698  */
3699 void rcu_barrier_bh(void)
3700 {
3701 	_rcu_barrier(&rcu_bh_state);
3702 }
3703 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
3704 
3705 /**
3706  * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3707  */
3708 void rcu_barrier_sched(void)
3709 {
3710 	_rcu_barrier(&rcu_sched_state);
3711 }
3712 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
3713 
3714 /*
3715  * Propagate ->qsinitmask bits up the rcu_node tree to account for the
3716  * first CPU in a given leaf rcu_node structure coming online.  The caller
3717  * must hold the corresponding leaf rcu_node ->lock with interrrupts
3718  * disabled.
3719  */
3720 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
3721 {
3722 	long mask;
3723 	struct rcu_node *rnp = rnp_leaf;
3724 
3725 	for (;;) {
3726 		mask = rnp->grpmask;
3727 		rnp = rnp->parent;
3728 		if (rnp == NULL)
3729 			return;
3730 		raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
3731 		rnp->qsmaskinit |= mask;
3732 		raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
3733 	}
3734 }
3735 
3736 /*
3737  * Do boot-time initialization of a CPU's per-CPU RCU data.
3738  */
3739 static void __init
3740 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
3741 {
3742 	unsigned long flags;
3743 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3744 	struct rcu_node *rnp = rcu_get_root(rsp);
3745 
3746 	/* Set up local state, ensuring consistent view of global state. */
3747 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3748 	rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
3749 	rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
3750 	WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
3751 	WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
3752 	rdp->cpu = cpu;
3753 	rdp->rsp = rsp;
3754 	rcu_boot_init_nocb_percpu_data(rdp);
3755 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3756 }
3757 
3758 /*
3759  * Initialize a CPU's per-CPU RCU data.  Note that only one online or
3760  * offline event can be happening at a given time.  Note also that we
3761  * can accept some slop in the rsp->completed access due to the fact
3762  * that this CPU cannot possibly have any RCU callbacks in flight yet.
3763  */
3764 static void
3765 rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
3766 {
3767 	unsigned long flags;
3768 	unsigned long mask;
3769 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3770 	struct rcu_node *rnp = rcu_get_root(rsp);
3771 
3772 	/* Set up local state, ensuring consistent view of global state. */
3773 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3774 	rdp->qlen_last_fqs_check = 0;
3775 	rdp->n_force_qs_snap = rsp->n_force_qs;
3776 	rdp->blimit = blimit;
3777 	if (!rdp->nxtlist)
3778 		init_callback_list(rdp);  /* Re-enable callbacks on this CPU. */
3779 	rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
3780 	rcu_sysidle_init_percpu_data(rdp->dynticks);
3781 	atomic_set(&rdp->dynticks->dynticks,
3782 		   (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
3783 	raw_spin_unlock_rcu_node(rnp);		/* irqs remain disabled. */
3784 
3785 	/*
3786 	 * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
3787 	 * propagation up the rcu_node tree will happen at the beginning
3788 	 * of the next grace period.
3789 	 */
3790 	rnp = rdp->mynode;
3791 	mask = rdp->grpmask;
3792 	raw_spin_lock_rcu_node(rnp);		/* irqs already disabled. */
3793 	if (!rdp->beenonline)
3794 		WRITE_ONCE(rsp->ncpus, READ_ONCE(rsp->ncpus) + 1);
3795 	rdp->beenonline = true;	 /* We have now been online. */
3796 	rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
3797 	rdp->completed = rnp->completed;
3798 	rdp->cpu_no_qs.b.norm = true;
3799 	rdp->rcu_qs_ctr_snap = per_cpu(rcu_qs_ctr, cpu);
3800 	rdp->core_needs_qs = false;
3801 	trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
3802 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3803 }
3804 
3805 int rcutree_prepare_cpu(unsigned int cpu)
3806 {
3807 	struct rcu_state *rsp;
3808 
3809 	for_each_rcu_flavor(rsp)
3810 		rcu_init_percpu_data(cpu, rsp);
3811 
3812 	rcu_prepare_kthreads(cpu);
3813 	rcu_spawn_all_nocb_kthreads(cpu);
3814 
3815 	return 0;
3816 }
3817 
3818 static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
3819 {
3820 	struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
3821 
3822 	rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
3823 }
3824 
3825 int rcutree_online_cpu(unsigned int cpu)
3826 {
3827 	sync_sched_exp_online_cleanup(cpu);
3828 	rcutree_affinity_setting(cpu, -1);
3829 	return 0;
3830 }
3831 
3832 int rcutree_offline_cpu(unsigned int cpu)
3833 {
3834 	rcutree_affinity_setting(cpu, cpu);
3835 	return 0;
3836 }
3837 
3838 
3839 int rcutree_dying_cpu(unsigned int cpu)
3840 {
3841 	struct rcu_state *rsp;
3842 
3843 	for_each_rcu_flavor(rsp)
3844 		rcu_cleanup_dying_cpu(rsp);
3845 	return 0;
3846 }
3847 
3848 int rcutree_dead_cpu(unsigned int cpu)
3849 {
3850 	struct rcu_state *rsp;
3851 
3852 	for_each_rcu_flavor(rsp) {
3853 		rcu_cleanup_dead_cpu(cpu, rsp);
3854 		do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
3855 	}
3856 	return 0;
3857 }
3858 
3859 /*
3860  * Mark the specified CPU as being online so that subsequent grace periods
3861  * (both expedited and normal) will wait on it.  Note that this means that
3862  * incoming CPUs are not allowed to use RCU read-side critical sections
3863  * until this function is called.  Failing to observe this restriction
3864  * will result in lockdep splats.
3865  */
3866 void rcu_cpu_starting(unsigned int cpu)
3867 {
3868 	unsigned long flags;
3869 	unsigned long mask;
3870 	struct rcu_data *rdp;
3871 	struct rcu_node *rnp;
3872 	struct rcu_state *rsp;
3873 
3874 	for_each_rcu_flavor(rsp) {
3875 		rdp = this_cpu_ptr(rsp->rda);
3876 		rnp = rdp->mynode;
3877 		mask = rdp->grpmask;
3878 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
3879 		rnp->qsmaskinitnext |= mask;
3880 		rnp->expmaskinitnext |= mask;
3881 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3882 	}
3883 }
3884 
3885 #ifdef CONFIG_HOTPLUG_CPU
3886 /*
3887  * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
3888  * function.  We now remove it from the rcu_node tree's ->qsmaskinit
3889  * bit masks.
3890  * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
3891  * function.  We now remove it from the rcu_node tree's ->qsmaskinit
3892  * bit masks.
3893  */
3894 static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
3895 {
3896 	unsigned long flags;
3897 	unsigned long mask;
3898 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3899 	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
3900 
3901 	/* Remove outgoing CPU from mask in the leaf rcu_node structure. */
3902 	mask = rdp->grpmask;
3903 	raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
3904 	rnp->qsmaskinitnext &= ~mask;
3905 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3906 }
3907 
3908 void rcu_report_dead(unsigned int cpu)
3909 {
3910 	struct rcu_state *rsp;
3911 
3912 	/* QS for any half-done expedited RCU-sched GP. */
3913 	preempt_disable();
3914 	rcu_report_exp_rdp(&rcu_sched_state,
3915 			   this_cpu_ptr(rcu_sched_state.rda), true);
3916 	preempt_enable();
3917 	for_each_rcu_flavor(rsp)
3918 		rcu_cleanup_dying_idle_cpu(cpu, rsp);
3919 }
3920 #endif
3921 
3922 static int rcu_pm_notify(struct notifier_block *self,
3923 			 unsigned long action, void *hcpu)
3924 {
3925 	switch (action) {
3926 	case PM_HIBERNATION_PREPARE:
3927 	case PM_SUSPEND_PREPARE:
3928 		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3929 			rcu_expedite_gp();
3930 		break;
3931 	case PM_POST_HIBERNATION:
3932 	case PM_POST_SUSPEND:
3933 		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3934 			rcu_unexpedite_gp();
3935 		break;
3936 	default:
3937 		break;
3938 	}
3939 	return NOTIFY_OK;
3940 }
3941 
3942 /*
3943  * Spawn the kthreads that handle each RCU flavor's grace periods.
3944  */
3945 static int __init rcu_spawn_gp_kthread(void)
3946 {
3947 	unsigned long flags;
3948 	int kthread_prio_in = kthread_prio;
3949 	struct rcu_node *rnp;
3950 	struct rcu_state *rsp;
3951 	struct sched_param sp;
3952 	struct task_struct *t;
3953 
3954 	/* Force priority into range. */
3955 	if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
3956 		kthread_prio = 1;
3957 	else if (kthread_prio < 0)
3958 		kthread_prio = 0;
3959 	else if (kthread_prio > 99)
3960 		kthread_prio = 99;
3961 	if (kthread_prio != kthread_prio_in)
3962 		pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
3963 			 kthread_prio, kthread_prio_in);
3964 
3965 	rcu_scheduler_fully_active = 1;
3966 	for_each_rcu_flavor(rsp) {
3967 		t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
3968 		BUG_ON(IS_ERR(t));
3969 		rnp = rcu_get_root(rsp);
3970 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
3971 		rsp->gp_kthread = t;
3972 		if (kthread_prio) {
3973 			sp.sched_priority = kthread_prio;
3974 			sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
3975 		}
3976 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3977 		wake_up_process(t);
3978 	}
3979 	rcu_spawn_nocb_kthreads();
3980 	rcu_spawn_boost_kthreads();
3981 	return 0;
3982 }
3983 early_initcall(rcu_spawn_gp_kthread);
3984 
3985 /*
3986  * This function is invoked towards the end of the scheduler's
3987  * initialization process.  Before this is called, the idle task might
3988  * contain synchronous grace-period primitives (during which time, this idle
3989  * task is booting the system, and such primitives are no-ops).  After this
3990  * function is called, any synchronous grace-period primitives are run as
3991  * expedited, with the requesting task driving the grace period forward.
3992  * A later core_initcall() rcu_exp_runtime_mode() will switch to full
3993  * runtime RCU functionality.
3994  */
3995 void rcu_scheduler_starting(void)
3996 {
3997 	WARN_ON(num_online_cpus() != 1);
3998 	WARN_ON(nr_context_switches() > 0);
3999 	rcu_test_sync_prims();
4000 	rcu_scheduler_active = RCU_SCHEDULER_INIT;
4001 	rcu_test_sync_prims();
4002 }
4003 
4004 /*
4005  * Compute the per-level fanout, either using the exact fanout specified
4006  * or balancing the tree, depending on the rcu_fanout_exact boot parameter.
4007  */
4008 static void __init rcu_init_levelspread(int *levelspread, const int *levelcnt)
4009 {
4010 	int i;
4011 
4012 	if (rcu_fanout_exact) {
4013 		levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
4014 		for (i = rcu_num_lvls - 2; i >= 0; i--)
4015 			levelspread[i] = RCU_FANOUT;
4016 	} else {
4017 		int ccur;
4018 		int cprv;
4019 
4020 		cprv = nr_cpu_ids;
4021 		for (i = rcu_num_lvls - 1; i >= 0; i--) {
4022 			ccur = levelcnt[i];
4023 			levelspread[i] = (cprv + ccur - 1) / ccur;
4024 			cprv = ccur;
4025 		}
4026 	}
4027 }
4028 
4029 /*
4030  * Helper function for rcu_init() that initializes one rcu_state structure.
4031  */
4032 static void __init rcu_init_one(struct rcu_state *rsp)
4033 {
4034 	static const char * const buf[] = RCU_NODE_NAME_INIT;
4035 	static const char * const fqs[] = RCU_FQS_NAME_INIT;
4036 	static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
4037 	static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
4038 	static u8 fl_mask = 0x1;
4039 
4040 	int levelcnt[RCU_NUM_LVLS];		/* # nodes in each level. */
4041 	int levelspread[RCU_NUM_LVLS];		/* kids/node in each level. */
4042 	int cpustride = 1;
4043 	int i;
4044 	int j;
4045 	struct rcu_node *rnp;
4046 
4047 	BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
4048 
4049 	/* Silence gcc 4.8 false positive about array index out of range. */
4050 	if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4051 		panic("rcu_init_one: rcu_num_lvls out of range");
4052 
4053 	/* Initialize the level-tracking arrays. */
4054 
4055 	for (i = 0; i < rcu_num_lvls; i++)
4056 		levelcnt[i] = num_rcu_lvl[i];
4057 	for (i = 1; i < rcu_num_lvls; i++)
4058 		rsp->level[i] = rsp->level[i - 1] + levelcnt[i - 1];
4059 	rcu_init_levelspread(levelspread, levelcnt);
4060 	rsp->flavor_mask = fl_mask;
4061 	fl_mask <<= 1;
4062 
4063 	/* Initialize the elements themselves, starting from the leaves. */
4064 
4065 	for (i = rcu_num_lvls - 1; i >= 0; i--) {
4066 		cpustride *= levelspread[i];
4067 		rnp = rsp->level[i];
4068 		for (j = 0; j < levelcnt[i]; j++, rnp++) {
4069 			raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4070 			lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
4071 						   &rcu_node_class[i], buf[i]);
4072 			raw_spin_lock_init(&rnp->fqslock);
4073 			lockdep_set_class_and_name(&rnp->fqslock,
4074 						   &rcu_fqs_class[i], fqs[i]);
4075 			rnp->gpnum = rsp->gpnum;
4076 			rnp->completed = rsp->completed;
4077 			rnp->qsmask = 0;
4078 			rnp->qsmaskinit = 0;
4079 			rnp->grplo = j * cpustride;
4080 			rnp->grphi = (j + 1) * cpustride - 1;
4081 			if (rnp->grphi >= nr_cpu_ids)
4082 				rnp->grphi = nr_cpu_ids - 1;
4083 			if (i == 0) {
4084 				rnp->grpnum = 0;
4085 				rnp->grpmask = 0;
4086 				rnp->parent = NULL;
4087 			} else {
4088 				rnp->grpnum = j % levelspread[i - 1];
4089 				rnp->grpmask = 1UL << rnp->grpnum;
4090 				rnp->parent = rsp->level[i - 1] +
4091 					      j / levelspread[i - 1];
4092 			}
4093 			rnp->level = i;
4094 			INIT_LIST_HEAD(&rnp->blkd_tasks);
4095 			rcu_init_one_nocb(rnp);
4096 			init_waitqueue_head(&rnp->exp_wq[0]);
4097 			init_waitqueue_head(&rnp->exp_wq[1]);
4098 			init_waitqueue_head(&rnp->exp_wq[2]);
4099 			init_waitqueue_head(&rnp->exp_wq[3]);
4100 			spin_lock_init(&rnp->exp_lock);
4101 		}
4102 	}
4103 
4104 	init_swait_queue_head(&rsp->gp_wq);
4105 	init_swait_queue_head(&rsp->expedited_wq);
4106 	rnp = rsp->level[rcu_num_lvls - 1];
4107 	for_each_possible_cpu(i) {
4108 		while (i > rnp->grphi)
4109 			rnp++;
4110 		per_cpu_ptr(rsp->rda, i)->mynode = rnp;
4111 		rcu_boot_init_percpu_data(i, rsp);
4112 	}
4113 	list_add(&rsp->flavors, &rcu_struct_flavors);
4114 }
4115 
4116 /*
4117  * Compute the rcu_node tree geometry from kernel parameters.  This cannot
4118  * replace the definitions in tree.h because those are needed to size
4119  * the ->node array in the rcu_state structure.
4120  */
4121 static void __init rcu_init_geometry(void)
4122 {
4123 	ulong d;
4124 	int i;
4125 	int rcu_capacity[RCU_NUM_LVLS];
4126 
4127 	/*
4128 	 * Initialize any unspecified boot parameters.
4129 	 * The default values of jiffies_till_first_fqs and
4130 	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4131 	 * value, which is a function of HZ, then adding one for each
4132 	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4133 	 */
4134 	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4135 	if (jiffies_till_first_fqs == ULONG_MAX)
4136 		jiffies_till_first_fqs = d;
4137 	if (jiffies_till_next_fqs == ULONG_MAX)
4138 		jiffies_till_next_fqs = d;
4139 
4140 	/* If the compile-time values are accurate, just leave. */
4141 	if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4142 	    nr_cpu_ids == NR_CPUS)
4143 		return;
4144 	pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
4145 		rcu_fanout_leaf, nr_cpu_ids);
4146 
4147 	/*
4148 	 * The boot-time rcu_fanout_leaf parameter must be at least two
4149 	 * and cannot exceed the number of bits in the rcu_node masks.
4150 	 * Complain and fall back to the compile-time values if this
4151 	 * limit is exceeded.
4152 	 */
4153 	if (rcu_fanout_leaf < 2 ||
4154 	    rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4155 		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4156 		WARN_ON(1);
4157 		return;
4158 	}
4159 
4160 	/*
4161 	 * Compute number of nodes that can be handled an rcu_node tree
4162 	 * with the given number of levels.
4163 	 */
4164 	rcu_capacity[0] = rcu_fanout_leaf;
4165 	for (i = 1; i < RCU_NUM_LVLS; i++)
4166 		rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4167 
4168 	/*
4169 	 * The tree must be able to accommodate the configured number of CPUs.
4170 	 * If this limit is exceeded, fall back to the compile-time values.
4171 	 */
4172 	if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4173 		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4174 		WARN_ON(1);
4175 		return;
4176 	}
4177 
4178 	/* Calculate the number of levels in the tree. */
4179 	for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4180 	}
4181 	rcu_num_lvls = i + 1;
4182 
4183 	/* Calculate the number of rcu_nodes at each level of the tree. */
4184 	for (i = 0; i < rcu_num_lvls; i++) {
4185 		int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4186 		num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4187 	}
4188 
4189 	/* Calculate the total number of rcu_node structures. */
4190 	rcu_num_nodes = 0;
4191 	for (i = 0; i < rcu_num_lvls; i++)
4192 		rcu_num_nodes += num_rcu_lvl[i];
4193 }
4194 
4195 /*
4196  * Dump out the structure of the rcu_node combining tree associated
4197  * with the rcu_state structure referenced by rsp.
4198  */
4199 static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
4200 {
4201 	int level = 0;
4202 	struct rcu_node *rnp;
4203 
4204 	pr_info("rcu_node tree layout dump\n");
4205 	pr_info(" ");
4206 	rcu_for_each_node_breadth_first(rsp, rnp) {
4207 		if (rnp->level != level) {
4208 			pr_cont("\n");
4209 			pr_info(" ");
4210 			level = rnp->level;
4211 		}
4212 		pr_cont("%d:%d ^%d  ", rnp->grplo, rnp->grphi, rnp->grpnum);
4213 	}
4214 	pr_cont("\n");
4215 }
4216 
4217 void __init rcu_init(void)
4218 {
4219 	int cpu;
4220 
4221 	rcu_early_boot_tests();
4222 
4223 	rcu_bootup_announce();
4224 	rcu_init_geometry();
4225 	rcu_init_one(&rcu_bh_state);
4226 	rcu_init_one(&rcu_sched_state);
4227 	if (dump_tree)
4228 		rcu_dump_rcu_node_tree(&rcu_sched_state);
4229 	__rcu_init_preempt();
4230 	open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
4231 
4232 	/*
4233 	 * We don't need protection against CPU-hotplug here because
4234 	 * this is called early in boot, before either interrupts
4235 	 * or the scheduler are operational.
4236 	 */
4237 	pm_notifier(rcu_pm_notify, 0);
4238 	for_each_online_cpu(cpu) {
4239 		rcutree_prepare_cpu(cpu);
4240 		rcu_cpu_starting(cpu);
4241 	}
4242 }
4243 
4244 #include "tree_exp.h"
4245 #include "tree_plugin.h"
4246