1 /* 2 * Read-Copy Update mechanism for mutual exclusion 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, you can access it online at 16 * http://www.gnu.org/licenses/gpl-2.0.html. 17 * 18 * Copyright IBM Corporation, 2008 19 * 20 * Authors: Dipankar Sarma <dipankar@in.ibm.com> 21 * Manfred Spraul <manfred@colorfullife.com> 22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version 23 * 24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com> 25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 26 * 27 * For detailed explanation of Read-Copy Update mechanism see - 28 * Documentation/RCU 29 */ 30 #include <linux/types.h> 31 #include <linux/kernel.h> 32 #include <linux/init.h> 33 #include <linux/spinlock.h> 34 #include <linux/smp.h> 35 #include <linux/rcupdate.h> 36 #include <linux/interrupt.h> 37 #include <linux/sched.h> 38 #include <linux/nmi.h> 39 #include <linux/atomic.h> 40 #include <linux/bitops.h> 41 #include <linux/export.h> 42 #include <linux/completion.h> 43 #include <linux/moduleparam.h> 44 #include <linux/percpu.h> 45 #include <linux/notifier.h> 46 #include <linux/cpu.h> 47 #include <linux/mutex.h> 48 #include <linux/time.h> 49 #include <linux/kernel_stat.h> 50 #include <linux/wait.h> 51 #include <linux/kthread.h> 52 #include <linux/prefetch.h> 53 #include <linux/delay.h> 54 #include <linux/stop_machine.h> 55 #include <linux/random.h> 56 #include <linux/trace_events.h> 57 #include <linux/suspend.h> 58 59 #include "tree.h" 60 #include "rcu.h" 61 62 #ifdef MODULE_PARAM_PREFIX 63 #undef MODULE_PARAM_PREFIX 64 #endif 65 #define MODULE_PARAM_PREFIX "rcutree." 66 67 /* Data structures. */ 68 69 /* 70 * In order to export the rcu_state name to the tracing tools, it 71 * needs to be added in the __tracepoint_string section. 72 * This requires defining a separate variable tp_<sname>_varname 73 * that points to the string being used, and this will allow 74 * the tracing userspace tools to be able to decipher the string 75 * address to the matching string. 76 */ 77 #ifdef CONFIG_TRACING 78 # define DEFINE_RCU_TPS(sname) \ 79 static char sname##_varname[] = #sname; \ 80 static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname; 81 # define RCU_STATE_NAME(sname) sname##_varname 82 #else 83 # define DEFINE_RCU_TPS(sname) 84 # define RCU_STATE_NAME(sname) __stringify(sname) 85 #endif 86 87 #define RCU_STATE_INITIALIZER(sname, sabbr, cr) \ 88 DEFINE_RCU_TPS(sname) \ 89 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \ 90 struct rcu_state sname##_state = { \ 91 .level = { &sname##_state.node[0] }, \ 92 .rda = &sname##_data, \ 93 .call = cr, \ 94 .gp_state = RCU_GP_IDLE, \ 95 .gpnum = 0UL - 300UL, \ 96 .completed = 0UL - 300UL, \ 97 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \ 98 .orphan_nxttail = &sname##_state.orphan_nxtlist, \ 99 .orphan_donetail = &sname##_state.orphan_donelist, \ 100 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \ 101 .name = RCU_STATE_NAME(sname), \ 102 .abbr = sabbr, \ 103 .exp_mutex = __MUTEX_INITIALIZER(sname##_state.exp_mutex), \ 104 .exp_wake_mutex = __MUTEX_INITIALIZER(sname##_state.exp_wake_mutex), \ 105 } 106 107 RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched); 108 RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh); 109 110 static struct rcu_state *const rcu_state_p; 111 LIST_HEAD(rcu_struct_flavors); 112 113 /* Dump rcu_node combining tree at boot to verify correct setup. */ 114 static bool dump_tree; 115 module_param(dump_tree, bool, 0444); 116 /* Control rcu_node-tree auto-balancing at boot time. */ 117 static bool rcu_fanout_exact; 118 module_param(rcu_fanout_exact, bool, 0444); 119 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */ 120 static int rcu_fanout_leaf = RCU_FANOUT_LEAF; 121 module_param(rcu_fanout_leaf, int, 0444); 122 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS; 123 /* Number of rcu_nodes at specified level. */ 124 static int num_rcu_lvl[] = NUM_RCU_LVL_INIT; 125 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */ 126 /* panic() on RCU Stall sysctl. */ 127 int sysctl_panic_on_rcu_stall __read_mostly; 128 129 /* 130 * The rcu_scheduler_active variable is initialized to the value 131 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the 132 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE, 133 * RCU can assume that there is but one task, allowing RCU to (for example) 134 * optimize synchronize_rcu() to a simple barrier(). When this variable 135 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required 136 * to detect real grace periods. This variable is also used to suppress 137 * boot-time false positives from lockdep-RCU error checking. Finally, it 138 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU 139 * is fully initialized, including all of its kthreads having been spawned. 140 */ 141 int rcu_scheduler_active __read_mostly; 142 EXPORT_SYMBOL_GPL(rcu_scheduler_active); 143 144 /* 145 * The rcu_scheduler_fully_active variable transitions from zero to one 146 * during the early_initcall() processing, which is after the scheduler 147 * is capable of creating new tasks. So RCU processing (for example, 148 * creating tasks for RCU priority boosting) must be delayed until after 149 * rcu_scheduler_fully_active transitions from zero to one. We also 150 * currently delay invocation of any RCU callbacks until after this point. 151 * 152 * It might later prove better for people registering RCU callbacks during 153 * early boot to take responsibility for these callbacks, but one step at 154 * a time. 155 */ 156 static int rcu_scheduler_fully_active __read_mostly; 157 158 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf); 159 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf); 160 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu); 161 static void invoke_rcu_core(void); 162 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp); 163 static void rcu_report_exp_rdp(struct rcu_state *rsp, 164 struct rcu_data *rdp, bool wake); 165 static void sync_sched_exp_online_cleanup(int cpu); 166 167 /* rcuc/rcub kthread realtime priority */ 168 #ifdef CONFIG_RCU_KTHREAD_PRIO 169 static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO; 170 #else /* #ifdef CONFIG_RCU_KTHREAD_PRIO */ 171 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0; 172 #endif /* #else #ifdef CONFIG_RCU_KTHREAD_PRIO */ 173 module_param(kthread_prio, int, 0644); 174 175 /* Delay in jiffies for grace-period initialization delays, debug only. */ 176 177 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT 178 static int gp_preinit_delay = CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT_DELAY; 179 module_param(gp_preinit_delay, int, 0644); 180 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */ 181 static const int gp_preinit_delay; 182 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */ 183 184 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT 185 static int gp_init_delay = CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY; 186 module_param(gp_init_delay, int, 0644); 187 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */ 188 static const int gp_init_delay; 189 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */ 190 191 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP 192 static int gp_cleanup_delay = CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP_DELAY; 193 module_param(gp_cleanup_delay, int, 0644); 194 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */ 195 static const int gp_cleanup_delay; 196 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */ 197 198 /* 199 * Number of grace periods between delays, normalized by the duration of 200 * the delay. The longer the the delay, the more the grace periods between 201 * each delay. The reason for this normalization is that it means that, 202 * for non-zero delays, the overall slowdown of grace periods is constant 203 * regardless of the duration of the delay. This arrangement balances 204 * the need for long delays to increase some race probabilities with the 205 * need for fast grace periods to increase other race probabilities. 206 */ 207 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */ 208 209 /* 210 * Track the rcutorture test sequence number and the update version 211 * number within a given test. The rcutorture_testseq is incremented 212 * on every rcutorture module load and unload, so has an odd value 213 * when a test is running. The rcutorture_vernum is set to zero 214 * when rcutorture starts and is incremented on each rcutorture update. 215 * These variables enable correlating rcutorture output with the 216 * RCU tracing information. 217 */ 218 unsigned long rcutorture_testseq; 219 unsigned long rcutorture_vernum; 220 221 /* 222 * Compute the mask of online CPUs for the specified rcu_node structure. 223 * This will not be stable unless the rcu_node structure's ->lock is 224 * held, but the bit corresponding to the current CPU will be stable 225 * in most contexts. 226 */ 227 unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp) 228 { 229 return READ_ONCE(rnp->qsmaskinitnext); 230 } 231 232 /* 233 * Return true if an RCU grace period is in progress. The READ_ONCE()s 234 * permit this function to be invoked without holding the root rcu_node 235 * structure's ->lock, but of course results can be subject to change. 236 */ 237 static int rcu_gp_in_progress(struct rcu_state *rsp) 238 { 239 return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum); 240 } 241 242 /* 243 * Note a quiescent state. Because we do not need to know 244 * how many quiescent states passed, just if there was at least 245 * one since the start of the grace period, this just sets a flag. 246 * The caller must have disabled preemption. 247 */ 248 void rcu_sched_qs(void) 249 { 250 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.s)) 251 return; 252 trace_rcu_grace_period(TPS("rcu_sched"), 253 __this_cpu_read(rcu_sched_data.gpnum), 254 TPS("cpuqs")); 255 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false); 256 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp)) 257 return; 258 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false); 259 rcu_report_exp_rdp(&rcu_sched_state, 260 this_cpu_ptr(&rcu_sched_data), true); 261 } 262 263 void rcu_bh_qs(void) 264 { 265 if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) { 266 trace_rcu_grace_period(TPS("rcu_bh"), 267 __this_cpu_read(rcu_bh_data.gpnum), 268 TPS("cpuqs")); 269 __this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false); 270 } 271 } 272 273 static DEFINE_PER_CPU(int, rcu_sched_qs_mask); 274 275 static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = { 276 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE, 277 .dynticks = ATOMIC_INIT(1), 278 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE 279 .dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE, 280 .dynticks_idle = ATOMIC_INIT(1), 281 #endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */ 282 }; 283 284 DEFINE_PER_CPU_SHARED_ALIGNED(unsigned long, rcu_qs_ctr); 285 EXPORT_PER_CPU_SYMBOL_GPL(rcu_qs_ctr); 286 287 /* 288 * Let the RCU core know that this CPU has gone through the scheduler, 289 * which is a quiescent state. This is called when the need for a 290 * quiescent state is urgent, so we burn an atomic operation and full 291 * memory barriers to let the RCU core know about it, regardless of what 292 * this CPU might (or might not) do in the near future. 293 * 294 * We inform the RCU core by emulating a zero-duration dyntick-idle 295 * period, which we in turn do by incrementing the ->dynticks counter 296 * by two. 297 * 298 * The caller must have disabled interrupts. 299 */ 300 static void rcu_momentary_dyntick_idle(void) 301 { 302 struct rcu_data *rdp; 303 struct rcu_dynticks *rdtp; 304 int resched_mask; 305 struct rcu_state *rsp; 306 307 /* 308 * Yes, we can lose flag-setting operations. This is OK, because 309 * the flag will be set again after some delay. 310 */ 311 resched_mask = raw_cpu_read(rcu_sched_qs_mask); 312 raw_cpu_write(rcu_sched_qs_mask, 0); 313 314 /* Find the flavor that needs a quiescent state. */ 315 for_each_rcu_flavor(rsp) { 316 rdp = raw_cpu_ptr(rsp->rda); 317 if (!(resched_mask & rsp->flavor_mask)) 318 continue; 319 smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */ 320 if (READ_ONCE(rdp->mynode->completed) != 321 READ_ONCE(rdp->cond_resched_completed)) 322 continue; 323 324 /* 325 * Pretend to be momentarily idle for the quiescent state. 326 * This allows the grace-period kthread to record the 327 * quiescent state, with no need for this CPU to do anything 328 * further. 329 */ 330 rdtp = this_cpu_ptr(&rcu_dynticks); 331 smp_mb__before_atomic(); /* Earlier stuff before QS. */ 332 atomic_add(2, &rdtp->dynticks); /* QS. */ 333 smp_mb__after_atomic(); /* Later stuff after QS. */ 334 break; 335 } 336 } 337 338 /* 339 * Note a context switch. This is a quiescent state for RCU-sched, 340 * and requires special handling for preemptible RCU. 341 * The caller must have disabled interrupts. 342 */ 343 void rcu_note_context_switch(void) 344 { 345 barrier(); /* Avoid RCU read-side critical sections leaking down. */ 346 trace_rcu_utilization(TPS("Start context switch")); 347 rcu_sched_qs(); 348 rcu_preempt_note_context_switch(); 349 if (unlikely(raw_cpu_read(rcu_sched_qs_mask))) 350 rcu_momentary_dyntick_idle(); 351 trace_rcu_utilization(TPS("End context switch")); 352 barrier(); /* Avoid RCU read-side critical sections leaking up. */ 353 } 354 EXPORT_SYMBOL_GPL(rcu_note_context_switch); 355 356 /* 357 * Register a quiescent state for all RCU flavors. If there is an 358 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight 359 * dyntick-idle quiescent state visible to other CPUs (but only for those 360 * RCU flavors in desperate need of a quiescent state, which will normally 361 * be none of them). Either way, do a lightweight quiescent state for 362 * all RCU flavors. 363 * 364 * The barrier() calls are redundant in the common case when this is 365 * called externally, but just in case this is called from within this 366 * file. 367 * 368 */ 369 void rcu_all_qs(void) 370 { 371 unsigned long flags; 372 373 barrier(); /* Avoid RCU read-side critical sections leaking down. */ 374 if (unlikely(raw_cpu_read(rcu_sched_qs_mask))) { 375 local_irq_save(flags); 376 rcu_momentary_dyntick_idle(); 377 local_irq_restore(flags); 378 } 379 if (unlikely(raw_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))) { 380 /* 381 * Yes, we just checked a per-CPU variable with preemption 382 * enabled, so we might be migrated to some other CPU at 383 * this point. That is OK because in that case, the 384 * migration will supply the needed quiescent state. 385 * We might end up needlessly disabling preemption and 386 * invoking rcu_sched_qs() on the destination CPU, but 387 * the probability and cost are both quite low, so this 388 * should not be a problem in practice. 389 */ 390 preempt_disable(); 391 rcu_sched_qs(); 392 preempt_enable(); 393 } 394 this_cpu_inc(rcu_qs_ctr); 395 barrier(); /* Avoid RCU read-side critical sections leaking up. */ 396 } 397 EXPORT_SYMBOL_GPL(rcu_all_qs); 398 399 static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */ 400 static long qhimark = 10000; /* If this many pending, ignore blimit. */ 401 static long qlowmark = 100; /* Once only this many pending, use blimit. */ 402 403 module_param(blimit, long, 0444); 404 module_param(qhimark, long, 0444); 405 module_param(qlowmark, long, 0444); 406 407 static ulong jiffies_till_first_fqs = ULONG_MAX; 408 static ulong jiffies_till_next_fqs = ULONG_MAX; 409 static bool rcu_kick_kthreads; 410 411 module_param(jiffies_till_first_fqs, ulong, 0644); 412 module_param(jiffies_till_next_fqs, ulong, 0644); 413 module_param(rcu_kick_kthreads, bool, 0644); 414 415 /* 416 * How long the grace period must be before we start recruiting 417 * quiescent-state help from rcu_note_context_switch(). 418 */ 419 static ulong jiffies_till_sched_qs = HZ / 20; 420 module_param(jiffies_till_sched_qs, ulong, 0644); 421 422 static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp, 423 struct rcu_data *rdp); 424 static void force_qs_rnp(struct rcu_state *rsp, 425 int (*f)(struct rcu_data *rsp, bool *isidle, 426 unsigned long *maxj), 427 bool *isidle, unsigned long *maxj); 428 static void force_quiescent_state(struct rcu_state *rsp); 429 static int rcu_pending(void); 430 431 /* 432 * Return the number of RCU batches started thus far for debug & stats. 433 */ 434 unsigned long rcu_batches_started(void) 435 { 436 return rcu_state_p->gpnum; 437 } 438 EXPORT_SYMBOL_GPL(rcu_batches_started); 439 440 /* 441 * Return the number of RCU-sched batches started thus far for debug & stats. 442 */ 443 unsigned long rcu_batches_started_sched(void) 444 { 445 return rcu_sched_state.gpnum; 446 } 447 EXPORT_SYMBOL_GPL(rcu_batches_started_sched); 448 449 /* 450 * Return the number of RCU BH batches started thus far for debug & stats. 451 */ 452 unsigned long rcu_batches_started_bh(void) 453 { 454 return rcu_bh_state.gpnum; 455 } 456 EXPORT_SYMBOL_GPL(rcu_batches_started_bh); 457 458 /* 459 * Return the number of RCU batches completed thus far for debug & stats. 460 */ 461 unsigned long rcu_batches_completed(void) 462 { 463 return rcu_state_p->completed; 464 } 465 EXPORT_SYMBOL_GPL(rcu_batches_completed); 466 467 /* 468 * Return the number of RCU-sched batches completed thus far for debug & stats. 469 */ 470 unsigned long rcu_batches_completed_sched(void) 471 { 472 return rcu_sched_state.completed; 473 } 474 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched); 475 476 /* 477 * Return the number of RCU BH batches completed thus far for debug & stats. 478 */ 479 unsigned long rcu_batches_completed_bh(void) 480 { 481 return rcu_bh_state.completed; 482 } 483 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh); 484 485 /* 486 * Return the number of RCU expedited batches completed thus far for 487 * debug & stats. Odd numbers mean that a batch is in progress, even 488 * numbers mean idle. The value returned will thus be roughly double 489 * the cumulative batches since boot. 490 */ 491 unsigned long rcu_exp_batches_completed(void) 492 { 493 return rcu_state_p->expedited_sequence; 494 } 495 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed); 496 497 /* 498 * Return the number of RCU-sched expedited batches completed thus far 499 * for debug & stats. Similar to rcu_exp_batches_completed(). 500 */ 501 unsigned long rcu_exp_batches_completed_sched(void) 502 { 503 return rcu_sched_state.expedited_sequence; 504 } 505 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed_sched); 506 507 /* 508 * Force a quiescent state. 509 */ 510 void rcu_force_quiescent_state(void) 511 { 512 force_quiescent_state(rcu_state_p); 513 } 514 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state); 515 516 /* 517 * Force a quiescent state for RCU BH. 518 */ 519 void rcu_bh_force_quiescent_state(void) 520 { 521 force_quiescent_state(&rcu_bh_state); 522 } 523 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state); 524 525 /* 526 * Force a quiescent state for RCU-sched. 527 */ 528 void rcu_sched_force_quiescent_state(void) 529 { 530 force_quiescent_state(&rcu_sched_state); 531 } 532 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state); 533 534 /* 535 * Show the state of the grace-period kthreads. 536 */ 537 void show_rcu_gp_kthreads(void) 538 { 539 struct rcu_state *rsp; 540 541 for_each_rcu_flavor(rsp) { 542 pr_info("%s: wait state: %d ->state: %#lx\n", 543 rsp->name, rsp->gp_state, rsp->gp_kthread->state); 544 /* sched_show_task(rsp->gp_kthread); */ 545 } 546 } 547 EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads); 548 549 /* 550 * Record the number of times rcutorture tests have been initiated and 551 * terminated. This information allows the debugfs tracing stats to be 552 * correlated to the rcutorture messages, even when the rcutorture module 553 * is being repeatedly loaded and unloaded. In other words, we cannot 554 * store this state in rcutorture itself. 555 */ 556 void rcutorture_record_test_transition(void) 557 { 558 rcutorture_testseq++; 559 rcutorture_vernum = 0; 560 } 561 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition); 562 563 /* 564 * Send along grace-period-related data for rcutorture diagnostics. 565 */ 566 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags, 567 unsigned long *gpnum, unsigned long *completed) 568 { 569 struct rcu_state *rsp = NULL; 570 571 switch (test_type) { 572 case RCU_FLAVOR: 573 rsp = rcu_state_p; 574 break; 575 case RCU_BH_FLAVOR: 576 rsp = &rcu_bh_state; 577 break; 578 case RCU_SCHED_FLAVOR: 579 rsp = &rcu_sched_state; 580 break; 581 default: 582 break; 583 } 584 if (rsp != NULL) { 585 *flags = READ_ONCE(rsp->gp_flags); 586 *gpnum = READ_ONCE(rsp->gpnum); 587 *completed = READ_ONCE(rsp->completed); 588 return; 589 } 590 *flags = 0; 591 *gpnum = 0; 592 *completed = 0; 593 } 594 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data); 595 596 /* 597 * Record the number of writer passes through the current rcutorture test. 598 * This is also used to correlate debugfs tracing stats with the rcutorture 599 * messages. 600 */ 601 void rcutorture_record_progress(unsigned long vernum) 602 { 603 rcutorture_vernum++; 604 } 605 EXPORT_SYMBOL_GPL(rcutorture_record_progress); 606 607 /* 608 * Does the CPU have callbacks ready to be invoked? 609 */ 610 static int 611 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp) 612 { 613 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] && 614 rdp->nxttail[RCU_DONE_TAIL] != NULL; 615 } 616 617 /* 618 * Return the root node of the specified rcu_state structure. 619 */ 620 static struct rcu_node *rcu_get_root(struct rcu_state *rsp) 621 { 622 return &rsp->node[0]; 623 } 624 625 /* 626 * Is there any need for future grace periods? 627 * Interrupts must be disabled. If the caller does not hold the root 628 * rnp_node structure's ->lock, the results are advisory only. 629 */ 630 static int rcu_future_needs_gp(struct rcu_state *rsp) 631 { 632 struct rcu_node *rnp = rcu_get_root(rsp); 633 int idx = (READ_ONCE(rnp->completed) + 1) & 0x1; 634 int *fp = &rnp->need_future_gp[idx]; 635 636 return READ_ONCE(*fp); 637 } 638 639 /* 640 * Does the current CPU require a not-yet-started grace period? 641 * The caller must have disabled interrupts to prevent races with 642 * normal callback registry. 643 */ 644 static bool 645 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp) 646 { 647 int i; 648 649 if (rcu_gp_in_progress(rsp)) 650 return false; /* No, a grace period is already in progress. */ 651 if (rcu_future_needs_gp(rsp)) 652 return true; /* Yes, a no-CBs CPU needs one. */ 653 if (!rdp->nxttail[RCU_NEXT_TAIL]) 654 return false; /* No, this is a no-CBs (or offline) CPU. */ 655 if (*rdp->nxttail[RCU_NEXT_READY_TAIL]) 656 return true; /* Yes, CPU has newly registered callbacks. */ 657 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) 658 if (rdp->nxttail[i - 1] != rdp->nxttail[i] && 659 ULONG_CMP_LT(READ_ONCE(rsp->completed), 660 rdp->nxtcompleted[i])) 661 return true; /* Yes, CBs for future grace period. */ 662 return false; /* No grace period needed. */ 663 } 664 665 /* 666 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state 667 * 668 * If the new value of the ->dynticks_nesting counter now is zero, 669 * we really have entered idle, and must do the appropriate accounting. 670 * The caller must have disabled interrupts. 671 */ 672 static void rcu_eqs_enter_common(long long oldval, bool user) 673 { 674 struct rcu_state *rsp; 675 struct rcu_data *rdp; 676 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 677 678 trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting); 679 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 680 !user && !is_idle_task(current)) { 681 struct task_struct *idle __maybe_unused = 682 idle_task(smp_processor_id()); 683 684 trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0); 685 rcu_ftrace_dump(DUMP_ORIG); 686 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s", 687 current->pid, current->comm, 688 idle->pid, idle->comm); /* must be idle task! */ 689 } 690 for_each_rcu_flavor(rsp) { 691 rdp = this_cpu_ptr(rsp->rda); 692 do_nocb_deferred_wakeup(rdp); 693 } 694 rcu_prepare_for_idle(); 695 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */ 696 smp_mb__before_atomic(); /* See above. */ 697 atomic_inc(&rdtp->dynticks); 698 smp_mb__after_atomic(); /* Force ordering with next sojourn. */ 699 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 700 atomic_read(&rdtp->dynticks) & 0x1); 701 rcu_dynticks_task_enter(); 702 703 /* 704 * It is illegal to enter an extended quiescent state while 705 * in an RCU read-side critical section. 706 */ 707 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map), 708 "Illegal idle entry in RCU read-side critical section."); 709 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map), 710 "Illegal idle entry in RCU-bh read-side critical section."); 711 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map), 712 "Illegal idle entry in RCU-sched read-side critical section."); 713 } 714 715 /* 716 * Enter an RCU extended quiescent state, which can be either the 717 * idle loop or adaptive-tickless usermode execution. 718 */ 719 static void rcu_eqs_enter(bool user) 720 { 721 long long oldval; 722 struct rcu_dynticks *rdtp; 723 724 rdtp = this_cpu_ptr(&rcu_dynticks); 725 oldval = rdtp->dynticks_nesting; 726 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 727 (oldval & DYNTICK_TASK_NEST_MASK) == 0); 728 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) { 729 rdtp->dynticks_nesting = 0; 730 rcu_eqs_enter_common(oldval, user); 731 } else { 732 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE; 733 } 734 } 735 736 /** 737 * rcu_idle_enter - inform RCU that current CPU is entering idle 738 * 739 * Enter idle mode, in other words, -leave- the mode in which RCU 740 * read-side critical sections can occur. (Though RCU read-side 741 * critical sections can occur in irq handlers in idle, a possibility 742 * handled by irq_enter() and irq_exit().) 743 * 744 * We crowbar the ->dynticks_nesting field to zero to allow for 745 * the possibility of usermode upcalls having messed up our count 746 * of interrupt nesting level during the prior busy period. 747 */ 748 void rcu_idle_enter(void) 749 { 750 unsigned long flags; 751 752 local_irq_save(flags); 753 rcu_eqs_enter(false); 754 rcu_sysidle_enter(0); 755 local_irq_restore(flags); 756 } 757 EXPORT_SYMBOL_GPL(rcu_idle_enter); 758 759 #ifdef CONFIG_NO_HZ_FULL 760 /** 761 * rcu_user_enter - inform RCU that we are resuming userspace. 762 * 763 * Enter RCU idle mode right before resuming userspace. No use of RCU 764 * is permitted between this call and rcu_user_exit(). This way the 765 * CPU doesn't need to maintain the tick for RCU maintenance purposes 766 * when the CPU runs in userspace. 767 */ 768 void rcu_user_enter(void) 769 { 770 rcu_eqs_enter(1); 771 } 772 #endif /* CONFIG_NO_HZ_FULL */ 773 774 /** 775 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle 776 * 777 * Exit from an interrupt handler, which might possibly result in entering 778 * idle mode, in other words, leaving the mode in which read-side critical 779 * sections can occur. The caller must have disabled interrupts. 780 * 781 * This code assumes that the idle loop never does anything that might 782 * result in unbalanced calls to irq_enter() and irq_exit(). If your 783 * architecture violates this assumption, RCU will give you what you 784 * deserve, good and hard. But very infrequently and irreproducibly. 785 * 786 * Use things like work queues to work around this limitation. 787 * 788 * You have been warned. 789 */ 790 void rcu_irq_exit(void) 791 { 792 long long oldval; 793 struct rcu_dynticks *rdtp; 794 795 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_exit() invoked with irqs enabled!!!"); 796 rdtp = this_cpu_ptr(&rcu_dynticks); 797 oldval = rdtp->dynticks_nesting; 798 rdtp->dynticks_nesting--; 799 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 800 rdtp->dynticks_nesting < 0); 801 if (rdtp->dynticks_nesting) 802 trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting); 803 else 804 rcu_eqs_enter_common(oldval, true); 805 rcu_sysidle_enter(1); 806 } 807 808 /* 809 * Wrapper for rcu_irq_exit() where interrupts are enabled. 810 */ 811 void rcu_irq_exit_irqson(void) 812 { 813 unsigned long flags; 814 815 local_irq_save(flags); 816 rcu_irq_exit(); 817 local_irq_restore(flags); 818 } 819 820 /* 821 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state 822 * 823 * If the new value of the ->dynticks_nesting counter was previously zero, 824 * we really have exited idle, and must do the appropriate accounting. 825 * The caller must have disabled interrupts. 826 */ 827 static void rcu_eqs_exit_common(long long oldval, int user) 828 { 829 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 830 831 rcu_dynticks_task_exit(); 832 smp_mb__before_atomic(); /* Force ordering w/previous sojourn. */ 833 atomic_inc(&rdtp->dynticks); 834 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */ 835 smp_mb__after_atomic(); /* See above. */ 836 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 837 !(atomic_read(&rdtp->dynticks) & 0x1)); 838 rcu_cleanup_after_idle(); 839 trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting); 840 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 841 !user && !is_idle_task(current)) { 842 struct task_struct *idle __maybe_unused = 843 idle_task(smp_processor_id()); 844 845 trace_rcu_dyntick(TPS("Error on exit: not idle task"), 846 oldval, rdtp->dynticks_nesting); 847 rcu_ftrace_dump(DUMP_ORIG); 848 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s", 849 current->pid, current->comm, 850 idle->pid, idle->comm); /* must be idle task! */ 851 } 852 } 853 854 /* 855 * Exit an RCU extended quiescent state, which can be either the 856 * idle loop or adaptive-tickless usermode execution. 857 */ 858 static void rcu_eqs_exit(bool user) 859 { 860 struct rcu_dynticks *rdtp; 861 long long oldval; 862 863 rdtp = this_cpu_ptr(&rcu_dynticks); 864 oldval = rdtp->dynticks_nesting; 865 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0); 866 if (oldval & DYNTICK_TASK_NEST_MASK) { 867 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE; 868 } else { 869 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE; 870 rcu_eqs_exit_common(oldval, user); 871 } 872 } 873 874 /** 875 * rcu_idle_exit - inform RCU that current CPU is leaving idle 876 * 877 * Exit idle mode, in other words, -enter- the mode in which RCU 878 * read-side critical sections can occur. 879 * 880 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to 881 * allow for the possibility of usermode upcalls messing up our count 882 * of interrupt nesting level during the busy period that is just 883 * now starting. 884 */ 885 void rcu_idle_exit(void) 886 { 887 unsigned long flags; 888 889 local_irq_save(flags); 890 rcu_eqs_exit(false); 891 rcu_sysidle_exit(0); 892 local_irq_restore(flags); 893 } 894 EXPORT_SYMBOL_GPL(rcu_idle_exit); 895 896 #ifdef CONFIG_NO_HZ_FULL 897 /** 898 * rcu_user_exit - inform RCU that we are exiting userspace. 899 * 900 * Exit RCU idle mode while entering the kernel because it can 901 * run a RCU read side critical section anytime. 902 */ 903 void rcu_user_exit(void) 904 { 905 rcu_eqs_exit(1); 906 } 907 #endif /* CONFIG_NO_HZ_FULL */ 908 909 /** 910 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle 911 * 912 * Enter an interrupt handler, which might possibly result in exiting 913 * idle mode, in other words, entering the mode in which read-side critical 914 * sections can occur. The caller must have disabled interrupts. 915 * 916 * Note that the Linux kernel is fully capable of entering an interrupt 917 * handler that it never exits, for example when doing upcalls to 918 * user mode! This code assumes that the idle loop never does upcalls to 919 * user mode. If your architecture does do upcalls from the idle loop (or 920 * does anything else that results in unbalanced calls to the irq_enter() 921 * and irq_exit() functions), RCU will give you what you deserve, good 922 * and hard. But very infrequently and irreproducibly. 923 * 924 * Use things like work queues to work around this limitation. 925 * 926 * You have been warned. 927 */ 928 void rcu_irq_enter(void) 929 { 930 struct rcu_dynticks *rdtp; 931 long long oldval; 932 933 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_enter() invoked with irqs enabled!!!"); 934 rdtp = this_cpu_ptr(&rcu_dynticks); 935 oldval = rdtp->dynticks_nesting; 936 rdtp->dynticks_nesting++; 937 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 938 rdtp->dynticks_nesting == 0); 939 if (oldval) 940 trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting); 941 else 942 rcu_eqs_exit_common(oldval, true); 943 rcu_sysidle_exit(1); 944 } 945 946 /* 947 * Wrapper for rcu_irq_enter() where interrupts are enabled. 948 */ 949 void rcu_irq_enter_irqson(void) 950 { 951 unsigned long flags; 952 953 local_irq_save(flags); 954 rcu_irq_enter(); 955 local_irq_restore(flags); 956 } 957 958 /** 959 * rcu_nmi_enter - inform RCU of entry to NMI context 960 * 961 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and 962 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know 963 * that the CPU is active. This implementation permits nested NMIs, as 964 * long as the nesting level does not overflow an int. (You will probably 965 * run out of stack space first.) 966 */ 967 void rcu_nmi_enter(void) 968 { 969 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 970 int incby = 2; 971 972 /* Complain about underflow. */ 973 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0); 974 975 /* 976 * If idle from RCU viewpoint, atomically increment ->dynticks 977 * to mark non-idle and increment ->dynticks_nmi_nesting by one. 978 * Otherwise, increment ->dynticks_nmi_nesting by two. This means 979 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed 980 * to be in the outermost NMI handler that interrupted an RCU-idle 981 * period (observation due to Andy Lutomirski). 982 */ 983 if (!(atomic_read(&rdtp->dynticks) & 0x1)) { 984 smp_mb__before_atomic(); /* Force delay from prior write. */ 985 atomic_inc(&rdtp->dynticks); 986 /* atomic_inc() before later RCU read-side crit sects */ 987 smp_mb__after_atomic(); /* See above. */ 988 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1)); 989 incby = 1; 990 } 991 rdtp->dynticks_nmi_nesting += incby; 992 barrier(); 993 } 994 995 /** 996 * rcu_nmi_exit - inform RCU of exit from NMI context 997 * 998 * If we are returning from the outermost NMI handler that interrupted an 999 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting 1000 * to let the RCU grace-period handling know that the CPU is back to 1001 * being RCU-idle. 1002 */ 1003 void rcu_nmi_exit(void) 1004 { 1005 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 1006 1007 /* 1008 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks. 1009 * (We are exiting an NMI handler, so RCU better be paying attention 1010 * to us!) 1011 */ 1012 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0); 1013 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1)); 1014 1015 /* 1016 * If the nesting level is not 1, the CPU wasn't RCU-idle, so 1017 * leave it in non-RCU-idle state. 1018 */ 1019 if (rdtp->dynticks_nmi_nesting != 1) { 1020 rdtp->dynticks_nmi_nesting -= 2; 1021 return; 1022 } 1023 1024 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */ 1025 rdtp->dynticks_nmi_nesting = 0; 1026 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */ 1027 smp_mb__before_atomic(); /* See above. */ 1028 atomic_inc(&rdtp->dynticks); 1029 smp_mb__after_atomic(); /* Force delay to next write. */ 1030 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1); 1031 } 1032 1033 /** 1034 * __rcu_is_watching - are RCU read-side critical sections safe? 1035 * 1036 * Return true if RCU is watching the running CPU, which means that 1037 * this CPU can safely enter RCU read-side critical sections. Unlike 1038 * rcu_is_watching(), the caller of __rcu_is_watching() must have at 1039 * least disabled preemption. 1040 */ 1041 bool notrace __rcu_is_watching(void) 1042 { 1043 return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1; 1044 } 1045 1046 /** 1047 * rcu_is_watching - see if RCU thinks that the current CPU is idle 1048 * 1049 * If the current CPU is in its idle loop and is neither in an interrupt 1050 * or NMI handler, return true. 1051 */ 1052 bool notrace rcu_is_watching(void) 1053 { 1054 bool ret; 1055 1056 preempt_disable_notrace(); 1057 ret = __rcu_is_watching(); 1058 preempt_enable_notrace(); 1059 return ret; 1060 } 1061 EXPORT_SYMBOL_GPL(rcu_is_watching); 1062 1063 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) 1064 1065 /* 1066 * Is the current CPU online? Disable preemption to avoid false positives 1067 * that could otherwise happen due to the current CPU number being sampled, 1068 * this task being preempted, its old CPU being taken offline, resuming 1069 * on some other CPU, then determining that its old CPU is now offline. 1070 * It is OK to use RCU on an offline processor during initial boot, hence 1071 * the check for rcu_scheduler_fully_active. Note also that it is OK 1072 * for a CPU coming online to use RCU for one jiffy prior to marking itself 1073 * online in the cpu_online_mask. Similarly, it is OK for a CPU going 1074 * offline to continue to use RCU for one jiffy after marking itself 1075 * offline in the cpu_online_mask. This leniency is necessary given the 1076 * non-atomic nature of the online and offline processing, for example, 1077 * the fact that a CPU enters the scheduler after completing the teardown 1078 * of the CPU. 1079 * 1080 * This is also why RCU internally marks CPUs online during in the 1081 * preparation phase and offline after the CPU has been taken down. 1082 * 1083 * Disable checking if in an NMI handler because we cannot safely report 1084 * errors from NMI handlers anyway. 1085 */ 1086 bool rcu_lockdep_current_cpu_online(void) 1087 { 1088 struct rcu_data *rdp; 1089 struct rcu_node *rnp; 1090 bool ret; 1091 1092 if (in_nmi()) 1093 return true; 1094 preempt_disable(); 1095 rdp = this_cpu_ptr(&rcu_sched_data); 1096 rnp = rdp->mynode; 1097 ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) || 1098 !rcu_scheduler_fully_active; 1099 preempt_enable(); 1100 return ret; 1101 } 1102 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online); 1103 1104 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */ 1105 1106 /** 1107 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle 1108 * 1109 * If the current CPU is idle or running at a first-level (not nested) 1110 * interrupt from idle, return true. The caller must have at least 1111 * disabled preemption. 1112 */ 1113 static int rcu_is_cpu_rrupt_from_idle(void) 1114 { 1115 return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1; 1116 } 1117 1118 /* 1119 * Snapshot the specified CPU's dynticks counter so that we can later 1120 * credit them with an implicit quiescent state. Return 1 if this CPU 1121 * is in dynticks idle mode, which is an extended quiescent state. 1122 */ 1123 static int dyntick_save_progress_counter(struct rcu_data *rdp, 1124 bool *isidle, unsigned long *maxj) 1125 { 1126 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks); 1127 rcu_sysidle_check_cpu(rdp, isidle, maxj); 1128 if ((rdp->dynticks_snap & 0x1) == 0) { 1129 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti")); 1130 if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4, 1131 rdp->mynode->gpnum)) 1132 WRITE_ONCE(rdp->gpwrap, true); 1133 return 1; 1134 } 1135 return 0; 1136 } 1137 1138 /* 1139 * Return true if the specified CPU has passed through a quiescent 1140 * state by virtue of being in or having passed through an dynticks 1141 * idle state since the last call to dyntick_save_progress_counter() 1142 * for this same CPU, or by virtue of having been offline. 1143 */ 1144 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp, 1145 bool *isidle, unsigned long *maxj) 1146 { 1147 unsigned int curr; 1148 int *rcrmp; 1149 unsigned int snap; 1150 1151 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks); 1152 snap = (unsigned int)rdp->dynticks_snap; 1153 1154 /* 1155 * If the CPU passed through or entered a dynticks idle phase with 1156 * no active irq/NMI handlers, then we can safely pretend that the CPU 1157 * already acknowledged the request to pass through a quiescent 1158 * state. Either way, that CPU cannot possibly be in an RCU 1159 * read-side critical section that started before the beginning 1160 * of the current RCU grace period. 1161 */ 1162 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) { 1163 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti")); 1164 rdp->dynticks_fqs++; 1165 return 1; 1166 } 1167 1168 /* 1169 * Check for the CPU being offline, but only if the grace period 1170 * is old enough. We don't need to worry about the CPU changing 1171 * state: If we see it offline even once, it has been through a 1172 * quiescent state. 1173 * 1174 * The reason for insisting that the grace period be at least 1175 * one jiffy old is that CPUs that are not quite online and that 1176 * have just gone offline can still execute RCU read-side critical 1177 * sections. 1178 */ 1179 if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies)) 1180 return 0; /* Grace period is not old enough. */ 1181 barrier(); 1182 if (cpu_is_offline(rdp->cpu)) { 1183 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl")); 1184 rdp->offline_fqs++; 1185 return 1; 1186 } 1187 1188 /* 1189 * A CPU running for an extended time within the kernel can 1190 * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode, 1191 * even context-switching back and forth between a pair of 1192 * in-kernel CPU-bound tasks cannot advance grace periods. 1193 * So if the grace period is old enough, make the CPU pay attention. 1194 * Note that the unsynchronized assignments to the per-CPU 1195 * rcu_sched_qs_mask variable are safe. Yes, setting of 1196 * bits can be lost, but they will be set again on the next 1197 * force-quiescent-state pass. So lost bit sets do not result 1198 * in incorrect behavior, merely in a grace period lasting 1199 * a few jiffies longer than it might otherwise. Because 1200 * there are at most four threads involved, and because the 1201 * updates are only once every few jiffies, the probability of 1202 * lossage (and thus of slight grace-period extension) is 1203 * quite low. 1204 * 1205 * Note that if the jiffies_till_sched_qs boot/sysfs parameter 1206 * is set too high, we override with half of the RCU CPU stall 1207 * warning delay. 1208 */ 1209 rcrmp = &per_cpu(rcu_sched_qs_mask, rdp->cpu); 1210 if (ULONG_CMP_GE(jiffies, 1211 rdp->rsp->gp_start + jiffies_till_sched_qs) || 1212 ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) { 1213 if (!(READ_ONCE(*rcrmp) & rdp->rsp->flavor_mask)) { 1214 WRITE_ONCE(rdp->cond_resched_completed, 1215 READ_ONCE(rdp->mynode->completed)); 1216 smp_mb(); /* ->cond_resched_completed before *rcrmp. */ 1217 WRITE_ONCE(*rcrmp, 1218 READ_ONCE(*rcrmp) + rdp->rsp->flavor_mask); 1219 } 1220 rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */ 1221 } 1222 1223 /* And if it has been a really long time, kick the CPU as well. */ 1224 if (ULONG_CMP_GE(jiffies, 1225 rdp->rsp->gp_start + 2 * jiffies_till_sched_qs) || 1226 ULONG_CMP_GE(jiffies, rdp->rsp->gp_start + jiffies_till_sched_qs)) 1227 resched_cpu(rdp->cpu); /* Force CPU into scheduler. */ 1228 1229 return 0; 1230 } 1231 1232 static void record_gp_stall_check_time(struct rcu_state *rsp) 1233 { 1234 unsigned long j = jiffies; 1235 unsigned long j1; 1236 1237 rsp->gp_start = j; 1238 smp_wmb(); /* Record start time before stall time. */ 1239 j1 = rcu_jiffies_till_stall_check(); 1240 WRITE_ONCE(rsp->jiffies_stall, j + j1); 1241 rsp->jiffies_resched = j + j1 / 2; 1242 rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs); 1243 } 1244 1245 /* 1246 * Convert a ->gp_state value to a character string. 1247 */ 1248 static const char *gp_state_getname(short gs) 1249 { 1250 if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names)) 1251 return "???"; 1252 return gp_state_names[gs]; 1253 } 1254 1255 /* 1256 * Complain about starvation of grace-period kthread. 1257 */ 1258 static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp) 1259 { 1260 unsigned long gpa; 1261 unsigned long j; 1262 1263 j = jiffies; 1264 gpa = READ_ONCE(rsp->gp_activity); 1265 if (j - gpa > 2 * HZ) { 1266 pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x %s(%d) ->state=%#lx\n", 1267 rsp->name, j - gpa, 1268 rsp->gpnum, rsp->completed, 1269 rsp->gp_flags, 1270 gp_state_getname(rsp->gp_state), rsp->gp_state, 1271 rsp->gp_kthread ? rsp->gp_kthread->state : ~0); 1272 if (rsp->gp_kthread) { 1273 sched_show_task(rsp->gp_kthread); 1274 wake_up_process(rsp->gp_kthread); 1275 } 1276 } 1277 } 1278 1279 /* 1280 * Dump stacks of all tasks running on stalled CPUs. 1281 */ 1282 static void rcu_dump_cpu_stacks(struct rcu_state *rsp) 1283 { 1284 int cpu; 1285 unsigned long flags; 1286 struct rcu_node *rnp; 1287 1288 rcu_for_each_leaf_node(rsp, rnp) { 1289 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1290 if (rnp->qsmask != 0) { 1291 for_each_leaf_node_possible_cpu(rnp, cpu) 1292 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) 1293 dump_cpu_task(cpu); 1294 } 1295 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1296 } 1297 } 1298 1299 /* 1300 * If too much time has passed in the current grace period, and if 1301 * so configured, go kick the relevant kthreads. 1302 */ 1303 static void rcu_stall_kick_kthreads(struct rcu_state *rsp) 1304 { 1305 unsigned long j; 1306 1307 if (!rcu_kick_kthreads) 1308 return; 1309 j = READ_ONCE(rsp->jiffies_kick_kthreads); 1310 if (time_after(jiffies, j) && rsp->gp_kthread && 1311 (rcu_gp_in_progress(rsp) || READ_ONCE(rsp->gp_flags))) { 1312 WARN_ONCE(1, "Kicking %s grace-period kthread\n", rsp->name); 1313 rcu_ftrace_dump(DUMP_ALL); 1314 wake_up_process(rsp->gp_kthread); 1315 WRITE_ONCE(rsp->jiffies_kick_kthreads, j + HZ); 1316 } 1317 } 1318 1319 static inline void panic_on_rcu_stall(void) 1320 { 1321 if (sysctl_panic_on_rcu_stall) 1322 panic("RCU Stall\n"); 1323 } 1324 1325 static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum) 1326 { 1327 int cpu; 1328 long delta; 1329 unsigned long flags; 1330 unsigned long gpa; 1331 unsigned long j; 1332 int ndetected = 0; 1333 struct rcu_node *rnp = rcu_get_root(rsp); 1334 long totqlen = 0; 1335 1336 /* Kick and suppress, if so configured. */ 1337 rcu_stall_kick_kthreads(rsp); 1338 if (rcu_cpu_stall_suppress) 1339 return; 1340 1341 /* Only let one CPU complain about others per time interval. */ 1342 1343 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1344 delta = jiffies - READ_ONCE(rsp->jiffies_stall); 1345 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) { 1346 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1347 return; 1348 } 1349 WRITE_ONCE(rsp->jiffies_stall, 1350 jiffies + 3 * rcu_jiffies_till_stall_check() + 3); 1351 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1352 1353 /* 1354 * OK, time to rat on our buddy... 1355 * See Documentation/RCU/stallwarn.txt for info on how to debug 1356 * RCU CPU stall warnings. 1357 */ 1358 pr_err("INFO: %s detected stalls on CPUs/tasks:", 1359 rsp->name); 1360 print_cpu_stall_info_begin(); 1361 rcu_for_each_leaf_node(rsp, rnp) { 1362 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1363 ndetected += rcu_print_task_stall(rnp); 1364 if (rnp->qsmask != 0) { 1365 for_each_leaf_node_possible_cpu(rnp, cpu) 1366 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) { 1367 print_cpu_stall_info(rsp, cpu); 1368 ndetected++; 1369 } 1370 } 1371 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1372 } 1373 1374 print_cpu_stall_info_end(); 1375 for_each_possible_cpu(cpu) 1376 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen; 1377 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n", 1378 smp_processor_id(), (long)(jiffies - rsp->gp_start), 1379 (long)rsp->gpnum, (long)rsp->completed, totqlen); 1380 if (ndetected) { 1381 rcu_dump_cpu_stacks(rsp); 1382 } else { 1383 if (READ_ONCE(rsp->gpnum) != gpnum || 1384 READ_ONCE(rsp->completed) == gpnum) { 1385 pr_err("INFO: Stall ended before state dump start\n"); 1386 } else { 1387 j = jiffies; 1388 gpa = READ_ONCE(rsp->gp_activity); 1389 pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n", 1390 rsp->name, j - gpa, j, gpa, 1391 jiffies_till_next_fqs, 1392 rcu_get_root(rsp)->qsmask); 1393 /* In this case, the current CPU might be at fault. */ 1394 sched_show_task(current); 1395 } 1396 } 1397 1398 /* Complain about tasks blocking the grace period. */ 1399 rcu_print_detail_task_stall(rsp); 1400 1401 rcu_check_gp_kthread_starvation(rsp); 1402 1403 panic_on_rcu_stall(); 1404 1405 force_quiescent_state(rsp); /* Kick them all. */ 1406 } 1407 1408 static void print_cpu_stall(struct rcu_state *rsp) 1409 { 1410 int cpu; 1411 unsigned long flags; 1412 struct rcu_node *rnp = rcu_get_root(rsp); 1413 long totqlen = 0; 1414 1415 /* Kick and suppress, if so configured. */ 1416 rcu_stall_kick_kthreads(rsp); 1417 if (rcu_cpu_stall_suppress) 1418 return; 1419 1420 /* 1421 * OK, time to rat on ourselves... 1422 * See Documentation/RCU/stallwarn.txt for info on how to debug 1423 * RCU CPU stall warnings. 1424 */ 1425 pr_err("INFO: %s self-detected stall on CPU", rsp->name); 1426 print_cpu_stall_info_begin(); 1427 print_cpu_stall_info(rsp, smp_processor_id()); 1428 print_cpu_stall_info_end(); 1429 for_each_possible_cpu(cpu) 1430 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen; 1431 pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n", 1432 jiffies - rsp->gp_start, 1433 (long)rsp->gpnum, (long)rsp->completed, totqlen); 1434 1435 rcu_check_gp_kthread_starvation(rsp); 1436 1437 rcu_dump_cpu_stacks(rsp); 1438 1439 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1440 if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall))) 1441 WRITE_ONCE(rsp->jiffies_stall, 1442 jiffies + 3 * rcu_jiffies_till_stall_check() + 3); 1443 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1444 1445 panic_on_rcu_stall(); 1446 1447 /* 1448 * Attempt to revive the RCU machinery by forcing a context switch. 1449 * 1450 * A context switch would normally allow the RCU state machine to make 1451 * progress and it could be we're stuck in kernel space without context 1452 * switches for an entirely unreasonable amount of time. 1453 */ 1454 resched_cpu(smp_processor_id()); 1455 } 1456 1457 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp) 1458 { 1459 unsigned long completed; 1460 unsigned long gpnum; 1461 unsigned long gps; 1462 unsigned long j; 1463 unsigned long js; 1464 struct rcu_node *rnp; 1465 1466 if ((rcu_cpu_stall_suppress && !rcu_kick_kthreads) || 1467 !rcu_gp_in_progress(rsp)) 1468 return; 1469 rcu_stall_kick_kthreads(rsp); 1470 j = jiffies; 1471 1472 /* 1473 * Lots of memory barriers to reject false positives. 1474 * 1475 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall, 1476 * then rsp->gp_start, and finally rsp->completed. These values 1477 * are updated in the opposite order with memory barriers (or 1478 * equivalent) during grace-period initialization and cleanup. 1479 * Now, a false positive can occur if we get an new value of 1480 * rsp->gp_start and a old value of rsp->jiffies_stall. But given 1481 * the memory barriers, the only way that this can happen is if one 1482 * grace period ends and another starts between these two fetches. 1483 * Detect this by comparing rsp->completed with the previous fetch 1484 * from rsp->gpnum. 1485 * 1486 * Given this check, comparisons of jiffies, rsp->jiffies_stall, 1487 * and rsp->gp_start suffice to forestall false positives. 1488 */ 1489 gpnum = READ_ONCE(rsp->gpnum); 1490 smp_rmb(); /* Pick up ->gpnum first... */ 1491 js = READ_ONCE(rsp->jiffies_stall); 1492 smp_rmb(); /* ...then ->jiffies_stall before the rest... */ 1493 gps = READ_ONCE(rsp->gp_start); 1494 smp_rmb(); /* ...and finally ->gp_start before ->completed. */ 1495 completed = READ_ONCE(rsp->completed); 1496 if (ULONG_CMP_GE(completed, gpnum) || 1497 ULONG_CMP_LT(j, js) || 1498 ULONG_CMP_GE(gps, js)) 1499 return; /* No stall or GP completed since entering function. */ 1500 rnp = rdp->mynode; 1501 if (rcu_gp_in_progress(rsp) && 1502 (READ_ONCE(rnp->qsmask) & rdp->grpmask)) { 1503 1504 /* We haven't checked in, so go dump stack. */ 1505 print_cpu_stall(rsp); 1506 1507 } else if (rcu_gp_in_progress(rsp) && 1508 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) { 1509 1510 /* They had a few time units to dump stack, so complain. */ 1511 print_other_cpu_stall(rsp, gpnum); 1512 } 1513 } 1514 1515 /** 1516 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period 1517 * 1518 * Set the stall-warning timeout way off into the future, thus preventing 1519 * any RCU CPU stall-warning messages from appearing in the current set of 1520 * RCU grace periods. 1521 * 1522 * The caller must disable hard irqs. 1523 */ 1524 void rcu_cpu_stall_reset(void) 1525 { 1526 struct rcu_state *rsp; 1527 1528 for_each_rcu_flavor(rsp) 1529 WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2); 1530 } 1531 1532 /* 1533 * Initialize the specified rcu_data structure's default callback list 1534 * to empty. The default callback list is the one that is not used by 1535 * no-callbacks CPUs. 1536 */ 1537 static void init_default_callback_list(struct rcu_data *rdp) 1538 { 1539 int i; 1540 1541 rdp->nxtlist = NULL; 1542 for (i = 0; i < RCU_NEXT_SIZE; i++) 1543 rdp->nxttail[i] = &rdp->nxtlist; 1544 } 1545 1546 /* 1547 * Initialize the specified rcu_data structure's callback list to empty. 1548 */ 1549 static void init_callback_list(struct rcu_data *rdp) 1550 { 1551 if (init_nocb_callback_list(rdp)) 1552 return; 1553 init_default_callback_list(rdp); 1554 } 1555 1556 /* 1557 * Determine the value that ->completed will have at the end of the 1558 * next subsequent grace period. This is used to tag callbacks so that 1559 * a CPU can invoke callbacks in a timely fashion even if that CPU has 1560 * been dyntick-idle for an extended period with callbacks under the 1561 * influence of RCU_FAST_NO_HZ. 1562 * 1563 * The caller must hold rnp->lock with interrupts disabled. 1564 */ 1565 static unsigned long rcu_cbs_completed(struct rcu_state *rsp, 1566 struct rcu_node *rnp) 1567 { 1568 /* 1569 * If RCU is idle, we just wait for the next grace period. 1570 * But we can only be sure that RCU is idle if we are looking 1571 * at the root rcu_node structure -- otherwise, a new grace 1572 * period might have started, but just not yet gotten around 1573 * to initializing the current non-root rcu_node structure. 1574 */ 1575 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed) 1576 return rnp->completed + 1; 1577 1578 /* 1579 * Otherwise, wait for a possible partial grace period and 1580 * then the subsequent full grace period. 1581 */ 1582 return rnp->completed + 2; 1583 } 1584 1585 /* 1586 * Trace-event helper function for rcu_start_future_gp() and 1587 * rcu_nocb_wait_gp(). 1588 */ 1589 static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp, 1590 unsigned long c, const char *s) 1591 { 1592 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum, 1593 rnp->completed, c, rnp->level, 1594 rnp->grplo, rnp->grphi, s); 1595 } 1596 1597 /* 1598 * Start some future grace period, as needed to handle newly arrived 1599 * callbacks. The required future grace periods are recorded in each 1600 * rcu_node structure's ->need_future_gp field. Returns true if there 1601 * is reason to awaken the grace-period kthread. 1602 * 1603 * The caller must hold the specified rcu_node structure's ->lock. 1604 */ 1605 static bool __maybe_unused 1606 rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp, 1607 unsigned long *c_out) 1608 { 1609 unsigned long c; 1610 int i; 1611 bool ret = false; 1612 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp); 1613 1614 /* 1615 * Pick up grace-period number for new callbacks. If this 1616 * grace period is already marked as needed, return to the caller. 1617 */ 1618 c = rcu_cbs_completed(rdp->rsp, rnp); 1619 trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf")); 1620 if (rnp->need_future_gp[c & 0x1]) { 1621 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf")); 1622 goto out; 1623 } 1624 1625 /* 1626 * If either this rcu_node structure or the root rcu_node structure 1627 * believe that a grace period is in progress, then we must wait 1628 * for the one following, which is in "c". Because our request 1629 * will be noticed at the end of the current grace period, we don't 1630 * need to explicitly start one. We only do the lockless check 1631 * of rnp_root's fields if the current rcu_node structure thinks 1632 * there is no grace period in flight, and because we hold rnp->lock, 1633 * the only possible change is when rnp_root's two fields are 1634 * equal, in which case rnp_root->gpnum might be concurrently 1635 * incremented. But that is OK, as it will just result in our 1636 * doing some extra useless work. 1637 */ 1638 if (rnp->gpnum != rnp->completed || 1639 READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) { 1640 rnp->need_future_gp[c & 0x1]++; 1641 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf")); 1642 goto out; 1643 } 1644 1645 /* 1646 * There might be no grace period in progress. If we don't already 1647 * hold it, acquire the root rcu_node structure's lock in order to 1648 * start one (if needed). 1649 */ 1650 if (rnp != rnp_root) 1651 raw_spin_lock_rcu_node(rnp_root); 1652 1653 /* 1654 * Get a new grace-period number. If there really is no grace 1655 * period in progress, it will be smaller than the one we obtained 1656 * earlier. Adjust callbacks as needed. Note that even no-CBs 1657 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed. 1658 */ 1659 c = rcu_cbs_completed(rdp->rsp, rnp_root); 1660 for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++) 1661 if (ULONG_CMP_LT(c, rdp->nxtcompleted[i])) 1662 rdp->nxtcompleted[i] = c; 1663 1664 /* 1665 * If the needed for the required grace period is already 1666 * recorded, trace and leave. 1667 */ 1668 if (rnp_root->need_future_gp[c & 0x1]) { 1669 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot")); 1670 goto unlock_out; 1671 } 1672 1673 /* Record the need for the future grace period. */ 1674 rnp_root->need_future_gp[c & 0x1]++; 1675 1676 /* If a grace period is not already in progress, start one. */ 1677 if (rnp_root->gpnum != rnp_root->completed) { 1678 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot")); 1679 } else { 1680 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot")); 1681 ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp); 1682 } 1683 unlock_out: 1684 if (rnp != rnp_root) 1685 raw_spin_unlock_rcu_node(rnp_root); 1686 out: 1687 if (c_out != NULL) 1688 *c_out = c; 1689 return ret; 1690 } 1691 1692 /* 1693 * Clean up any old requests for the just-ended grace period. Also return 1694 * whether any additional grace periods have been requested. Also invoke 1695 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads 1696 * waiting for this grace period to complete. 1697 */ 1698 static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp) 1699 { 1700 int c = rnp->completed; 1701 int needmore; 1702 struct rcu_data *rdp = this_cpu_ptr(rsp->rda); 1703 1704 rnp->need_future_gp[c & 0x1] = 0; 1705 needmore = rnp->need_future_gp[(c + 1) & 0x1]; 1706 trace_rcu_future_gp(rnp, rdp, c, 1707 needmore ? TPS("CleanupMore") : TPS("Cleanup")); 1708 return needmore; 1709 } 1710 1711 /* 1712 * Awaken the grace-period kthread for the specified flavor of RCU. 1713 * Don't do a self-awaken, and don't bother awakening when there is 1714 * nothing for the grace-period kthread to do (as in several CPUs 1715 * raced to awaken, and we lost), and finally don't try to awaken 1716 * a kthread that has not yet been created. 1717 */ 1718 static void rcu_gp_kthread_wake(struct rcu_state *rsp) 1719 { 1720 if (current == rsp->gp_kthread || 1721 !READ_ONCE(rsp->gp_flags) || 1722 !rsp->gp_kthread) 1723 return; 1724 swake_up(&rsp->gp_wq); 1725 } 1726 1727 /* 1728 * If there is room, assign a ->completed number to any callbacks on 1729 * this CPU that have not already been assigned. Also accelerate any 1730 * callbacks that were previously assigned a ->completed number that has 1731 * since proven to be too conservative, which can happen if callbacks get 1732 * assigned a ->completed number while RCU is idle, but with reference to 1733 * a non-root rcu_node structure. This function is idempotent, so it does 1734 * not hurt to call it repeatedly. Returns an flag saying that we should 1735 * awaken the RCU grace-period kthread. 1736 * 1737 * The caller must hold rnp->lock with interrupts disabled. 1738 */ 1739 static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp, 1740 struct rcu_data *rdp) 1741 { 1742 unsigned long c; 1743 int i; 1744 bool ret; 1745 1746 /* If the CPU has no callbacks, nothing to do. */ 1747 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL]) 1748 return false; 1749 1750 /* 1751 * Starting from the sublist containing the callbacks most 1752 * recently assigned a ->completed number and working down, find the 1753 * first sublist that is not assignable to an upcoming grace period. 1754 * Such a sublist has something in it (first two tests) and has 1755 * a ->completed number assigned that will complete sooner than 1756 * the ->completed number for newly arrived callbacks (last test). 1757 * 1758 * The key point is that any later sublist can be assigned the 1759 * same ->completed number as the newly arrived callbacks, which 1760 * means that the callbacks in any of these later sublist can be 1761 * grouped into a single sublist, whether or not they have already 1762 * been assigned a ->completed number. 1763 */ 1764 c = rcu_cbs_completed(rsp, rnp); 1765 for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--) 1766 if (rdp->nxttail[i] != rdp->nxttail[i - 1] && 1767 !ULONG_CMP_GE(rdp->nxtcompleted[i], c)) 1768 break; 1769 1770 /* 1771 * If there are no sublist for unassigned callbacks, leave. 1772 * At the same time, advance "i" one sublist, so that "i" will 1773 * index into the sublist where all the remaining callbacks should 1774 * be grouped into. 1775 */ 1776 if (++i >= RCU_NEXT_TAIL) 1777 return false; 1778 1779 /* 1780 * Assign all subsequent callbacks' ->completed number to the next 1781 * full grace period and group them all in the sublist initially 1782 * indexed by "i". 1783 */ 1784 for (; i <= RCU_NEXT_TAIL; i++) { 1785 rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL]; 1786 rdp->nxtcompleted[i] = c; 1787 } 1788 /* Record any needed additional grace periods. */ 1789 ret = rcu_start_future_gp(rnp, rdp, NULL); 1790 1791 /* Trace depending on how much we were able to accelerate. */ 1792 if (!*rdp->nxttail[RCU_WAIT_TAIL]) 1793 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB")); 1794 else 1795 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB")); 1796 return ret; 1797 } 1798 1799 /* 1800 * Move any callbacks whose grace period has completed to the 1801 * RCU_DONE_TAIL sublist, then compact the remaining sublists and 1802 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL 1803 * sublist. This function is idempotent, so it does not hurt to 1804 * invoke it repeatedly. As long as it is not invoked -too- often... 1805 * Returns true if the RCU grace-period kthread needs to be awakened. 1806 * 1807 * The caller must hold rnp->lock with interrupts disabled. 1808 */ 1809 static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp, 1810 struct rcu_data *rdp) 1811 { 1812 int i, j; 1813 1814 /* If the CPU has no callbacks, nothing to do. */ 1815 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL]) 1816 return false; 1817 1818 /* 1819 * Find all callbacks whose ->completed numbers indicate that they 1820 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist. 1821 */ 1822 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) { 1823 if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i])) 1824 break; 1825 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i]; 1826 } 1827 /* Clean up any sublist tail pointers that were misordered above. */ 1828 for (j = RCU_WAIT_TAIL; j < i; j++) 1829 rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL]; 1830 1831 /* Copy down callbacks to fill in empty sublists. */ 1832 for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) { 1833 if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL]) 1834 break; 1835 rdp->nxttail[j] = rdp->nxttail[i]; 1836 rdp->nxtcompleted[j] = rdp->nxtcompleted[i]; 1837 } 1838 1839 /* Classify any remaining callbacks. */ 1840 return rcu_accelerate_cbs(rsp, rnp, rdp); 1841 } 1842 1843 /* 1844 * Update CPU-local rcu_data state to record the beginnings and ends of 1845 * grace periods. The caller must hold the ->lock of the leaf rcu_node 1846 * structure corresponding to the current CPU, and must have irqs disabled. 1847 * Returns true if the grace-period kthread needs to be awakened. 1848 */ 1849 static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp, 1850 struct rcu_data *rdp) 1851 { 1852 bool ret; 1853 bool need_gp; 1854 1855 /* Handle the ends of any preceding grace periods first. */ 1856 if (rdp->completed == rnp->completed && 1857 !unlikely(READ_ONCE(rdp->gpwrap))) { 1858 1859 /* No grace period end, so just accelerate recent callbacks. */ 1860 ret = rcu_accelerate_cbs(rsp, rnp, rdp); 1861 1862 } else { 1863 1864 /* Advance callbacks. */ 1865 ret = rcu_advance_cbs(rsp, rnp, rdp); 1866 1867 /* Remember that we saw this grace-period completion. */ 1868 rdp->completed = rnp->completed; 1869 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend")); 1870 } 1871 1872 if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) { 1873 /* 1874 * If the current grace period is waiting for this CPU, 1875 * set up to detect a quiescent state, otherwise don't 1876 * go looking for one. 1877 */ 1878 rdp->gpnum = rnp->gpnum; 1879 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart")); 1880 need_gp = !!(rnp->qsmask & rdp->grpmask); 1881 rdp->cpu_no_qs.b.norm = need_gp; 1882 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr); 1883 rdp->core_needs_qs = need_gp; 1884 zero_cpu_stall_ticks(rdp); 1885 WRITE_ONCE(rdp->gpwrap, false); 1886 } 1887 return ret; 1888 } 1889 1890 static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp) 1891 { 1892 unsigned long flags; 1893 bool needwake; 1894 struct rcu_node *rnp; 1895 1896 local_irq_save(flags); 1897 rnp = rdp->mynode; 1898 if ((rdp->gpnum == READ_ONCE(rnp->gpnum) && 1899 rdp->completed == READ_ONCE(rnp->completed) && 1900 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */ 1901 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */ 1902 local_irq_restore(flags); 1903 return; 1904 } 1905 needwake = __note_gp_changes(rsp, rnp, rdp); 1906 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1907 if (needwake) 1908 rcu_gp_kthread_wake(rsp); 1909 } 1910 1911 static void rcu_gp_slow(struct rcu_state *rsp, int delay) 1912 { 1913 if (delay > 0 && 1914 !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay))) 1915 schedule_timeout_uninterruptible(delay); 1916 } 1917 1918 /* 1919 * Initialize a new grace period. Return false if no grace period required. 1920 */ 1921 static bool rcu_gp_init(struct rcu_state *rsp) 1922 { 1923 unsigned long oldmask; 1924 struct rcu_data *rdp; 1925 struct rcu_node *rnp = rcu_get_root(rsp); 1926 1927 WRITE_ONCE(rsp->gp_activity, jiffies); 1928 raw_spin_lock_irq_rcu_node(rnp); 1929 if (!READ_ONCE(rsp->gp_flags)) { 1930 /* Spurious wakeup, tell caller to go back to sleep. */ 1931 raw_spin_unlock_irq_rcu_node(rnp); 1932 return false; 1933 } 1934 WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */ 1935 1936 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) { 1937 /* 1938 * Grace period already in progress, don't start another. 1939 * Not supposed to be able to happen. 1940 */ 1941 raw_spin_unlock_irq_rcu_node(rnp); 1942 return false; 1943 } 1944 1945 /* Advance to a new grace period and initialize state. */ 1946 record_gp_stall_check_time(rsp); 1947 /* Record GP times before starting GP, hence smp_store_release(). */ 1948 smp_store_release(&rsp->gpnum, rsp->gpnum + 1); 1949 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start")); 1950 raw_spin_unlock_irq_rcu_node(rnp); 1951 1952 /* 1953 * Apply per-leaf buffered online and offline operations to the 1954 * rcu_node tree. Note that this new grace period need not wait 1955 * for subsequent online CPUs, and that quiescent-state forcing 1956 * will handle subsequent offline CPUs. 1957 */ 1958 rcu_for_each_leaf_node(rsp, rnp) { 1959 rcu_gp_slow(rsp, gp_preinit_delay); 1960 raw_spin_lock_irq_rcu_node(rnp); 1961 if (rnp->qsmaskinit == rnp->qsmaskinitnext && 1962 !rnp->wait_blkd_tasks) { 1963 /* Nothing to do on this leaf rcu_node structure. */ 1964 raw_spin_unlock_irq_rcu_node(rnp); 1965 continue; 1966 } 1967 1968 /* Record old state, apply changes to ->qsmaskinit field. */ 1969 oldmask = rnp->qsmaskinit; 1970 rnp->qsmaskinit = rnp->qsmaskinitnext; 1971 1972 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */ 1973 if (!oldmask != !rnp->qsmaskinit) { 1974 if (!oldmask) /* First online CPU for this rcu_node. */ 1975 rcu_init_new_rnp(rnp); 1976 else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */ 1977 rnp->wait_blkd_tasks = true; 1978 else /* Last offline CPU and can propagate. */ 1979 rcu_cleanup_dead_rnp(rnp); 1980 } 1981 1982 /* 1983 * If all waited-on tasks from prior grace period are 1984 * done, and if all this rcu_node structure's CPUs are 1985 * still offline, propagate up the rcu_node tree and 1986 * clear ->wait_blkd_tasks. Otherwise, if one of this 1987 * rcu_node structure's CPUs has since come back online, 1988 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp() 1989 * checks for this, so just call it unconditionally). 1990 */ 1991 if (rnp->wait_blkd_tasks && 1992 (!rcu_preempt_has_tasks(rnp) || 1993 rnp->qsmaskinit)) { 1994 rnp->wait_blkd_tasks = false; 1995 rcu_cleanup_dead_rnp(rnp); 1996 } 1997 1998 raw_spin_unlock_irq_rcu_node(rnp); 1999 } 2000 2001 /* 2002 * Set the quiescent-state-needed bits in all the rcu_node 2003 * structures for all currently online CPUs in breadth-first order, 2004 * starting from the root rcu_node structure, relying on the layout 2005 * of the tree within the rsp->node[] array. Note that other CPUs 2006 * will access only the leaves of the hierarchy, thus seeing that no 2007 * grace period is in progress, at least until the corresponding 2008 * leaf node has been initialized. 2009 * 2010 * The grace period cannot complete until the initialization 2011 * process finishes, because this kthread handles both. 2012 */ 2013 rcu_for_each_node_breadth_first(rsp, rnp) { 2014 rcu_gp_slow(rsp, gp_init_delay); 2015 raw_spin_lock_irq_rcu_node(rnp); 2016 rdp = this_cpu_ptr(rsp->rda); 2017 rcu_preempt_check_blocked_tasks(rnp); 2018 rnp->qsmask = rnp->qsmaskinit; 2019 WRITE_ONCE(rnp->gpnum, rsp->gpnum); 2020 if (WARN_ON_ONCE(rnp->completed != rsp->completed)) 2021 WRITE_ONCE(rnp->completed, rsp->completed); 2022 if (rnp == rdp->mynode) 2023 (void)__note_gp_changes(rsp, rnp, rdp); 2024 rcu_preempt_boost_start_gp(rnp); 2025 trace_rcu_grace_period_init(rsp->name, rnp->gpnum, 2026 rnp->level, rnp->grplo, 2027 rnp->grphi, rnp->qsmask); 2028 raw_spin_unlock_irq_rcu_node(rnp); 2029 cond_resched_rcu_qs(); 2030 WRITE_ONCE(rsp->gp_activity, jiffies); 2031 } 2032 2033 return true; 2034 } 2035 2036 /* 2037 * Helper function for wait_event_interruptible_timeout() wakeup 2038 * at force-quiescent-state time. 2039 */ 2040 static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp) 2041 { 2042 struct rcu_node *rnp = rcu_get_root(rsp); 2043 2044 /* Someone like call_rcu() requested a force-quiescent-state scan. */ 2045 *gfp = READ_ONCE(rsp->gp_flags); 2046 if (*gfp & RCU_GP_FLAG_FQS) 2047 return true; 2048 2049 /* The current grace period has completed. */ 2050 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp)) 2051 return true; 2052 2053 return false; 2054 } 2055 2056 /* 2057 * Do one round of quiescent-state forcing. 2058 */ 2059 static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time) 2060 { 2061 bool isidle = false; 2062 unsigned long maxj; 2063 struct rcu_node *rnp = rcu_get_root(rsp); 2064 2065 WRITE_ONCE(rsp->gp_activity, jiffies); 2066 rsp->n_force_qs++; 2067 if (first_time) { 2068 /* Collect dyntick-idle snapshots. */ 2069 if (is_sysidle_rcu_state(rsp)) { 2070 isidle = true; 2071 maxj = jiffies - ULONG_MAX / 4; 2072 } 2073 force_qs_rnp(rsp, dyntick_save_progress_counter, 2074 &isidle, &maxj); 2075 rcu_sysidle_report_gp(rsp, isidle, maxj); 2076 } else { 2077 /* Handle dyntick-idle and offline CPUs. */ 2078 isidle = true; 2079 force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj); 2080 } 2081 /* Clear flag to prevent immediate re-entry. */ 2082 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) { 2083 raw_spin_lock_irq_rcu_node(rnp); 2084 WRITE_ONCE(rsp->gp_flags, 2085 READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS); 2086 raw_spin_unlock_irq_rcu_node(rnp); 2087 } 2088 } 2089 2090 /* 2091 * Clean up after the old grace period. 2092 */ 2093 static void rcu_gp_cleanup(struct rcu_state *rsp) 2094 { 2095 unsigned long gp_duration; 2096 bool needgp = false; 2097 int nocb = 0; 2098 struct rcu_data *rdp; 2099 struct rcu_node *rnp = rcu_get_root(rsp); 2100 struct swait_queue_head *sq; 2101 2102 WRITE_ONCE(rsp->gp_activity, jiffies); 2103 raw_spin_lock_irq_rcu_node(rnp); 2104 gp_duration = jiffies - rsp->gp_start; 2105 if (gp_duration > rsp->gp_max) 2106 rsp->gp_max = gp_duration; 2107 2108 /* 2109 * We know the grace period is complete, but to everyone else 2110 * it appears to still be ongoing. But it is also the case 2111 * that to everyone else it looks like there is nothing that 2112 * they can do to advance the grace period. It is therefore 2113 * safe for us to drop the lock in order to mark the grace 2114 * period as completed in all of the rcu_node structures. 2115 */ 2116 raw_spin_unlock_irq_rcu_node(rnp); 2117 2118 /* 2119 * Propagate new ->completed value to rcu_node structures so 2120 * that other CPUs don't have to wait until the start of the next 2121 * grace period to process their callbacks. This also avoids 2122 * some nasty RCU grace-period initialization races by forcing 2123 * the end of the current grace period to be completely recorded in 2124 * all of the rcu_node structures before the beginning of the next 2125 * grace period is recorded in any of the rcu_node structures. 2126 */ 2127 rcu_for_each_node_breadth_first(rsp, rnp) { 2128 raw_spin_lock_irq_rcu_node(rnp); 2129 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)); 2130 WARN_ON_ONCE(rnp->qsmask); 2131 WRITE_ONCE(rnp->completed, rsp->gpnum); 2132 rdp = this_cpu_ptr(rsp->rda); 2133 if (rnp == rdp->mynode) 2134 needgp = __note_gp_changes(rsp, rnp, rdp) || needgp; 2135 /* smp_mb() provided by prior unlock-lock pair. */ 2136 nocb += rcu_future_gp_cleanup(rsp, rnp); 2137 sq = rcu_nocb_gp_get(rnp); 2138 raw_spin_unlock_irq_rcu_node(rnp); 2139 rcu_nocb_gp_cleanup(sq); 2140 cond_resched_rcu_qs(); 2141 WRITE_ONCE(rsp->gp_activity, jiffies); 2142 rcu_gp_slow(rsp, gp_cleanup_delay); 2143 } 2144 rnp = rcu_get_root(rsp); 2145 raw_spin_lock_irq_rcu_node(rnp); /* Order GP before ->completed update. */ 2146 rcu_nocb_gp_set(rnp, nocb); 2147 2148 /* Declare grace period done. */ 2149 WRITE_ONCE(rsp->completed, rsp->gpnum); 2150 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end")); 2151 rsp->gp_state = RCU_GP_IDLE; 2152 rdp = this_cpu_ptr(rsp->rda); 2153 /* Advance CBs to reduce false positives below. */ 2154 needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp; 2155 if (needgp || cpu_needs_another_gp(rsp, rdp)) { 2156 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT); 2157 trace_rcu_grace_period(rsp->name, 2158 READ_ONCE(rsp->gpnum), 2159 TPS("newreq")); 2160 } 2161 raw_spin_unlock_irq_rcu_node(rnp); 2162 } 2163 2164 /* 2165 * Body of kthread that handles grace periods. 2166 */ 2167 static int __noreturn rcu_gp_kthread(void *arg) 2168 { 2169 bool first_gp_fqs; 2170 int gf; 2171 unsigned long j; 2172 int ret; 2173 struct rcu_state *rsp = arg; 2174 struct rcu_node *rnp = rcu_get_root(rsp); 2175 2176 rcu_bind_gp_kthread(); 2177 for (;;) { 2178 2179 /* Handle grace-period start. */ 2180 for (;;) { 2181 trace_rcu_grace_period(rsp->name, 2182 READ_ONCE(rsp->gpnum), 2183 TPS("reqwait")); 2184 rsp->gp_state = RCU_GP_WAIT_GPS; 2185 swait_event_interruptible(rsp->gp_wq, 2186 READ_ONCE(rsp->gp_flags) & 2187 RCU_GP_FLAG_INIT); 2188 rsp->gp_state = RCU_GP_DONE_GPS; 2189 /* Locking provides needed memory barrier. */ 2190 if (rcu_gp_init(rsp)) 2191 break; 2192 cond_resched_rcu_qs(); 2193 WRITE_ONCE(rsp->gp_activity, jiffies); 2194 WARN_ON(signal_pending(current)); 2195 trace_rcu_grace_period(rsp->name, 2196 READ_ONCE(rsp->gpnum), 2197 TPS("reqwaitsig")); 2198 } 2199 2200 /* Handle quiescent-state forcing. */ 2201 first_gp_fqs = true; 2202 j = jiffies_till_first_fqs; 2203 if (j > HZ) { 2204 j = HZ; 2205 jiffies_till_first_fqs = HZ; 2206 } 2207 ret = 0; 2208 for (;;) { 2209 if (!ret) { 2210 rsp->jiffies_force_qs = jiffies + j; 2211 WRITE_ONCE(rsp->jiffies_kick_kthreads, 2212 jiffies + 3 * j); 2213 } 2214 trace_rcu_grace_period(rsp->name, 2215 READ_ONCE(rsp->gpnum), 2216 TPS("fqswait")); 2217 rsp->gp_state = RCU_GP_WAIT_FQS; 2218 ret = swait_event_interruptible_timeout(rsp->gp_wq, 2219 rcu_gp_fqs_check_wake(rsp, &gf), j); 2220 rsp->gp_state = RCU_GP_DOING_FQS; 2221 /* Locking provides needed memory barriers. */ 2222 /* If grace period done, leave loop. */ 2223 if (!READ_ONCE(rnp->qsmask) && 2224 !rcu_preempt_blocked_readers_cgp(rnp)) 2225 break; 2226 /* If time for quiescent-state forcing, do it. */ 2227 if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) || 2228 (gf & RCU_GP_FLAG_FQS)) { 2229 trace_rcu_grace_period(rsp->name, 2230 READ_ONCE(rsp->gpnum), 2231 TPS("fqsstart")); 2232 rcu_gp_fqs(rsp, first_gp_fqs); 2233 first_gp_fqs = false; 2234 trace_rcu_grace_period(rsp->name, 2235 READ_ONCE(rsp->gpnum), 2236 TPS("fqsend")); 2237 cond_resched_rcu_qs(); 2238 WRITE_ONCE(rsp->gp_activity, jiffies); 2239 ret = 0; /* Force full wait till next FQS. */ 2240 j = jiffies_till_next_fqs; 2241 if (j > HZ) { 2242 j = HZ; 2243 jiffies_till_next_fqs = HZ; 2244 } else if (j < 1) { 2245 j = 1; 2246 jiffies_till_next_fqs = 1; 2247 } 2248 } else { 2249 /* Deal with stray signal. */ 2250 cond_resched_rcu_qs(); 2251 WRITE_ONCE(rsp->gp_activity, jiffies); 2252 WARN_ON(signal_pending(current)); 2253 trace_rcu_grace_period(rsp->name, 2254 READ_ONCE(rsp->gpnum), 2255 TPS("fqswaitsig")); 2256 ret = 1; /* Keep old FQS timing. */ 2257 j = jiffies; 2258 if (time_after(jiffies, rsp->jiffies_force_qs)) 2259 j = 1; 2260 else 2261 j = rsp->jiffies_force_qs - j; 2262 } 2263 } 2264 2265 /* Handle grace-period end. */ 2266 rsp->gp_state = RCU_GP_CLEANUP; 2267 rcu_gp_cleanup(rsp); 2268 rsp->gp_state = RCU_GP_CLEANED; 2269 } 2270 } 2271 2272 /* 2273 * Start a new RCU grace period if warranted, re-initializing the hierarchy 2274 * in preparation for detecting the next grace period. The caller must hold 2275 * the root node's ->lock and hard irqs must be disabled. 2276 * 2277 * Note that it is legal for a dying CPU (which is marked as offline) to 2278 * invoke this function. This can happen when the dying CPU reports its 2279 * quiescent state. 2280 * 2281 * Returns true if the grace-period kthread must be awakened. 2282 */ 2283 static bool 2284 rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp, 2285 struct rcu_data *rdp) 2286 { 2287 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) { 2288 /* 2289 * Either we have not yet spawned the grace-period 2290 * task, this CPU does not need another grace period, 2291 * or a grace period is already in progress. 2292 * Either way, don't start a new grace period. 2293 */ 2294 return false; 2295 } 2296 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT); 2297 trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum), 2298 TPS("newreq")); 2299 2300 /* 2301 * We can't do wakeups while holding the rnp->lock, as that 2302 * could cause possible deadlocks with the rq->lock. Defer 2303 * the wakeup to our caller. 2304 */ 2305 return true; 2306 } 2307 2308 /* 2309 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's 2310 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it 2311 * is invoked indirectly from rcu_advance_cbs(), which would result in 2312 * endless recursion -- or would do so if it wasn't for the self-deadlock 2313 * that is encountered beforehand. 2314 * 2315 * Returns true if the grace-period kthread needs to be awakened. 2316 */ 2317 static bool rcu_start_gp(struct rcu_state *rsp) 2318 { 2319 struct rcu_data *rdp = this_cpu_ptr(rsp->rda); 2320 struct rcu_node *rnp = rcu_get_root(rsp); 2321 bool ret = false; 2322 2323 /* 2324 * If there is no grace period in progress right now, any 2325 * callbacks we have up to this point will be satisfied by the 2326 * next grace period. Also, advancing the callbacks reduces the 2327 * probability of false positives from cpu_needs_another_gp() 2328 * resulting in pointless grace periods. So, advance callbacks 2329 * then start the grace period! 2330 */ 2331 ret = rcu_advance_cbs(rsp, rnp, rdp) || ret; 2332 ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret; 2333 return ret; 2334 } 2335 2336 /* 2337 * Report a full set of quiescent states to the specified rcu_state data 2338 * structure. Invoke rcu_gp_kthread_wake() to awaken the grace-period 2339 * kthread if another grace period is required. Whether we wake 2340 * the grace-period kthread or it awakens itself for the next round 2341 * of quiescent-state forcing, that kthread will clean up after the 2342 * just-completed grace period. Note that the caller must hold rnp->lock, 2343 * which is released before return. 2344 */ 2345 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags) 2346 __releases(rcu_get_root(rsp)->lock) 2347 { 2348 WARN_ON_ONCE(!rcu_gp_in_progress(rsp)); 2349 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS); 2350 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags); 2351 rcu_gp_kthread_wake(rsp); 2352 } 2353 2354 /* 2355 * Similar to rcu_report_qs_rdp(), for which it is a helper function. 2356 * Allows quiescent states for a group of CPUs to be reported at one go 2357 * to the specified rcu_node structure, though all the CPUs in the group 2358 * must be represented by the same rcu_node structure (which need not be a 2359 * leaf rcu_node structure, though it often will be). The gps parameter 2360 * is the grace-period snapshot, which means that the quiescent states 2361 * are valid only if rnp->gpnum is equal to gps. That structure's lock 2362 * must be held upon entry, and it is released before return. 2363 */ 2364 static void 2365 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp, 2366 struct rcu_node *rnp, unsigned long gps, unsigned long flags) 2367 __releases(rnp->lock) 2368 { 2369 unsigned long oldmask = 0; 2370 struct rcu_node *rnp_c; 2371 2372 /* Walk up the rcu_node hierarchy. */ 2373 for (;;) { 2374 if (!(rnp->qsmask & mask) || rnp->gpnum != gps) { 2375 2376 /* 2377 * Our bit has already been cleared, or the 2378 * relevant grace period is already over, so done. 2379 */ 2380 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2381 return; 2382 } 2383 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */ 2384 rnp->qsmask &= ~mask; 2385 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum, 2386 mask, rnp->qsmask, rnp->level, 2387 rnp->grplo, rnp->grphi, 2388 !!rnp->gp_tasks); 2389 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) { 2390 2391 /* Other bits still set at this level, so done. */ 2392 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2393 return; 2394 } 2395 mask = rnp->grpmask; 2396 if (rnp->parent == NULL) { 2397 2398 /* No more levels. Exit loop holding root lock. */ 2399 2400 break; 2401 } 2402 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2403 rnp_c = rnp; 2404 rnp = rnp->parent; 2405 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2406 oldmask = rnp_c->qsmask; 2407 } 2408 2409 /* 2410 * Get here if we are the last CPU to pass through a quiescent 2411 * state for this grace period. Invoke rcu_report_qs_rsp() 2412 * to clean up and start the next grace period if one is needed. 2413 */ 2414 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */ 2415 } 2416 2417 /* 2418 * Record a quiescent state for all tasks that were previously queued 2419 * on the specified rcu_node structure and that were blocking the current 2420 * RCU grace period. The caller must hold the specified rnp->lock with 2421 * irqs disabled, and this lock is released upon return, but irqs remain 2422 * disabled. 2423 */ 2424 static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp, 2425 struct rcu_node *rnp, unsigned long flags) 2426 __releases(rnp->lock) 2427 { 2428 unsigned long gps; 2429 unsigned long mask; 2430 struct rcu_node *rnp_p; 2431 2432 if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p || 2433 rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) { 2434 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2435 return; /* Still need more quiescent states! */ 2436 } 2437 2438 rnp_p = rnp->parent; 2439 if (rnp_p == NULL) { 2440 /* 2441 * Only one rcu_node structure in the tree, so don't 2442 * try to report up to its nonexistent parent! 2443 */ 2444 rcu_report_qs_rsp(rsp, flags); 2445 return; 2446 } 2447 2448 /* Report up the rest of the hierarchy, tracking current ->gpnum. */ 2449 gps = rnp->gpnum; 2450 mask = rnp->grpmask; 2451 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 2452 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */ 2453 rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags); 2454 } 2455 2456 /* 2457 * Record a quiescent state for the specified CPU to that CPU's rcu_data 2458 * structure. This must be called from the specified CPU. 2459 */ 2460 static void 2461 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp) 2462 { 2463 unsigned long flags; 2464 unsigned long mask; 2465 bool needwake; 2466 struct rcu_node *rnp; 2467 2468 rnp = rdp->mynode; 2469 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2470 if ((rdp->cpu_no_qs.b.norm && 2471 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) || 2472 rdp->gpnum != rnp->gpnum || rnp->completed == rnp->gpnum || 2473 rdp->gpwrap) { 2474 2475 /* 2476 * The grace period in which this quiescent state was 2477 * recorded has ended, so don't report it upwards. 2478 * We will instead need a new quiescent state that lies 2479 * within the current grace period. 2480 */ 2481 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */ 2482 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr); 2483 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2484 return; 2485 } 2486 mask = rdp->grpmask; 2487 if ((rnp->qsmask & mask) == 0) { 2488 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2489 } else { 2490 rdp->core_needs_qs = false; 2491 2492 /* 2493 * This GP can't end until cpu checks in, so all of our 2494 * callbacks can be processed during the next GP. 2495 */ 2496 needwake = rcu_accelerate_cbs(rsp, rnp, rdp); 2497 2498 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags); 2499 /* ^^^ Released rnp->lock */ 2500 if (needwake) 2501 rcu_gp_kthread_wake(rsp); 2502 } 2503 } 2504 2505 /* 2506 * Check to see if there is a new grace period of which this CPU 2507 * is not yet aware, and if so, set up local rcu_data state for it. 2508 * Otherwise, see if this CPU has just passed through its first 2509 * quiescent state for this grace period, and record that fact if so. 2510 */ 2511 static void 2512 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp) 2513 { 2514 /* Check for grace-period ends and beginnings. */ 2515 note_gp_changes(rsp, rdp); 2516 2517 /* 2518 * Does this CPU still need to do its part for current grace period? 2519 * If no, return and let the other CPUs do their part as well. 2520 */ 2521 if (!rdp->core_needs_qs) 2522 return; 2523 2524 /* 2525 * Was there a quiescent state since the beginning of the grace 2526 * period? If no, then exit and wait for the next call. 2527 */ 2528 if (rdp->cpu_no_qs.b.norm && 2529 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) 2530 return; 2531 2532 /* 2533 * Tell RCU we are done (but rcu_report_qs_rdp() will be the 2534 * judge of that). 2535 */ 2536 rcu_report_qs_rdp(rdp->cpu, rsp, rdp); 2537 } 2538 2539 /* 2540 * Send the specified CPU's RCU callbacks to the orphanage. The 2541 * specified CPU must be offline, and the caller must hold the 2542 * ->orphan_lock. 2543 */ 2544 static void 2545 rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp, 2546 struct rcu_node *rnp, struct rcu_data *rdp) 2547 { 2548 /* No-CBs CPUs do not have orphanable callbacks. */ 2549 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || rcu_is_nocb_cpu(rdp->cpu)) 2550 return; 2551 2552 /* 2553 * Orphan the callbacks. First adjust the counts. This is safe 2554 * because _rcu_barrier() excludes CPU-hotplug operations, so it 2555 * cannot be running now. Thus no memory barrier is required. 2556 */ 2557 if (rdp->nxtlist != NULL) { 2558 rsp->qlen_lazy += rdp->qlen_lazy; 2559 rsp->qlen += rdp->qlen; 2560 rdp->n_cbs_orphaned += rdp->qlen; 2561 rdp->qlen_lazy = 0; 2562 WRITE_ONCE(rdp->qlen, 0); 2563 } 2564 2565 /* 2566 * Next, move those callbacks still needing a grace period to 2567 * the orphanage, where some other CPU will pick them up. 2568 * Some of the callbacks might have gone partway through a grace 2569 * period, but that is too bad. They get to start over because we 2570 * cannot assume that grace periods are synchronized across CPUs. 2571 * We don't bother updating the ->nxttail[] array yet, instead 2572 * we just reset the whole thing later on. 2573 */ 2574 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) { 2575 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL]; 2576 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL]; 2577 *rdp->nxttail[RCU_DONE_TAIL] = NULL; 2578 } 2579 2580 /* 2581 * Then move the ready-to-invoke callbacks to the orphanage, 2582 * where some other CPU will pick them up. These will not be 2583 * required to pass though another grace period: They are done. 2584 */ 2585 if (rdp->nxtlist != NULL) { 2586 *rsp->orphan_donetail = rdp->nxtlist; 2587 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL]; 2588 } 2589 2590 /* 2591 * Finally, initialize the rcu_data structure's list to empty and 2592 * disallow further callbacks on this CPU. 2593 */ 2594 init_callback_list(rdp); 2595 rdp->nxttail[RCU_NEXT_TAIL] = NULL; 2596 } 2597 2598 /* 2599 * Adopt the RCU callbacks from the specified rcu_state structure's 2600 * orphanage. The caller must hold the ->orphan_lock. 2601 */ 2602 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags) 2603 { 2604 int i; 2605 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda); 2606 2607 /* No-CBs CPUs are handled specially. */ 2608 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || 2609 rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags)) 2610 return; 2611 2612 /* Do the accounting first. */ 2613 rdp->qlen_lazy += rsp->qlen_lazy; 2614 rdp->qlen += rsp->qlen; 2615 rdp->n_cbs_adopted += rsp->qlen; 2616 if (rsp->qlen_lazy != rsp->qlen) 2617 rcu_idle_count_callbacks_posted(); 2618 rsp->qlen_lazy = 0; 2619 rsp->qlen = 0; 2620 2621 /* 2622 * We do not need a memory barrier here because the only way we 2623 * can get here if there is an rcu_barrier() in flight is if 2624 * we are the task doing the rcu_barrier(). 2625 */ 2626 2627 /* First adopt the ready-to-invoke callbacks. */ 2628 if (rsp->orphan_donelist != NULL) { 2629 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL]; 2630 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist; 2631 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--) 2632 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL]) 2633 rdp->nxttail[i] = rsp->orphan_donetail; 2634 rsp->orphan_donelist = NULL; 2635 rsp->orphan_donetail = &rsp->orphan_donelist; 2636 } 2637 2638 /* And then adopt the callbacks that still need a grace period. */ 2639 if (rsp->orphan_nxtlist != NULL) { 2640 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist; 2641 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail; 2642 rsp->orphan_nxtlist = NULL; 2643 rsp->orphan_nxttail = &rsp->orphan_nxtlist; 2644 } 2645 } 2646 2647 /* 2648 * Trace the fact that this CPU is going offline. 2649 */ 2650 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp) 2651 { 2652 RCU_TRACE(unsigned long mask); 2653 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda)); 2654 RCU_TRACE(struct rcu_node *rnp = rdp->mynode); 2655 2656 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) 2657 return; 2658 2659 RCU_TRACE(mask = rdp->grpmask); 2660 trace_rcu_grace_period(rsp->name, 2661 rnp->gpnum + 1 - !!(rnp->qsmask & mask), 2662 TPS("cpuofl")); 2663 } 2664 2665 /* 2666 * All CPUs for the specified rcu_node structure have gone offline, 2667 * and all tasks that were preempted within an RCU read-side critical 2668 * section while running on one of those CPUs have since exited their RCU 2669 * read-side critical section. Some other CPU is reporting this fact with 2670 * the specified rcu_node structure's ->lock held and interrupts disabled. 2671 * This function therefore goes up the tree of rcu_node structures, 2672 * clearing the corresponding bits in the ->qsmaskinit fields. Note that 2673 * the leaf rcu_node structure's ->qsmaskinit field has already been 2674 * updated 2675 * 2676 * This function does check that the specified rcu_node structure has 2677 * all CPUs offline and no blocked tasks, so it is OK to invoke it 2678 * prematurely. That said, invoking it after the fact will cost you 2679 * a needless lock acquisition. So once it has done its work, don't 2680 * invoke it again. 2681 */ 2682 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf) 2683 { 2684 long mask; 2685 struct rcu_node *rnp = rnp_leaf; 2686 2687 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || 2688 rnp->qsmaskinit || rcu_preempt_has_tasks(rnp)) 2689 return; 2690 for (;;) { 2691 mask = rnp->grpmask; 2692 rnp = rnp->parent; 2693 if (!rnp) 2694 break; 2695 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 2696 rnp->qsmaskinit &= ~mask; 2697 rnp->qsmask &= ~mask; 2698 if (rnp->qsmaskinit) { 2699 raw_spin_unlock_rcu_node(rnp); 2700 /* irqs remain disabled. */ 2701 return; 2702 } 2703 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 2704 } 2705 } 2706 2707 /* 2708 * The CPU has been completely removed, and some other CPU is reporting 2709 * this fact from process context. Do the remainder of the cleanup, 2710 * including orphaning the outgoing CPU's RCU callbacks, and also 2711 * adopting them. There can only be one CPU hotplug operation at a time, 2712 * so no other CPU can be attempting to update rcu_cpu_kthread_task. 2713 */ 2714 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp) 2715 { 2716 unsigned long flags; 2717 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 2718 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ 2719 2720 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) 2721 return; 2722 2723 /* Adjust any no-longer-needed kthreads. */ 2724 rcu_boost_kthread_setaffinity(rnp, -1); 2725 2726 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */ 2727 raw_spin_lock_irqsave(&rsp->orphan_lock, flags); 2728 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp); 2729 rcu_adopt_orphan_cbs(rsp, flags); 2730 raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags); 2731 2732 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL, 2733 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n", 2734 cpu, rdp->qlen, rdp->nxtlist); 2735 } 2736 2737 /* 2738 * Invoke any RCU callbacks that have made it to the end of their grace 2739 * period. Thottle as specified by rdp->blimit. 2740 */ 2741 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp) 2742 { 2743 unsigned long flags; 2744 struct rcu_head *next, *list, **tail; 2745 long bl, count, count_lazy; 2746 int i; 2747 2748 /* If no callbacks are ready, just return. */ 2749 if (!cpu_has_callbacks_ready_to_invoke(rdp)) { 2750 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0); 2751 trace_rcu_batch_end(rsp->name, 0, !!READ_ONCE(rdp->nxtlist), 2752 need_resched(), is_idle_task(current), 2753 rcu_is_callbacks_kthread()); 2754 return; 2755 } 2756 2757 /* 2758 * Extract the list of ready callbacks, disabling to prevent 2759 * races with call_rcu() from interrupt handlers. 2760 */ 2761 local_irq_save(flags); 2762 WARN_ON_ONCE(cpu_is_offline(smp_processor_id())); 2763 bl = rdp->blimit; 2764 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl); 2765 list = rdp->nxtlist; 2766 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL]; 2767 *rdp->nxttail[RCU_DONE_TAIL] = NULL; 2768 tail = rdp->nxttail[RCU_DONE_TAIL]; 2769 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--) 2770 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL]) 2771 rdp->nxttail[i] = &rdp->nxtlist; 2772 local_irq_restore(flags); 2773 2774 /* Invoke callbacks. */ 2775 count = count_lazy = 0; 2776 while (list) { 2777 next = list->next; 2778 prefetch(next); 2779 debug_rcu_head_unqueue(list); 2780 if (__rcu_reclaim(rsp->name, list)) 2781 count_lazy++; 2782 list = next; 2783 /* Stop only if limit reached and CPU has something to do. */ 2784 if (++count >= bl && 2785 (need_resched() || 2786 (!is_idle_task(current) && !rcu_is_callbacks_kthread()))) 2787 break; 2788 } 2789 2790 local_irq_save(flags); 2791 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(), 2792 is_idle_task(current), 2793 rcu_is_callbacks_kthread()); 2794 2795 /* Update count, and requeue any remaining callbacks. */ 2796 if (list != NULL) { 2797 *tail = rdp->nxtlist; 2798 rdp->nxtlist = list; 2799 for (i = 0; i < RCU_NEXT_SIZE; i++) 2800 if (&rdp->nxtlist == rdp->nxttail[i]) 2801 rdp->nxttail[i] = tail; 2802 else 2803 break; 2804 } 2805 smp_mb(); /* List handling before counting for rcu_barrier(). */ 2806 rdp->qlen_lazy -= count_lazy; 2807 WRITE_ONCE(rdp->qlen, rdp->qlen - count); 2808 rdp->n_cbs_invoked += count; 2809 2810 /* Reinstate batch limit if we have worked down the excess. */ 2811 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark) 2812 rdp->blimit = blimit; 2813 2814 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */ 2815 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) { 2816 rdp->qlen_last_fqs_check = 0; 2817 rdp->n_force_qs_snap = rsp->n_force_qs; 2818 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark) 2819 rdp->qlen_last_fqs_check = rdp->qlen; 2820 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0)); 2821 2822 local_irq_restore(flags); 2823 2824 /* Re-invoke RCU core processing if there are callbacks remaining. */ 2825 if (cpu_has_callbacks_ready_to_invoke(rdp)) 2826 invoke_rcu_core(); 2827 } 2828 2829 /* 2830 * Check to see if this CPU is in a non-context-switch quiescent state 2831 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh). 2832 * Also schedule RCU core processing. 2833 * 2834 * This function must be called from hardirq context. It is normally 2835 * invoked from the scheduling-clock interrupt. 2836 */ 2837 void rcu_check_callbacks(int user) 2838 { 2839 trace_rcu_utilization(TPS("Start scheduler-tick")); 2840 increment_cpu_stall_ticks(); 2841 if (user || rcu_is_cpu_rrupt_from_idle()) { 2842 2843 /* 2844 * Get here if this CPU took its interrupt from user 2845 * mode or from the idle loop, and if this is not a 2846 * nested interrupt. In this case, the CPU is in 2847 * a quiescent state, so note it. 2848 * 2849 * No memory barrier is required here because both 2850 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local 2851 * variables that other CPUs neither access nor modify, 2852 * at least not while the corresponding CPU is online. 2853 */ 2854 2855 rcu_sched_qs(); 2856 rcu_bh_qs(); 2857 2858 } else if (!in_softirq()) { 2859 2860 /* 2861 * Get here if this CPU did not take its interrupt from 2862 * softirq, in other words, if it is not interrupting 2863 * a rcu_bh read-side critical section. This is an _bh 2864 * critical section, so note it. 2865 */ 2866 2867 rcu_bh_qs(); 2868 } 2869 rcu_preempt_check_callbacks(); 2870 if (rcu_pending()) 2871 invoke_rcu_core(); 2872 if (user) 2873 rcu_note_voluntary_context_switch(current); 2874 trace_rcu_utilization(TPS("End scheduler-tick")); 2875 } 2876 2877 /* 2878 * Scan the leaf rcu_node structures, processing dyntick state for any that 2879 * have not yet encountered a quiescent state, using the function specified. 2880 * Also initiate boosting for any threads blocked on the root rcu_node. 2881 * 2882 * The caller must have suppressed start of new grace periods. 2883 */ 2884 static void force_qs_rnp(struct rcu_state *rsp, 2885 int (*f)(struct rcu_data *rsp, bool *isidle, 2886 unsigned long *maxj), 2887 bool *isidle, unsigned long *maxj) 2888 { 2889 int cpu; 2890 unsigned long flags; 2891 unsigned long mask; 2892 struct rcu_node *rnp; 2893 2894 rcu_for_each_leaf_node(rsp, rnp) { 2895 cond_resched_rcu_qs(); 2896 mask = 0; 2897 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2898 if (rnp->qsmask == 0) { 2899 if (rcu_state_p == &rcu_sched_state || 2900 rsp != rcu_state_p || 2901 rcu_preempt_blocked_readers_cgp(rnp)) { 2902 /* 2903 * No point in scanning bits because they 2904 * are all zero. But we might need to 2905 * priority-boost blocked readers. 2906 */ 2907 rcu_initiate_boost(rnp, flags); 2908 /* rcu_initiate_boost() releases rnp->lock */ 2909 continue; 2910 } 2911 if (rnp->parent && 2912 (rnp->parent->qsmask & rnp->grpmask)) { 2913 /* 2914 * Race between grace-period 2915 * initialization and task exiting RCU 2916 * read-side critical section: Report. 2917 */ 2918 rcu_report_unblock_qs_rnp(rsp, rnp, flags); 2919 /* rcu_report_unblock_qs_rnp() rlses ->lock */ 2920 continue; 2921 } 2922 } 2923 for_each_leaf_node_possible_cpu(rnp, cpu) { 2924 unsigned long bit = leaf_node_cpu_bit(rnp, cpu); 2925 if ((rnp->qsmask & bit) != 0) { 2926 if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj)) 2927 mask |= bit; 2928 } 2929 } 2930 if (mask != 0) { 2931 /* Idle/offline CPUs, report (releases rnp->lock. */ 2932 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags); 2933 } else { 2934 /* Nothing to do here, so just drop the lock. */ 2935 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2936 } 2937 } 2938 } 2939 2940 /* 2941 * Force quiescent states on reluctant CPUs, and also detect which 2942 * CPUs are in dyntick-idle mode. 2943 */ 2944 static void force_quiescent_state(struct rcu_state *rsp) 2945 { 2946 unsigned long flags; 2947 bool ret; 2948 struct rcu_node *rnp; 2949 struct rcu_node *rnp_old = NULL; 2950 2951 /* Funnel through hierarchy to reduce memory contention. */ 2952 rnp = __this_cpu_read(rsp->rda->mynode); 2953 for (; rnp != NULL; rnp = rnp->parent) { 2954 ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) || 2955 !raw_spin_trylock(&rnp->fqslock); 2956 if (rnp_old != NULL) 2957 raw_spin_unlock(&rnp_old->fqslock); 2958 if (ret) { 2959 rsp->n_force_qs_lh++; 2960 return; 2961 } 2962 rnp_old = rnp; 2963 } 2964 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */ 2965 2966 /* Reached the root of the rcu_node tree, acquire lock. */ 2967 raw_spin_lock_irqsave_rcu_node(rnp_old, flags); 2968 raw_spin_unlock(&rnp_old->fqslock); 2969 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) { 2970 rsp->n_force_qs_lh++; 2971 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); 2972 return; /* Someone beat us to it. */ 2973 } 2974 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS); 2975 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); 2976 rcu_gp_kthread_wake(rsp); 2977 } 2978 2979 /* 2980 * This does the RCU core processing work for the specified rcu_state 2981 * and rcu_data structures. This may be called only from the CPU to 2982 * whom the rdp belongs. 2983 */ 2984 static void 2985 __rcu_process_callbacks(struct rcu_state *rsp) 2986 { 2987 unsigned long flags; 2988 bool needwake; 2989 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda); 2990 2991 WARN_ON_ONCE(rdp->beenonline == 0); 2992 2993 /* Update RCU state based on any recent quiescent states. */ 2994 rcu_check_quiescent_state(rsp, rdp); 2995 2996 /* Does this CPU require a not-yet-started grace period? */ 2997 local_irq_save(flags); 2998 if (cpu_needs_another_gp(rsp, rdp)) { 2999 raw_spin_lock_rcu_node(rcu_get_root(rsp)); /* irqs disabled. */ 3000 needwake = rcu_start_gp(rsp); 3001 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags); 3002 if (needwake) 3003 rcu_gp_kthread_wake(rsp); 3004 } else { 3005 local_irq_restore(flags); 3006 } 3007 3008 /* If there are callbacks ready, invoke them. */ 3009 if (cpu_has_callbacks_ready_to_invoke(rdp)) 3010 invoke_rcu_callbacks(rsp, rdp); 3011 3012 /* Do any needed deferred wakeups of rcuo kthreads. */ 3013 do_nocb_deferred_wakeup(rdp); 3014 } 3015 3016 /* 3017 * Do RCU core processing for the current CPU. 3018 */ 3019 static __latent_entropy void rcu_process_callbacks(struct softirq_action *unused) 3020 { 3021 struct rcu_state *rsp; 3022 3023 if (cpu_is_offline(smp_processor_id())) 3024 return; 3025 trace_rcu_utilization(TPS("Start RCU core")); 3026 for_each_rcu_flavor(rsp) 3027 __rcu_process_callbacks(rsp); 3028 trace_rcu_utilization(TPS("End RCU core")); 3029 } 3030 3031 /* 3032 * Schedule RCU callback invocation. If the specified type of RCU 3033 * does not support RCU priority boosting, just do a direct call, 3034 * otherwise wake up the per-CPU kernel kthread. Note that because we 3035 * are running on the current CPU with softirqs disabled, the 3036 * rcu_cpu_kthread_task cannot disappear out from under us. 3037 */ 3038 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp) 3039 { 3040 if (unlikely(!READ_ONCE(rcu_scheduler_fully_active))) 3041 return; 3042 if (likely(!rsp->boost)) { 3043 rcu_do_batch(rsp, rdp); 3044 return; 3045 } 3046 invoke_rcu_callbacks_kthread(); 3047 } 3048 3049 static void invoke_rcu_core(void) 3050 { 3051 if (cpu_online(smp_processor_id())) 3052 raise_softirq(RCU_SOFTIRQ); 3053 } 3054 3055 /* 3056 * Handle any core-RCU processing required by a call_rcu() invocation. 3057 */ 3058 static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp, 3059 struct rcu_head *head, unsigned long flags) 3060 { 3061 bool needwake; 3062 3063 /* 3064 * If called from an extended quiescent state, invoke the RCU 3065 * core in order to force a re-evaluation of RCU's idleness. 3066 */ 3067 if (!rcu_is_watching()) 3068 invoke_rcu_core(); 3069 3070 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */ 3071 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id())) 3072 return; 3073 3074 /* 3075 * Force the grace period if too many callbacks or too long waiting. 3076 * Enforce hysteresis, and don't invoke force_quiescent_state() 3077 * if some other CPU has recently done so. Also, don't bother 3078 * invoking force_quiescent_state() if the newly enqueued callback 3079 * is the only one waiting for a grace period to complete. 3080 */ 3081 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) { 3082 3083 /* Are we ignoring a completed grace period? */ 3084 note_gp_changes(rsp, rdp); 3085 3086 /* Start a new grace period if one not already started. */ 3087 if (!rcu_gp_in_progress(rsp)) { 3088 struct rcu_node *rnp_root = rcu_get_root(rsp); 3089 3090 raw_spin_lock_rcu_node(rnp_root); 3091 needwake = rcu_start_gp(rsp); 3092 raw_spin_unlock_rcu_node(rnp_root); 3093 if (needwake) 3094 rcu_gp_kthread_wake(rsp); 3095 } else { 3096 /* Give the grace period a kick. */ 3097 rdp->blimit = LONG_MAX; 3098 if (rsp->n_force_qs == rdp->n_force_qs_snap && 3099 *rdp->nxttail[RCU_DONE_TAIL] != head) 3100 force_quiescent_state(rsp); 3101 rdp->n_force_qs_snap = rsp->n_force_qs; 3102 rdp->qlen_last_fqs_check = rdp->qlen; 3103 } 3104 } 3105 } 3106 3107 /* 3108 * RCU callback function to leak a callback. 3109 */ 3110 static void rcu_leak_callback(struct rcu_head *rhp) 3111 { 3112 } 3113 3114 /* 3115 * Helper function for call_rcu() and friends. The cpu argument will 3116 * normally be -1, indicating "currently running CPU". It may specify 3117 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier() 3118 * is expected to specify a CPU. 3119 */ 3120 static void 3121 __call_rcu(struct rcu_head *head, rcu_callback_t func, 3122 struct rcu_state *rsp, int cpu, bool lazy) 3123 { 3124 unsigned long flags; 3125 struct rcu_data *rdp; 3126 3127 /* Misaligned rcu_head! */ 3128 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1)); 3129 3130 if (debug_rcu_head_queue(head)) { 3131 /* Probable double call_rcu(), so leak the callback. */ 3132 WRITE_ONCE(head->func, rcu_leak_callback); 3133 WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n"); 3134 return; 3135 } 3136 head->func = func; 3137 head->next = NULL; 3138 local_irq_save(flags); 3139 rdp = this_cpu_ptr(rsp->rda); 3140 3141 /* Add the callback to our list. */ 3142 if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) { 3143 int offline; 3144 3145 if (cpu != -1) 3146 rdp = per_cpu_ptr(rsp->rda, cpu); 3147 if (likely(rdp->mynode)) { 3148 /* Post-boot, so this should be for a no-CBs CPU. */ 3149 offline = !__call_rcu_nocb(rdp, head, lazy, flags); 3150 WARN_ON_ONCE(offline); 3151 /* Offline CPU, _call_rcu() illegal, leak callback. */ 3152 local_irq_restore(flags); 3153 return; 3154 } 3155 /* 3156 * Very early boot, before rcu_init(). Initialize if needed 3157 * and then drop through to queue the callback. 3158 */ 3159 BUG_ON(cpu != -1); 3160 WARN_ON_ONCE(!rcu_is_watching()); 3161 if (!likely(rdp->nxtlist)) 3162 init_default_callback_list(rdp); 3163 } 3164 WRITE_ONCE(rdp->qlen, rdp->qlen + 1); 3165 if (lazy) 3166 rdp->qlen_lazy++; 3167 else 3168 rcu_idle_count_callbacks_posted(); 3169 smp_mb(); /* Count before adding callback for rcu_barrier(). */ 3170 *rdp->nxttail[RCU_NEXT_TAIL] = head; 3171 rdp->nxttail[RCU_NEXT_TAIL] = &head->next; 3172 3173 if (__is_kfree_rcu_offset((unsigned long)func)) 3174 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func, 3175 rdp->qlen_lazy, rdp->qlen); 3176 else 3177 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen); 3178 3179 /* Go handle any RCU core processing required. */ 3180 __call_rcu_core(rsp, rdp, head, flags); 3181 local_irq_restore(flags); 3182 } 3183 3184 /* 3185 * Queue an RCU-sched callback for invocation after a grace period. 3186 */ 3187 void call_rcu_sched(struct rcu_head *head, rcu_callback_t func) 3188 { 3189 __call_rcu(head, func, &rcu_sched_state, -1, 0); 3190 } 3191 EXPORT_SYMBOL_GPL(call_rcu_sched); 3192 3193 /* 3194 * Queue an RCU callback for invocation after a quicker grace period. 3195 */ 3196 void call_rcu_bh(struct rcu_head *head, rcu_callback_t func) 3197 { 3198 __call_rcu(head, func, &rcu_bh_state, -1, 0); 3199 } 3200 EXPORT_SYMBOL_GPL(call_rcu_bh); 3201 3202 /* 3203 * Queue an RCU callback for lazy invocation after a grace period. 3204 * This will likely be later named something like "call_rcu_lazy()", 3205 * but this change will require some way of tagging the lazy RCU 3206 * callbacks in the list of pending callbacks. Until then, this 3207 * function may only be called from __kfree_rcu(). 3208 */ 3209 void kfree_call_rcu(struct rcu_head *head, 3210 rcu_callback_t func) 3211 { 3212 __call_rcu(head, func, rcu_state_p, -1, 1); 3213 } 3214 EXPORT_SYMBOL_GPL(kfree_call_rcu); 3215 3216 /* 3217 * Because a context switch is a grace period for RCU-sched and RCU-bh, 3218 * any blocking grace-period wait automatically implies a grace period 3219 * if there is only one CPU online at any point time during execution 3220 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to 3221 * occasionally incorrectly indicate that there are multiple CPUs online 3222 * when there was in fact only one the whole time, as this just adds 3223 * some overhead: RCU still operates correctly. 3224 */ 3225 static inline int rcu_blocking_is_gp(void) 3226 { 3227 int ret; 3228 3229 might_sleep(); /* Check for RCU read-side critical section. */ 3230 preempt_disable(); 3231 ret = num_online_cpus() <= 1; 3232 preempt_enable(); 3233 return ret; 3234 } 3235 3236 /** 3237 * synchronize_sched - wait until an rcu-sched grace period has elapsed. 3238 * 3239 * Control will return to the caller some time after a full rcu-sched 3240 * grace period has elapsed, in other words after all currently executing 3241 * rcu-sched read-side critical sections have completed. These read-side 3242 * critical sections are delimited by rcu_read_lock_sched() and 3243 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(), 3244 * local_irq_disable(), and so on may be used in place of 3245 * rcu_read_lock_sched(). 3246 * 3247 * This means that all preempt_disable code sequences, including NMI and 3248 * non-threaded hardware-interrupt handlers, in progress on entry will 3249 * have completed before this primitive returns. However, this does not 3250 * guarantee that softirq handlers will have completed, since in some 3251 * kernels, these handlers can run in process context, and can block. 3252 * 3253 * Note that this guarantee implies further memory-ordering guarantees. 3254 * On systems with more than one CPU, when synchronize_sched() returns, 3255 * each CPU is guaranteed to have executed a full memory barrier since the 3256 * end of its last RCU-sched read-side critical section whose beginning 3257 * preceded the call to synchronize_sched(). In addition, each CPU having 3258 * an RCU read-side critical section that extends beyond the return from 3259 * synchronize_sched() is guaranteed to have executed a full memory barrier 3260 * after the beginning of synchronize_sched() and before the beginning of 3261 * that RCU read-side critical section. Note that these guarantees include 3262 * CPUs that are offline, idle, or executing in user mode, as well as CPUs 3263 * that are executing in the kernel. 3264 * 3265 * Furthermore, if CPU A invoked synchronize_sched(), which returned 3266 * to its caller on CPU B, then both CPU A and CPU B are guaranteed 3267 * to have executed a full memory barrier during the execution of 3268 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but 3269 * again only if the system has more than one CPU). 3270 * 3271 * This primitive provides the guarantees made by the (now removed) 3272 * synchronize_kernel() API. In contrast, synchronize_rcu() only 3273 * guarantees that rcu_read_lock() sections will have completed. 3274 * In "classic RCU", these two guarantees happen to be one and 3275 * the same, but can differ in realtime RCU implementations. 3276 */ 3277 void synchronize_sched(void) 3278 { 3279 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) || 3280 lock_is_held(&rcu_lock_map) || 3281 lock_is_held(&rcu_sched_lock_map), 3282 "Illegal synchronize_sched() in RCU-sched read-side critical section"); 3283 if (rcu_blocking_is_gp()) 3284 return; 3285 if (rcu_gp_is_expedited()) 3286 synchronize_sched_expedited(); 3287 else 3288 wait_rcu_gp(call_rcu_sched); 3289 } 3290 EXPORT_SYMBOL_GPL(synchronize_sched); 3291 3292 /** 3293 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed. 3294 * 3295 * Control will return to the caller some time after a full rcu_bh grace 3296 * period has elapsed, in other words after all currently executing rcu_bh 3297 * read-side critical sections have completed. RCU read-side critical 3298 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(), 3299 * and may be nested. 3300 * 3301 * See the description of synchronize_sched() for more detailed information 3302 * on memory ordering guarantees. 3303 */ 3304 void synchronize_rcu_bh(void) 3305 { 3306 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) || 3307 lock_is_held(&rcu_lock_map) || 3308 lock_is_held(&rcu_sched_lock_map), 3309 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section"); 3310 if (rcu_blocking_is_gp()) 3311 return; 3312 if (rcu_gp_is_expedited()) 3313 synchronize_rcu_bh_expedited(); 3314 else 3315 wait_rcu_gp(call_rcu_bh); 3316 } 3317 EXPORT_SYMBOL_GPL(synchronize_rcu_bh); 3318 3319 /** 3320 * get_state_synchronize_rcu - Snapshot current RCU state 3321 * 3322 * Returns a cookie that is used by a later call to cond_synchronize_rcu() 3323 * to determine whether or not a full grace period has elapsed in the 3324 * meantime. 3325 */ 3326 unsigned long get_state_synchronize_rcu(void) 3327 { 3328 /* 3329 * Any prior manipulation of RCU-protected data must happen 3330 * before the load from ->gpnum. 3331 */ 3332 smp_mb(); /* ^^^ */ 3333 3334 /* 3335 * Make sure this load happens before the purportedly 3336 * time-consuming work between get_state_synchronize_rcu() 3337 * and cond_synchronize_rcu(). 3338 */ 3339 return smp_load_acquire(&rcu_state_p->gpnum); 3340 } 3341 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu); 3342 3343 /** 3344 * cond_synchronize_rcu - Conditionally wait for an RCU grace period 3345 * 3346 * @oldstate: return value from earlier call to get_state_synchronize_rcu() 3347 * 3348 * If a full RCU grace period has elapsed since the earlier call to 3349 * get_state_synchronize_rcu(), just return. Otherwise, invoke 3350 * synchronize_rcu() to wait for a full grace period. 3351 * 3352 * Yes, this function does not take counter wrap into account. But 3353 * counter wrap is harmless. If the counter wraps, we have waited for 3354 * more than 2 billion grace periods (and way more on a 64-bit system!), 3355 * so waiting for one additional grace period should be just fine. 3356 */ 3357 void cond_synchronize_rcu(unsigned long oldstate) 3358 { 3359 unsigned long newstate; 3360 3361 /* 3362 * Ensure that this load happens before any RCU-destructive 3363 * actions the caller might carry out after we return. 3364 */ 3365 newstate = smp_load_acquire(&rcu_state_p->completed); 3366 if (ULONG_CMP_GE(oldstate, newstate)) 3367 synchronize_rcu(); 3368 } 3369 EXPORT_SYMBOL_GPL(cond_synchronize_rcu); 3370 3371 /** 3372 * get_state_synchronize_sched - Snapshot current RCU-sched state 3373 * 3374 * Returns a cookie that is used by a later call to cond_synchronize_sched() 3375 * to determine whether or not a full grace period has elapsed in the 3376 * meantime. 3377 */ 3378 unsigned long get_state_synchronize_sched(void) 3379 { 3380 /* 3381 * Any prior manipulation of RCU-protected data must happen 3382 * before the load from ->gpnum. 3383 */ 3384 smp_mb(); /* ^^^ */ 3385 3386 /* 3387 * Make sure this load happens before the purportedly 3388 * time-consuming work between get_state_synchronize_sched() 3389 * and cond_synchronize_sched(). 3390 */ 3391 return smp_load_acquire(&rcu_sched_state.gpnum); 3392 } 3393 EXPORT_SYMBOL_GPL(get_state_synchronize_sched); 3394 3395 /** 3396 * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period 3397 * 3398 * @oldstate: return value from earlier call to get_state_synchronize_sched() 3399 * 3400 * If a full RCU-sched grace period has elapsed since the earlier call to 3401 * get_state_synchronize_sched(), just return. Otherwise, invoke 3402 * synchronize_sched() to wait for a full grace period. 3403 * 3404 * Yes, this function does not take counter wrap into account. But 3405 * counter wrap is harmless. If the counter wraps, we have waited for 3406 * more than 2 billion grace periods (and way more on a 64-bit system!), 3407 * so waiting for one additional grace period should be just fine. 3408 */ 3409 void cond_synchronize_sched(unsigned long oldstate) 3410 { 3411 unsigned long newstate; 3412 3413 /* 3414 * Ensure that this load happens before any RCU-destructive 3415 * actions the caller might carry out after we return. 3416 */ 3417 newstate = smp_load_acquire(&rcu_sched_state.completed); 3418 if (ULONG_CMP_GE(oldstate, newstate)) 3419 synchronize_sched(); 3420 } 3421 EXPORT_SYMBOL_GPL(cond_synchronize_sched); 3422 3423 /* Adjust sequence number for start of update-side operation. */ 3424 static void rcu_seq_start(unsigned long *sp) 3425 { 3426 WRITE_ONCE(*sp, *sp + 1); 3427 smp_mb(); /* Ensure update-side operation after counter increment. */ 3428 WARN_ON_ONCE(!(*sp & 0x1)); 3429 } 3430 3431 /* Adjust sequence number for end of update-side operation. */ 3432 static void rcu_seq_end(unsigned long *sp) 3433 { 3434 smp_mb(); /* Ensure update-side operation before counter increment. */ 3435 WRITE_ONCE(*sp, *sp + 1); 3436 WARN_ON_ONCE(*sp & 0x1); 3437 } 3438 3439 /* Take a snapshot of the update side's sequence number. */ 3440 static unsigned long rcu_seq_snap(unsigned long *sp) 3441 { 3442 unsigned long s; 3443 3444 s = (READ_ONCE(*sp) + 3) & ~0x1; 3445 smp_mb(); /* Above access must not bleed into critical section. */ 3446 return s; 3447 } 3448 3449 /* 3450 * Given a snapshot from rcu_seq_snap(), determine whether or not a 3451 * full update-side operation has occurred. 3452 */ 3453 static bool rcu_seq_done(unsigned long *sp, unsigned long s) 3454 { 3455 return ULONG_CMP_GE(READ_ONCE(*sp), s); 3456 } 3457 3458 /* 3459 * Check to see if there is any immediate RCU-related work to be done 3460 * by the current CPU, for the specified type of RCU, returning 1 if so. 3461 * The checks are in order of increasing expense: checks that can be 3462 * carried out against CPU-local state are performed first. However, 3463 * we must check for CPU stalls first, else we might not get a chance. 3464 */ 3465 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp) 3466 { 3467 struct rcu_node *rnp = rdp->mynode; 3468 3469 rdp->n_rcu_pending++; 3470 3471 /* Check for CPU stalls, if enabled. */ 3472 check_cpu_stall(rsp, rdp); 3473 3474 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */ 3475 if (rcu_nohz_full_cpu(rsp)) 3476 return 0; 3477 3478 /* Is the RCU core waiting for a quiescent state from this CPU? */ 3479 if (rcu_scheduler_fully_active && 3480 rdp->core_needs_qs && rdp->cpu_no_qs.b.norm && 3481 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) { 3482 rdp->n_rp_core_needs_qs++; 3483 } else if (rdp->core_needs_qs && 3484 (!rdp->cpu_no_qs.b.norm || 3485 rdp->rcu_qs_ctr_snap != __this_cpu_read(rcu_qs_ctr))) { 3486 rdp->n_rp_report_qs++; 3487 return 1; 3488 } 3489 3490 /* Does this CPU have callbacks ready to invoke? */ 3491 if (cpu_has_callbacks_ready_to_invoke(rdp)) { 3492 rdp->n_rp_cb_ready++; 3493 return 1; 3494 } 3495 3496 /* Has RCU gone idle with this CPU needing another grace period? */ 3497 if (cpu_needs_another_gp(rsp, rdp)) { 3498 rdp->n_rp_cpu_needs_gp++; 3499 return 1; 3500 } 3501 3502 /* Has another RCU grace period completed? */ 3503 if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */ 3504 rdp->n_rp_gp_completed++; 3505 return 1; 3506 } 3507 3508 /* Has a new RCU grace period started? */ 3509 if (READ_ONCE(rnp->gpnum) != rdp->gpnum || 3510 unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */ 3511 rdp->n_rp_gp_started++; 3512 return 1; 3513 } 3514 3515 /* Does this CPU need a deferred NOCB wakeup? */ 3516 if (rcu_nocb_need_deferred_wakeup(rdp)) { 3517 rdp->n_rp_nocb_defer_wakeup++; 3518 return 1; 3519 } 3520 3521 /* nothing to do */ 3522 rdp->n_rp_need_nothing++; 3523 return 0; 3524 } 3525 3526 /* 3527 * Check to see if there is any immediate RCU-related work to be done 3528 * by the current CPU, returning 1 if so. This function is part of the 3529 * RCU implementation; it is -not- an exported member of the RCU API. 3530 */ 3531 static int rcu_pending(void) 3532 { 3533 struct rcu_state *rsp; 3534 3535 for_each_rcu_flavor(rsp) 3536 if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda))) 3537 return 1; 3538 return 0; 3539 } 3540 3541 /* 3542 * Return true if the specified CPU has any callback. If all_lazy is 3543 * non-NULL, store an indication of whether all callbacks are lazy. 3544 * (If there are no callbacks, all of them are deemed to be lazy.) 3545 */ 3546 static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy) 3547 { 3548 bool al = true; 3549 bool hc = false; 3550 struct rcu_data *rdp; 3551 struct rcu_state *rsp; 3552 3553 for_each_rcu_flavor(rsp) { 3554 rdp = this_cpu_ptr(rsp->rda); 3555 if (!rdp->nxtlist) 3556 continue; 3557 hc = true; 3558 if (rdp->qlen != rdp->qlen_lazy || !all_lazy) { 3559 al = false; 3560 break; 3561 } 3562 } 3563 if (all_lazy) 3564 *all_lazy = al; 3565 return hc; 3566 } 3567 3568 /* 3569 * Helper function for _rcu_barrier() tracing. If tracing is disabled, 3570 * the compiler is expected to optimize this away. 3571 */ 3572 static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s, 3573 int cpu, unsigned long done) 3574 { 3575 trace_rcu_barrier(rsp->name, s, cpu, 3576 atomic_read(&rsp->barrier_cpu_count), done); 3577 } 3578 3579 /* 3580 * RCU callback function for _rcu_barrier(). If we are last, wake 3581 * up the task executing _rcu_barrier(). 3582 */ 3583 static void rcu_barrier_callback(struct rcu_head *rhp) 3584 { 3585 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head); 3586 struct rcu_state *rsp = rdp->rsp; 3587 3588 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) { 3589 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->barrier_sequence); 3590 complete(&rsp->barrier_completion); 3591 } else { 3592 _rcu_barrier_trace(rsp, "CB", -1, rsp->barrier_sequence); 3593 } 3594 } 3595 3596 /* 3597 * Called with preemption disabled, and from cross-cpu IRQ context. 3598 */ 3599 static void rcu_barrier_func(void *type) 3600 { 3601 struct rcu_state *rsp = type; 3602 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda); 3603 3604 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->barrier_sequence); 3605 atomic_inc(&rsp->barrier_cpu_count); 3606 rsp->call(&rdp->barrier_head, rcu_barrier_callback); 3607 } 3608 3609 /* 3610 * Orchestrate the specified type of RCU barrier, waiting for all 3611 * RCU callbacks of the specified type to complete. 3612 */ 3613 static void _rcu_barrier(struct rcu_state *rsp) 3614 { 3615 int cpu; 3616 struct rcu_data *rdp; 3617 unsigned long s = rcu_seq_snap(&rsp->barrier_sequence); 3618 3619 _rcu_barrier_trace(rsp, "Begin", -1, s); 3620 3621 /* Take mutex to serialize concurrent rcu_barrier() requests. */ 3622 mutex_lock(&rsp->barrier_mutex); 3623 3624 /* Did someone else do our work for us? */ 3625 if (rcu_seq_done(&rsp->barrier_sequence, s)) { 3626 _rcu_barrier_trace(rsp, "EarlyExit", -1, rsp->barrier_sequence); 3627 smp_mb(); /* caller's subsequent code after above check. */ 3628 mutex_unlock(&rsp->barrier_mutex); 3629 return; 3630 } 3631 3632 /* Mark the start of the barrier operation. */ 3633 rcu_seq_start(&rsp->barrier_sequence); 3634 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->barrier_sequence); 3635 3636 /* 3637 * Initialize the count to one rather than to zero in order to 3638 * avoid a too-soon return to zero in case of a short grace period 3639 * (or preemption of this task). Exclude CPU-hotplug operations 3640 * to ensure that no offline CPU has callbacks queued. 3641 */ 3642 init_completion(&rsp->barrier_completion); 3643 atomic_set(&rsp->barrier_cpu_count, 1); 3644 get_online_cpus(); 3645 3646 /* 3647 * Force each CPU with callbacks to register a new callback. 3648 * When that callback is invoked, we will know that all of the 3649 * corresponding CPU's preceding callbacks have been invoked. 3650 */ 3651 for_each_possible_cpu(cpu) { 3652 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu)) 3653 continue; 3654 rdp = per_cpu_ptr(rsp->rda, cpu); 3655 if (rcu_is_nocb_cpu(cpu)) { 3656 if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) { 3657 _rcu_barrier_trace(rsp, "OfflineNoCB", cpu, 3658 rsp->barrier_sequence); 3659 } else { 3660 _rcu_barrier_trace(rsp, "OnlineNoCB", cpu, 3661 rsp->barrier_sequence); 3662 smp_mb__before_atomic(); 3663 atomic_inc(&rsp->barrier_cpu_count); 3664 __call_rcu(&rdp->barrier_head, 3665 rcu_barrier_callback, rsp, cpu, 0); 3666 } 3667 } else if (READ_ONCE(rdp->qlen)) { 3668 _rcu_barrier_trace(rsp, "OnlineQ", cpu, 3669 rsp->barrier_sequence); 3670 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1); 3671 } else { 3672 _rcu_barrier_trace(rsp, "OnlineNQ", cpu, 3673 rsp->barrier_sequence); 3674 } 3675 } 3676 put_online_cpus(); 3677 3678 /* 3679 * Now that we have an rcu_barrier_callback() callback on each 3680 * CPU, and thus each counted, remove the initial count. 3681 */ 3682 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) 3683 complete(&rsp->barrier_completion); 3684 3685 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */ 3686 wait_for_completion(&rsp->barrier_completion); 3687 3688 /* Mark the end of the barrier operation. */ 3689 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->barrier_sequence); 3690 rcu_seq_end(&rsp->barrier_sequence); 3691 3692 /* Other rcu_barrier() invocations can now safely proceed. */ 3693 mutex_unlock(&rsp->barrier_mutex); 3694 } 3695 3696 /** 3697 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete. 3698 */ 3699 void rcu_barrier_bh(void) 3700 { 3701 _rcu_barrier(&rcu_bh_state); 3702 } 3703 EXPORT_SYMBOL_GPL(rcu_barrier_bh); 3704 3705 /** 3706 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks. 3707 */ 3708 void rcu_barrier_sched(void) 3709 { 3710 _rcu_barrier(&rcu_sched_state); 3711 } 3712 EXPORT_SYMBOL_GPL(rcu_barrier_sched); 3713 3714 /* 3715 * Propagate ->qsinitmask bits up the rcu_node tree to account for the 3716 * first CPU in a given leaf rcu_node structure coming online. The caller 3717 * must hold the corresponding leaf rcu_node ->lock with interrrupts 3718 * disabled. 3719 */ 3720 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf) 3721 { 3722 long mask; 3723 struct rcu_node *rnp = rnp_leaf; 3724 3725 for (;;) { 3726 mask = rnp->grpmask; 3727 rnp = rnp->parent; 3728 if (rnp == NULL) 3729 return; 3730 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */ 3731 rnp->qsmaskinit |= mask; 3732 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */ 3733 } 3734 } 3735 3736 /* 3737 * Do boot-time initialization of a CPU's per-CPU RCU data. 3738 */ 3739 static void __init 3740 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp) 3741 { 3742 unsigned long flags; 3743 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 3744 struct rcu_node *rnp = rcu_get_root(rsp); 3745 3746 /* Set up local state, ensuring consistent view of global state. */ 3747 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3748 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu); 3749 rdp->dynticks = &per_cpu(rcu_dynticks, cpu); 3750 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE); 3751 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1); 3752 rdp->cpu = cpu; 3753 rdp->rsp = rsp; 3754 rcu_boot_init_nocb_percpu_data(rdp); 3755 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3756 } 3757 3758 /* 3759 * Initialize a CPU's per-CPU RCU data. Note that only one online or 3760 * offline event can be happening at a given time. Note also that we 3761 * can accept some slop in the rsp->completed access due to the fact 3762 * that this CPU cannot possibly have any RCU callbacks in flight yet. 3763 */ 3764 static void 3765 rcu_init_percpu_data(int cpu, struct rcu_state *rsp) 3766 { 3767 unsigned long flags; 3768 unsigned long mask; 3769 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 3770 struct rcu_node *rnp = rcu_get_root(rsp); 3771 3772 /* Set up local state, ensuring consistent view of global state. */ 3773 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3774 rdp->qlen_last_fqs_check = 0; 3775 rdp->n_force_qs_snap = rsp->n_force_qs; 3776 rdp->blimit = blimit; 3777 if (!rdp->nxtlist) 3778 init_callback_list(rdp); /* Re-enable callbacks on this CPU. */ 3779 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE; 3780 rcu_sysidle_init_percpu_data(rdp->dynticks); 3781 atomic_set(&rdp->dynticks->dynticks, 3782 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1); 3783 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 3784 3785 /* 3786 * Add CPU to leaf rcu_node pending-online bitmask. Any needed 3787 * propagation up the rcu_node tree will happen at the beginning 3788 * of the next grace period. 3789 */ 3790 rnp = rdp->mynode; 3791 mask = rdp->grpmask; 3792 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 3793 if (!rdp->beenonline) 3794 WRITE_ONCE(rsp->ncpus, READ_ONCE(rsp->ncpus) + 1); 3795 rdp->beenonline = true; /* We have now been online. */ 3796 rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */ 3797 rdp->completed = rnp->completed; 3798 rdp->cpu_no_qs.b.norm = true; 3799 rdp->rcu_qs_ctr_snap = per_cpu(rcu_qs_ctr, cpu); 3800 rdp->core_needs_qs = false; 3801 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl")); 3802 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3803 } 3804 3805 int rcutree_prepare_cpu(unsigned int cpu) 3806 { 3807 struct rcu_state *rsp; 3808 3809 for_each_rcu_flavor(rsp) 3810 rcu_init_percpu_data(cpu, rsp); 3811 3812 rcu_prepare_kthreads(cpu); 3813 rcu_spawn_all_nocb_kthreads(cpu); 3814 3815 return 0; 3816 } 3817 3818 static void rcutree_affinity_setting(unsigned int cpu, int outgoing) 3819 { 3820 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu); 3821 3822 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing); 3823 } 3824 3825 int rcutree_online_cpu(unsigned int cpu) 3826 { 3827 sync_sched_exp_online_cleanup(cpu); 3828 rcutree_affinity_setting(cpu, -1); 3829 return 0; 3830 } 3831 3832 int rcutree_offline_cpu(unsigned int cpu) 3833 { 3834 rcutree_affinity_setting(cpu, cpu); 3835 return 0; 3836 } 3837 3838 3839 int rcutree_dying_cpu(unsigned int cpu) 3840 { 3841 struct rcu_state *rsp; 3842 3843 for_each_rcu_flavor(rsp) 3844 rcu_cleanup_dying_cpu(rsp); 3845 return 0; 3846 } 3847 3848 int rcutree_dead_cpu(unsigned int cpu) 3849 { 3850 struct rcu_state *rsp; 3851 3852 for_each_rcu_flavor(rsp) { 3853 rcu_cleanup_dead_cpu(cpu, rsp); 3854 do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu)); 3855 } 3856 return 0; 3857 } 3858 3859 /* 3860 * Mark the specified CPU as being online so that subsequent grace periods 3861 * (both expedited and normal) will wait on it. Note that this means that 3862 * incoming CPUs are not allowed to use RCU read-side critical sections 3863 * until this function is called. Failing to observe this restriction 3864 * will result in lockdep splats. 3865 */ 3866 void rcu_cpu_starting(unsigned int cpu) 3867 { 3868 unsigned long flags; 3869 unsigned long mask; 3870 struct rcu_data *rdp; 3871 struct rcu_node *rnp; 3872 struct rcu_state *rsp; 3873 3874 for_each_rcu_flavor(rsp) { 3875 rdp = this_cpu_ptr(rsp->rda); 3876 rnp = rdp->mynode; 3877 mask = rdp->grpmask; 3878 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3879 rnp->qsmaskinitnext |= mask; 3880 rnp->expmaskinitnext |= mask; 3881 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3882 } 3883 } 3884 3885 #ifdef CONFIG_HOTPLUG_CPU 3886 /* 3887 * The CPU is exiting the idle loop into the arch_cpu_idle_dead() 3888 * function. We now remove it from the rcu_node tree's ->qsmaskinit 3889 * bit masks. 3890 * The CPU is exiting the idle loop into the arch_cpu_idle_dead() 3891 * function. We now remove it from the rcu_node tree's ->qsmaskinit 3892 * bit masks. 3893 */ 3894 static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp) 3895 { 3896 unsigned long flags; 3897 unsigned long mask; 3898 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 3899 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ 3900 3901 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */ 3902 mask = rdp->grpmask; 3903 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */ 3904 rnp->qsmaskinitnext &= ~mask; 3905 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3906 } 3907 3908 void rcu_report_dead(unsigned int cpu) 3909 { 3910 struct rcu_state *rsp; 3911 3912 /* QS for any half-done expedited RCU-sched GP. */ 3913 preempt_disable(); 3914 rcu_report_exp_rdp(&rcu_sched_state, 3915 this_cpu_ptr(rcu_sched_state.rda), true); 3916 preempt_enable(); 3917 for_each_rcu_flavor(rsp) 3918 rcu_cleanup_dying_idle_cpu(cpu, rsp); 3919 } 3920 #endif 3921 3922 static int rcu_pm_notify(struct notifier_block *self, 3923 unsigned long action, void *hcpu) 3924 { 3925 switch (action) { 3926 case PM_HIBERNATION_PREPARE: 3927 case PM_SUSPEND_PREPARE: 3928 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */ 3929 rcu_expedite_gp(); 3930 break; 3931 case PM_POST_HIBERNATION: 3932 case PM_POST_SUSPEND: 3933 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */ 3934 rcu_unexpedite_gp(); 3935 break; 3936 default: 3937 break; 3938 } 3939 return NOTIFY_OK; 3940 } 3941 3942 /* 3943 * Spawn the kthreads that handle each RCU flavor's grace periods. 3944 */ 3945 static int __init rcu_spawn_gp_kthread(void) 3946 { 3947 unsigned long flags; 3948 int kthread_prio_in = kthread_prio; 3949 struct rcu_node *rnp; 3950 struct rcu_state *rsp; 3951 struct sched_param sp; 3952 struct task_struct *t; 3953 3954 /* Force priority into range. */ 3955 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1) 3956 kthread_prio = 1; 3957 else if (kthread_prio < 0) 3958 kthread_prio = 0; 3959 else if (kthread_prio > 99) 3960 kthread_prio = 99; 3961 if (kthread_prio != kthread_prio_in) 3962 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n", 3963 kthread_prio, kthread_prio_in); 3964 3965 rcu_scheduler_fully_active = 1; 3966 for_each_rcu_flavor(rsp) { 3967 t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name); 3968 BUG_ON(IS_ERR(t)); 3969 rnp = rcu_get_root(rsp); 3970 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3971 rsp->gp_kthread = t; 3972 if (kthread_prio) { 3973 sp.sched_priority = kthread_prio; 3974 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 3975 } 3976 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3977 wake_up_process(t); 3978 } 3979 rcu_spawn_nocb_kthreads(); 3980 rcu_spawn_boost_kthreads(); 3981 return 0; 3982 } 3983 early_initcall(rcu_spawn_gp_kthread); 3984 3985 /* 3986 * This function is invoked towards the end of the scheduler's 3987 * initialization process. Before this is called, the idle task might 3988 * contain synchronous grace-period primitives (during which time, this idle 3989 * task is booting the system, and such primitives are no-ops). After this 3990 * function is called, any synchronous grace-period primitives are run as 3991 * expedited, with the requesting task driving the grace period forward. 3992 * A later core_initcall() rcu_exp_runtime_mode() will switch to full 3993 * runtime RCU functionality. 3994 */ 3995 void rcu_scheduler_starting(void) 3996 { 3997 WARN_ON(num_online_cpus() != 1); 3998 WARN_ON(nr_context_switches() > 0); 3999 rcu_test_sync_prims(); 4000 rcu_scheduler_active = RCU_SCHEDULER_INIT; 4001 rcu_test_sync_prims(); 4002 } 4003 4004 /* 4005 * Compute the per-level fanout, either using the exact fanout specified 4006 * or balancing the tree, depending on the rcu_fanout_exact boot parameter. 4007 */ 4008 static void __init rcu_init_levelspread(int *levelspread, const int *levelcnt) 4009 { 4010 int i; 4011 4012 if (rcu_fanout_exact) { 4013 levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf; 4014 for (i = rcu_num_lvls - 2; i >= 0; i--) 4015 levelspread[i] = RCU_FANOUT; 4016 } else { 4017 int ccur; 4018 int cprv; 4019 4020 cprv = nr_cpu_ids; 4021 for (i = rcu_num_lvls - 1; i >= 0; i--) { 4022 ccur = levelcnt[i]; 4023 levelspread[i] = (cprv + ccur - 1) / ccur; 4024 cprv = ccur; 4025 } 4026 } 4027 } 4028 4029 /* 4030 * Helper function for rcu_init() that initializes one rcu_state structure. 4031 */ 4032 static void __init rcu_init_one(struct rcu_state *rsp) 4033 { 4034 static const char * const buf[] = RCU_NODE_NAME_INIT; 4035 static const char * const fqs[] = RCU_FQS_NAME_INIT; 4036 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS]; 4037 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS]; 4038 static u8 fl_mask = 0x1; 4039 4040 int levelcnt[RCU_NUM_LVLS]; /* # nodes in each level. */ 4041 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */ 4042 int cpustride = 1; 4043 int i; 4044 int j; 4045 struct rcu_node *rnp; 4046 4047 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */ 4048 4049 /* Silence gcc 4.8 false positive about array index out of range. */ 4050 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS) 4051 panic("rcu_init_one: rcu_num_lvls out of range"); 4052 4053 /* Initialize the level-tracking arrays. */ 4054 4055 for (i = 0; i < rcu_num_lvls; i++) 4056 levelcnt[i] = num_rcu_lvl[i]; 4057 for (i = 1; i < rcu_num_lvls; i++) 4058 rsp->level[i] = rsp->level[i - 1] + levelcnt[i - 1]; 4059 rcu_init_levelspread(levelspread, levelcnt); 4060 rsp->flavor_mask = fl_mask; 4061 fl_mask <<= 1; 4062 4063 /* Initialize the elements themselves, starting from the leaves. */ 4064 4065 for (i = rcu_num_lvls - 1; i >= 0; i--) { 4066 cpustride *= levelspread[i]; 4067 rnp = rsp->level[i]; 4068 for (j = 0; j < levelcnt[i]; j++, rnp++) { 4069 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock)); 4070 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock), 4071 &rcu_node_class[i], buf[i]); 4072 raw_spin_lock_init(&rnp->fqslock); 4073 lockdep_set_class_and_name(&rnp->fqslock, 4074 &rcu_fqs_class[i], fqs[i]); 4075 rnp->gpnum = rsp->gpnum; 4076 rnp->completed = rsp->completed; 4077 rnp->qsmask = 0; 4078 rnp->qsmaskinit = 0; 4079 rnp->grplo = j * cpustride; 4080 rnp->grphi = (j + 1) * cpustride - 1; 4081 if (rnp->grphi >= nr_cpu_ids) 4082 rnp->grphi = nr_cpu_ids - 1; 4083 if (i == 0) { 4084 rnp->grpnum = 0; 4085 rnp->grpmask = 0; 4086 rnp->parent = NULL; 4087 } else { 4088 rnp->grpnum = j % levelspread[i - 1]; 4089 rnp->grpmask = 1UL << rnp->grpnum; 4090 rnp->parent = rsp->level[i - 1] + 4091 j / levelspread[i - 1]; 4092 } 4093 rnp->level = i; 4094 INIT_LIST_HEAD(&rnp->blkd_tasks); 4095 rcu_init_one_nocb(rnp); 4096 init_waitqueue_head(&rnp->exp_wq[0]); 4097 init_waitqueue_head(&rnp->exp_wq[1]); 4098 init_waitqueue_head(&rnp->exp_wq[2]); 4099 init_waitqueue_head(&rnp->exp_wq[3]); 4100 spin_lock_init(&rnp->exp_lock); 4101 } 4102 } 4103 4104 init_swait_queue_head(&rsp->gp_wq); 4105 init_swait_queue_head(&rsp->expedited_wq); 4106 rnp = rsp->level[rcu_num_lvls - 1]; 4107 for_each_possible_cpu(i) { 4108 while (i > rnp->grphi) 4109 rnp++; 4110 per_cpu_ptr(rsp->rda, i)->mynode = rnp; 4111 rcu_boot_init_percpu_data(i, rsp); 4112 } 4113 list_add(&rsp->flavors, &rcu_struct_flavors); 4114 } 4115 4116 /* 4117 * Compute the rcu_node tree geometry from kernel parameters. This cannot 4118 * replace the definitions in tree.h because those are needed to size 4119 * the ->node array in the rcu_state structure. 4120 */ 4121 static void __init rcu_init_geometry(void) 4122 { 4123 ulong d; 4124 int i; 4125 int rcu_capacity[RCU_NUM_LVLS]; 4126 4127 /* 4128 * Initialize any unspecified boot parameters. 4129 * The default values of jiffies_till_first_fqs and 4130 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS 4131 * value, which is a function of HZ, then adding one for each 4132 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system. 4133 */ 4134 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; 4135 if (jiffies_till_first_fqs == ULONG_MAX) 4136 jiffies_till_first_fqs = d; 4137 if (jiffies_till_next_fqs == ULONG_MAX) 4138 jiffies_till_next_fqs = d; 4139 4140 /* If the compile-time values are accurate, just leave. */ 4141 if (rcu_fanout_leaf == RCU_FANOUT_LEAF && 4142 nr_cpu_ids == NR_CPUS) 4143 return; 4144 pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n", 4145 rcu_fanout_leaf, nr_cpu_ids); 4146 4147 /* 4148 * The boot-time rcu_fanout_leaf parameter must be at least two 4149 * and cannot exceed the number of bits in the rcu_node masks. 4150 * Complain and fall back to the compile-time values if this 4151 * limit is exceeded. 4152 */ 4153 if (rcu_fanout_leaf < 2 || 4154 rcu_fanout_leaf > sizeof(unsigned long) * 8) { 4155 rcu_fanout_leaf = RCU_FANOUT_LEAF; 4156 WARN_ON(1); 4157 return; 4158 } 4159 4160 /* 4161 * Compute number of nodes that can be handled an rcu_node tree 4162 * with the given number of levels. 4163 */ 4164 rcu_capacity[0] = rcu_fanout_leaf; 4165 for (i = 1; i < RCU_NUM_LVLS; i++) 4166 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT; 4167 4168 /* 4169 * The tree must be able to accommodate the configured number of CPUs. 4170 * If this limit is exceeded, fall back to the compile-time values. 4171 */ 4172 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) { 4173 rcu_fanout_leaf = RCU_FANOUT_LEAF; 4174 WARN_ON(1); 4175 return; 4176 } 4177 4178 /* Calculate the number of levels in the tree. */ 4179 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) { 4180 } 4181 rcu_num_lvls = i + 1; 4182 4183 /* Calculate the number of rcu_nodes at each level of the tree. */ 4184 for (i = 0; i < rcu_num_lvls; i++) { 4185 int cap = rcu_capacity[(rcu_num_lvls - 1) - i]; 4186 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap); 4187 } 4188 4189 /* Calculate the total number of rcu_node structures. */ 4190 rcu_num_nodes = 0; 4191 for (i = 0; i < rcu_num_lvls; i++) 4192 rcu_num_nodes += num_rcu_lvl[i]; 4193 } 4194 4195 /* 4196 * Dump out the structure of the rcu_node combining tree associated 4197 * with the rcu_state structure referenced by rsp. 4198 */ 4199 static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp) 4200 { 4201 int level = 0; 4202 struct rcu_node *rnp; 4203 4204 pr_info("rcu_node tree layout dump\n"); 4205 pr_info(" "); 4206 rcu_for_each_node_breadth_first(rsp, rnp) { 4207 if (rnp->level != level) { 4208 pr_cont("\n"); 4209 pr_info(" "); 4210 level = rnp->level; 4211 } 4212 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum); 4213 } 4214 pr_cont("\n"); 4215 } 4216 4217 void __init rcu_init(void) 4218 { 4219 int cpu; 4220 4221 rcu_early_boot_tests(); 4222 4223 rcu_bootup_announce(); 4224 rcu_init_geometry(); 4225 rcu_init_one(&rcu_bh_state); 4226 rcu_init_one(&rcu_sched_state); 4227 if (dump_tree) 4228 rcu_dump_rcu_node_tree(&rcu_sched_state); 4229 __rcu_init_preempt(); 4230 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks); 4231 4232 /* 4233 * We don't need protection against CPU-hotplug here because 4234 * this is called early in boot, before either interrupts 4235 * or the scheduler are operational. 4236 */ 4237 pm_notifier(rcu_pm_notify, 0); 4238 for_each_online_cpu(cpu) { 4239 rcutree_prepare_cpu(cpu); 4240 rcu_cpu_starting(cpu); 4241 } 4242 } 4243 4244 #include "tree_exp.h" 4245 #include "tree_plugin.h" 4246