1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Read-Copy Update mechanism for mutual exclusion (tree-based version) 4 * 5 * Copyright IBM Corporation, 2008 6 * 7 * Authors: Dipankar Sarma <dipankar@in.ibm.com> 8 * Manfred Spraul <manfred@colorfullife.com> 9 * Paul E. McKenney <paulmck@linux.ibm.com> 10 * 11 * Based on the original work by Paul McKenney <paulmck@linux.ibm.com> 12 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 13 * 14 * For detailed explanation of Read-Copy Update mechanism see - 15 * Documentation/RCU 16 */ 17 18 #define pr_fmt(fmt) "rcu: " fmt 19 20 #include <linux/types.h> 21 #include <linux/kernel.h> 22 #include <linux/init.h> 23 #include <linux/spinlock.h> 24 #include <linux/smp.h> 25 #include <linux/rcupdate_wait.h> 26 #include <linux/interrupt.h> 27 #include <linux/sched.h> 28 #include <linux/sched/debug.h> 29 #include <linux/nmi.h> 30 #include <linux/atomic.h> 31 #include <linux/bitops.h> 32 #include <linux/export.h> 33 #include <linux/completion.h> 34 #include <linux/moduleparam.h> 35 #include <linux/panic.h> 36 #include <linux/panic_notifier.h> 37 #include <linux/percpu.h> 38 #include <linux/notifier.h> 39 #include <linux/cpu.h> 40 #include <linux/mutex.h> 41 #include <linux/time.h> 42 #include <linux/kernel_stat.h> 43 #include <linux/wait.h> 44 #include <linux/kthread.h> 45 #include <uapi/linux/sched/types.h> 46 #include <linux/prefetch.h> 47 #include <linux/delay.h> 48 #include <linux/random.h> 49 #include <linux/trace_events.h> 50 #include <linux/suspend.h> 51 #include <linux/ftrace.h> 52 #include <linux/tick.h> 53 #include <linux/sysrq.h> 54 #include <linux/kprobes.h> 55 #include <linux/gfp.h> 56 #include <linux/oom.h> 57 #include <linux/smpboot.h> 58 #include <linux/jiffies.h> 59 #include <linux/slab.h> 60 #include <linux/sched/isolation.h> 61 #include <linux/sched/clock.h> 62 #include <linux/vmalloc.h> 63 #include <linux/mm.h> 64 #include <linux/kasan.h> 65 #include "../time/tick-internal.h" 66 67 #include "tree.h" 68 #include "rcu.h" 69 70 #ifdef MODULE_PARAM_PREFIX 71 #undef MODULE_PARAM_PREFIX 72 #endif 73 #define MODULE_PARAM_PREFIX "rcutree." 74 75 /* Data structures. */ 76 77 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = { 78 .dynticks_nesting = 1, 79 .dynticks_nmi_nesting = DYNTICK_IRQ_NONIDLE, 80 .dynticks = ATOMIC_INIT(1), 81 #ifdef CONFIG_RCU_NOCB_CPU 82 .cblist.flags = SEGCBLIST_SOFTIRQ_ONLY, 83 #endif 84 }; 85 static struct rcu_state rcu_state = { 86 .level = { &rcu_state.node[0] }, 87 .gp_state = RCU_GP_IDLE, 88 .gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT, 89 .barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex), 90 .name = RCU_NAME, 91 .abbr = RCU_ABBR, 92 .exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex), 93 .exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex), 94 .ofl_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.ofl_lock), 95 }; 96 97 /* Dump rcu_node combining tree at boot to verify correct setup. */ 98 static bool dump_tree; 99 module_param(dump_tree, bool, 0444); 100 /* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */ 101 static bool use_softirq = !IS_ENABLED(CONFIG_PREEMPT_RT); 102 #ifndef CONFIG_PREEMPT_RT 103 module_param(use_softirq, bool, 0444); 104 #endif 105 /* Control rcu_node-tree auto-balancing at boot time. */ 106 static bool rcu_fanout_exact; 107 module_param(rcu_fanout_exact, bool, 0444); 108 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */ 109 static int rcu_fanout_leaf = RCU_FANOUT_LEAF; 110 module_param(rcu_fanout_leaf, int, 0444); 111 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS; 112 /* Number of rcu_nodes at specified level. */ 113 int num_rcu_lvl[] = NUM_RCU_LVL_INIT; 114 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */ 115 116 /* 117 * The rcu_scheduler_active variable is initialized to the value 118 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the 119 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE, 120 * RCU can assume that there is but one task, allowing RCU to (for example) 121 * optimize synchronize_rcu() to a simple barrier(). When this variable 122 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required 123 * to detect real grace periods. This variable is also used to suppress 124 * boot-time false positives from lockdep-RCU error checking. Finally, it 125 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU 126 * is fully initialized, including all of its kthreads having been spawned. 127 */ 128 int rcu_scheduler_active __read_mostly; 129 EXPORT_SYMBOL_GPL(rcu_scheduler_active); 130 131 /* 132 * The rcu_scheduler_fully_active variable transitions from zero to one 133 * during the early_initcall() processing, which is after the scheduler 134 * is capable of creating new tasks. So RCU processing (for example, 135 * creating tasks for RCU priority boosting) must be delayed until after 136 * rcu_scheduler_fully_active transitions from zero to one. We also 137 * currently delay invocation of any RCU callbacks until after this point. 138 * 139 * It might later prove better for people registering RCU callbacks during 140 * early boot to take responsibility for these callbacks, but one step at 141 * a time. 142 */ 143 static int rcu_scheduler_fully_active __read_mostly; 144 145 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp, 146 unsigned long gps, unsigned long flags); 147 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf); 148 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf); 149 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu); 150 static void invoke_rcu_core(void); 151 static void rcu_report_exp_rdp(struct rcu_data *rdp); 152 static void sync_sched_exp_online_cleanup(int cpu); 153 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp); 154 static bool rcu_rdp_is_offloaded(struct rcu_data *rdp); 155 156 /* rcuc/rcub kthread realtime priority */ 157 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0; 158 module_param(kthread_prio, int, 0444); 159 160 /* Delay in jiffies for grace-period initialization delays, debug only. */ 161 162 static int gp_preinit_delay; 163 module_param(gp_preinit_delay, int, 0444); 164 static int gp_init_delay; 165 module_param(gp_init_delay, int, 0444); 166 static int gp_cleanup_delay; 167 module_param(gp_cleanup_delay, int, 0444); 168 169 // Add delay to rcu_read_unlock() for strict grace periods. 170 static int rcu_unlock_delay; 171 #ifdef CONFIG_RCU_STRICT_GRACE_PERIOD 172 module_param(rcu_unlock_delay, int, 0444); 173 #endif 174 175 /* 176 * This rcu parameter is runtime-read-only. It reflects 177 * a minimum allowed number of objects which can be cached 178 * per-CPU. Object size is equal to one page. This value 179 * can be changed at boot time. 180 */ 181 static int rcu_min_cached_objs = 5; 182 module_param(rcu_min_cached_objs, int, 0444); 183 184 // A page shrinker can ask for pages to be freed to make them 185 // available for other parts of the system. This usually happens 186 // under low memory conditions, and in that case we should also 187 // defer page-cache filling for a short time period. 188 // 189 // The default value is 5 seconds, which is long enough to reduce 190 // interference with the shrinker while it asks other systems to 191 // drain their caches. 192 static int rcu_delay_page_cache_fill_msec = 5000; 193 module_param(rcu_delay_page_cache_fill_msec, int, 0444); 194 195 /* Retrieve RCU kthreads priority for rcutorture */ 196 int rcu_get_gp_kthreads_prio(void) 197 { 198 return kthread_prio; 199 } 200 EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio); 201 202 /* 203 * Number of grace periods between delays, normalized by the duration of 204 * the delay. The longer the delay, the more the grace periods between 205 * each delay. The reason for this normalization is that it means that, 206 * for non-zero delays, the overall slowdown of grace periods is constant 207 * regardless of the duration of the delay. This arrangement balances 208 * the need for long delays to increase some race probabilities with the 209 * need for fast grace periods to increase other race probabilities. 210 */ 211 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays for debugging. */ 212 213 /* 214 * Compute the mask of online CPUs for the specified rcu_node structure. 215 * This will not be stable unless the rcu_node structure's ->lock is 216 * held, but the bit corresponding to the current CPU will be stable 217 * in most contexts. 218 */ 219 static unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp) 220 { 221 return READ_ONCE(rnp->qsmaskinitnext); 222 } 223 224 /* 225 * Return true if an RCU grace period is in progress. The READ_ONCE()s 226 * permit this function to be invoked without holding the root rcu_node 227 * structure's ->lock, but of course results can be subject to change. 228 */ 229 static int rcu_gp_in_progress(void) 230 { 231 return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq)); 232 } 233 234 /* 235 * Return the number of callbacks queued on the specified CPU. 236 * Handles both the nocbs and normal cases. 237 */ 238 static long rcu_get_n_cbs_cpu(int cpu) 239 { 240 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 241 242 if (rcu_segcblist_is_enabled(&rdp->cblist)) 243 return rcu_segcblist_n_cbs(&rdp->cblist); 244 return 0; 245 } 246 247 void rcu_softirq_qs(void) 248 { 249 rcu_qs(); 250 rcu_preempt_deferred_qs(current); 251 rcu_tasks_qs(current, false); 252 } 253 254 /* 255 * Increment the current CPU's rcu_data structure's ->dynticks field 256 * with ordering. Return the new value. 257 */ 258 static noinline noinstr unsigned long rcu_dynticks_inc(int incby) 259 { 260 return arch_atomic_add_return(incby, this_cpu_ptr(&rcu_data.dynticks)); 261 } 262 263 /* 264 * Record entry into an extended quiescent state. This is only to be 265 * called when not already in an extended quiescent state, that is, 266 * RCU is watching prior to the call to this function and is no longer 267 * watching upon return. 268 */ 269 static noinstr void rcu_dynticks_eqs_enter(void) 270 { 271 int seq; 272 273 /* 274 * CPUs seeing atomic_add_return() must see prior RCU read-side 275 * critical sections, and we also must force ordering with the 276 * next idle sojourn. 277 */ 278 rcu_dynticks_task_trace_enter(); // Before ->dynticks update! 279 seq = rcu_dynticks_inc(1); 280 // RCU is no longer watching. Better be in extended quiescent state! 281 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && (seq & 0x1)); 282 } 283 284 /* 285 * Record exit from an extended quiescent state. This is only to be 286 * called from an extended quiescent state, that is, RCU is not watching 287 * prior to the call to this function and is watching upon return. 288 */ 289 static noinstr void rcu_dynticks_eqs_exit(void) 290 { 291 int seq; 292 293 /* 294 * CPUs seeing atomic_add_return() must see prior idle sojourns, 295 * and we also must force ordering with the next RCU read-side 296 * critical section. 297 */ 298 seq = rcu_dynticks_inc(1); 299 // RCU is now watching. Better not be in an extended quiescent state! 300 rcu_dynticks_task_trace_exit(); // After ->dynticks update! 301 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !(seq & 0x1)); 302 } 303 304 /* 305 * Reset the current CPU's ->dynticks counter to indicate that the 306 * newly onlined CPU is no longer in an extended quiescent state. 307 * This will either leave the counter unchanged, or increment it 308 * to the next non-quiescent value. 309 * 310 * The non-atomic test/increment sequence works because the upper bits 311 * of the ->dynticks counter are manipulated only by the corresponding CPU, 312 * or when the corresponding CPU is offline. 313 */ 314 static void rcu_dynticks_eqs_online(void) 315 { 316 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 317 318 if (atomic_read(&rdp->dynticks) & 0x1) 319 return; 320 rcu_dynticks_inc(1); 321 } 322 323 /* 324 * Is the current CPU in an extended quiescent state? 325 * 326 * No ordering, as we are sampling CPU-local information. 327 */ 328 static __always_inline bool rcu_dynticks_curr_cpu_in_eqs(void) 329 { 330 return !(atomic_read(this_cpu_ptr(&rcu_data.dynticks)) & 0x1); 331 } 332 333 /* 334 * Snapshot the ->dynticks counter with full ordering so as to allow 335 * stable comparison of this counter with past and future snapshots. 336 */ 337 static int rcu_dynticks_snap(struct rcu_data *rdp) 338 { 339 smp_mb(); // Fundamental RCU ordering guarantee. 340 return atomic_read_acquire(&rdp->dynticks); 341 } 342 343 /* 344 * Return true if the snapshot returned from rcu_dynticks_snap() 345 * indicates that RCU is in an extended quiescent state. 346 */ 347 static bool rcu_dynticks_in_eqs(int snap) 348 { 349 return !(snap & 0x1); 350 } 351 352 /* Return true if the specified CPU is currently idle from an RCU viewpoint. */ 353 bool rcu_is_idle_cpu(int cpu) 354 { 355 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 356 357 return rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp)); 358 } 359 360 /* 361 * Return true if the CPU corresponding to the specified rcu_data 362 * structure has spent some time in an extended quiescent state since 363 * rcu_dynticks_snap() returned the specified snapshot. 364 */ 365 static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap) 366 { 367 return snap != rcu_dynticks_snap(rdp); 368 } 369 370 /* 371 * Return true if the referenced integer is zero while the specified 372 * CPU remains within a single extended quiescent state. 373 */ 374 bool rcu_dynticks_zero_in_eqs(int cpu, int *vp) 375 { 376 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 377 int snap; 378 379 // If not quiescent, force back to earlier extended quiescent state. 380 snap = atomic_read(&rdp->dynticks) & ~0x1; 381 382 smp_rmb(); // Order ->dynticks and *vp reads. 383 if (READ_ONCE(*vp)) 384 return false; // Non-zero, so report failure; 385 smp_rmb(); // Order *vp read and ->dynticks re-read. 386 387 // If still in the same extended quiescent state, we are good! 388 return snap == atomic_read(&rdp->dynticks); 389 } 390 391 /* 392 * Let the RCU core know that this CPU has gone through the scheduler, 393 * which is a quiescent state. This is called when the need for a 394 * quiescent state is urgent, so we burn an atomic operation and full 395 * memory barriers to let the RCU core know about it, regardless of what 396 * this CPU might (or might not) do in the near future. 397 * 398 * We inform the RCU core by emulating a zero-duration dyntick-idle period. 399 * 400 * The caller must have disabled interrupts and must not be idle. 401 */ 402 notrace void rcu_momentary_dyntick_idle(void) 403 { 404 int seq; 405 406 raw_cpu_write(rcu_data.rcu_need_heavy_qs, false); 407 seq = rcu_dynticks_inc(2); 408 /* It is illegal to call this from idle state. */ 409 WARN_ON_ONCE(!(seq & 0x1)); 410 rcu_preempt_deferred_qs(current); 411 } 412 EXPORT_SYMBOL_GPL(rcu_momentary_dyntick_idle); 413 414 /** 415 * rcu_is_cpu_rrupt_from_idle - see if 'interrupted' from idle 416 * 417 * If the current CPU is idle and running at a first-level (not nested) 418 * interrupt, or directly, from idle, return true. 419 * 420 * The caller must have at least disabled IRQs. 421 */ 422 static int rcu_is_cpu_rrupt_from_idle(void) 423 { 424 long nesting; 425 426 /* 427 * Usually called from the tick; but also used from smp_function_call() 428 * for expedited grace periods. This latter can result in running from 429 * the idle task, instead of an actual IPI. 430 */ 431 lockdep_assert_irqs_disabled(); 432 433 /* Check for counter underflows */ 434 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) < 0, 435 "RCU dynticks_nesting counter underflow!"); 436 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) <= 0, 437 "RCU dynticks_nmi_nesting counter underflow/zero!"); 438 439 /* Are we at first interrupt nesting level? */ 440 nesting = __this_cpu_read(rcu_data.dynticks_nmi_nesting); 441 if (nesting > 1) 442 return false; 443 444 /* 445 * If we're not in an interrupt, we must be in the idle task! 446 */ 447 WARN_ON_ONCE(!nesting && !is_idle_task(current)); 448 449 /* Does CPU appear to be idle from an RCU standpoint? */ 450 return __this_cpu_read(rcu_data.dynticks_nesting) == 0; 451 } 452 453 #define DEFAULT_RCU_BLIMIT (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 1000 : 10) 454 // Maximum callbacks per rcu_do_batch ... 455 #define DEFAULT_MAX_RCU_BLIMIT 10000 // ... even during callback flood. 456 static long blimit = DEFAULT_RCU_BLIMIT; 457 #define DEFAULT_RCU_QHIMARK 10000 // If this many pending, ignore blimit. 458 static long qhimark = DEFAULT_RCU_QHIMARK; 459 #define DEFAULT_RCU_QLOMARK 100 // Once only this many pending, use blimit. 460 static long qlowmark = DEFAULT_RCU_QLOMARK; 461 #define DEFAULT_RCU_QOVLD_MULT 2 462 #define DEFAULT_RCU_QOVLD (DEFAULT_RCU_QOVLD_MULT * DEFAULT_RCU_QHIMARK) 463 static long qovld = DEFAULT_RCU_QOVLD; // If this many pending, hammer QS. 464 static long qovld_calc = -1; // No pre-initialization lock acquisitions! 465 466 module_param(blimit, long, 0444); 467 module_param(qhimark, long, 0444); 468 module_param(qlowmark, long, 0444); 469 module_param(qovld, long, 0444); 470 471 static ulong jiffies_till_first_fqs = IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 0 : ULONG_MAX; 472 static ulong jiffies_till_next_fqs = ULONG_MAX; 473 static bool rcu_kick_kthreads; 474 static int rcu_divisor = 7; 475 module_param(rcu_divisor, int, 0644); 476 477 /* Force an exit from rcu_do_batch() after 3 milliseconds. */ 478 static long rcu_resched_ns = 3 * NSEC_PER_MSEC; 479 module_param(rcu_resched_ns, long, 0644); 480 481 /* 482 * How long the grace period must be before we start recruiting 483 * quiescent-state help from rcu_note_context_switch(). 484 */ 485 static ulong jiffies_till_sched_qs = ULONG_MAX; 486 module_param(jiffies_till_sched_qs, ulong, 0444); 487 static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */ 488 module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */ 489 490 /* 491 * Make sure that we give the grace-period kthread time to detect any 492 * idle CPUs before taking active measures to force quiescent states. 493 * However, don't go below 100 milliseconds, adjusted upwards for really 494 * large systems. 495 */ 496 static void adjust_jiffies_till_sched_qs(void) 497 { 498 unsigned long j; 499 500 /* If jiffies_till_sched_qs was specified, respect the request. */ 501 if (jiffies_till_sched_qs != ULONG_MAX) { 502 WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs); 503 return; 504 } 505 /* Otherwise, set to third fqs scan, but bound below on large system. */ 506 j = READ_ONCE(jiffies_till_first_fqs) + 507 2 * READ_ONCE(jiffies_till_next_fqs); 508 if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV) 509 j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; 510 pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j); 511 WRITE_ONCE(jiffies_to_sched_qs, j); 512 } 513 514 static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp) 515 { 516 ulong j; 517 int ret = kstrtoul(val, 0, &j); 518 519 if (!ret) { 520 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j); 521 adjust_jiffies_till_sched_qs(); 522 } 523 return ret; 524 } 525 526 static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp) 527 { 528 ulong j; 529 int ret = kstrtoul(val, 0, &j); 530 531 if (!ret) { 532 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1)); 533 adjust_jiffies_till_sched_qs(); 534 } 535 return ret; 536 } 537 538 static const struct kernel_param_ops first_fqs_jiffies_ops = { 539 .set = param_set_first_fqs_jiffies, 540 .get = param_get_ulong, 541 }; 542 543 static const struct kernel_param_ops next_fqs_jiffies_ops = { 544 .set = param_set_next_fqs_jiffies, 545 .get = param_get_ulong, 546 }; 547 548 module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644); 549 module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644); 550 module_param(rcu_kick_kthreads, bool, 0644); 551 552 static void force_qs_rnp(int (*f)(struct rcu_data *rdp)); 553 static int rcu_pending(int user); 554 555 /* 556 * Return the number of RCU GPs completed thus far for debug & stats. 557 */ 558 unsigned long rcu_get_gp_seq(void) 559 { 560 return READ_ONCE(rcu_state.gp_seq); 561 } 562 EXPORT_SYMBOL_GPL(rcu_get_gp_seq); 563 564 /* 565 * Return the number of RCU expedited batches completed thus far for 566 * debug & stats. Odd numbers mean that a batch is in progress, even 567 * numbers mean idle. The value returned will thus be roughly double 568 * the cumulative batches since boot. 569 */ 570 unsigned long rcu_exp_batches_completed(void) 571 { 572 return rcu_state.expedited_sequence; 573 } 574 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed); 575 576 /* 577 * Return the root node of the rcu_state structure. 578 */ 579 static struct rcu_node *rcu_get_root(void) 580 { 581 return &rcu_state.node[0]; 582 } 583 584 /* 585 * Send along grace-period-related data for rcutorture diagnostics. 586 */ 587 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags, 588 unsigned long *gp_seq) 589 { 590 switch (test_type) { 591 case RCU_FLAVOR: 592 *flags = READ_ONCE(rcu_state.gp_flags); 593 *gp_seq = rcu_seq_current(&rcu_state.gp_seq); 594 break; 595 default: 596 break; 597 } 598 } 599 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data); 600 601 /* 602 * Enter an RCU extended quiescent state, which can be either the 603 * idle loop or adaptive-tickless usermode execution. 604 * 605 * We crowbar the ->dynticks_nmi_nesting field to zero to allow for 606 * the possibility of usermode upcalls having messed up our count 607 * of interrupt nesting level during the prior busy period. 608 */ 609 static noinstr void rcu_eqs_enter(bool user) 610 { 611 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 612 613 WARN_ON_ONCE(rdp->dynticks_nmi_nesting != DYNTICK_IRQ_NONIDLE); 614 WRITE_ONCE(rdp->dynticks_nmi_nesting, 0); 615 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 616 rdp->dynticks_nesting == 0); 617 if (rdp->dynticks_nesting != 1) { 618 // RCU will still be watching, so just do accounting and leave. 619 rdp->dynticks_nesting--; 620 return; 621 } 622 623 lockdep_assert_irqs_disabled(); 624 instrumentation_begin(); 625 trace_rcu_dyntick(TPS("Start"), rdp->dynticks_nesting, 0, atomic_read(&rdp->dynticks)); 626 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current)); 627 rcu_prepare_for_idle(); 628 rcu_preempt_deferred_qs(current); 629 630 // instrumentation for the noinstr rcu_dynticks_eqs_enter() 631 instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks)); 632 633 instrumentation_end(); 634 WRITE_ONCE(rdp->dynticks_nesting, 0); /* Avoid irq-access tearing. */ 635 // RCU is watching here ... 636 rcu_dynticks_eqs_enter(); 637 // ... but is no longer watching here. 638 rcu_dynticks_task_enter(); 639 } 640 641 /** 642 * rcu_idle_enter - inform RCU that current CPU is entering idle 643 * 644 * Enter idle mode, in other words, -leave- the mode in which RCU 645 * read-side critical sections can occur. (Though RCU read-side 646 * critical sections can occur in irq handlers in idle, a possibility 647 * handled by irq_enter() and irq_exit().) 648 * 649 * If you add or remove a call to rcu_idle_enter(), be sure to test with 650 * CONFIG_RCU_EQS_DEBUG=y. 651 */ 652 void rcu_idle_enter(void) 653 { 654 lockdep_assert_irqs_disabled(); 655 rcu_eqs_enter(false); 656 } 657 EXPORT_SYMBOL_GPL(rcu_idle_enter); 658 659 #ifdef CONFIG_NO_HZ_FULL 660 661 #if !defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK) 662 /* 663 * An empty function that will trigger a reschedule on 664 * IRQ tail once IRQs get re-enabled on userspace/guest resume. 665 */ 666 static void late_wakeup_func(struct irq_work *work) 667 { 668 } 669 670 static DEFINE_PER_CPU(struct irq_work, late_wakeup_work) = 671 IRQ_WORK_INIT(late_wakeup_func); 672 673 /* 674 * If either: 675 * 676 * 1) the task is about to enter in guest mode and $ARCH doesn't support KVM generic work 677 * 2) the task is about to enter in user mode and $ARCH doesn't support generic entry. 678 * 679 * In these cases the late RCU wake ups aren't supported in the resched loops and our 680 * last resort is to fire a local irq_work that will trigger a reschedule once IRQs 681 * get re-enabled again. 682 */ 683 noinstr static void rcu_irq_work_resched(void) 684 { 685 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 686 687 if (IS_ENABLED(CONFIG_GENERIC_ENTRY) && !(current->flags & PF_VCPU)) 688 return; 689 690 if (IS_ENABLED(CONFIG_KVM_XFER_TO_GUEST_WORK) && (current->flags & PF_VCPU)) 691 return; 692 693 instrumentation_begin(); 694 if (do_nocb_deferred_wakeup(rdp) && need_resched()) { 695 irq_work_queue(this_cpu_ptr(&late_wakeup_work)); 696 } 697 instrumentation_end(); 698 } 699 700 #else 701 static inline void rcu_irq_work_resched(void) { } 702 #endif 703 704 /** 705 * rcu_user_enter - inform RCU that we are resuming userspace. 706 * 707 * Enter RCU idle mode right before resuming userspace. No use of RCU 708 * is permitted between this call and rcu_user_exit(). This way the 709 * CPU doesn't need to maintain the tick for RCU maintenance purposes 710 * when the CPU runs in userspace. 711 * 712 * If you add or remove a call to rcu_user_enter(), be sure to test with 713 * CONFIG_RCU_EQS_DEBUG=y. 714 */ 715 noinstr void rcu_user_enter(void) 716 { 717 lockdep_assert_irqs_disabled(); 718 719 /* 720 * Other than generic entry implementation, we may be past the last 721 * rescheduling opportunity in the entry code. Trigger a self IPI 722 * that will fire and reschedule once we resume in user/guest mode. 723 */ 724 rcu_irq_work_resched(); 725 rcu_eqs_enter(true); 726 } 727 728 #endif /* CONFIG_NO_HZ_FULL */ 729 730 /** 731 * rcu_nmi_exit - inform RCU of exit from NMI context 732 * 733 * If we are returning from the outermost NMI handler that interrupted an 734 * RCU-idle period, update rdp->dynticks and rdp->dynticks_nmi_nesting 735 * to let the RCU grace-period handling know that the CPU is back to 736 * being RCU-idle. 737 * 738 * If you add or remove a call to rcu_nmi_exit(), be sure to test 739 * with CONFIG_RCU_EQS_DEBUG=y. 740 */ 741 noinstr void rcu_nmi_exit(void) 742 { 743 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 744 745 instrumentation_begin(); 746 /* 747 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks. 748 * (We are exiting an NMI handler, so RCU better be paying attention 749 * to us!) 750 */ 751 WARN_ON_ONCE(rdp->dynticks_nmi_nesting <= 0); 752 WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs()); 753 754 /* 755 * If the nesting level is not 1, the CPU wasn't RCU-idle, so 756 * leave it in non-RCU-idle state. 757 */ 758 if (rdp->dynticks_nmi_nesting != 1) { 759 trace_rcu_dyntick(TPS("--="), rdp->dynticks_nmi_nesting, rdp->dynticks_nmi_nesting - 2, 760 atomic_read(&rdp->dynticks)); 761 WRITE_ONCE(rdp->dynticks_nmi_nesting, /* No store tearing. */ 762 rdp->dynticks_nmi_nesting - 2); 763 instrumentation_end(); 764 return; 765 } 766 767 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */ 768 trace_rcu_dyntick(TPS("Startirq"), rdp->dynticks_nmi_nesting, 0, atomic_read(&rdp->dynticks)); 769 WRITE_ONCE(rdp->dynticks_nmi_nesting, 0); /* Avoid store tearing. */ 770 771 if (!in_nmi()) 772 rcu_prepare_for_idle(); 773 774 // instrumentation for the noinstr rcu_dynticks_eqs_enter() 775 instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks)); 776 instrumentation_end(); 777 778 // RCU is watching here ... 779 rcu_dynticks_eqs_enter(); 780 // ... but is no longer watching here. 781 782 if (!in_nmi()) 783 rcu_dynticks_task_enter(); 784 } 785 786 /** 787 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle 788 * 789 * Exit from an interrupt handler, which might possibly result in entering 790 * idle mode, in other words, leaving the mode in which read-side critical 791 * sections can occur. The caller must have disabled interrupts. 792 * 793 * This code assumes that the idle loop never does anything that might 794 * result in unbalanced calls to irq_enter() and irq_exit(). If your 795 * architecture's idle loop violates this assumption, RCU will give you what 796 * you deserve, good and hard. But very infrequently and irreproducibly. 797 * 798 * Use things like work queues to work around this limitation. 799 * 800 * You have been warned. 801 * 802 * If you add or remove a call to rcu_irq_exit(), be sure to test with 803 * CONFIG_RCU_EQS_DEBUG=y. 804 */ 805 void noinstr rcu_irq_exit(void) 806 { 807 lockdep_assert_irqs_disabled(); 808 rcu_nmi_exit(); 809 } 810 811 #ifdef CONFIG_PROVE_RCU 812 /** 813 * rcu_irq_exit_check_preempt - Validate that scheduling is possible 814 */ 815 void rcu_irq_exit_check_preempt(void) 816 { 817 lockdep_assert_irqs_disabled(); 818 819 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) <= 0, 820 "RCU dynticks_nesting counter underflow/zero!"); 821 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) != 822 DYNTICK_IRQ_NONIDLE, 823 "Bad RCU dynticks_nmi_nesting counter\n"); 824 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(), 825 "RCU in extended quiescent state!"); 826 } 827 #endif /* #ifdef CONFIG_PROVE_RCU */ 828 829 /* 830 * Wrapper for rcu_irq_exit() where interrupts are enabled. 831 * 832 * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test 833 * with CONFIG_RCU_EQS_DEBUG=y. 834 */ 835 void rcu_irq_exit_irqson(void) 836 { 837 unsigned long flags; 838 839 local_irq_save(flags); 840 rcu_irq_exit(); 841 local_irq_restore(flags); 842 } 843 844 /* 845 * Exit an RCU extended quiescent state, which can be either the 846 * idle loop or adaptive-tickless usermode execution. 847 * 848 * We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to 849 * allow for the possibility of usermode upcalls messing up our count of 850 * interrupt nesting level during the busy period that is just now starting. 851 */ 852 static void noinstr rcu_eqs_exit(bool user) 853 { 854 struct rcu_data *rdp; 855 long oldval; 856 857 lockdep_assert_irqs_disabled(); 858 rdp = this_cpu_ptr(&rcu_data); 859 oldval = rdp->dynticks_nesting; 860 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0); 861 if (oldval) { 862 // RCU was already watching, so just do accounting and leave. 863 rdp->dynticks_nesting++; 864 return; 865 } 866 rcu_dynticks_task_exit(); 867 // RCU is not watching here ... 868 rcu_dynticks_eqs_exit(); 869 // ... but is watching here. 870 instrumentation_begin(); 871 872 // instrumentation for the noinstr rcu_dynticks_eqs_exit() 873 instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks)); 874 875 rcu_cleanup_after_idle(); 876 trace_rcu_dyntick(TPS("End"), rdp->dynticks_nesting, 1, atomic_read(&rdp->dynticks)); 877 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current)); 878 WRITE_ONCE(rdp->dynticks_nesting, 1); 879 WARN_ON_ONCE(rdp->dynticks_nmi_nesting); 880 WRITE_ONCE(rdp->dynticks_nmi_nesting, DYNTICK_IRQ_NONIDLE); 881 instrumentation_end(); 882 } 883 884 /** 885 * rcu_idle_exit - inform RCU that current CPU is leaving idle 886 * 887 * Exit idle mode, in other words, -enter- the mode in which RCU 888 * read-side critical sections can occur. 889 * 890 * If you add or remove a call to rcu_idle_exit(), be sure to test with 891 * CONFIG_RCU_EQS_DEBUG=y. 892 */ 893 void rcu_idle_exit(void) 894 { 895 unsigned long flags; 896 897 local_irq_save(flags); 898 rcu_eqs_exit(false); 899 local_irq_restore(flags); 900 } 901 EXPORT_SYMBOL_GPL(rcu_idle_exit); 902 903 #ifdef CONFIG_NO_HZ_FULL 904 /** 905 * rcu_user_exit - inform RCU that we are exiting userspace. 906 * 907 * Exit RCU idle mode while entering the kernel because it can 908 * run a RCU read side critical section anytime. 909 * 910 * If you add or remove a call to rcu_user_exit(), be sure to test with 911 * CONFIG_RCU_EQS_DEBUG=y. 912 */ 913 void noinstr rcu_user_exit(void) 914 { 915 rcu_eqs_exit(true); 916 } 917 918 /** 919 * __rcu_irq_enter_check_tick - Enable scheduler tick on CPU if RCU needs it. 920 * 921 * The scheduler tick is not normally enabled when CPUs enter the kernel 922 * from nohz_full userspace execution. After all, nohz_full userspace 923 * execution is an RCU quiescent state and the time executing in the kernel 924 * is quite short. Except of course when it isn't. And it is not hard to 925 * cause a large system to spend tens of seconds or even minutes looping 926 * in the kernel, which can cause a number of problems, include RCU CPU 927 * stall warnings. 928 * 929 * Therefore, if a nohz_full CPU fails to report a quiescent state 930 * in a timely manner, the RCU grace-period kthread sets that CPU's 931 * ->rcu_urgent_qs flag with the expectation that the next interrupt or 932 * exception will invoke this function, which will turn on the scheduler 933 * tick, which will enable RCU to detect that CPU's quiescent states, 934 * for example, due to cond_resched() calls in CONFIG_PREEMPT=n kernels. 935 * The tick will be disabled once a quiescent state is reported for 936 * this CPU. 937 * 938 * Of course, in carefully tuned systems, there might never be an 939 * interrupt or exception. In that case, the RCU grace-period kthread 940 * will eventually cause one to happen. However, in less carefully 941 * controlled environments, this function allows RCU to get what it 942 * needs without creating otherwise useless interruptions. 943 */ 944 void __rcu_irq_enter_check_tick(void) 945 { 946 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 947 948 // If we're here from NMI there's nothing to do. 949 if (in_nmi()) 950 return; 951 952 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(), 953 "Illegal rcu_irq_enter_check_tick() from extended quiescent state"); 954 955 if (!tick_nohz_full_cpu(rdp->cpu) || 956 !READ_ONCE(rdp->rcu_urgent_qs) || 957 READ_ONCE(rdp->rcu_forced_tick)) { 958 // RCU doesn't need nohz_full help from this CPU, or it is 959 // already getting that help. 960 return; 961 } 962 963 // We get here only when not in an extended quiescent state and 964 // from interrupts (as opposed to NMIs). Therefore, (1) RCU is 965 // already watching and (2) The fact that we are in an interrupt 966 // handler and that the rcu_node lock is an irq-disabled lock 967 // prevents self-deadlock. So we can safely recheck under the lock. 968 // Note that the nohz_full state currently cannot change. 969 raw_spin_lock_rcu_node(rdp->mynode); 970 if (rdp->rcu_urgent_qs && !rdp->rcu_forced_tick) { 971 // A nohz_full CPU is in the kernel and RCU needs a 972 // quiescent state. Turn on the tick! 973 WRITE_ONCE(rdp->rcu_forced_tick, true); 974 tick_dep_set_cpu(rdp->cpu, TICK_DEP_BIT_RCU); 975 } 976 raw_spin_unlock_rcu_node(rdp->mynode); 977 } 978 #endif /* CONFIG_NO_HZ_FULL */ 979 980 /** 981 * rcu_nmi_enter - inform RCU of entry to NMI context 982 * 983 * If the CPU was idle from RCU's viewpoint, update rdp->dynticks and 984 * rdp->dynticks_nmi_nesting to let the RCU grace-period handling know 985 * that the CPU is active. This implementation permits nested NMIs, as 986 * long as the nesting level does not overflow an int. (You will probably 987 * run out of stack space first.) 988 * 989 * If you add or remove a call to rcu_nmi_enter(), be sure to test 990 * with CONFIG_RCU_EQS_DEBUG=y. 991 */ 992 noinstr void rcu_nmi_enter(void) 993 { 994 long incby = 2; 995 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 996 997 /* Complain about underflow. */ 998 WARN_ON_ONCE(rdp->dynticks_nmi_nesting < 0); 999 1000 /* 1001 * If idle from RCU viewpoint, atomically increment ->dynticks 1002 * to mark non-idle and increment ->dynticks_nmi_nesting by one. 1003 * Otherwise, increment ->dynticks_nmi_nesting by two. This means 1004 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed 1005 * to be in the outermost NMI handler that interrupted an RCU-idle 1006 * period (observation due to Andy Lutomirski). 1007 */ 1008 if (rcu_dynticks_curr_cpu_in_eqs()) { 1009 1010 if (!in_nmi()) 1011 rcu_dynticks_task_exit(); 1012 1013 // RCU is not watching here ... 1014 rcu_dynticks_eqs_exit(); 1015 // ... but is watching here. 1016 1017 if (!in_nmi()) { 1018 instrumentation_begin(); 1019 rcu_cleanup_after_idle(); 1020 instrumentation_end(); 1021 } 1022 1023 instrumentation_begin(); 1024 // instrumentation for the noinstr rcu_dynticks_curr_cpu_in_eqs() 1025 instrument_atomic_read(&rdp->dynticks, sizeof(rdp->dynticks)); 1026 // instrumentation for the noinstr rcu_dynticks_eqs_exit() 1027 instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks)); 1028 1029 incby = 1; 1030 } else if (!in_nmi()) { 1031 instrumentation_begin(); 1032 rcu_irq_enter_check_tick(); 1033 } else { 1034 instrumentation_begin(); 1035 } 1036 1037 trace_rcu_dyntick(incby == 1 ? TPS("Endirq") : TPS("++="), 1038 rdp->dynticks_nmi_nesting, 1039 rdp->dynticks_nmi_nesting + incby, atomic_read(&rdp->dynticks)); 1040 instrumentation_end(); 1041 WRITE_ONCE(rdp->dynticks_nmi_nesting, /* Prevent store tearing. */ 1042 rdp->dynticks_nmi_nesting + incby); 1043 barrier(); 1044 } 1045 1046 /** 1047 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle 1048 * 1049 * Enter an interrupt handler, which might possibly result in exiting 1050 * idle mode, in other words, entering the mode in which read-side critical 1051 * sections can occur. The caller must have disabled interrupts. 1052 * 1053 * Note that the Linux kernel is fully capable of entering an interrupt 1054 * handler that it never exits, for example when doing upcalls to user mode! 1055 * This code assumes that the idle loop never does upcalls to user mode. 1056 * If your architecture's idle loop does do upcalls to user mode (or does 1057 * anything else that results in unbalanced calls to the irq_enter() and 1058 * irq_exit() functions), RCU will give you what you deserve, good and hard. 1059 * But very infrequently and irreproducibly. 1060 * 1061 * Use things like work queues to work around this limitation. 1062 * 1063 * You have been warned. 1064 * 1065 * If you add or remove a call to rcu_irq_enter(), be sure to test with 1066 * CONFIG_RCU_EQS_DEBUG=y. 1067 */ 1068 noinstr void rcu_irq_enter(void) 1069 { 1070 lockdep_assert_irqs_disabled(); 1071 rcu_nmi_enter(); 1072 } 1073 1074 /* 1075 * Wrapper for rcu_irq_enter() where interrupts are enabled. 1076 * 1077 * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test 1078 * with CONFIG_RCU_EQS_DEBUG=y. 1079 */ 1080 void rcu_irq_enter_irqson(void) 1081 { 1082 unsigned long flags; 1083 1084 local_irq_save(flags); 1085 rcu_irq_enter(); 1086 local_irq_restore(flags); 1087 } 1088 1089 /* 1090 * If any sort of urgency was applied to the current CPU (for example, 1091 * the scheduler-clock interrupt was enabled on a nohz_full CPU) in order 1092 * to get to a quiescent state, disable it. 1093 */ 1094 static void rcu_disable_urgency_upon_qs(struct rcu_data *rdp) 1095 { 1096 raw_lockdep_assert_held_rcu_node(rdp->mynode); 1097 WRITE_ONCE(rdp->rcu_urgent_qs, false); 1098 WRITE_ONCE(rdp->rcu_need_heavy_qs, false); 1099 if (tick_nohz_full_cpu(rdp->cpu) && rdp->rcu_forced_tick) { 1100 tick_dep_clear_cpu(rdp->cpu, TICK_DEP_BIT_RCU); 1101 WRITE_ONCE(rdp->rcu_forced_tick, false); 1102 } 1103 } 1104 1105 /** 1106 * rcu_is_watching - see if RCU thinks that the current CPU is not idle 1107 * 1108 * Return true if RCU is watching the running CPU, which means that this 1109 * CPU can safely enter RCU read-side critical sections. In other words, 1110 * if the current CPU is not in its idle loop or is in an interrupt or 1111 * NMI handler, return true. 1112 * 1113 * Make notrace because it can be called by the internal functions of 1114 * ftrace, and making this notrace removes unnecessary recursion calls. 1115 */ 1116 notrace bool rcu_is_watching(void) 1117 { 1118 bool ret; 1119 1120 preempt_disable_notrace(); 1121 ret = !rcu_dynticks_curr_cpu_in_eqs(); 1122 preempt_enable_notrace(); 1123 return ret; 1124 } 1125 EXPORT_SYMBOL_GPL(rcu_is_watching); 1126 1127 /* 1128 * If a holdout task is actually running, request an urgent quiescent 1129 * state from its CPU. This is unsynchronized, so migrations can cause 1130 * the request to go to the wrong CPU. Which is OK, all that will happen 1131 * is that the CPU's next context switch will be a bit slower and next 1132 * time around this task will generate another request. 1133 */ 1134 void rcu_request_urgent_qs_task(struct task_struct *t) 1135 { 1136 int cpu; 1137 1138 barrier(); 1139 cpu = task_cpu(t); 1140 if (!task_curr(t)) 1141 return; /* This task is not running on that CPU. */ 1142 smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true); 1143 } 1144 1145 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) 1146 1147 /* 1148 * Is the current CPU online as far as RCU is concerned? 1149 * 1150 * Disable preemption to avoid false positives that could otherwise 1151 * happen due to the current CPU number being sampled, this task being 1152 * preempted, its old CPU being taken offline, resuming on some other CPU, 1153 * then determining that its old CPU is now offline. 1154 * 1155 * Disable checking if in an NMI handler because we cannot safely 1156 * report errors from NMI handlers anyway. In addition, it is OK to use 1157 * RCU on an offline processor during initial boot, hence the check for 1158 * rcu_scheduler_fully_active. 1159 */ 1160 bool rcu_lockdep_current_cpu_online(void) 1161 { 1162 struct rcu_data *rdp; 1163 struct rcu_node *rnp; 1164 bool ret = false; 1165 1166 if (in_nmi() || !rcu_scheduler_fully_active) 1167 return true; 1168 preempt_disable_notrace(); 1169 rdp = this_cpu_ptr(&rcu_data); 1170 rnp = rdp->mynode; 1171 if (rdp->grpmask & rcu_rnp_online_cpus(rnp) || READ_ONCE(rnp->ofl_seq) & 0x1) 1172 ret = true; 1173 preempt_enable_notrace(); 1174 return ret; 1175 } 1176 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online); 1177 1178 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */ 1179 1180 /* 1181 * When trying to report a quiescent state on behalf of some other CPU, 1182 * it is our responsibility to check for and handle potential overflow 1183 * of the rcu_node ->gp_seq counter with respect to the rcu_data counters. 1184 * After all, the CPU might be in deep idle state, and thus executing no 1185 * code whatsoever. 1186 */ 1187 static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp) 1188 { 1189 raw_lockdep_assert_held_rcu_node(rnp); 1190 if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4, 1191 rnp->gp_seq)) 1192 WRITE_ONCE(rdp->gpwrap, true); 1193 if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq)) 1194 rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4; 1195 } 1196 1197 /* 1198 * Snapshot the specified CPU's dynticks counter so that we can later 1199 * credit them with an implicit quiescent state. Return 1 if this CPU 1200 * is in dynticks idle mode, which is an extended quiescent state. 1201 */ 1202 static int dyntick_save_progress_counter(struct rcu_data *rdp) 1203 { 1204 rdp->dynticks_snap = rcu_dynticks_snap(rdp); 1205 if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) { 1206 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti")); 1207 rcu_gpnum_ovf(rdp->mynode, rdp); 1208 return 1; 1209 } 1210 return 0; 1211 } 1212 1213 /* 1214 * Return true if the specified CPU has passed through a quiescent 1215 * state by virtue of being in or having passed through an dynticks 1216 * idle state since the last call to dyntick_save_progress_counter() 1217 * for this same CPU, or by virtue of having been offline. 1218 */ 1219 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp) 1220 { 1221 unsigned long jtsq; 1222 bool *rnhqp; 1223 bool *ruqp; 1224 struct rcu_node *rnp = rdp->mynode; 1225 1226 /* 1227 * If the CPU passed through or entered a dynticks idle phase with 1228 * no active irq/NMI handlers, then we can safely pretend that the CPU 1229 * already acknowledged the request to pass through a quiescent 1230 * state. Either way, that CPU cannot possibly be in an RCU 1231 * read-side critical section that started before the beginning 1232 * of the current RCU grace period. 1233 */ 1234 if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) { 1235 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti")); 1236 rcu_gpnum_ovf(rnp, rdp); 1237 return 1; 1238 } 1239 1240 /* 1241 * Complain if a CPU that is considered to be offline from RCU's 1242 * perspective has not yet reported a quiescent state. After all, 1243 * the offline CPU should have reported a quiescent state during 1244 * the CPU-offline process, or, failing that, by rcu_gp_init() 1245 * if it ran concurrently with either the CPU going offline or the 1246 * last task on a leaf rcu_node structure exiting its RCU read-side 1247 * critical section while all CPUs corresponding to that structure 1248 * are offline. This added warning detects bugs in any of these 1249 * code paths. 1250 * 1251 * The rcu_node structure's ->lock is held here, which excludes 1252 * the relevant portions the CPU-hotplug code, the grace-period 1253 * initialization code, and the rcu_read_unlock() code paths. 1254 * 1255 * For more detail, please refer to the "Hotplug CPU" section 1256 * of RCU's Requirements documentation. 1257 */ 1258 if (WARN_ON_ONCE(!(rdp->grpmask & rcu_rnp_online_cpus(rnp)))) { 1259 bool onl; 1260 struct rcu_node *rnp1; 1261 1262 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n", 1263 __func__, rnp->grplo, rnp->grphi, rnp->level, 1264 (long)rnp->gp_seq, (long)rnp->completedqs); 1265 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent) 1266 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n", 1267 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask); 1268 onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp)); 1269 pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n", 1270 __func__, rdp->cpu, ".o"[onl], 1271 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags, 1272 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags); 1273 return 1; /* Break things loose after complaining. */ 1274 } 1275 1276 /* 1277 * A CPU running for an extended time within the kernel can 1278 * delay RCU grace periods: (1) At age jiffies_to_sched_qs, 1279 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set 1280 * both .rcu_need_heavy_qs and .rcu_urgent_qs. Note that the 1281 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs 1282 * variable are safe because the assignments are repeated if this 1283 * CPU failed to pass through a quiescent state. This code 1284 * also checks .jiffies_resched in case jiffies_to_sched_qs 1285 * is set way high. 1286 */ 1287 jtsq = READ_ONCE(jiffies_to_sched_qs); 1288 ruqp = per_cpu_ptr(&rcu_data.rcu_urgent_qs, rdp->cpu); 1289 rnhqp = per_cpu_ptr(&rcu_data.rcu_need_heavy_qs, rdp->cpu); 1290 if (!READ_ONCE(*rnhqp) && 1291 (time_after(jiffies, rcu_state.gp_start + jtsq * 2) || 1292 time_after(jiffies, rcu_state.jiffies_resched) || 1293 rcu_state.cbovld)) { 1294 WRITE_ONCE(*rnhqp, true); 1295 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */ 1296 smp_store_release(ruqp, true); 1297 } else if (time_after(jiffies, rcu_state.gp_start + jtsq)) { 1298 WRITE_ONCE(*ruqp, true); 1299 } 1300 1301 /* 1302 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq! 1303 * The above code handles this, but only for straight cond_resched(). 1304 * And some in-kernel loops check need_resched() before calling 1305 * cond_resched(), which defeats the above code for CPUs that are 1306 * running in-kernel with scheduling-clock interrupts disabled. 1307 * So hit them over the head with the resched_cpu() hammer! 1308 */ 1309 if (tick_nohz_full_cpu(rdp->cpu) && 1310 (time_after(jiffies, READ_ONCE(rdp->last_fqs_resched) + jtsq * 3) || 1311 rcu_state.cbovld)) { 1312 WRITE_ONCE(*ruqp, true); 1313 resched_cpu(rdp->cpu); 1314 WRITE_ONCE(rdp->last_fqs_resched, jiffies); 1315 } 1316 1317 /* 1318 * If more than halfway to RCU CPU stall-warning time, invoke 1319 * resched_cpu() more frequently to try to loosen things up a bit. 1320 * Also check to see if the CPU is getting hammered with interrupts, 1321 * but only once per grace period, just to keep the IPIs down to 1322 * a dull roar. 1323 */ 1324 if (time_after(jiffies, rcu_state.jiffies_resched)) { 1325 if (time_after(jiffies, 1326 READ_ONCE(rdp->last_fqs_resched) + jtsq)) { 1327 resched_cpu(rdp->cpu); 1328 WRITE_ONCE(rdp->last_fqs_resched, jiffies); 1329 } 1330 if (IS_ENABLED(CONFIG_IRQ_WORK) && 1331 !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq && 1332 (rnp->ffmask & rdp->grpmask)) { 1333 rdp->rcu_iw_pending = true; 1334 rdp->rcu_iw_gp_seq = rnp->gp_seq; 1335 irq_work_queue_on(&rdp->rcu_iw, rdp->cpu); 1336 } 1337 } 1338 1339 return 0; 1340 } 1341 1342 /* Trace-event wrapper function for trace_rcu_future_grace_period. */ 1343 static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp, 1344 unsigned long gp_seq_req, const char *s) 1345 { 1346 trace_rcu_future_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq), 1347 gp_seq_req, rnp->level, 1348 rnp->grplo, rnp->grphi, s); 1349 } 1350 1351 /* 1352 * rcu_start_this_gp - Request the start of a particular grace period 1353 * @rnp_start: The leaf node of the CPU from which to start. 1354 * @rdp: The rcu_data corresponding to the CPU from which to start. 1355 * @gp_seq_req: The gp_seq of the grace period to start. 1356 * 1357 * Start the specified grace period, as needed to handle newly arrived 1358 * callbacks. The required future grace periods are recorded in each 1359 * rcu_node structure's ->gp_seq_needed field. Returns true if there 1360 * is reason to awaken the grace-period kthread. 1361 * 1362 * The caller must hold the specified rcu_node structure's ->lock, which 1363 * is why the caller is responsible for waking the grace-period kthread. 1364 * 1365 * Returns true if the GP thread needs to be awakened else false. 1366 */ 1367 static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp, 1368 unsigned long gp_seq_req) 1369 { 1370 bool ret = false; 1371 struct rcu_node *rnp; 1372 1373 /* 1374 * Use funnel locking to either acquire the root rcu_node 1375 * structure's lock or bail out if the need for this grace period 1376 * has already been recorded -- or if that grace period has in 1377 * fact already started. If there is already a grace period in 1378 * progress in a non-leaf node, no recording is needed because the 1379 * end of the grace period will scan the leaf rcu_node structures. 1380 * Note that rnp_start->lock must not be released. 1381 */ 1382 raw_lockdep_assert_held_rcu_node(rnp_start); 1383 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf")); 1384 for (rnp = rnp_start; 1; rnp = rnp->parent) { 1385 if (rnp != rnp_start) 1386 raw_spin_lock_rcu_node(rnp); 1387 if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) || 1388 rcu_seq_started(&rnp->gp_seq, gp_seq_req) || 1389 (rnp != rnp_start && 1390 rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) { 1391 trace_rcu_this_gp(rnp, rdp, gp_seq_req, 1392 TPS("Prestarted")); 1393 goto unlock_out; 1394 } 1395 WRITE_ONCE(rnp->gp_seq_needed, gp_seq_req); 1396 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) { 1397 /* 1398 * We just marked the leaf or internal node, and a 1399 * grace period is in progress, which means that 1400 * rcu_gp_cleanup() will see the marking. Bail to 1401 * reduce contention. 1402 */ 1403 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, 1404 TPS("Startedleaf")); 1405 goto unlock_out; 1406 } 1407 if (rnp != rnp_start && rnp->parent != NULL) 1408 raw_spin_unlock_rcu_node(rnp); 1409 if (!rnp->parent) 1410 break; /* At root, and perhaps also leaf. */ 1411 } 1412 1413 /* If GP already in progress, just leave, otherwise start one. */ 1414 if (rcu_gp_in_progress()) { 1415 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot")); 1416 goto unlock_out; 1417 } 1418 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot")); 1419 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT); 1420 WRITE_ONCE(rcu_state.gp_req_activity, jiffies); 1421 if (!READ_ONCE(rcu_state.gp_kthread)) { 1422 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread")); 1423 goto unlock_out; 1424 } 1425 trace_rcu_grace_period(rcu_state.name, data_race(rcu_state.gp_seq), TPS("newreq")); 1426 ret = true; /* Caller must wake GP kthread. */ 1427 unlock_out: 1428 /* Push furthest requested GP to leaf node and rcu_data structure. */ 1429 if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) { 1430 WRITE_ONCE(rnp_start->gp_seq_needed, rnp->gp_seq_needed); 1431 WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed); 1432 } 1433 if (rnp != rnp_start) 1434 raw_spin_unlock_rcu_node(rnp); 1435 return ret; 1436 } 1437 1438 /* 1439 * Clean up any old requests for the just-ended grace period. Also return 1440 * whether any additional grace periods have been requested. 1441 */ 1442 static bool rcu_future_gp_cleanup(struct rcu_node *rnp) 1443 { 1444 bool needmore; 1445 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 1446 1447 needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed); 1448 if (!needmore) 1449 rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */ 1450 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq, 1451 needmore ? TPS("CleanupMore") : TPS("Cleanup")); 1452 return needmore; 1453 } 1454 1455 /* 1456 * Awaken the grace-period kthread. Don't do a self-awaken (unless in an 1457 * interrupt or softirq handler, in which case we just might immediately 1458 * sleep upon return, resulting in a grace-period hang), and don't bother 1459 * awakening when there is nothing for the grace-period kthread to do 1460 * (as in several CPUs raced to awaken, we lost), and finally don't try 1461 * to awaken a kthread that has not yet been created. If all those checks 1462 * are passed, track some debug information and awaken. 1463 * 1464 * So why do the self-wakeup when in an interrupt or softirq handler 1465 * in the grace-period kthread's context? Because the kthread might have 1466 * been interrupted just as it was going to sleep, and just after the final 1467 * pre-sleep check of the awaken condition. In this case, a wakeup really 1468 * is required, and is therefore supplied. 1469 */ 1470 static void rcu_gp_kthread_wake(void) 1471 { 1472 struct task_struct *t = READ_ONCE(rcu_state.gp_kthread); 1473 1474 if ((current == t && !in_irq() && !in_serving_softirq()) || 1475 !READ_ONCE(rcu_state.gp_flags) || !t) 1476 return; 1477 WRITE_ONCE(rcu_state.gp_wake_time, jiffies); 1478 WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq)); 1479 swake_up_one(&rcu_state.gp_wq); 1480 } 1481 1482 /* 1483 * If there is room, assign a ->gp_seq number to any callbacks on this 1484 * CPU that have not already been assigned. Also accelerate any callbacks 1485 * that were previously assigned a ->gp_seq number that has since proven 1486 * to be too conservative, which can happen if callbacks get assigned a 1487 * ->gp_seq number while RCU is idle, but with reference to a non-root 1488 * rcu_node structure. This function is idempotent, so it does not hurt 1489 * to call it repeatedly. Returns an flag saying that we should awaken 1490 * the RCU grace-period kthread. 1491 * 1492 * The caller must hold rnp->lock with interrupts disabled. 1493 */ 1494 static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp) 1495 { 1496 unsigned long gp_seq_req; 1497 bool ret = false; 1498 1499 rcu_lockdep_assert_cblist_protected(rdp); 1500 raw_lockdep_assert_held_rcu_node(rnp); 1501 1502 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */ 1503 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) 1504 return false; 1505 1506 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPreAcc")); 1507 1508 /* 1509 * Callbacks are often registered with incomplete grace-period 1510 * information. Something about the fact that getting exact 1511 * information requires acquiring a global lock... RCU therefore 1512 * makes a conservative estimate of the grace period number at which 1513 * a given callback will become ready to invoke. The following 1514 * code checks this estimate and improves it when possible, thus 1515 * accelerating callback invocation to an earlier grace-period 1516 * number. 1517 */ 1518 gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq); 1519 if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req)) 1520 ret = rcu_start_this_gp(rnp, rdp, gp_seq_req); 1521 1522 /* Trace depending on how much we were able to accelerate. */ 1523 if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL)) 1524 trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccWaitCB")); 1525 else 1526 trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccReadyCB")); 1527 1528 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPostAcc")); 1529 1530 return ret; 1531 } 1532 1533 /* 1534 * Similar to rcu_accelerate_cbs(), but does not require that the leaf 1535 * rcu_node structure's ->lock be held. It consults the cached value 1536 * of ->gp_seq_needed in the rcu_data structure, and if that indicates 1537 * that a new grace-period request be made, invokes rcu_accelerate_cbs() 1538 * while holding the leaf rcu_node structure's ->lock. 1539 */ 1540 static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp, 1541 struct rcu_data *rdp) 1542 { 1543 unsigned long c; 1544 bool needwake; 1545 1546 rcu_lockdep_assert_cblist_protected(rdp); 1547 c = rcu_seq_snap(&rcu_state.gp_seq); 1548 if (!READ_ONCE(rdp->gpwrap) && ULONG_CMP_GE(rdp->gp_seq_needed, c)) { 1549 /* Old request still live, so mark recent callbacks. */ 1550 (void)rcu_segcblist_accelerate(&rdp->cblist, c); 1551 return; 1552 } 1553 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 1554 needwake = rcu_accelerate_cbs(rnp, rdp); 1555 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 1556 if (needwake) 1557 rcu_gp_kthread_wake(); 1558 } 1559 1560 /* 1561 * Move any callbacks whose grace period has completed to the 1562 * RCU_DONE_TAIL sublist, then compact the remaining sublists and 1563 * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL 1564 * sublist. This function is idempotent, so it does not hurt to 1565 * invoke it repeatedly. As long as it is not invoked -too- often... 1566 * Returns true if the RCU grace-period kthread needs to be awakened. 1567 * 1568 * The caller must hold rnp->lock with interrupts disabled. 1569 */ 1570 static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp) 1571 { 1572 rcu_lockdep_assert_cblist_protected(rdp); 1573 raw_lockdep_assert_held_rcu_node(rnp); 1574 1575 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */ 1576 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) 1577 return false; 1578 1579 /* 1580 * Find all callbacks whose ->gp_seq numbers indicate that they 1581 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist. 1582 */ 1583 rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq); 1584 1585 /* Classify any remaining callbacks. */ 1586 return rcu_accelerate_cbs(rnp, rdp); 1587 } 1588 1589 /* 1590 * Move and classify callbacks, but only if doing so won't require 1591 * that the RCU grace-period kthread be awakened. 1592 */ 1593 static void __maybe_unused rcu_advance_cbs_nowake(struct rcu_node *rnp, 1594 struct rcu_data *rdp) 1595 { 1596 rcu_lockdep_assert_cblist_protected(rdp); 1597 if (!rcu_seq_state(rcu_seq_current(&rnp->gp_seq)) || 1598 !raw_spin_trylock_rcu_node(rnp)) 1599 return; 1600 WARN_ON_ONCE(rcu_advance_cbs(rnp, rdp)); 1601 raw_spin_unlock_rcu_node(rnp); 1602 } 1603 1604 /* 1605 * In CONFIG_RCU_STRICT_GRACE_PERIOD=y kernels, attempt to generate a 1606 * quiescent state. This is intended to be invoked when the CPU notices 1607 * a new grace period. 1608 */ 1609 static void rcu_strict_gp_check_qs(void) 1610 { 1611 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) { 1612 rcu_read_lock(); 1613 rcu_read_unlock(); 1614 } 1615 } 1616 1617 /* 1618 * Update CPU-local rcu_data state to record the beginnings and ends of 1619 * grace periods. The caller must hold the ->lock of the leaf rcu_node 1620 * structure corresponding to the current CPU, and must have irqs disabled. 1621 * Returns true if the grace-period kthread needs to be awakened. 1622 */ 1623 static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp) 1624 { 1625 bool ret = false; 1626 bool need_qs; 1627 const bool offloaded = rcu_rdp_is_offloaded(rdp); 1628 1629 raw_lockdep_assert_held_rcu_node(rnp); 1630 1631 if (rdp->gp_seq == rnp->gp_seq) 1632 return false; /* Nothing to do. */ 1633 1634 /* Handle the ends of any preceding grace periods first. */ 1635 if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) || 1636 unlikely(READ_ONCE(rdp->gpwrap))) { 1637 if (!offloaded) 1638 ret = rcu_advance_cbs(rnp, rdp); /* Advance CBs. */ 1639 rdp->core_needs_qs = false; 1640 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend")); 1641 } else { 1642 if (!offloaded) 1643 ret = rcu_accelerate_cbs(rnp, rdp); /* Recent CBs. */ 1644 if (rdp->core_needs_qs) 1645 rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask); 1646 } 1647 1648 /* Now handle the beginnings of any new-to-this-CPU grace periods. */ 1649 if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) || 1650 unlikely(READ_ONCE(rdp->gpwrap))) { 1651 /* 1652 * If the current grace period is waiting for this CPU, 1653 * set up to detect a quiescent state, otherwise don't 1654 * go looking for one. 1655 */ 1656 trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart")); 1657 need_qs = !!(rnp->qsmask & rdp->grpmask); 1658 rdp->cpu_no_qs.b.norm = need_qs; 1659 rdp->core_needs_qs = need_qs; 1660 zero_cpu_stall_ticks(rdp); 1661 } 1662 rdp->gp_seq = rnp->gp_seq; /* Remember new grace-period state. */ 1663 if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap) 1664 WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed); 1665 WRITE_ONCE(rdp->gpwrap, false); 1666 rcu_gpnum_ovf(rnp, rdp); 1667 return ret; 1668 } 1669 1670 static void note_gp_changes(struct rcu_data *rdp) 1671 { 1672 unsigned long flags; 1673 bool needwake; 1674 struct rcu_node *rnp; 1675 1676 local_irq_save(flags); 1677 rnp = rdp->mynode; 1678 if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) && 1679 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */ 1680 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */ 1681 local_irq_restore(flags); 1682 return; 1683 } 1684 needwake = __note_gp_changes(rnp, rdp); 1685 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1686 rcu_strict_gp_check_qs(); 1687 if (needwake) 1688 rcu_gp_kthread_wake(); 1689 } 1690 1691 static void rcu_gp_slow(int delay) 1692 { 1693 if (delay > 0 && 1694 !(rcu_seq_ctr(rcu_state.gp_seq) % 1695 (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay))) 1696 schedule_timeout_idle(delay); 1697 } 1698 1699 static unsigned long sleep_duration; 1700 1701 /* Allow rcutorture to stall the grace-period kthread. */ 1702 void rcu_gp_set_torture_wait(int duration) 1703 { 1704 if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST) && duration > 0) 1705 WRITE_ONCE(sleep_duration, duration); 1706 } 1707 EXPORT_SYMBOL_GPL(rcu_gp_set_torture_wait); 1708 1709 /* Actually implement the aforementioned wait. */ 1710 static void rcu_gp_torture_wait(void) 1711 { 1712 unsigned long duration; 1713 1714 if (!IS_ENABLED(CONFIG_RCU_TORTURE_TEST)) 1715 return; 1716 duration = xchg(&sleep_duration, 0UL); 1717 if (duration > 0) { 1718 pr_alert("%s: Waiting %lu jiffies\n", __func__, duration); 1719 schedule_timeout_idle(duration); 1720 pr_alert("%s: Wait complete\n", __func__); 1721 } 1722 } 1723 1724 /* 1725 * Handler for on_each_cpu() to invoke the target CPU's RCU core 1726 * processing. 1727 */ 1728 static void rcu_strict_gp_boundary(void *unused) 1729 { 1730 invoke_rcu_core(); 1731 } 1732 1733 /* 1734 * Initialize a new grace period. Return false if no grace period required. 1735 */ 1736 static noinline_for_stack bool rcu_gp_init(void) 1737 { 1738 unsigned long firstseq; 1739 unsigned long flags; 1740 unsigned long oldmask; 1741 unsigned long mask; 1742 struct rcu_data *rdp; 1743 struct rcu_node *rnp = rcu_get_root(); 1744 1745 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1746 raw_spin_lock_irq_rcu_node(rnp); 1747 if (!READ_ONCE(rcu_state.gp_flags)) { 1748 /* Spurious wakeup, tell caller to go back to sleep. */ 1749 raw_spin_unlock_irq_rcu_node(rnp); 1750 return false; 1751 } 1752 WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */ 1753 1754 if (WARN_ON_ONCE(rcu_gp_in_progress())) { 1755 /* 1756 * Grace period already in progress, don't start another. 1757 * Not supposed to be able to happen. 1758 */ 1759 raw_spin_unlock_irq_rcu_node(rnp); 1760 return false; 1761 } 1762 1763 /* Advance to a new grace period and initialize state. */ 1764 record_gp_stall_check_time(); 1765 /* Record GP times before starting GP, hence rcu_seq_start(). */ 1766 rcu_seq_start(&rcu_state.gp_seq); 1767 ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq); 1768 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start")); 1769 raw_spin_unlock_irq_rcu_node(rnp); 1770 1771 /* 1772 * Apply per-leaf buffered online and offline operations to 1773 * the rcu_node tree. Note that this new grace period need not 1774 * wait for subsequent online CPUs, and that RCU hooks in the CPU 1775 * offlining path, when combined with checks in this function, 1776 * will handle CPUs that are currently going offline or that will 1777 * go offline later. Please also refer to "Hotplug CPU" section 1778 * of RCU's Requirements documentation. 1779 */ 1780 WRITE_ONCE(rcu_state.gp_state, RCU_GP_ONOFF); 1781 rcu_for_each_leaf_node(rnp) { 1782 smp_mb(); // Pair with barriers used when updating ->ofl_seq to odd values. 1783 firstseq = READ_ONCE(rnp->ofl_seq); 1784 if (firstseq & 0x1) 1785 while (firstseq == READ_ONCE(rnp->ofl_seq)) 1786 schedule_timeout_idle(1); // Can't wake unless RCU is watching. 1787 smp_mb(); // Pair with barriers used when updating ->ofl_seq to even values. 1788 raw_spin_lock(&rcu_state.ofl_lock); 1789 raw_spin_lock_irq_rcu_node(rnp); 1790 if (rnp->qsmaskinit == rnp->qsmaskinitnext && 1791 !rnp->wait_blkd_tasks) { 1792 /* Nothing to do on this leaf rcu_node structure. */ 1793 raw_spin_unlock_irq_rcu_node(rnp); 1794 raw_spin_unlock(&rcu_state.ofl_lock); 1795 continue; 1796 } 1797 1798 /* Record old state, apply changes to ->qsmaskinit field. */ 1799 oldmask = rnp->qsmaskinit; 1800 rnp->qsmaskinit = rnp->qsmaskinitnext; 1801 1802 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */ 1803 if (!oldmask != !rnp->qsmaskinit) { 1804 if (!oldmask) { /* First online CPU for rcu_node. */ 1805 if (!rnp->wait_blkd_tasks) /* Ever offline? */ 1806 rcu_init_new_rnp(rnp); 1807 } else if (rcu_preempt_has_tasks(rnp)) { 1808 rnp->wait_blkd_tasks = true; /* blocked tasks */ 1809 } else { /* Last offline CPU and can propagate. */ 1810 rcu_cleanup_dead_rnp(rnp); 1811 } 1812 } 1813 1814 /* 1815 * If all waited-on tasks from prior grace period are 1816 * done, and if all this rcu_node structure's CPUs are 1817 * still offline, propagate up the rcu_node tree and 1818 * clear ->wait_blkd_tasks. Otherwise, if one of this 1819 * rcu_node structure's CPUs has since come back online, 1820 * simply clear ->wait_blkd_tasks. 1821 */ 1822 if (rnp->wait_blkd_tasks && 1823 (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) { 1824 rnp->wait_blkd_tasks = false; 1825 if (!rnp->qsmaskinit) 1826 rcu_cleanup_dead_rnp(rnp); 1827 } 1828 1829 raw_spin_unlock_irq_rcu_node(rnp); 1830 raw_spin_unlock(&rcu_state.ofl_lock); 1831 } 1832 rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */ 1833 1834 /* 1835 * Set the quiescent-state-needed bits in all the rcu_node 1836 * structures for all currently online CPUs in breadth-first 1837 * order, starting from the root rcu_node structure, relying on the 1838 * layout of the tree within the rcu_state.node[] array. Note that 1839 * other CPUs will access only the leaves of the hierarchy, thus 1840 * seeing that no grace period is in progress, at least until the 1841 * corresponding leaf node has been initialized. 1842 * 1843 * The grace period cannot complete until the initialization 1844 * process finishes, because this kthread handles both. 1845 */ 1846 WRITE_ONCE(rcu_state.gp_state, RCU_GP_INIT); 1847 rcu_for_each_node_breadth_first(rnp) { 1848 rcu_gp_slow(gp_init_delay); 1849 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1850 rdp = this_cpu_ptr(&rcu_data); 1851 rcu_preempt_check_blocked_tasks(rnp); 1852 rnp->qsmask = rnp->qsmaskinit; 1853 WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq); 1854 if (rnp == rdp->mynode) 1855 (void)__note_gp_changes(rnp, rdp); 1856 rcu_preempt_boost_start_gp(rnp); 1857 trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq, 1858 rnp->level, rnp->grplo, 1859 rnp->grphi, rnp->qsmask); 1860 /* Quiescent states for tasks on any now-offline CPUs. */ 1861 mask = rnp->qsmask & ~rnp->qsmaskinitnext; 1862 rnp->rcu_gp_init_mask = mask; 1863 if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp)) 1864 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 1865 else 1866 raw_spin_unlock_irq_rcu_node(rnp); 1867 cond_resched_tasks_rcu_qs(); 1868 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1869 } 1870 1871 // If strict, make all CPUs aware of new grace period. 1872 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) 1873 on_each_cpu(rcu_strict_gp_boundary, NULL, 0); 1874 1875 return true; 1876 } 1877 1878 /* 1879 * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state 1880 * time. 1881 */ 1882 static bool rcu_gp_fqs_check_wake(int *gfp) 1883 { 1884 struct rcu_node *rnp = rcu_get_root(); 1885 1886 // If under overload conditions, force an immediate FQS scan. 1887 if (*gfp & RCU_GP_FLAG_OVLD) 1888 return true; 1889 1890 // Someone like call_rcu() requested a force-quiescent-state scan. 1891 *gfp = READ_ONCE(rcu_state.gp_flags); 1892 if (*gfp & RCU_GP_FLAG_FQS) 1893 return true; 1894 1895 // The current grace period has completed. 1896 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp)) 1897 return true; 1898 1899 return false; 1900 } 1901 1902 /* 1903 * Do one round of quiescent-state forcing. 1904 */ 1905 static void rcu_gp_fqs(bool first_time) 1906 { 1907 struct rcu_node *rnp = rcu_get_root(); 1908 1909 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1910 rcu_state.n_force_qs++; 1911 if (first_time) { 1912 /* Collect dyntick-idle snapshots. */ 1913 force_qs_rnp(dyntick_save_progress_counter); 1914 } else { 1915 /* Handle dyntick-idle and offline CPUs. */ 1916 force_qs_rnp(rcu_implicit_dynticks_qs); 1917 } 1918 /* Clear flag to prevent immediate re-entry. */ 1919 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) { 1920 raw_spin_lock_irq_rcu_node(rnp); 1921 WRITE_ONCE(rcu_state.gp_flags, 1922 READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS); 1923 raw_spin_unlock_irq_rcu_node(rnp); 1924 } 1925 } 1926 1927 /* 1928 * Loop doing repeated quiescent-state forcing until the grace period ends. 1929 */ 1930 static noinline_for_stack void rcu_gp_fqs_loop(void) 1931 { 1932 bool first_gp_fqs; 1933 int gf = 0; 1934 unsigned long j; 1935 int ret; 1936 struct rcu_node *rnp = rcu_get_root(); 1937 1938 first_gp_fqs = true; 1939 j = READ_ONCE(jiffies_till_first_fqs); 1940 if (rcu_state.cbovld) 1941 gf = RCU_GP_FLAG_OVLD; 1942 ret = 0; 1943 for (;;) { 1944 if (!ret) { 1945 WRITE_ONCE(rcu_state.jiffies_force_qs, jiffies + j); 1946 /* 1947 * jiffies_force_qs before RCU_GP_WAIT_FQS state 1948 * update; required for stall checks. 1949 */ 1950 smp_wmb(); 1951 WRITE_ONCE(rcu_state.jiffies_kick_kthreads, 1952 jiffies + (j ? 3 * j : 2)); 1953 } 1954 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 1955 TPS("fqswait")); 1956 WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_FQS); 1957 (void)swait_event_idle_timeout_exclusive(rcu_state.gp_wq, 1958 rcu_gp_fqs_check_wake(&gf), j); 1959 rcu_gp_torture_wait(); 1960 WRITE_ONCE(rcu_state.gp_state, RCU_GP_DOING_FQS); 1961 /* Locking provides needed memory barriers. */ 1962 /* If grace period done, leave loop. */ 1963 if (!READ_ONCE(rnp->qsmask) && 1964 !rcu_preempt_blocked_readers_cgp(rnp)) 1965 break; 1966 /* If time for quiescent-state forcing, do it. */ 1967 if (!time_after(rcu_state.jiffies_force_qs, jiffies) || 1968 (gf & (RCU_GP_FLAG_FQS | RCU_GP_FLAG_OVLD))) { 1969 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 1970 TPS("fqsstart")); 1971 rcu_gp_fqs(first_gp_fqs); 1972 gf = 0; 1973 if (first_gp_fqs) { 1974 first_gp_fqs = false; 1975 gf = rcu_state.cbovld ? RCU_GP_FLAG_OVLD : 0; 1976 } 1977 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 1978 TPS("fqsend")); 1979 cond_resched_tasks_rcu_qs(); 1980 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1981 ret = 0; /* Force full wait till next FQS. */ 1982 j = READ_ONCE(jiffies_till_next_fqs); 1983 } else { 1984 /* Deal with stray signal. */ 1985 cond_resched_tasks_rcu_qs(); 1986 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1987 WARN_ON(signal_pending(current)); 1988 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 1989 TPS("fqswaitsig")); 1990 ret = 1; /* Keep old FQS timing. */ 1991 j = jiffies; 1992 if (time_after(jiffies, rcu_state.jiffies_force_qs)) 1993 j = 1; 1994 else 1995 j = rcu_state.jiffies_force_qs - j; 1996 gf = 0; 1997 } 1998 } 1999 } 2000 2001 /* 2002 * Clean up after the old grace period. 2003 */ 2004 static noinline void rcu_gp_cleanup(void) 2005 { 2006 int cpu; 2007 bool needgp = false; 2008 unsigned long gp_duration; 2009 unsigned long new_gp_seq; 2010 bool offloaded; 2011 struct rcu_data *rdp; 2012 struct rcu_node *rnp = rcu_get_root(); 2013 struct swait_queue_head *sq; 2014 2015 WRITE_ONCE(rcu_state.gp_activity, jiffies); 2016 raw_spin_lock_irq_rcu_node(rnp); 2017 rcu_state.gp_end = jiffies; 2018 gp_duration = rcu_state.gp_end - rcu_state.gp_start; 2019 if (gp_duration > rcu_state.gp_max) 2020 rcu_state.gp_max = gp_duration; 2021 2022 /* 2023 * We know the grace period is complete, but to everyone else 2024 * it appears to still be ongoing. But it is also the case 2025 * that to everyone else it looks like there is nothing that 2026 * they can do to advance the grace period. It is therefore 2027 * safe for us to drop the lock in order to mark the grace 2028 * period as completed in all of the rcu_node structures. 2029 */ 2030 raw_spin_unlock_irq_rcu_node(rnp); 2031 2032 /* 2033 * Propagate new ->gp_seq value to rcu_node structures so that 2034 * other CPUs don't have to wait until the start of the next grace 2035 * period to process their callbacks. This also avoids some nasty 2036 * RCU grace-period initialization races by forcing the end of 2037 * the current grace period to be completely recorded in all of 2038 * the rcu_node structures before the beginning of the next grace 2039 * period is recorded in any of the rcu_node structures. 2040 */ 2041 new_gp_seq = rcu_state.gp_seq; 2042 rcu_seq_end(&new_gp_seq); 2043 rcu_for_each_node_breadth_first(rnp) { 2044 raw_spin_lock_irq_rcu_node(rnp); 2045 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp))) 2046 dump_blkd_tasks(rnp, 10); 2047 WARN_ON_ONCE(rnp->qsmask); 2048 WRITE_ONCE(rnp->gp_seq, new_gp_seq); 2049 rdp = this_cpu_ptr(&rcu_data); 2050 if (rnp == rdp->mynode) 2051 needgp = __note_gp_changes(rnp, rdp) || needgp; 2052 /* smp_mb() provided by prior unlock-lock pair. */ 2053 needgp = rcu_future_gp_cleanup(rnp) || needgp; 2054 // Reset overload indication for CPUs no longer overloaded 2055 if (rcu_is_leaf_node(rnp)) 2056 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->cbovldmask) { 2057 rdp = per_cpu_ptr(&rcu_data, cpu); 2058 check_cb_ovld_locked(rdp, rnp); 2059 } 2060 sq = rcu_nocb_gp_get(rnp); 2061 raw_spin_unlock_irq_rcu_node(rnp); 2062 rcu_nocb_gp_cleanup(sq); 2063 cond_resched_tasks_rcu_qs(); 2064 WRITE_ONCE(rcu_state.gp_activity, jiffies); 2065 rcu_gp_slow(gp_cleanup_delay); 2066 } 2067 rnp = rcu_get_root(); 2068 raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */ 2069 2070 /* Declare grace period done, trace first to use old GP number. */ 2071 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end")); 2072 rcu_seq_end(&rcu_state.gp_seq); 2073 ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq); 2074 WRITE_ONCE(rcu_state.gp_state, RCU_GP_IDLE); 2075 /* Check for GP requests since above loop. */ 2076 rdp = this_cpu_ptr(&rcu_data); 2077 if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) { 2078 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed, 2079 TPS("CleanupMore")); 2080 needgp = true; 2081 } 2082 /* Advance CBs to reduce false positives below. */ 2083 offloaded = rcu_rdp_is_offloaded(rdp); 2084 if ((offloaded || !rcu_accelerate_cbs(rnp, rdp)) && needgp) { 2085 WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT); 2086 WRITE_ONCE(rcu_state.gp_req_activity, jiffies); 2087 trace_rcu_grace_period(rcu_state.name, 2088 rcu_state.gp_seq, 2089 TPS("newreq")); 2090 } else { 2091 WRITE_ONCE(rcu_state.gp_flags, 2092 rcu_state.gp_flags & RCU_GP_FLAG_INIT); 2093 } 2094 raw_spin_unlock_irq_rcu_node(rnp); 2095 2096 // If strict, make all CPUs aware of the end of the old grace period. 2097 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) 2098 on_each_cpu(rcu_strict_gp_boundary, NULL, 0); 2099 } 2100 2101 /* 2102 * Body of kthread that handles grace periods. 2103 */ 2104 static int __noreturn rcu_gp_kthread(void *unused) 2105 { 2106 rcu_bind_gp_kthread(); 2107 for (;;) { 2108 2109 /* Handle grace-period start. */ 2110 for (;;) { 2111 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 2112 TPS("reqwait")); 2113 WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_GPS); 2114 swait_event_idle_exclusive(rcu_state.gp_wq, 2115 READ_ONCE(rcu_state.gp_flags) & 2116 RCU_GP_FLAG_INIT); 2117 rcu_gp_torture_wait(); 2118 WRITE_ONCE(rcu_state.gp_state, RCU_GP_DONE_GPS); 2119 /* Locking provides needed memory barrier. */ 2120 if (rcu_gp_init()) 2121 break; 2122 cond_resched_tasks_rcu_qs(); 2123 WRITE_ONCE(rcu_state.gp_activity, jiffies); 2124 WARN_ON(signal_pending(current)); 2125 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 2126 TPS("reqwaitsig")); 2127 } 2128 2129 /* Handle quiescent-state forcing. */ 2130 rcu_gp_fqs_loop(); 2131 2132 /* Handle grace-period end. */ 2133 WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANUP); 2134 rcu_gp_cleanup(); 2135 WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANED); 2136 } 2137 } 2138 2139 /* 2140 * Report a full set of quiescent states to the rcu_state data structure. 2141 * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if 2142 * another grace period is required. Whether we wake the grace-period 2143 * kthread or it awakens itself for the next round of quiescent-state 2144 * forcing, that kthread will clean up after the just-completed grace 2145 * period. Note that the caller must hold rnp->lock, which is released 2146 * before return. 2147 */ 2148 static void rcu_report_qs_rsp(unsigned long flags) 2149 __releases(rcu_get_root()->lock) 2150 { 2151 raw_lockdep_assert_held_rcu_node(rcu_get_root()); 2152 WARN_ON_ONCE(!rcu_gp_in_progress()); 2153 WRITE_ONCE(rcu_state.gp_flags, 2154 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS); 2155 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags); 2156 rcu_gp_kthread_wake(); 2157 } 2158 2159 /* 2160 * Similar to rcu_report_qs_rdp(), for which it is a helper function. 2161 * Allows quiescent states for a group of CPUs to be reported at one go 2162 * to the specified rcu_node structure, though all the CPUs in the group 2163 * must be represented by the same rcu_node structure (which need not be a 2164 * leaf rcu_node structure, though it often will be). The gps parameter 2165 * is the grace-period snapshot, which means that the quiescent states 2166 * are valid only if rnp->gp_seq is equal to gps. That structure's lock 2167 * must be held upon entry, and it is released before return. 2168 * 2169 * As a special case, if mask is zero, the bit-already-cleared check is 2170 * disabled. This allows propagating quiescent state due to resumed tasks 2171 * during grace-period initialization. 2172 */ 2173 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp, 2174 unsigned long gps, unsigned long flags) 2175 __releases(rnp->lock) 2176 { 2177 unsigned long oldmask = 0; 2178 struct rcu_node *rnp_c; 2179 2180 raw_lockdep_assert_held_rcu_node(rnp); 2181 2182 /* Walk up the rcu_node hierarchy. */ 2183 for (;;) { 2184 if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) { 2185 2186 /* 2187 * Our bit has already been cleared, or the 2188 * relevant grace period is already over, so done. 2189 */ 2190 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2191 return; 2192 } 2193 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */ 2194 WARN_ON_ONCE(!rcu_is_leaf_node(rnp) && 2195 rcu_preempt_blocked_readers_cgp(rnp)); 2196 WRITE_ONCE(rnp->qsmask, rnp->qsmask & ~mask); 2197 trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq, 2198 mask, rnp->qsmask, rnp->level, 2199 rnp->grplo, rnp->grphi, 2200 !!rnp->gp_tasks); 2201 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) { 2202 2203 /* Other bits still set at this level, so done. */ 2204 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2205 return; 2206 } 2207 rnp->completedqs = rnp->gp_seq; 2208 mask = rnp->grpmask; 2209 if (rnp->parent == NULL) { 2210 2211 /* No more levels. Exit loop holding root lock. */ 2212 2213 break; 2214 } 2215 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2216 rnp_c = rnp; 2217 rnp = rnp->parent; 2218 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2219 oldmask = READ_ONCE(rnp_c->qsmask); 2220 } 2221 2222 /* 2223 * Get here if we are the last CPU to pass through a quiescent 2224 * state for this grace period. Invoke rcu_report_qs_rsp() 2225 * to clean up and start the next grace period if one is needed. 2226 */ 2227 rcu_report_qs_rsp(flags); /* releases rnp->lock. */ 2228 } 2229 2230 /* 2231 * Record a quiescent state for all tasks that were previously queued 2232 * on the specified rcu_node structure and that were blocking the current 2233 * RCU grace period. The caller must hold the corresponding rnp->lock with 2234 * irqs disabled, and this lock is released upon return, but irqs remain 2235 * disabled. 2236 */ 2237 static void __maybe_unused 2238 rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags) 2239 __releases(rnp->lock) 2240 { 2241 unsigned long gps; 2242 unsigned long mask; 2243 struct rcu_node *rnp_p; 2244 2245 raw_lockdep_assert_held_rcu_node(rnp); 2246 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT_RCU)) || 2247 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) || 2248 rnp->qsmask != 0) { 2249 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2250 return; /* Still need more quiescent states! */ 2251 } 2252 2253 rnp->completedqs = rnp->gp_seq; 2254 rnp_p = rnp->parent; 2255 if (rnp_p == NULL) { 2256 /* 2257 * Only one rcu_node structure in the tree, so don't 2258 * try to report up to its nonexistent parent! 2259 */ 2260 rcu_report_qs_rsp(flags); 2261 return; 2262 } 2263 2264 /* Report up the rest of the hierarchy, tracking current ->gp_seq. */ 2265 gps = rnp->gp_seq; 2266 mask = rnp->grpmask; 2267 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 2268 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */ 2269 rcu_report_qs_rnp(mask, rnp_p, gps, flags); 2270 } 2271 2272 /* 2273 * Record a quiescent state for the specified CPU to that CPU's rcu_data 2274 * structure. This must be called from the specified CPU. 2275 */ 2276 static void 2277 rcu_report_qs_rdp(struct rcu_data *rdp) 2278 { 2279 unsigned long flags; 2280 unsigned long mask; 2281 bool needwake = false; 2282 const bool offloaded = rcu_rdp_is_offloaded(rdp); 2283 struct rcu_node *rnp; 2284 2285 WARN_ON_ONCE(rdp->cpu != smp_processor_id()); 2286 rnp = rdp->mynode; 2287 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2288 if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq || 2289 rdp->gpwrap) { 2290 2291 /* 2292 * The grace period in which this quiescent state was 2293 * recorded has ended, so don't report it upwards. 2294 * We will instead need a new quiescent state that lies 2295 * within the current grace period. 2296 */ 2297 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */ 2298 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2299 return; 2300 } 2301 mask = rdp->grpmask; 2302 rdp->core_needs_qs = false; 2303 if ((rnp->qsmask & mask) == 0) { 2304 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2305 } else { 2306 /* 2307 * This GP can't end until cpu checks in, so all of our 2308 * callbacks can be processed during the next GP. 2309 */ 2310 if (!offloaded) 2311 needwake = rcu_accelerate_cbs(rnp, rdp); 2312 2313 rcu_disable_urgency_upon_qs(rdp); 2314 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 2315 /* ^^^ Released rnp->lock */ 2316 if (needwake) 2317 rcu_gp_kthread_wake(); 2318 } 2319 } 2320 2321 /* 2322 * Check to see if there is a new grace period of which this CPU 2323 * is not yet aware, and if so, set up local rcu_data state for it. 2324 * Otherwise, see if this CPU has just passed through its first 2325 * quiescent state for this grace period, and record that fact if so. 2326 */ 2327 static void 2328 rcu_check_quiescent_state(struct rcu_data *rdp) 2329 { 2330 /* Check for grace-period ends and beginnings. */ 2331 note_gp_changes(rdp); 2332 2333 /* 2334 * Does this CPU still need to do its part for current grace period? 2335 * If no, return and let the other CPUs do their part as well. 2336 */ 2337 if (!rdp->core_needs_qs) 2338 return; 2339 2340 /* 2341 * Was there a quiescent state since the beginning of the grace 2342 * period? If no, then exit and wait for the next call. 2343 */ 2344 if (rdp->cpu_no_qs.b.norm) 2345 return; 2346 2347 /* 2348 * Tell RCU we are done (but rcu_report_qs_rdp() will be the 2349 * judge of that). 2350 */ 2351 rcu_report_qs_rdp(rdp); 2352 } 2353 2354 /* 2355 * Near the end of the offline process. Trace the fact that this CPU 2356 * is going offline. 2357 */ 2358 int rcutree_dying_cpu(unsigned int cpu) 2359 { 2360 bool blkd; 2361 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 2362 struct rcu_node *rnp = rdp->mynode; 2363 2364 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) 2365 return 0; 2366 2367 blkd = !!(rnp->qsmask & rdp->grpmask); 2368 trace_rcu_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq), 2369 blkd ? TPS("cpuofl-bgp") : TPS("cpuofl")); 2370 return 0; 2371 } 2372 2373 /* 2374 * All CPUs for the specified rcu_node structure have gone offline, 2375 * and all tasks that were preempted within an RCU read-side critical 2376 * section while running on one of those CPUs have since exited their RCU 2377 * read-side critical section. Some other CPU is reporting this fact with 2378 * the specified rcu_node structure's ->lock held and interrupts disabled. 2379 * This function therefore goes up the tree of rcu_node structures, 2380 * clearing the corresponding bits in the ->qsmaskinit fields. Note that 2381 * the leaf rcu_node structure's ->qsmaskinit field has already been 2382 * updated. 2383 * 2384 * This function does check that the specified rcu_node structure has 2385 * all CPUs offline and no blocked tasks, so it is OK to invoke it 2386 * prematurely. That said, invoking it after the fact will cost you 2387 * a needless lock acquisition. So once it has done its work, don't 2388 * invoke it again. 2389 */ 2390 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf) 2391 { 2392 long mask; 2393 struct rcu_node *rnp = rnp_leaf; 2394 2395 raw_lockdep_assert_held_rcu_node(rnp_leaf); 2396 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || 2397 WARN_ON_ONCE(rnp_leaf->qsmaskinit) || 2398 WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf))) 2399 return; 2400 for (;;) { 2401 mask = rnp->grpmask; 2402 rnp = rnp->parent; 2403 if (!rnp) 2404 break; 2405 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 2406 rnp->qsmaskinit &= ~mask; 2407 /* Between grace periods, so better already be zero! */ 2408 WARN_ON_ONCE(rnp->qsmask); 2409 if (rnp->qsmaskinit) { 2410 raw_spin_unlock_rcu_node(rnp); 2411 /* irqs remain disabled. */ 2412 return; 2413 } 2414 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 2415 } 2416 } 2417 2418 /* 2419 * The CPU has been completely removed, and some other CPU is reporting 2420 * this fact from process context. Do the remainder of the cleanup. 2421 * There can only be one CPU hotplug operation at a time, so no need for 2422 * explicit locking. 2423 */ 2424 int rcutree_dead_cpu(unsigned int cpu) 2425 { 2426 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 2427 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ 2428 2429 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) 2430 return 0; 2431 2432 WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus - 1); 2433 /* Adjust any no-longer-needed kthreads. */ 2434 rcu_boost_kthread_setaffinity(rnp, -1); 2435 // Stop-machine done, so allow nohz_full to disable tick. 2436 tick_dep_clear(TICK_DEP_BIT_RCU); 2437 return 0; 2438 } 2439 2440 /* 2441 * Invoke any RCU callbacks that have made it to the end of their grace 2442 * period. Throttle as specified by rdp->blimit. 2443 */ 2444 static void rcu_do_batch(struct rcu_data *rdp) 2445 { 2446 int div; 2447 bool __maybe_unused empty; 2448 unsigned long flags; 2449 const bool offloaded = rcu_rdp_is_offloaded(rdp); 2450 struct rcu_head *rhp; 2451 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl); 2452 long bl, count = 0; 2453 long pending, tlimit = 0; 2454 2455 /* If no callbacks are ready, just return. */ 2456 if (!rcu_segcblist_ready_cbs(&rdp->cblist)) { 2457 trace_rcu_batch_start(rcu_state.name, 2458 rcu_segcblist_n_cbs(&rdp->cblist), 0); 2459 trace_rcu_batch_end(rcu_state.name, 0, 2460 !rcu_segcblist_empty(&rdp->cblist), 2461 need_resched(), is_idle_task(current), 2462 rcu_is_callbacks_kthread()); 2463 return; 2464 } 2465 2466 /* 2467 * Extract the list of ready callbacks, disabling to prevent 2468 * races with call_rcu() from interrupt handlers. Leave the 2469 * callback counts, as rcu_barrier() needs to be conservative. 2470 */ 2471 local_irq_save(flags); 2472 rcu_nocb_lock(rdp); 2473 WARN_ON_ONCE(cpu_is_offline(smp_processor_id())); 2474 pending = rcu_segcblist_n_cbs(&rdp->cblist); 2475 div = READ_ONCE(rcu_divisor); 2476 div = div < 0 ? 7 : div > sizeof(long) * 8 - 2 ? sizeof(long) * 8 - 2 : div; 2477 bl = max(rdp->blimit, pending >> div); 2478 if (unlikely(bl > 100)) { 2479 long rrn = READ_ONCE(rcu_resched_ns); 2480 2481 rrn = rrn < NSEC_PER_MSEC ? NSEC_PER_MSEC : rrn > NSEC_PER_SEC ? NSEC_PER_SEC : rrn; 2482 tlimit = local_clock() + rrn; 2483 } 2484 trace_rcu_batch_start(rcu_state.name, 2485 rcu_segcblist_n_cbs(&rdp->cblist), bl); 2486 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl); 2487 if (offloaded) 2488 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist); 2489 2490 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbDequeued")); 2491 rcu_nocb_unlock_irqrestore(rdp, flags); 2492 2493 /* Invoke callbacks. */ 2494 tick_dep_set_task(current, TICK_DEP_BIT_RCU); 2495 rhp = rcu_cblist_dequeue(&rcl); 2496 2497 for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) { 2498 rcu_callback_t f; 2499 2500 count++; 2501 debug_rcu_head_unqueue(rhp); 2502 2503 rcu_lock_acquire(&rcu_callback_map); 2504 trace_rcu_invoke_callback(rcu_state.name, rhp); 2505 2506 f = rhp->func; 2507 WRITE_ONCE(rhp->func, (rcu_callback_t)0L); 2508 f(rhp); 2509 2510 rcu_lock_release(&rcu_callback_map); 2511 2512 /* 2513 * Stop only if limit reached and CPU has something to do. 2514 */ 2515 if (count >= bl && !offloaded && 2516 (need_resched() || 2517 (!is_idle_task(current) && !rcu_is_callbacks_kthread()))) 2518 break; 2519 if (unlikely(tlimit)) { 2520 /* only call local_clock() every 32 callbacks */ 2521 if (likely((count & 31) || local_clock() < tlimit)) 2522 continue; 2523 /* Exceeded the time limit, so leave. */ 2524 break; 2525 } 2526 if (!in_serving_softirq()) { 2527 local_bh_enable(); 2528 lockdep_assert_irqs_enabled(); 2529 cond_resched_tasks_rcu_qs(); 2530 lockdep_assert_irqs_enabled(); 2531 local_bh_disable(); 2532 } 2533 } 2534 2535 local_irq_save(flags); 2536 rcu_nocb_lock(rdp); 2537 rdp->n_cbs_invoked += count; 2538 trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(), 2539 is_idle_task(current), rcu_is_callbacks_kthread()); 2540 2541 /* Update counts and requeue any remaining callbacks. */ 2542 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl); 2543 rcu_segcblist_add_len(&rdp->cblist, -count); 2544 2545 /* Reinstate batch limit if we have worked down the excess. */ 2546 count = rcu_segcblist_n_cbs(&rdp->cblist); 2547 if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark) 2548 rdp->blimit = blimit; 2549 2550 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */ 2551 if (count == 0 && rdp->qlen_last_fqs_check != 0) { 2552 rdp->qlen_last_fqs_check = 0; 2553 rdp->n_force_qs_snap = rcu_state.n_force_qs; 2554 } else if (count < rdp->qlen_last_fqs_check - qhimark) 2555 rdp->qlen_last_fqs_check = count; 2556 2557 /* 2558 * The following usually indicates a double call_rcu(). To track 2559 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y. 2560 */ 2561 empty = rcu_segcblist_empty(&rdp->cblist); 2562 WARN_ON_ONCE(count == 0 && !empty); 2563 WARN_ON_ONCE(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) && 2564 count != 0 && empty); 2565 WARN_ON_ONCE(count == 0 && rcu_segcblist_n_segment_cbs(&rdp->cblist) != 0); 2566 WARN_ON_ONCE(!empty && rcu_segcblist_n_segment_cbs(&rdp->cblist) == 0); 2567 2568 rcu_nocb_unlock_irqrestore(rdp, flags); 2569 2570 /* Re-invoke RCU core processing if there are callbacks remaining. */ 2571 if (!offloaded && rcu_segcblist_ready_cbs(&rdp->cblist)) 2572 invoke_rcu_core(); 2573 tick_dep_clear_task(current, TICK_DEP_BIT_RCU); 2574 } 2575 2576 /* 2577 * This function is invoked from each scheduling-clock interrupt, 2578 * and checks to see if this CPU is in a non-context-switch quiescent 2579 * state, for example, user mode or idle loop. It also schedules RCU 2580 * core processing. If the current grace period has gone on too long, 2581 * it will ask the scheduler to manufacture a context switch for the sole 2582 * purpose of providing the needed quiescent state. 2583 */ 2584 void rcu_sched_clock_irq(int user) 2585 { 2586 trace_rcu_utilization(TPS("Start scheduler-tick")); 2587 lockdep_assert_irqs_disabled(); 2588 raw_cpu_inc(rcu_data.ticks_this_gp); 2589 /* The load-acquire pairs with the store-release setting to true. */ 2590 if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) { 2591 /* Idle and userspace execution already are quiescent states. */ 2592 if (!rcu_is_cpu_rrupt_from_idle() && !user) { 2593 set_tsk_need_resched(current); 2594 set_preempt_need_resched(); 2595 } 2596 __this_cpu_write(rcu_data.rcu_urgent_qs, false); 2597 } 2598 rcu_flavor_sched_clock_irq(user); 2599 if (rcu_pending(user)) 2600 invoke_rcu_core(); 2601 lockdep_assert_irqs_disabled(); 2602 2603 trace_rcu_utilization(TPS("End scheduler-tick")); 2604 } 2605 2606 /* 2607 * Scan the leaf rcu_node structures. For each structure on which all 2608 * CPUs have reported a quiescent state and on which there are tasks 2609 * blocking the current grace period, initiate RCU priority boosting. 2610 * Otherwise, invoke the specified function to check dyntick state for 2611 * each CPU that has not yet reported a quiescent state. 2612 */ 2613 static void force_qs_rnp(int (*f)(struct rcu_data *rdp)) 2614 { 2615 int cpu; 2616 unsigned long flags; 2617 unsigned long mask; 2618 struct rcu_data *rdp; 2619 struct rcu_node *rnp; 2620 2621 rcu_state.cbovld = rcu_state.cbovldnext; 2622 rcu_state.cbovldnext = false; 2623 rcu_for_each_leaf_node(rnp) { 2624 cond_resched_tasks_rcu_qs(); 2625 mask = 0; 2626 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2627 rcu_state.cbovldnext |= !!rnp->cbovldmask; 2628 if (rnp->qsmask == 0) { 2629 if (rcu_preempt_blocked_readers_cgp(rnp)) { 2630 /* 2631 * No point in scanning bits because they 2632 * are all zero. But we might need to 2633 * priority-boost blocked readers. 2634 */ 2635 rcu_initiate_boost(rnp, flags); 2636 /* rcu_initiate_boost() releases rnp->lock */ 2637 continue; 2638 } 2639 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2640 continue; 2641 } 2642 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->qsmask) { 2643 rdp = per_cpu_ptr(&rcu_data, cpu); 2644 if (f(rdp)) { 2645 mask |= rdp->grpmask; 2646 rcu_disable_urgency_upon_qs(rdp); 2647 } 2648 } 2649 if (mask != 0) { 2650 /* Idle/offline CPUs, report (releases rnp->lock). */ 2651 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 2652 } else { 2653 /* Nothing to do here, so just drop the lock. */ 2654 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2655 } 2656 } 2657 } 2658 2659 /* 2660 * Force quiescent states on reluctant CPUs, and also detect which 2661 * CPUs are in dyntick-idle mode. 2662 */ 2663 void rcu_force_quiescent_state(void) 2664 { 2665 unsigned long flags; 2666 bool ret; 2667 struct rcu_node *rnp; 2668 struct rcu_node *rnp_old = NULL; 2669 2670 /* Funnel through hierarchy to reduce memory contention. */ 2671 rnp = __this_cpu_read(rcu_data.mynode); 2672 for (; rnp != NULL; rnp = rnp->parent) { 2673 ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) || 2674 !raw_spin_trylock(&rnp->fqslock); 2675 if (rnp_old != NULL) 2676 raw_spin_unlock(&rnp_old->fqslock); 2677 if (ret) 2678 return; 2679 rnp_old = rnp; 2680 } 2681 /* rnp_old == rcu_get_root(), rnp == NULL. */ 2682 2683 /* Reached the root of the rcu_node tree, acquire lock. */ 2684 raw_spin_lock_irqsave_rcu_node(rnp_old, flags); 2685 raw_spin_unlock(&rnp_old->fqslock); 2686 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) { 2687 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); 2688 return; /* Someone beat us to it. */ 2689 } 2690 WRITE_ONCE(rcu_state.gp_flags, 2691 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS); 2692 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); 2693 rcu_gp_kthread_wake(); 2694 } 2695 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state); 2696 2697 // Workqueue handler for an RCU reader for kernels enforcing struct RCU 2698 // grace periods. 2699 static void strict_work_handler(struct work_struct *work) 2700 { 2701 rcu_read_lock(); 2702 rcu_read_unlock(); 2703 } 2704 2705 /* Perform RCU core processing work for the current CPU. */ 2706 static __latent_entropy void rcu_core(void) 2707 { 2708 unsigned long flags; 2709 struct rcu_data *rdp = raw_cpu_ptr(&rcu_data); 2710 struct rcu_node *rnp = rdp->mynode; 2711 const bool do_batch = !rcu_segcblist_completely_offloaded(&rdp->cblist); 2712 2713 if (cpu_is_offline(smp_processor_id())) 2714 return; 2715 trace_rcu_utilization(TPS("Start RCU core")); 2716 WARN_ON_ONCE(!rdp->beenonline); 2717 2718 /* Report any deferred quiescent states if preemption enabled. */ 2719 if (!(preempt_count() & PREEMPT_MASK)) { 2720 rcu_preempt_deferred_qs(current); 2721 } else if (rcu_preempt_need_deferred_qs(current)) { 2722 set_tsk_need_resched(current); 2723 set_preempt_need_resched(); 2724 } 2725 2726 /* Update RCU state based on any recent quiescent states. */ 2727 rcu_check_quiescent_state(rdp); 2728 2729 /* No grace period and unregistered callbacks? */ 2730 if (!rcu_gp_in_progress() && 2731 rcu_segcblist_is_enabled(&rdp->cblist) && do_batch) { 2732 rcu_nocb_lock_irqsave(rdp, flags); 2733 if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL)) 2734 rcu_accelerate_cbs_unlocked(rnp, rdp); 2735 rcu_nocb_unlock_irqrestore(rdp, flags); 2736 } 2737 2738 rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check()); 2739 2740 /* If there are callbacks ready, invoke them. */ 2741 if (do_batch && rcu_segcblist_ready_cbs(&rdp->cblist) && 2742 likely(READ_ONCE(rcu_scheduler_fully_active))) 2743 rcu_do_batch(rdp); 2744 2745 /* Do any needed deferred wakeups of rcuo kthreads. */ 2746 do_nocb_deferred_wakeup(rdp); 2747 trace_rcu_utilization(TPS("End RCU core")); 2748 2749 // If strict GPs, schedule an RCU reader in a clean environment. 2750 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) 2751 queue_work_on(rdp->cpu, rcu_gp_wq, &rdp->strict_work); 2752 } 2753 2754 static void rcu_core_si(struct softirq_action *h) 2755 { 2756 rcu_core(); 2757 } 2758 2759 static void rcu_wake_cond(struct task_struct *t, int status) 2760 { 2761 /* 2762 * If the thread is yielding, only wake it when this 2763 * is invoked from idle 2764 */ 2765 if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current))) 2766 wake_up_process(t); 2767 } 2768 2769 static void invoke_rcu_core_kthread(void) 2770 { 2771 struct task_struct *t; 2772 unsigned long flags; 2773 2774 local_irq_save(flags); 2775 __this_cpu_write(rcu_data.rcu_cpu_has_work, 1); 2776 t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task); 2777 if (t != NULL && t != current) 2778 rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status)); 2779 local_irq_restore(flags); 2780 } 2781 2782 /* 2783 * Wake up this CPU's rcuc kthread to do RCU core processing. 2784 */ 2785 static void invoke_rcu_core(void) 2786 { 2787 if (!cpu_online(smp_processor_id())) 2788 return; 2789 if (use_softirq) 2790 raise_softirq(RCU_SOFTIRQ); 2791 else 2792 invoke_rcu_core_kthread(); 2793 } 2794 2795 static void rcu_cpu_kthread_park(unsigned int cpu) 2796 { 2797 per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU; 2798 } 2799 2800 static int rcu_cpu_kthread_should_run(unsigned int cpu) 2801 { 2802 return __this_cpu_read(rcu_data.rcu_cpu_has_work); 2803 } 2804 2805 /* 2806 * Per-CPU kernel thread that invokes RCU callbacks. This replaces 2807 * the RCU softirq used in configurations of RCU that do not support RCU 2808 * priority boosting. 2809 */ 2810 static void rcu_cpu_kthread(unsigned int cpu) 2811 { 2812 unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status); 2813 char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work); 2814 int spincnt; 2815 2816 trace_rcu_utilization(TPS("Start CPU kthread@rcu_run")); 2817 for (spincnt = 0; spincnt < 10; spincnt++) { 2818 local_bh_disable(); 2819 *statusp = RCU_KTHREAD_RUNNING; 2820 local_irq_disable(); 2821 work = *workp; 2822 *workp = 0; 2823 local_irq_enable(); 2824 if (work) 2825 rcu_core(); 2826 local_bh_enable(); 2827 if (*workp == 0) { 2828 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait")); 2829 *statusp = RCU_KTHREAD_WAITING; 2830 return; 2831 } 2832 } 2833 *statusp = RCU_KTHREAD_YIELDING; 2834 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield")); 2835 schedule_timeout_idle(2); 2836 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield")); 2837 *statusp = RCU_KTHREAD_WAITING; 2838 } 2839 2840 static struct smp_hotplug_thread rcu_cpu_thread_spec = { 2841 .store = &rcu_data.rcu_cpu_kthread_task, 2842 .thread_should_run = rcu_cpu_kthread_should_run, 2843 .thread_fn = rcu_cpu_kthread, 2844 .thread_comm = "rcuc/%u", 2845 .setup = rcu_cpu_kthread_setup, 2846 .park = rcu_cpu_kthread_park, 2847 }; 2848 2849 /* 2850 * Spawn per-CPU RCU core processing kthreads. 2851 */ 2852 static int __init rcu_spawn_core_kthreads(void) 2853 { 2854 int cpu; 2855 2856 for_each_possible_cpu(cpu) 2857 per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0; 2858 if (!IS_ENABLED(CONFIG_RCU_BOOST) && use_softirq) 2859 return 0; 2860 WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec), 2861 "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__); 2862 return 0; 2863 } 2864 2865 /* 2866 * Handle any core-RCU processing required by a call_rcu() invocation. 2867 */ 2868 static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head, 2869 unsigned long flags) 2870 { 2871 /* 2872 * If called from an extended quiescent state, invoke the RCU 2873 * core in order to force a re-evaluation of RCU's idleness. 2874 */ 2875 if (!rcu_is_watching()) 2876 invoke_rcu_core(); 2877 2878 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */ 2879 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id())) 2880 return; 2881 2882 /* 2883 * Force the grace period if too many callbacks or too long waiting. 2884 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state() 2885 * if some other CPU has recently done so. Also, don't bother 2886 * invoking rcu_force_quiescent_state() if the newly enqueued callback 2887 * is the only one waiting for a grace period to complete. 2888 */ 2889 if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) > 2890 rdp->qlen_last_fqs_check + qhimark)) { 2891 2892 /* Are we ignoring a completed grace period? */ 2893 note_gp_changes(rdp); 2894 2895 /* Start a new grace period if one not already started. */ 2896 if (!rcu_gp_in_progress()) { 2897 rcu_accelerate_cbs_unlocked(rdp->mynode, rdp); 2898 } else { 2899 /* Give the grace period a kick. */ 2900 rdp->blimit = DEFAULT_MAX_RCU_BLIMIT; 2901 if (rcu_state.n_force_qs == rdp->n_force_qs_snap && 2902 rcu_segcblist_first_pend_cb(&rdp->cblist) != head) 2903 rcu_force_quiescent_state(); 2904 rdp->n_force_qs_snap = rcu_state.n_force_qs; 2905 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist); 2906 } 2907 } 2908 } 2909 2910 /* 2911 * RCU callback function to leak a callback. 2912 */ 2913 static void rcu_leak_callback(struct rcu_head *rhp) 2914 { 2915 } 2916 2917 /* 2918 * Check and if necessary update the leaf rcu_node structure's 2919 * ->cbovldmask bit corresponding to the current CPU based on that CPU's 2920 * number of queued RCU callbacks. The caller must hold the leaf rcu_node 2921 * structure's ->lock. 2922 */ 2923 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp) 2924 { 2925 raw_lockdep_assert_held_rcu_node(rnp); 2926 if (qovld_calc <= 0) 2927 return; // Early boot and wildcard value set. 2928 if (rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) 2929 WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask | rdp->grpmask); 2930 else 2931 WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask & ~rdp->grpmask); 2932 } 2933 2934 /* 2935 * Check and if necessary update the leaf rcu_node structure's 2936 * ->cbovldmask bit corresponding to the current CPU based on that CPU's 2937 * number of queued RCU callbacks. No locks need be held, but the 2938 * caller must have disabled interrupts. 2939 * 2940 * Note that this function ignores the possibility that there are a lot 2941 * of callbacks all of which have already seen the end of their respective 2942 * grace periods. This omission is due to the need for no-CBs CPUs to 2943 * be holding ->nocb_lock to do this check, which is too heavy for a 2944 * common-case operation. 2945 */ 2946 static void check_cb_ovld(struct rcu_data *rdp) 2947 { 2948 struct rcu_node *const rnp = rdp->mynode; 2949 2950 if (qovld_calc <= 0 || 2951 ((rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) == 2952 !!(READ_ONCE(rnp->cbovldmask) & rdp->grpmask))) 2953 return; // Early boot wildcard value or already set correctly. 2954 raw_spin_lock_rcu_node(rnp); 2955 check_cb_ovld_locked(rdp, rnp); 2956 raw_spin_unlock_rcu_node(rnp); 2957 } 2958 2959 /* Helper function for call_rcu() and friends. */ 2960 static void 2961 __call_rcu(struct rcu_head *head, rcu_callback_t func) 2962 { 2963 static atomic_t doublefrees; 2964 unsigned long flags; 2965 struct rcu_data *rdp; 2966 bool was_alldone; 2967 2968 /* Misaligned rcu_head! */ 2969 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1)); 2970 2971 if (debug_rcu_head_queue(head)) { 2972 /* 2973 * Probable double call_rcu(), so leak the callback. 2974 * Use rcu:rcu_callback trace event to find the previous 2975 * time callback was passed to __call_rcu(). 2976 */ 2977 if (atomic_inc_return(&doublefrees) < 4) { 2978 pr_err("%s(): Double-freed CB %p->%pS()!!! ", __func__, head, head->func); 2979 mem_dump_obj(head); 2980 } 2981 WRITE_ONCE(head->func, rcu_leak_callback); 2982 return; 2983 } 2984 head->func = func; 2985 head->next = NULL; 2986 local_irq_save(flags); 2987 kasan_record_aux_stack(head); 2988 rdp = this_cpu_ptr(&rcu_data); 2989 2990 /* Add the callback to our list. */ 2991 if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist))) { 2992 // This can trigger due to call_rcu() from offline CPU: 2993 WARN_ON_ONCE(rcu_scheduler_active != RCU_SCHEDULER_INACTIVE); 2994 WARN_ON_ONCE(!rcu_is_watching()); 2995 // Very early boot, before rcu_init(). Initialize if needed 2996 // and then drop through to queue the callback. 2997 if (rcu_segcblist_empty(&rdp->cblist)) 2998 rcu_segcblist_init(&rdp->cblist); 2999 } 3000 3001 check_cb_ovld(rdp); 3002 if (rcu_nocb_try_bypass(rdp, head, &was_alldone, flags)) 3003 return; // Enqueued onto ->nocb_bypass, so just leave. 3004 // If no-CBs CPU gets here, rcu_nocb_try_bypass() acquired ->nocb_lock. 3005 rcu_segcblist_enqueue(&rdp->cblist, head); 3006 if (__is_kvfree_rcu_offset((unsigned long)func)) 3007 trace_rcu_kvfree_callback(rcu_state.name, head, 3008 (unsigned long)func, 3009 rcu_segcblist_n_cbs(&rdp->cblist)); 3010 else 3011 trace_rcu_callback(rcu_state.name, head, 3012 rcu_segcblist_n_cbs(&rdp->cblist)); 3013 3014 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCBQueued")); 3015 3016 /* Go handle any RCU core processing required. */ 3017 if (unlikely(rcu_rdp_is_offloaded(rdp))) { 3018 __call_rcu_nocb_wake(rdp, was_alldone, flags); /* unlocks */ 3019 } else { 3020 __call_rcu_core(rdp, head, flags); 3021 local_irq_restore(flags); 3022 } 3023 } 3024 3025 /** 3026 * call_rcu() - Queue an RCU callback for invocation after a grace period. 3027 * @head: structure to be used for queueing the RCU updates. 3028 * @func: actual callback function to be invoked after the grace period 3029 * 3030 * The callback function will be invoked some time after a full grace 3031 * period elapses, in other words after all pre-existing RCU read-side 3032 * critical sections have completed. However, the callback function 3033 * might well execute concurrently with RCU read-side critical sections 3034 * that started after call_rcu() was invoked. 3035 * 3036 * RCU read-side critical sections are delimited by rcu_read_lock() 3037 * and rcu_read_unlock(), and may be nested. In addition, but only in 3038 * v5.0 and later, regions of code across which interrupts, preemption, 3039 * or softirqs have been disabled also serve as RCU read-side critical 3040 * sections. This includes hardware interrupt handlers, softirq handlers, 3041 * and NMI handlers. 3042 * 3043 * Note that all CPUs must agree that the grace period extended beyond 3044 * all pre-existing RCU read-side critical section. On systems with more 3045 * than one CPU, this means that when "func()" is invoked, each CPU is 3046 * guaranteed to have executed a full memory barrier since the end of its 3047 * last RCU read-side critical section whose beginning preceded the call 3048 * to call_rcu(). It also means that each CPU executing an RCU read-side 3049 * critical section that continues beyond the start of "func()" must have 3050 * executed a memory barrier after the call_rcu() but before the beginning 3051 * of that RCU read-side critical section. Note that these guarantees 3052 * include CPUs that are offline, idle, or executing in user mode, as 3053 * well as CPUs that are executing in the kernel. 3054 * 3055 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the 3056 * resulting RCU callback function "func()", then both CPU A and CPU B are 3057 * guaranteed to execute a full memory barrier during the time interval 3058 * between the call to call_rcu() and the invocation of "func()" -- even 3059 * if CPU A and CPU B are the same CPU (but again only if the system has 3060 * more than one CPU). 3061 * 3062 * Implementation of these memory-ordering guarantees is described here: 3063 * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst. 3064 */ 3065 void call_rcu(struct rcu_head *head, rcu_callback_t func) 3066 { 3067 __call_rcu(head, func); 3068 } 3069 EXPORT_SYMBOL_GPL(call_rcu); 3070 3071 3072 /* Maximum number of jiffies to wait before draining a batch. */ 3073 #define KFREE_DRAIN_JIFFIES (HZ / 50) 3074 #define KFREE_N_BATCHES 2 3075 #define FREE_N_CHANNELS 2 3076 3077 /** 3078 * struct kvfree_rcu_bulk_data - single block to store kvfree_rcu() pointers 3079 * @nr_records: Number of active pointers in the array 3080 * @next: Next bulk object in the block chain 3081 * @records: Array of the kvfree_rcu() pointers 3082 */ 3083 struct kvfree_rcu_bulk_data { 3084 unsigned long nr_records; 3085 struct kvfree_rcu_bulk_data *next; 3086 void *records[]; 3087 }; 3088 3089 /* 3090 * This macro defines how many entries the "records" array 3091 * will contain. It is based on the fact that the size of 3092 * kvfree_rcu_bulk_data structure becomes exactly one page. 3093 */ 3094 #define KVFREE_BULK_MAX_ENTR \ 3095 ((PAGE_SIZE - sizeof(struct kvfree_rcu_bulk_data)) / sizeof(void *)) 3096 3097 /** 3098 * struct kfree_rcu_cpu_work - single batch of kfree_rcu() requests 3099 * @rcu_work: Let queue_rcu_work() invoke workqueue handler after grace period 3100 * @head_free: List of kfree_rcu() objects waiting for a grace period 3101 * @bkvhead_free: Bulk-List of kvfree_rcu() objects waiting for a grace period 3102 * @krcp: Pointer to @kfree_rcu_cpu structure 3103 */ 3104 3105 struct kfree_rcu_cpu_work { 3106 struct rcu_work rcu_work; 3107 struct rcu_head *head_free; 3108 struct kvfree_rcu_bulk_data *bkvhead_free[FREE_N_CHANNELS]; 3109 struct kfree_rcu_cpu *krcp; 3110 }; 3111 3112 /** 3113 * struct kfree_rcu_cpu - batch up kfree_rcu() requests for RCU grace period 3114 * @head: List of kfree_rcu() objects not yet waiting for a grace period 3115 * @bkvhead: Bulk-List of kvfree_rcu() objects not yet waiting for a grace period 3116 * @krw_arr: Array of batches of kfree_rcu() objects waiting for a grace period 3117 * @lock: Synchronize access to this structure 3118 * @monitor_work: Promote @head to @head_free after KFREE_DRAIN_JIFFIES 3119 * @monitor_todo: Tracks whether a @monitor_work delayed work is pending 3120 * @initialized: The @rcu_work fields have been initialized 3121 * @count: Number of objects for which GP not started 3122 * @bkvcache: 3123 * A simple cache list that contains objects for reuse purpose. 3124 * In order to save some per-cpu space the list is singular. 3125 * Even though it is lockless an access has to be protected by the 3126 * per-cpu lock. 3127 * @page_cache_work: A work to refill the cache when it is empty 3128 * @backoff_page_cache_fill: Delay cache refills 3129 * @work_in_progress: Indicates that page_cache_work is running 3130 * @hrtimer: A hrtimer for scheduling a page_cache_work 3131 * @nr_bkv_objs: number of allocated objects at @bkvcache. 3132 * 3133 * This is a per-CPU structure. The reason that it is not included in 3134 * the rcu_data structure is to permit this code to be extracted from 3135 * the RCU files. Such extraction could allow further optimization of 3136 * the interactions with the slab allocators. 3137 */ 3138 struct kfree_rcu_cpu { 3139 struct rcu_head *head; 3140 struct kvfree_rcu_bulk_data *bkvhead[FREE_N_CHANNELS]; 3141 struct kfree_rcu_cpu_work krw_arr[KFREE_N_BATCHES]; 3142 raw_spinlock_t lock; 3143 struct delayed_work monitor_work; 3144 bool monitor_todo; 3145 bool initialized; 3146 int count; 3147 3148 struct delayed_work page_cache_work; 3149 atomic_t backoff_page_cache_fill; 3150 atomic_t work_in_progress; 3151 struct hrtimer hrtimer; 3152 3153 struct llist_head bkvcache; 3154 int nr_bkv_objs; 3155 }; 3156 3157 static DEFINE_PER_CPU(struct kfree_rcu_cpu, krc) = { 3158 .lock = __RAW_SPIN_LOCK_UNLOCKED(krc.lock), 3159 }; 3160 3161 static __always_inline void 3162 debug_rcu_bhead_unqueue(struct kvfree_rcu_bulk_data *bhead) 3163 { 3164 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD 3165 int i; 3166 3167 for (i = 0; i < bhead->nr_records; i++) 3168 debug_rcu_head_unqueue((struct rcu_head *)(bhead->records[i])); 3169 #endif 3170 } 3171 3172 static inline struct kfree_rcu_cpu * 3173 krc_this_cpu_lock(unsigned long *flags) 3174 { 3175 struct kfree_rcu_cpu *krcp; 3176 3177 local_irq_save(*flags); // For safely calling this_cpu_ptr(). 3178 krcp = this_cpu_ptr(&krc); 3179 raw_spin_lock(&krcp->lock); 3180 3181 return krcp; 3182 } 3183 3184 static inline void 3185 krc_this_cpu_unlock(struct kfree_rcu_cpu *krcp, unsigned long flags) 3186 { 3187 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3188 } 3189 3190 static inline struct kvfree_rcu_bulk_data * 3191 get_cached_bnode(struct kfree_rcu_cpu *krcp) 3192 { 3193 if (!krcp->nr_bkv_objs) 3194 return NULL; 3195 3196 WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs - 1); 3197 return (struct kvfree_rcu_bulk_data *) 3198 llist_del_first(&krcp->bkvcache); 3199 } 3200 3201 static inline bool 3202 put_cached_bnode(struct kfree_rcu_cpu *krcp, 3203 struct kvfree_rcu_bulk_data *bnode) 3204 { 3205 // Check the limit. 3206 if (krcp->nr_bkv_objs >= rcu_min_cached_objs) 3207 return false; 3208 3209 llist_add((struct llist_node *) bnode, &krcp->bkvcache); 3210 WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs + 1); 3211 return true; 3212 } 3213 3214 static int 3215 drain_page_cache(struct kfree_rcu_cpu *krcp) 3216 { 3217 unsigned long flags; 3218 struct llist_node *page_list, *pos, *n; 3219 int freed = 0; 3220 3221 raw_spin_lock_irqsave(&krcp->lock, flags); 3222 page_list = llist_del_all(&krcp->bkvcache); 3223 WRITE_ONCE(krcp->nr_bkv_objs, 0); 3224 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3225 3226 llist_for_each_safe(pos, n, page_list) { 3227 free_page((unsigned long)pos); 3228 freed++; 3229 } 3230 3231 return freed; 3232 } 3233 3234 /* 3235 * This function is invoked in workqueue context after a grace period. 3236 * It frees all the objects queued on ->bkvhead_free or ->head_free. 3237 */ 3238 static void kfree_rcu_work(struct work_struct *work) 3239 { 3240 unsigned long flags; 3241 struct kvfree_rcu_bulk_data *bkvhead[FREE_N_CHANNELS], *bnext; 3242 struct rcu_head *head, *next; 3243 struct kfree_rcu_cpu *krcp; 3244 struct kfree_rcu_cpu_work *krwp; 3245 int i, j; 3246 3247 krwp = container_of(to_rcu_work(work), 3248 struct kfree_rcu_cpu_work, rcu_work); 3249 krcp = krwp->krcp; 3250 3251 raw_spin_lock_irqsave(&krcp->lock, flags); 3252 // Channels 1 and 2. 3253 for (i = 0; i < FREE_N_CHANNELS; i++) { 3254 bkvhead[i] = krwp->bkvhead_free[i]; 3255 krwp->bkvhead_free[i] = NULL; 3256 } 3257 3258 // Channel 3. 3259 head = krwp->head_free; 3260 krwp->head_free = NULL; 3261 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3262 3263 // Handle the first two channels. 3264 for (i = 0; i < FREE_N_CHANNELS; i++) { 3265 for (; bkvhead[i]; bkvhead[i] = bnext) { 3266 bnext = bkvhead[i]->next; 3267 debug_rcu_bhead_unqueue(bkvhead[i]); 3268 3269 rcu_lock_acquire(&rcu_callback_map); 3270 if (i == 0) { // kmalloc() / kfree(). 3271 trace_rcu_invoke_kfree_bulk_callback( 3272 rcu_state.name, bkvhead[i]->nr_records, 3273 bkvhead[i]->records); 3274 3275 kfree_bulk(bkvhead[i]->nr_records, 3276 bkvhead[i]->records); 3277 } else { // vmalloc() / vfree(). 3278 for (j = 0; j < bkvhead[i]->nr_records; j++) { 3279 trace_rcu_invoke_kvfree_callback( 3280 rcu_state.name, 3281 bkvhead[i]->records[j], 0); 3282 3283 vfree(bkvhead[i]->records[j]); 3284 } 3285 } 3286 rcu_lock_release(&rcu_callback_map); 3287 3288 raw_spin_lock_irqsave(&krcp->lock, flags); 3289 if (put_cached_bnode(krcp, bkvhead[i])) 3290 bkvhead[i] = NULL; 3291 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3292 3293 if (bkvhead[i]) 3294 free_page((unsigned long) bkvhead[i]); 3295 3296 cond_resched_tasks_rcu_qs(); 3297 } 3298 } 3299 3300 /* 3301 * This is used when the "bulk" path can not be used for the 3302 * double-argument of kvfree_rcu(). This happens when the 3303 * page-cache is empty, which means that objects are instead 3304 * queued on a linked list through their rcu_head structures. 3305 * This list is named "Channel 3". 3306 */ 3307 for (; head; head = next) { 3308 unsigned long offset = (unsigned long)head->func; 3309 void *ptr = (void *)head - offset; 3310 3311 next = head->next; 3312 debug_rcu_head_unqueue((struct rcu_head *)ptr); 3313 rcu_lock_acquire(&rcu_callback_map); 3314 trace_rcu_invoke_kvfree_callback(rcu_state.name, head, offset); 3315 3316 if (!WARN_ON_ONCE(!__is_kvfree_rcu_offset(offset))) 3317 kvfree(ptr); 3318 3319 rcu_lock_release(&rcu_callback_map); 3320 cond_resched_tasks_rcu_qs(); 3321 } 3322 } 3323 3324 /* 3325 * This function is invoked after the KFREE_DRAIN_JIFFIES timeout. 3326 */ 3327 static void kfree_rcu_monitor(struct work_struct *work) 3328 { 3329 struct kfree_rcu_cpu *krcp = container_of(work, 3330 struct kfree_rcu_cpu, monitor_work.work); 3331 unsigned long flags; 3332 int i, j; 3333 3334 raw_spin_lock_irqsave(&krcp->lock, flags); 3335 3336 // Attempt to start a new batch. 3337 for (i = 0; i < KFREE_N_BATCHES; i++) { 3338 struct kfree_rcu_cpu_work *krwp = &(krcp->krw_arr[i]); 3339 3340 // Try to detach bkvhead or head and attach it over any 3341 // available corresponding free channel. It can be that 3342 // a previous RCU batch is in progress, it means that 3343 // immediately to queue another one is not possible so 3344 // in that case the monitor work is rearmed. 3345 if ((krcp->bkvhead[0] && !krwp->bkvhead_free[0]) || 3346 (krcp->bkvhead[1] && !krwp->bkvhead_free[1]) || 3347 (krcp->head && !krwp->head_free)) { 3348 // Channel 1 corresponds to the SLAB-pointer bulk path. 3349 // Channel 2 corresponds to vmalloc-pointer bulk path. 3350 for (j = 0; j < FREE_N_CHANNELS; j++) { 3351 if (!krwp->bkvhead_free[j]) { 3352 krwp->bkvhead_free[j] = krcp->bkvhead[j]; 3353 krcp->bkvhead[j] = NULL; 3354 } 3355 } 3356 3357 // Channel 3 corresponds to both SLAB and vmalloc 3358 // objects queued on the linked list. 3359 if (!krwp->head_free) { 3360 krwp->head_free = krcp->head; 3361 krcp->head = NULL; 3362 } 3363 3364 WRITE_ONCE(krcp->count, 0); 3365 3366 // One work is per one batch, so there are three 3367 // "free channels", the batch can handle. It can 3368 // be that the work is in the pending state when 3369 // channels have been detached following by each 3370 // other. 3371 queue_rcu_work(system_wq, &krwp->rcu_work); 3372 } 3373 } 3374 3375 // If there is nothing to detach, it means that our job is 3376 // successfully done here. In case of having at least one 3377 // of the channels that is still busy we should rearm the 3378 // work to repeat an attempt. Because previous batches are 3379 // still in progress. 3380 if (!krcp->bkvhead[0] && !krcp->bkvhead[1] && !krcp->head) 3381 krcp->monitor_todo = false; 3382 else 3383 schedule_delayed_work(&krcp->monitor_work, KFREE_DRAIN_JIFFIES); 3384 3385 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3386 } 3387 3388 static enum hrtimer_restart 3389 schedule_page_work_fn(struct hrtimer *t) 3390 { 3391 struct kfree_rcu_cpu *krcp = 3392 container_of(t, struct kfree_rcu_cpu, hrtimer); 3393 3394 queue_delayed_work(system_highpri_wq, &krcp->page_cache_work, 0); 3395 return HRTIMER_NORESTART; 3396 } 3397 3398 static void fill_page_cache_func(struct work_struct *work) 3399 { 3400 struct kvfree_rcu_bulk_data *bnode; 3401 struct kfree_rcu_cpu *krcp = 3402 container_of(work, struct kfree_rcu_cpu, 3403 page_cache_work.work); 3404 unsigned long flags; 3405 int nr_pages; 3406 bool pushed; 3407 int i; 3408 3409 nr_pages = atomic_read(&krcp->backoff_page_cache_fill) ? 3410 1 : rcu_min_cached_objs; 3411 3412 for (i = 0; i < nr_pages; i++) { 3413 bnode = (struct kvfree_rcu_bulk_data *) 3414 __get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); 3415 3416 if (bnode) { 3417 raw_spin_lock_irqsave(&krcp->lock, flags); 3418 pushed = put_cached_bnode(krcp, bnode); 3419 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3420 3421 if (!pushed) { 3422 free_page((unsigned long) bnode); 3423 break; 3424 } 3425 } 3426 } 3427 3428 atomic_set(&krcp->work_in_progress, 0); 3429 atomic_set(&krcp->backoff_page_cache_fill, 0); 3430 } 3431 3432 static void 3433 run_page_cache_worker(struct kfree_rcu_cpu *krcp) 3434 { 3435 if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING && 3436 !atomic_xchg(&krcp->work_in_progress, 1)) { 3437 if (atomic_read(&krcp->backoff_page_cache_fill)) { 3438 queue_delayed_work(system_wq, 3439 &krcp->page_cache_work, 3440 msecs_to_jiffies(rcu_delay_page_cache_fill_msec)); 3441 } else { 3442 hrtimer_init(&krcp->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 3443 krcp->hrtimer.function = schedule_page_work_fn; 3444 hrtimer_start(&krcp->hrtimer, 0, HRTIMER_MODE_REL); 3445 } 3446 } 3447 } 3448 3449 // Record ptr in a page managed by krcp, with the pre-krc_this_cpu_lock() 3450 // state specified by flags. If can_alloc is true, the caller must 3451 // be schedulable and not be holding any locks or mutexes that might be 3452 // acquired by the memory allocator or anything that it might invoke. 3453 // Returns true if ptr was successfully recorded, else the caller must 3454 // use a fallback. 3455 static inline bool 3456 add_ptr_to_bulk_krc_lock(struct kfree_rcu_cpu **krcp, 3457 unsigned long *flags, void *ptr, bool can_alloc) 3458 { 3459 struct kvfree_rcu_bulk_data *bnode; 3460 int idx; 3461 3462 *krcp = krc_this_cpu_lock(flags); 3463 if (unlikely(!(*krcp)->initialized)) 3464 return false; 3465 3466 idx = !!is_vmalloc_addr(ptr); 3467 3468 /* Check if a new block is required. */ 3469 if (!(*krcp)->bkvhead[idx] || 3470 (*krcp)->bkvhead[idx]->nr_records == KVFREE_BULK_MAX_ENTR) { 3471 bnode = get_cached_bnode(*krcp); 3472 if (!bnode && can_alloc) { 3473 krc_this_cpu_unlock(*krcp, *flags); 3474 3475 // __GFP_NORETRY - allows a light-weight direct reclaim 3476 // what is OK from minimizing of fallback hitting point of 3477 // view. Apart of that it forbids any OOM invoking what is 3478 // also beneficial since we are about to release memory soon. 3479 // 3480 // __GFP_NOMEMALLOC - prevents from consuming of all the 3481 // memory reserves. Please note we have a fallback path. 3482 // 3483 // __GFP_NOWARN - it is supposed that an allocation can 3484 // be failed under low memory or high memory pressure 3485 // scenarios. 3486 bnode = (struct kvfree_rcu_bulk_data *) 3487 __get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); 3488 *krcp = krc_this_cpu_lock(flags); 3489 } 3490 3491 if (!bnode) 3492 return false; 3493 3494 /* Initialize the new block. */ 3495 bnode->nr_records = 0; 3496 bnode->next = (*krcp)->bkvhead[idx]; 3497 3498 /* Attach it to the head. */ 3499 (*krcp)->bkvhead[idx] = bnode; 3500 } 3501 3502 /* Finally insert. */ 3503 (*krcp)->bkvhead[idx]->records 3504 [(*krcp)->bkvhead[idx]->nr_records++] = ptr; 3505 3506 return true; 3507 } 3508 3509 /* 3510 * Queue a request for lazy invocation of the appropriate free routine 3511 * after a grace period. Please note that three paths are maintained, 3512 * two for the common case using arrays of pointers and a third one that 3513 * is used only when the main paths cannot be used, for example, due to 3514 * memory pressure. 3515 * 3516 * Each kvfree_call_rcu() request is added to a batch. The batch will be drained 3517 * every KFREE_DRAIN_JIFFIES number of jiffies. All the objects in the batch will 3518 * be free'd in workqueue context. This allows us to: batch requests together to 3519 * reduce the number of grace periods during heavy kfree_rcu()/kvfree_rcu() load. 3520 */ 3521 void kvfree_call_rcu(struct rcu_head *head, rcu_callback_t func) 3522 { 3523 unsigned long flags; 3524 struct kfree_rcu_cpu *krcp; 3525 bool success; 3526 void *ptr; 3527 3528 if (head) { 3529 ptr = (void *) head - (unsigned long) func; 3530 } else { 3531 /* 3532 * Please note there is a limitation for the head-less 3533 * variant, that is why there is a clear rule for such 3534 * objects: it can be used from might_sleep() context 3535 * only. For other places please embed an rcu_head to 3536 * your data. 3537 */ 3538 might_sleep(); 3539 ptr = (unsigned long *) func; 3540 } 3541 3542 // Queue the object but don't yet schedule the batch. 3543 if (debug_rcu_head_queue(ptr)) { 3544 // Probable double kfree_rcu(), just leak. 3545 WARN_ONCE(1, "%s(): Double-freed call. rcu_head %p\n", 3546 __func__, head); 3547 3548 // Mark as success and leave. 3549 return; 3550 } 3551 3552 kasan_record_aux_stack(ptr); 3553 success = add_ptr_to_bulk_krc_lock(&krcp, &flags, ptr, !head); 3554 if (!success) { 3555 run_page_cache_worker(krcp); 3556 3557 if (head == NULL) 3558 // Inline if kvfree_rcu(one_arg) call. 3559 goto unlock_return; 3560 3561 head->func = func; 3562 head->next = krcp->head; 3563 krcp->head = head; 3564 success = true; 3565 } 3566 3567 WRITE_ONCE(krcp->count, krcp->count + 1); 3568 3569 // Set timer to drain after KFREE_DRAIN_JIFFIES. 3570 if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING && 3571 !krcp->monitor_todo) { 3572 krcp->monitor_todo = true; 3573 schedule_delayed_work(&krcp->monitor_work, KFREE_DRAIN_JIFFIES); 3574 } 3575 3576 unlock_return: 3577 krc_this_cpu_unlock(krcp, flags); 3578 3579 /* 3580 * Inline kvfree() after synchronize_rcu(). We can do 3581 * it from might_sleep() context only, so the current 3582 * CPU can pass the QS state. 3583 */ 3584 if (!success) { 3585 debug_rcu_head_unqueue((struct rcu_head *) ptr); 3586 synchronize_rcu(); 3587 kvfree(ptr); 3588 } 3589 } 3590 EXPORT_SYMBOL_GPL(kvfree_call_rcu); 3591 3592 static unsigned long 3593 kfree_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc) 3594 { 3595 int cpu; 3596 unsigned long count = 0; 3597 3598 /* Snapshot count of all CPUs */ 3599 for_each_possible_cpu(cpu) { 3600 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); 3601 3602 count += READ_ONCE(krcp->count); 3603 count += READ_ONCE(krcp->nr_bkv_objs); 3604 atomic_set(&krcp->backoff_page_cache_fill, 1); 3605 } 3606 3607 return count; 3608 } 3609 3610 static unsigned long 3611 kfree_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) 3612 { 3613 int cpu, freed = 0; 3614 3615 for_each_possible_cpu(cpu) { 3616 int count; 3617 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); 3618 3619 count = krcp->count; 3620 count += drain_page_cache(krcp); 3621 kfree_rcu_monitor(&krcp->monitor_work.work); 3622 3623 sc->nr_to_scan -= count; 3624 freed += count; 3625 3626 if (sc->nr_to_scan <= 0) 3627 break; 3628 } 3629 3630 return freed == 0 ? SHRINK_STOP : freed; 3631 } 3632 3633 static struct shrinker kfree_rcu_shrinker = { 3634 .count_objects = kfree_rcu_shrink_count, 3635 .scan_objects = kfree_rcu_shrink_scan, 3636 .batch = 0, 3637 .seeks = DEFAULT_SEEKS, 3638 }; 3639 3640 void __init kfree_rcu_scheduler_running(void) 3641 { 3642 int cpu; 3643 unsigned long flags; 3644 3645 for_each_possible_cpu(cpu) { 3646 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); 3647 3648 raw_spin_lock_irqsave(&krcp->lock, flags); 3649 if ((!krcp->bkvhead[0] && !krcp->bkvhead[1] && !krcp->head) || 3650 krcp->monitor_todo) { 3651 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3652 continue; 3653 } 3654 krcp->monitor_todo = true; 3655 schedule_delayed_work_on(cpu, &krcp->monitor_work, 3656 KFREE_DRAIN_JIFFIES); 3657 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3658 } 3659 } 3660 3661 /* 3662 * During early boot, any blocking grace-period wait automatically 3663 * implies a grace period. Later on, this is never the case for PREEMPTION. 3664 * 3665 * However, because a context switch is a grace period for !PREEMPTION, any 3666 * blocking grace-period wait automatically implies a grace period if 3667 * there is only one CPU online at any point time during execution of 3668 * either synchronize_rcu() or synchronize_rcu_expedited(). It is OK to 3669 * occasionally incorrectly indicate that there are multiple CPUs online 3670 * when there was in fact only one the whole time, as this just adds some 3671 * overhead: RCU still operates correctly. 3672 */ 3673 static int rcu_blocking_is_gp(void) 3674 { 3675 int ret; 3676 3677 if (IS_ENABLED(CONFIG_PREEMPTION)) 3678 return rcu_scheduler_active == RCU_SCHEDULER_INACTIVE; 3679 might_sleep(); /* Check for RCU read-side critical section. */ 3680 preempt_disable(); 3681 /* 3682 * If the rcu_state.n_online_cpus counter is equal to one, 3683 * there is only one CPU, and that CPU sees all prior accesses 3684 * made by any CPU that was online at the time of its access. 3685 * Furthermore, if this counter is equal to one, its value cannot 3686 * change until after the preempt_enable() below. 3687 * 3688 * Furthermore, if rcu_state.n_online_cpus is equal to one here, 3689 * all later CPUs (both this one and any that come online later 3690 * on) are guaranteed to see all accesses prior to this point 3691 * in the code, without the need for additional memory barriers. 3692 * Those memory barriers are provided by CPU-hotplug code. 3693 */ 3694 ret = READ_ONCE(rcu_state.n_online_cpus) <= 1; 3695 preempt_enable(); 3696 return ret; 3697 } 3698 3699 /** 3700 * synchronize_rcu - wait until a grace period has elapsed. 3701 * 3702 * Control will return to the caller some time after a full grace 3703 * period has elapsed, in other words after all currently executing RCU 3704 * read-side critical sections have completed. Note, however, that 3705 * upon return from synchronize_rcu(), the caller might well be executing 3706 * concurrently with new RCU read-side critical sections that began while 3707 * synchronize_rcu() was waiting. 3708 * 3709 * RCU read-side critical sections are delimited by rcu_read_lock() 3710 * and rcu_read_unlock(), and may be nested. In addition, but only in 3711 * v5.0 and later, regions of code across which interrupts, preemption, 3712 * or softirqs have been disabled also serve as RCU read-side critical 3713 * sections. This includes hardware interrupt handlers, softirq handlers, 3714 * and NMI handlers. 3715 * 3716 * Note that this guarantee implies further memory-ordering guarantees. 3717 * On systems with more than one CPU, when synchronize_rcu() returns, 3718 * each CPU is guaranteed to have executed a full memory barrier since 3719 * the end of its last RCU read-side critical section whose beginning 3720 * preceded the call to synchronize_rcu(). In addition, each CPU having 3721 * an RCU read-side critical section that extends beyond the return from 3722 * synchronize_rcu() is guaranteed to have executed a full memory barrier 3723 * after the beginning of synchronize_rcu() and before the beginning of 3724 * that RCU read-side critical section. Note that these guarantees include 3725 * CPUs that are offline, idle, or executing in user mode, as well as CPUs 3726 * that are executing in the kernel. 3727 * 3728 * Furthermore, if CPU A invoked synchronize_rcu(), which returned 3729 * to its caller on CPU B, then both CPU A and CPU B are guaranteed 3730 * to have executed a full memory barrier during the execution of 3731 * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but 3732 * again only if the system has more than one CPU). 3733 * 3734 * Implementation of these memory-ordering guarantees is described here: 3735 * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst. 3736 */ 3737 void synchronize_rcu(void) 3738 { 3739 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) || 3740 lock_is_held(&rcu_lock_map) || 3741 lock_is_held(&rcu_sched_lock_map), 3742 "Illegal synchronize_rcu() in RCU read-side critical section"); 3743 if (rcu_blocking_is_gp()) 3744 return; // Context allows vacuous grace periods. 3745 if (rcu_gp_is_expedited()) 3746 synchronize_rcu_expedited(); 3747 else 3748 wait_rcu_gp(call_rcu); 3749 } 3750 EXPORT_SYMBOL_GPL(synchronize_rcu); 3751 3752 /** 3753 * get_state_synchronize_rcu - Snapshot current RCU state 3754 * 3755 * Returns a cookie that is used by a later call to cond_synchronize_rcu() 3756 * or poll_state_synchronize_rcu() to determine whether or not a full 3757 * grace period has elapsed in the meantime. 3758 */ 3759 unsigned long get_state_synchronize_rcu(void) 3760 { 3761 /* 3762 * Any prior manipulation of RCU-protected data must happen 3763 * before the load from ->gp_seq. 3764 */ 3765 smp_mb(); /* ^^^ */ 3766 return rcu_seq_snap(&rcu_state.gp_seq); 3767 } 3768 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu); 3769 3770 /** 3771 * start_poll_synchronize_rcu - Snapshot and start RCU grace period 3772 * 3773 * Returns a cookie that is used by a later call to cond_synchronize_rcu() 3774 * or poll_state_synchronize_rcu() to determine whether or not a full 3775 * grace period has elapsed in the meantime. If the needed grace period 3776 * is not already slated to start, notifies RCU core of the need for that 3777 * grace period. 3778 * 3779 * Interrupts must be enabled for the case where it is necessary to awaken 3780 * the grace-period kthread. 3781 */ 3782 unsigned long start_poll_synchronize_rcu(void) 3783 { 3784 unsigned long flags; 3785 unsigned long gp_seq = get_state_synchronize_rcu(); 3786 bool needwake; 3787 struct rcu_data *rdp; 3788 struct rcu_node *rnp; 3789 3790 lockdep_assert_irqs_enabled(); 3791 local_irq_save(flags); 3792 rdp = this_cpu_ptr(&rcu_data); 3793 rnp = rdp->mynode; 3794 raw_spin_lock_rcu_node(rnp); // irqs already disabled. 3795 needwake = rcu_start_this_gp(rnp, rdp, gp_seq); 3796 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3797 if (needwake) 3798 rcu_gp_kthread_wake(); 3799 return gp_seq; 3800 } 3801 EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu); 3802 3803 /** 3804 * poll_state_synchronize_rcu - Conditionally wait for an RCU grace period 3805 * 3806 * @oldstate: value from get_state_synchronize_rcu() or start_poll_synchronize_rcu() 3807 * 3808 * If a full RCU grace period has elapsed since the earlier call from 3809 * which oldstate was obtained, return @true, otherwise return @false. 3810 * If @false is returned, it is the caller's responsibility to invoke this 3811 * function later on until it does return @true. Alternatively, the caller 3812 * can explicitly wait for a grace period, for example, by passing @oldstate 3813 * to cond_synchronize_rcu() or by directly invoking synchronize_rcu(). 3814 * 3815 * Yes, this function does not take counter wrap into account. 3816 * But counter wrap is harmless. If the counter wraps, we have waited for 3817 * more than 2 billion grace periods (and way more on a 64-bit system!). 3818 * Those needing to keep oldstate values for very long time periods 3819 * (many hours even on 32-bit systems) should check them occasionally 3820 * and either refresh them or set a flag indicating that the grace period 3821 * has completed. 3822 * 3823 * This function provides the same memory-ordering guarantees that 3824 * would be provided by a synchronize_rcu() that was invoked at the call 3825 * to the function that provided @oldstate, and that returned at the end 3826 * of this function. 3827 */ 3828 bool poll_state_synchronize_rcu(unsigned long oldstate) 3829 { 3830 if (rcu_seq_done(&rcu_state.gp_seq, oldstate)) { 3831 smp_mb(); /* Ensure GP ends before subsequent accesses. */ 3832 return true; 3833 } 3834 return false; 3835 } 3836 EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu); 3837 3838 /** 3839 * cond_synchronize_rcu - Conditionally wait for an RCU grace period 3840 * 3841 * @oldstate: value from get_state_synchronize_rcu() or start_poll_synchronize_rcu() 3842 * 3843 * If a full RCU grace period has elapsed since the earlier call to 3844 * get_state_synchronize_rcu() or start_poll_synchronize_rcu(), just return. 3845 * Otherwise, invoke synchronize_rcu() to wait for a full grace period. 3846 * 3847 * Yes, this function does not take counter wrap into account. But 3848 * counter wrap is harmless. If the counter wraps, we have waited for 3849 * more than 2 billion grace periods (and way more on a 64-bit system!), 3850 * so waiting for one additional grace period should be just fine. 3851 * 3852 * This function provides the same memory-ordering guarantees that 3853 * would be provided by a synchronize_rcu() that was invoked at the call 3854 * to the function that provided @oldstate, and that returned at the end 3855 * of this function. 3856 */ 3857 void cond_synchronize_rcu(unsigned long oldstate) 3858 { 3859 if (!poll_state_synchronize_rcu(oldstate)) 3860 synchronize_rcu(); 3861 } 3862 EXPORT_SYMBOL_GPL(cond_synchronize_rcu); 3863 3864 /* 3865 * Check to see if there is any immediate RCU-related work to be done by 3866 * the current CPU, returning 1 if so and zero otherwise. The checks are 3867 * in order of increasing expense: checks that can be carried out against 3868 * CPU-local state are performed first. However, we must check for CPU 3869 * stalls first, else we might not get a chance. 3870 */ 3871 static int rcu_pending(int user) 3872 { 3873 bool gp_in_progress; 3874 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 3875 struct rcu_node *rnp = rdp->mynode; 3876 3877 lockdep_assert_irqs_disabled(); 3878 3879 /* Check for CPU stalls, if enabled. */ 3880 check_cpu_stall(rdp); 3881 3882 /* Does this CPU need a deferred NOCB wakeup? */ 3883 if (rcu_nocb_need_deferred_wakeup(rdp, RCU_NOCB_WAKE)) 3884 return 1; 3885 3886 /* Is this a nohz_full CPU in userspace or idle? (Ignore RCU if so.) */ 3887 if ((user || rcu_is_cpu_rrupt_from_idle()) && rcu_nohz_full_cpu()) 3888 return 0; 3889 3890 /* Is the RCU core waiting for a quiescent state from this CPU? */ 3891 gp_in_progress = rcu_gp_in_progress(); 3892 if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm && gp_in_progress) 3893 return 1; 3894 3895 /* Does this CPU have callbacks ready to invoke? */ 3896 if (!rcu_rdp_is_offloaded(rdp) && 3897 rcu_segcblist_ready_cbs(&rdp->cblist)) 3898 return 1; 3899 3900 /* Has RCU gone idle with this CPU needing another grace period? */ 3901 if (!gp_in_progress && rcu_segcblist_is_enabled(&rdp->cblist) && 3902 !rcu_rdp_is_offloaded(rdp) && 3903 !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL)) 3904 return 1; 3905 3906 /* Have RCU grace period completed or started? */ 3907 if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq || 3908 unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */ 3909 return 1; 3910 3911 /* nothing to do */ 3912 return 0; 3913 } 3914 3915 /* 3916 * Helper function for rcu_barrier() tracing. If tracing is disabled, 3917 * the compiler is expected to optimize this away. 3918 */ 3919 static void rcu_barrier_trace(const char *s, int cpu, unsigned long done) 3920 { 3921 trace_rcu_barrier(rcu_state.name, s, cpu, 3922 atomic_read(&rcu_state.barrier_cpu_count), done); 3923 } 3924 3925 /* 3926 * RCU callback function for rcu_barrier(). If we are last, wake 3927 * up the task executing rcu_barrier(). 3928 * 3929 * Note that the value of rcu_state.barrier_sequence must be captured 3930 * before the atomic_dec_and_test(). Otherwise, if this CPU is not last, 3931 * other CPUs might count the value down to zero before this CPU gets 3932 * around to invoking rcu_barrier_trace(), which might result in bogus 3933 * data from the next instance of rcu_barrier(). 3934 */ 3935 static void rcu_barrier_callback(struct rcu_head *rhp) 3936 { 3937 unsigned long __maybe_unused s = rcu_state.barrier_sequence; 3938 3939 if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) { 3940 rcu_barrier_trace(TPS("LastCB"), -1, s); 3941 complete(&rcu_state.barrier_completion); 3942 } else { 3943 rcu_barrier_trace(TPS("CB"), -1, s); 3944 } 3945 } 3946 3947 /* 3948 * Called with preemption disabled, and from cross-cpu IRQ context. 3949 */ 3950 static void rcu_barrier_func(void *cpu_in) 3951 { 3952 uintptr_t cpu = (uintptr_t)cpu_in; 3953 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 3954 3955 rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence); 3956 rdp->barrier_head.func = rcu_barrier_callback; 3957 debug_rcu_head_queue(&rdp->barrier_head); 3958 rcu_nocb_lock(rdp); 3959 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies)); 3960 if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head)) { 3961 atomic_inc(&rcu_state.barrier_cpu_count); 3962 } else { 3963 debug_rcu_head_unqueue(&rdp->barrier_head); 3964 rcu_barrier_trace(TPS("IRQNQ"), -1, 3965 rcu_state.barrier_sequence); 3966 } 3967 rcu_nocb_unlock(rdp); 3968 } 3969 3970 /** 3971 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete. 3972 * 3973 * Note that this primitive does not necessarily wait for an RCU grace period 3974 * to complete. For example, if there are no RCU callbacks queued anywhere 3975 * in the system, then rcu_barrier() is within its rights to return 3976 * immediately, without waiting for anything, much less an RCU grace period. 3977 */ 3978 void rcu_barrier(void) 3979 { 3980 uintptr_t cpu; 3981 struct rcu_data *rdp; 3982 unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence); 3983 3984 rcu_barrier_trace(TPS("Begin"), -1, s); 3985 3986 /* Take mutex to serialize concurrent rcu_barrier() requests. */ 3987 mutex_lock(&rcu_state.barrier_mutex); 3988 3989 /* Did someone else do our work for us? */ 3990 if (rcu_seq_done(&rcu_state.barrier_sequence, s)) { 3991 rcu_barrier_trace(TPS("EarlyExit"), -1, 3992 rcu_state.barrier_sequence); 3993 smp_mb(); /* caller's subsequent code after above check. */ 3994 mutex_unlock(&rcu_state.barrier_mutex); 3995 return; 3996 } 3997 3998 /* Mark the start of the barrier operation. */ 3999 rcu_seq_start(&rcu_state.barrier_sequence); 4000 rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence); 4001 4002 /* 4003 * Initialize the count to two rather than to zero in order 4004 * to avoid a too-soon return to zero in case of an immediate 4005 * invocation of the just-enqueued callback (or preemption of 4006 * this task). Exclude CPU-hotplug operations to ensure that no 4007 * offline non-offloaded CPU has callbacks queued. 4008 */ 4009 init_completion(&rcu_state.barrier_completion); 4010 atomic_set(&rcu_state.barrier_cpu_count, 2); 4011 cpus_read_lock(); 4012 4013 /* 4014 * Force each CPU with callbacks to register a new callback. 4015 * When that callback is invoked, we will know that all of the 4016 * corresponding CPU's preceding callbacks have been invoked. 4017 */ 4018 for_each_possible_cpu(cpu) { 4019 rdp = per_cpu_ptr(&rcu_data, cpu); 4020 if (cpu_is_offline(cpu) && 4021 !rcu_rdp_is_offloaded(rdp)) 4022 continue; 4023 if (rcu_segcblist_n_cbs(&rdp->cblist) && cpu_online(cpu)) { 4024 rcu_barrier_trace(TPS("OnlineQ"), cpu, 4025 rcu_state.barrier_sequence); 4026 smp_call_function_single(cpu, rcu_barrier_func, (void *)cpu, 1); 4027 } else if (rcu_segcblist_n_cbs(&rdp->cblist) && 4028 cpu_is_offline(cpu)) { 4029 rcu_barrier_trace(TPS("OfflineNoCBQ"), cpu, 4030 rcu_state.barrier_sequence); 4031 local_irq_disable(); 4032 rcu_barrier_func((void *)cpu); 4033 local_irq_enable(); 4034 } else if (cpu_is_offline(cpu)) { 4035 rcu_barrier_trace(TPS("OfflineNoCBNoQ"), cpu, 4036 rcu_state.barrier_sequence); 4037 } else { 4038 rcu_barrier_trace(TPS("OnlineNQ"), cpu, 4039 rcu_state.barrier_sequence); 4040 } 4041 } 4042 cpus_read_unlock(); 4043 4044 /* 4045 * Now that we have an rcu_barrier_callback() callback on each 4046 * CPU, and thus each counted, remove the initial count. 4047 */ 4048 if (atomic_sub_and_test(2, &rcu_state.barrier_cpu_count)) 4049 complete(&rcu_state.barrier_completion); 4050 4051 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */ 4052 wait_for_completion(&rcu_state.barrier_completion); 4053 4054 /* Mark the end of the barrier operation. */ 4055 rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence); 4056 rcu_seq_end(&rcu_state.barrier_sequence); 4057 4058 /* Other rcu_barrier() invocations can now safely proceed. */ 4059 mutex_unlock(&rcu_state.barrier_mutex); 4060 } 4061 EXPORT_SYMBOL_GPL(rcu_barrier); 4062 4063 /* 4064 * Propagate ->qsinitmask bits up the rcu_node tree to account for the 4065 * first CPU in a given leaf rcu_node structure coming online. The caller 4066 * must hold the corresponding leaf rcu_node ->lock with interrupts 4067 * disabled. 4068 */ 4069 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf) 4070 { 4071 long mask; 4072 long oldmask; 4073 struct rcu_node *rnp = rnp_leaf; 4074 4075 raw_lockdep_assert_held_rcu_node(rnp_leaf); 4076 WARN_ON_ONCE(rnp->wait_blkd_tasks); 4077 for (;;) { 4078 mask = rnp->grpmask; 4079 rnp = rnp->parent; 4080 if (rnp == NULL) 4081 return; 4082 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */ 4083 oldmask = rnp->qsmaskinit; 4084 rnp->qsmaskinit |= mask; 4085 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */ 4086 if (oldmask) 4087 return; 4088 } 4089 } 4090 4091 /* 4092 * Do boot-time initialization of a CPU's per-CPU RCU data. 4093 */ 4094 static void __init 4095 rcu_boot_init_percpu_data(int cpu) 4096 { 4097 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4098 4099 /* Set up local state, ensuring consistent view of global state. */ 4100 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu); 4101 INIT_WORK(&rdp->strict_work, strict_work_handler); 4102 WARN_ON_ONCE(rdp->dynticks_nesting != 1); 4103 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp))); 4104 rdp->rcu_ofl_gp_seq = rcu_state.gp_seq; 4105 rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED; 4106 rdp->rcu_onl_gp_seq = rcu_state.gp_seq; 4107 rdp->rcu_onl_gp_flags = RCU_GP_CLEANED; 4108 rdp->cpu = cpu; 4109 rcu_boot_init_nocb_percpu_data(rdp); 4110 } 4111 4112 /* 4113 * Invoked early in the CPU-online process, when pretty much all services 4114 * are available. The incoming CPU is not present. 4115 * 4116 * Initializes a CPU's per-CPU RCU data. Note that only one online or 4117 * offline event can be happening at a given time. Note also that we can 4118 * accept some slop in the rsp->gp_seq access due to the fact that this 4119 * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet. 4120 * And any offloaded callbacks are being numbered elsewhere. 4121 */ 4122 int rcutree_prepare_cpu(unsigned int cpu) 4123 { 4124 unsigned long flags; 4125 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4126 struct rcu_node *rnp = rcu_get_root(); 4127 4128 /* Set up local state, ensuring consistent view of global state. */ 4129 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4130 rdp->qlen_last_fqs_check = 0; 4131 rdp->n_force_qs_snap = rcu_state.n_force_qs; 4132 rdp->blimit = blimit; 4133 rdp->dynticks_nesting = 1; /* CPU not up, no tearing. */ 4134 rcu_dynticks_eqs_online(); 4135 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 4136 4137 /* 4138 * Only non-NOCB CPUs that didn't have early-boot callbacks need to be 4139 * (re-)initialized. 4140 */ 4141 if (!rcu_segcblist_is_enabled(&rdp->cblist)) 4142 rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */ 4143 4144 /* 4145 * Add CPU to leaf rcu_node pending-online bitmask. Any needed 4146 * propagation up the rcu_node tree will happen at the beginning 4147 * of the next grace period. 4148 */ 4149 rnp = rdp->mynode; 4150 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 4151 rdp->beenonline = true; /* We have now been online. */ 4152 rdp->gp_seq = READ_ONCE(rnp->gp_seq); 4153 rdp->gp_seq_needed = rdp->gp_seq; 4154 rdp->cpu_no_qs.b.norm = true; 4155 rdp->core_needs_qs = false; 4156 rdp->rcu_iw_pending = false; 4157 rdp->rcu_iw = IRQ_WORK_INIT_HARD(rcu_iw_handler); 4158 rdp->rcu_iw_gp_seq = rdp->gp_seq - 1; 4159 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl")); 4160 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4161 rcu_spawn_one_boost_kthread(rnp); 4162 rcu_spawn_cpu_nocb_kthread(cpu); 4163 WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus + 1); 4164 4165 return 0; 4166 } 4167 4168 /* 4169 * Update RCU priority boot kthread affinity for CPU-hotplug changes. 4170 */ 4171 static void rcutree_affinity_setting(unsigned int cpu, int outgoing) 4172 { 4173 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4174 4175 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing); 4176 } 4177 4178 /* 4179 * Near the end of the CPU-online process. Pretty much all services 4180 * enabled, and the CPU is now very much alive. 4181 */ 4182 int rcutree_online_cpu(unsigned int cpu) 4183 { 4184 unsigned long flags; 4185 struct rcu_data *rdp; 4186 struct rcu_node *rnp; 4187 4188 rdp = per_cpu_ptr(&rcu_data, cpu); 4189 rnp = rdp->mynode; 4190 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4191 rnp->ffmask |= rdp->grpmask; 4192 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4193 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE) 4194 return 0; /* Too early in boot for scheduler work. */ 4195 sync_sched_exp_online_cleanup(cpu); 4196 rcutree_affinity_setting(cpu, -1); 4197 4198 // Stop-machine done, so allow nohz_full to disable tick. 4199 tick_dep_clear(TICK_DEP_BIT_RCU); 4200 return 0; 4201 } 4202 4203 /* 4204 * Near the beginning of the process. The CPU is still very much alive 4205 * with pretty much all services enabled. 4206 */ 4207 int rcutree_offline_cpu(unsigned int cpu) 4208 { 4209 unsigned long flags; 4210 struct rcu_data *rdp; 4211 struct rcu_node *rnp; 4212 4213 rdp = per_cpu_ptr(&rcu_data, cpu); 4214 rnp = rdp->mynode; 4215 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4216 rnp->ffmask &= ~rdp->grpmask; 4217 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4218 4219 rcutree_affinity_setting(cpu, cpu); 4220 4221 // nohz_full CPUs need the tick for stop-machine to work quickly 4222 tick_dep_set(TICK_DEP_BIT_RCU); 4223 return 0; 4224 } 4225 4226 /* 4227 * Mark the specified CPU as being online so that subsequent grace periods 4228 * (both expedited and normal) will wait on it. Note that this means that 4229 * incoming CPUs are not allowed to use RCU read-side critical sections 4230 * until this function is called. Failing to observe this restriction 4231 * will result in lockdep splats. 4232 * 4233 * Note that this function is special in that it is invoked directly 4234 * from the incoming CPU rather than from the cpuhp_step mechanism. 4235 * This is because this function must be invoked at a precise location. 4236 */ 4237 void rcu_cpu_starting(unsigned int cpu) 4238 { 4239 unsigned long flags; 4240 unsigned long mask; 4241 struct rcu_data *rdp; 4242 struct rcu_node *rnp; 4243 bool newcpu; 4244 4245 rdp = per_cpu_ptr(&rcu_data, cpu); 4246 if (rdp->cpu_started) 4247 return; 4248 rdp->cpu_started = true; 4249 4250 rnp = rdp->mynode; 4251 mask = rdp->grpmask; 4252 WRITE_ONCE(rnp->ofl_seq, rnp->ofl_seq + 1); 4253 WARN_ON_ONCE(!(rnp->ofl_seq & 0x1)); 4254 smp_mb(); // Pair with rcu_gp_cleanup()'s ->ofl_seq barrier(). 4255 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4256 WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext | mask); 4257 newcpu = !(rnp->expmaskinitnext & mask); 4258 rnp->expmaskinitnext |= mask; 4259 /* Allow lockless access for expedited grace periods. */ 4260 smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + newcpu); /* ^^^ */ 4261 ASSERT_EXCLUSIVE_WRITER(rcu_state.ncpus); 4262 rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */ 4263 rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq); 4264 rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags); 4265 4266 /* An incoming CPU should never be blocking a grace period. */ 4267 if (WARN_ON_ONCE(rnp->qsmask & mask)) { /* RCU waiting on incoming CPU? */ 4268 rcu_disable_urgency_upon_qs(rdp); 4269 /* Report QS -after- changing ->qsmaskinitnext! */ 4270 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 4271 } else { 4272 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4273 } 4274 smp_mb(); // Pair with rcu_gp_cleanup()'s ->ofl_seq barrier(). 4275 WRITE_ONCE(rnp->ofl_seq, rnp->ofl_seq + 1); 4276 WARN_ON_ONCE(rnp->ofl_seq & 0x1); 4277 smp_mb(); /* Ensure RCU read-side usage follows above initialization. */ 4278 } 4279 4280 /* 4281 * The outgoing function has no further need of RCU, so remove it from 4282 * the rcu_node tree's ->qsmaskinitnext bit masks. 4283 * 4284 * Note that this function is special in that it is invoked directly 4285 * from the outgoing CPU rather than from the cpuhp_step mechanism. 4286 * This is because this function must be invoked at a precise location. 4287 */ 4288 void rcu_report_dead(unsigned int cpu) 4289 { 4290 unsigned long flags; 4291 unsigned long mask; 4292 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4293 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ 4294 4295 // Do any dangling deferred wakeups. 4296 do_nocb_deferred_wakeup(rdp); 4297 4298 /* QS for any half-done expedited grace period. */ 4299 preempt_disable(); 4300 rcu_report_exp_rdp(this_cpu_ptr(&rcu_data)); 4301 preempt_enable(); 4302 rcu_preempt_deferred_qs(current); 4303 4304 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */ 4305 mask = rdp->grpmask; 4306 WRITE_ONCE(rnp->ofl_seq, rnp->ofl_seq + 1); 4307 WARN_ON_ONCE(!(rnp->ofl_seq & 0x1)); 4308 smp_mb(); // Pair with rcu_gp_cleanup()'s ->ofl_seq barrier(). 4309 raw_spin_lock(&rcu_state.ofl_lock); 4310 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */ 4311 rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq); 4312 rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags); 4313 if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */ 4314 /* Report quiescent state -before- changing ->qsmaskinitnext! */ 4315 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 4316 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4317 } 4318 WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext & ~mask); 4319 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4320 raw_spin_unlock(&rcu_state.ofl_lock); 4321 smp_mb(); // Pair with rcu_gp_cleanup()'s ->ofl_seq barrier(). 4322 WRITE_ONCE(rnp->ofl_seq, rnp->ofl_seq + 1); 4323 WARN_ON_ONCE(rnp->ofl_seq & 0x1); 4324 4325 rdp->cpu_started = false; 4326 } 4327 4328 #ifdef CONFIG_HOTPLUG_CPU 4329 /* 4330 * The outgoing CPU has just passed through the dying-idle state, and we 4331 * are being invoked from the CPU that was IPIed to continue the offline 4332 * operation. Migrate the outgoing CPU's callbacks to the current CPU. 4333 */ 4334 void rcutree_migrate_callbacks(int cpu) 4335 { 4336 unsigned long flags; 4337 struct rcu_data *my_rdp; 4338 struct rcu_node *my_rnp; 4339 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4340 bool needwake; 4341 4342 if (rcu_rdp_is_offloaded(rdp) || 4343 rcu_segcblist_empty(&rdp->cblist)) 4344 return; /* No callbacks to migrate. */ 4345 4346 local_irq_save(flags); 4347 my_rdp = this_cpu_ptr(&rcu_data); 4348 my_rnp = my_rdp->mynode; 4349 rcu_nocb_lock(my_rdp); /* irqs already disabled. */ 4350 WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies)); 4351 raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */ 4352 /* Leverage recent GPs and set GP for new callbacks. */ 4353 needwake = rcu_advance_cbs(my_rnp, rdp) || 4354 rcu_advance_cbs(my_rnp, my_rdp); 4355 rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist); 4356 needwake = needwake || rcu_advance_cbs(my_rnp, my_rdp); 4357 rcu_segcblist_disable(&rdp->cblist); 4358 WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) != 4359 !rcu_segcblist_n_cbs(&my_rdp->cblist)); 4360 if (rcu_rdp_is_offloaded(my_rdp)) { 4361 raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */ 4362 __call_rcu_nocb_wake(my_rdp, true, flags); 4363 } else { 4364 rcu_nocb_unlock(my_rdp); /* irqs remain disabled. */ 4365 raw_spin_unlock_irqrestore_rcu_node(my_rnp, flags); 4366 } 4367 if (needwake) 4368 rcu_gp_kthread_wake(); 4369 lockdep_assert_irqs_enabled(); 4370 WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 || 4371 !rcu_segcblist_empty(&rdp->cblist), 4372 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n", 4373 cpu, rcu_segcblist_n_cbs(&rdp->cblist), 4374 rcu_segcblist_first_cb(&rdp->cblist)); 4375 } 4376 #endif 4377 4378 /* 4379 * On non-huge systems, use expedited RCU grace periods to make suspend 4380 * and hibernation run faster. 4381 */ 4382 static int rcu_pm_notify(struct notifier_block *self, 4383 unsigned long action, void *hcpu) 4384 { 4385 switch (action) { 4386 case PM_HIBERNATION_PREPARE: 4387 case PM_SUSPEND_PREPARE: 4388 rcu_expedite_gp(); 4389 break; 4390 case PM_POST_HIBERNATION: 4391 case PM_POST_SUSPEND: 4392 rcu_unexpedite_gp(); 4393 break; 4394 default: 4395 break; 4396 } 4397 return NOTIFY_OK; 4398 } 4399 4400 /* 4401 * Spawn the kthreads that handle RCU's grace periods. 4402 */ 4403 static int __init rcu_spawn_gp_kthread(void) 4404 { 4405 unsigned long flags; 4406 int kthread_prio_in = kthread_prio; 4407 struct rcu_node *rnp; 4408 struct sched_param sp; 4409 struct task_struct *t; 4410 4411 /* Force priority into range. */ 4412 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2 4413 && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST)) 4414 kthread_prio = 2; 4415 else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1) 4416 kthread_prio = 1; 4417 else if (kthread_prio < 0) 4418 kthread_prio = 0; 4419 else if (kthread_prio > 99) 4420 kthread_prio = 99; 4421 4422 if (kthread_prio != kthread_prio_in) 4423 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n", 4424 kthread_prio, kthread_prio_in); 4425 4426 rcu_scheduler_fully_active = 1; 4427 t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name); 4428 if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__)) 4429 return 0; 4430 if (kthread_prio) { 4431 sp.sched_priority = kthread_prio; 4432 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 4433 } 4434 rnp = rcu_get_root(); 4435 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4436 WRITE_ONCE(rcu_state.gp_activity, jiffies); 4437 WRITE_ONCE(rcu_state.gp_req_activity, jiffies); 4438 // Reset .gp_activity and .gp_req_activity before setting .gp_kthread. 4439 smp_store_release(&rcu_state.gp_kthread, t); /* ^^^ */ 4440 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4441 wake_up_process(t); 4442 rcu_spawn_nocb_kthreads(); 4443 rcu_spawn_boost_kthreads(); 4444 rcu_spawn_core_kthreads(); 4445 return 0; 4446 } 4447 early_initcall(rcu_spawn_gp_kthread); 4448 4449 /* 4450 * This function is invoked towards the end of the scheduler's 4451 * initialization process. Before this is called, the idle task might 4452 * contain synchronous grace-period primitives (during which time, this idle 4453 * task is booting the system, and such primitives are no-ops). After this 4454 * function is called, any synchronous grace-period primitives are run as 4455 * expedited, with the requesting task driving the grace period forward. 4456 * A later core_initcall() rcu_set_runtime_mode() will switch to full 4457 * runtime RCU functionality. 4458 */ 4459 void rcu_scheduler_starting(void) 4460 { 4461 WARN_ON(num_online_cpus() != 1); 4462 WARN_ON(nr_context_switches() > 0); 4463 rcu_test_sync_prims(); 4464 rcu_scheduler_active = RCU_SCHEDULER_INIT; 4465 rcu_test_sync_prims(); 4466 } 4467 4468 /* 4469 * Helper function for rcu_init() that initializes the rcu_state structure. 4470 */ 4471 static void __init rcu_init_one(void) 4472 { 4473 static const char * const buf[] = RCU_NODE_NAME_INIT; 4474 static const char * const fqs[] = RCU_FQS_NAME_INIT; 4475 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS]; 4476 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS]; 4477 4478 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */ 4479 int cpustride = 1; 4480 int i; 4481 int j; 4482 struct rcu_node *rnp; 4483 4484 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */ 4485 4486 /* Silence gcc 4.8 false positive about array index out of range. */ 4487 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS) 4488 panic("rcu_init_one: rcu_num_lvls out of range"); 4489 4490 /* Initialize the level-tracking arrays. */ 4491 4492 for (i = 1; i < rcu_num_lvls; i++) 4493 rcu_state.level[i] = 4494 rcu_state.level[i - 1] + num_rcu_lvl[i - 1]; 4495 rcu_init_levelspread(levelspread, num_rcu_lvl); 4496 4497 /* Initialize the elements themselves, starting from the leaves. */ 4498 4499 for (i = rcu_num_lvls - 1; i >= 0; i--) { 4500 cpustride *= levelspread[i]; 4501 rnp = rcu_state.level[i]; 4502 for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) { 4503 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock)); 4504 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock), 4505 &rcu_node_class[i], buf[i]); 4506 raw_spin_lock_init(&rnp->fqslock); 4507 lockdep_set_class_and_name(&rnp->fqslock, 4508 &rcu_fqs_class[i], fqs[i]); 4509 rnp->gp_seq = rcu_state.gp_seq; 4510 rnp->gp_seq_needed = rcu_state.gp_seq; 4511 rnp->completedqs = rcu_state.gp_seq; 4512 rnp->qsmask = 0; 4513 rnp->qsmaskinit = 0; 4514 rnp->grplo = j * cpustride; 4515 rnp->grphi = (j + 1) * cpustride - 1; 4516 if (rnp->grphi >= nr_cpu_ids) 4517 rnp->grphi = nr_cpu_ids - 1; 4518 if (i == 0) { 4519 rnp->grpnum = 0; 4520 rnp->grpmask = 0; 4521 rnp->parent = NULL; 4522 } else { 4523 rnp->grpnum = j % levelspread[i - 1]; 4524 rnp->grpmask = BIT(rnp->grpnum); 4525 rnp->parent = rcu_state.level[i - 1] + 4526 j / levelspread[i - 1]; 4527 } 4528 rnp->level = i; 4529 INIT_LIST_HEAD(&rnp->blkd_tasks); 4530 rcu_init_one_nocb(rnp); 4531 init_waitqueue_head(&rnp->exp_wq[0]); 4532 init_waitqueue_head(&rnp->exp_wq[1]); 4533 init_waitqueue_head(&rnp->exp_wq[2]); 4534 init_waitqueue_head(&rnp->exp_wq[3]); 4535 spin_lock_init(&rnp->exp_lock); 4536 } 4537 } 4538 4539 init_swait_queue_head(&rcu_state.gp_wq); 4540 init_swait_queue_head(&rcu_state.expedited_wq); 4541 rnp = rcu_first_leaf_node(); 4542 for_each_possible_cpu(i) { 4543 while (i > rnp->grphi) 4544 rnp++; 4545 per_cpu_ptr(&rcu_data, i)->mynode = rnp; 4546 rcu_boot_init_percpu_data(i); 4547 } 4548 } 4549 4550 /* 4551 * Compute the rcu_node tree geometry from kernel parameters. This cannot 4552 * replace the definitions in tree.h because those are needed to size 4553 * the ->node array in the rcu_state structure. 4554 */ 4555 void rcu_init_geometry(void) 4556 { 4557 ulong d; 4558 int i; 4559 static unsigned long old_nr_cpu_ids; 4560 int rcu_capacity[RCU_NUM_LVLS]; 4561 static bool initialized; 4562 4563 if (initialized) { 4564 /* 4565 * Warn if setup_nr_cpu_ids() had not yet been invoked, 4566 * unless nr_cpus_ids == NR_CPUS, in which case who cares? 4567 */ 4568 WARN_ON_ONCE(old_nr_cpu_ids != nr_cpu_ids); 4569 return; 4570 } 4571 4572 old_nr_cpu_ids = nr_cpu_ids; 4573 initialized = true; 4574 4575 /* 4576 * Initialize any unspecified boot parameters. 4577 * The default values of jiffies_till_first_fqs and 4578 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS 4579 * value, which is a function of HZ, then adding one for each 4580 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system. 4581 */ 4582 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; 4583 if (jiffies_till_first_fqs == ULONG_MAX) 4584 jiffies_till_first_fqs = d; 4585 if (jiffies_till_next_fqs == ULONG_MAX) 4586 jiffies_till_next_fqs = d; 4587 adjust_jiffies_till_sched_qs(); 4588 4589 /* If the compile-time values are accurate, just leave. */ 4590 if (rcu_fanout_leaf == RCU_FANOUT_LEAF && 4591 nr_cpu_ids == NR_CPUS) 4592 return; 4593 pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n", 4594 rcu_fanout_leaf, nr_cpu_ids); 4595 4596 /* 4597 * The boot-time rcu_fanout_leaf parameter must be at least two 4598 * and cannot exceed the number of bits in the rcu_node masks. 4599 * Complain and fall back to the compile-time values if this 4600 * limit is exceeded. 4601 */ 4602 if (rcu_fanout_leaf < 2 || 4603 rcu_fanout_leaf > sizeof(unsigned long) * 8) { 4604 rcu_fanout_leaf = RCU_FANOUT_LEAF; 4605 WARN_ON(1); 4606 return; 4607 } 4608 4609 /* 4610 * Compute number of nodes that can be handled an rcu_node tree 4611 * with the given number of levels. 4612 */ 4613 rcu_capacity[0] = rcu_fanout_leaf; 4614 for (i = 1; i < RCU_NUM_LVLS; i++) 4615 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT; 4616 4617 /* 4618 * The tree must be able to accommodate the configured number of CPUs. 4619 * If this limit is exceeded, fall back to the compile-time values. 4620 */ 4621 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) { 4622 rcu_fanout_leaf = RCU_FANOUT_LEAF; 4623 WARN_ON(1); 4624 return; 4625 } 4626 4627 /* Calculate the number of levels in the tree. */ 4628 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) { 4629 } 4630 rcu_num_lvls = i + 1; 4631 4632 /* Calculate the number of rcu_nodes at each level of the tree. */ 4633 for (i = 0; i < rcu_num_lvls; i++) { 4634 int cap = rcu_capacity[(rcu_num_lvls - 1) - i]; 4635 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap); 4636 } 4637 4638 /* Calculate the total number of rcu_node structures. */ 4639 rcu_num_nodes = 0; 4640 for (i = 0; i < rcu_num_lvls; i++) 4641 rcu_num_nodes += num_rcu_lvl[i]; 4642 } 4643 4644 /* 4645 * Dump out the structure of the rcu_node combining tree associated 4646 * with the rcu_state structure. 4647 */ 4648 static void __init rcu_dump_rcu_node_tree(void) 4649 { 4650 int level = 0; 4651 struct rcu_node *rnp; 4652 4653 pr_info("rcu_node tree layout dump\n"); 4654 pr_info(" "); 4655 rcu_for_each_node_breadth_first(rnp) { 4656 if (rnp->level != level) { 4657 pr_cont("\n"); 4658 pr_info(" "); 4659 level = rnp->level; 4660 } 4661 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum); 4662 } 4663 pr_cont("\n"); 4664 } 4665 4666 struct workqueue_struct *rcu_gp_wq; 4667 struct workqueue_struct *rcu_par_gp_wq; 4668 4669 static void __init kfree_rcu_batch_init(void) 4670 { 4671 int cpu; 4672 int i; 4673 4674 /* Clamp it to [0:100] seconds interval. */ 4675 if (rcu_delay_page_cache_fill_msec < 0 || 4676 rcu_delay_page_cache_fill_msec > 100 * MSEC_PER_SEC) { 4677 4678 rcu_delay_page_cache_fill_msec = 4679 clamp(rcu_delay_page_cache_fill_msec, 0, 4680 (int) (100 * MSEC_PER_SEC)); 4681 4682 pr_info("Adjusting rcutree.rcu_delay_page_cache_fill_msec to %d ms.\n", 4683 rcu_delay_page_cache_fill_msec); 4684 } 4685 4686 for_each_possible_cpu(cpu) { 4687 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); 4688 4689 for (i = 0; i < KFREE_N_BATCHES; i++) { 4690 INIT_RCU_WORK(&krcp->krw_arr[i].rcu_work, kfree_rcu_work); 4691 krcp->krw_arr[i].krcp = krcp; 4692 } 4693 4694 INIT_DELAYED_WORK(&krcp->monitor_work, kfree_rcu_monitor); 4695 INIT_DELAYED_WORK(&krcp->page_cache_work, fill_page_cache_func); 4696 krcp->initialized = true; 4697 } 4698 if (register_shrinker(&kfree_rcu_shrinker)) 4699 pr_err("Failed to register kfree_rcu() shrinker!\n"); 4700 } 4701 4702 void __init rcu_init(void) 4703 { 4704 int cpu; 4705 4706 rcu_early_boot_tests(); 4707 4708 kfree_rcu_batch_init(); 4709 rcu_bootup_announce(); 4710 rcu_init_geometry(); 4711 rcu_init_one(); 4712 if (dump_tree) 4713 rcu_dump_rcu_node_tree(); 4714 if (use_softirq) 4715 open_softirq(RCU_SOFTIRQ, rcu_core_si); 4716 4717 /* 4718 * We don't need protection against CPU-hotplug here because 4719 * this is called early in boot, before either interrupts 4720 * or the scheduler are operational. 4721 */ 4722 pm_notifier(rcu_pm_notify, 0); 4723 for_each_online_cpu(cpu) { 4724 rcutree_prepare_cpu(cpu); 4725 rcu_cpu_starting(cpu); 4726 rcutree_online_cpu(cpu); 4727 } 4728 4729 /* Create workqueue for Tree SRCU and for expedited GPs. */ 4730 rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0); 4731 WARN_ON(!rcu_gp_wq); 4732 rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0); 4733 WARN_ON(!rcu_par_gp_wq); 4734 4735 /* Fill in default value for rcutree.qovld boot parameter. */ 4736 /* -After- the rcu_node ->lock fields are initialized! */ 4737 if (qovld < 0) 4738 qovld_calc = DEFAULT_RCU_QOVLD_MULT * qhimark; 4739 else 4740 qovld_calc = qovld; 4741 } 4742 4743 #include "tree_stall.h" 4744 #include "tree_exp.h" 4745 #include "tree_nocb.h" 4746 #include "tree_plugin.h" 4747