xref: /linux/kernel/rcu/tree.c (revision 4359a011e259a4608afc7fb3635370c9d4ba5943)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
4  *
5  * Copyright IBM Corporation, 2008
6  *
7  * Authors: Dipankar Sarma <dipankar@in.ibm.com>
8  *	    Manfred Spraul <manfred@colorfullife.com>
9  *	    Paul E. McKenney <paulmck@linux.ibm.com>
10  *
11  * Based on the original work by Paul McKenney <paulmck@linux.ibm.com>
12  * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
13  *
14  * For detailed explanation of Read-Copy Update mechanism see -
15  *	Documentation/RCU
16  */
17 
18 #define pr_fmt(fmt) "rcu: " fmt
19 
20 #include <linux/types.h>
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/spinlock.h>
24 #include <linux/smp.h>
25 #include <linux/rcupdate_wait.h>
26 #include <linux/interrupt.h>
27 #include <linux/sched.h>
28 #include <linux/sched/debug.h>
29 #include <linux/nmi.h>
30 #include <linux/atomic.h>
31 #include <linux/bitops.h>
32 #include <linux/export.h>
33 #include <linux/completion.h>
34 #include <linux/moduleparam.h>
35 #include <linux/panic.h>
36 #include <linux/panic_notifier.h>
37 #include <linux/percpu.h>
38 #include <linux/notifier.h>
39 #include <linux/cpu.h>
40 #include <linux/mutex.h>
41 #include <linux/time.h>
42 #include <linux/kernel_stat.h>
43 #include <linux/wait.h>
44 #include <linux/kthread.h>
45 #include <uapi/linux/sched/types.h>
46 #include <linux/prefetch.h>
47 #include <linux/delay.h>
48 #include <linux/random.h>
49 #include <linux/trace_events.h>
50 #include <linux/suspend.h>
51 #include <linux/ftrace.h>
52 #include <linux/tick.h>
53 #include <linux/sysrq.h>
54 #include <linux/kprobes.h>
55 #include <linux/gfp.h>
56 #include <linux/oom.h>
57 #include <linux/smpboot.h>
58 #include <linux/jiffies.h>
59 #include <linux/slab.h>
60 #include <linux/sched/isolation.h>
61 #include <linux/sched/clock.h>
62 #include <linux/vmalloc.h>
63 #include <linux/mm.h>
64 #include <linux/kasan.h>
65 #include <linux/context_tracking.h>
66 #include "../time/tick-internal.h"
67 
68 #include "tree.h"
69 #include "rcu.h"
70 
71 #ifdef MODULE_PARAM_PREFIX
72 #undef MODULE_PARAM_PREFIX
73 #endif
74 #define MODULE_PARAM_PREFIX "rcutree."
75 
76 /* Data structures. */
77 
78 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = {
79 #ifdef CONFIG_RCU_NOCB_CPU
80 	.cblist.flags = SEGCBLIST_RCU_CORE,
81 #endif
82 };
83 static struct rcu_state rcu_state = {
84 	.level = { &rcu_state.node[0] },
85 	.gp_state = RCU_GP_IDLE,
86 	.gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT,
87 	.barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex),
88 	.barrier_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.barrier_lock),
89 	.name = RCU_NAME,
90 	.abbr = RCU_ABBR,
91 	.exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex),
92 	.exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex),
93 	.ofl_lock = __ARCH_SPIN_LOCK_UNLOCKED,
94 };
95 
96 /* Dump rcu_node combining tree at boot to verify correct setup. */
97 static bool dump_tree;
98 module_param(dump_tree, bool, 0444);
99 /* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */
100 static bool use_softirq = !IS_ENABLED(CONFIG_PREEMPT_RT);
101 #ifndef CONFIG_PREEMPT_RT
102 module_param(use_softirq, bool, 0444);
103 #endif
104 /* Control rcu_node-tree auto-balancing at boot time. */
105 static bool rcu_fanout_exact;
106 module_param(rcu_fanout_exact, bool, 0444);
107 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
108 static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
109 module_param(rcu_fanout_leaf, int, 0444);
110 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
111 /* Number of rcu_nodes at specified level. */
112 int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
113 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
114 
115 /*
116  * The rcu_scheduler_active variable is initialized to the value
117  * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
118  * first task is spawned.  So when this variable is RCU_SCHEDULER_INACTIVE,
119  * RCU can assume that there is but one task, allowing RCU to (for example)
120  * optimize synchronize_rcu() to a simple barrier().  When this variable
121  * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
122  * to detect real grace periods.  This variable is also used to suppress
123  * boot-time false positives from lockdep-RCU error checking.  Finally, it
124  * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
125  * is fully initialized, including all of its kthreads having been spawned.
126  */
127 int rcu_scheduler_active __read_mostly;
128 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
129 
130 /*
131  * The rcu_scheduler_fully_active variable transitions from zero to one
132  * during the early_initcall() processing, which is after the scheduler
133  * is capable of creating new tasks.  So RCU processing (for example,
134  * creating tasks for RCU priority boosting) must be delayed until after
135  * rcu_scheduler_fully_active transitions from zero to one.  We also
136  * currently delay invocation of any RCU callbacks until after this point.
137  *
138  * It might later prove better for people registering RCU callbacks during
139  * early boot to take responsibility for these callbacks, but one step at
140  * a time.
141  */
142 static int rcu_scheduler_fully_active __read_mostly;
143 
144 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
145 			      unsigned long gps, unsigned long flags);
146 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
147 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
148 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
149 static void invoke_rcu_core(void);
150 static void rcu_report_exp_rdp(struct rcu_data *rdp);
151 static void sync_sched_exp_online_cleanup(int cpu);
152 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp);
153 static bool rcu_rdp_is_offloaded(struct rcu_data *rdp);
154 
155 /*
156  * rcuc/rcub/rcuop kthread realtime priority. The "rcuop"
157  * real-time priority(enabling/disabling) is controlled by
158  * the extra CONFIG_RCU_NOCB_CPU_CB_BOOST configuration.
159  */
160 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
161 module_param(kthread_prio, int, 0444);
162 
163 /* Delay in jiffies for grace-period initialization delays, debug only. */
164 
165 static int gp_preinit_delay;
166 module_param(gp_preinit_delay, int, 0444);
167 static int gp_init_delay;
168 module_param(gp_init_delay, int, 0444);
169 static int gp_cleanup_delay;
170 module_param(gp_cleanup_delay, int, 0444);
171 
172 // Add delay to rcu_read_unlock() for strict grace periods.
173 static int rcu_unlock_delay;
174 #ifdef CONFIG_RCU_STRICT_GRACE_PERIOD
175 module_param(rcu_unlock_delay, int, 0444);
176 #endif
177 
178 /*
179  * This rcu parameter is runtime-read-only. It reflects
180  * a minimum allowed number of objects which can be cached
181  * per-CPU. Object size is equal to one page. This value
182  * can be changed at boot time.
183  */
184 static int rcu_min_cached_objs = 5;
185 module_param(rcu_min_cached_objs, int, 0444);
186 
187 // A page shrinker can ask for pages to be freed to make them
188 // available for other parts of the system. This usually happens
189 // under low memory conditions, and in that case we should also
190 // defer page-cache filling for a short time period.
191 //
192 // The default value is 5 seconds, which is long enough to reduce
193 // interference with the shrinker while it asks other systems to
194 // drain their caches.
195 static int rcu_delay_page_cache_fill_msec = 5000;
196 module_param(rcu_delay_page_cache_fill_msec, int, 0444);
197 
198 /* Retrieve RCU kthreads priority for rcutorture */
199 int rcu_get_gp_kthreads_prio(void)
200 {
201 	return kthread_prio;
202 }
203 EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio);
204 
205 /*
206  * Number of grace periods between delays, normalized by the duration of
207  * the delay.  The longer the delay, the more the grace periods between
208  * each delay.  The reason for this normalization is that it means that,
209  * for non-zero delays, the overall slowdown of grace periods is constant
210  * regardless of the duration of the delay.  This arrangement balances
211  * the need for long delays to increase some race probabilities with the
212  * need for fast grace periods to increase other race probabilities.
213  */
214 #define PER_RCU_NODE_PERIOD 3	/* Number of grace periods between delays for debugging. */
215 
216 /*
217  * Compute the mask of online CPUs for the specified rcu_node structure.
218  * This will not be stable unless the rcu_node structure's ->lock is
219  * held, but the bit corresponding to the current CPU will be stable
220  * in most contexts.
221  */
222 static unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
223 {
224 	return READ_ONCE(rnp->qsmaskinitnext);
225 }
226 
227 /*
228  * Is the CPU corresponding to the specified rcu_data structure online
229  * from RCU's perspective?  This perspective is given by that structure's
230  * ->qsmaskinitnext field rather than by the global cpu_online_mask.
231  */
232 static bool rcu_rdp_cpu_online(struct rcu_data *rdp)
233 {
234 	return !!(rdp->grpmask & rcu_rnp_online_cpus(rdp->mynode));
235 }
236 
237 /*
238  * Return true if an RCU grace period is in progress.  The READ_ONCE()s
239  * permit this function to be invoked without holding the root rcu_node
240  * structure's ->lock, but of course results can be subject to change.
241  */
242 static int rcu_gp_in_progress(void)
243 {
244 	return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq));
245 }
246 
247 /*
248  * Return the number of callbacks queued on the specified CPU.
249  * Handles both the nocbs and normal cases.
250  */
251 static long rcu_get_n_cbs_cpu(int cpu)
252 {
253 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
254 
255 	if (rcu_segcblist_is_enabled(&rdp->cblist))
256 		return rcu_segcblist_n_cbs(&rdp->cblist);
257 	return 0;
258 }
259 
260 void rcu_softirq_qs(void)
261 {
262 	rcu_qs();
263 	rcu_preempt_deferred_qs(current);
264 	rcu_tasks_qs(current, false);
265 }
266 
267 /*
268  * Reset the current CPU's ->dynticks counter to indicate that the
269  * newly onlined CPU is no longer in an extended quiescent state.
270  * This will either leave the counter unchanged, or increment it
271  * to the next non-quiescent value.
272  *
273  * The non-atomic test/increment sequence works because the upper bits
274  * of the ->dynticks counter are manipulated only by the corresponding CPU,
275  * or when the corresponding CPU is offline.
276  */
277 static void rcu_dynticks_eqs_online(void)
278 {
279 	if (ct_dynticks() & RCU_DYNTICKS_IDX)
280 		return;
281 	ct_state_inc(RCU_DYNTICKS_IDX);
282 }
283 
284 /*
285  * Snapshot the ->dynticks counter with full ordering so as to allow
286  * stable comparison of this counter with past and future snapshots.
287  */
288 static int rcu_dynticks_snap(int cpu)
289 {
290 	smp_mb();  // Fundamental RCU ordering guarantee.
291 	return ct_dynticks_cpu_acquire(cpu);
292 }
293 
294 /*
295  * Return true if the snapshot returned from rcu_dynticks_snap()
296  * indicates that RCU is in an extended quiescent state.
297  */
298 static bool rcu_dynticks_in_eqs(int snap)
299 {
300 	return !(snap & RCU_DYNTICKS_IDX);
301 }
302 
303 /* Return true if the specified CPU is currently idle from an RCU viewpoint.  */
304 bool rcu_is_idle_cpu(int cpu)
305 {
306 	return rcu_dynticks_in_eqs(rcu_dynticks_snap(cpu));
307 }
308 
309 /*
310  * Return true if the CPU corresponding to the specified rcu_data
311  * structure has spent some time in an extended quiescent state since
312  * rcu_dynticks_snap() returned the specified snapshot.
313  */
314 static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap)
315 {
316 	return snap != rcu_dynticks_snap(rdp->cpu);
317 }
318 
319 /*
320  * Return true if the referenced integer is zero while the specified
321  * CPU remains within a single extended quiescent state.
322  */
323 bool rcu_dynticks_zero_in_eqs(int cpu, int *vp)
324 {
325 	int snap;
326 
327 	// If not quiescent, force back to earlier extended quiescent state.
328 	snap = ct_dynticks_cpu(cpu) & ~RCU_DYNTICKS_IDX;
329 	smp_rmb(); // Order ->dynticks and *vp reads.
330 	if (READ_ONCE(*vp))
331 		return false;  // Non-zero, so report failure;
332 	smp_rmb(); // Order *vp read and ->dynticks re-read.
333 
334 	// If still in the same extended quiescent state, we are good!
335 	return snap == ct_dynticks_cpu(cpu);
336 }
337 
338 /*
339  * Let the RCU core know that this CPU has gone through the scheduler,
340  * which is a quiescent state.  This is called when the need for a
341  * quiescent state is urgent, so we burn an atomic operation and full
342  * memory barriers to let the RCU core know about it, regardless of what
343  * this CPU might (or might not) do in the near future.
344  *
345  * We inform the RCU core by emulating a zero-duration dyntick-idle period.
346  *
347  * The caller must have disabled interrupts and must not be idle.
348  */
349 notrace void rcu_momentary_dyntick_idle(void)
350 {
351 	int seq;
352 
353 	raw_cpu_write(rcu_data.rcu_need_heavy_qs, false);
354 	seq = ct_state_inc(2 * RCU_DYNTICKS_IDX);
355 	/* It is illegal to call this from idle state. */
356 	WARN_ON_ONCE(!(seq & RCU_DYNTICKS_IDX));
357 	rcu_preempt_deferred_qs(current);
358 }
359 EXPORT_SYMBOL_GPL(rcu_momentary_dyntick_idle);
360 
361 /**
362  * rcu_is_cpu_rrupt_from_idle - see if 'interrupted' from idle
363  *
364  * If the current CPU is idle and running at a first-level (not nested)
365  * interrupt, or directly, from idle, return true.
366  *
367  * The caller must have at least disabled IRQs.
368  */
369 static int rcu_is_cpu_rrupt_from_idle(void)
370 {
371 	long nesting;
372 
373 	/*
374 	 * Usually called from the tick; but also used from smp_function_call()
375 	 * for expedited grace periods. This latter can result in running from
376 	 * the idle task, instead of an actual IPI.
377 	 */
378 	lockdep_assert_irqs_disabled();
379 
380 	/* Check for counter underflows */
381 	RCU_LOCKDEP_WARN(ct_dynticks_nesting() < 0,
382 			 "RCU dynticks_nesting counter underflow!");
383 	RCU_LOCKDEP_WARN(ct_dynticks_nmi_nesting() <= 0,
384 			 "RCU dynticks_nmi_nesting counter underflow/zero!");
385 
386 	/* Are we at first interrupt nesting level? */
387 	nesting = ct_dynticks_nmi_nesting();
388 	if (nesting > 1)
389 		return false;
390 
391 	/*
392 	 * If we're not in an interrupt, we must be in the idle task!
393 	 */
394 	WARN_ON_ONCE(!nesting && !is_idle_task(current));
395 
396 	/* Does CPU appear to be idle from an RCU standpoint? */
397 	return ct_dynticks_nesting() == 0;
398 }
399 
400 #define DEFAULT_RCU_BLIMIT (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 1000 : 10)
401 				// Maximum callbacks per rcu_do_batch ...
402 #define DEFAULT_MAX_RCU_BLIMIT 10000 // ... even during callback flood.
403 static long blimit = DEFAULT_RCU_BLIMIT;
404 #define DEFAULT_RCU_QHIMARK 10000 // If this many pending, ignore blimit.
405 static long qhimark = DEFAULT_RCU_QHIMARK;
406 #define DEFAULT_RCU_QLOMARK 100   // Once only this many pending, use blimit.
407 static long qlowmark = DEFAULT_RCU_QLOMARK;
408 #define DEFAULT_RCU_QOVLD_MULT 2
409 #define DEFAULT_RCU_QOVLD (DEFAULT_RCU_QOVLD_MULT * DEFAULT_RCU_QHIMARK)
410 static long qovld = DEFAULT_RCU_QOVLD; // If this many pending, hammer QS.
411 static long qovld_calc = -1;	  // No pre-initialization lock acquisitions!
412 
413 module_param(blimit, long, 0444);
414 module_param(qhimark, long, 0444);
415 module_param(qlowmark, long, 0444);
416 module_param(qovld, long, 0444);
417 
418 static ulong jiffies_till_first_fqs = IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 0 : ULONG_MAX;
419 static ulong jiffies_till_next_fqs = ULONG_MAX;
420 static bool rcu_kick_kthreads;
421 static int rcu_divisor = 7;
422 module_param(rcu_divisor, int, 0644);
423 
424 /* Force an exit from rcu_do_batch() after 3 milliseconds. */
425 static long rcu_resched_ns = 3 * NSEC_PER_MSEC;
426 module_param(rcu_resched_ns, long, 0644);
427 
428 /*
429  * How long the grace period must be before we start recruiting
430  * quiescent-state help from rcu_note_context_switch().
431  */
432 static ulong jiffies_till_sched_qs = ULONG_MAX;
433 module_param(jiffies_till_sched_qs, ulong, 0444);
434 static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */
435 module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */
436 
437 /*
438  * Make sure that we give the grace-period kthread time to detect any
439  * idle CPUs before taking active measures to force quiescent states.
440  * However, don't go below 100 milliseconds, adjusted upwards for really
441  * large systems.
442  */
443 static void adjust_jiffies_till_sched_qs(void)
444 {
445 	unsigned long j;
446 
447 	/* If jiffies_till_sched_qs was specified, respect the request. */
448 	if (jiffies_till_sched_qs != ULONG_MAX) {
449 		WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs);
450 		return;
451 	}
452 	/* Otherwise, set to third fqs scan, but bound below on large system. */
453 	j = READ_ONCE(jiffies_till_first_fqs) +
454 		      2 * READ_ONCE(jiffies_till_next_fqs);
455 	if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV)
456 		j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
457 	pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j);
458 	WRITE_ONCE(jiffies_to_sched_qs, j);
459 }
460 
461 static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp)
462 {
463 	ulong j;
464 	int ret = kstrtoul(val, 0, &j);
465 
466 	if (!ret) {
467 		WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j);
468 		adjust_jiffies_till_sched_qs();
469 	}
470 	return ret;
471 }
472 
473 static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp)
474 {
475 	ulong j;
476 	int ret = kstrtoul(val, 0, &j);
477 
478 	if (!ret) {
479 		WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1));
480 		adjust_jiffies_till_sched_qs();
481 	}
482 	return ret;
483 }
484 
485 static const struct kernel_param_ops first_fqs_jiffies_ops = {
486 	.set = param_set_first_fqs_jiffies,
487 	.get = param_get_ulong,
488 };
489 
490 static const struct kernel_param_ops next_fqs_jiffies_ops = {
491 	.set = param_set_next_fqs_jiffies,
492 	.get = param_get_ulong,
493 };
494 
495 module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644);
496 module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644);
497 module_param(rcu_kick_kthreads, bool, 0644);
498 
499 static void force_qs_rnp(int (*f)(struct rcu_data *rdp));
500 static int rcu_pending(int user);
501 
502 /*
503  * Return the number of RCU GPs completed thus far for debug & stats.
504  */
505 unsigned long rcu_get_gp_seq(void)
506 {
507 	return READ_ONCE(rcu_state.gp_seq);
508 }
509 EXPORT_SYMBOL_GPL(rcu_get_gp_seq);
510 
511 /*
512  * Return the number of RCU expedited batches completed thus far for
513  * debug & stats.  Odd numbers mean that a batch is in progress, even
514  * numbers mean idle.  The value returned will thus be roughly double
515  * the cumulative batches since boot.
516  */
517 unsigned long rcu_exp_batches_completed(void)
518 {
519 	return rcu_state.expedited_sequence;
520 }
521 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
522 
523 /*
524  * Return the root node of the rcu_state structure.
525  */
526 static struct rcu_node *rcu_get_root(void)
527 {
528 	return &rcu_state.node[0];
529 }
530 
531 /*
532  * Send along grace-period-related data for rcutorture diagnostics.
533  */
534 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
535 			    unsigned long *gp_seq)
536 {
537 	switch (test_type) {
538 	case RCU_FLAVOR:
539 		*flags = READ_ONCE(rcu_state.gp_flags);
540 		*gp_seq = rcu_seq_current(&rcu_state.gp_seq);
541 		break;
542 	default:
543 		break;
544 	}
545 }
546 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
547 
548 #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK))
549 /*
550  * An empty function that will trigger a reschedule on
551  * IRQ tail once IRQs get re-enabled on userspace/guest resume.
552  */
553 static void late_wakeup_func(struct irq_work *work)
554 {
555 }
556 
557 static DEFINE_PER_CPU(struct irq_work, late_wakeup_work) =
558 	IRQ_WORK_INIT(late_wakeup_func);
559 
560 /*
561  * If either:
562  *
563  * 1) the task is about to enter in guest mode and $ARCH doesn't support KVM generic work
564  * 2) the task is about to enter in user mode and $ARCH doesn't support generic entry.
565  *
566  * In these cases the late RCU wake ups aren't supported in the resched loops and our
567  * last resort is to fire a local irq_work that will trigger a reschedule once IRQs
568  * get re-enabled again.
569  */
570 noinstr void rcu_irq_work_resched(void)
571 {
572 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
573 
574 	if (IS_ENABLED(CONFIG_GENERIC_ENTRY) && !(current->flags & PF_VCPU))
575 		return;
576 
577 	if (IS_ENABLED(CONFIG_KVM_XFER_TO_GUEST_WORK) && (current->flags & PF_VCPU))
578 		return;
579 
580 	instrumentation_begin();
581 	if (do_nocb_deferred_wakeup(rdp) && need_resched()) {
582 		irq_work_queue(this_cpu_ptr(&late_wakeup_work));
583 	}
584 	instrumentation_end();
585 }
586 #endif /* #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK)) */
587 
588 #ifdef CONFIG_PROVE_RCU
589 /**
590  * rcu_irq_exit_check_preempt - Validate that scheduling is possible
591  */
592 void rcu_irq_exit_check_preempt(void)
593 {
594 	lockdep_assert_irqs_disabled();
595 
596 	RCU_LOCKDEP_WARN(ct_dynticks_nesting() <= 0,
597 			 "RCU dynticks_nesting counter underflow/zero!");
598 	RCU_LOCKDEP_WARN(ct_dynticks_nmi_nesting() !=
599 			 DYNTICK_IRQ_NONIDLE,
600 			 "Bad RCU  dynticks_nmi_nesting counter\n");
601 	RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
602 			 "RCU in extended quiescent state!");
603 }
604 #endif /* #ifdef CONFIG_PROVE_RCU */
605 
606 #ifdef CONFIG_NO_HZ_FULL
607 /**
608  * __rcu_irq_enter_check_tick - Enable scheduler tick on CPU if RCU needs it.
609  *
610  * The scheduler tick is not normally enabled when CPUs enter the kernel
611  * from nohz_full userspace execution.  After all, nohz_full userspace
612  * execution is an RCU quiescent state and the time executing in the kernel
613  * is quite short.  Except of course when it isn't.  And it is not hard to
614  * cause a large system to spend tens of seconds or even minutes looping
615  * in the kernel, which can cause a number of problems, include RCU CPU
616  * stall warnings.
617  *
618  * Therefore, if a nohz_full CPU fails to report a quiescent state
619  * in a timely manner, the RCU grace-period kthread sets that CPU's
620  * ->rcu_urgent_qs flag with the expectation that the next interrupt or
621  * exception will invoke this function, which will turn on the scheduler
622  * tick, which will enable RCU to detect that CPU's quiescent states,
623  * for example, due to cond_resched() calls in CONFIG_PREEMPT=n kernels.
624  * The tick will be disabled once a quiescent state is reported for
625  * this CPU.
626  *
627  * Of course, in carefully tuned systems, there might never be an
628  * interrupt or exception.  In that case, the RCU grace-period kthread
629  * will eventually cause one to happen.  However, in less carefully
630  * controlled environments, this function allows RCU to get what it
631  * needs without creating otherwise useless interruptions.
632  */
633 void __rcu_irq_enter_check_tick(void)
634 {
635 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
636 
637 	// If we're here from NMI there's nothing to do.
638 	if (in_nmi())
639 		return;
640 
641 	RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
642 			 "Illegal rcu_irq_enter_check_tick() from extended quiescent state");
643 
644 	if (!tick_nohz_full_cpu(rdp->cpu) ||
645 	    !READ_ONCE(rdp->rcu_urgent_qs) ||
646 	    READ_ONCE(rdp->rcu_forced_tick)) {
647 		// RCU doesn't need nohz_full help from this CPU, or it is
648 		// already getting that help.
649 		return;
650 	}
651 
652 	// We get here only when not in an extended quiescent state and
653 	// from interrupts (as opposed to NMIs).  Therefore, (1) RCU is
654 	// already watching and (2) The fact that we are in an interrupt
655 	// handler and that the rcu_node lock is an irq-disabled lock
656 	// prevents self-deadlock.  So we can safely recheck under the lock.
657 	// Note that the nohz_full state currently cannot change.
658 	raw_spin_lock_rcu_node(rdp->mynode);
659 	if (rdp->rcu_urgent_qs && !rdp->rcu_forced_tick) {
660 		// A nohz_full CPU is in the kernel and RCU needs a
661 		// quiescent state.  Turn on the tick!
662 		WRITE_ONCE(rdp->rcu_forced_tick, true);
663 		tick_dep_set_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
664 	}
665 	raw_spin_unlock_rcu_node(rdp->mynode);
666 }
667 #endif /* CONFIG_NO_HZ_FULL */
668 
669 /*
670  * Check to see if any future non-offloaded RCU-related work will need
671  * to be done by the current CPU, even if none need be done immediately,
672  * returning 1 if so.  This function is part of the RCU implementation;
673  * it is -not- an exported member of the RCU API.  This is used by
674  * the idle-entry code to figure out whether it is safe to disable the
675  * scheduler-clock interrupt.
676  *
677  * Just check whether or not this CPU has non-offloaded RCU callbacks
678  * queued.
679  */
680 int rcu_needs_cpu(void)
681 {
682 	return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) &&
683 		!rcu_rdp_is_offloaded(this_cpu_ptr(&rcu_data));
684 }
685 
686 /*
687  * If any sort of urgency was applied to the current CPU (for example,
688  * the scheduler-clock interrupt was enabled on a nohz_full CPU) in order
689  * to get to a quiescent state, disable it.
690  */
691 static void rcu_disable_urgency_upon_qs(struct rcu_data *rdp)
692 {
693 	raw_lockdep_assert_held_rcu_node(rdp->mynode);
694 	WRITE_ONCE(rdp->rcu_urgent_qs, false);
695 	WRITE_ONCE(rdp->rcu_need_heavy_qs, false);
696 	if (tick_nohz_full_cpu(rdp->cpu) && rdp->rcu_forced_tick) {
697 		tick_dep_clear_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
698 		WRITE_ONCE(rdp->rcu_forced_tick, false);
699 	}
700 }
701 
702 /**
703  * rcu_is_watching - see if RCU thinks that the current CPU is not idle
704  *
705  * Return true if RCU is watching the running CPU, which means that this
706  * CPU can safely enter RCU read-side critical sections.  In other words,
707  * if the current CPU is not in its idle loop or is in an interrupt or
708  * NMI handler, return true.
709  *
710  * Make notrace because it can be called by the internal functions of
711  * ftrace, and making this notrace removes unnecessary recursion calls.
712  */
713 notrace bool rcu_is_watching(void)
714 {
715 	bool ret;
716 
717 	preempt_disable_notrace();
718 	ret = !rcu_dynticks_curr_cpu_in_eqs();
719 	preempt_enable_notrace();
720 	return ret;
721 }
722 EXPORT_SYMBOL_GPL(rcu_is_watching);
723 
724 /*
725  * If a holdout task is actually running, request an urgent quiescent
726  * state from its CPU.  This is unsynchronized, so migrations can cause
727  * the request to go to the wrong CPU.  Which is OK, all that will happen
728  * is that the CPU's next context switch will be a bit slower and next
729  * time around this task will generate another request.
730  */
731 void rcu_request_urgent_qs_task(struct task_struct *t)
732 {
733 	int cpu;
734 
735 	barrier();
736 	cpu = task_cpu(t);
737 	if (!task_curr(t))
738 		return; /* This task is not running on that CPU. */
739 	smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true);
740 }
741 
742 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
743 
744 /*
745  * Is the current CPU online as far as RCU is concerned?
746  *
747  * Disable preemption to avoid false positives that could otherwise
748  * happen due to the current CPU number being sampled, this task being
749  * preempted, its old CPU being taken offline, resuming on some other CPU,
750  * then determining that its old CPU is now offline.
751  *
752  * Disable checking if in an NMI handler because we cannot safely
753  * report errors from NMI handlers anyway.  In addition, it is OK to use
754  * RCU on an offline processor during initial boot, hence the check for
755  * rcu_scheduler_fully_active.
756  */
757 bool rcu_lockdep_current_cpu_online(void)
758 {
759 	struct rcu_data *rdp;
760 	bool ret = false;
761 
762 	if (in_nmi() || !rcu_scheduler_fully_active)
763 		return true;
764 	preempt_disable_notrace();
765 	rdp = this_cpu_ptr(&rcu_data);
766 	/*
767 	 * Strictly, we care here about the case where the current CPU is
768 	 * in rcu_cpu_starting() and thus has an excuse for rdp->grpmask
769 	 * not being up to date. So arch_spin_is_locked() might have a
770 	 * false positive if it's held by some *other* CPU, but that's
771 	 * OK because that just means a false *negative* on the warning.
772 	 */
773 	if (rcu_rdp_cpu_online(rdp) || arch_spin_is_locked(&rcu_state.ofl_lock))
774 		ret = true;
775 	preempt_enable_notrace();
776 	return ret;
777 }
778 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
779 
780 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
781 
782 /*
783  * When trying to report a quiescent state on behalf of some other CPU,
784  * it is our responsibility to check for and handle potential overflow
785  * of the rcu_node ->gp_seq counter with respect to the rcu_data counters.
786  * After all, the CPU might be in deep idle state, and thus executing no
787  * code whatsoever.
788  */
789 static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
790 {
791 	raw_lockdep_assert_held_rcu_node(rnp);
792 	if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4,
793 			 rnp->gp_seq))
794 		WRITE_ONCE(rdp->gpwrap, true);
795 	if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq))
796 		rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4;
797 }
798 
799 /*
800  * Snapshot the specified CPU's dynticks counter so that we can later
801  * credit them with an implicit quiescent state.  Return 1 if this CPU
802  * is in dynticks idle mode, which is an extended quiescent state.
803  */
804 static int dyntick_save_progress_counter(struct rcu_data *rdp)
805 {
806 	rdp->dynticks_snap = rcu_dynticks_snap(rdp->cpu);
807 	if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
808 		trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
809 		rcu_gpnum_ovf(rdp->mynode, rdp);
810 		return 1;
811 	}
812 	return 0;
813 }
814 
815 /*
816  * Return true if the specified CPU has passed through a quiescent
817  * state by virtue of being in or having passed through an dynticks
818  * idle state since the last call to dyntick_save_progress_counter()
819  * for this same CPU, or by virtue of having been offline.
820  */
821 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
822 {
823 	unsigned long jtsq;
824 	struct rcu_node *rnp = rdp->mynode;
825 
826 	/*
827 	 * If the CPU passed through or entered a dynticks idle phase with
828 	 * no active irq/NMI handlers, then we can safely pretend that the CPU
829 	 * already acknowledged the request to pass through a quiescent
830 	 * state.  Either way, that CPU cannot possibly be in an RCU
831 	 * read-side critical section that started before the beginning
832 	 * of the current RCU grace period.
833 	 */
834 	if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) {
835 		trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
836 		rcu_gpnum_ovf(rnp, rdp);
837 		return 1;
838 	}
839 
840 	/*
841 	 * Complain if a CPU that is considered to be offline from RCU's
842 	 * perspective has not yet reported a quiescent state.  After all,
843 	 * the offline CPU should have reported a quiescent state during
844 	 * the CPU-offline process, or, failing that, by rcu_gp_init()
845 	 * if it ran concurrently with either the CPU going offline or the
846 	 * last task on a leaf rcu_node structure exiting its RCU read-side
847 	 * critical section while all CPUs corresponding to that structure
848 	 * are offline.  This added warning detects bugs in any of these
849 	 * code paths.
850 	 *
851 	 * The rcu_node structure's ->lock is held here, which excludes
852 	 * the relevant portions the CPU-hotplug code, the grace-period
853 	 * initialization code, and the rcu_read_unlock() code paths.
854 	 *
855 	 * For more detail, please refer to the "Hotplug CPU" section
856 	 * of RCU's Requirements documentation.
857 	 */
858 	if (WARN_ON_ONCE(!rcu_rdp_cpu_online(rdp))) {
859 		struct rcu_node *rnp1;
860 
861 		pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
862 			__func__, rnp->grplo, rnp->grphi, rnp->level,
863 			(long)rnp->gp_seq, (long)rnp->completedqs);
864 		for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
865 			pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n",
866 				__func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask);
867 		pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n",
868 			__func__, rdp->cpu, ".o"[rcu_rdp_cpu_online(rdp)],
869 			(long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
870 			(long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
871 		return 1; /* Break things loose after complaining. */
872 	}
873 
874 	/*
875 	 * A CPU running for an extended time within the kernel can
876 	 * delay RCU grace periods: (1) At age jiffies_to_sched_qs,
877 	 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set
878 	 * both .rcu_need_heavy_qs and .rcu_urgent_qs.  Note that the
879 	 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs
880 	 * variable are safe because the assignments are repeated if this
881 	 * CPU failed to pass through a quiescent state.  This code
882 	 * also checks .jiffies_resched in case jiffies_to_sched_qs
883 	 * is set way high.
884 	 */
885 	jtsq = READ_ONCE(jiffies_to_sched_qs);
886 	if (!READ_ONCE(rdp->rcu_need_heavy_qs) &&
887 	    (time_after(jiffies, rcu_state.gp_start + jtsq * 2) ||
888 	     time_after(jiffies, rcu_state.jiffies_resched) ||
889 	     rcu_state.cbovld)) {
890 		WRITE_ONCE(rdp->rcu_need_heavy_qs, true);
891 		/* Store rcu_need_heavy_qs before rcu_urgent_qs. */
892 		smp_store_release(&rdp->rcu_urgent_qs, true);
893 	} else if (time_after(jiffies, rcu_state.gp_start + jtsq)) {
894 		WRITE_ONCE(rdp->rcu_urgent_qs, true);
895 	}
896 
897 	/*
898 	 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq!
899 	 * The above code handles this, but only for straight cond_resched().
900 	 * And some in-kernel loops check need_resched() before calling
901 	 * cond_resched(), which defeats the above code for CPUs that are
902 	 * running in-kernel with scheduling-clock interrupts disabled.
903 	 * So hit them over the head with the resched_cpu() hammer!
904 	 */
905 	if (tick_nohz_full_cpu(rdp->cpu) &&
906 	    (time_after(jiffies, READ_ONCE(rdp->last_fqs_resched) + jtsq * 3) ||
907 	     rcu_state.cbovld)) {
908 		WRITE_ONCE(rdp->rcu_urgent_qs, true);
909 		resched_cpu(rdp->cpu);
910 		WRITE_ONCE(rdp->last_fqs_resched, jiffies);
911 	}
912 
913 	/*
914 	 * If more than halfway to RCU CPU stall-warning time, invoke
915 	 * resched_cpu() more frequently to try to loosen things up a bit.
916 	 * Also check to see if the CPU is getting hammered with interrupts,
917 	 * but only once per grace period, just to keep the IPIs down to
918 	 * a dull roar.
919 	 */
920 	if (time_after(jiffies, rcu_state.jiffies_resched)) {
921 		if (time_after(jiffies,
922 			       READ_ONCE(rdp->last_fqs_resched) + jtsq)) {
923 			resched_cpu(rdp->cpu);
924 			WRITE_ONCE(rdp->last_fqs_resched, jiffies);
925 		}
926 		if (IS_ENABLED(CONFIG_IRQ_WORK) &&
927 		    !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq &&
928 		    (rnp->ffmask & rdp->grpmask)) {
929 			rdp->rcu_iw_pending = true;
930 			rdp->rcu_iw_gp_seq = rnp->gp_seq;
931 			irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
932 		}
933 	}
934 
935 	return 0;
936 }
937 
938 /* Trace-event wrapper function for trace_rcu_future_grace_period.  */
939 static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp,
940 			      unsigned long gp_seq_req, const char *s)
941 {
942 	trace_rcu_future_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
943 				      gp_seq_req, rnp->level,
944 				      rnp->grplo, rnp->grphi, s);
945 }
946 
947 /*
948  * rcu_start_this_gp - Request the start of a particular grace period
949  * @rnp_start: The leaf node of the CPU from which to start.
950  * @rdp: The rcu_data corresponding to the CPU from which to start.
951  * @gp_seq_req: The gp_seq of the grace period to start.
952  *
953  * Start the specified grace period, as needed to handle newly arrived
954  * callbacks.  The required future grace periods are recorded in each
955  * rcu_node structure's ->gp_seq_needed field.  Returns true if there
956  * is reason to awaken the grace-period kthread.
957  *
958  * The caller must hold the specified rcu_node structure's ->lock, which
959  * is why the caller is responsible for waking the grace-period kthread.
960  *
961  * Returns true if the GP thread needs to be awakened else false.
962  */
963 static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp,
964 			      unsigned long gp_seq_req)
965 {
966 	bool ret = false;
967 	struct rcu_node *rnp;
968 
969 	/*
970 	 * Use funnel locking to either acquire the root rcu_node
971 	 * structure's lock or bail out if the need for this grace period
972 	 * has already been recorded -- or if that grace period has in
973 	 * fact already started.  If there is already a grace period in
974 	 * progress in a non-leaf node, no recording is needed because the
975 	 * end of the grace period will scan the leaf rcu_node structures.
976 	 * Note that rnp_start->lock must not be released.
977 	 */
978 	raw_lockdep_assert_held_rcu_node(rnp_start);
979 	trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf"));
980 	for (rnp = rnp_start; 1; rnp = rnp->parent) {
981 		if (rnp != rnp_start)
982 			raw_spin_lock_rcu_node(rnp);
983 		if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) ||
984 		    rcu_seq_started(&rnp->gp_seq, gp_seq_req) ||
985 		    (rnp != rnp_start &&
986 		     rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) {
987 			trace_rcu_this_gp(rnp, rdp, gp_seq_req,
988 					  TPS("Prestarted"));
989 			goto unlock_out;
990 		}
991 		WRITE_ONCE(rnp->gp_seq_needed, gp_seq_req);
992 		if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) {
993 			/*
994 			 * We just marked the leaf or internal node, and a
995 			 * grace period is in progress, which means that
996 			 * rcu_gp_cleanup() will see the marking.  Bail to
997 			 * reduce contention.
998 			 */
999 			trace_rcu_this_gp(rnp_start, rdp, gp_seq_req,
1000 					  TPS("Startedleaf"));
1001 			goto unlock_out;
1002 		}
1003 		if (rnp != rnp_start && rnp->parent != NULL)
1004 			raw_spin_unlock_rcu_node(rnp);
1005 		if (!rnp->parent)
1006 			break;  /* At root, and perhaps also leaf. */
1007 	}
1008 
1009 	/* If GP already in progress, just leave, otherwise start one. */
1010 	if (rcu_gp_in_progress()) {
1011 		trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot"));
1012 		goto unlock_out;
1013 	}
1014 	trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot"));
1015 	WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT);
1016 	WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
1017 	if (!READ_ONCE(rcu_state.gp_kthread)) {
1018 		trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread"));
1019 		goto unlock_out;
1020 	}
1021 	trace_rcu_grace_period(rcu_state.name, data_race(rcu_state.gp_seq), TPS("newreq"));
1022 	ret = true;  /* Caller must wake GP kthread. */
1023 unlock_out:
1024 	/* Push furthest requested GP to leaf node and rcu_data structure. */
1025 	if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) {
1026 		WRITE_ONCE(rnp_start->gp_seq_needed, rnp->gp_seq_needed);
1027 		WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
1028 	}
1029 	if (rnp != rnp_start)
1030 		raw_spin_unlock_rcu_node(rnp);
1031 	return ret;
1032 }
1033 
1034 /*
1035  * Clean up any old requests for the just-ended grace period.  Also return
1036  * whether any additional grace periods have been requested.
1037  */
1038 static bool rcu_future_gp_cleanup(struct rcu_node *rnp)
1039 {
1040 	bool needmore;
1041 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1042 
1043 	needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed);
1044 	if (!needmore)
1045 		rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */
1046 	trace_rcu_this_gp(rnp, rdp, rnp->gp_seq,
1047 			  needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1048 	return needmore;
1049 }
1050 
1051 /*
1052  * Awaken the grace-period kthread.  Don't do a self-awaken (unless in an
1053  * interrupt or softirq handler, in which case we just might immediately
1054  * sleep upon return, resulting in a grace-period hang), and don't bother
1055  * awakening when there is nothing for the grace-period kthread to do
1056  * (as in several CPUs raced to awaken, we lost), and finally don't try
1057  * to awaken a kthread that has not yet been created.  If all those checks
1058  * are passed, track some debug information and awaken.
1059  *
1060  * So why do the self-wakeup when in an interrupt or softirq handler
1061  * in the grace-period kthread's context?  Because the kthread might have
1062  * been interrupted just as it was going to sleep, and just after the final
1063  * pre-sleep check of the awaken condition.  In this case, a wakeup really
1064  * is required, and is therefore supplied.
1065  */
1066 static void rcu_gp_kthread_wake(void)
1067 {
1068 	struct task_struct *t = READ_ONCE(rcu_state.gp_kthread);
1069 
1070 	if ((current == t && !in_hardirq() && !in_serving_softirq()) ||
1071 	    !READ_ONCE(rcu_state.gp_flags) || !t)
1072 		return;
1073 	WRITE_ONCE(rcu_state.gp_wake_time, jiffies);
1074 	WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq));
1075 	swake_up_one(&rcu_state.gp_wq);
1076 }
1077 
1078 /*
1079  * If there is room, assign a ->gp_seq number to any callbacks on this
1080  * CPU that have not already been assigned.  Also accelerate any callbacks
1081  * that were previously assigned a ->gp_seq number that has since proven
1082  * to be too conservative, which can happen if callbacks get assigned a
1083  * ->gp_seq number while RCU is idle, but with reference to a non-root
1084  * rcu_node structure.  This function is idempotent, so it does not hurt
1085  * to call it repeatedly.  Returns an flag saying that we should awaken
1086  * the RCU grace-period kthread.
1087  *
1088  * The caller must hold rnp->lock with interrupts disabled.
1089  */
1090 static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1091 {
1092 	unsigned long gp_seq_req;
1093 	bool ret = false;
1094 
1095 	rcu_lockdep_assert_cblist_protected(rdp);
1096 	raw_lockdep_assert_held_rcu_node(rnp);
1097 
1098 	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1099 	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1100 		return false;
1101 
1102 	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPreAcc"));
1103 
1104 	/*
1105 	 * Callbacks are often registered with incomplete grace-period
1106 	 * information.  Something about the fact that getting exact
1107 	 * information requires acquiring a global lock...  RCU therefore
1108 	 * makes a conservative estimate of the grace period number at which
1109 	 * a given callback will become ready to invoke.	The following
1110 	 * code checks this estimate and improves it when possible, thus
1111 	 * accelerating callback invocation to an earlier grace-period
1112 	 * number.
1113 	 */
1114 	gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq);
1115 	if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req))
1116 		ret = rcu_start_this_gp(rnp, rdp, gp_seq_req);
1117 
1118 	/* Trace depending on how much we were able to accelerate. */
1119 	if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
1120 		trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccWaitCB"));
1121 	else
1122 		trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccReadyCB"));
1123 
1124 	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPostAcc"));
1125 
1126 	return ret;
1127 }
1128 
1129 /*
1130  * Similar to rcu_accelerate_cbs(), but does not require that the leaf
1131  * rcu_node structure's ->lock be held.  It consults the cached value
1132  * of ->gp_seq_needed in the rcu_data structure, and if that indicates
1133  * that a new grace-period request be made, invokes rcu_accelerate_cbs()
1134  * while holding the leaf rcu_node structure's ->lock.
1135  */
1136 static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp,
1137 					struct rcu_data *rdp)
1138 {
1139 	unsigned long c;
1140 	bool needwake;
1141 
1142 	rcu_lockdep_assert_cblist_protected(rdp);
1143 	c = rcu_seq_snap(&rcu_state.gp_seq);
1144 	if (!READ_ONCE(rdp->gpwrap) && ULONG_CMP_GE(rdp->gp_seq_needed, c)) {
1145 		/* Old request still live, so mark recent callbacks. */
1146 		(void)rcu_segcblist_accelerate(&rdp->cblist, c);
1147 		return;
1148 	}
1149 	raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1150 	needwake = rcu_accelerate_cbs(rnp, rdp);
1151 	raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1152 	if (needwake)
1153 		rcu_gp_kthread_wake();
1154 }
1155 
1156 /*
1157  * Move any callbacks whose grace period has completed to the
1158  * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1159  * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL
1160  * sublist.  This function is idempotent, so it does not hurt to
1161  * invoke it repeatedly.  As long as it is not invoked -too- often...
1162  * Returns true if the RCU grace-period kthread needs to be awakened.
1163  *
1164  * The caller must hold rnp->lock with interrupts disabled.
1165  */
1166 static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1167 {
1168 	rcu_lockdep_assert_cblist_protected(rdp);
1169 	raw_lockdep_assert_held_rcu_node(rnp);
1170 
1171 	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1172 	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1173 		return false;
1174 
1175 	/*
1176 	 * Find all callbacks whose ->gp_seq numbers indicate that they
1177 	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1178 	 */
1179 	rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq);
1180 
1181 	/* Classify any remaining callbacks. */
1182 	return rcu_accelerate_cbs(rnp, rdp);
1183 }
1184 
1185 /*
1186  * Move and classify callbacks, but only if doing so won't require
1187  * that the RCU grace-period kthread be awakened.
1188  */
1189 static void __maybe_unused rcu_advance_cbs_nowake(struct rcu_node *rnp,
1190 						  struct rcu_data *rdp)
1191 {
1192 	rcu_lockdep_assert_cblist_protected(rdp);
1193 	if (!rcu_seq_state(rcu_seq_current(&rnp->gp_seq)) || !raw_spin_trylock_rcu_node(rnp))
1194 		return;
1195 	// The grace period cannot end while we hold the rcu_node lock.
1196 	if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))
1197 		WARN_ON_ONCE(rcu_advance_cbs(rnp, rdp));
1198 	raw_spin_unlock_rcu_node(rnp);
1199 }
1200 
1201 /*
1202  * In CONFIG_RCU_STRICT_GRACE_PERIOD=y kernels, attempt to generate a
1203  * quiescent state.  This is intended to be invoked when the CPU notices
1204  * a new grace period.
1205  */
1206 static void rcu_strict_gp_check_qs(void)
1207 {
1208 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) {
1209 		rcu_read_lock();
1210 		rcu_read_unlock();
1211 	}
1212 }
1213 
1214 /*
1215  * Update CPU-local rcu_data state to record the beginnings and ends of
1216  * grace periods.  The caller must hold the ->lock of the leaf rcu_node
1217  * structure corresponding to the current CPU, and must have irqs disabled.
1218  * Returns true if the grace-period kthread needs to be awakened.
1219  */
1220 static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp)
1221 {
1222 	bool ret = false;
1223 	bool need_qs;
1224 	const bool offloaded = rcu_rdp_is_offloaded(rdp);
1225 
1226 	raw_lockdep_assert_held_rcu_node(rnp);
1227 
1228 	if (rdp->gp_seq == rnp->gp_seq)
1229 		return false; /* Nothing to do. */
1230 
1231 	/* Handle the ends of any preceding grace periods first. */
1232 	if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) ||
1233 	    unlikely(READ_ONCE(rdp->gpwrap))) {
1234 		if (!offloaded)
1235 			ret = rcu_advance_cbs(rnp, rdp); /* Advance CBs. */
1236 		rdp->core_needs_qs = false;
1237 		trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend"));
1238 	} else {
1239 		if (!offloaded)
1240 			ret = rcu_accelerate_cbs(rnp, rdp); /* Recent CBs. */
1241 		if (rdp->core_needs_qs)
1242 			rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask);
1243 	}
1244 
1245 	/* Now handle the beginnings of any new-to-this-CPU grace periods. */
1246 	if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) ||
1247 	    unlikely(READ_ONCE(rdp->gpwrap))) {
1248 		/*
1249 		 * If the current grace period is waiting for this CPU,
1250 		 * set up to detect a quiescent state, otherwise don't
1251 		 * go looking for one.
1252 		 */
1253 		trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart"));
1254 		need_qs = !!(rnp->qsmask & rdp->grpmask);
1255 		rdp->cpu_no_qs.b.norm = need_qs;
1256 		rdp->core_needs_qs = need_qs;
1257 		zero_cpu_stall_ticks(rdp);
1258 	}
1259 	rdp->gp_seq = rnp->gp_seq;  /* Remember new grace-period state. */
1260 	if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap)
1261 		WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
1262 	if (IS_ENABLED(CONFIG_PROVE_RCU) && READ_ONCE(rdp->gpwrap))
1263 		WRITE_ONCE(rdp->last_sched_clock, jiffies);
1264 	WRITE_ONCE(rdp->gpwrap, false);
1265 	rcu_gpnum_ovf(rnp, rdp);
1266 	return ret;
1267 }
1268 
1269 static void note_gp_changes(struct rcu_data *rdp)
1270 {
1271 	unsigned long flags;
1272 	bool needwake;
1273 	struct rcu_node *rnp;
1274 
1275 	local_irq_save(flags);
1276 	rnp = rdp->mynode;
1277 	if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) &&
1278 	     !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1279 	    !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1280 		local_irq_restore(flags);
1281 		return;
1282 	}
1283 	needwake = __note_gp_changes(rnp, rdp);
1284 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1285 	rcu_strict_gp_check_qs();
1286 	if (needwake)
1287 		rcu_gp_kthread_wake();
1288 }
1289 
1290 static atomic_t *rcu_gp_slow_suppress;
1291 
1292 /* Register a counter to suppress debugging grace-period delays. */
1293 void rcu_gp_slow_register(atomic_t *rgssp)
1294 {
1295 	WARN_ON_ONCE(rcu_gp_slow_suppress);
1296 
1297 	WRITE_ONCE(rcu_gp_slow_suppress, rgssp);
1298 }
1299 EXPORT_SYMBOL_GPL(rcu_gp_slow_register);
1300 
1301 /* Unregister a counter, with NULL for not caring which. */
1302 void rcu_gp_slow_unregister(atomic_t *rgssp)
1303 {
1304 	WARN_ON_ONCE(rgssp && rgssp != rcu_gp_slow_suppress);
1305 
1306 	WRITE_ONCE(rcu_gp_slow_suppress, NULL);
1307 }
1308 EXPORT_SYMBOL_GPL(rcu_gp_slow_unregister);
1309 
1310 static bool rcu_gp_slow_is_suppressed(void)
1311 {
1312 	atomic_t *rgssp = READ_ONCE(rcu_gp_slow_suppress);
1313 
1314 	return rgssp && atomic_read(rgssp);
1315 }
1316 
1317 static void rcu_gp_slow(int delay)
1318 {
1319 	if (!rcu_gp_slow_is_suppressed() && delay > 0 &&
1320 	    !(rcu_seq_ctr(rcu_state.gp_seq) % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1321 		schedule_timeout_idle(delay);
1322 }
1323 
1324 static unsigned long sleep_duration;
1325 
1326 /* Allow rcutorture to stall the grace-period kthread. */
1327 void rcu_gp_set_torture_wait(int duration)
1328 {
1329 	if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST) && duration > 0)
1330 		WRITE_ONCE(sleep_duration, duration);
1331 }
1332 EXPORT_SYMBOL_GPL(rcu_gp_set_torture_wait);
1333 
1334 /* Actually implement the aforementioned wait. */
1335 static void rcu_gp_torture_wait(void)
1336 {
1337 	unsigned long duration;
1338 
1339 	if (!IS_ENABLED(CONFIG_RCU_TORTURE_TEST))
1340 		return;
1341 	duration = xchg(&sleep_duration, 0UL);
1342 	if (duration > 0) {
1343 		pr_alert("%s: Waiting %lu jiffies\n", __func__, duration);
1344 		schedule_timeout_idle(duration);
1345 		pr_alert("%s: Wait complete\n", __func__);
1346 	}
1347 }
1348 
1349 /*
1350  * Handler for on_each_cpu() to invoke the target CPU's RCU core
1351  * processing.
1352  */
1353 static void rcu_strict_gp_boundary(void *unused)
1354 {
1355 	invoke_rcu_core();
1356 }
1357 
1358 // Has rcu_init() been invoked?  This is used (for example) to determine
1359 // whether spinlocks may be acquired safely.
1360 static bool rcu_init_invoked(void)
1361 {
1362 	return !!rcu_state.n_online_cpus;
1363 }
1364 
1365 // Make the polled API aware of the beginning of a grace period.
1366 static void rcu_poll_gp_seq_start(unsigned long *snap)
1367 {
1368 	struct rcu_node *rnp = rcu_get_root();
1369 
1370 	if (rcu_init_invoked())
1371 		raw_lockdep_assert_held_rcu_node(rnp);
1372 
1373 	// If RCU was idle, note beginning of GP.
1374 	if (!rcu_seq_state(rcu_state.gp_seq_polled))
1375 		rcu_seq_start(&rcu_state.gp_seq_polled);
1376 
1377 	// Either way, record current state.
1378 	*snap = rcu_state.gp_seq_polled;
1379 }
1380 
1381 // Make the polled API aware of the end of a grace period.
1382 static void rcu_poll_gp_seq_end(unsigned long *snap)
1383 {
1384 	struct rcu_node *rnp = rcu_get_root();
1385 
1386 	if (rcu_init_invoked())
1387 		raw_lockdep_assert_held_rcu_node(rnp);
1388 
1389 	// If the previously noted GP is still in effect, record the
1390 	// end of that GP.  Either way, zero counter to avoid counter-wrap
1391 	// problems.
1392 	if (*snap && *snap == rcu_state.gp_seq_polled) {
1393 		rcu_seq_end(&rcu_state.gp_seq_polled);
1394 		rcu_state.gp_seq_polled_snap = 0;
1395 		rcu_state.gp_seq_polled_exp_snap = 0;
1396 	} else {
1397 		*snap = 0;
1398 	}
1399 }
1400 
1401 // Make the polled API aware of the beginning of a grace period, but
1402 // where caller does not hold the root rcu_node structure's lock.
1403 static void rcu_poll_gp_seq_start_unlocked(unsigned long *snap)
1404 {
1405 	struct rcu_node *rnp = rcu_get_root();
1406 
1407 	if (rcu_init_invoked()) {
1408 		lockdep_assert_irqs_enabled();
1409 		raw_spin_lock_irq_rcu_node(rnp);
1410 	}
1411 	rcu_poll_gp_seq_start(snap);
1412 	if (rcu_init_invoked())
1413 		raw_spin_unlock_irq_rcu_node(rnp);
1414 }
1415 
1416 // Make the polled API aware of the end of a grace period, but where
1417 // caller does not hold the root rcu_node structure's lock.
1418 static void rcu_poll_gp_seq_end_unlocked(unsigned long *snap)
1419 {
1420 	struct rcu_node *rnp = rcu_get_root();
1421 
1422 	if (rcu_init_invoked()) {
1423 		lockdep_assert_irqs_enabled();
1424 		raw_spin_lock_irq_rcu_node(rnp);
1425 	}
1426 	rcu_poll_gp_seq_end(snap);
1427 	if (rcu_init_invoked())
1428 		raw_spin_unlock_irq_rcu_node(rnp);
1429 }
1430 
1431 /*
1432  * Initialize a new grace period.  Return false if no grace period required.
1433  */
1434 static noinline_for_stack bool rcu_gp_init(void)
1435 {
1436 	unsigned long flags;
1437 	unsigned long oldmask;
1438 	unsigned long mask;
1439 	struct rcu_data *rdp;
1440 	struct rcu_node *rnp = rcu_get_root();
1441 
1442 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1443 	raw_spin_lock_irq_rcu_node(rnp);
1444 	if (!READ_ONCE(rcu_state.gp_flags)) {
1445 		/* Spurious wakeup, tell caller to go back to sleep.  */
1446 		raw_spin_unlock_irq_rcu_node(rnp);
1447 		return false;
1448 	}
1449 	WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */
1450 
1451 	if (WARN_ON_ONCE(rcu_gp_in_progress())) {
1452 		/*
1453 		 * Grace period already in progress, don't start another.
1454 		 * Not supposed to be able to happen.
1455 		 */
1456 		raw_spin_unlock_irq_rcu_node(rnp);
1457 		return false;
1458 	}
1459 
1460 	/* Advance to a new grace period and initialize state. */
1461 	record_gp_stall_check_time();
1462 	/* Record GP times before starting GP, hence rcu_seq_start(). */
1463 	rcu_seq_start(&rcu_state.gp_seq);
1464 	ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
1465 	trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start"));
1466 	rcu_poll_gp_seq_start(&rcu_state.gp_seq_polled_snap);
1467 	raw_spin_unlock_irq_rcu_node(rnp);
1468 
1469 	/*
1470 	 * Apply per-leaf buffered online and offline operations to
1471 	 * the rcu_node tree. Note that this new grace period need not
1472 	 * wait for subsequent online CPUs, and that RCU hooks in the CPU
1473 	 * offlining path, when combined with checks in this function,
1474 	 * will handle CPUs that are currently going offline or that will
1475 	 * go offline later.  Please also refer to "Hotplug CPU" section
1476 	 * of RCU's Requirements documentation.
1477 	 */
1478 	WRITE_ONCE(rcu_state.gp_state, RCU_GP_ONOFF);
1479 	/* Exclude CPU hotplug operations. */
1480 	rcu_for_each_leaf_node(rnp) {
1481 		local_irq_save(flags);
1482 		arch_spin_lock(&rcu_state.ofl_lock);
1483 		raw_spin_lock_rcu_node(rnp);
1484 		if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1485 		    !rnp->wait_blkd_tasks) {
1486 			/* Nothing to do on this leaf rcu_node structure. */
1487 			raw_spin_unlock_rcu_node(rnp);
1488 			arch_spin_unlock(&rcu_state.ofl_lock);
1489 			local_irq_restore(flags);
1490 			continue;
1491 		}
1492 
1493 		/* Record old state, apply changes to ->qsmaskinit field. */
1494 		oldmask = rnp->qsmaskinit;
1495 		rnp->qsmaskinit = rnp->qsmaskinitnext;
1496 
1497 		/* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1498 		if (!oldmask != !rnp->qsmaskinit) {
1499 			if (!oldmask) { /* First online CPU for rcu_node. */
1500 				if (!rnp->wait_blkd_tasks) /* Ever offline? */
1501 					rcu_init_new_rnp(rnp);
1502 			} else if (rcu_preempt_has_tasks(rnp)) {
1503 				rnp->wait_blkd_tasks = true; /* blocked tasks */
1504 			} else { /* Last offline CPU and can propagate. */
1505 				rcu_cleanup_dead_rnp(rnp);
1506 			}
1507 		}
1508 
1509 		/*
1510 		 * If all waited-on tasks from prior grace period are
1511 		 * done, and if all this rcu_node structure's CPUs are
1512 		 * still offline, propagate up the rcu_node tree and
1513 		 * clear ->wait_blkd_tasks.  Otherwise, if one of this
1514 		 * rcu_node structure's CPUs has since come back online,
1515 		 * simply clear ->wait_blkd_tasks.
1516 		 */
1517 		if (rnp->wait_blkd_tasks &&
1518 		    (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) {
1519 			rnp->wait_blkd_tasks = false;
1520 			if (!rnp->qsmaskinit)
1521 				rcu_cleanup_dead_rnp(rnp);
1522 		}
1523 
1524 		raw_spin_unlock_rcu_node(rnp);
1525 		arch_spin_unlock(&rcu_state.ofl_lock);
1526 		local_irq_restore(flags);
1527 	}
1528 	rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */
1529 
1530 	/*
1531 	 * Set the quiescent-state-needed bits in all the rcu_node
1532 	 * structures for all currently online CPUs in breadth-first
1533 	 * order, starting from the root rcu_node structure, relying on the
1534 	 * layout of the tree within the rcu_state.node[] array.  Note that
1535 	 * other CPUs will access only the leaves of the hierarchy, thus
1536 	 * seeing that no grace period is in progress, at least until the
1537 	 * corresponding leaf node has been initialized.
1538 	 *
1539 	 * The grace period cannot complete until the initialization
1540 	 * process finishes, because this kthread handles both.
1541 	 */
1542 	WRITE_ONCE(rcu_state.gp_state, RCU_GP_INIT);
1543 	rcu_for_each_node_breadth_first(rnp) {
1544 		rcu_gp_slow(gp_init_delay);
1545 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1546 		rdp = this_cpu_ptr(&rcu_data);
1547 		rcu_preempt_check_blocked_tasks(rnp);
1548 		rnp->qsmask = rnp->qsmaskinit;
1549 		WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq);
1550 		if (rnp == rdp->mynode)
1551 			(void)__note_gp_changes(rnp, rdp);
1552 		rcu_preempt_boost_start_gp(rnp);
1553 		trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq,
1554 					    rnp->level, rnp->grplo,
1555 					    rnp->grphi, rnp->qsmask);
1556 		/* Quiescent states for tasks on any now-offline CPUs. */
1557 		mask = rnp->qsmask & ~rnp->qsmaskinitnext;
1558 		rnp->rcu_gp_init_mask = mask;
1559 		if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp))
1560 			rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
1561 		else
1562 			raw_spin_unlock_irq_rcu_node(rnp);
1563 		cond_resched_tasks_rcu_qs();
1564 		WRITE_ONCE(rcu_state.gp_activity, jiffies);
1565 	}
1566 
1567 	// If strict, make all CPUs aware of new grace period.
1568 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
1569 		on_each_cpu(rcu_strict_gp_boundary, NULL, 0);
1570 
1571 	return true;
1572 }
1573 
1574 /*
1575  * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state
1576  * time.
1577  */
1578 static bool rcu_gp_fqs_check_wake(int *gfp)
1579 {
1580 	struct rcu_node *rnp = rcu_get_root();
1581 
1582 	// If under overload conditions, force an immediate FQS scan.
1583 	if (*gfp & RCU_GP_FLAG_OVLD)
1584 		return true;
1585 
1586 	// Someone like call_rcu() requested a force-quiescent-state scan.
1587 	*gfp = READ_ONCE(rcu_state.gp_flags);
1588 	if (*gfp & RCU_GP_FLAG_FQS)
1589 		return true;
1590 
1591 	// The current grace period has completed.
1592 	if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
1593 		return true;
1594 
1595 	return false;
1596 }
1597 
1598 /*
1599  * Do one round of quiescent-state forcing.
1600  */
1601 static void rcu_gp_fqs(bool first_time)
1602 {
1603 	struct rcu_node *rnp = rcu_get_root();
1604 
1605 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1606 	WRITE_ONCE(rcu_state.n_force_qs, rcu_state.n_force_qs + 1);
1607 	if (first_time) {
1608 		/* Collect dyntick-idle snapshots. */
1609 		force_qs_rnp(dyntick_save_progress_counter);
1610 	} else {
1611 		/* Handle dyntick-idle and offline CPUs. */
1612 		force_qs_rnp(rcu_implicit_dynticks_qs);
1613 	}
1614 	/* Clear flag to prevent immediate re-entry. */
1615 	if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
1616 		raw_spin_lock_irq_rcu_node(rnp);
1617 		WRITE_ONCE(rcu_state.gp_flags,
1618 			   READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS);
1619 		raw_spin_unlock_irq_rcu_node(rnp);
1620 	}
1621 }
1622 
1623 /*
1624  * Loop doing repeated quiescent-state forcing until the grace period ends.
1625  */
1626 static noinline_for_stack void rcu_gp_fqs_loop(void)
1627 {
1628 	bool first_gp_fqs = true;
1629 	int gf = 0;
1630 	unsigned long j;
1631 	int ret;
1632 	struct rcu_node *rnp = rcu_get_root();
1633 
1634 	j = READ_ONCE(jiffies_till_first_fqs);
1635 	if (rcu_state.cbovld)
1636 		gf = RCU_GP_FLAG_OVLD;
1637 	ret = 0;
1638 	for (;;) {
1639 		if (rcu_state.cbovld) {
1640 			j = (j + 2) / 3;
1641 			if (j <= 0)
1642 				j = 1;
1643 		}
1644 		if (!ret || time_before(jiffies + j, rcu_state.jiffies_force_qs)) {
1645 			WRITE_ONCE(rcu_state.jiffies_force_qs, jiffies + j);
1646 			/*
1647 			 * jiffies_force_qs before RCU_GP_WAIT_FQS state
1648 			 * update; required for stall checks.
1649 			 */
1650 			smp_wmb();
1651 			WRITE_ONCE(rcu_state.jiffies_kick_kthreads,
1652 				   jiffies + (j ? 3 * j : 2));
1653 		}
1654 		trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1655 				       TPS("fqswait"));
1656 		WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_FQS);
1657 		(void)swait_event_idle_timeout_exclusive(rcu_state.gp_wq,
1658 				 rcu_gp_fqs_check_wake(&gf), j);
1659 		rcu_gp_torture_wait();
1660 		WRITE_ONCE(rcu_state.gp_state, RCU_GP_DOING_FQS);
1661 		/* Locking provides needed memory barriers. */
1662 		/*
1663 		 * Exit the loop if the root rcu_node structure indicates that the grace period
1664 		 * has ended, leave the loop.  The rcu_preempt_blocked_readers_cgp(rnp) check
1665 		 * is required only for single-node rcu_node trees because readers blocking
1666 		 * the current grace period are queued only on leaf rcu_node structures.
1667 		 * For multi-node trees, checking the root node's ->qsmask suffices, because a
1668 		 * given root node's ->qsmask bit is cleared only when all CPUs and tasks from
1669 		 * the corresponding leaf nodes have passed through their quiescent state.
1670 		 */
1671 		if (!READ_ONCE(rnp->qsmask) &&
1672 		    !rcu_preempt_blocked_readers_cgp(rnp))
1673 			break;
1674 		/* If time for quiescent-state forcing, do it. */
1675 		if (!time_after(rcu_state.jiffies_force_qs, jiffies) ||
1676 		    (gf & (RCU_GP_FLAG_FQS | RCU_GP_FLAG_OVLD))) {
1677 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1678 					       TPS("fqsstart"));
1679 			rcu_gp_fqs(first_gp_fqs);
1680 			gf = 0;
1681 			if (first_gp_fqs) {
1682 				first_gp_fqs = false;
1683 				gf = rcu_state.cbovld ? RCU_GP_FLAG_OVLD : 0;
1684 			}
1685 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1686 					       TPS("fqsend"));
1687 			cond_resched_tasks_rcu_qs();
1688 			WRITE_ONCE(rcu_state.gp_activity, jiffies);
1689 			ret = 0; /* Force full wait till next FQS. */
1690 			j = READ_ONCE(jiffies_till_next_fqs);
1691 		} else {
1692 			/* Deal with stray signal. */
1693 			cond_resched_tasks_rcu_qs();
1694 			WRITE_ONCE(rcu_state.gp_activity, jiffies);
1695 			WARN_ON(signal_pending(current));
1696 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1697 					       TPS("fqswaitsig"));
1698 			ret = 1; /* Keep old FQS timing. */
1699 			j = jiffies;
1700 			if (time_after(jiffies, rcu_state.jiffies_force_qs))
1701 				j = 1;
1702 			else
1703 				j = rcu_state.jiffies_force_qs - j;
1704 			gf = 0;
1705 		}
1706 	}
1707 }
1708 
1709 /*
1710  * Clean up after the old grace period.
1711  */
1712 static noinline void rcu_gp_cleanup(void)
1713 {
1714 	int cpu;
1715 	bool needgp = false;
1716 	unsigned long gp_duration;
1717 	unsigned long new_gp_seq;
1718 	bool offloaded;
1719 	struct rcu_data *rdp;
1720 	struct rcu_node *rnp = rcu_get_root();
1721 	struct swait_queue_head *sq;
1722 
1723 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1724 	raw_spin_lock_irq_rcu_node(rnp);
1725 	rcu_state.gp_end = jiffies;
1726 	gp_duration = rcu_state.gp_end - rcu_state.gp_start;
1727 	if (gp_duration > rcu_state.gp_max)
1728 		rcu_state.gp_max = gp_duration;
1729 
1730 	/*
1731 	 * We know the grace period is complete, but to everyone else
1732 	 * it appears to still be ongoing.  But it is also the case
1733 	 * that to everyone else it looks like there is nothing that
1734 	 * they can do to advance the grace period.  It is therefore
1735 	 * safe for us to drop the lock in order to mark the grace
1736 	 * period as completed in all of the rcu_node structures.
1737 	 */
1738 	rcu_poll_gp_seq_end(&rcu_state.gp_seq_polled_snap);
1739 	raw_spin_unlock_irq_rcu_node(rnp);
1740 
1741 	/*
1742 	 * Propagate new ->gp_seq value to rcu_node structures so that
1743 	 * other CPUs don't have to wait until the start of the next grace
1744 	 * period to process their callbacks.  This also avoids some nasty
1745 	 * RCU grace-period initialization races by forcing the end of
1746 	 * the current grace period to be completely recorded in all of
1747 	 * the rcu_node structures before the beginning of the next grace
1748 	 * period is recorded in any of the rcu_node structures.
1749 	 */
1750 	new_gp_seq = rcu_state.gp_seq;
1751 	rcu_seq_end(&new_gp_seq);
1752 	rcu_for_each_node_breadth_first(rnp) {
1753 		raw_spin_lock_irq_rcu_node(rnp);
1754 		if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
1755 			dump_blkd_tasks(rnp, 10);
1756 		WARN_ON_ONCE(rnp->qsmask);
1757 		WRITE_ONCE(rnp->gp_seq, new_gp_seq);
1758 		rdp = this_cpu_ptr(&rcu_data);
1759 		if (rnp == rdp->mynode)
1760 			needgp = __note_gp_changes(rnp, rdp) || needgp;
1761 		/* smp_mb() provided by prior unlock-lock pair. */
1762 		needgp = rcu_future_gp_cleanup(rnp) || needgp;
1763 		// Reset overload indication for CPUs no longer overloaded
1764 		if (rcu_is_leaf_node(rnp))
1765 			for_each_leaf_node_cpu_mask(rnp, cpu, rnp->cbovldmask) {
1766 				rdp = per_cpu_ptr(&rcu_data, cpu);
1767 				check_cb_ovld_locked(rdp, rnp);
1768 			}
1769 		sq = rcu_nocb_gp_get(rnp);
1770 		raw_spin_unlock_irq_rcu_node(rnp);
1771 		rcu_nocb_gp_cleanup(sq);
1772 		cond_resched_tasks_rcu_qs();
1773 		WRITE_ONCE(rcu_state.gp_activity, jiffies);
1774 		rcu_gp_slow(gp_cleanup_delay);
1775 	}
1776 	rnp = rcu_get_root();
1777 	raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */
1778 
1779 	/* Declare grace period done, trace first to use old GP number. */
1780 	trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end"));
1781 	rcu_seq_end(&rcu_state.gp_seq);
1782 	ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
1783 	WRITE_ONCE(rcu_state.gp_state, RCU_GP_IDLE);
1784 	/* Check for GP requests since above loop. */
1785 	rdp = this_cpu_ptr(&rcu_data);
1786 	if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) {
1787 		trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed,
1788 				  TPS("CleanupMore"));
1789 		needgp = true;
1790 	}
1791 	/* Advance CBs to reduce false positives below. */
1792 	offloaded = rcu_rdp_is_offloaded(rdp);
1793 	if ((offloaded || !rcu_accelerate_cbs(rnp, rdp)) && needgp) {
1794 
1795 		// We get here if a grace period was needed (“needgp”)
1796 		// and the above call to rcu_accelerate_cbs() did not set
1797 		// the RCU_GP_FLAG_INIT bit in ->gp_state (which records
1798 		// the need for another grace period).  The purpose
1799 		// of the “offloaded” check is to avoid invoking
1800 		// rcu_accelerate_cbs() on an offloaded CPU because we do not
1801 		// hold the ->nocb_lock needed to safely access an offloaded
1802 		// ->cblist.  We do not want to acquire that lock because
1803 		// it can be heavily contended during callback floods.
1804 
1805 		WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT);
1806 		WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
1807 		trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("newreq"));
1808 	} else {
1809 
1810 		// We get here either if there is no need for an
1811 		// additional grace period or if rcu_accelerate_cbs() has
1812 		// already set the RCU_GP_FLAG_INIT bit in ->gp_flags. 
1813 		// So all we need to do is to clear all of the other
1814 		// ->gp_flags bits.
1815 
1816 		WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags & RCU_GP_FLAG_INIT);
1817 	}
1818 	raw_spin_unlock_irq_rcu_node(rnp);
1819 
1820 	// If strict, make all CPUs aware of the end of the old grace period.
1821 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
1822 		on_each_cpu(rcu_strict_gp_boundary, NULL, 0);
1823 }
1824 
1825 /*
1826  * Body of kthread that handles grace periods.
1827  */
1828 static int __noreturn rcu_gp_kthread(void *unused)
1829 {
1830 	rcu_bind_gp_kthread();
1831 	for (;;) {
1832 
1833 		/* Handle grace-period start. */
1834 		for (;;) {
1835 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1836 					       TPS("reqwait"));
1837 			WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_GPS);
1838 			swait_event_idle_exclusive(rcu_state.gp_wq,
1839 					 READ_ONCE(rcu_state.gp_flags) &
1840 					 RCU_GP_FLAG_INIT);
1841 			rcu_gp_torture_wait();
1842 			WRITE_ONCE(rcu_state.gp_state, RCU_GP_DONE_GPS);
1843 			/* Locking provides needed memory barrier. */
1844 			if (rcu_gp_init())
1845 				break;
1846 			cond_resched_tasks_rcu_qs();
1847 			WRITE_ONCE(rcu_state.gp_activity, jiffies);
1848 			WARN_ON(signal_pending(current));
1849 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1850 					       TPS("reqwaitsig"));
1851 		}
1852 
1853 		/* Handle quiescent-state forcing. */
1854 		rcu_gp_fqs_loop();
1855 
1856 		/* Handle grace-period end. */
1857 		WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANUP);
1858 		rcu_gp_cleanup();
1859 		WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANED);
1860 	}
1861 }
1862 
1863 /*
1864  * Report a full set of quiescent states to the rcu_state data structure.
1865  * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if
1866  * another grace period is required.  Whether we wake the grace-period
1867  * kthread or it awakens itself for the next round of quiescent-state
1868  * forcing, that kthread will clean up after the just-completed grace
1869  * period.  Note that the caller must hold rnp->lock, which is released
1870  * before return.
1871  */
1872 static void rcu_report_qs_rsp(unsigned long flags)
1873 	__releases(rcu_get_root()->lock)
1874 {
1875 	raw_lockdep_assert_held_rcu_node(rcu_get_root());
1876 	WARN_ON_ONCE(!rcu_gp_in_progress());
1877 	WRITE_ONCE(rcu_state.gp_flags,
1878 		   READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
1879 	raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags);
1880 	rcu_gp_kthread_wake();
1881 }
1882 
1883 /*
1884  * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1885  * Allows quiescent states for a group of CPUs to be reported at one go
1886  * to the specified rcu_node structure, though all the CPUs in the group
1887  * must be represented by the same rcu_node structure (which need not be a
1888  * leaf rcu_node structure, though it often will be).  The gps parameter
1889  * is the grace-period snapshot, which means that the quiescent states
1890  * are valid only if rnp->gp_seq is equal to gps.  That structure's lock
1891  * must be held upon entry, and it is released before return.
1892  *
1893  * As a special case, if mask is zero, the bit-already-cleared check is
1894  * disabled.  This allows propagating quiescent state due to resumed tasks
1895  * during grace-period initialization.
1896  */
1897 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
1898 			      unsigned long gps, unsigned long flags)
1899 	__releases(rnp->lock)
1900 {
1901 	unsigned long oldmask = 0;
1902 	struct rcu_node *rnp_c;
1903 
1904 	raw_lockdep_assert_held_rcu_node(rnp);
1905 
1906 	/* Walk up the rcu_node hierarchy. */
1907 	for (;;) {
1908 		if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) {
1909 
1910 			/*
1911 			 * Our bit has already been cleared, or the
1912 			 * relevant grace period is already over, so done.
1913 			 */
1914 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1915 			return;
1916 		}
1917 		WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
1918 		WARN_ON_ONCE(!rcu_is_leaf_node(rnp) &&
1919 			     rcu_preempt_blocked_readers_cgp(rnp));
1920 		WRITE_ONCE(rnp->qsmask, rnp->qsmask & ~mask);
1921 		trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq,
1922 						 mask, rnp->qsmask, rnp->level,
1923 						 rnp->grplo, rnp->grphi,
1924 						 !!rnp->gp_tasks);
1925 		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1926 
1927 			/* Other bits still set at this level, so done. */
1928 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1929 			return;
1930 		}
1931 		rnp->completedqs = rnp->gp_seq;
1932 		mask = rnp->grpmask;
1933 		if (rnp->parent == NULL) {
1934 
1935 			/* No more levels.  Exit loop holding root lock. */
1936 
1937 			break;
1938 		}
1939 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1940 		rnp_c = rnp;
1941 		rnp = rnp->parent;
1942 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1943 		oldmask = READ_ONCE(rnp_c->qsmask);
1944 	}
1945 
1946 	/*
1947 	 * Get here if we are the last CPU to pass through a quiescent
1948 	 * state for this grace period.  Invoke rcu_report_qs_rsp()
1949 	 * to clean up and start the next grace period if one is needed.
1950 	 */
1951 	rcu_report_qs_rsp(flags); /* releases rnp->lock. */
1952 }
1953 
1954 /*
1955  * Record a quiescent state for all tasks that were previously queued
1956  * on the specified rcu_node structure and that were blocking the current
1957  * RCU grace period.  The caller must hold the corresponding rnp->lock with
1958  * irqs disabled, and this lock is released upon return, but irqs remain
1959  * disabled.
1960  */
1961 static void __maybe_unused
1962 rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
1963 	__releases(rnp->lock)
1964 {
1965 	unsigned long gps;
1966 	unsigned long mask;
1967 	struct rcu_node *rnp_p;
1968 
1969 	raw_lockdep_assert_held_rcu_node(rnp);
1970 	if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT_RCU)) ||
1971 	    WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) ||
1972 	    rnp->qsmask != 0) {
1973 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1974 		return;  /* Still need more quiescent states! */
1975 	}
1976 
1977 	rnp->completedqs = rnp->gp_seq;
1978 	rnp_p = rnp->parent;
1979 	if (rnp_p == NULL) {
1980 		/*
1981 		 * Only one rcu_node structure in the tree, so don't
1982 		 * try to report up to its nonexistent parent!
1983 		 */
1984 		rcu_report_qs_rsp(flags);
1985 		return;
1986 	}
1987 
1988 	/* Report up the rest of the hierarchy, tracking current ->gp_seq. */
1989 	gps = rnp->gp_seq;
1990 	mask = rnp->grpmask;
1991 	raw_spin_unlock_rcu_node(rnp);	/* irqs remain disabled. */
1992 	raw_spin_lock_rcu_node(rnp_p);	/* irqs already disabled. */
1993 	rcu_report_qs_rnp(mask, rnp_p, gps, flags);
1994 }
1995 
1996 /*
1997  * Record a quiescent state for the specified CPU to that CPU's rcu_data
1998  * structure.  This must be called from the specified CPU.
1999  */
2000 static void
2001 rcu_report_qs_rdp(struct rcu_data *rdp)
2002 {
2003 	unsigned long flags;
2004 	unsigned long mask;
2005 	bool needwake = false;
2006 	bool needacc = false;
2007 	struct rcu_node *rnp;
2008 
2009 	WARN_ON_ONCE(rdp->cpu != smp_processor_id());
2010 	rnp = rdp->mynode;
2011 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
2012 	if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq ||
2013 	    rdp->gpwrap) {
2014 
2015 		/*
2016 		 * The grace period in which this quiescent state was
2017 		 * recorded has ended, so don't report it upwards.
2018 		 * We will instead need a new quiescent state that lies
2019 		 * within the current grace period.
2020 		 */
2021 		rdp->cpu_no_qs.b.norm = true;	/* need qs for new gp. */
2022 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2023 		return;
2024 	}
2025 	mask = rdp->grpmask;
2026 	rdp->core_needs_qs = false;
2027 	if ((rnp->qsmask & mask) == 0) {
2028 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2029 	} else {
2030 		/*
2031 		 * This GP can't end until cpu checks in, so all of our
2032 		 * callbacks can be processed during the next GP.
2033 		 *
2034 		 * NOCB kthreads have their own way to deal with that...
2035 		 */
2036 		if (!rcu_rdp_is_offloaded(rdp)) {
2037 			needwake = rcu_accelerate_cbs(rnp, rdp);
2038 		} else if (!rcu_segcblist_completely_offloaded(&rdp->cblist)) {
2039 			/*
2040 			 * ...but NOCB kthreads may miss or delay callbacks acceleration
2041 			 * if in the middle of a (de-)offloading process.
2042 			 */
2043 			needacc = true;
2044 		}
2045 
2046 		rcu_disable_urgency_upon_qs(rdp);
2047 		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2048 		/* ^^^ Released rnp->lock */
2049 		if (needwake)
2050 			rcu_gp_kthread_wake();
2051 
2052 		if (needacc) {
2053 			rcu_nocb_lock_irqsave(rdp, flags);
2054 			rcu_accelerate_cbs_unlocked(rnp, rdp);
2055 			rcu_nocb_unlock_irqrestore(rdp, flags);
2056 		}
2057 	}
2058 }
2059 
2060 /*
2061  * Check to see if there is a new grace period of which this CPU
2062  * is not yet aware, and if so, set up local rcu_data state for it.
2063  * Otherwise, see if this CPU has just passed through its first
2064  * quiescent state for this grace period, and record that fact if so.
2065  */
2066 static void
2067 rcu_check_quiescent_state(struct rcu_data *rdp)
2068 {
2069 	/* Check for grace-period ends and beginnings. */
2070 	note_gp_changes(rdp);
2071 
2072 	/*
2073 	 * Does this CPU still need to do its part for current grace period?
2074 	 * If no, return and let the other CPUs do their part as well.
2075 	 */
2076 	if (!rdp->core_needs_qs)
2077 		return;
2078 
2079 	/*
2080 	 * Was there a quiescent state since the beginning of the grace
2081 	 * period? If no, then exit and wait for the next call.
2082 	 */
2083 	if (rdp->cpu_no_qs.b.norm)
2084 		return;
2085 
2086 	/*
2087 	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2088 	 * judge of that).
2089 	 */
2090 	rcu_report_qs_rdp(rdp);
2091 }
2092 
2093 /*
2094  * Near the end of the offline process.  Trace the fact that this CPU
2095  * is going offline.
2096  */
2097 int rcutree_dying_cpu(unsigned int cpu)
2098 {
2099 	bool blkd;
2100 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2101 	struct rcu_node *rnp = rdp->mynode;
2102 
2103 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2104 		return 0;
2105 
2106 	blkd = !!(rnp->qsmask & rdp->grpmask);
2107 	trace_rcu_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
2108 			       blkd ? TPS("cpuofl-bgp") : TPS("cpuofl"));
2109 	return 0;
2110 }
2111 
2112 /*
2113  * All CPUs for the specified rcu_node structure have gone offline,
2114  * and all tasks that were preempted within an RCU read-side critical
2115  * section while running on one of those CPUs have since exited their RCU
2116  * read-side critical section.  Some other CPU is reporting this fact with
2117  * the specified rcu_node structure's ->lock held and interrupts disabled.
2118  * This function therefore goes up the tree of rcu_node structures,
2119  * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
2120  * the leaf rcu_node structure's ->qsmaskinit field has already been
2121  * updated.
2122  *
2123  * This function does check that the specified rcu_node structure has
2124  * all CPUs offline and no blocked tasks, so it is OK to invoke it
2125  * prematurely.  That said, invoking it after the fact will cost you
2126  * a needless lock acquisition.  So once it has done its work, don't
2127  * invoke it again.
2128  */
2129 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2130 {
2131 	long mask;
2132 	struct rcu_node *rnp = rnp_leaf;
2133 
2134 	raw_lockdep_assert_held_rcu_node(rnp_leaf);
2135 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2136 	    WARN_ON_ONCE(rnp_leaf->qsmaskinit) ||
2137 	    WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf)))
2138 		return;
2139 	for (;;) {
2140 		mask = rnp->grpmask;
2141 		rnp = rnp->parent;
2142 		if (!rnp)
2143 			break;
2144 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2145 		rnp->qsmaskinit &= ~mask;
2146 		/* Between grace periods, so better already be zero! */
2147 		WARN_ON_ONCE(rnp->qsmask);
2148 		if (rnp->qsmaskinit) {
2149 			raw_spin_unlock_rcu_node(rnp);
2150 			/* irqs remain disabled. */
2151 			return;
2152 		}
2153 		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2154 	}
2155 }
2156 
2157 /*
2158  * The CPU has been completely removed, and some other CPU is reporting
2159  * this fact from process context.  Do the remainder of the cleanup.
2160  * There can only be one CPU hotplug operation at a time, so no need for
2161  * explicit locking.
2162  */
2163 int rcutree_dead_cpu(unsigned int cpu)
2164 {
2165 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2166 	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2167 
2168 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2169 		return 0;
2170 
2171 	WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus - 1);
2172 	/* Adjust any no-longer-needed kthreads. */
2173 	rcu_boost_kthread_setaffinity(rnp, -1);
2174 	// Stop-machine done, so allow nohz_full to disable tick.
2175 	tick_dep_clear(TICK_DEP_BIT_RCU);
2176 	return 0;
2177 }
2178 
2179 /*
2180  * Invoke any RCU callbacks that have made it to the end of their grace
2181  * period.  Throttle as specified by rdp->blimit.
2182  */
2183 static void rcu_do_batch(struct rcu_data *rdp)
2184 {
2185 	int div;
2186 	bool __maybe_unused empty;
2187 	unsigned long flags;
2188 	struct rcu_head *rhp;
2189 	struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2190 	long bl, count = 0;
2191 	long pending, tlimit = 0;
2192 
2193 	/* If no callbacks are ready, just return. */
2194 	if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2195 		trace_rcu_batch_start(rcu_state.name,
2196 				      rcu_segcblist_n_cbs(&rdp->cblist), 0);
2197 		trace_rcu_batch_end(rcu_state.name, 0,
2198 				    !rcu_segcblist_empty(&rdp->cblist),
2199 				    need_resched(), is_idle_task(current),
2200 				    rcu_is_callbacks_kthread(rdp));
2201 		return;
2202 	}
2203 
2204 	/*
2205 	 * Extract the list of ready callbacks, disabling IRQs to prevent
2206 	 * races with call_rcu() from interrupt handlers.  Leave the
2207 	 * callback counts, as rcu_barrier() needs to be conservative.
2208 	 */
2209 	rcu_nocb_lock_irqsave(rdp, flags);
2210 	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2211 	pending = rcu_segcblist_n_cbs(&rdp->cblist);
2212 	div = READ_ONCE(rcu_divisor);
2213 	div = div < 0 ? 7 : div > sizeof(long) * 8 - 2 ? sizeof(long) * 8 - 2 : div;
2214 	bl = max(rdp->blimit, pending >> div);
2215 	if (in_serving_softirq() && unlikely(bl > 100)) {
2216 		long rrn = READ_ONCE(rcu_resched_ns);
2217 
2218 		rrn = rrn < NSEC_PER_MSEC ? NSEC_PER_MSEC : rrn > NSEC_PER_SEC ? NSEC_PER_SEC : rrn;
2219 		tlimit = local_clock() + rrn;
2220 	}
2221 	trace_rcu_batch_start(rcu_state.name,
2222 			      rcu_segcblist_n_cbs(&rdp->cblist), bl);
2223 	rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
2224 	if (rcu_rdp_is_offloaded(rdp))
2225 		rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2226 
2227 	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbDequeued"));
2228 	rcu_nocb_unlock_irqrestore(rdp, flags);
2229 
2230 	/* Invoke callbacks. */
2231 	tick_dep_set_task(current, TICK_DEP_BIT_RCU);
2232 	rhp = rcu_cblist_dequeue(&rcl);
2233 
2234 	for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2235 		rcu_callback_t f;
2236 
2237 		count++;
2238 		debug_rcu_head_unqueue(rhp);
2239 
2240 		rcu_lock_acquire(&rcu_callback_map);
2241 		trace_rcu_invoke_callback(rcu_state.name, rhp);
2242 
2243 		f = rhp->func;
2244 		WRITE_ONCE(rhp->func, (rcu_callback_t)0L);
2245 		f(rhp);
2246 
2247 		rcu_lock_release(&rcu_callback_map);
2248 
2249 		/*
2250 		 * Stop only if limit reached and CPU has something to do.
2251 		 */
2252 		if (in_serving_softirq()) {
2253 			if (count >= bl && (need_resched() || !is_idle_task(current)))
2254 				break;
2255 			/*
2256 			 * Make sure we don't spend too much time here and deprive other
2257 			 * softirq vectors of CPU cycles.
2258 			 */
2259 			if (unlikely(tlimit)) {
2260 				/* only call local_clock() every 32 callbacks */
2261 				if (likely((count & 31) || local_clock() < tlimit))
2262 					continue;
2263 				/* Exceeded the time limit, so leave. */
2264 				break;
2265 			}
2266 		} else {
2267 			local_bh_enable();
2268 			lockdep_assert_irqs_enabled();
2269 			cond_resched_tasks_rcu_qs();
2270 			lockdep_assert_irqs_enabled();
2271 			local_bh_disable();
2272 		}
2273 	}
2274 
2275 	rcu_nocb_lock_irqsave(rdp, flags);
2276 	rdp->n_cbs_invoked += count;
2277 	trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(),
2278 			    is_idle_task(current), rcu_is_callbacks_kthread(rdp));
2279 
2280 	/* Update counts and requeue any remaining callbacks. */
2281 	rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
2282 	rcu_segcblist_add_len(&rdp->cblist, -count);
2283 
2284 	/* Reinstate batch limit if we have worked down the excess. */
2285 	count = rcu_segcblist_n_cbs(&rdp->cblist);
2286 	if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark)
2287 		rdp->blimit = blimit;
2288 
2289 	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2290 	if (count == 0 && rdp->qlen_last_fqs_check != 0) {
2291 		rdp->qlen_last_fqs_check = 0;
2292 		rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
2293 	} else if (count < rdp->qlen_last_fqs_check - qhimark)
2294 		rdp->qlen_last_fqs_check = count;
2295 
2296 	/*
2297 	 * The following usually indicates a double call_rcu().  To track
2298 	 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
2299 	 */
2300 	empty = rcu_segcblist_empty(&rdp->cblist);
2301 	WARN_ON_ONCE(count == 0 && !empty);
2302 	WARN_ON_ONCE(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2303 		     count != 0 && empty);
2304 	WARN_ON_ONCE(count == 0 && rcu_segcblist_n_segment_cbs(&rdp->cblist) != 0);
2305 	WARN_ON_ONCE(!empty && rcu_segcblist_n_segment_cbs(&rdp->cblist) == 0);
2306 
2307 	rcu_nocb_unlock_irqrestore(rdp, flags);
2308 
2309 	tick_dep_clear_task(current, TICK_DEP_BIT_RCU);
2310 }
2311 
2312 /*
2313  * This function is invoked from each scheduling-clock interrupt,
2314  * and checks to see if this CPU is in a non-context-switch quiescent
2315  * state, for example, user mode or idle loop.  It also schedules RCU
2316  * core processing.  If the current grace period has gone on too long,
2317  * it will ask the scheduler to manufacture a context switch for the sole
2318  * purpose of providing the needed quiescent state.
2319  */
2320 void rcu_sched_clock_irq(int user)
2321 {
2322 	unsigned long j;
2323 
2324 	if (IS_ENABLED(CONFIG_PROVE_RCU)) {
2325 		j = jiffies;
2326 		WARN_ON_ONCE(time_before(j, __this_cpu_read(rcu_data.last_sched_clock)));
2327 		__this_cpu_write(rcu_data.last_sched_clock, j);
2328 	}
2329 	trace_rcu_utilization(TPS("Start scheduler-tick"));
2330 	lockdep_assert_irqs_disabled();
2331 	raw_cpu_inc(rcu_data.ticks_this_gp);
2332 	/* The load-acquire pairs with the store-release setting to true. */
2333 	if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
2334 		/* Idle and userspace execution already are quiescent states. */
2335 		if (!rcu_is_cpu_rrupt_from_idle() && !user) {
2336 			set_tsk_need_resched(current);
2337 			set_preempt_need_resched();
2338 		}
2339 		__this_cpu_write(rcu_data.rcu_urgent_qs, false);
2340 	}
2341 	rcu_flavor_sched_clock_irq(user);
2342 	if (rcu_pending(user))
2343 		invoke_rcu_core();
2344 	if (user)
2345 		rcu_tasks_classic_qs(current, false);
2346 	lockdep_assert_irqs_disabled();
2347 
2348 	trace_rcu_utilization(TPS("End scheduler-tick"));
2349 }
2350 
2351 /*
2352  * Scan the leaf rcu_node structures.  For each structure on which all
2353  * CPUs have reported a quiescent state and on which there are tasks
2354  * blocking the current grace period, initiate RCU priority boosting.
2355  * Otherwise, invoke the specified function to check dyntick state for
2356  * each CPU that has not yet reported a quiescent state.
2357  */
2358 static void force_qs_rnp(int (*f)(struct rcu_data *rdp))
2359 {
2360 	int cpu;
2361 	unsigned long flags;
2362 	unsigned long mask;
2363 	struct rcu_data *rdp;
2364 	struct rcu_node *rnp;
2365 
2366 	rcu_state.cbovld = rcu_state.cbovldnext;
2367 	rcu_state.cbovldnext = false;
2368 	rcu_for_each_leaf_node(rnp) {
2369 		cond_resched_tasks_rcu_qs();
2370 		mask = 0;
2371 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2372 		rcu_state.cbovldnext |= !!rnp->cbovldmask;
2373 		if (rnp->qsmask == 0) {
2374 			if (rcu_preempt_blocked_readers_cgp(rnp)) {
2375 				/*
2376 				 * No point in scanning bits because they
2377 				 * are all zero.  But we might need to
2378 				 * priority-boost blocked readers.
2379 				 */
2380 				rcu_initiate_boost(rnp, flags);
2381 				/* rcu_initiate_boost() releases rnp->lock */
2382 				continue;
2383 			}
2384 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2385 			continue;
2386 		}
2387 		for_each_leaf_node_cpu_mask(rnp, cpu, rnp->qsmask) {
2388 			rdp = per_cpu_ptr(&rcu_data, cpu);
2389 			if (f(rdp)) {
2390 				mask |= rdp->grpmask;
2391 				rcu_disable_urgency_upon_qs(rdp);
2392 			}
2393 		}
2394 		if (mask != 0) {
2395 			/* Idle/offline CPUs, report (releases rnp->lock). */
2396 			rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2397 		} else {
2398 			/* Nothing to do here, so just drop the lock. */
2399 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2400 		}
2401 	}
2402 }
2403 
2404 /*
2405  * Force quiescent states on reluctant CPUs, and also detect which
2406  * CPUs are in dyntick-idle mode.
2407  */
2408 void rcu_force_quiescent_state(void)
2409 {
2410 	unsigned long flags;
2411 	bool ret;
2412 	struct rcu_node *rnp;
2413 	struct rcu_node *rnp_old = NULL;
2414 
2415 	/* Funnel through hierarchy to reduce memory contention. */
2416 	rnp = __this_cpu_read(rcu_data.mynode);
2417 	for (; rnp != NULL; rnp = rnp->parent) {
2418 		ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) ||
2419 		       !raw_spin_trylock(&rnp->fqslock);
2420 		if (rnp_old != NULL)
2421 			raw_spin_unlock(&rnp_old->fqslock);
2422 		if (ret)
2423 			return;
2424 		rnp_old = rnp;
2425 	}
2426 	/* rnp_old == rcu_get_root(), rnp == NULL. */
2427 
2428 	/* Reached the root of the rcu_node tree, acquire lock. */
2429 	raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2430 	raw_spin_unlock(&rnp_old->fqslock);
2431 	if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
2432 		raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2433 		return;  /* Someone beat us to it. */
2434 	}
2435 	WRITE_ONCE(rcu_state.gp_flags,
2436 		   READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
2437 	raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2438 	rcu_gp_kthread_wake();
2439 }
2440 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
2441 
2442 // Workqueue handler for an RCU reader for kernels enforcing struct RCU
2443 // grace periods.
2444 static void strict_work_handler(struct work_struct *work)
2445 {
2446 	rcu_read_lock();
2447 	rcu_read_unlock();
2448 }
2449 
2450 /* Perform RCU core processing work for the current CPU.  */
2451 static __latent_entropy void rcu_core(void)
2452 {
2453 	unsigned long flags;
2454 	struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
2455 	struct rcu_node *rnp = rdp->mynode;
2456 	/*
2457 	 * On RT rcu_core() can be preempted when IRQs aren't disabled.
2458 	 * Therefore this function can race with concurrent NOCB (de-)offloading
2459 	 * on this CPU and the below condition must be considered volatile.
2460 	 * However if we race with:
2461 	 *
2462 	 * _ Offloading:   In the worst case we accelerate or process callbacks
2463 	 *                 concurrently with NOCB kthreads. We are guaranteed to
2464 	 *                 call rcu_nocb_lock() if that happens.
2465 	 *
2466 	 * _ Deoffloading: In the worst case we miss callbacks acceleration or
2467 	 *                 processing. This is fine because the early stage
2468 	 *                 of deoffloading invokes rcu_core() after setting
2469 	 *                 SEGCBLIST_RCU_CORE. So we guarantee that we'll process
2470 	 *                 what could have been dismissed without the need to wait
2471 	 *                 for the next rcu_pending() check in the next jiffy.
2472 	 */
2473 	const bool do_batch = !rcu_segcblist_completely_offloaded(&rdp->cblist);
2474 
2475 	if (cpu_is_offline(smp_processor_id()))
2476 		return;
2477 	trace_rcu_utilization(TPS("Start RCU core"));
2478 	WARN_ON_ONCE(!rdp->beenonline);
2479 
2480 	/* Report any deferred quiescent states if preemption enabled. */
2481 	if (IS_ENABLED(CONFIG_PREEMPT_COUNT) && (!(preempt_count() & PREEMPT_MASK))) {
2482 		rcu_preempt_deferred_qs(current);
2483 	} else if (rcu_preempt_need_deferred_qs(current)) {
2484 		set_tsk_need_resched(current);
2485 		set_preempt_need_resched();
2486 	}
2487 
2488 	/* Update RCU state based on any recent quiescent states. */
2489 	rcu_check_quiescent_state(rdp);
2490 
2491 	/* No grace period and unregistered callbacks? */
2492 	if (!rcu_gp_in_progress() &&
2493 	    rcu_segcblist_is_enabled(&rdp->cblist) && do_batch) {
2494 		rcu_nocb_lock_irqsave(rdp, flags);
2495 		if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
2496 			rcu_accelerate_cbs_unlocked(rnp, rdp);
2497 		rcu_nocb_unlock_irqrestore(rdp, flags);
2498 	}
2499 
2500 	rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check());
2501 
2502 	/* If there are callbacks ready, invoke them. */
2503 	if (do_batch && rcu_segcblist_ready_cbs(&rdp->cblist) &&
2504 	    likely(READ_ONCE(rcu_scheduler_fully_active))) {
2505 		rcu_do_batch(rdp);
2506 		/* Re-invoke RCU core processing if there are callbacks remaining. */
2507 		if (rcu_segcblist_ready_cbs(&rdp->cblist))
2508 			invoke_rcu_core();
2509 	}
2510 
2511 	/* Do any needed deferred wakeups of rcuo kthreads. */
2512 	do_nocb_deferred_wakeup(rdp);
2513 	trace_rcu_utilization(TPS("End RCU core"));
2514 
2515 	// If strict GPs, schedule an RCU reader in a clean environment.
2516 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
2517 		queue_work_on(rdp->cpu, rcu_gp_wq, &rdp->strict_work);
2518 }
2519 
2520 static void rcu_core_si(struct softirq_action *h)
2521 {
2522 	rcu_core();
2523 }
2524 
2525 static void rcu_wake_cond(struct task_struct *t, int status)
2526 {
2527 	/*
2528 	 * If the thread is yielding, only wake it when this
2529 	 * is invoked from idle
2530 	 */
2531 	if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current)))
2532 		wake_up_process(t);
2533 }
2534 
2535 static void invoke_rcu_core_kthread(void)
2536 {
2537 	struct task_struct *t;
2538 	unsigned long flags;
2539 
2540 	local_irq_save(flags);
2541 	__this_cpu_write(rcu_data.rcu_cpu_has_work, 1);
2542 	t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task);
2543 	if (t != NULL && t != current)
2544 		rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status));
2545 	local_irq_restore(flags);
2546 }
2547 
2548 /*
2549  * Wake up this CPU's rcuc kthread to do RCU core processing.
2550  */
2551 static void invoke_rcu_core(void)
2552 {
2553 	if (!cpu_online(smp_processor_id()))
2554 		return;
2555 	if (use_softirq)
2556 		raise_softirq(RCU_SOFTIRQ);
2557 	else
2558 		invoke_rcu_core_kthread();
2559 }
2560 
2561 static void rcu_cpu_kthread_park(unsigned int cpu)
2562 {
2563 	per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
2564 }
2565 
2566 static int rcu_cpu_kthread_should_run(unsigned int cpu)
2567 {
2568 	return __this_cpu_read(rcu_data.rcu_cpu_has_work);
2569 }
2570 
2571 /*
2572  * Per-CPU kernel thread that invokes RCU callbacks.  This replaces
2573  * the RCU softirq used in configurations of RCU that do not support RCU
2574  * priority boosting.
2575  */
2576 static void rcu_cpu_kthread(unsigned int cpu)
2577 {
2578 	unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status);
2579 	char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work);
2580 	unsigned long *j = this_cpu_ptr(&rcu_data.rcuc_activity);
2581 	int spincnt;
2582 
2583 	trace_rcu_utilization(TPS("Start CPU kthread@rcu_run"));
2584 	for (spincnt = 0; spincnt < 10; spincnt++) {
2585 		WRITE_ONCE(*j, jiffies);
2586 		local_bh_disable();
2587 		*statusp = RCU_KTHREAD_RUNNING;
2588 		local_irq_disable();
2589 		work = *workp;
2590 		*workp = 0;
2591 		local_irq_enable();
2592 		if (work)
2593 			rcu_core();
2594 		local_bh_enable();
2595 		if (*workp == 0) {
2596 			trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
2597 			*statusp = RCU_KTHREAD_WAITING;
2598 			return;
2599 		}
2600 	}
2601 	*statusp = RCU_KTHREAD_YIELDING;
2602 	trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
2603 	schedule_timeout_idle(2);
2604 	trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
2605 	*statusp = RCU_KTHREAD_WAITING;
2606 	WRITE_ONCE(*j, jiffies);
2607 }
2608 
2609 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
2610 	.store			= &rcu_data.rcu_cpu_kthread_task,
2611 	.thread_should_run	= rcu_cpu_kthread_should_run,
2612 	.thread_fn		= rcu_cpu_kthread,
2613 	.thread_comm		= "rcuc/%u",
2614 	.setup			= rcu_cpu_kthread_setup,
2615 	.park			= rcu_cpu_kthread_park,
2616 };
2617 
2618 /*
2619  * Spawn per-CPU RCU core processing kthreads.
2620  */
2621 static int __init rcu_spawn_core_kthreads(void)
2622 {
2623 	int cpu;
2624 
2625 	for_each_possible_cpu(cpu)
2626 		per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0;
2627 	if (use_softirq)
2628 		return 0;
2629 	WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec),
2630 		  "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__);
2631 	return 0;
2632 }
2633 
2634 /*
2635  * Handle any core-RCU processing required by a call_rcu() invocation.
2636  */
2637 static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head,
2638 			    unsigned long flags)
2639 {
2640 	/*
2641 	 * If called from an extended quiescent state, invoke the RCU
2642 	 * core in order to force a re-evaluation of RCU's idleness.
2643 	 */
2644 	if (!rcu_is_watching())
2645 		invoke_rcu_core();
2646 
2647 	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2648 	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2649 		return;
2650 
2651 	/*
2652 	 * Force the grace period if too many callbacks or too long waiting.
2653 	 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state()
2654 	 * if some other CPU has recently done so.  Also, don't bother
2655 	 * invoking rcu_force_quiescent_state() if the newly enqueued callback
2656 	 * is the only one waiting for a grace period to complete.
2657 	 */
2658 	if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2659 		     rdp->qlen_last_fqs_check + qhimark)) {
2660 
2661 		/* Are we ignoring a completed grace period? */
2662 		note_gp_changes(rdp);
2663 
2664 		/* Start a new grace period if one not already started. */
2665 		if (!rcu_gp_in_progress()) {
2666 			rcu_accelerate_cbs_unlocked(rdp->mynode, rdp);
2667 		} else {
2668 			/* Give the grace period a kick. */
2669 			rdp->blimit = DEFAULT_MAX_RCU_BLIMIT;
2670 			if (READ_ONCE(rcu_state.n_force_qs) == rdp->n_force_qs_snap &&
2671 			    rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
2672 				rcu_force_quiescent_state();
2673 			rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
2674 			rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2675 		}
2676 	}
2677 }
2678 
2679 /*
2680  * RCU callback function to leak a callback.
2681  */
2682 static void rcu_leak_callback(struct rcu_head *rhp)
2683 {
2684 }
2685 
2686 /*
2687  * Check and if necessary update the leaf rcu_node structure's
2688  * ->cbovldmask bit corresponding to the current CPU based on that CPU's
2689  * number of queued RCU callbacks.  The caller must hold the leaf rcu_node
2690  * structure's ->lock.
2691  */
2692 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp)
2693 {
2694 	raw_lockdep_assert_held_rcu_node(rnp);
2695 	if (qovld_calc <= 0)
2696 		return; // Early boot and wildcard value set.
2697 	if (rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc)
2698 		WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask | rdp->grpmask);
2699 	else
2700 		WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask & ~rdp->grpmask);
2701 }
2702 
2703 /*
2704  * Check and if necessary update the leaf rcu_node structure's
2705  * ->cbovldmask bit corresponding to the current CPU based on that CPU's
2706  * number of queued RCU callbacks.  No locks need be held, but the
2707  * caller must have disabled interrupts.
2708  *
2709  * Note that this function ignores the possibility that there are a lot
2710  * of callbacks all of which have already seen the end of their respective
2711  * grace periods.  This omission is due to the need for no-CBs CPUs to
2712  * be holding ->nocb_lock to do this check, which is too heavy for a
2713  * common-case operation.
2714  */
2715 static void check_cb_ovld(struct rcu_data *rdp)
2716 {
2717 	struct rcu_node *const rnp = rdp->mynode;
2718 
2719 	if (qovld_calc <= 0 ||
2720 	    ((rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) ==
2721 	     !!(READ_ONCE(rnp->cbovldmask) & rdp->grpmask)))
2722 		return; // Early boot wildcard value or already set correctly.
2723 	raw_spin_lock_rcu_node(rnp);
2724 	check_cb_ovld_locked(rdp, rnp);
2725 	raw_spin_unlock_rcu_node(rnp);
2726 }
2727 
2728 /**
2729  * call_rcu() - Queue an RCU callback for invocation after a grace period.
2730  * @head: structure to be used for queueing the RCU updates.
2731  * @func: actual callback function to be invoked after the grace period
2732  *
2733  * The callback function will be invoked some time after a full grace
2734  * period elapses, in other words after all pre-existing RCU read-side
2735  * critical sections have completed.  However, the callback function
2736  * might well execute concurrently with RCU read-side critical sections
2737  * that started after call_rcu() was invoked.
2738  *
2739  * RCU read-side critical sections are delimited by rcu_read_lock()
2740  * and rcu_read_unlock(), and may be nested.  In addition, but only in
2741  * v5.0 and later, regions of code across which interrupts, preemption,
2742  * or softirqs have been disabled also serve as RCU read-side critical
2743  * sections.  This includes hardware interrupt handlers, softirq handlers,
2744  * and NMI handlers.
2745  *
2746  * Note that all CPUs must agree that the grace period extended beyond
2747  * all pre-existing RCU read-side critical section.  On systems with more
2748  * than one CPU, this means that when "func()" is invoked, each CPU is
2749  * guaranteed to have executed a full memory barrier since the end of its
2750  * last RCU read-side critical section whose beginning preceded the call
2751  * to call_rcu().  It also means that each CPU executing an RCU read-side
2752  * critical section that continues beyond the start of "func()" must have
2753  * executed a memory barrier after the call_rcu() but before the beginning
2754  * of that RCU read-side critical section.  Note that these guarantees
2755  * include CPUs that are offline, idle, or executing in user mode, as
2756  * well as CPUs that are executing in the kernel.
2757  *
2758  * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
2759  * resulting RCU callback function "func()", then both CPU A and CPU B are
2760  * guaranteed to execute a full memory barrier during the time interval
2761  * between the call to call_rcu() and the invocation of "func()" -- even
2762  * if CPU A and CPU B are the same CPU (but again only if the system has
2763  * more than one CPU).
2764  *
2765  * Implementation of these memory-ordering guarantees is described here:
2766  * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst.
2767  */
2768 void call_rcu(struct rcu_head *head, rcu_callback_t func)
2769 {
2770 	static atomic_t doublefrees;
2771 	unsigned long flags;
2772 	struct rcu_data *rdp;
2773 	bool was_alldone;
2774 
2775 	/* Misaligned rcu_head! */
2776 	WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
2777 
2778 	if (debug_rcu_head_queue(head)) {
2779 		/*
2780 		 * Probable double call_rcu(), so leak the callback.
2781 		 * Use rcu:rcu_callback trace event to find the previous
2782 		 * time callback was passed to call_rcu().
2783 		 */
2784 		if (atomic_inc_return(&doublefrees) < 4) {
2785 			pr_err("%s(): Double-freed CB %p->%pS()!!!  ", __func__, head, head->func);
2786 			mem_dump_obj(head);
2787 		}
2788 		WRITE_ONCE(head->func, rcu_leak_callback);
2789 		return;
2790 	}
2791 	head->func = func;
2792 	head->next = NULL;
2793 	kasan_record_aux_stack_noalloc(head);
2794 	local_irq_save(flags);
2795 	rdp = this_cpu_ptr(&rcu_data);
2796 
2797 	/* Add the callback to our list. */
2798 	if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist))) {
2799 		// This can trigger due to call_rcu() from offline CPU:
2800 		WARN_ON_ONCE(rcu_scheduler_active != RCU_SCHEDULER_INACTIVE);
2801 		WARN_ON_ONCE(!rcu_is_watching());
2802 		// Very early boot, before rcu_init().  Initialize if needed
2803 		// and then drop through to queue the callback.
2804 		if (rcu_segcblist_empty(&rdp->cblist))
2805 			rcu_segcblist_init(&rdp->cblist);
2806 	}
2807 
2808 	check_cb_ovld(rdp);
2809 	if (rcu_nocb_try_bypass(rdp, head, &was_alldone, flags))
2810 		return; // Enqueued onto ->nocb_bypass, so just leave.
2811 	// If no-CBs CPU gets here, rcu_nocb_try_bypass() acquired ->nocb_lock.
2812 	rcu_segcblist_enqueue(&rdp->cblist, head);
2813 	if (__is_kvfree_rcu_offset((unsigned long)func))
2814 		trace_rcu_kvfree_callback(rcu_state.name, head,
2815 					 (unsigned long)func,
2816 					 rcu_segcblist_n_cbs(&rdp->cblist));
2817 	else
2818 		trace_rcu_callback(rcu_state.name, head,
2819 				   rcu_segcblist_n_cbs(&rdp->cblist));
2820 
2821 	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCBQueued"));
2822 
2823 	/* Go handle any RCU core processing required. */
2824 	if (unlikely(rcu_rdp_is_offloaded(rdp))) {
2825 		__call_rcu_nocb_wake(rdp, was_alldone, flags); /* unlocks */
2826 	} else {
2827 		__call_rcu_core(rdp, head, flags);
2828 		local_irq_restore(flags);
2829 	}
2830 }
2831 EXPORT_SYMBOL_GPL(call_rcu);
2832 
2833 
2834 /* Maximum number of jiffies to wait before draining a batch. */
2835 #define KFREE_DRAIN_JIFFIES (HZ / 50)
2836 #define KFREE_N_BATCHES 2
2837 #define FREE_N_CHANNELS 2
2838 
2839 /**
2840  * struct kvfree_rcu_bulk_data - single block to store kvfree_rcu() pointers
2841  * @nr_records: Number of active pointers in the array
2842  * @next: Next bulk object in the block chain
2843  * @records: Array of the kvfree_rcu() pointers
2844  */
2845 struct kvfree_rcu_bulk_data {
2846 	unsigned long nr_records;
2847 	struct kvfree_rcu_bulk_data *next;
2848 	void *records[];
2849 };
2850 
2851 /*
2852  * This macro defines how many entries the "records" array
2853  * will contain. It is based on the fact that the size of
2854  * kvfree_rcu_bulk_data structure becomes exactly one page.
2855  */
2856 #define KVFREE_BULK_MAX_ENTR \
2857 	((PAGE_SIZE - sizeof(struct kvfree_rcu_bulk_data)) / sizeof(void *))
2858 
2859 /**
2860  * struct kfree_rcu_cpu_work - single batch of kfree_rcu() requests
2861  * @rcu_work: Let queue_rcu_work() invoke workqueue handler after grace period
2862  * @head_free: List of kfree_rcu() objects waiting for a grace period
2863  * @bkvhead_free: Bulk-List of kvfree_rcu() objects waiting for a grace period
2864  * @krcp: Pointer to @kfree_rcu_cpu structure
2865  */
2866 
2867 struct kfree_rcu_cpu_work {
2868 	struct rcu_work rcu_work;
2869 	struct rcu_head *head_free;
2870 	struct kvfree_rcu_bulk_data *bkvhead_free[FREE_N_CHANNELS];
2871 	struct kfree_rcu_cpu *krcp;
2872 };
2873 
2874 /**
2875  * struct kfree_rcu_cpu - batch up kfree_rcu() requests for RCU grace period
2876  * @head: List of kfree_rcu() objects not yet waiting for a grace period
2877  * @bkvhead: Bulk-List of kvfree_rcu() objects not yet waiting for a grace period
2878  * @krw_arr: Array of batches of kfree_rcu() objects waiting for a grace period
2879  * @lock: Synchronize access to this structure
2880  * @monitor_work: Promote @head to @head_free after KFREE_DRAIN_JIFFIES
2881  * @initialized: The @rcu_work fields have been initialized
2882  * @count: Number of objects for which GP not started
2883  * @bkvcache:
2884  *	A simple cache list that contains objects for reuse purpose.
2885  *	In order to save some per-cpu space the list is singular.
2886  *	Even though it is lockless an access has to be protected by the
2887  *	per-cpu lock.
2888  * @page_cache_work: A work to refill the cache when it is empty
2889  * @backoff_page_cache_fill: Delay cache refills
2890  * @work_in_progress: Indicates that page_cache_work is running
2891  * @hrtimer: A hrtimer for scheduling a page_cache_work
2892  * @nr_bkv_objs: number of allocated objects at @bkvcache.
2893  *
2894  * This is a per-CPU structure.  The reason that it is not included in
2895  * the rcu_data structure is to permit this code to be extracted from
2896  * the RCU files.  Such extraction could allow further optimization of
2897  * the interactions with the slab allocators.
2898  */
2899 struct kfree_rcu_cpu {
2900 	struct rcu_head *head;
2901 	struct kvfree_rcu_bulk_data *bkvhead[FREE_N_CHANNELS];
2902 	struct kfree_rcu_cpu_work krw_arr[KFREE_N_BATCHES];
2903 	raw_spinlock_t lock;
2904 	struct delayed_work monitor_work;
2905 	bool initialized;
2906 	int count;
2907 
2908 	struct delayed_work page_cache_work;
2909 	atomic_t backoff_page_cache_fill;
2910 	atomic_t work_in_progress;
2911 	struct hrtimer hrtimer;
2912 
2913 	struct llist_head bkvcache;
2914 	int nr_bkv_objs;
2915 };
2916 
2917 static DEFINE_PER_CPU(struct kfree_rcu_cpu, krc) = {
2918 	.lock = __RAW_SPIN_LOCK_UNLOCKED(krc.lock),
2919 };
2920 
2921 static __always_inline void
2922 debug_rcu_bhead_unqueue(struct kvfree_rcu_bulk_data *bhead)
2923 {
2924 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
2925 	int i;
2926 
2927 	for (i = 0; i < bhead->nr_records; i++)
2928 		debug_rcu_head_unqueue((struct rcu_head *)(bhead->records[i]));
2929 #endif
2930 }
2931 
2932 static inline struct kfree_rcu_cpu *
2933 krc_this_cpu_lock(unsigned long *flags)
2934 {
2935 	struct kfree_rcu_cpu *krcp;
2936 
2937 	local_irq_save(*flags);	// For safely calling this_cpu_ptr().
2938 	krcp = this_cpu_ptr(&krc);
2939 	raw_spin_lock(&krcp->lock);
2940 
2941 	return krcp;
2942 }
2943 
2944 static inline void
2945 krc_this_cpu_unlock(struct kfree_rcu_cpu *krcp, unsigned long flags)
2946 {
2947 	raw_spin_unlock_irqrestore(&krcp->lock, flags);
2948 }
2949 
2950 static inline struct kvfree_rcu_bulk_data *
2951 get_cached_bnode(struct kfree_rcu_cpu *krcp)
2952 {
2953 	if (!krcp->nr_bkv_objs)
2954 		return NULL;
2955 
2956 	WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs - 1);
2957 	return (struct kvfree_rcu_bulk_data *)
2958 		llist_del_first(&krcp->bkvcache);
2959 }
2960 
2961 static inline bool
2962 put_cached_bnode(struct kfree_rcu_cpu *krcp,
2963 	struct kvfree_rcu_bulk_data *bnode)
2964 {
2965 	// Check the limit.
2966 	if (krcp->nr_bkv_objs >= rcu_min_cached_objs)
2967 		return false;
2968 
2969 	llist_add((struct llist_node *) bnode, &krcp->bkvcache);
2970 	WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs + 1);
2971 	return true;
2972 }
2973 
2974 static int
2975 drain_page_cache(struct kfree_rcu_cpu *krcp)
2976 {
2977 	unsigned long flags;
2978 	struct llist_node *page_list, *pos, *n;
2979 	int freed = 0;
2980 
2981 	raw_spin_lock_irqsave(&krcp->lock, flags);
2982 	page_list = llist_del_all(&krcp->bkvcache);
2983 	WRITE_ONCE(krcp->nr_bkv_objs, 0);
2984 	raw_spin_unlock_irqrestore(&krcp->lock, flags);
2985 
2986 	llist_for_each_safe(pos, n, page_list) {
2987 		free_page((unsigned long)pos);
2988 		freed++;
2989 	}
2990 
2991 	return freed;
2992 }
2993 
2994 /*
2995  * This function is invoked in workqueue context after a grace period.
2996  * It frees all the objects queued on ->bkvhead_free or ->head_free.
2997  */
2998 static void kfree_rcu_work(struct work_struct *work)
2999 {
3000 	unsigned long flags;
3001 	struct kvfree_rcu_bulk_data *bkvhead[FREE_N_CHANNELS], *bnext;
3002 	struct rcu_head *head, *next;
3003 	struct kfree_rcu_cpu *krcp;
3004 	struct kfree_rcu_cpu_work *krwp;
3005 	int i, j;
3006 
3007 	krwp = container_of(to_rcu_work(work),
3008 			    struct kfree_rcu_cpu_work, rcu_work);
3009 	krcp = krwp->krcp;
3010 
3011 	raw_spin_lock_irqsave(&krcp->lock, flags);
3012 	// Channels 1 and 2.
3013 	for (i = 0; i < FREE_N_CHANNELS; i++) {
3014 		bkvhead[i] = krwp->bkvhead_free[i];
3015 		krwp->bkvhead_free[i] = NULL;
3016 	}
3017 
3018 	// Channel 3.
3019 	head = krwp->head_free;
3020 	krwp->head_free = NULL;
3021 	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3022 
3023 	// Handle the first two channels.
3024 	for (i = 0; i < FREE_N_CHANNELS; i++) {
3025 		for (; bkvhead[i]; bkvhead[i] = bnext) {
3026 			bnext = bkvhead[i]->next;
3027 			debug_rcu_bhead_unqueue(bkvhead[i]);
3028 
3029 			rcu_lock_acquire(&rcu_callback_map);
3030 			if (i == 0) { // kmalloc() / kfree().
3031 				trace_rcu_invoke_kfree_bulk_callback(
3032 					rcu_state.name, bkvhead[i]->nr_records,
3033 					bkvhead[i]->records);
3034 
3035 				kfree_bulk(bkvhead[i]->nr_records,
3036 					bkvhead[i]->records);
3037 			} else { // vmalloc() / vfree().
3038 				for (j = 0; j < bkvhead[i]->nr_records; j++) {
3039 					trace_rcu_invoke_kvfree_callback(
3040 						rcu_state.name,
3041 						bkvhead[i]->records[j], 0);
3042 
3043 					vfree(bkvhead[i]->records[j]);
3044 				}
3045 			}
3046 			rcu_lock_release(&rcu_callback_map);
3047 
3048 			raw_spin_lock_irqsave(&krcp->lock, flags);
3049 			if (put_cached_bnode(krcp, bkvhead[i]))
3050 				bkvhead[i] = NULL;
3051 			raw_spin_unlock_irqrestore(&krcp->lock, flags);
3052 
3053 			if (bkvhead[i])
3054 				free_page((unsigned long) bkvhead[i]);
3055 
3056 			cond_resched_tasks_rcu_qs();
3057 		}
3058 	}
3059 
3060 	/*
3061 	 * This is used when the "bulk" path can not be used for the
3062 	 * double-argument of kvfree_rcu().  This happens when the
3063 	 * page-cache is empty, which means that objects are instead
3064 	 * queued on a linked list through their rcu_head structures.
3065 	 * This list is named "Channel 3".
3066 	 */
3067 	for (; head; head = next) {
3068 		unsigned long offset = (unsigned long)head->func;
3069 		void *ptr = (void *)head - offset;
3070 
3071 		next = head->next;
3072 		debug_rcu_head_unqueue((struct rcu_head *)ptr);
3073 		rcu_lock_acquire(&rcu_callback_map);
3074 		trace_rcu_invoke_kvfree_callback(rcu_state.name, head, offset);
3075 
3076 		if (!WARN_ON_ONCE(!__is_kvfree_rcu_offset(offset)))
3077 			kvfree(ptr);
3078 
3079 		rcu_lock_release(&rcu_callback_map);
3080 		cond_resched_tasks_rcu_qs();
3081 	}
3082 }
3083 
3084 static bool
3085 need_offload_krc(struct kfree_rcu_cpu *krcp)
3086 {
3087 	int i;
3088 
3089 	for (i = 0; i < FREE_N_CHANNELS; i++)
3090 		if (krcp->bkvhead[i])
3091 			return true;
3092 
3093 	return !!krcp->head;
3094 }
3095 
3096 /*
3097  * This function is invoked after the KFREE_DRAIN_JIFFIES timeout.
3098  */
3099 static void kfree_rcu_monitor(struct work_struct *work)
3100 {
3101 	struct kfree_rcu_cpu *krcp = container_of(work,
3102 		struct kfree_rcu_cpu, monitor_work.work);
3103 	unsigned long flags;
3104 	int i, j;
3105 
3106 	raw_spin_lock_irqsave(&krcp->lock, flags);
3107 
3108 	// Attempt to start a new batch.
3109 	for (i = 0; i < KFREE_N_BATCHES; i++) {
3110 		struct kfree_rcu_cpu_work *krwp = &(krcp->krw_arr[i]);
3111 
3112 		// Try to detach bkvhead or head and attach it over any
3113 		// available corresponding free channel. It can be that
3114 		// a previous RCU batch is in progress, it means that
3115 		// immediately to queue another one is not possible so
3116 		// in that case the monitor work is rearmed.
3117 		if ((krcp->bkvhead[0] && !krwp->bkvhead_free[0]) ||
3118 			(krcp->bkvhead[1] && !krwp->bkvhead_free[1]) ||
3119 				(krcp->head && !krwp->head_free)) {
3120 			// Channel 1 corresponds to the SLAB-pointer bulk path.
3121 			// Channel 2 corresponds to vmalloc-pointer bulk path.
3122 			for (j = 0; j < FREE_N_CHANNELS; j++) {
3123 				if (!krwp->bkvhead_free[j]) {
3124 					krwp->bkvhead_free[j] = krcp->bkvhead[j];
3125 					krcp->bkvhead[j] = NULL;
3126 				}
3127 			}
3128 
3129 			// Channel 3 corresponds to both SLAB and vmalloc
3130 			// objects queued on the linked list.
3131 			if (!krwp->head_free) {
3132 				krwp->head_free = krcp->head;
3133 				krcp->head = NULL;
3134 			}
3135 
3136 			WRITE_ONCE(krcp->count, 0);
3137 
3138 			// One work is per one batch, so there are three
3139 			// "free channels", the batch can handle. It can
3140 			// be that the work is in the pending state when
3141 			// channels have been detached following by each
3142 			// other.
3143 			queue_rcu_work(system_wq, &krwp->rcu_work);
3144 		}
3145 	}
3146 
3147 	// If there is nothing to detach, it means that our job is
3148 	// successfully done here. In case of having at least one
3149 	// of the channels that is still busy we should rearm the
3150 	// work to repeat an attempt. Because previous batches are
3151 	// still in progress.
3152 	if (need_offload_krc(krcp))
3153 		schedule_delayed_work(&krcp->monitor_work, KFREE_DRAIN_JIFFIES);
3154 
3155 	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3156 }
3157 
3158 static enum hrtimer_restart
3159 schedule_page_work_fn(struct hrtimer *t)
3160 {
3161 	struct kfree_rcu_cpu *krcp =
3162 		container_of(t, struct kfree_rcu_cpu, hrtimer);
3163 
3164 	queue_delayed_work(system_highpri_wq, &krcp->page_cache_work, 0);
3165 	return HRTIMER_NORESTART;
3166 }
3167 
3168 static void fill_page_cache_func(struct work_struct *work)
3169 {
3170 	struct kvfree_rcu_bulk_data *bnode;
3171 	struct kfree_rcu_cpu *krcp =
3172 		container_of(work, struct kfree_rcu_cpu,
3173 			page_cache_work.work);
3174 	unsigned long flags;
3175 	int nr_pages;
3176 	bool pushed;
3177 	int i;
3178 
3179 	nr_pages = atomic_read(&krcp->backoff_page_cache_fill) ?
3180 		1 : rcu_min_cached_objs;
3181 
3182 	for (i = 0; i < nr_pages; i++) {
3183 		bnode = (struct kvfree_rcu_bulk_data *)
3184 			__get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3185 
3186 		if (bnode) {
3187 			raw_spin_lock_irqsave(&krcp->lock, flags);
3188 			pushed = put_cached_bnode(krcp, bnode);
3189 			raw_spin_unlock_irqrestore(&krcp->lock, flags);
3190 
3191 			if (!pushed) {
3192 				free_page((unsigned long) bnode);
3193 				break;
3194 			}
3195 		}
3196 	}
3197 
3198 	atomic_set(&krcp->work_in_progress, 0);
3199 	atomic_set(&krcp->backoff_page_cache_fill, 0);
3200 }
3201 
3202 static void
3203 run_page_cache_worker(struct kfree_rcu_cpu *krcp)
3204 {
3205 	if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING &&
3206 			!atomic_xchg(&krcp->work_in_progress, 1)) {
3207 		if (atomic_read(&krcp->backoff_page_cache_fill)) {
3208 			queue_delayed_work(system_wq,
3209 				&krcp->page_cache_work,
3210 					msecs_to_jiffies(rcu_delay_page_cache_fill_msec));
3211 		} else {
3212 			hrtimer_init(&krcp->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3213 			krcp->hrtimer.function = schedule_page_work_fn;
3214 			hrtimer_start(&krcp->hrtimer, 0, HRTIMER_MODE_REL);
3215 		}
3216 	}
3217 }
3218 
3219 // Record ptr in a page managed by krcp, with the pre-krc_this_cpu_lock()
3220 // state specified by flags.  If can_alloc is true, the caller must
3221 // be schedulable and not be holding any locks or mutexes that might be
3222 // acquired by the memory allocator or anything that it might invoke.
3223 // Returns true if ptr was successfully recorded, else the caller must
3224 // use a fallback.
3225 static inline bool
3226 add_ptr_to_bulk_krc_lock(struct kfree_rcu_cpu **krcp,
3227 	unsigned long *flags, void *ptr, bool can_alloc)
3228 {
3229 	struct kvfree_rcu_bulk_data *bnode;
3230 	int idx;
3231 
3232 	*krcp = krc_this_cpu_lock(flags);
3233 	if (unlikely(!(*krcp)->initialized))
3234 		return false;
3235 
3236 	idx = !!is_vmalloc_addr(ptr);
3237 
3238 	/* Check if a new block is required. */
3239 	if (!(*krcp)->bkvhead[idx] ||
3240 			(*krcp)->bkvhead[idx]->nr_records == KVFREE_BULK_MAX_ENTR) {
3241 		bnode = get_cached_bnode(*krcp);
3242 		if (!bnode && can_alloc) {
3243 			krc_this_cpu_unlock(*krcp, *flags);
3244 
3245 			// __GFP_NORETRY - allows a light-weight direct reclaim
3246 			// what is OK from minimizing of fallback hitting point of
3247 			// view. Apart of that it forbids any OOM invoking what is
3248 			// also beneficial since we are about to release memory soon.
3249 			//
3250 			// __GFP_NOMEMALLOC - prevents from consuming of all the
3251 			// memory reserves. Please note we have a fallback path.
3252 			//
3253 			// __GFP_NOWARN - it is supposed that an allocation can
3254 			// be failed under low memory or high memory pressure
3255 			// scenarios.
3256 			bnode = (struct kvfree_rcu_bulk_data *)
3257 				__get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3258 			*krcp = krc_this_cpu_lock(flags);
3259 		}
3260 
3261 		if (!bnode)
3262 			return false;
3263 
3264 		/* Initialize the new block. */
3265 		bnode->nr_records = 0;
3266 		bnode->next = (*krcp)->bkvhead[idx];
3267 
3268 		/* Attach it to the head. */
3269 		(*krcp)->bkvhead[idx] = bnode;
3270 	}
3271 
3272 	/* Finally insert. */
3273 	(*krcp)->bkvhead[idx]->records
3274 		[(*krcp)->bkvhead[idx]->nr_records++] = ptr;
3275 
3276 	return true;
3277 }
3278 
3279 /*
3280  * Queue a request for lazy invocation of the appropriate free routine
3281  * after a grace period.  Please note that three paths are maintained,
3282  * two for the common case using arrays of pointers and a third one that
3283  * is used only when the main paths cannot be used, for example, due to
3284  * memory pressure.
3285  *
3286  * Each kvfree_call_rcu() request is added to a batch. The batch will be drained
3287  * every KFREE_DRAIN_JIFFIES number of jiffies. All the objects in the batch will
3288  * be free'd in workqueue context. This allows us to: batch requests together to
3289  * reduce the number of grace periods during heavy kfree_rcu()/kvfree_rcu() load.
3290  */
3291 void kvfree_call_rcu(struct rcu_head *head, rcu_callback_t func)
3292 {
3293 	unsigned long flags;
3294 	struct kfree_rcu_cpu *krcp;
3295 	bool success;
3296 	void *ptr;
3297 
3298 	if (head) {
3299 		ptr = (void *) head - (unsigned long) func;
3300 	} else {
3301 		/*
3302 		 * Please note there is a limitation for the head-less
3303 		 * variant, that is why there is a clear rule for such
3304 		 * objects: it can be used from might_sleep() context
3305 		 * only. For other places please embed an rcu_head to
3306 		 * your data.
3307 		 */
3308 		might_sleep();
3309 		ptr = (unsigned long *) func;
3310 	}
3311 
3312 	// Queue the object but don't yet schedule the batch.
3313 	if (debug_rcu_head_queue(ptr)) {
3314 		// Probable double kfree_rcu(), just leak.
3315 		WARN_ONCE(1, "%s(): Double-freed call. rcu_head %p\n",
3316 			  __func__, head);
3317 
3318 		// Mark as success and leave.
3319 		return;
3320 	}
3321 
3322 	kasan_record_aux_stack_noalloc(ptr);
3323 	success = add_ptr_to_bulk_krc_lock(&krcp, &flags, ptr, !head);
3324 	if (!success) {
3325 		run_page_cache_worker(krcp);
3326 
3327 		if (head == NULL)
3328 			// Inline if kvfree_rcu(one_arg) call.
3329 			goto unlock_return;
3330 
3331 		head->func = func;
3332 		head->next = krcp->head;
3333 		krcp->head = head;
3334 		success = true;
3335 	}
3336 
3337 	WRITE_ONCE(krcp->count, krcp->count + 1);
3338 
3339 	// Set timer to drain after KFREE_DRAIN_JIFFIES.
3340 	if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING)
3341 		schedule_delayed_work(&krcp->monitor_work, KFREE_DRAIN_JIFFIES);
3342 
3343 unlock_return:
3344 	krc_this_cpu_unlock(krcp, flags);
3345 
3346 	/*
3347 	 * Inline kvfree() after synchronize_rcu(). We can do
3348 	 * it from might_sleep() context only, so the current
3349 	 * CPU can pass the QS state.
3350 	 */
3351 	if (!success) {
3352 		debug_rcu_head_unqueue((struct rcu_head *) ptr);
3353 		synchronize_rcu();
3354 		kvfree(ptr);
3355 	}
3356 }
3357 EXPORT_SYMBOL_GPL(kvfree_call_rcu);
3358 
3359 static unsigned long
3360 kfree_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
3361 {
3362 	int cpu;
3363 	unsigned long count = 0;
3364 
3365 	/* Snapshot count of all CPUs */
3366 	for_each_possible_cpu(cpu) {
3367 		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3368 
3369 		count += READ_ONCE(krcp->count);
3370 		count += READ_ONCE(krcp->nr_bkv_objs);
3371 		atomic_set(&krcp->backoff_page_cache_fill, 1);
3372 	}
3373 
3374 	return count;
3375 }
3376 
3377 static unsigned long
3378 kfree_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3379 {
3380 	int cpu, freed = 0;
3381 
3382 	for_each_possible_cpu(cpu) {
3383 		int count;
3384 		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3385 
3386 		count = krcp->count;
3387 		count += drain_page_cache(krcp);
3388 		kfree_rcu_monitor(&krcp->monitor_work.work);
3389 
3390 		sc->nr_to_scan -= count;
3391 		freed += count;
3392 
3393 		if (sc->nr_to_scan <= 0)
3394 			break;
3395 	}
3396 
3397 	return freed == 0 ? SHRINK_STOP : freed;
3398 }
3399 
3400 static struct shrinker kfree_rcu_shrinker = {
3401 	.count_objects = kfree_rcu_shrink_count,
3402 	.scan_objects = kfree_rcu_shrink_scan,
3403 	.batch = 0,
3404 	.seeks = DEFAULT_SEEKS,
3405 };
3406 
3407 void __init kfree_rcu_scheduler_running(void)
3408 {
3409 	int cpu;
3410 	unsigned long flags;
3411 
3412 	for_each_possible_cpu(cpu) {
3413 		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3414 
3415 		raw_spin_lock_irqsave(&krcp->lock, flags);
3416 		if (need_offload_krc(krcp))
3417 			schedule_delayed_work_on(cpu, &krcp->monitor_work, KFREE_DRAIN_JIFFIES);
3418 		raw_spin_unlock_irqrestore(&krcp->lock, flags);
3419 	}
3420 }
3421 
3422 /*
3423  * During early boot, any blocking grace-period wait automatically
3424  * implies a grace period.  Later on, this is never the case for PREEMPTION.
3425  *
3426  * However, because a context switch is a grace period for !PREEMPTION, any
3427  * blocking grace-period wait automatically implies a grace period if
3428  * there is only one CPU online at any point time during execution of
3429  * either synchronize_rcu() or synchronize_rcu_expedited().  It is OK to
3430  * occasionally incorrectly indicate that there are multiple CPUs online
3431  * when there was in fact only one the whole time, as this just adds some
3432  * overhead: RCU still operates correctly.
3433  */
3434 static int rcu_blocking_is_gp(void)
3435 {
3436 	int ret;
3437 
3438 	// Invoking preempt_model_*() too early gets a splat.
3439 	if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE ||
3440 	    preempt_model_full() || preempt_model_rt())
3441 		return rcu_scheduler_active == RCU_SCHEDULER_INACTIVE;
3442 	might_sleep();  /* Check for RCU read-side critical section. */
3443 	preempt_disable();
3444 	/*
3445 	 * If the rcu_state.n_online_cpus counter is equal to one,
3446 	 * there is only one CPU, and that CPU sees all prior accesses
3447 	 * made by any CPU that was online at the time of its access.
3448 	 * Furthermore, if this counter is equal to one, its value cannot
3449 	 * change until after the preempt_enable() below.
3450 	 *
3451 	 * Furthermore, if rcu_state.n_online_cpus is equal to one here,
3452 	 * all later CPUs (both this one and any that come online later
3453 	 * on) are guaranteed to see all accesses prior to this point
3454 	 * in the code, without the need for additional memory barriers.
3455 	 * Those memory barriers are provided by CPU-hotplug code.
3456 	 */
3457 	ret = READ_ONCE(rcu_state.n_online_cpus) <= 1;
3458 	preempt_enable();
3459 	return ret;
3460 }
3461 
3462 /**
3463  * synchronize_rcu - wait until a grace period has elapsed.
3464  *
3465  * Control will return to the caller some time after a full grace
3466  * period has elapsed, in other words after all currently executing RCU
3467  * read-side critical sections have completed.  Note, however, that
3468  * upon return from synchronize_rcu(), the caller might well be executing
3469  * concurrently with new RCU read-side critical sections that began while
3470  * synchronize_rcu() was waiting.
3471  *
3472  * RCU read-side critical sections are delimited by rcu_read_lock()
3473  * and rcu_read_unlock(), and may be nested.  In addition, but only in
3474  * v5.0 and later, regions of code across which interrupts, preemption,
3475  * or softirqs have been disabled also serve as RCU read-side critical
3476  * sections.  This includes hardware interrupt handlers, softirq handlers,
3477  * and NMI handlers.
3478  *
3479  * Note that this guarantee implies further memory-ordering guarantees.
3480  * On systems with more than one CPU, when synchronize_rcu() returns,
3481  * each CPU is guaranteed to have executed a full memory barrier since
3482  * the end of its last RCU read-side critical section whose beginning
3483  * preceded the call to synchronize_rcu().  In addition, each CPU having
3484  * an RCU read-side critical section that extends beyond the return from
3485  * synchronize_rcu() is guaranteed to have executed a full memory barrier
3486  * after the beginning of synchronize_rcu() and before the beginning of
3487  * that RCU read-side critical section.  Note that these guarantees include
3488  * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3489  * that are executing in the kernel.
3490  *
3491  * Furthermore, if CPU A invoked synchronize_rcu(), which returned
3492  * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3493  * to have executed a full memory barrier during the execution of
3494  * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but
3495  * again only if the system has more than one CPU).
3496  *
3497  * Implementation of these memory-ordering guarantees is described here:
3498  * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst.
3499  */
3500 void synchronize_rcu(void)
3501 {
3502 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3503 			 lock_is_held(&rcu_lock_map) ||
3504 			 lock_is_held(&rcu_sched_lock_map),
3505 			 "Illegal synchronize_rcu() in RCU read-side critical section");
3506 	if (rcu_blocking_is_gp()) {
3507 		// Note well that this code runs with !PREEMPT && !SMP.
3508 		// In addition, all code that advances grace periods runs at
3509 		// process level.  Therefore, this normal GP overlaps with
3510 		// other normal GPs only by being fully nested within them,
3511 		// which allows reuse of ->gp_seq_polled_snap.
3512 		rcu_poll_gp_seq_start_unlocked(&rcu_state.gp_seq_polled_snap);
3513 		rcu_poll_gp_seq_end_unlocked(&rcu_state.gp_seq_polled_snap);
3514 		if (rcu_init_invoked())
3515 			cond_resched_tasks_rcu_qs();
3516 		return;  // Context allows vacuous grace periods.
3517 	}
3518 	if (rcu_gp_is_expedited())
3519 		synchronize_rcu_expedited();
3520 	else
3521 		wait_rcu_gp(call_rcu);
3522 }
3523 EXPORT_SYMBOL_GPL(synchronize_rcu);
3524 
3525 /**
3526  * get_state_synchronize_rcu - Snapshot current RCU state
3527  *
3528  * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3529  * or poll_state_synchronize_rcu() to determine whether or not a full
3530  * grace period has elapsed in the meantime.
3531  */
3532 unsigned long get_state_synchronize_rcu(void)
3533 {
3534 	/*
3535 	 * Any prior manipulation of RCU-protected data must happen
3536 	 * before the load from ->gp_seq.
3537 	 */
3538 	smp_mb();  /* ^^^ */
3539 	return rcu_seq_snap(&rcu_state.gp_seq_polled);
3540 }
3541 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3542 
3543 /**
3544  * start_poll_synchronize_rcu - Snapshot and start RCU grace period
3545  *
3546  * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3547  * or poll_state_synchronize_rcu() to determine whether or not a full
3548  * grace period has elapsed in the meantime.  If the needed grace period
3549  * is not already slated to start, notifies RCU core of the need for that
3550  * grace period.
3551  *
3552  * Interrupts must be enabled for the case where it is necessary to awaken
3553  * the grace-period kthread.
3554  */
3555 unsigned long start_poll_synchronize_rcu(void)
3556 {
3557 	unsigned long flags;
3558 	unsigned long gp_seq = get_state_synchronize_rcu();
3559 	bool needwake;
3560 	struct rcu_data *rdp;
3561 	struct rcu_node *rnp;
3562 
3563 	lockdep_assert_irqs_enabled();
3564 	local_irq_save(flags);
3565 	rdp = this_cpu_ptr(&rcu_data);
3566 	rnp = rdp->mynode;
3567 	raw_spin_lock_rcu_node(rnp); // irqs already disabled.
3568 	// Note it is possible for a grace period to have elapsed between
3569 	// the above call to get_state_synchronize_rcu() and the below call
3570 	// to rcu_seq_snap.  This is OK, the worst that happens is that we
3571 	// get a grace period that no one needed.  These accesses are ordered
3572 	// by smp_mb(), and we are accessing them in the opposite order
3573 	// from which they are updated at grace-period start, as required.
3574 	needwake = rcu_start_this_gp(rnp, rdp, rcu_seq_snap(&rcu_state.gp_seq));
3575 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3576 	if (needwake)
3577 		rcu_gp_kthread_wake();
3578 	return gp_seq;
3579 }
3580 EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu);
3581 
3582 /**
3583  * poll_state_synchronize_rcu - Conditionally wait for an RCU grace period
3584  *
3585  * @oldstate: value from get_state_synchronize_rcu() or start_poll_synchronize_rcu()
3586  *
3587  * If a full RCU grace period has elapsed since the earlier call from
3588  * which oldstate was obtained, return @true, otherwise return @false.
3589  * If @false is returned, it is the caller's responsibility to invoke this
3590  * function later on until it does return @true.  Alternatively, the caller
3591  * can explicitly wait for a grace period, for example, by passing @oldstate
3592  * to cond_synchronize_rcu() or by directly invoking synchronize_rcu().
3593  *
3594  * Yes, this function does not take counter wrap into account.
3595  * But counter wrap is harmless.  If the counter wraps, we have waited for
3596  * more than a billion grace periods (and way more on a 64-bit system!).
3597  * Those needing to keep oldstate values for very long time periods
3598  * (many hours even on 32-bit systems) should check them occasionally
3599  * and either refresh them or set a flag indicating that the grace period
3600  * has completed.
3601  *
3602  * This function provides the same memory-ordering guarantees that
3603  * would be provided by a synchronize_rcu() that was invoked at the call
3604  * to the function that provided @oldstate, and that returned at the end
3605  * of this function.
3606  */
3607 bool poll_state_synchronize_rcu(unsigned long oldstate)
3608 {
3609 	if (oldstate == RCU_GET_STATE_COMPLETED ||
3610 	    rcu_seq_done_exact(&rcu_state.gp_seq_polled, oldstate)) {
3611 		smp_mb(); /* Ensure GP ends before subsequent accesses. */
3612 		return true;
3613 	}
3614 	return false;
3615 }
3616 EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu);
3617 
3618 /**
3619  * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3620  *
3621  * @oldstate: value from get_state_synchronize_rcu(), start_poll_synchronize_rcu(), or start_poll_synchronize_rcu_expedited()
3622  *
3623  * If a full RCU grace period has elapsed since the earlier call to
3624  * get_state_synchronize_rcu() or start_poll_synchronize_rcu(), just return.
3625  * Otherwise, invoke synchronize_rcu() to wait for a full grace period.
3626  *
3627  * Yes, this function does not take counter wrap into account.
3628  * But counter wrap is harmless.  If the counter wraps, we have waited for
3629  * more than 2 billion grace periods (and way more on a 64-bit system!),
3630  * so waiting for a couple of additional grace periods should be just fine.
3631  *
3632  * This function provides the same memory-ordering guarantees that
3633  * would be provided by a synchronize_rcu() that was invoked at the call
3634  * to the function that provided @oldstate and that returned at the end
3635  * of this function.
3636  */
3637 void cond_synchronize_rcu(unsigned long oldstate)
3638 {
3639 	if (!poll_state_synchronize_rcu(oldstate))
3640 		synchronize_rcu();
3641 }
3642 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3643 
3644 /*
3645  * Check to see if there is any immediate RCU-related work to be done by
3646  * the current CPU, returning 1 if so and zero otherwise.  The checks are
3647  * in order of increasing expense: checks that can be carried out against
3648  * CPU-local state are performed first.  However, we must check for CPU
3649  * stalls first, else we might not get a chance.
3650  */
3651 static int rcu_pending(int user)
3652 {
3653 	bool gp_in_progress;
3654 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
3655 	struct rcu_node *rnp = rdp->mynode;
3656 
3657 	lockdep_assert_irqs_disabled();
3658 
3659 	/* Check for CPU stalls, if enabled. */
3660 	check_cpu_stall(rdp);
3661 
3662 	/* Does this CPU need a deferred NOCB wakeup? */
3663 	if (rcu_nocb_need_deferred_wakeup(rdp, RCU_NOCB_WAKE))
3664 		return 1;
3665 
3666 	/* Is this a nohz_full CPU in userspace or idle?  (Ignore RCU if so.) */
3667 	if ((user || rcu_is_cpu_rrupt_from_idle()) && rcu_nohz_full_cpu())
3668 		return 0;
3669 
3670 	/* Is the RCU core waiting for a quiescent state from this CPU? */
3671 	gp_in_progress = rcu_gp_in_progress();
3672 	if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm && gp_in_progress)
3673 		return 1;
3674 
3675 	/* Does this CPU have callbacks ready to invoke? */
3676 	if (!rcu_rdp_is_offloaded(rdp) &&
3677 	    rcu_segcblist_ready_cbs(&rdp->cblist))
3678 		return 1;
3679 
3680 	/* Has RCU gone idle with this CPU needing another grace period? */
3681 	if (!gp_in_progress && rcu_segcblist_is_enabled(&rdp->cblist) &&
3682 	    !rcu_rdp_is_offloaded(rdp) &&
3683 	    !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
3684 		return 1;
3685 
3686 	/* Have RCU grace period completed or started?  */
3687 	if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq ||
3688 	    unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */
3689 		return 1;
3690 
3691 	/* nothing to do */
3692 	return 0;
3693 }
3694 
3695 /*
3696  * Helper function for rcu_barrier() tracing.  If tracing is disabled,
3697  * the compiler is expected to optimize this away.
3698  */
3699 static void rcu_barrier_trace(const char *s, int cpu, unsigned long done)
3700 {
3701 	trace_rcu_barrier(rcu_state.name, s, cpu,
3702 			  atomic_read(&rcu_state.barrier_cpu_count), done);
3703 }
3704 
3705 /*
3706  * RCU callback function for rcu_barrier().  If we are last, wake
3707  * up the task executing rcu_barrier().
3708  *
3709  * Note that the value of rcu_state.barrier_sequence must be captured
3710  * before the atomic_dec_and_test().  Otherwise, if this CPU is not last,
3711  * other CPUs might count the value down to zero before this CPU gets
3712  * around to invoking rcu_barrier_trace(), which might result in bogus
3713  * data from the next instance of rcu_barrier().
3714  */
3715 static void rcu_barrier_callback(struct rcu_head *rhp)
3716 {
3717 	unsigned long __maybe_unused s = rcu_state.barrier_sequence;
3718 
3719 	if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) {
3720 		rcu_barrier_trace(TPS("LastCB"), -1, s);
3721 		complete(&rcu_state.barrier_completion);
3722 	} else {
3723 		rcu_barrier_trace(TPS("CB"), -1, s);
3724 	}
3725 }
3726 
3727 /*
3728  * If needed, entrain an rcu_barrier() callback on rdp->cblist.
3729  */
3730 static void rcu_barrier_entrain(struct rcu_data *rdp)
3731 {
3732 	unsigned long gseq = READ_ONCE(rcu_state.barrier_sequence);
3733 	unsigned long lseq = READ_ONCE(rdp->barrier_seq_snap);
3734 
3735 	lockdep_assert_held(&rcu_state.barrier_lock);
3736 	if (rcu_seq_state(lseq) || !rcu_seq_state(gseq) || rcu_seq_ctr(lseq) != rcu_seq_ctr(gseq))
3737 		return;
3738 	rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence);
3739 	rdp->barrier_head.func = rcu_barrier_callback;
3740 	debug_rcu_head_queue(&rdp->barrier_head);
3741 	rcu_nocb_lock(rdp);
3742 	WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies));
3743 	if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head)) {
3744 		atomic_inc(&rcu_state.barrier_cpu_count);
3745 	} else {
3746 		debug_rcu_head_unqueue(&rdp->barrier_head);
3747 		rcu_barrier_trace(TPS("IRQNQ"), -1, rcu_state.barrier_sequence);
3748 	}
3749 	rcu_nocb_unlock(rdp);
3750 	smp_store_release(&rdp->barrier_seq_snap, gseq);
3751 }
3752 
3753 /*
3754  * Called with preemption disabled, and from cross-cpu IRQ context.
3755  */
3756 static void rcu_barrier_handler(void *cpu_in)
3757 {
3758 	uintptr_t cpu = (uintptr_t)cpu_in;
3759 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3760 
3761 	lockdep_assert_irqs_disabled();
3762 	WARN_ON_ONCE(cpu != rdp->cpu);
3763 	WARN_ON_ONCE(cpu != smp_processor_id());
3764 	raw_spin_lock(&rcu_state.barrier_lock);
3765 	rcu_barrier_entrain(rdp);
3766 	raw_spin_unlock(&rcu_state.barrier_lock);
3767 }
3768 
3769 /**
3770  * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
3771  *
3772  * Note that this primitive does not necessarily wait for an RCU grace period
3773  * to complete.  For example, if there are no RCU callbacks queued anywhere
3774  * in the system, then rcu_barrier() is within its rights to return
3775  * immediately, without waiting for anything, much less an RCU grace period.
3776  */
3777 void rcu_barrier(void)
3778 {
3779 	uintptr_t cpu;
3780 	unsigned long flags;
3781 	unsigned long gseq;
3782 	struct rcu_data *rdp;
3783 	unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence);
3784 
3785 	rcu_barrier_trace(TPS("Begin"), -1, s);
3786 
3787 	/* Take mutex to serialize concurrent rcu_barrier() requests. */
3788 	mutex_lock(&rcu_state.barrier_mutex);
3789 
3790 	/* Did someone else do our work for us? */
3791 	if (rcu_seq_done(&rcu_state.barrier_sequence, s)) {
3792 		rcu_barrier_trace(TPS("EarlyExit"), -1, rcu_state.barrier_sequence);
3793 		smp_mb(); /* caller's subsequent code after above check. */
3794 		mutex_unlock(&rcu_state.barrier_mutex);
3795 		return;
3796 	}
3797 
3798 	/* Mark the start of the barrier operation. */
3799 	raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
3800 	rcu_seq_start(&rcu_state.barrier_sequence);
3801 	gseq = rcu_state.barrier_sequence;
3802 	rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence);
3803 
3804 	/*
3805 	 * Initialize the count to two rather than to zero in order
3806 	 * to avoid a too-soon return to zero in case of an immediate
3807 	 * invocation of the just-enqueued callback (or preemption of
3808 	 * this task).  Exclude CPU-hotplug operations to ensure that no
3809 	 * offline non-offloaded CPU has callbacks queued.
3810 	 */
3811 	init_completion(&rcu_state.barrier_completion);
3812 	atomic_set(&rcu_state.barrier_cpu_count, 2);
3813 	raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
3814 
3815 	/*
3816 	 * Force each CPU with callbacks to register a new callback.
3817 	 * When that callback is invoked, we will know that all of the
3818 	 * corresponding CPU's preceding callbacks have been invoked.
3819 	 */
3820 	for_each_possible_cpu(cpu) {
3821 		rdp = per_cpu_ptr(&rcu_data, cpu);
3822 retry:
3823 		if (smp_load_acquire(&rdp->barrier_seq_snap) == gseq)
3824 			continue;
3825 		raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
3826 		if (!rcu_segcblist_n_cbs(&rdp->cblist)) {
3827 			WRITE_ONCE(rdp->barrier_seq_snap, gseq);
3828 			raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
3829 			rcu_barrier_trace(TPS("NQ"), cpu, rcu_state.barrier_sequence);
3830 			continue;
3831 		}
3832 		if (!rcu_rdp_cpu_online(rdp)) {
3833 			rcu_barrier_entrain(rdp);
3834 			WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq);
3835 			raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
3836 			rcu_barrier_trace(TPS("OfflineNoCBQ"), cpu, rcu_state.barrier_sequence);
3837 			continue;
3838 		}
3839 		raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
3840 		if (smp_call_function_single(cpu, rcu_barrier_handler, (void *)cpu, 1)) {
3841 			schedule_timeout_uninterruptible(1);
3842 			goto retry;
3843 		}
3844 		WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq);
3845 		rcu_barrier_trace(TPS("OnlineQ"), cpu, rcu_state.barrier_sequence);
3846 	}
3847 
3848 	/*
3849 	 * Now that we have an rcu_barrier_callback() callback on each
3850 	 * CPU, and thus each counted, remove the initial count.
3851 	 */
3852 	if (atomic_sub_and_test(2, &rcu_state.barrier_cpu_count))
3853 		complete(&rcu_state.barrier_completion);
3854 
3855 	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3856 	wait_for_completion(&rcu_state.barrier_completion);
3857 
3858 	/* Mark the end of the barrier operation. */
3859 	rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence);
3860 	rcu_seq_end(&rcu_state.barrier_sequence);
3861 	gseq = rcu_state.barrier_sequence;
3862 	for_each_possible_cpu(cpu) {
3863 		rdp = per_cpu_ptr(&rcu_data, cpu);
3864 
3865 		WRITE_ONCE(rdp->barrier_seq_snap, gseq);
3866 	}
3867 
3868 	/* Other rcu_barrier() invocations can now safely proceed. */
3869 	mutex_unlock(&rcu_state.barrier_mutex);
3870 }
3871 EXPORT_SYMBOL_GPL(rcu_barrier);
3872 
3873 /*
3874  * Propagate ->qsinitmask bits up the rcu_node tree to account for the
3875  * first CPU in a given leaf rcu_node structure coming online.  The caller
3876  * must hold the corresponding leaf rcu_node ->lock with interrupts
3877  * disabled.
3878  */
3879 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
3880 {
3881 	long mask;
3882 	long oldmask;
3883 	struct rcu_node *rnp = rnp_leaf;
3884 
3885 	raw_lockdep_assert_held_rcu_node(rnp_leaf);
3886 	WARN_ON_ONCE(rnp->wait_blkd_tasks);
3887 	for (;;) {
3888 		mask = rnp->grpmask;
3889 		rnp = rnp->parent;
3890 		if (rnp == NULL)
3891 			return;
3892 		raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
3893 		oldmask = rnp->qsmaskinit;
3894 		rnp->qsmaskinit |= mask;
3895 		raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
3896 		if (oldmask)
3897 			return;
3898 	}
3899 }
3900 
3901 /*
3902  * Do boot-time initialization of a CPU's per-CPU RCU data.
3903  */
3904 static void __init
3905 rcu_boot_init_percpu_data(int cpu)
3906 {
3907 	struct context_tracking *ct = this_cpu_ptr(&context_tracking);
3908 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3909 
3910 	/* Set up local state, ensuring consistent view of global state. */
3911 	rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
3912 	INIT_WORK(&rdp->strict_work, strict_work_handler);
3913 	WARN_ON_ONCE(ct->dynticks_nesting != 1);
3914 	WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(cpu)));
3915 	rdp->barrier_seq_snap = rcu_state.barrier_sequence;
3916 	rdp->rcu_ofl_gp_seq = rcu_state.gp_seq;
3917 	rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED;
3918 	rdp->rcu_onl_gp_seq = rcu_state.gp_seq;
3919 	rdp->rcu_onl_gp_flags = RCU_GP_CLEANED;
3920 	rdp->last_sched_clock = jiffies;
3921 	rdp->cpu = cpu;
3922 	rcu_boot_init_nocb_percpu_data(rdp);
3923 }
3924 
3925 /*
3926  * Invoked early in the CPU-online process, when pretty much all services
3927  * are available.  The incoming CPU is not present.
3928  *
3929  * Initializes a CPU's per-CPU RCU data.  Note that only one online or
3930  * offline event can be happening at a given time.  Note also that we can
3931  * accept some slop in the rsp->gp_seq access due to the fact that this
3932  * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet.
3933  * And any offloaded callbacks are being numbered elsewhere.
3934  */
3935 int rcutree_prepare_cpu(unsigned int cpu)
3936 {
3937 	unsigned long flags;
3938 	struct context_tracking *ct = per_cpu_ptr(&context_tracking, cpu);
3939 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3940 	struct rcu_node *rnp = rcu_get_root();
3941 
3942 	/* Set up local state, ensuring consistent view of global state. */
3943 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3944 	rdp->qlen_last_fqs_check = 0;
3945 	rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
3946 	rdp->blimit = blimit;
3947 	ct->dynticks_nesting = 1;	/* CPU not up, no tearing. */
3948 	raw_spin_unlock_rcu_node(rnp);		/* irqs remain disabled. */
3949 
3950 	/*
3951 	 * Only non-NOCB CPUs that didn't have early-boot callbacks need to be
3952 	 * (re-)initialized.
3953 	 */
3954 	if (!rcu_segcblist_is_enabled(&rdp->cblist))
3955 		rcu_segcblist_init(&rdp->cblist);  /* Re-enable callbacks. */
3956 
3957 	/*
3958 	 * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
3959 	 * propagation up the rcu_node tree will happen at the beginning
3960 	 * of the next grace period.
3961 	 */
3962 	rnp = rdp->mynode;
3963 	raw_spin_lock_rcu_node(rnp);		/* irqs already disabled. */
3964 	rdp->beenonline = true;	 /* We have now been online. */
3965 	rdp->gp_seq = READ_ONCE(rnp->gp_seq);
3966 	rdp->gp_seq_needed = rdp->gp_seq;
3967 	rdp->cpu_no_qs.b.norm = true;
3968 	rdp->core_needs_qs = false;
3969 	rdp->rcu_iw_pending = false;
3970 	rdp->rcu_iw = IRQ_WORK_INIT_HARD(rcu_iw_handler);
3971 	rdp->rcu_iw_gp_seq = rdp->gp_seq - 1;
3972 	trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl"));
3973 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3974 	rcu_spawn_one_boost_kthread(rnp);
3975 	rcu_spawn_cpu_nocb_kthread(cpu);
3976 	WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus + 1);
3977 
3978 	return 0;
3979 }
3980 
3981 /*
3982  * Update RCU priority boot kthread affinity for CPU-hotplug changes.
3983  */
3984 static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
3985 {
3986 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3987 
3988 	rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
3989 }
3990 
3991 /*
3992  * Near the end of the CPU-online process.  Pretty much all services
3993  * enabled, and the CPU is now very much alive.
3994  */
3995 int rcutree_online_cpu(unsigned int cpu)
3996 {
3997 	unsigned long flags;
3998 	struct rcu_data *rdp;
3999 	struct rcu_node *rnp;
4000 
4001 	rdp = per_cpu_ptr(&rcu_data, cpu);
4002 	rnp = rdp->mynode;
4003 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4004 	rnp->ffmask |= rdp->grpmask;
4005 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4006 	if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
4007 		return 0; /* Too early in boot for scheduler work. */
4008 	sync_sched_exp_online_cleanup(cpu);
4009 	rcutree_affinity_setting(cpu, -1);
4010 
4011 	// Stop-machine done, so allow nohz_full to disable tick.
4012 	tick_dep_clear(TICK_DEP_BIT_RCU);
4013 	return 0;
4014 }
4015 
4016 /*
4017  * Near the beginning of the process.  The CPU is still very much alive
4018  * with pretty much all services enabled.
4019  */
4020 int rcutree_offline_cpu(unsigned int cpu)
4021 {
4022 	unsigned long flags;
4023 	struct rcu_data *rdp;
4024 	struct rcu_node *rnp;
4025 
4026 	rdp = per_cpu_ptr(&rcu_data, cpu);
4027 	rnp = rdp->mynode;
4028 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4029 	rnp->ffmask &= ~rdp->grpmask;
4030 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4031 
4032 	rcutree_affinity_setting(cpu, cpu);
4033 
4034 	// nohz_full CPUs need the tick for stop-machine to work quickly
4035 	tick_dep_set(TICK_DEP_BIT_RCU);
4036 	return 0;
4037 }
4038 
4039 /*
4040  * Mark the specified CPU as being online so that subsequent grace periods
4041  * (both expedited and normal) will wait on it.  Note that this means that
4042  * incoming CPUs are not allowed to use RCU read-side critical sections
4043  * until this function is called.  Failing to observe this restriction
4044  * will result in lockdep splats.
4045  *
4046  * Note that this function is special in that it is invoked directly
4047  * from the incoming CPU rather than from the cpuhp_step mechanism.
4048  * This is because this function must be invoked at a precise location.
4049  */
4050 void rcu_cpu_starting(unsigned int cpu)
4051 {
4052 	unsigned long flags;
4053 	unsigned long mask;
4054 	struct rcu_data *rdp;
4055 	struct rcu_node *rnp;
4056 	bool newcpu;
4057 
4058 	rdp = per_cpu_ptr(&rcu_data, cpu);
4059 	if (rdp->cpu_started)
4060 		return;
4061 	rdp->cpu_started = true;
4062 
4063 	rnp = rdp->mynode;
4064 	mask = rdp->grpmask;
4065 	local_irq_save(flags);
4066 	arch_spin_lock(&rcu_state.ofl_lock);
4067 	rcu_dynticks_eqs_online();
4068 	raw_spin_lock(&rcu_state.barrier_lock);
4069 	raw_spin_lock_rcu_node(rnp);
4070 	WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext | mask);
4071 	raw_spin_unlock(&rcu_state.barrier_lock);
4072 	newcpu = !(rnp->expmaskinitnext & mask);
4073 	rnp->expmaskinitnext |= mask;
4074 	/* Allow lockless access for expedited grace periods. */
4075 	smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + newcpu); /* ^^^ */
4076 	ASSERT_EXCLUSIVE_WRITER(rcu_state.ncpus);
4077 	rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */
4078 	rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq);
4079 	rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags);
4080 
4081 	/* An incoming CPU should never be blocking a grace period. */
4082 	if (WARN_ON_ONCE(rnp->qsmask & mask)) { /* RCU waiting on incoming CPU? */
4083 		/* rcu_report_qs_rnp() *really* wants some flags to restore */
4084 		unsigned long flags2;
4085 
4086 		local_irq_save(flags2);
4087 		rcu_disable_urgency_upon_qs(rdp);
4088 		/* Report QS -after- changing ->qsmaskinitnext! */
4089 		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags2);
4090 	} else {
4091 		raw_spin_unlock_rcu_node(rnp);
4092 	}
4093 	arch_spin_unlock(&rcu_state.ofl_lock);
4094 	local_irq_restore(flags);
4095 	smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
4096 }
4097 
4098 /*
4099  * The outgoing function has no further need of RCU, so remove it from
4100  * the rcu_node tree's ->qsmaskinitnext bit masks.
4101  *
4102  * Note that this function is special in that it is invoked directly
4103  * from the outgoing CPU rather than from the cpuhp_step mechanism.
4104  * This is because this function must be invoked at a precise location.
4105  */
4106 void rcu_report_dead(unsigned int cpu)
4107 {
4108 	unsigned long flags, seq_flags;
4109 	unsigned long mask;
4110 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4111 	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
4112 
4113 	// Do any dangling deferred wakeups.
4114 	do_nocb_deferred_wakeup(rdp);
4115 
4116 	/* QS for any half-done expedited grace period. */
4117 	rcu_report_exp_rdp(rdp);
4118 	rcu_preempt_deferred_qs(current);
4119 
4120 	/* Remove outgoing CPU from mask in the leaf rcu_node structure. */
4121 	mask = rdp->grpmask;
4122 	local_irq_save(seq_flags);
4123 	arch_spin_lock(&rcu_state.ofl_lock);
4124 	raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
4125 	rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq);
4126 	rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags);
4127 	if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */
4128 		/* Report quiescent state -before- changing ->qsmaskinitnext! */
4129 		rcu_disable_urgency_upon_qs(rdp);
4130 		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
4131 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
4132 	}
4133 	WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext & ~mask);
4134 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4135 	arch_spin_unlock(&rcu_state.ofl_lock);
4136 	local_irq_restore(seq_flags);
4137 
4138 	rdp->cpu_started = false;
4139 }
4140 
4141 #ifdef CONFIG_HOTPLUG_CPU
4142 /*
4143  * The outgoing CPU has just passed through the dying-idle state, and we
4144  * are being invoked from the CPU that was IPIed to continue the offline
4145  * operation.  Migrate the outgoing CPU's callbacks to the current CPU.
4146  */
4147 void rcutree_migrate_callbacks(int cpu)
4148 {
4149 	unsigned long flags;
4150 	struct rcu_data *my_rdp;
4151 	struct rcu_node *my_rnp;
4152 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4153 	bool needwake;
4154 
4155 	if (rcu_rdp_is_offloaded(rdp) ||
4156 	    rcu_segcblist_empty(&rdp->cblist))
4157 		return;  /* No callbacks to migrate. */
4158 
4159 	raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
4160 	WARN_ON_ONCE(rcu_rdp_cpu_online(rdp));
4161 	rcu_barrier_entrain(rdp);
4162 	my_rdp = this_cpu_ptr(&rcu_data);
4163 	my_rnp = my_rdp->mynode;
4164 	rcu_nocb_lock(my_rdp); /* irqs already disabled. */
4165 	WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies));
4166 	raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */
4167 	/* Leverage recent GPs and set GP for new callbacks. */
4168 	needwake = rcu_advance_cbs(my_rnp, rdp) ||
4169 		   rcu_advance_cbs(my_rnp, my_rdp);
4170 	rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
4171 	raw_spin_unlock(&rcu_state.barrier_lock); /* irqs remain disabled. */
4172 	needwake = needwake || rcu_advance_cbs(my_rnp, my_rdp);
4173 	rcu_segcblist_disable(&rdp->cblist);
4174 	WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) != !rcu_segcblist_n_cbs(&my_rdp->cblist));
4175 	check_cb_ovld_locked(my_rdp, my_rnp);
4176 	if (rcu_rdp_is_offloaded(my_rdp)) {
4177 		raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */
4178 		__call_rcu_nocb_wake(my_rdp, true, flags);
4179 	} else {
4180 		rcu_nocb_unlock(my_rdp); /* irqs remain disabled. */
4181 		raw_spin_unlock_irqrestore_rcu_node(my_rnp, flags);
4182 	}
4183 	if (needwake)
4184 		rcu_gp_kthread_wake();
4185 	lockdep_assert_irqs_enabled();
4186 	WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
4187 		  !rcu_segcblist_empty(&rdp->cblist),
4188 		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
4189 		  cpu, rcu_segcblist_n_cbs(&rdp->cblist),
4190 		  rcu_segcblist_first_cb(&rdp->cblist));
4191 }
4192 #endif
4193 
4194 /*
4195  * On non-huge systems, use expedited RCU grace periods to make suspend
4196  * and hibernation run faster.
4197  */
4198 static int rcu_pm_notify(struct notifier_block *self,
4199 			 unsigned long action, void *hcpu)
4200 {
4201 	switch (action) {
4202 	case PM_HIBERNATION_PREPARE:
4203 	case PM_SUSPEND_PREPARE:
4204 		rcu_expedite_gp();
4205 		break;
4206 	case PM_POST_HIBERNATION:
4207 	case PM_POST_SUSPEND:
4208 		rcu_unexpedite_gp();
4209 		break;
4210 	default:
4211 		break;
4212 	}
4213 	return NOTIFY_OK;
4214 }
4215 
4216 #ifdef CONFIG_RCU_EXP_KTHREAD
4217 struct kthread_worker *rcu_exp_gp_kworker;
4218 struct kthread_worker *rcu_exp_par_gp_kworker;
4219 
4220 static void __init rcu_start_exp_gp_kworkers(void)
4221 {
4222 	const char *par_gp_kworker_name = "rcu_exp_par_gp_kthread_worker";
4223 	const char *gp_kworker_name = "rcu_exp_gp_kthread_worker";
4224 	struct sched_param param = { .sched_priority = kthread_prio };
4225 
4226 	rcu_exp_gp_kworker = kthread_create_worker(0, gp_kworker_name);
4227 	if (IS_ERR_OR_NULL(rcu_exp_gp_kworker)) {
4228 		pr_err("Failed to create %s!\n", gp_kworker_name);
4229 		return;
4230 	}
4231 
4232 	rcu_exp_par_gp_kworker = kthread_create_worker(0, par_gp_kworker_name);
4233 	if (IS_ERR_OR_NULL(rcu_exp_par_gp_kworker)) {
4234 		pr_err("Failed to create %s!\n", par_gp_kworker_name);
4235 		kthread_destroy_worker(rcu_exp_gp_kworker);
4236 		return;
4237 	}
4238 
4239 	sched_setscheduler_nocheck(rcu_exp_gp_kworker->task, SCHED_FIFO, &param);
4240 	sched_setscheduler_nocheck(rcu_exp_par_gp_kworker->task, SCHED_FIFO,
4241 				   &param);
4242 }
4243 
4244 static inline void rcu_alloc_par_gp_wq(void)
4245 {
4246 }
4247 #else /* !CONFIG_RCU_EXP_KTHREAD */
4248 struct workqueue_struct *rcu_par_gp_wq;
4249 
4250 static void __init rcu_start_exp_gp_kworkers(void)
4251 {
4252 }
4253 
4254 static inline void rcu_alloc_par_gp_wq(void)
4255 {
4256 	rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0);
4257 	WARN_ON(!rcu_par_gp_wq);
4258 }
4259 #endif /* CONFIG_RCU_EXP_KTHREAD */
4260 
4261 /*
4262  * Spawn the kthreads that handle RCU's grace periods.
4263  */
4264 static int __init rcu_spawn_gp_kthread(void)
4265 {
4266 	unsigned long flags;
4267 	struct rcu_node *rnp;
4268 	struct sched_param sp;
4269 	struct task_struct *t;
4270 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
4271 
4272 	rcu_scheduler_fully_active = 1;
4273 	t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name);
4274 	if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__))
4275 		return 0;
4276 	if (kthread_prio) {
4277 		sp.sched_priority = kthread_prio;
4278 		sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
4279 	}
4280 	rnp = rcu_get_root();
4281 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4282 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
4283 	WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
4284 	// Reset .gp_activity and .gp_req_activity before setting .gp_kthread.
4285 	smp_store_release(&rcu_state.gp_kthread, t);  /* ^^^ */
4286 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4287 	wake_up_process(t);
4288 	/* This is a pre-SMP initcall, we expect a single CPU */
4289 	WARN_ON(num_online_cpus() > 1);
4290 	/*
4291 	 * Those kthreads couldn't be created on rcu_init() -> rcutree_prepare_cpu()
4292 	 * due to rcu_scheduler_fully_active.
4293 	 */
4294 	rcu_spawn_cpu_nocb_kthread(smp_processor_id());
4295 	rcu_spawn_one_boost_kthread(rdp->mynode);
4296 	rcu_spawn_core_kthreads();
4297 	/* Create kthread worker for expedited GPs */
4298 	rcu_start_exp_gp_kworkers();
4299 	return 0;
4300 }
4301 early_initcall(rcu_spawn_gp_kthread);
4302 
4303 /*
4304  * This function is invoked towards the end of the scheduler's
4305  * initialization process.  Before this is called, the idle task might
4306  * contain synchronous grace-period primitives (during which time, this idle
4307  * task is booting the system, and such primitives are no-ops).  After this
4308  * function is called, any synchronous grace-period primitives are run as
4309  * expedited, with the requesting task driving the grace period forward.
4310  * A later core_initcall() rcu_set_runtime_mode() will switch to full
4311  * runtime RCU functionality.
4312  */
4313 void rcu_scheduler_starting(void)
4314 {
4315 	WARN_ON(num_online_cpus() != 1);
4316 	WARN_ON(nr_context_switches() > 0);
4317 	rcu_test_sync_prims();
4318 	rcu_scheduler_active = RCU_SCHEDULER_INIT;
4319 	rcu_test_sync_prims();
4320 }
4321 
4322 /*
4323  * Helper function for rcu_init() that initializes the rcu_state structure.
4324  */
4325 static void __init rcu_init_one(void)
4326 {
4327 	static const char * const buf[] = RCU_NODE_NAME_INIT;
4328 	static const char * const fqs[] = RCU_FQS_NAME_INIT;
4329 	static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
4330 	static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
4331 
4332 	int levelspread[RCU_NUM_LVLS];		/* kids/node in each level. */
4333 	int cpustride = 1;
4334 	int i;
4335 	int j;
4336 	struct rcu_node *rnp;
4337 
4338 	BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
4339 
4340 	/* Silence gcc 4.8 false positive about array index out of range. */
4341 	if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4342 		panic("rcu_init_one: rcu_num_lvls out of range");
4343 
4344 	/* Initialize the level-tracking arrays. */
4345 
4346 	for (i = 1; i < rcu_num_lvls; i++)
4347 		rcu_state.level[i] =
4348 			rcu_state.level[i - 1] + num_rcu_lvl[i - 1];
4349 	rcu_init_levelspread(levelspread, num_rcu_lvl);
4350 
4351 	/* Initialize the elements themselves, starting from the leaves. */
4352 
4353 	for (i = rcu_num_lvls - 1; i >= 0; i--) {
4354 		cpustride *= levelspread[i];
4355 		rnp = rcu_state.level[i];
4356 		for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
4357 			raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4358 			lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
4359 						   &rcu_node_class[i], buf[i]);
4360 			raw_spin_lock_init(&rnp->fqslock);
4361 			lockdep_set_class_and_name(&rnp->fqslock,
4362 						   &rcu_fqs_class[i], fqs[i]);
4363 			rnp->gp_seq = rcu_state.gp_seq;
4364 			rnp->gp_seq_needed = rcu_state.gp_seq;
4365 			rnp->completedqs = rcu_state.gp_seq;
4366 			rnp->qsmask = 0;
4367 			rnp->qsmaskinit = 0;
4368 			rnp->grplo = j * cpustride;
4369 			rnp->grphi = (j + 1) * cpustride - 1;
4370 			if (rnp->grphi >= nr_cpu_ids)
4371 				rnp->grphi = nr_cpu_ids - 1;
4372 			if (i == 0) {
4373 				rnp->grpnum = 0;
4374 				rnp->grpmask = 0;
4375 				rnp->parent = NULL;
4376 			} else {
4377 				rnp->grpnum = j % levelspread[i - 1];
4378 				rnp->grpmask = BIT(rnp->grpnum);
4379 				rnp->parent = rcu_state.level[i - 1] +
4380 					      j / levelspread[i - 1];
4381 			}
4382 			rnp->level = i;
4383 			INIT_LIST_HEAD(&rnp->blkd_tasks);
4384 			rcu_init_one_nocb(rnp);
4385 			init_waitqueue_head(&rnp->exp_wq[0]);
4386 			init_waitqueue_head(&rnp->exp_wq[1]);
4387 			init_waitqueue_head(&rnp->exp_wq[2]);
4388 			init_waitqueue_head(&rnp->exp_wq[3]);
4389 			spin_lock_init(&rnp->exp_lock);
4390 			mutex_init(&rnp->boost_kthread_mutex);
4391 			raw_spin_lock_init(&rnp->exp_poll_lock);
4392 			rnp->exp_seq_poll_rq = RCU_GET_STATE_COMPLETED;
4393 			INIT_WORK(&rnp->exp_poll_wq, sync_rcu_do_polled_gp);
4394 		}
4395 	}
4396 
4397 	init_swait_queue_head(&rcu_state.gp_wq);
4398 	init_swait_queue_head(&rcu_state.expedited_wq);
4399 	rnp = rcu_first_leaf_node();
4400 	for_each_possible_cpu(i) {
4401 		while (i > rnp->grphi)
4402 			rnp++;
4403 		per_cpu_ptr(&rcu_data, i)->mynode = rnp;
4404 		rcu_boot_init_percpu_data(i);
4405 	}
4406 }
4407 
4408 /*
4409  * Force priority from the kernel command-line into range.
4410  */
4411 static void __init sanitize_kthread_prio(void)
4412 {
4413 	int kthread_prio_in = kthread_prio;
4414 
4415 	if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2
4416 	    && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST))
4417 		kthread_prio = 2;
4418 	else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
4419 		kthread_prio = 1;
4420 	else if (kthread_prio < 0)
4421 		kthread_prio = 0;
4422 	else if (kthread_prio > 99)
4423 		kthread_prio = 99;
4424 
4425 	if (kthread_prio != kthread_prio_in)
4426 		pr_alert("%s: Limited prio to %d from %d\n",
4427 			 __func__, kthread_prio, kthread_prio_in);
4428 }
4429 
4430 /*
4431  * Compute the rcu_node tree geometry from kernel parameters.  This cannot
4432  * replace the definitions in tree.h because those are needed to size
4433  * the ->node array in the rcu_state structure.
4434  */
4435 void rcu_init_geometry(void)
4436 {
4437 	ulong d;
4438 	int i;
4439 	static unsigned long old_nr_cpu_ids;
4440 	int rcu_capacity[RCU_NUM_LVLS];
4441 	static bool initialized;
4442 
4443 	if (initialized) {
4444 		/*
4445 		 * Warn if setup_nr_cpu_ids() had not yet been invoked,
4446 		 * unless nr_cpus_ids == NR_CPUS, in which case who cares?
4447 		 */
4448 		WARN_ON_ONCE(old_nr_cpu_ids != nr_cpu_ids);
4449 		return;
4450 	}
4451 
4452 	old_nr_cpu_ids = nr_cpu_ids;
4453 	initialized = true;
4454 
4455 	/*
4456 	 * Initialize any unspecified boot parameters.
4457 	 * The default values of jiffies_till_first_fqs and
4458 	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4459 	 * value, which is a function of HZ, then adding one for each
4460 	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4461 	 */
4462 	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4463 	if (jiffies_till_first_fqs == ULONG_MAX)
4464 		jiffies_till_first_fqs = d;
4465 	if (jiffies_till_next_fqs == ULONG_MAX)
4466 		jiffies_till_next_fqs = d;
4467 	adjust_jiffies_till_sched_qs();
4468 
4469 	/* If the compile-time values are accurate, just leave. */
4470 	if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4471 	    nr_cpu_ids == NR_CPUS)
4472 		return;
4473 	pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
4474 		rcu_fanout_leaf, nr_cpu_ids);
4475 
4476 	/*
4477 	 * The boot-time rcu_fanout_leaf parameter must be at least two
4478 	 * and cannot exceed the number of bits in the rcu_node masks.
4479 	 * Complain and fall back to the compile-time values if this
4480 	 * limit is exceeded.
4481 	 */
4482 	if (rcu_fanout_leaf < 2 ||
4483 	    rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4484 		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4485 		WARN_ON(1);
4486 		return;
4487 	}
4488 
4489 	/*
4490 	 * Compute number of nodes that can be handled an rcu_node tree
4491 	 * with the given number of levels.
4492 	 */
4493 	rcu_capacity[0] = rcu_fanout_leaf;
4494 	for (i = 1; i < RCU_NUM_LVLS; i++)
4495 		rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4496 
4497 	/*
4498 	 * The tree must be able to accommodate the configured number of CPUs.
4499 	 * If this limit is exceeded, fall back to the compile-time values.
4500 	 */
4501 	if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4502 		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4503 		WARN_ON(1);
4504 		return;
4505 	}
4506 
4507 	/* Calculate the number of levels in the tree. */
4508 	for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4509 	}
4510 	rcu_num_lvls = i + 1;
4511 
4512 	/* Calculate the number of rcu_nodes at each level of the tree. */
4513 	for (i = 0; i < rcu_num_lvls; i++) {
4514 		int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4515 		num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4516 	}
4517 
4518 	/* Calculate the total number of rcu_node structures. */
4519 	rcu_num_nodes = 0;
4520 	for (i = 0; i < rcu_num_lvls; i++)
4521 		rcu_num_nodes += num_rcu_lvl[i];
4522 }
4523 
4524 /*
4525  * Dump out the structure of the rcu_node combining tree associated
4526  * with the rcu_state structure.
4527  */
4528 static void __init rcu_dump_rcu_node_tree(void)
4529 {
4530 	int level = 0;
4531 	struct rcu_node *rnp;
4532 
4533 	pr_info("rcu_node tree layout dump\n");
4534 	pr_info(" ");
4535 	rcu_for_each_node_breadth_first(rnp) {
4536 		if (rnp->level != level) {
4537 			pr_cont("\n");
4538 			pr_info(" ");
4539 			level = rnp->level;
4540 		}
4541 		pr_cont("%d:%d ^%d  ", rnp->grplo, rnp->grphi, rnp->grpnum);
4542 	}
4543 	pr_cont("\n");
4544 }
4545 
4546 struct workqueue_struct *rcu_gp_wq;
4547 
4548 static void __init kfree_rcu_batch_init(void)
4549 {
4550 	int cpu;
4551 	int i;
4552 
4553 	/* Clamp it to [0:100] seconds interval. */
4554 	if (rcu_delay_page_cache_fill_msec < 0 ||
4555 		rcu_delay_page_cache_fill_msec > 100 * MSEC_PER_SEC) {
4556 
4557 		rcu_delay_page_cache_fill_msec =
4558 			clamp(rcu_delay_page_cache_fill_msec, 0,
4559 				(int) (100 * MSEC_PER_SEC));
4560 
4561 		pr_info("Adjusting rcutree.rcu_delay_page_cache_fill_msec to %d ms.\n",
4562 			rcu_delay_page_cache_fill_msec);
4563 	}
4564 
4565 	for_each_possible_cpu(cpu) {
4566 		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
4567 
4568 		for (i = 0; i < KFREE_N_BATCHES; i++) {
4569 			INIT_RCU_WORK(&krcp->krw_arr[i].rcu_work, kfree_rcu_work);
4570 			krcp->krw_arr[i].krcp = krcp;
4571 		}
4572 
4573 		INIT_DELAYED_WORK(&krcp->monitor_work, kfree_rcu_monitor);
4574 		INIT_DELAYED_WORK(&krcp->page_cache_work, fill_page_cache_func);
4575 		krcp->initialized = true;
4576 	}
4577 	if (register_shrinker(&kfree_rcu_shrinker, "rcu-kfree"))
4578 		pr_err("Failed to register kfree_rcu() shrinker!\n");
4579 }
4580 
4581 void __init rcu_init(void)
4582 {
4583 	int cpu = smp_processor_id();
4584 
4585 	rcu_early_boot_tests();
4586 
4587 	kfree_rcu_batch_init();
4588 	rcu_bootup_announce();
4589 	sanitize_kthread_prio();
4590 	rcu_init_geometry();
4591 	rcu_init_one();
4592 	if (dump_tree)
4593 		rcu_dump_rcu_node_tree();
4594 	if (use_softirq)
4595 		open_softirq(RCU_SOFTIRQ, rcu_core_si);
4596 
4597 	/*
4598 	 * We don't need protection against CPU-hotplug here because
4599 	 * this is called early in boot, before either interrupts
4600 	 * or the scheduler are operational.
4601 	 */
4602 	pm_notifier(rcu_pm_notify, 0);
4603 	WARN_ON(num_online_cpus() > 1); // Only one CPU this early in boot.
4604 	rcutree_prepare_cpu(cpu);
4605 	rcu_cpu_starting(cpu);
4606 	rcutree_online_cpu(cpu);
4607 
4608 	/* Create workqueue for Tree SRCU and for expedited GPs. */
4609 	rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0);
4610 	WARN_ON(!rcu_gp_wq);
4611 	rcu_alloc_par_gp_wq();
4612 
4613 	/* Fill in default value for rcutree.qovld boot parameter. */
4614 	/* -After- the rcu_node ->lock fields are initialized! */
4615 	if (qovld < 0)
4616 		qovld_calc = DEFAULT_RCU_QOVLD_MULT * qhimark;
4617 	else
4618 		qovld_calc = qovld;
4619 
4620 	// Kick-start any polled grace periods that started early.
4621 	if (!(per_cpu_ptr(&rcu_data, cpu)->mynode->exp_seq_poll_rq & 0x1))
4622 		(void)start_poll_synchronize_rcu_expedited();
4623 }
4624 
4625 #include "tree_stall.h"
4626 #include "tree_exp.h"
4627 #include "tree_nocb.h"
4628 #include "tree_plugin.h"
4629