xref: /linux/kernel/rcu/tree.c (revision 4246b92cf9fb32da8d8b060c92d8302797c6fbea)
1 /*
2  * Read-Copy Update mechanism for mutual exclusion
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, you can access it online at
16  * http://www.gnu.org/licenses/gpl-2.0.html.
17  *
18  * Copyright IBM Corporation, 2008
19  *
20  * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21  *	    Manfred Spraul <manfred@colorfullife.com>
22  *	    Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23  *
24  * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25  * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26  *
27  * For detailed explanation of Read-Copy Update mechanism see -
28  *	Documentation/RCU
29  */
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate_wait.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/sched/debug.h>
39 #include <linux/nmi.h>
40 #include <linux/atomic.h>
41 #include <linux/bitops.h>
42 #include <linux/export.h>
43 #include <linux/completion.h>
44 #include <linux/moduleparam.h>
45 #include <linux/percpu.h>
46 #include <linux/notifier.h>
47 #include <linux/cpu.h>
48 #include <linux/mutex.h>
49 #include <linux/time.h>
50 #include <linux/kernel_stat.h>
51 #include <linux/wait.h>
52 #include <linux/kthread.h>
53 #include <uapi/linux/sched/types.h>
54 #include <linux/prefetch.h>
55 #include <linux/delay.h>
56 #include <linux/stop_machine.h>
57 #include <linux/random.h>
58 #include <linux/trace_events.h>
59 #include <linux/suspend.h>
60 #include <linux/ftrace.h>
61 
62 #include "tree.h"
63 #include "rcu.h"
64 
65 #ifdef MODULE_PARAM_PREFIX
66 #undef MODULE_PARAM_PREFIX
67 #endif
68 #define MODULE_PARAM_PREFIX "rcutree."
69 
70 /* Data structures. */
71 
72 /*
73  * In order to export the rcu_state name to the tracing tools, it
74  * needs to be added in the __tracepoint_string section.
75  * This requires defining a separate variable tp_<sname>_varname
76  * that points to the string being used, and this will allow
77  * the tracing userspace tools to be able to decipher the string
78  * address to the matching string.
79  */
80 #ifdef CONFIG_TRACING
81 # define DEFINE_RCU_TPS(sname) \
82 static char sname##_varname[] = #sname; \
83 static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
84 # define RCU_STATE_NAME(sname) sname##_varname
85 #else
86 # define DEFINE_RCU_TPS(sname)
87 # define RCU_STATE_NAME(sname) __stringify(sname)
88 #endif
89 
90 #define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
91 DEFINE_RCU_TPS(sname) \
92 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
93 struct rcu_state sname##_state = { \
94 	.level = { &sname##_state.node[0] }, \
95 	.rda = &sname##_data, \
96 	.call = cr, \
97 	.gp_state = RCU_GP_IDLE, \
98 	.gpnum = 0UL - 300UL, \
99 	.completed = 0UL - 300UL, \
100 	.barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
101 	.name = RCU_STATE_NAME(sname), \
102 	.abbr = sabbr, \
103 	.exp_mutex = __MUTEX_INITIALIZER(sname##_state.exp_mutex), \
104 	.exp_wake_mutex = __MUTEX_INITIALIZER(sname##_state.exp_wake_mutex), \
105 }
106 
107 RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
108 RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
109 
110 static struct rcu_state *const rcu_state_p;
111 LIST_HEAD(rcu_struct_flavors);
112 
113 /* Dump rcu_node combining tree at boot to verify correct setup. */
114 static bool dump_tree;
115 module_param(dump_tree, bool, 0444);
116 /* Control rcu_node-tree auto-balancing at boot time. */
117 static bool rcu_fanout_exact;
118 module_param(rcu_fanout_exact, bool, 0444);
119 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
120 static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
121 module_param(rcu_fanout_leaf, int, 0444);
122 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
123 /* Number of rcu_nodes at specified level. */
124 int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
125 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
126 /* panic() on RCU Stall sysctl. */
127 int sysctl_panic_on_rcu_stall __read_mostly;
128 
129 /*
130  * The rcu_scheduler_active variable is initialized to the value
131  * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
132  * first task is spawned.  So when this variable is RCU_SCHEDULER_INACTIVE,
133  * RCU can assume that there is but one task, allowing RCU to (for example)
134  * optimize synchronize_rcu() to a simple barrier().  When this variable
135  * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
136  * to detect real grace periods.  This variable is also used to suppress
137  * boot-time false positives from lockdep-RCU error checking.  Finally, it
138  * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
139  * is fully initialized, including all of its kthreads having been spawned.
140  */
141 int rcu_scheduler_active __read_mostly;
142 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
143 
144 /*
145  * The rcu_scheduler_fully_active variable transitions from zero to one
146  * during the early_initcall() processing, which is after the scheduler
147  * is capable of creating new tasks.  So RCU processing (for example,
148  * creating tasks for RCU priority boosting) must be delayed until after
149  * rcu_scheduler_fully_active transitions from zero to one.  We also
150  * currently delay invocation of any RCU callbacks until after this point.
151  *
152  * It might later prove better for people registering RCU callbacks during
153  * early boot to take responsibility for these callbacks, but one step at
154  * a time.
155  */
156 static int rcu_scheduler_fully_active __read_mostly;
157 
158 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
159 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
160 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
161 static void invoke_rcu_core(void);
162 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
163 static void rcu_report_exp_rdp(struct rcu_state *rsp,
164 			       struct rcu_data *rdp, bool wake);
165 static void sync_sched_exp_online_cleanup(int cpu);
166 
167 /* rcuc/rcub kthread realtime priority */
168 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
169 module_param(kthread_prio, int, 0644);
170 
171 /* Delay in jiffies for grace-period initialization delays, debug only. */
172 
173 static int gp_preinit_delay;
174 module_param(gp_preinit_delay, int, 0444);
175 static int gp_init_delay;
176 module_param(gp_init_delay, int, 0444);
177 static int gp_cleanup_delay;
178 module_param(gp_cleanup_delay, int, 0444);
179 
180 /*
181  * Number of grace periods between delays, normalized by the duration of
182  * the delay.  The longer the delay, the more the grace periods between
183  * each delay.  The reason for this normalization is that it means that,
184  * for non-zero delays, the overall slowdown of grace periods is constant
185  * regardless of the duration of the delay.  This arrangement balances
186  * the need for long delays to increase some race probabilities with the
187  * need for fast grace periods to increase other race probabilities.
188  */
189 #define PER_RCU_NODE_PERIOD 3	/* Number of grace periods between delays. */
190 
191 /*
192  * Track the rcutorture test sequence number and the update version
193  * number within a given test.  The rcutorture_testseq is incremented
194  * on every rcutorture module load and unload, so has an odd value
195  * when a test is running.  The rcutorture_vernum is set to zero
196  * when rcutorture starts and is incremented on each rcutorture update.
197  * These variables enable correlating rcutorture output with the
198  * RCU tracing information.
199  */
200 unsigned long rcutorture_testseq;
201 unsigned long rcutorture_vernum;
202 
203 /*
204  * Compute the mask of online CPUs for the specified rcu_node structure.
205  * This will not be stable unless the rcu_node structure's ->lock is
206  * held, but the bit corresponding to the current CPU will be stable
207  * in most contexts.
208  */
209 unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
210 {
211 	return READ_ONCE(rnp->qsmaskinitnext);
212 }
213 
214 /*
215  * Return true if an RCU grace period is in progress.  The READ_ONCE()s
216  * permit this function to be invoked without holding the root rcu_node
217  * structure's ->lock, but of course results can be subject to change.
218  */
219 static int rcu_gp_in_progress(struct rcu_state *rsp)
220 {
221 	return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
222 }
223 
224 /*
225  * Note a quiescent state.  Because we do not need to know
226  * how many quiescent states passed, just if there was at least
227  * one since the start of the grace period, this just sets a flag.
228  * The caller must have disabled preemption.
229  */
230 void rcu_sched_qs(void)
231 {
232 	RCU_LOCKDEP_WARN(preemptible(), "rcu_sched_qs() invoked with preemption enabled!!!");
233 	if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.s))
234 		return;
235 	trace_rcu_grace_period(TPS("rcu_sched"),
236 			       __this_cpu_read(rcu_sched_data.gpnum),
237 			       TPS("cpuqs"));
238 	__this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false);
239 	if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
240 		return;
241 	__this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false);
242 	rcu_report_exp_rdp(&rcu_sched_state,
243 			   this_cpu_ptr(&rcu_sched_data), true);
244 }
245 
246 void rcu_bh_qs(void)
247 {
248 	RCU_LOCKDEP_WARN(preemptible(), "rcu_bh_qs() invoked with preemption enabled!!!");
249 	if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) {
250 		trace_rcu_grace_period(TPS("rcu_bh"),
251 				       __this_cpu_read(rcu_bh_data.gpnum),
252 				       TPS("cpuqs"));
253 		__this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false);
254 	}
255 }
256 
257 /*
258  * Steal a bit from the bottom of ->dynticks for idle entry/exit
259  * control.  Initially this is for TLB flushing.
260  */
261 #define RCU_DYNTICK_CTRL_MASK 0x1
262 #define RCU_DYNTICK_CTRL_CTR  (RCU_DYNTICK_CTRL_MASK + 1)
263 #ifndef rcu_eqs_special_exit
264 #define rcu_eqs_special_exit() do { } while (0)
265 #endif
266 
267 static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
268 	.dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
269 	.dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR),
270 };
271 
272 /*
273  * There's a few places, currently just in the tracing infrastructure,
274  * that uses rcu_irq_enter() to make sure RCU is watching. But there's
275  * a small location where that will not even work. In those cases
276  * rcu_irq_enter_disabled() needs to be checked to make sure rcu_irq_enter()
277  * can be called.
278  */
279 static DEFINE_PER_CPU(bool, disable_rcu_irq_enter);
280 
281 bool rcu_irq_enter_disabled(void)
282 {
283 	return this_cpu_read(disable_rcu_irq_enter);
284 }
285 
286 /*
287  * Record entry into an extended quiescent state.  This is only to be
288  * called when not already in an extended quiescent state.
289  */
290 static void rcu_dynticks_eqs_enter(void)
291 {
292 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
293 	int seq;
294 
295 	/*
296 	 * CPUs seeing atomic_add_return() must see prior RCU read-side
297 	 * critical sections, and we also must force ordering with the
298 	 * next idle sojourn.
299 	 */
300 	seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
301 	/* Better be in an extended quiescent state! */
302 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
303 		     (seq & RCU_DYNTICK_CTRL_CTR));
304 	/* Better not have special action (TLB flush) pending! */
305 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
306 		     (seq & RCU_DYNTICK_CTRL_MASK));
307 }
308 
309 /*
310  * Record exit from an extended quiescent state.  This is only to be
311  * called from an extended quiescent state.
312  */
313 static void rcu_dynticks_eqs_exit(void)
314 {
315 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
316 	int seq;
317 
318 	/*
319 	 * CPUs seeing atomic_add_return() must see prior idle sojourns,
320 	 * and we also must force ordering with the next RCU read-side
321 	 * critical section.
322 	 */
323 	seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
324 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
325 		     !(seq & RCU_DYNTICK_CTRL_CTR));
326 	if (seq & RCU_DYNTICK_CTRL_MASK) {
327 		atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdtp->dynticks);
328 		smp_mb__after_atomic(); /* _exit after clearing mask. */
329 		/* Prefer duplicate flushes to losing a flush. */
330 		rcu_eqs_special_exit();
331 	}
332 }
333 
334 /*
335  * Reset the current CPU's ->dynticks counter to indicate that the
336  * newly onlined CPU is no longer in an extended quiescent state.
337  * This will either leave the counter unchanged, or increment it
338  * to the next non-quiescent value.
339  *
340  * The non-atomic test/increment sequence works because the upper bits
341  * of the ->dynticks counter are manipulated only by the corresponding CPU,
342  * or when the corresponding CPU is offline.
343  */
344 static void rcu_dynticks_eqs_online(void)
345 {
346 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
347 
348 	if (atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR)
349 		return;
350 	atomic_add(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
351 }
352 
353 /*
354  * Is the current CPU in an extended quiescent state?
355  *
356  * No ordering, as we are sampling CPU-local information.
357  */
358 bool rcu_dynticks_curr_cpu_in_eqs(void)
359 {
360 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
361 
362 	return !(atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR);
363 }
364 
365 /*
366  * Snapshot the ->dynticks counter with full ordering so as to allow
367  * stable comparison of this counter with past and future snapshots.
368  */
369 int rcu_dynticks_snap(struct rcu_dynticks *rdtp)
370 {
371 	int snap = atomic_add_return(0, &rdtp->dynticks);
372 
373 	return snap & ~RCU_DYNTICK_CTRL_MASK;
374 }
375 
376 /*
377  * Return true if the snapshot returned from rcu_dynticks_snap()
378  * indicates that RCU is in an extended quiescent state.
379  */
380 static bool rcu_dynticks_in_eqs(int snap)
381 {
382 	return !(snap & RCU_DYNTICK_CTRL_CTR);
383 }
384 
385 /*
386  * Return true if the CPU corresponding to the specified rcu_dynticks
387  * structure has spent some time in an extended quiescent state since
388  * rcu_dynticks_snap() returned the specified snapshot.
389  */
390 static bool rcu_dynticks_in_eqs_since(struct rcu_dynticks *rdtp, int snap)
391 {
392 	return snap != rcu_dynticks_snap(rdtp);
393 }
394 
395 /*
396  * Do a double-increment of the ->dynticks counter to emulate a
397  * momentary idle-CPU quiescent state.
398  */
399 static void rcu_dynticks_momentary_idle(void)
400 {
401 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
402 	int special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR,
403 					&rdtp->dynticks);
404 
405 	/* It is illegal to call this from idle state. */
406 	WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR));
407 }
408 
409 /*
410  * Set the special (bottom) bit of the specified CPU so that it
411  * will take special action (such as flushing its TLB) on the
412  * next exit from an extended quiescent state.  Returns true if
413  * the bit was successfully set, or false if the CPU was not in
414  * an extended quiescent state.
415  */
416 bool rcu_eqs_special_set(int cpu)
417 {
418 	int old;
419 	int new;
420 	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
421 
422 	do {
423 		old = atomic_read(&rdtp->dynticks);
424 		if (old & RCU_DYNTICK_CTRL_CTR)
425 			return false;
426 		new = old | RCU_DYNTICK_CTRL_MASK;
427 	} while (atomic_cmpxchg(&rdtp->dynticks, old, new) != old);
428 	return true;
429 }
430 
431 /*
432  * Let the RCU core know that this CPU has gone through the scheduler,
433  * which is a quiescent state.  This is called when the need for a
434  * quiescent state is urgent, so we burn an atomic operation and full
435  * memory barriers to let the RCU core know about it, regardless of what
436  * this CPU might (or might not) do in the near future.
437  *
438  * We inform the RCU core by emulating a zero-duration dyntick-idle period.
439  *
440  * The caller must have disabled interrupts.
441  */
442 static void rcu_momentary_dyntick_idle(void)
443 {
444 	raw_cpu_write(rcu_dynticks.rcu_need_heavy_qs, false);
445 	rcu_dynticks_momentary_idle();
446 }
447 
448 /*
449  * Note a context switch.  This is a quiescent state for RCU-sched,
450  * and requires special handling for preemptible RCU.
451  * The caller must have disabled interrupts.
452  */
453 void rcu_note_context_switch(bool preempt)
454 {
455 	barrier(); /* Avoid RCU read-side critical sections leaking down. */
456 	trace_rcu_utilization(TPS("Start context switch"));
457 	rcu_sched_qs();
458 	rcu_preempt_note_context_switch(preempt);
459 	/* Load rcu_urgent_qs before other flags. */
460 	if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs)))
461 		goto out;
462 	this_cpu_write(rcu_dynticks.rcu_urgent_qs, false);
463 	if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs)))
464 		rcu_momentary_dyntick_idle();
465 	this_cpu_inc(rcu_dynticks.rcu_qs_ctr);
466 	if (!preempt)
467 		rcu_note_voluntary_context_switch_lite(current);
468 out:
469 	trace_rcu_utilization(TPS("End context switch"));
470 	barrier(); /* Avoid RCU read-side critical sections leaking up. */
471 }
472 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
473 
474 /*
475  * Register a quiescent state for all RCU flavors.  If there is an
476  * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
477  * dyntick-idle quiescent state visible to other CPUs (but only for those
478  * RCU flavors in desperate need of a quiescent state, which will normally
479  * be none of them).  Either way, do a lightweight quiescent state for
480  * all RCU flavors.
481  *
482  * The barrier() calls are redundant in the common case when this is
483  * called externally, but just in case this is called from within this
484  * file.
485  *
486  */
487 void rcu_all_qs(void)
488 {
489 	unsigned long flags;
490 
491 	if (!raw_cpu_read(rcu_dynticks.rcu_urgent_qs))
492 		return;
493 	preempt_disable();
494 	/* Load rcu_urgent_qs before other flags. */
495 	if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs))) {
496 		preempt_enable();
497 		return;
498 	}
499 	this_cpu_write(rcu_dynticks.rcu_urgent_qs, false);
500 	barrier(); /* Avoid RCU read-side critical sections leaking down. */
501 	if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs))) {
502 		local_irq_save(flags);
503 		rcu_momentary_dyntick_idle();
504 		local_irq_restore(flags);
505 	}
506 	if (unlikely(raw_cpu_read(rcu_sched_data.cpu_no_qs.b.exp)))
507 		rcu_sched_qs();
508 	this_cpu_inc(rcu_dynticks.rcu_qs_ctr);
509 	barrier(); /* Avoid RCU read-side critical sections leaking up. */
510 	preempt_enable();
511 }
512 EXPORT_SYMBOL_GPL(rcu_all_qs);
513 
514 #define DEFAULT_RCU_BLIMIT 10     /* Maximum callbacks per rcu_do_batch. */
515 static long blimit = DEFAULT_RCU_BLIMIT;
516 #define DEFAULT_RCU_QHIMARK 10000 /* If this many pending, ignore blimit. */
517 static long qhimark = DEFAULT_RCU_QHIMARK;
518 #define DEFAULT_RCU_QLOMARK 100   /* Once only this many pending, use blimit. */
519 static long qlowmark = DEFAULT_RCU_QLOMARK;
520 
521 module_param(blimit, long, 0444);
522 module_param(qhimark, long, 0444);
523 module_param(qlowmark, long, 0444);
524 
525 static ulong jiffies_till_first_fqs = ULONG_MAX;
526 static ulong jiffies_till_next_fqs = ULONG_MAX;
527 static bool rcu_kick_kthreads;
528 
529 module_param(jiffies_till_first_fqs, ulong, 0644);
530 module_param(jiffies_till_next_fqs, ulong, 0644);
531 module_param(rcu_kick_kthreads, bool, 0644);
532 
533 /*
534  * How long the grace period must be before we start recruiting
535  * quiescent-state help from rcu_note_context_switch().
536  */
537 static ulong jiffies_till_sched_qs = HZ / 20;
538 module_param(jiffies_till_sched_qs, ulong, 0644);
539 
540 static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
541 				  struct rcu_data *rdp);
542 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *rsp));
543 static void force_quiescent_state(struct rcu_state *rsp);
544 static int rcu_pending(void);
545 
546 /*
547  * Return the number of RCU batches started thus far for debug & stats.
548  */
549 unsigned long rcu_batches_started(void)
550 {
551 	return rcu_state_p->gpnum;
552 }
553 EXPORT_SYMBOL_GPL(rcu_batches_started);
554 
555 /*
556  * Return the number of RCU-sched batches started thus far for debug & stats.
557  */
558 unsigned long rcu_batches_started_sched(void)
559 {
560 	return rcu_sched_state.gpnum;
561 }
562 EXPORT_SYMBOL_GPL(rcu_batches_started_sched);
563 
564 /*
565  * Return the number of RCU BH batches started thus far for debug & stats.
566  */
567 unsigned long rcu_batches_started_bh(void)
568 {
569 	return rcu_bh_state.gpnum;
570 }
571 EXPORT_SYMBOL_GPL(rcu_batches_started_bh);
572 
573 /*
574  * Return the number of RCU batches completed thus far for debug & stats.
575  */
576 unsigned long rcu_batches_completed(void)
577 {
578 	return rcu_state_p->completed;
579 }
580 EXPORT_SYMBOL_GPL(rcu_batches_completed);
581 
582 /*
583  * Return the number of RCU-sched batches completed thus far for debug & stats.
584  */
585 unsigned long rcu_batches_completed_sched(void)
586 {
587 	return rcu_sched_state.completed;
588 }
589 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
590 
591 /*
592  * Return the number of RCU BH batches completed thus far for debug & stats.
593  */
594 unsigned long rcu_batches_completed_bh(void)
595 {
596 	return rcu_bh_state.completed;
597 }
598 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
599 
600 /*
601  * Return the number of RCU expedited batches completed thus far for
602  * debug & stats.  Odd numbers mean that a batch is in progress, even
603  * numbers mean idle.  The value returned will thus be roughly double
604  * the cumulative batches since boot.
605  */
606 unsigned long rcu_exp_batches_completed(void)
607 {
608 	return rcu_state_p->expedited_sequence;
609 }
610 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
611 
612 /*
613  * Return the number of RCU-sched expedited batches completed thus far
614  * for debug & stats.  Similar to rcu_exp_batches_completed().
615  */
616 unsigned long rcu_exp_batches_completed_sched(void)
617 {
618 	return rcu_sched_state.expedited_sequence;
619 }
620 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed_sched);
621 
622 /*
623  * Force a quiescent state.
624  */
625 void rcu_force_quiescent_state(void)
626 {
627 	force_quiescent_state(rcu_state_p);
628 }
629 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
630 
631 /*
632  * Force a quiescent state for RCU BH.
633  */
634 void rcu_bh_force_quiescent_state(void)
635 {
636 	force_quiescent_state(&rcu_bh_state);
637 }
638 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
639 
640 /*
641  * Force a quiescent state for RCU-sched.
642  */
643 void rcu_sched_force_quiescent_state(void)
644 {
645 	force_quiescent_state(&rcu_sched_state);
646 }
647 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
648 
649 /*
650  * Show the state of the grace-period kthreads.
651  */
652 void show_rcu_gp_kthreads(void)
653 {
654 	struct rcu_state *rsp;
655 
656 	for_each_rcu_flavor(rsp) {
657 		pr_info("%s: wait state: %d ->state: %#lx\n",
658 			rsp->name, rsp->gp_state, rsp->gp_kthread->state);
659 		/* sched_show_task(rsp->gp_kthread); */
660 	}
661 }
662 EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
663 
664 /*
665  * Record the number of times rcutorture tests have been initiated and
666  * terminated.  This information allows the debugfs tracing stats to be
667  * correlated to the rcutorture messages, even when the rcutorture module
668  * is being repeatedly loaded and unloaded.  In other words, we cannot
669  * store this state in rcutorture itself.
670  */
671 void rcutorture_record_test_transition(void)
672 {
673 	rcutorture_testseq++;
674 	rcutorture_vernum = 0;
675 }
676 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
677 
678 /*
679  * Send along grace-period-related data for rcutorture diagnostics.
680  */
681 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
682 			    unsigned long *gpnum, unsigned long *completed)
683 {
684 	struct rcu_state *rsp = NULL;
685 
686 	switch (test_type) {
687 	case RCU_FLAVOR:
688 		rsp = rcu_state_p;
689 		break;
690 	case RCU_BH_FLAVOR:
691 		rsp = &rcu_bh_state;
692 		break;
693 	case RCU_SCHED_FLAVOR:
694 		rsp = &rcu_sched_state;
695 		break;
696 	default:
697 		break;
698 	}
699 	if (rsp == NULL)
700 		return;
701 	*flags = READ_ONCE(rsp->gp_flags);
702 	*gpnum = READ_ONCE(rsp->gpnum);
703 	*completed = READ_ONCE(rsp->completed);
704 }
705 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
706 
707 /*
708  * Record the number of writer passes through the current rcutorture test.
709  * This is also used to correlate debugfs tracing stats with the rcutorture
710  * messages.
711  */
712 void rcutorture_record_progress(unsigned long vernum)
713 {
714 	rcutorture_vernum++;
715 }
716 EXPORT_SYMBOL_GPL(rcutorture_record_progress);
717 
718 /*
719  * Return the root node of the specified rcu_state structure.
720  */
721 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
722 {
723 	return &rsp->node[0];
724 }
725 
726 /*
727  * Is there any need for future grace periods?
728  * Interrupts must be disabled.  If the caller does not hold the root
729  * rnp_node structure's ->lock, the results are advisory only.
730  */
731 static int rcu_future_needs_gp(struct rcu_state *rsp)
732 {
733 	struct rcu_node *rnp = rcu_get_root(rsp);
734 	int idx = (READ_ONCE(rnp->completed) + 1) & 0x1;
735 	int *fp = &rnp->need_future_gp[idx];
736 
737 	RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_future_needs_gp() invoked with irqs enabled!!!");
738 	return READ_ONCE(*fp);
739 }
740 
741 /*
742  * Does the current CPU require a not-yet-started grace period?
743  * The caller must have disabled interrupts to prevent races with
744  * normal callback registry.
745  */
746 static bool
747 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
748 {
749 	RCU_LOCKDEP_WARN(!irqs_disabled(), "cpu_needs_another_gp() invoked with irqs enabled!!!");
750 	if (rcu_gp_in_progress(rsp))
751 		return false;  /* No, a grace period is already in progress. */
752 	if (rcu_future_needs_gp(rsp))
753 		return true;  /* Yes, a no-CBs CPU needs one. */
754 	if (!rcu_segcblist_is_enabled(&rdp->cblist))
755 		return false;  /* No, this is a no-CBs (or offline) CPU. */
756 	if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
757 		return true;  /* Yes, CPU has newly registered callbacks. */
758 	if (rcu_segcblist_future_gp_needed(&rdp->cblist,
759 					   READ_ONCE(rsp->completed)))
760 		return true;  /* Yes, CBs for future grace period. */
761 	return false; /* No grace period needed. */
762 }
763 
764 /*
765  * rcu_eqs_enter_common - current CPU is entering an extended quiescent state
766  *
767  * Enter idle, doing appropriate accounting.  The caller must have
768  * disabled interrupts.
769  */
770 static void rcu_eqs_enter_common(bool user)
771 {
772 	struct rcu_state *rsp;
773 	struct rcu_data *rdp;
774 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
775 
776 	RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_eqs_enter_common() invoked with irqs enabled!!!");
777 	trace_rcu_dyntick(TPS("Start"), rdtp->dynticks_nesting, 0);
778 	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
779 	    !user && !is_idle_task(current)) {
780 		struct task_struct *idle __maybe_unused =
781 			idle_task(smp_processor_id());
782 
783 		trace_rcu_dyntick(TPS("Error on entry: not idle task"), rdtp->dynticks_nesting, 0);
784 		rcu_ftrace_dump(DUMP_ORIG);
785 		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
786 			  current->pid, current->comm,
787 			  idle->pid, idle->comm); /* must be idle task! */
788 	}
789 	for_each_rcu_flavor(rsp) {
790 		rdp = this_cpu_ptr(rsp->rda);
791 		do_nocb_deferred_wakeup(rdp);
792 	}
793 	rcu_prepare_for_idle();
794 	__this_cpu_inc(disable_rcu_irq_enter);
795 	rdtp->dynticks_nesting = 0; /* Breaks tracing momentarily. */
796 	rcu_dynticks_eqs_enter(); /* After this, tracing works again. */
797 	__this_cpu_dec(disable_rcu_irq_enter);
798 	rcu_dynticks_task_enter();
799 
800 	/*
801 	 * It is illegal to enter an extended quiescent state while
802 	 * in an RCU read-side critical section.
803 	 */
804 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
805 			 "Illegal idle entry in RCU read-side critical section.");
806 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),
807 			 "Illegal idle entry in RCU-bh read-side critical section.");
808 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),
809 			 "Illegal idle entry in RCU-sched read-side critical section.");
810 }
811 
812 /*
813  * Enter an RCU extended quiescent state, which can be either the
814  * idle loop or adaptive-tickless usermode execution.
815  */
816 static void rcu_eqs_enter(bool user)
817 {
818 	struct rcu_dynticks *rdtp;
819 
820 	rdtp = this_cpu_ptr(&rcu_dynticks);
821 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
822 		     (rdtp->dynticks_nesting & DYNTICK_TASK_NEST_MASK) == 0);
823 	if ((rdtp->dynticks_nesting & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
824 		rcu_eqs_enter_common(user);
825 	else
826 		rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
827 }
828 
829 /**
830  * rcu_idle_enter - inform RCU that current CPU is entering idle
831  *
832  * Enter idle mode, in other words, -leave- the mode in which RCU
833  * read-side critical sections can occur.  (Though RCU read-side
834  * critical sections can occur in irq handlers in idle, a possibility
835  * handled by irq_enter() and irq_exit().)
836  *
837  * We crowbar the ->dynticks_nesting field to zero to allow for
838  * the possibility of usermode upcalls having messed up our count
839  * of interrupt nesting level during the prior busy period.
840  */
841 void rcu_idle_enter(void)
842 {
843 	RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_idle_enter() invoked with irqs enabled!!!");
844 	rcu_eqs_enter(false);
845 }
846 
847 #ifdef CONFIG_NO_HZ_FULL
848 /**
849  * rcu_user_enter - inform RCU that we are resuming userspace.
850  *
851  * Enter RCU idle mode right before resuming userspace.  No use of RCU
852  * is permitted between this call and rcu_user_exit(). This way the
853  * CPU doesn't need to maintain the tick for RCU maintenance purposes
854  * when the CPU runs in userspace.
855  */
856 void rcu_user_enter(void)
857 {
858 	RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_user_enter() invoked with irqs enabled!!!");
859 	rcu_eqs_enter(true);
860 }
861 #endif /* CONFIG_NO_HZ_FULL */
862 
863 /**
864  * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
865  *
866  * Exit from an interrupt handler, which might possibly result in entering
867  * idle mode, in other words, leaving the mode in which read-side critical
868  * sections can occur.  The caller must have disabled interrupts.
869  *
870  * This code assumes that the idle loop never does anything that might
871  * result in unbalanced calls to irq_enter() and irq_exit().  If your
872  * architecture violates this assumption, RCU will give you what you
873  * deserve, good and hard.  But very infrequently and irreproducibly.
874  *
875  * Use things like work queues to work around this limitation.
876  *
877  * You have been warned.
878  */
879 void rcu_irq_exit(void)
880 {
881 	struct rcu_dynticks *rdtp;
882 
883 	RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_exit() invoked with irqs enabled!!!");
884 	rdtp = this_cpu_ptr(&rcu_dynticks);
885 
886 	/* Page faults can happen in NMI handlers, so check... */
887 	if (rdtp->dynticks_nmi_nesting)
888 		return;
889 
890 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
891 		     rdtp->dynticks_nesting < 1);
892 	if (rdtp->dynticks_nesting <= 1) {
893 		rcu_eqs_enter_common(true);
894 	} else {
895 		trace_rcu_dyntick(TPS("--="), rdtp->dynticks_nesting, rdtp->dynticks_nesting - 1);
896 		rdtp->dynticks_nesting--;
897 	}
898 }
899 
900 /*
901  * Wrapper for rcu_irq_exit() where interrupts are enabled.
902  */
903 void rcu_irq_exit_irqson(void)
904 {
905 	unsigned long flags;
906 
907 	local_irq_save(flags);
908 	rcu_irq_exit();
909 	local_irq_restore(flags);
910 }
911 
912 /*
913  * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
914  *
915  * If the new value of the ->dynticks_nesting counter was previously zero,
916  * we really have exited idle, and must do the appropriate accounting.
917  * The caller must have disabled interrupts.
918  */
919 static void rcu_eqs_exit_common(long long oldval, int user)
920 {
921 	RCU_TRACE(struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);)
922 
923 	rcu_dynticks_task_exit();
924 	rcu_dynticks_eqs_exit();
925 	rcu_cleanup_after_idle();
926 	trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
927 	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
928 	    !user && !is_idle_task(current)) {
929 		struct task_struct *idle __maybe_unused =
930 			idle_task(smp_processor_id());
931 
932 		trace_rcu_dyntick(TPS("Error on exit: not idle task"),
933 				  oldval, rdtp->dynticks_nesting);
934 		rcu_ftrace_dump(DUMP_ORIG);
935 		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
936 			  current->pid, current->comm,
937 			  idle->pid, idle->comm); /* must be idle task! */
938 	}
939 }
940 
941 /*
942  * Exit an RCU extended quiescent state, which can be either the
943  * idle loop or adaptive-tickless usermode execution.
944  */
945 static void rcu_eqs_exit(bool user)
946 {
947 	struct rcu_dynticks *rdtp;
948 	long long oldval;
949 
950 	RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_eqs_exit() invoked with irqs enabled!!!");
951 	rdtp = this_cpu_ptr(&rcu_dynticks);
952 	oldval = rdtp->dynticks_nesting;
953 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
954 	if (oldval & DYNTICK_TASK_NEST_MASK) {
955 		rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
956 	} else {
957 		__this_cpu_inc(disable_rcu_irq_enter);
958 		rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
959 		rcu_eqs_exit_common(oldval, user);
960 		__this_cpu_dec(disable_rcu_irq_enter);
961 	}
962 }
963 
964 /**
965  * rcu_idle_exit - inform RCU that current CPU is leaving idle
966  *
967  * Exit idle mode, in other words, -enter- the mode in which RCU
968  * read-side critical sections can occur.
969  *
970  * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
971  * allow for the possibility of usermode upcalls messing up our count
972  * of interrupt nesting level during the busy period that is just
973  * now starting.
974  */
975 void rcu_idle_exit(void)
976 {
977 	unsigned long flags;
978 
979 	local_irq_save(flags);
980 	rcu_eqs_exit(false);
981 	local_irq_restore(flags);
982 }
983 
984 #ifdef CONFIG_NO_HZ_FULL
985 /**
986  * rcu_user_exit - inform RCU that we are exiting userspace.
987  *
988  * Exit RCU idle mode while entering the kernel because it can
989  * run a RCU read side critical section anytime.
990  */
991 void rcu_user_exit(void)
992 {
993 	rcu_eqs_exit(1);
994 }
995 #endif /* CONFIG_NO_HZ_FULL */
996 
997 /**
998  * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
999  *
1000  * Enter an interrupt handler, which might possibly result in exiting
1001  * idle mode, in other words, entering the mode in which read-side critical
1002  * sections can occur.  The caller must have disabled interrupts.
1003  *
1004  * Note that the Linux kernel is fully capable of entering an interrupt
1005  * handler that it never exits, for example when doing upcalls to
1006  * user mode!  This code assumes that the idle loop never does upcalls to
1007  * user mode.  If your architecture does do upcalls from the idle loop (or
1008  * does anything else that results in unbalanced calls to the irq_enter()
1009  * and irq_exit() functions), RCU will give you what you deserve, good
1010  * and hard.  But very infrequently and irreproducibly.
1011  *
1012  * Use things like work queues to work around this limitation.
1013  *
1014  * You have been warned.
1015  */
1016 void rcu_irq_enter(void)
1017 {
1018 	struct rcu_dynticks *rdtp;
1019 	long long oldval;
1020 
1021 	RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_enter() invoked with irqs enabled!!!");
1022 	rdtp = this_cpu_ptr(&rcu_dynticks);
1023 
1024 	/* Page faults can happen in NMI handlers, so check... */
1025 	if (rdtp->dynticks_nmi_nesting)
1026 		return;
1027 
1028 	oldval = rdtp->dynticks_nesting;
1029 	rdtp->dynticks_nesting++;
1030 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
1031 		     rdtp->dynticks_nesting == 0);
1032 	if (oldval)
1033 		trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
1034 	else
1035 		rcu_eqs_exit_common(oldval, true);
1036 }
1037 
1038 /*
1039  * Wrapper for rcu_irq_enter() where interrupts are enabled.
1040  */
1041 void rcu_irq_enter_irqson(void)
1042 {
1043 	unsigned long flags;
1044 
1045 	local_irq_save(flags);
1046 	rcu_irq_enter();
1047 	local_irq_restore(flags);
1048 }
1049 
1050 /**
1051  * rcu_nmi_enter - inform RCU of entry to NMI context
1052  *
1053  * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
1054  * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
1055  * that the CPU is active.  This implementation permits nested NMIs, as
1056  * long as the nesting level does not overflow an int.  (You will probably
1057  * run out of stack space first.)
1058  */
1059 void rcu_nmi_enter(void)
1060 {
1061 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1062 	int incby = 2;
1063 
1064 	/* Complain about underflow. */
1065 	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);
1066 
1067 	/*
1068 	 * If idle from RCU viewpoint, atomically increment ->dynticks
1069 	 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
1070 	 * Otherwise, increment ->dynticks_nmi_nesting by two.  This means
1071 	 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
1072 	 * to be in the outermost NMI handler that interrupted an RCU-idle
1073 	 * period (observation due to Andy Lutomirski).
1074 	 */
1075 	if (rcu_dynticks_curr_cpu_in_eqs()) {
1076 		rcu_dynticks_eqs_exit();
1077 		incby = 1;
1078 	}
1079 	rdtp->dynticks_nmi_nesting += incby;
1080 	barrier();
1081 }
1082 
1083 /**
1084  * rcu_nmi_exit - inform RCU of exit from NMI context
1085  *
1086  * If we are returning from the outermost NMI handler that interrupted an
1087  * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
1088  * to let the RCU grace-period handling know that the CPU is back to
1089  * being RCU-idle.
1090  */
1091 void rcu_nmi_exit(void)
1092 {
1093 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1094 
1095 	/*
1096 	 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
1097 	 * (We are exiting an NMI handler, so RCU better be paying attention
1098 	 * to us!)
1099 	 */
1100 	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
1101 	WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
1102 
1103 	/*
1104 	 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
1105 	 * leave it in non-RCU-idle state.
1106 	 */
1107 	if (rdtp->dynticks_nmi_nesting != 1) {
1108 		rdtp->dynticks_nmi_nesting -= 2;
1109 		return;
1110 	}
1111 
1112 	/* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
1113 	rdtp->dynticks_nmi_nesting = 0;
1114 	rcu_dynticks_eqs_enter();
1115 }
1116 
1117 /**
1118  * rcu_is_watching - see if RCU thinks that the current CPU is idle
1119  *
1120  * Return true if RCU is watching the running CPU, which means that this
1121  * CPU can safely enter RCU read-side critical sections.  In other words,
1122  * if the current CPU is in its idle loop and is neither in an interrupt
1123  * or NMI handler, return true.
1124  */
1125 bool notrace rcu_is_watching(void)
1126 {
1127 	bool ret;
1128 
1129 	preempt_disable_notrace();
1130 	ret = !rcu_dynticks_curr_cpu_in_eqs();
1131 	preempt_enable_notrace();
1132 	return ret;
1133 }
1134 EXPORT_SYMBOL_GPL(rcu_is_watching);
1135 
1136 /*
1137  * If a holdout task is actually running, request an urgent quiescent
1138  * state from its CPU.  This is unsynchronized, so migrations can cause
1139  * the request to go to the wrong CPU.  Which is OK, all that will happen
1140  * is that the CPU's next context switch will be a bit slower and next
1141  * time around this task will generate another request.
1142  */
1143 void rcu_request_urgent_qs_task(struct task_struct *t)
1144 {
1145 	int cpu;
1146 
1147 	barrier();
1148 	cpu = task_cpu(t);
1149 	if (!task_curr(t))
1150 		return; /* This task is not running on that CPU. */
1151 	smp_store_release(per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, cpu), true);
1152 }
1153 
1154 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
1155 
1156 /*
1157  * Is the current CPU online?  Disable preemption to avoid false positives
1158  * that could otherwise happen due to the current CPU number being sampled,
1159  * this task being preempted, its old CPU being taken offline, resuming
1160  * on some other CPU, then determining that its old CPU is now offline.
1161  * It is OK to use RCU on an offline processor during initial boot, hence
1162  * the check for rcu_scheduler_fully_active.  Note also that it is OK
1163  * for a CPU coming online to use RCU for one jiffy prior to marking itself
1164  * online in the cpu_online_mask.  Similarly, it is OK for a CPU going
1165  * offline to continue to use RCU for one jiffy after marking itself
1166  * offline in the cpu_online_mask.  This leniency is necessary given the
1167  * non-atomic nature of the online and offline processing, for example,
1168  * the fact that a CPU enters the scheduler after completing the teardown
1169  * of the CPU.
1170  *
1171  * This is also why RCU internally marks CPUs online during in the
1172  * preparation phase and offline after the CPU has been taken down.
1173  *
1174  * Disable checking if in an NMI handler because we cannot safely report
1175  * errors from NMI handlers anyway.
1176  */
1177 bool rcu_lockdep_current_cpu_online(void)
1178 {
1179 	struct rcu_data *rdp;
1180 	struct rcu_node *rnp;
1181 	bool ret;
1182 
1183 	if (in_nmi())
1184 		return true;
1185 	preempt_disable();
1186 	rdp = this_cpu_ptr(&rcu_sched_data);
1187 	rnp = rdp->mynode;
1188 	ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
1189 	      !rcu_scheduler_fully_active;
1190 	preempt_enable();
1191 	return ret;
1192 }
1193 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
1194 
1195 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1196 
1197 /**
1198  * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
1199  *
1200  * If the current CPU is idle or running at a first-level (not nested)
1201  * interrupt from idle, return true.  The caller must have at least
1202  * disabled preemption.
1203  */
1204 static int rcu_is_cpu_rrupt_from_idle(void)
1205 {
1206 	return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
1207 }
1208 
1209 /*
1210  * Snapshot the specified CPU's dynticks counter so that we can later
1211  * credit them with an implicit quiescent state.  Return 1 if this CPU
1212  * is in dynticks idle mode, which is an extended quiescent state.
1213  */
1214 static int dyntick_save_progress_counter(struct rcu_data *rdp)
1215 {
1216 	rdp->dynticks_snap = rcu_dynticks_snap(rdp->dynticks);
1217 	if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
1218 		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1219 		if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4,
1220 				 rdp->mynode->gpnum))
1221 			WRITE_ONCE(rdp->gpwrap, true);
1222 		return 1;
1223 	}
1224 	return 0;
1225 }
1226 
1227 /*
1228  * Return true if the specified CPU has passed through a quiescent
1229  * state by virtue of being in or having passed through an dynticks
1230  * idle state since the last call to dyntick_save_progress_counter()
1231  * for this same CPU, or by virtue of having been offline.
1232  */
1233 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
1234 {
1235 	unsigned long jtsq;
1236 	bool *rnhqp;
1237 	bool *ruqp;
1238 	unsigned long rjtsc;
1239 	struct rcu_node *rnp;
1240 
1241 	/*
1242 	 * If the CPU passed through or entered a dynticks idle phase with
1243 	 * no active irq/NMI handlers, then we can safely pretend that the CPU
1244 	 * already acknowledged the request to pass through a quiescent
1245 	 * state.  Either way, that CPU cannot possibly be in an RCU
1246 	 * read-side critical section that started before the beginning
1247 	 * of the current RCU grace period.
1248 	 */
1249 	if (rcu_dynticks_in_eqs_since(rdp->dynticks, rdp->dynticks_snap)) {
1250 		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1251 		rdp->dynticks_fqs++;
1252 		return 1;
1253 	}
1254 
1255 	/* Compute and saturate jiffies_till_sched_qs. */
1256 	jtsq = jiffies_till_sched_qs;
1257 	rjtsc = rcu_jiffies_till_stall_check();
1258 	if (jtsq > rjtsc / 2) {
1259 		WRITE_ONCE(jiffies_till_sched_qs, rjtsc);
1260 		jtsq = rjtsc / 2;
1261 	} else if (jtsq < 1) {
1262 		WRITE_ONCE(jiffies_till_sched_qs, 1);
1263 		jtsq = 1;
1264 	}
1265 
1266 	/*
1267 	 * Has this CPU encountered a cond_resched_rcu_qs() since the
1268 	 * beginning of the grace period?  For this to be the case,
1269 	 * the CPU has to have noticed the current grace period.  This
1270 	 * might not be the case for nohz_full CPUs looping in the kernel.
1271 	 */
1272 	rnp = rdp->mynode;
1273 	ruqp = per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, rdp->cpu);
1274 	if (time_after(jiffies, rdp->rsp->gp_start + jtsq) &&
1275 	    READ_ONCE(rdp->rcu_qs_ctr_snap) != per_cpu(rcu_dynticks.rcu_qs_ctr, rdp->cpu) &&
1276 	    READ_ONCE(rdp->gpnum) == rnp->gpnum && !rdp->gpwrap) {
1277 		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("rqc"));
1278 		return 1;
1279 	} else {
1280 		/* Load rcu_qs_ctr before store to rcu_urgent_qs. */
1281 		smp_store_release(ruqp, true);
1282 	}
1283 
1284 	/* Check for the CPU being offline. */
1285 	if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp))) {
1286 		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
1287 		rdp->offline_fqs++;
1288 		return 1;
1289 	}
1290 
1291 	/*
1292 	 * A CPU running for an extended time within the kernel can
1293 	 * delay RCU grace periods.  When the CPU is in NO_HZ_FULL mode,
1294 	 * even context-switching back and forth between a pair of
1295 	 * in-kernel CPU-bound tasks cannot advance grace periods.
1296 	 * So if the grace period is old enough, make the CPU pay attention.
1297 	 * Note that the unsynchronized assignments to the per-CPU
1298 	 * rcu_need_heavy_qs variable are safe.  Yes, setting of
1299 	 * bits can be lost, but they will be set again on the next
1300 	 * force-quiescent-state pass.  So lost bit sets do not result
1301 	 * in incorrect behavior, merely in a grace period lasting
1302 	 * a few jiffies longer than it might otherwise.  Because
1303 	 * there are at most four threads involved, and because the
1304 	 * updates are only once every few jiffies, the probability of
1305 	 * lossage (and thus of slight grace-period extension) is
1306 	 * quite low.
1307 	 *
1308 	 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
1309 	 * is set too high, we override with half of the RCU CPU stall
1310 	 * warning delay.
1311 	 */
1312 	rnhqp = &per_cpu(rcu_dynticks.rcu_need_heavy_qs, rdp->cpu);
1313 	if (!READ_ONCE(*rnhqp) &&
1314 	    (time_after(jiffies, rdp->rsp->gp_start + jtsq) ||
1315 	     time_after(jiffies, rdp->rsp->jiffies_resched))) {
1316 		WRITE_ONCE(*rnhqp, true);
1317 		/* Store rcu_need_heavy_qs before rcu_urgent_qs. */
1318 		smp_store_release(ruqp, true);
1319 		rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
1320 	}
1321 
1322 	/*
1323 	 * If more than halfway to RCU CPU stall-warning time, do
1324 	 * a resched_cpu() to try to loosen things up a bit.
1325 	 */
1326 	if (jiffies - rdp->rsp->gp_start > rcu_jiffies_till_stall_check() / 2)
1327 		resched_cpu(rdp->cpu);
1328 
1329 	return 0;
1330 }
1331 
1332 static void record_gp_stall_check_time(struct rcu_state *rsp)
1333 {
1334 	unsigned long j = jiffies;
1335 	unsigned long j1;
1336 
1337 	rsp->gp_start = j;
1338 	smp_wmb(); /* Record start time before stall time. */
1339 	j1 = rcu_jiffies_till_stall_check();
1340 	WRITE_ONCE(rsp->jiffies_stall, j + j1);
1341 	rsp->jiffies_resched = j + j1 / 2;
1342 	rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
1343 }
1344 
1345 /*
1346  * Convert a ->gp_state value to a character string.
1347  */
1348 static const char *gp_state_getname(short gs)
1349 {
1350 	if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
1351 		return "???";
1352 	return gp_state_names[gs];
1353 }
1354 
1355 /*
1356  * Complain about starvation of grace-period kthread.
1357  */
1358 static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
1359 {
1360 	unsigned long gpa;
1361 	unsigned long j;
1362 
1363 	j = jiffies;
1364 	gpa = READ_ONCE(rsp->gp_activity);
1365 	if (j - gpa > 2 * HZ) {
1366 		pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x %s(%d) ->state=%#lx ->cpu=%d\n",
1367 		       rsp->name, j - gpa,
1368 		       rsp->gpnum, rsp->completed,
1369 		       rsp->gp_flags,
1370 		       gp_state_getname(rsp->gp_state), rsp->gp_state,
1371 		       rsp->gp_kthread ? rsp->gp_kthread->state : ~0,
1372 		       rsp->gp_kthread ? task_cpu(rsp->gp_kthread) : -1);
1373 		if (rsp->gp_kthread) {
1374 			sched_show_task(rsp->gp_kthread);
1375 			wake_up_process(rsp->gp_kthread);
1376 		}
1377 	}
1378 }
1379 
1380 /*
1381  * Dump stacks of all tasks running on stalled CPUs.  First try using
1382  * NMIs, but fall back to manual remote stack tracing on architectures
1383  * that don't support NMI-based stack dumps.  The NMI-triggered stack
1384  * traces are more accurate because they are printed by the target CPU.
1385  */
1386 static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
1387 {
1388 	int cpu;
1389 	unsigned long flags;
1390 	struct rcu_node *rnp;
1391 
1392 	rcu_for_each_leaf_node(rsp, rnp) {
1393 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1394 		for_each_leaf_node_possible_cpu(rnp, cpu)
1395 			if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu))
1396 				if (!trigger_single_cpu_backtrace(cpu))
1397 					dump_cpu_task(cpu);
1398 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1399 	}
1400 }
1401 
1402 /*
1403  * If too much time has passed in the current grace period, and if
1404  * so configured, go kick the relevant kthreads.
1405  */
1406 static void rcu_stall_kick_kthreads(struct rcu_state *rsp)
1407 {
1408 	unsigned long j;
1409 
1410 	if (!rcu_kick_kthreads)
1411 		return;
1412 	j = READ_ONCE(rsp->jiffies_kick_kthreads);
1413 	if (time_after(jiffies, j) && rsp->gp_kthread &&
1414 	    (rcu_gp_in_progress(rsp) || READ_ONCE(rsp->gp_flags))) {
1415 		WARN_ONCE(1, "Kicking %s grace-period kthread\n", rsp->name);
1416 		rcu_ftrace_dump(DUMP_ALL);
1417 		wake_up_process(rsp->gp_kthread);
1418 		WRITE_ONCE(rsp->jiffies_kick_kthreads, j + HZ);
1419 	}
1420 }
1421 
1422 static inline void panic_on_rcu_stall(void)
1423 {
1424 	if (sysctl_panic_on_rcu_stall)
1425 		panic("RCU Stall\n");
1426 }
1427 
1428 static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
1429 {
1430 	int cpu;
1431 	long delta;
1432 	unsigned long flags;
1433 	unsigned long gpa;
1434 	unsigned long j;
1435 	int ndetected = 0;
1436 	struct rcu_node *rnp = rcu_get_root(rsp);
1437 	long totqlen = 0;
1438 
1439 	/* Kick and suppress, if so configured. */
1440 	rcu_stall_kick_kthreads(rsp);
1441 	if (rcu_cpu_stall_suppress)
1442 		return;
1443 
1444 	/* Only let one CPU complain about others per time interval. */
1445 
1446 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1447 	delta = jiffies - READ_ONCE(rsp->jiffies_stall);
1448 	if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1449 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1450 		return;
1451 	}
1452 	WRITE_ONCE(rsp->jiffies_stall,
1453 		   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1454 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1455 
1456 	/*
1457 	 * OK, time to rat on our buddy...
1458 	 * See Documentation/RCU/stallwarn.txt for info on how to debug
1459 	 * RCU CPU stall warnings.
1460 	 */
1461 	pr_err("INFO: %s detected stalls on CPUs/tasks:",
1462 	       rsp->name);
1463 	print_cpu_stall_info_begin();
1464 	rcu_for_each_leaf_node(rsp, rnp) {
1465 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1466 		ndetected += rcu_print_task_stall(rnp);
1467 		if (rnp->qsmask != 0) {
1468 			for_each_leaf_node_possible_cpu(rnp, cpu)
1469 				if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) {
1470 					print_cpu_stall_info(rsp, cpu);
1471 					ndetected++;
1472 				}
1473 		}
1474 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1475 	}
1476 
1477 	print_cpu_stall_info_end();
1478 	for_each_possible_cpu(cpu)
1479 		totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda,
1480 							    cpu)->cblist);
1481 	pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
1482 	       smp_processor_id(), (long)(jiffies - rsp->gp_start),
1483 	       (long)rsp->gpnum, (long)rsp->completed, totqlen);
1484 	if (ndetected) {
1485 		rcu_dump_cpu_stacks(rsp);
1486 
1487 		/* Complain about tasks blocking the grace period. */
1488 		rcu_print_detail_task_stall(rsp);
1489 	} else {
1490 		if (READ_ONCE(rsp->gpnum) != gpnum ||
1491 		    READ_ONCE(rsp->completed) == gpnum) {
1492 			pr_err("INFO: Stall ended before state dump start\n");
1493 		} else {
1494 			j = jiffies;
1495 			gpa = READ_ONCE(rsp->gp_activity);
1496 			pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
1497 			       rsp->name, j - gpa, j, gpa,
1498 			       jiffies_till_next_fqs,
1499 			       rcu_get_root(rsp)->qsmask);
1500 			/* In this case, the current CPU might be at fault. */
1501 			sched_show_task(current);
1502 		}
1503 	}
1504 
1505 	rcu_check_gp_kthread_starvation(rsp);
1506 
1507 	panic_on_rcu_stall();
1508 
1509 	force_quiescent_state(rsp);  /* Kick them all. */
1510 }
1511 
1512 static void print_cpu_stall(struct rcu_state *rsp)
1513 {
1514 	int cpu;
1515 	unsigned long flags;
1516 	struct rcu_node *rnp = rcu_get_root(rsp);
1517 	long totqlen = 0;
1518 
1519 	/* Kick and suppress, if so configured. */
1520 	rcu_stall_kick_kthreads(rsp);
1521 	if (rcu_cpu_stall_suppress)
1522 		return;
1523 
1524 	/*
1525 	 * OK, time to rat on ourselves...
1526 	 * See Documentation/RCU/stallwarn.txt for info on how to debug
1527 	 * RCU CPU stall warnings.
1528 	 */
1529 	pr_err("INFO: %s self-detected stall on CPU", rsp->name);
1530 	print_cpu_stall_info_begin();
1531 	print_cpu_stall_info(rsp, smp_processor_id());
1532 	print_cpu_stall_info_end();
1533 	for_each_possible_cpu(cpu)
1534 		totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda,
1535 							    cpu)->cblist);
1536 	pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
1537 		jiffies - rsp->gp_start,
1538 		(long)rsp->gpnum, (long)rsp->completed, totqlen);
1539 
1540 	rcu_check_gp_kthread_starvation(rsp);
1541 
1542 	rcu_dump_cpu_stacks(rsp);
1543 
1544 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1545 	if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
1546 		WRITE_ONCE(rsp->jiffies_stall,
1547 			   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1548 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1549 
1550 	panic_on_rcu_stall();
1551 
1552 	/*
1553 	 * Attempt to revive the RCU machinery by forcing a context switch.
1554 	 *
1555 	 * A context switch would normally allow the RCU state machine to make
1556 	 * progress and it could be we're stuck in kernel space without context
1557 	 * switches for an entirely unreasonable amount of time.
1558 	 */
1559 	resched_cpu(smp_processor_id());
1560 }
1561 
1562 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
1563 {
1564 	unsigned long completed;
1565 	unsigned long gpnum;
1566 	unsigned long gps;
1567 	unsigned long j;
1568 	unsigned long js;
1569 	struct rcu_node *rnp;
1570 
1571 	if ((rcu_cpu_stall_suppress && !rcu_kick_kthreads) ||
1572 	    !rcu_gp_in_progress(rsp))
1573 		return;
1574 	rcu_stall_kick_kthreads(rsp);
1575 	j = jiffies;
1576 
1577 	/*
1578 	 * Lots of memory barriers to reject false positives.
1579 	 *
1580 	 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1581 	 * then rsp->gp_start, and finally rsp->completed.  These values
1582 	 * are updated in the opposite order with memory barriers (or
1583 	 * equivalent) during grace-period initialization and cleanup.
1584 	 * Now, a false positive can occur if we get an new value of
1585 	 * rsp->gp_start and a old value of rsp->jiffies_stall.  But given
1586 	 * the memory barriers, the only way that this can happen is if one
1587 	 * grace period ends and another starts between these two fetches.
1588 	 * Detect this by comparing rsp->completed with the previous fetch
1589 	 * from rsp->gpnum.
1590 	 *
1591 	 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1592 	 * and rsp->gp_start suffice to forestall false positives.
1593 	 */
1594 	gpnum = READ_ONCE(rsp->gpnum);
1595 	smp_rmb(); /* Pick up ->gpnum first... */
1596 	js = READ_ONCE(rsp->jiffies_stall);
1597 	smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1598 	gps = READ_ONCE(rsp->gp_start);
1599 	smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1600 	completed = READ_ONCE(rsp->completed);
1601 	if (ULONG_CMP_GE(completed, gpnum) ||
1602 	    ULONG_CMP_LT(j, js) ||
1603 	    ULONG_CMP_GE(gps, js))
1604 		return; /* No stall or GP completed since entering function. */
1605 	rnp = rdp->mynode;
1606 	if (rcu_gp_in_progress(rsp) &&
1607 	    (READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
1608 
1609 		/* We haven't checked in, so go dump stack. */
1610 		print_cpu_stall(rsp);
1611 
1612 	} else if (rcu_gp_in_progress(rsp) &&
1613 		   ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1614 
1615 		/* They had a few time units to dump stack, so complain. */
1616 		print_other_cpu_stall(rsp, gpnum);
1617 	}
1618 }
1619 
1620 /**
1621  * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1622  *
1623  * Set the stall-warning timeout way off into the future, thus preventing
1624  * any RCU CPU stall-warning messages from appearing in the current set of
1625  * RCU grace periods.
1626  *
1627  * The caller must disable hard irqs.
1628  */
1629 void rcu_cpu_stall_reset(void)
1630 {
1631 	struct rcu_state *rsp;
1632 
1633 	for_each_rcu_flavor(rsp)
1634 		WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
1635 }
1636 
1637 /*
1638  * Determine the value that ->completed will have at the end of the
1639  * next subsequent grace period.  This is used to tag callbacks so that
1640  * a CPU can invoke callbacks in a timely fashion even if that CPU has
1641  * been dyntick-idle for an extended period with callbacks under the
1642  * influence of RCU_FAST_NO_HZ.
1643  *
1644  * The caller must hold rnp->lock with interrupts disabled.
1645  */
1646 static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1647 				       struct rcu_node *rnp)
1648 {
1649 	lockdep_assert_held(&rnp->lock);
1650 
1651 	/*
1652 	 * If RCU is idle, we just wait for the next grace period.
1653 	 * But we can only be sure that RCU is idle if we are looking
1654 	 * at the root rcu_node structure -- otherwise, a new grace
1655 	 * period might have started, but just not yet gotten around
1656 	 * to initializing the current non-root rcu_node structure.
1657 	 */
1658 	if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1659 		return rnp->completed + 1;
1660 
1661 	/*
1662 	 * Otherwise, wait for a possible partial grace period and
1663 	 * then the subsequent full grace period.
1664 	 */
1665 	return rnp->completed + 2;
1666 }
1667 
1668 /*
1669  * Trace-event helper function for rcu_start_future_gp() and
1670  * rcu_nocb_wait_gp().
1671  */
1672 static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1673 				unsigned long c, const char *s)
1674 {
1675 	trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1676 				      rnp->completed, c, rnp->level,
1677 				      rnp->grplo, rnp->grphi, s);
1678 }
1679 
1680 /*
1681  * Start some future grace period, as needed to handle newly arrived
1682  * callbacks.  The required future grace periods are recorded in each
1683  * rcu_node structure's ->need_future_gp field.  Returns true if there
1684  * is reason to awaken the grace-period kthread.
1685  *
1686  * The caller must hold the specified rcu_node structure's ->lock.
1687  */
1688 static bool __maybe_unused
1689 rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1690 		    unsigned long *c_out)
1691 {
1692 	unsigned long c;
1693 	bool ret = false;
1694 	struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1695 
1696 	lockdep_assert_held(&rnp->lock);
1697 
1698 	/*
1699 	 * Pick up grace-period number for new callbacks.  If this
1700 	 * grace period is already marked as needed, return to the caller.
1701 	 */
1702 	c = rcu_cbs_completed(rdp->rsp, rnp);
1703 	trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1704 	if (rnp->need_future_gp[c & 0x1]) {
1705 		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1706 		goto out;
1707 	}
1708 
1709 	/*
1710 	 * If either this rcu_node structure or the root rcu_node structure
1711 	 * believe that a grace period is in progress, then we must wait
1712 	 * for the one following, which is in "c".  Because our request
1713 	 * will be noticed at the end of the current grace period, we don't
1714 	 * need to explicitly start one.  We only do the lockless check
1715 	 * of rnp_root's fields if the current rcu_node structure thinks
1716 	 * there is no grace period in flight, and because we hold rnp->lock,
1717 	 * the only possible change is when rnp_root's two fields are
1718 	 * equal, in which case rnp_root->gpnum might be concurrently
1719 	 * incremented.  But that is OK, as it will just result in our
1720 	 * doing some extra useless work.
1721 	 */
1722 	if (rnp->gpnum != rnp->completed ||
1723 	    READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) {
1724 		rnp->need_future_gp[c & 0x1]++;
1725 		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1726 		goto out;
1727 	}
1728 
1729 	/*
1730 	 * There might be no grace period in progress.  If we don't already
1731 	 * hold it, acquire the root rcu_node structure's lock in order to
1732 	 * start one (if needed).
1733 	 */
1734 	if (rnp != rnp_root)
1735 		raw_spin_lock_rcu_node(rnp_root);
1736 
1737 	/*
1738 	 * Get a new grace-period number.  If there really is no grace
1739 	 * period in progress, it will be smaller than the one we obtained
1740 	 * earlier.  Adjust callbacks as needed.
1741 	 */
1742 	c = rcu_cbs_completed(rdp->rsp, rnp_root);
1743 	if (!rcu_is_nocb_cpu(rdp->cpu))
1744 		(void)rcu_segcblist_accelerate(&rdp->cblist, c);
1745 
1746 	/*
1747 	 * If the needed for the required grace period is already
1748 	 * recorded, trace and leave.
1749 	 */
1750 	if (rnp_root->need_future_gp[c & 0x1]) {
1751 		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1752 		goto unlock_out;
1753 	}
1754 
1755 	/* Record the need for the future grace period. */
1756 	rnp_root->need_future_gp[c & 0x1]++;
1757 
1758 	/* If a grace period is not already in progress, start one. */
1759 	if (rnp_root->gpnum != rnp_root->completed) {
1760 		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1761 	} else {
1762 		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1763 		ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1764 	}
1765 unlock_out:
1766 	if (rnp != rnp_root)
1767 		raw_spin_unlock_rcu_node(rnp_root);
1768 out:
1769 	if (c_out != NULL)
1770 		*c_out = c;
1771 	return ret;
1772 }
1773 
1774 /*
1775  * Clean up any old requests for the just-ended grace period.  Also return
1776  * whether any additional grace periods have been requested.
1777  */
1778 static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1779 {
1780 	int c = rnp->completed;
1781 	int needmore;
1782 	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1783 
1784 	rnp->need_future_gp[c & 0x1] = 0;
1785 	needmore = rnp->need_future_gp[(c + 1) & 0x1];
1786 	trace_rcu_future_gp(rnp, rdp, c,
1787 			    needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1788 	return needmore;
1789 }
1790 
1791 /*
1792  * Awaken the grace-period kthread for the specified flavor of RCU.
1793  * Don't do a self-awaken, and don't bother awakening when there is
1794  * nothing for the grace-period kthread to do (as in several CPUs
1795  * raced to awaken, and we lost), and finally don't try to awaken
1796  * a kthread that has not yet been created.
1797  */
1798 static void rcu_gp_kthread_wake(struct rcu_state *rsp)
1799 {
1800 	if (current == rsp->gp_kthread ||
1801 	    !READ_ONCE(rsp->gp_flags) ||
1802 	    !rsp->gp_kthread)
1803 		return;
1804 	swake_up(&rsp->gp_wq);
1805 }
1806 
1807 /*
1808  * If there is room, assign a ->completed number to any callbacks on
1809  * this CPU that have not already been assigned.  Also accelerate any
1810  * callbacks that were previously assigned a ->completed number that has
1811  * since proven to be too conservative, which can happen if callbacks get
1812  * assigned a ->completed number while RCU is idle, but with reference to
1813  * a non-root rcu_node structure.  This function is idempotent, so it does
1814  * not hurt to call it repeatedly.  Returns an flag saying that we should
1815  * awaken the RCU grace-period kthread.
1816  *
1817  * The caller must hold rnp->lock with interrupts disabled.
1818  */
1819 static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1820 			       struct rcu_data *rdp)
1821 {
1822 	bool ret = false;
1823 
1824 	lockdep_assert_held(&rnp->lock);
1825 
1826 	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1827 	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1828 		return false;
1829 
1830 	/*
1831 	 * Callbacks are often registered with incomplete grace-period
1832 	 * information.  Something about the fact that getting exact
1833 	 * information requires acquiring a global lock...  RCU therefore
1834 	 * makes a conservative estimate of the grace period number at which
1835 	 * a given callback will become ready to invoke.	The following
1836 	 * code checks this estimate and improves it when possible, thus
1837 	 * accelerating callback invocation to an earlier grace-period
1838 	 * number.
1839 	 */
1840 	if (rcu_segcblist_accelerate(&rdp->cblist, rcu_cbs_completed(rsp, rnp)))
1841 		ret = rcu_start_future_gp(rnp, rdp, NULL);
1842 
1843 	/* Trace depending on how much we were able to accelerate. */
1844 	if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
1845 		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1846 	else
1847 		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
1848 	return ret;
1849 }
1850 
1851 /*
1852  * Move any callbacks whose grace period has completed to the
1853  * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1854  * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1855  * sublist.  This function is idempotent, so it does not hurt to
1856  * invoke it repeatedly.  As long as it is not invoked -too- often...
1857  * Returns true if the RCU grace-period kthread needs to be awakened.
1858  *
1859  * The caller must hold rnp->lock with interrupts disabled.
1860  */
1861 static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1862 			    struct rcu_data *rdp)
1863 {
1864 	lockdep_assert_held(&rnp->lock);
1865 
1866 	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1867 	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1868 		return false;
1869 
1870 	/*
1871 	 * Find all callbacks whose ->completed numbers indicate that they
1872 	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1873 	 */
1874 	rcu_segcblist_advance(&rdp->cblist, rnp->completed);
1875 
1876 	/* Classify any remaining callbacks. */
1877 	return rcu_accelerate_cbs(rsp, rnp, rdp);
1878 }
1879 
1880 /*
1881  * Update CPU-local rcu_data state to record the beginnings and ends of
1882  * grace periods.  The caller must hold the ->lock of the leaf rcu_node
1883  * structure corresponding to the current CPU, and must have irqs disabled.
1884  * Returns true if the grace-period kthread needs to be awakened.
1885  */
1886 static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
1887 			      struct rcu_data *rdp)
1888 {
1889 	bool ret;
1890 	bool need_gp;
1891 
1892 	lockdep_assert_held(&rnp->lock);
1893 
1894 	/* Handle the ends of any preceding grace periods first. */
1895 	if (rdp->completed == rnp->completed &&
1896 	    !unlikely(READ_ONCE(rdp->gpwrap))) {
1897 
1898 		/* No grace period end, so just accelerate recent callbacks. */
1899 		ret = rcu_accelerate_cbs(rsp, rnp, rdp);
1900 
1901 	} else {
1902 
1903 		/* Advance callbacks. */
1904 		ret = rcu_advance_cbs(rsp, rnp, rdp);
1905 
1906 		/* Remember that we saw this grace-period completion. */
1907 		rdp->completed = rnp->completed;
1908 		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1909 	}
1910 
1911 	if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
1912 		/*
1913 		 * If the current grace period is waiting for this CPU,
1914 		 * set up to detect a quiescent state, otherwise don't
1915 		 * go looking for one.
1916 		 */
1917 		rdp->gpnum = rnp->gpnum;
1918 		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1919 		need_gp = !!(rnp->qsmask & rdp->grpmask);
1920 		rdp->cpu_no_qs.b.norm = need_gp;
1921 		rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr);
1922 		rdp->core_needs_qs = need_gp;
1923 		zero_cpu_stall_ticks(rdp);
1924 		WRITE_ONCE(rdp->gpwrap, false);
1925 	}
1926 	return ret;
1927 }
1928 
1929 static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1930 {
1931 	unsigned long flags;
1932 	bool needwake;
1933 	struct rcu_node *rnp;
1934 
1935 	local_irq_save(flags);
1936 	rnp = rdp->mynode;
1937 	if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
1938 	     rdp->completed == READ_ONCE(rnp->completed) &&
1939 	     !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1940 	    !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1941 		local_irq_restore(flags);
1942 		return;
1943 	}
1944 	needwake = __note_gp_changes(rsp, rnp, rdp);
1945 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1946 	if (needwake)
1947 		rcu_gp_kthread_wake(rsp);
1948 }
1949 
1950 static void rcu_gp_slow(struct rcu_state *rsp, int delay)
1951 {
1952 	if (delay > 0 &&
1953 	    !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1954 		schedule_timeout_uninterruptible(delay);
1955 }
1956 
1957 /*
1958  * Initialize a new grace period.  Return false if no grace period required.
1959  */
1960 static bool rcu_gp_init(struct rcu_state *rsp)
1961 {
1962 	unsigned long oldmask;
1963 	struct rcu_data *rdp;
1964 	struct rcu_node *rnp = rcu_get_root(rsp);
1965 
1966 	WRITE_ONCE(rsp->gp_activity, jiffies);
1967 	raw_spin_lock_irq_rcu_node(rnp);
1968 	if (!READ_ONCE(rsp->gp_flags)) {
1969 		/* Spurious wakeup, tell caller to go back to sleep.  */
1970 		raw_spin_unlock_irq_rcu_node(rnp);
1971 		return false;
1972 	}
1973 	WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
1974 
1975 	if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1976 		/*
1977 		 * Grace period already in progress, don't start another.
1978 		 * Not supposed to be able to happen.
1979 		 */
1980 		raw_spin_unlock_irq_rcu_node(rnp);
1981 		return false;
1982 	}
1983 
1984 	/* Advance to a new grace period and initialize state. */
1985 	record_gp_stall_check_time(rsp);
1986 	/* Record GP times before starting GP, hence smp_store_release(). */
1987 	smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
1988 	trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
1989 	raw_spin_unlock_irq_rcu_node(rnp);
1990 
1991 	/*
1992 	 * Apply per-leaf buffered online and offline operations to the
1993 	 * rcu_node tree.  Note that this new grace period need not wait
1994 	 * for subsequent online CPUs, and that quiescent-state forcing
1995 	 * will handle subsequent offline CPUs.
1996 	 */
1997 	rcu_for_each_leaf_node(rsp, rnp) {
1998 		rcu_gp_slow(rsp, gp_preinit_delay);
1999 		raw_spin_lock_irq_rcu_node(rnp);
2000 		if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
2001 		    !rnp->wait_blkd_tasks) {
2002 			/* Nothing to do on this leaf rcu_node structure. */
2003 			raw_spin_unlock_irq_rcu_node(rnp);
2004 			continue;
2005 		}
2006 
2007 		/* Record old state, apply changes to ->qsmaskinit field. */
2008 		oldmask = rnp->qsmaskinit;
2009 		rnp->qsmaskinit = rnp->qsmaskinitnext;
2010 
2011 		/* If zero-ness of ->qsmaskinit changed, propagate up tree. */
2012 		if (!oldmask != !rnp->qsmaskinit) {
2013 			if (!oldmask) /* First online CPU for this rcu_node. */
2014 				rcu_init_new_rnp(rnp);
2015 			else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
2016 				rnp->wait_blkd_tasks = true;
2017 			else /* Last offline CPU and can propagate. */
2018 				rcu_cleanup_dead_rnp(rnp);
2019 		}
2020 
2021 		/*
2022 		 * If all waited-on tasks from prior grace period are
2023 		 * done, and if all this rcu_node structure's CPUs are
2024 		 * still offline, propagate up the rcu_node tree and
2025 		 * clear ->wait_blkd_tasks.  Otherwise, if one of this
2026 		 * rcu_node structure's CPUs has since come back online,
2027 		 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
2028 		 * checks for this, so just call it unconditionally).
2029 		 */
2030 		if (rnp->wait_blkd_tasks &&
2031 		    (!rcu_preempt_has_tasks(rnp) ||
2032 		     rnp->qsmaskinit)) {
2033 			rnp->wait_blkd_tasks = false;
2034 			rcu_cleanup_dead_rnp(rnp);
2035 		}
2036 
2037 		raw_spin_unlock_irq_rcu_node(rnp);
2038 	}
2039 
2040 	/*
2041 	 * Set the quiescent-state-needed bits in all the rcu_node
2042 	 * structures for all currently online CPUs in breadth-first order,
2043 	 * starting from the root rcu_node structure, relying on the layout
2044 	 * of the tree within the rsp->node[] array.  Note that other CPUs
2045 	 * will access only the leaves of the hierarchy, thus seeing that no
2046 	 * grace period is in progress, at least until the corresponding
2047 	 * leaf node has been initialized.
2048 	 *
2049 	 * The grace period cannot complete until the initialization
2050 	 * process finishes, because this kthread handles both.
2051 	 */
2052 	rcu_for_each_node_breadth_first(rsp, rnp) {
2053 		rcu_gp_slow(rsp, gp_init_delay);
2054 		raw_spin_lock_irq_rcu_node(rnp);
2055 		rdp = this_cpu_ptr(rsp->rda);
2056 		rcu_preempt_check_blocked_tasks(rnp);
2057 		rnp->qsmask = rnp->qsmaskinit;
2058 		WRITE_ONCE(rnp->gpnum, rsp->gpnum);
2059 		if (WARN_ON_ONCE(rnp->completed != rsp->completed))
2060 			WRITE_ONCE(rnp->completed, rsp->completed);
2061 		if (rnp == rdp->mynode)
2062 			(void)__note_gp_changes(rsp, rnp, rdp);
2063 		rcu_preempt_boost_start_gp(rnp);
2064 		trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
2065 					    rnp->level, rnp->grplo,
2066 					    rnp->grphi, rnp->qsmask);
2067 		raw_spin_unlock_irq_rcu_node(rnp);
2068 		cond_resched_rcu_qs();
2069 		WRITE_ONCE(rsp->gp_activity, jiffies);
2070 	}
2071 
2072 	return true;
2073 }
2074 
2075 /*
2076  * Helper function for swait_event_idle() wakeup at force-quiescent-state
2077  * time.
2078  */
2079 static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp)
2080 {
2081 	struct rcu_node *rnp = rcu_get_root(rsp);
2082 
2083 	/* Someone like call_rcu() requested a force-quiescent-state scan. */
2084 	*gfp = READ_ONCE(rsp->gp_flags);
2085 	if (*gfp & RCU_GP_FLAG_FQS)
2086 		return true;
2087 
2088 	/* The current grace period has completed. */
2089 	if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
2090 		return true;
2091 
2092 	return false;
2093 }
2094 
2095 /*
2096  * Do one round of quiescent-state forcing.
2097  */
2098 static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time)
2099 {
2100 	struct rcu_node *rnp = rcu_get_root(rsp);
2101 
2102 	WRITE_ONCE(rsp->gp_activity, jiffies);
2103 	rsp->n_force_qs++;
2104 	if (first_time) {
2105 		/* Collect dyntick-idle snapshots. */
2106 		force_qs_rnp(rsp, dyntick_save_progress_counter);
2107 	} else {
2108 		/* Handle dyntick-idle and offline CPUs. */
2109 		force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
2110 	}
2111 	/* Clear flag to prevent immediate re-entry. */
2112 	if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2113 		raw_spin_lock_irq_rcu_node(rnp);
2114 		WRITE_ONCE(rsp->gp_flags,
2115 			   READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
2116 		raw_spin_unlock_irq_rcu_node(rnp);
2117 	}
2118 }
2119 
2120 /*
2121  * Clean up after the old grace period.
2122  */
2123 static void rcu_gp_cleanup(struct rcu_state *rsp)
2124 {
2125 	unsigned long gp_duration;
2126 	bool needgp = false;
2127 	int nocb = 0;
2128 	struct rcu_data *rdp;
2129 	struct rcu_node *rnp = rcu_get_root(rsp);
2130 	struct swait_queue_head *sq;
2131 
2132 	WRITE_ONCE(rsp->gp_activity, jiffies);
2133 	raw_spin_lock_irq_rcu_node(rnp);
2134 	gp_duration = jiffies - rsp->gp_start;
2135 	if (gp_duration > rsp->gp_max)
2136 		rsp->gp_max = gp_duration;
2137 
2138 	/*
2139 	 * We know the grace period is complete, but to everyone else
2140 	 * it appears to still be ongoing.  But it is also the case
2141 	 * that to everyone else it looks like there is nothing that
2142 	 * they can do to advance the grace period.  It is therefore
2143 	 * safe for us to drop the lock in order to mark the grace
2144 	 * period as completed in all of the rcu_node structures.
2145 	 */
2146 	raw_spin_unlock_irq_rcu_node(rnp);
2147 
2148 	/*
2149 	 * Propagate new ->completed value to rcu_node structures so
2150 	 * that other CPUs don't have to wait until the start of the next
2151 	 * grace period to process their callbacks.  This also avoids
2152 	 * some nasty RCU grace-period initialization races by forcing
2153 	 * the end of the current grace period to be completely recorded in
2154 	 * all of the rcu_node structures before the beginning of the next
2155 	 * grace period is recorded in any of the rcu_node structures.
2156 	 */
2157 	rcu_for_each_node_breadth_first(rsp, rnp) {
2158 		raw_spin_lock_irq_rcu_node(rnp);
2159 		WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
2160 		WARN_ON_ONCE(rnp->qsmask);
2161 		WRITE_ONCE(rnp->completed, rsp->gpnum);
2162 		rdp = this_cpu_ptr(rsp->rda);
2163 		if (rnp == rdp->mynode)
2164 			needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
2165 		/* smp_mb() provided by prior unlock-lock pair. */
2166 		nocb += rcu_future_gp_cleanup(rsp, rnp);
2167 		sq = rcu_nocb_gp_get(rnp);
2168 		raw_spin_unlock_irq_rcu_node(rnp);
2169 		rcu_nocb_gp_cleanup(sq);
2170 		cond_resched_rcu_qs();
2171 		WRITE_ONCE(rsp->gp_activity, jiffies);
2172 		rcu_gp_slow(rsp, gp_cleanup_delay);
2173 	}
2174 	rnp = rcu_get_root(rsp);
2175 	raw_spin_lock_irq_rcu_node(rnp); /* Order GP before ->completed update. */
2176 	rcu_nocb_gp_set(rnp, nocb);
2177 
2178 	/* Declare grace period done. */
2179 	WRITE_ONCE(rsp->completed, rsp->gpnum);
2180 	trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
2181 	rsp->gp_state = RCU_GP_IDLE;
2182 	rdp = this_cpu_ptr(rsp->rda);
2183 	/* Advance CBs to reduce false positives below. */
2184 	needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
2185 	if (needgp || cpu_needs_another_gp(rsp, rdp)) {
2186 		WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2187 		trace_rcu_grace_period(rsp->name,
2188 				       READ_ONCE(rsp->gpnum),
2189 				       TPS("newreq"));
2190 	}
2191 	raw_spin_unlock_irq_rcu_node(rnp);
2192 }
2193 
2194 /*
2195  * Body of kthread that handles grace periods.
2196  */
2197 static int __noreturn rcu_gp_kthread(void *arg)
2198 {
2199 	bool first_gp_fqs;
2200 	int gf;
2201 	unsigned long j;
2202 	int ret;
2203 	struct rcu_state *rsp = arg;
2204 	struct rcu_node *rnp = rcu_get_root(rsp);
2205 
2206 	rcu_bind_gp_kthread();
2207 	for (;;) {
2208 
2209 		/* Handle grace-period start. */
2210 		for (;;) {
2211 			trace_rcu_grace_period(rsp->name,
2212 					       READ_ONCE(rsp->gpnum),
2213 					       TPS("reqwait"));
2214 			rsp->gp_state = RCU_GP_WAIT_GPS;
2215 			swait_event_idle(rsp->gp_wq, READ_ONCE(rsp->gp_flags) &
2216 						     RCU_GP_FLAG_INIT);
2217 			rsp->gp_state = RCU_GP_DONE_GPS;
2218 			/* Locking provides needed memory barrier. */
2219 			if (rcu_gp_init(rsp))
2220 				break;
2221 			cond_resched_rcu_qs();
2222 			WRITE_ONCE(rsp->gp_activity, jiffies);
2223 			WARN_ON(signal_pending(current));
2224 			trace_rcu_grace_period(rsp->name,
2225 					       READ_ONCE(rsp->gpnum),
2226 					       TPS("reqwaitsig"));
2227 		}
2228 
2229 		/* Handle quiescent-state forcing. */
2230 		first_gp_fqs = true;
2231 		j = jiffies_till_first_fqs;
2232 		if (j > HZ) {
2233 			j = HZ;
2234 			jiffies_till_first_fqs = HZ;
2235 		}
2236 		ret = 0;
2237 		for (;;) {
2238 			if (!ret) {
2239 				rsp->jiffies_force_qs = jiffies + j;
2240 				WRITE_ONCE(rsp->jiffies_kick_kthreads,
2241 					   jiffies + 3 * j);
2242 			}
2243 			trace_rcu_grace_period(rsp->name,
2244 					       READ_ONCE(rsp->gpnum),
2245 					       TPS("fqswait"));
2246 			rsp->gp_state = RCU_GP_WAIT_FQS;
2247 			ret = swait_event_idle_timeout(rsp->gp_wq,
2248 					rcu_gp_fqs_check_wake(rsp, &gf), j);
2249 			rsp->gp_state = RCU_GP_DOING_FQS;
2250 			/* Locking provides needed memory barriers. */
2251 			/* If grace period done, leave loop. */
2252 			if (!READ_ONCE(rnp->qsmask) &&
2253 			    !rcu_preempt_blocked_readers_cgp(rnp))
2254 				break;
2255 			/* If time for quiescent-state forcing, do it. */
2256 			if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
2257 			    (gf & RCU_GP_FLAG_FQS)) {
2258 				trace_rcu_grace_period(rsp->name,
2259 						       READ_ONCE(rsp->gpnum),
2260 						       TPS("fqsstart"));
2261 				rcu_gp_fqs(rsp, first_gp_fqs);
2262 				first_gp_fqs = false;
2263 				trace_rcu_grace_period(rsp->name,
2264 						       READ_ONCE(rsp->gpnum),
2265 						       TPS("fqsend"));
2266 				cond_resched_rcu_qs();
2267 				WRITE_ONCE(rsp->gp_activity, jiffies);
2268 				ret = 0; /* Force full wait till next FQS. */
2269 				j = jiffies_till_next_fqs;
2270 				if (j > HZ) {
2271 					j = HZ;
2272 					jiffies_till_next_fqs = HZ;
2273 				} else if (j < 1) {
2274 					j = 1;
2275 					jiffies_till_next_fqs = 1;
2276 				}
2277 			} else {
2278 				/* Deal with stray signal. */
2279 				cond_resched_rcu_qs();
2280 				WRITE_ONCE(rsp->gp_activity, jiffies);
2281 				WARN_ON(signal_pending(current));
2282 				trace_rcu_grace_period(rsp->name,
2283 						       READ_ONCE(rsp->gpnum),
2284 						       TPS("fqswaitsig"));
2285 				ret = 1; /* Keep old FQS timing. */
2286 				j = jiffies;
2287 				if (time_after(jiffies, rsp->jiffies_force_qs))
2288 					j = 1;
2289 				else
2290 					j = rsp->jiffies_force_qs - j;
2291 			}
2292 		}
2293 
2294 		/* Handle grace-period end. */
2295 		rsp->gp_state = RCU_GP_CLEANUP;
2296 		rcu_gp_cleanup(rsp);
2297 		rsp->gp_state = RCU_GP_CLEANED;
2298 	}
2299 }
2300 
2301 /*
2302  * Start a new RCU grace period if warranted, re-initializing the hierarchy
2303  * in preparation for detecting the next grace period.  The caller must hold
2304  * the root node's ->lock and hard irqs must be disabled.
2305  *
2306  * Note that it is legal for a dying CPU (which is marked as offline) to
2307  * invoke this function.  This can happen when the dying CPU reports its
2308  * quiescent state.
2309  *
2310  * Returns true if the grace-period kthread must be awakened.
2311  */
2312 static bool
2313 rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
2314 		      struct rcu_data *rdp)
2315 {
2316 	lockdep_assert_held(&rnp->lock);
2317 	if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
2318 		/*
2319 		 * Either we have not yet spawned the grace-period
2320 		 * task, this CPU does not need another grace period,
2321 		 * or a grace period is already in progress.
2322 		 * Either way, don't start a new grace period.
2323 		 */
2324 		return false;
2325 	}
2326 	WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2327 	trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
2328 			       TPS("newreq"));
2329 
2330 	/*
2331 	 * We can't do wakeups while holding the rnp->lock, as that
2332 	 * could cause possible deadlocks with the rq->lock. Defer
2333 	 * the wakeup to our caller.
2334 	 */
2335 	return true;
2336 }
2337 
2338 /*
2339  * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
2340  * callbacks.  Note that rcu_start_gp_advanced() cannot do this because it
2341  * is invoked indirectly from rcu_advance_cbs(), which would result in
2342  * endless recursion -- or would do so if it wasn't for the self-deadlock
2343  * that is encountered beforehand.
2344  *
2345  * Returns true if the grace-period kthread needs to be awakened.
2346  */
2347 static bool rcu_start_gp(struct rcu_state *rsp)
2348 {
2349 	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
2350 	struct rcu_node *rnp = rcu_get_root(rsp);
2351 	bool ret = false;
2352 
2353 	/*
2354 	 * If there is no grace period in progress right now, any
2355 	 * callbacks we have up to this point will be satisfied by the
2356 	 * next grace period.  Also, advancing the callbacks reduces the
2357 	 * probability of false positives from cpu_needs_another_gp()
2358 	 * resulting in pointless grace periods.  So, advance callbacks
2359 	 * then start the grace period!
2360 	 */
2361 	ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
2362 	ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
2363 	return ret;
2364 }
2365 
2366 /*
2367  * Report a full set of quiescent states to the specified rcu_state data
2368  * structure.  Invoke rcu_gp_kthread_wake() to awaken the grace-period
2369  * kthread if another grace period is required.  Whether we wake
2370  * the grace-period kthread or it awakens itself for the next round
2371  * of quiescent-state forcing, that kthread will clean up after the
2372  * just-completed grace period.  Note that the caller must hold rnp->lock,
2373  * which is released before return.
2374  */
2375 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
2376 	__releases(rcu_get_root(rsp)->lock)
2377 {
2378 	lockdep_assert_held(&rcu_get_root(rsp)->lock);
2379 	WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
2380 	WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2381 	raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
2382 	rcu_gp_kthread_wake(rsp);
2383 }
2384 
2385 /*
2386  * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2387  * Allows quiescent states for a group of CPUs to be reported at one go
2388  * to the specified rcu_node structure, though all the CPUs in the group
2389  * must be represented by the same rcu_node structure (which need not be a
2390  * leaf rcu_node structure, though it often will be).  The gps parameter
2391  * is the grace-period snapshot, which means that the quiescent states
2392  * are valid only if rnp->gpnum is equal to gps.  That structure's lock
2393  * must be held upon entry, and it is released before return.
2394  */
2395 static void
2396 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
2397 		  struct rcu_node *rnp, unsigned long gps, unsigned long flags)
2398 	__releases(rnp->lock)
2399 {
2400 	unsigned long oldmask = 0;
2401 	struct rcu_node *rnp_c;
2402 
2403 	lockdep_assert_held(&rnp->lock);
2404 
2405 	/* Walk up the rcu_node hierarchy. */
2406 	for (;;) {
2407 		if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
2408 
2409 			/*
2410 			 * Our bit has already been cleared, or the
2411 			 * relevant grace period is already over, so done.
2412 			 */
2413 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2414 			return;
2415 		}
2416 		WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2417 		WARN_ON_ONCE(rnp->level != rcu_num_lvls - 1 &&
2418 			     rcu_preempt_blocked_readers_cgp(rnp));
2419 		rnp->qsmask &= ~mask;
2420 		trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
2421 						 mask, rnp->qsmask, rnp->level,
2422 						 rnp->grplo, rnp->grphi,
2423 						 !!rnp->gp_tasks);
2424 		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2425 
2426 			/* Other bits still set at this level, so done. */
2427 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2428 			return;
2429 		}
2430 		mask = rnp->grpmask;
2431 		if (rnp->parent == NULL) {
2432 
2433 			/* No more levels.  Exit loop holding root lock. */
2434 
2435 			break;
2436 		}
2437 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2438 		rnp_c = rnp;
2439 		rnp = rnp->parent;
2440 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2441 		oldmask = rnp_c->qsmask;
2442 	}
2443 
2444 	/*
2445 	 * Get here if we are the last CPU to pass through a quiescent
2446 	 * state for this grace period.  Invoke rcu_report_qs_rsp()
2447 	 * to clean up and start the next grace period if one is needed.
2448 	 */
2449 	rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
2450 }
2451 
2452 /*
2453  * Record a quiescent state for all tasks that were previously queued
2454  * on the specified rcu_node structure and that were blocking the current
2455  * RCU grace period.  The caller must hold the specified rnp->lock with
2456  * irqs disabled, and this lock is released upon return, but irqs remain
2457  * disabled.
2458  */
2459 static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
2460 				      struct rcu_node *rnp, unsigned long flags)
2461 	__releases(rnp->lock)
2462 {
2463 	unsigned long gps;
2464 	unsigned long mask;
2465 	struct rcu_node *rnp_p;
2466 
2467 	lockdep_assert_held(&rnp->lock);
2468 	if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
2469 	    rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2470 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2471 		return;  /* Still need more quiescent states! */
2472 	}
2473 
2474 	rnp_p = rnp->parent;
2475 	if (rnp_p == NULL) {
2476 		/*
2477 		 * Only one rcu_node structure in the tree, so don't
2478 		 * try to report up to its nonexistent parent!
2479 		 */
2480 		rcu_report_qs_rsp(rsp, flags);
2481 		return;
2482 	}
2483 
2484 	/* Report up the rest of the hierarchy, tracking current ->gpnum. */
2485 	gps = rnp->gpnum;
2486 	mask = rnp->grpmask;
2487 	raw_spin_unlock_rcu_node(rnp);	/* irqs remain disabled. */
2488 	raw_spin_lock_rcu_node(rnp_p);	/* irqs already disabled. */
2489 	rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
2490 }
2491 
2492 /*
2493  * Record a quiescent state for the specified CPU to that CPU's rcu_data
2494  * structure.  This must be called from the specified CPU.
2495  */
2496 static void
2497 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
2498 {
2499 	unsigned long flags;
2500 	unsigned long mask;
2501 	bool needwake;
2502 	struct rcu_node *rnp;
2503 
2504 	rnp = rdp->mynode;
2505 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
2506 	if (rdp->cpu_no_qs.b.norm || rdp->gpnum != rnp->gpnum ||
2507 	    rnp->completed == rnp->gpnum || rdp->gpwrap) {
2508 
2509 		/*
2510 		 * The grace period in which this quiescent state was
2511 		 * recorded has ended, so don't report it upwards.
2512 		 * We will instead need a new quiescent state that lies
2513 		 * within the current grace period.
2514 		 */
2515 		rdp->cpu_no_qs.b.norm = true;	/* need qs for new gp. */
2516 		rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr);
2517 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2518 		return;
2519 	}
2520 	mask = rdp->grpmask;
2521 	if ((rnp->qsmask & mask) == 0) {
2522 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2523 	} else {
2524 		rdp->core_needs_qs = false;
2525 
2526 		/*
2527 		 * This GP can't end until cpu checks in, so all of our
2528 		 * callbacks can be processed during the next GP.
2529 		 */
2530 		needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
2531 
2532 		rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2533 		/* ^^^ Released rnp->lock */
2534 		if (needwake)
2535 			rcu_gp_kthread_wake(rsp);
2536 	}
2537 }
2538 
2539 /*
2540  * Check to see if there is a new grace period of which this CPU
2541  * is not yet aware, and if so, set up local rcu_data state for it.
2542  * Otherwise, see if this CPU has just passed through its first
2543  * quiescent state for this grace period, and record that fact if so.
2544  */
2545 static void
2546 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
2547 {
2548 	/* Check for grace-period ends and beginnings. */
2549 	note_gp_changes(rsp, rdp);
2550 
2551 	/*
2552 	 * Does this CPU still need to do its part for current grace period?
2553 	 * If no, return and let the other CPUs do their part as well.
2554 	 */
2555 	if (!rdp->core_needs_qs)
2556 		return;
2557 
2558 	/*
2559 	 * Was there a quiescent state since the beginning of the grace
2560 	 * period? If no, then exit and wait for the next call.
2561 	 */
2562 	if (rdp->cpu_no_qs.b.norm)
2563 		return;
2564 
2565 	/*
2566 	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2567 	 * judge of that).
2568 	 */
2569 	rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
2570 }
2571 
2572 /*
2573  * Trace the fact that this CPU is going offline.
2574  */
2575 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2576 {
2577 	RCU_TRACE(unsigned long mask;)
2578 	RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda);)
2579 	RCU_TRACE(struct rcu_node *rnp = rdp->mynode;)
2580 
2581 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2582 		return;
2583 
2584 	RCU_TRACE(mask = rdp->grpmask;)
2585 	trace_rcu_grace_period(rsp->name,
2586 			       rnp->gpnum + 1 - !!(rnp->qsmask & mask),
2587 			       TPS("cpuofl"));
2588 }
2589 
2590 /*
2591  * All CPUs for the specified rcu_node structure have gone offline,
2592  * and all tasks that were preempted within an RCU read-side critical
2593  * section while running on one of those CPUs have since exited their RCU
2594  * read-side critical section.  Some other CPU is reporting this fact with
2595  * the specified rcu_node structure's ->lock held and interrupts disabled.
2596  * This function therefore goes up the tree of rcu_node structures,
2597  * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
2598  * the leaf rcu_node structure's ->qsmaskinit field has already been
2599  * updated
2600  *
2601  * This function does check that the specified rcu_node structure has
2602  * all CPUs offline and no blocked tasks, so it is OK to invoke it
2603  * prematurely.  That said, invoking it after the fact will cost you
2604  * a needless lock acquisition.  So once it has done its work, don't
2605  * invoke it again.
2606  */
2607 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2608 {
2609 	long mask;
2610 	struct rcu_node *rnp = rnp_leaf;
2611 
2612 	lockdep_assert_held(&rnp->lock);
2613 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2614 	    rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
2615 		return;
2616 	for (;;) {
2617 		mask = rnp->grpmask;
2618 		rnp = rnp->parent;
2619 		if (!rnp)
2620 			break;
2621 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2622 		rnp->qsmaskinit &= ~mask;
2623 		rnp->qsmask &= ~mask;
2624 		if (rnp->qsmaskinit) {
2625 			raw_spin_unlock_rcu_node(rnp);
2626 			/* irqs remain disabled. */
2627 			return;
2628 		}
2629 		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2630 	}
2631 }
2632 
2633 /*
2634  * The CPU has been completely removed, and some other CPU is reporting
2635  * this fact from process context.  Do the remainder of the cleanup.
2636  * There can only be one CPU hotplug operation at a time, so no need for
2637  * explicit locking.
2638  */
2639 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2640 {
2641 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2642 	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2643 
2644 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2645 		return;
2646 
2647 	/* Adjust any no-longer-needed kthreads. */
2648 	rcu_boost_kthread_setaffinity(rnp, -1);
2649 }
2650 
2651 /*
2652  * Invoke any RCU callbacks that have made it to the end of their grace
2653  * period.  Thottle as specified by rdp->blimit.
2654  */
2655 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2656 {
2657 	unsigned long flags;
2658 	struct rcu_head *rhp;
2659 	struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2660 	long bl, count;
2661 
2662 	/* If no callbacks are ready, just return. */
2663 	if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2664 		trace_rcu_batch_start(rsp->name,
2665 				      rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2666 				      rcu_segcblist_n_cbs(&rdp->cblist), 0);
2667 		trace_rcu_batch_end(rsp->name, 0,
2668 				    !rcu_segcblist_empty(&rdp->cblist),
2669 				    need_resched(), is_idle_task(current),
2670 				    rcu_is_callbacks_kthread());
2671 		return;
2672 	}
2673 
2674 	/*
2675 	 * Extract the list of ready callbacks, disabling to prevent
2676 	 * races with call_rcu() from interrupt handlers.  Leave the
2677 	 * callback counts, as rcu_barrier() needs to be conservative.
2678 	 */
2679 	local_irq_save(flags);
2680 	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2681 	bl = rdp->blimit;
2682 	trace_rcu_batch_start(rsp->name, rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2683 			      rcu_segcblist_n_cbs(&rdp->cblist), bl);
2684 	rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
2685 	local_irq_restore(flags);
2686 
2687 	/* Invoke callbacks. */
2688 	rhp = rcu_cblist_dequeue(&rcl);
2689 	for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2690 		debug_rcu_head_unqueue(rhp);
2691 		if (__rcu_reclaim(rsp->name, rhp))
2692 			rcu_cblist_dequeued_lazy(&rcl);
2693 		/*
2694 		 * Stop only if limit reached and CPU has something to do.
2695 		 * Note: The rcl structure counts down from zero.
2696 		 */
2697 		if (-rcl.len >= bl &&
2698 		    (need_resched() ||
2699 		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2700 			break;
2701 	}
2702 
2703 	local_irq_save(flags);
2704 	count = -rcl.len;
2705 	trace_rcu_batch_end(rsp->name, count, !!rcl.head, need_resched(),
2706 			    is_idle_task(current), rcu_is_callbacks_kthread());
2707 
2708 	/* Update counts and requeue any remaining callbacks. */
2709 	rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
2710 	smp_mb(); /* List handling before counting for rcu_barrier(). */
2711 	rdp->n_cbs_invoked += count;
2712 	rcu_segcblist_insert_count(&rdp->cblist, &rcl);
2713 
2714 	/* Reinstate batch limit if we have worked down the excess. */
2715 	count = rcu_segcblist_n_cbs(&rdp->cblist);
2716 	if (rdp->blimit == LONG_MAX && count <= qlowmark)
2717 		rdp->blimit = blimit;
2718 
2719 	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2720 	if (count == 0 && rdp->qlen_last_fqs_check != 0) {
2721 		rdp->qlen_last_fqs_check = 0;
2722 		rdp->n_force_qs_snap = rsp->n_force_qs;
2723 	} else if (count < rdp->qlen_last_fqs_check - qhimark)
2724 		rdp->qlen_last_fqs_check = count;
2725 	WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) != (count == 0));
2726 
2727 	local_irq_restore(flags);
2728 
2729 	/* Re-invoke RCU core processing if there are callbacks remaining. */
2730 	if (rcu_segcblist_ready_cbs(&rdp->cblist))
2731 		invoke_rcu_core();
2732 }
2733 
2734 /*
2735  * Check to see if this CPU is in a non-context-switch quiescent state
2736  * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2737  * Also schedule RCU core processing.
2738  *
2739  * This function must be called from hardirq context.  It is normally
2740  * invoked from the scheduling-clock interrupt.
2741  */
2742 void rcu_check_callbacks(int user)
2743 {
2744 	trace_rcu_utilization(TPS("Start scheduler-tick"));
2745 	increment_cpu_stall_ticks();
2746 	if (user || rcu_is_cpu_rrupt_from_idle()) {
2747 
2748 		/*
2749 		 * Get here if this CPU took its interrupt from user
2750 		 * mode or from the idle loop, and if this is not a
2751 		 * nested interrupt.  In this case, the CPU is in
2752 		 * a quiescent state, so note it.
2753 		 *
2754 		 * No memory barrier is required here because both
2755 		 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2756 		 * variables that other CPUs neither access nor modify,
2757 		 * at least not while the corresponding CPU is online.
2758 		 */
2759 
2760 		rcu_sched_qs();
2761 		rcu_bh_qs();
2762 
2763 	} else if (!in_softirq()) {
2764 
2765 		/*
2766 		 * Get here if this CPU did not take its interrupt from
2767 		 * softirq, in other words, if it is not interrupting
2768 		 * a rcu_bh read-side critical section.  This is an _bh
2769 		 * critical section, so note it.
2770 		 */
2771 
2772 		rcu_bh_qs();
2773 	}
2774 	rcu_preempt_check_callbacks();
2775 	if (rcu_pending())
2776 		invoke_rcu_core();
2777 	if (user)
2778 		rcu_note_voluntary_context_switch(current);
2779 	trace_rcu_utilization(TPS("End scheduler-tick"));
2780 }
2781 
2782 /*
2783  * Scan the leaf rcu_node structures, processing dyntick state for any that
2784  * have not yet encountered a quiescent state, using the function specified.
2785  * Also initiate boosting for any threads blocked on the root rcu_node.
2786  *
2787  * The caller must have suppressed start of new grace periods.
2788  */
2789 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *rsp))
2790 {
2791 	int cpu;
2792 	unsigned long flags;
2793 	unsigned long mask;
2794 	struct rcu_node *rnp;
2795 
2796 	rcu_for_each_leaf_node(rsp, rnp) {
2797 		cond_resched_rcu_qs();
2798 		mask = 0;
2799 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2800 		if (rnp->qsmask == 0) {
2801 			if (rcu_state_p == &rcu_sched_state ||
2802 			    rsp != rcu_state_p ||
2803 			    rcu_preempt_blocked_readers_cgp(rnp)) {
2804 				/*
2805 				 * No point in scanning bits because they
2806 				 * are all zero.  But we might need to
2807 				 * priority-boost blocked readers.
2808 				 */
2809 				rcu_initiate_boost(rnp, flags);
2810 				/* rcu_initiate_boost() releases rnp->lock */
2811 				continue;
2812 			}
2813 			if (rnp->parent &&
2814 			    (rnp->parent->qsmask & rnp->grpmask)) {
2815 				/*
2816 				 * Race between grace-period
2817 				 * initialization and task exiting RCU
2818 				 * read-side critical section: Report.
2819 				 */
2820 				rcu_report_unblock_qs_rnp(rsp, rnp, flags);
2821 				/* rcu_report_unblock_qs_rnp() rlses ->lock */
2822 				continue;
2823 			}
2824 		}
2825 		for_each_leaf_node_possible_cpu(rnp, cpu) {
2826 			unsigned long bit = leaf_node_cpu_bit(rnp, cpu);
2827 			if ((rnp->qsmask & bit) != 0) {
2828 				if (f(per_cpu_ptr(rsp->rda, cpu)))
2829 					mask |= bit;
2830 			}
2831 		}
2832 		if (mask != 0) {
2833 			/* Idle/offline CPUs, report (releases rnp->lock. */
2834 			rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2835 		} else {
2836 			/* Nothing to do here, so just drop the lock. */
2837 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2838 		}
2839 	}
2840 }
2841 
2842 /*
2843  * Force quiescent states on reluctant CPUs, and also detect which
2844  * CPUs are in dyntick-idle mode.
2845  */
2846 static void force_quiescent_state(struct rcu_state *rsp)
2847 {
2848 	unsigned long flags;
2849 	bool ret;
2850 	struct rcu_node *rnp;
2851 	struct rcu_node *rnp_old = NULL;
2852 
2853 	/* Funnel through hierarchy to reduce memory contention. */
2854 	rnp = __this_cpu_read(rsp->rda->mynode);
2855 	for (; rnp != NULL; rnp = rnp->parent) {
2856 		ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2857 		      !raw_spin_trylock(&rnp->fqslock);
2858 		if (rnp_old != NULL)
2859 			raw_spin_unlock(&rnp_old->fqslock);
2860 		if (ret) {
2861 			rsp->n_force_qs_lh++;
2862 			return;
2863 		}
2864 		rnp_old = rnp;
2865 	}
2866 	/* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2867 
2868 	/* Reached the root of the rcu_node tree, acquire lock. */
2869 	raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2870 	raw_spin_unlock(&rnp_old->fqslock);
2871 	if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2872 		rsp->n_force_qs_lh++;
2873 		raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2874 		return;  /* Someone beat us to it. */
2875 	}
2876 	WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2877 	raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2878 	rcu_gp_kthread_wake(rsp);
2879 }
2880 
2881 /*
2882  * This does the RCU core processing work for the specified rcu_state
2883  * and rcu_data structures.  This may be called only from the CPU to
2884  * whom the rdp belongs.
2885  */
2886 static void
2887 __rcu_process_callbacks(struct rcu_state *rsp)
2888 {
2889 	unsigned long flags;
2890 	bool needwake;
2891 	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2892 
2893 	WARN_ON_ONCE(!rdp->beenonline);
2894 
2895 	/* Update RCU state based on any recent quiescent states. */
2896 	rcu_check_quiescent_state(rsp, rdp);
2897 
2898 	/* Does this CPU require a not-yet-started grace period? */
2899 	local_irq_save(flags);
2900 	if (cpu_needs_another_gp(rsp, rdp)) {
2901 		raw_spin_lock_rcu_node(rcu_get_root(rsp)); /* irqs disabled. */
2902 		needwake = rcu_start_gp(rsp);
2903 		raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
2904 		if (needwake)
2905 			rcu_gp_kthread_wake(rsp);
2906 	} else {
2907 		local_irq_restore(flags);
2908 	}
2909 
2910 	/* If there are callbacks ready, invoke them. */
2911 	if (rcu_segcblist_ready_cbs(&rdp->cblist))
2912 		invoke_rcu_callbacks(rsp, rdp);
2913 
2914 	/* Do any needed deferred wakeups of rcuo kthreads. */
2915 	do_nocb_deferred_wakeup(rdp);
2916 }
2917 
2918 /*
2919  * Do RCU core processing for the current CPU.
2920  */
2921 static __latent_entropy void rcu_process_callbacks(struct softirq_action *unused)
2922 {
2923 	struct rcu_state *rsp;
2924 
2925 	if (cpu_is_offline(smp_processor_id()))
2926 		return;
2927 	trace_rcu_utilization(TPS("Start RCU core"));
2928 	for_each_rcu_flavor(rsp)
2929 		__rcu_process_callbacks(rsp);
2930 	trace_rcu_utilization(TPS("End RCU core"));
2931 }
2932 
2933 /*
2934  * Schedule RCU callback invocation.  If the specified type of RCU
2935  * does not support RCU priority boosting, just do a direct call,
2936  * otherwise wake up the per-CPU kernel kthread.  Note that because we
2937  * are running on the current CPU with softirqs disabled, the
2938  * rcu_cpu_kthread_task cannot disappear out from under us.
2939  */
2940 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
2941 {
2942 	if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
2943 		return;
2944 	if (likely(!rsp->boost)) {
2945 		rcu_do_batch(rsp, rdp);
2946 		return;
2947 	}
2948 	invoke_rcu_callbacks_kthread();
2949 }
2950 
2951 static void invoke_rcu_core(void)
2952 {
2953 	if (cpu_online(smp_processor_id()))
2954 		raise_softirq(RCU_SOFTIRQ);
2955 }
2956 
2957 /*
2958  * Handle any core-RCU processing required by a call_rcu() invocation.
2959  */
2960 static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2961 			    struct rcu_head *head, unsigned long flags)
2962 {
2963 	bool needwake;
2964 
2965 	/*
2966 	 * If called from an extended quiescent state, invoke the RCU
2967 	 * core in order to force a re-evaluation of RCU's idleness.
2968 	 */
2969 	if (!rcu_is_watching())
2970 		invoke_rcu_core();
2971 
2972 	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2973 	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2974 		return;
2975 
2976 	/*
2977 	 * Force the grace period if too many callbacks or too long waiting.
2978 	 * Enforce hysteresis, and don't invoke force_quiescent_state()
2979 	 * if some other CPU has recently done so.  Also, don't bother
2980 	 * invoking force_quiescent_state() if the newly enqueued callback
2981 	 * is the only one waiting for a grace period to complete.
2982 	 */
2983 	if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2984 		     rdp->qlen_last_fqs_check + qhimark)) {
2985 
2986 		/* Are we ignoring a completed grace period? */
2987 		note_gp_changes(rsp, rdp);
2988 
2989 		/* Start a new grace period if one not already started. */
2990 		if (!rcu_gp_in_progress(rsp)) {
2991 			struct rcu_node *rnp_root = rcu_get_root(rsp);
2992 
2993 			raw_spin_lock_rcu_node(rnp_root);
2994 			needwake = rcu_start_gp(rsp);
2995 			raw_spin_unlock_rcu_node(rnp_root);
2996 			if (needwake)
2997 				rcu_gp_kthread_wake(rsp);
2998 		} else {
2999 			/* Give the grace period a kick. */
3000 			rdp->blimit = LONG_MAX;
3001 			if (rsp->n_force_qs == rdp->n_force_qs_snap &&
3002 			    rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
3003 				force_quiescent_state(rsp);
3004 			rdp->n_force_qs_snap = rsp->n_force_qs;
3005 			rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
3006 		}
3007 	}
3008 }
3009 
3010 /*
3011  * RCU callback function to leak a callback.
3012  */
3013 static void rcu_leak_callback(struct rcu_head *rhp)
3014 {
3015 }
3016 
3017 /*
3018  * Helper function for call_rcu() and friends.  The cpu argument will
3019  * normally be -1, indicating "currently running CPU".  It may specify
3020  * a CPU only if that CPU is a no-CBs CPU.  Currently, only _rcu_barrier()
3021  * is expected to specify a CPU.
3022  */
3023 static void
3024 __call_rcu(struct rcu_head *head, rcu_callback_t func,
3025 	   struct rcu_state *rsp, int cpu, bool lazy)
3026 {
3027 	unsigned long flags;
3028 	struct rcu_data *rdp;
3029 
3030 	/* Misaligned rcu_head! */
3031 	WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
3032 
3033 	if (debug_rcu_head_queue(head)) {
3034 		/*
3035 		 * Probable double call_rcu(), so leak the callback.
3036 		 * Use rcu:rcu_callback trace event to find the previous
3037 		 * time callback was passed to __call_rcu().
3038 		 */
3039 		WARN_ONCE(1, "__call_rcu(): Double-freed CB %p->%pF()!!!\n",
3040 			  head, head->func);
3041 		WRITE_ONCE(head->func, rcu_leak_callback);
3042 		return;
3043 	}
3044 	head->func = func;
3045 	head->next = NULL;
3046 	local_irq_save(flags);
3047 	rdp = this_cpu_ptr(rsp->rda);
3048 
3049 	/* Add the callback to our list. */
3050 	if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist)) || cpu != -1) {
3051 		int offline;
3052 
3053 		if (cpu != -1)
3054 			rdp = per_cpu_ptr(rsp->rda, cpu);
3055 		if (likely(rdp->mynode)) {
3056 			/* Post-boot, so this should be for a no-CBs CPU. */
3057 			offline = !__call_rcu_nocb(rdp, head, lazy, flags);
3058 			WARN_ON_ONCE(offline);
3059 			/* Offline CPU, _call_rcu() illegal, leak callback.  */
3060 			local_irq_restore(flags);
3061 			return;
3062 		}
3063 		/*
3064 		 * Very early boot, before rcu_init().  Initialize if needed
3065 		 * and then drop through to queue the callback.
3066 		 */
3067 		BUG_ON(cpu != -1);
3068 		WARN_ON_ONCE(!rcu_is_watching());
3069 		if (rcu_segcblist_empty(&rdp->cblist))
3070 			rcu_segcblist_init(&rdp->cblist);
3071 	}
3072 	rcu_segcblist_enqueue(&rdp->cblist, head, lazy);
3073 	if (!lazy)
3074 		rcu_idle_count_callbacks_posted();
3075 
3076 	if (__is_kfree_rcu_offset((unsigned long)func))
3077 		trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
3078 					 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
3079 					 rcu_segcblist_n_cbs(&rdp->cblist));
3080 	else
3081 		trace_rcu_callback(rsp->name, head,
3082 				   rcu_segcblist_n_lazy_cbs(&rdp->cblist),
3083 				   rcu_segcblist_n_cbs(&rdp->cblist));
3084 
3085 	/* Go handle any RCU core processing required. */
3086 	__call_rcu_core(rsp, rdp, head, flags);
3087 	local_irq_restore(flags);
3088 }
3089 
3090 /**
3091  * call_rcu_sched() - Queue an RCU for invocation after sched grace period.
3092  * @head: structure to be used for queueing the RCU updates.
3093  * @func: actual callback function to be invoked after the grace period
3094  *
3095  * The callback function will be invoked some time after a full grace
3096  * period elapses, in other words after all currently executing RCU
3097  * read-side critical sections have completed. call_rcu_sched() assumes
3098  * that the read-side critical sections end on enabling of preemption
3099  * or on voluntary preemption.
3100  * RCU read-side critical sections are delimited by:
3101  *
3102  * - rcu_read_lock_sched() and rcu_read_unlock_sched(), OR
3103  * - anything that disables preemption.
3104  *
3105  *  These may be nested.
3106  *
3107  * See the description of call_rcu() for more detailed information on
3108  * memory ordering guarantees.
3109  */
3110 void call_rcu_sched(struct rcu_head *head, rcu_callback_t func)
3111 {
3112 	__call_rcu(head, func, &rcu_sched_state, -1, 0);
3113 }
3114 EXPORT_SYMBOL_GPL(call_rcu_sched);
3115 
3116 /**
3117  * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period.
3118  * @head: structure to be used for queueing the RCU updates.
3119  * @func: actual callback function to be invoked after the grace period
3120  *
3121  * The callback function will be invoked some time after a full grace
3122  * period elapses, in other words after all currently executing RCU
3123  * read-side critical sections have completed. call_rcu_bh() assumes
3124  * that the read-side critical sections end on completion of a softirq
3125  * handler. This means that read-side critical sections in process
3126  * context must not be interrupted by softirqs. This interface is to be
3127  * used when most of the read-side critical sections are in softirq context.
3128  * RCU read-side critical sections are delimited by:
3129  *
3130  * - rcu_read_lock() and  rcu_read_unlock(), if in interrupt context, OR
3131  * - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context.
3132  *
3133  * These may be nested.
3134  *
3135  * See the description of call_rcu() for more detailed information on
3136  * memory ordering guarantees.
3137  */
3138 void call_rcu_bh(struct rcu_head *head, rcu_callback_t func)
3139 {
3140 	__call_rcu(head, func, &rcu_bh_state, -1, 0);
3141 }
3142 EXPORT_SYMBOL_GPL(call_rcu_bh);
3143 
3144 /*
3145  * Queue an RCU callback for lazy invocation after a grace period.
3146  * This will likely be later named something like "call_rcu_lazy()",
3147  * but this change will require some way of tagging the lazy RCU
3148  * callbacks in the list of pending callbacks. Until then, this
3149  * function may only be called from __kfree_rcu().
3150  */
3151 void kfree_call_rcu(struct rcu_head *head,
3152 		    rcu_callback_t func)
3153 {
3154 	__call_rcu(head, func, rcu_state_p, -1, 1);
3155 }
3156 EXPORT_SYMBOL_GPL(kfree_call_rcu);
3157 
3158 /*
3159  * Because a context switch is a grace period for RCU-sched and RCU-bh,
3160  * any blocking grace-period wait automatically implies a grace period
3161  * if there is only one CPU online at any point time during execution
3162  * of either synchronize_sched() or synchronize_rcu_bh().  It is OK to
3163  * occasionally incorrectly indicate that there are multiple CPUs online
3164  * when there was in fact only one the whole time, as this just adds
3165  * some overhead: RCU still operates correctly.
3166  */
3167 static inline int rcu_blocking_is_gp(void)
3168 {
3169 	int ret;
3170 
3171 	might_sleep();  /* Check for RCU read-side critical section. */
3172 	preempt_disable();
3173 	ret = num_online_cpus() <= 1;
3174 	preempt_enable();
3175 	return ret;
3176 }
3177 
3178 /**
3179  * synchronize_sched - wait until an rcu-sched grace period has elapsed.
3180  *
3181  * Control will return to the caller some time after a full rcu-sched
3182  * grace period has elapsed, in other words after all currently executing
3183  * rcu-sched read-side critical sections have completed.   These read-side
3184  * critical sections are delimited by rcu_read_lock_sched() and
3185  * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(),
3186  * local_irq_disable(), and so on may be used in place of
3187  * rcu_read_lock_sched().
3188  *
3189  * This means that all preempt_disable code sequences, including NMI and
3190  * non-threaded hardware-interrupt handlers, in progress on entry will
3191  * have completed before this primitive returns.  However, this does not
3192  * guarantee that softirq handlers will have completed, since in some
3193  * kernels, these handlers can run in process context, and can block.
3194  *
3195  * Note that this guarantee implies further memory-ordering guarantees.
3196  * On systems with more than one CPU, when synchronize_sched() returns,
3197  * each CPU is guaranteed to have executed a full memory barrier since the
3198  * end of its last RCU-sched read-side critical section whose beginning
3199  * preceded the call to synchronize_sched().  In addition, each CPU having
3200  * an RCU read-side critical section that extends beyond the return from
3201  * synchronize_sched() is guaranteed to have executed a full memory barrier
3202  * after the beginning of synchronize_sched() and before the beginning of
3203  * that RCU read-side critical section.  Note that these guarantees include
3204  * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3205  * that are executing in the kernel.
3206  *
3207  * Furthermore, if CPU A invoked synchronize_sched(), which returned
3208  * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3209  * to have executed a full memory barrier during the execution of
3210  * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
3211  * again only if the system has more than one CPU).
3212  */
3213 void synchronize_sched(void)
3214 {
3215 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3216 			 lock_is_held(&rcu_lock_map) ||
3217 			 lock_is_held(&rcu_sched_lock_map),
3218 			 "Illegal synchronize_sched() in RCU-sched read-side critical section");
3219 	if (rcu_blocking_is_gp())
3220 		return;
3221 	if (rcu_gp_is_expedited())
3222 		synchronize_sched_expedited();
3223 	else
3224 		wait_rcu_gp(call_rcu_sched);
3225 }
3226 EXPORT_SYMBOL_GPL(synchronize_sched);
3227 
3228 /**
3229  * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
3230  *
3231  * Control will return to the caller some time after a full rcu_bh grace
3232  * period has elapsed, in other words after all currently executing rcu_bh
3233  * read-side critical sections have completed.  RCU read-side critical
3234  * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
3235  * and may be nested.
3236  *
3237  * See the description of synchronize_sched() for more detailed information
3238  * on memory ordering guarantees.
3239  */
3240 void synchronize_rcu_bh(void)
3241 {
3242 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3243 			 lock_is_held(&rcu_lock_map) ||
3244 			 lock_is_held(&rcu_sched_lock_map),
3245 			 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
3246 	if (rcu_blocking_is_gp())
3247 		return;
3248 	if (rcu_gp_is_expedited())
3249 		synchronize_rcu_bh_expedited();
3250 	else
3251 		wait_rcu_gp(call_rcu_bh);
3252 }
3253 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
3254 
3255 /**
3256  * get_state_synchronize_rcu - Snapshot current RCU state
3257  *
3258  * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3259  * to determine whether or not a full grace period has elapsed in the
3260  * meantime.
3261  */
3262 unsigned long get_state_synchronize_rcu(void)
3263 {
3264 	/*
3265 	 * Any prior manipulation of RCU-protected data must happen
3266 	 * before the load from ->gpnum.
3267 	 */
3268 	smp_mb();  /* ^^^ */
3269 
3270 	/*
3271 	 * Make sure this load happens before the purportedly
3272 	 * time-consuming work between get_state_synchronize_rcu()
3273 	 * and cond_synchronize_rcu().
3274 	 */
3275 	return smp_load_acquire(&rcu_state_p->gpnum);
3276 }
3277 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3278 
3279 /**
3280  * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3281  *
3282  * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3283  *
3284  * If a full RCU grace period has elapsed since the earlier call to
3285  * get_state_synchronize_rcu(), just return.  Otherwise, invoke
3286  * synchronize_rcu() to wait for a full grace period.
3287  *
3288  * Yes, this function does not take counter wrap into account.  But
3289  * counter wrap is harmless.  If the counter wraps, we have waited for
3290  * more than 2 billion grace periods (and way more on a 64-bit system!),
3291  * so waiting for one additional grace period should be just fine.
3292  */
3293 void cond_synchronize_rcu(unsigned long oldstate)
3294 {
3295 	unsigned long newstate;
3296 
3297 	/*
3298 	 * Ensure that this load happens before any RCU-destructive
3299 	 * actions the caller might carry out after we return.
3300 	 */
3301 	newstate = smp_load_acquire(&rcu_state_p->completed);
3302 	if (ULONG_CMP_GE(oldstate, newstate))
3303 		synchronize_rcu();
3304 }
3305 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3306 
3307 /**
3308  * get_state_synchronize_sched - Snapshot current RCU-sched state
3309  *
3310  * Returns a cookie that is used by a later call to cond_synchronize_sched()
3311  * to determine whether or not a full grace period has elapsed in the
3312  * meantime.
3313  */
3314 unsigned long get_state_synchronize_sched(void)
3315 {
3316 	/*
3317 	 * Any prior manipulation of RCU-protected data must happen
3318 	 * before the load from ->gpnum.
3319 	 */
3320 	smp_mb();  /* ^^^ */
3321 
3322 	/*
3323 	 * Make sure this load happens before the purportedly
3324 	 * time-consuming work between get_state_synchronize_sched()
3325 	 * and cond_synchronize_sched().
3326 	 */
3327 	return smp_load_acquire(&rcu_sched_state.gpnum);
3328 }
3329 EXPORT_SYMBOL_GPL(get_state_synchronize_sched);
3330 
3331 /**
3332  * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
3333  *
3334  * @oldstate: return value from earlier call to get_state_synchronize_sched()
3335  *
3336  * If a full RCU-sched grace period has elapsed since the earlier call to
3337  * get_state_synchronize_sched(), just return.  Otherwise, invoke
3338  * synchronize_sched() to wait for a full grace period.
3339  *
3340  * Yes, this function does not take counter wrap into account.  But
3341  * counter wrap is harmless.  If the counter wraps, we have waited for
3342  * more than 2 billion grace periods (and way more on a 64-bit system!),
3343  * so waiting for one additional grace period should be just fine.
3344  */
3345 void cond_synchronize_sched(unsigned long oldstate)
3346 {
3347 	unsigned long newstate;
3348 
3349 	/*
3350 	 * Ensure that this load happens before any RCU-destructive
3351 	 * actions the caller might carry out after we return.
3352 	 */
3353 	newstate = smp_load_acquire(&rcu_sched_state.completed);
3354 	if (ULONG_CMP_GE(oldstate, newstate))
3355 		synchronize_sched();
3356 }
3357 EXPORT_SYMBOL_GPL(cond_synchronize_sched);
3358 
3359 /*
3360  * Check to see if there is any immediate RCU-related work to be done
3361  * by the current CPU, for the specified type of RCU, returning 1 if so.
3362  * The checks are in order of increasing expense: checks that can be
3363  * carried out against CPU-local state are performed first.  However,
3364  * we must check for CPU stalls first, else we might not get a chance.
3365  */
3366 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
3367 {
3368 	struct rcu_node *rnp = rdp->mynode;
3369 
3370 	rdp->n_rcu_pending++;
3371 
3372 	/* Check for CPU stalls, if enabled. */
3373 	check_cpu_stall(rsp, rdp);
3374 
3375 	/* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3376 	if (rcu_nohz_full_cpu(rsp))
3377 		return 0;
3378 
3379 	/* Is the RCU core waiting for a quiescent state from this CPU? */
3380 	if (rcu_scheduler_fully_active &&
3381 	    rdp->core_needs_qs && rdp->cpu_no_qs.b.norm &&
3382 	    rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_dynticks.rcu_qs_ctr)) {
3383 		rdp->n_rp_core_needs_qs++;
3384 	} else if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm) {
3385 		rdp->n_rp_report_qs++;
3386 		return 1;
3387 	}
3388 
3389 	/* Does this CPU have callbacks ready to invoke? */
3390 	if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
3391 		rdp->n_rp_cb_ready++;
3392 		return 1;
3393 	}
3394 
3395 	/* Has RCU gone idle with this CPU needing another grace period? */
3396 	if (cpu_needs_another_gp(rsp, rdp)) {
3397 		rdp->n_rp_cpu_needs_gp++;
3398 		return 1;
3399 	}
3400 
3401 	/* Has another RCU grace period completed?  */
3402 	if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
3403 		rdp->n_rp_gp_completed++;
3404 		return 1;
3405 	}
3406 
3407 	/* Has a new RCU grace period started? */
3408 	if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
3409 	    unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */
3410 		rdp->n_rp_gp_started++;
3411 		return 1;
3412 	}
3413 
3414 	/* Does this CPU need a deferred NOCB wakeup? */
3415 	if (rcu_nocb_need_deferred_wakeup(rdp)) {
3416 		rdp->n_rp_nocb_defer_wakeup++;
3417 		return 1;
3418 	}
3419 
3420 	/* nothing to do */
3421 	rdp->n_rp_need_nothing++;
3422 	return 0;
3423 }
3424 
3425 /*
3426  * Check to see if there is any immediate RCU-related work to be done
3427  * by the current CPU, returning 1 if so.  This function is part of the
3428  * RCU implementation; it is -not- an exported member of the RCU API.
3429  */
3430 static int rcu_pending(void)
3431 {
3432 	struct rcu_state *rsp;
3433 
3434 	for_each_rcu_flavor(rsp)
3435 		if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
3436 			return 1;
3437 	return 0;
3438 }
3439 
3440 /*
3441  * Return true if the specified CPU has any callback.  If all_lazy is
3442  * non-NULL, store an indication of whether all callbacks are lazy.
3443  * (If there are no callbacks, all of them are deemed to be lazy.)
3444  */
3445 static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
3446 {
3447 	bool al = true;
3448 	bool hc = false;
3449 	struct rcu_data *rdp;
3450 	struct rcu_state *rsp;
3451 
3452 	for_each_rcu_flavor(rsp) {
3453 		rdp = this_cpu_ptr(rsp->rda);
3454 		if (rcu_segcblist_empty(&rdp->cblist))
3455 			continue;
3456 		hc = true;
3457 		if (rcu_segcblist_n_nonlazy_cbs(&rdp->cblist) || !all_lazy) {
3458 			al = false;
3459 			break;
3460 		}
3461 	}
3462 	if (all_lazy)
3463 		*all_lazy = al;
3464 	return hc;
3465 }
3466 
3467 /*
3468  * Helper function for _rcu_barrier() tracing.  If tracing is disabled,
3469  * the compiler is expected to optimize this away.
3470  */
3471 static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
3472 			       int cpu, unsigned long done)
3473 {
3474 	trace_rcu_barrier(rsp->name, s, cpu,
3475 			  atomic_read(&rsp->barrier_cpu_count), done);
3476 }
3477 
3478 /*
3479  * RCU callback function for _rcu_barrier().  If we are last, wake
3480  * up the task executing _rcu_barrier().
3481  */
3482 static void rcu_barrier_callback(struct rcu_head *rhp)
3483 {
3484 	struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
3485 	struct rcu_state *rsp = rdp->rsp;
3486 
3487 	if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
3488 		_rcu_barrier_trace(rsp, TPS("LastCB"), -1,
3489 				   rsp->barrier_sequence);
3490 		complete(&rsp->barrier_completion);
3491 	} else {
3492 		_rcu_barrier_trace(rsp, TPS("CB"), -1, rsp->barrier_sequence);
3493 	}
3494 }
3495 
3496 /*
3497  * Called with preemption disabled, and from cross-cpu IRQ context.
3498  */
3499 static void rcu_barrier_func(void *type)
3500 {
3501 	struct rcu_state *rsp = type;
3502 	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
3503 
3504 	_rcu_barrier_trace(rsp, TPS("IRQ"), -1, rsp->barrier_sequence);
3505 	rdp->barrier_head.func = rcu_barrier_callback;
3506 	debug_rcu_head_queue(&rdp->barrier_head);
3507 	if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head, 0)) {
3508 		atomic_inc(&rsp->barrier_cpu_count);
3509 	} else {
3510 		debug_rcu_head_unqueue(&rdp->barrier_head);
3511 		_rcu_barrier_trace(rsp, TPS("IRQNQ"), -1,
3512 				   rsp->barrier_sequence);
3513 	}
3514 }
3515 
3516 /*
3517  * Orchestrate the specified type of RCU barrier, waiting for all
3518  * RCU callbacks of the specified type to complete.
3519  */
3520 static void _rcu_barrier(struct rcu_state *rsp)
3521 {
3522 	int cpu;
3523 	struct rcu_data *rdp;
3524 	unsigned long s = rcu_seq_snap(&rsp->barrier_sequence);
3525 
3526 	_rcu_barrier_trace(rsp, TPS("Begin"), -1, s);
3527 
3528 	/* Take mutex to serialize concurrent rcu_barrier() requests. */
3529 	mutex_lock(&rsp->barrier_mutex);
3530 
3531 	/* Did someone else do our work for us? */
3532 	if (rcu_seq_done(&rsp->barrier_sequence, s)) {
3533 		_rcu_barrier_trace(rsp, TPS("EarlyExit"), -1,
3534 				   rsp->barrier_sequence);
3535 		smp_mb(); /* caller's subsequent code after above check. */
3536 		mutex_unlock(&rsp->barrier_mutex);
3537 		return;
3538 	}
3539 
3540 	/* Mark the start of the barrier operation. */
3541 	rcu_seq_start(&rsp->barrier_sequence);
3542 	_rcu_barrier_trace(rsp, TPS("Inc1"), -1, rsp->barrier_sequence);
3543 
3544 	/*
3545 	 * Initialize the count to one rather than to zero in order to
3546 	 * avoid a too-soon return to zero in case of a short grace period
3547 	 * (or preemption of this task).  Exclude CPU-hotplug operations
3548 	 * to ensure that no offline CPU has callbacks queued.
3549 	 */
3550 	init_completion(&rsp->barrier_completion);
3551 	atomic_set(&rsp->barrier_cpu_count, 1);
3552 	get_online_cpus();
3553 
3554 	/*
3555 	 * Force each CPU with callbacks to register a new callback.
3556 	 * When that callback is invoked, we will know that all of the
3557 	 * corresponding CPU's preceding callbacks have been invoked.
3558 	 */
3559 	for_each_possible_cpu(cpu) {
3560 		if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3561 			continue;
3562 		rdp = per_cpu_ptr(rsp->rda, cpu);
3563 		if (rcu_is_nocb_cpu(cpu)) {
3564 			if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
3565 				_rcu_barrier_trace(rsp, TPS("OfflineNoCB"), cpu,
3566 						   rsp->barrier_sequence);
3567 			} else {
3568 				_rcu_barrier_trace(rsp, TPS("OnlineNoCB"), cpu,
3569 						   rsp->barrier_sequence);
3570 				smp_mb__before_atomic();
3571 				atomic_inc(&rsp->barrier_cpu_count);
3572 				__call_rcu(&rdp->barrier_head,
3573 					   rcu_barrier_callback, rsp, cpu, 0);
3574 			}
3575 		} else if (rcu_segcblist_n_cbs(&rdp->cblist)) {
3576 			_rcu_barrier_trace(rsp, TPS("OnlineQ"), cpu,
3577 					   rsp->barrier_sequence);
3578 			smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
3579 		} else {
3580 			_rcu_barrier_trace(rsp, TPS("OnlineNQ"), cpu,
3581 					   rsp->barrier_sequence);
3582 		}
3583 	}
3584 	put_online_cpus();
3585 
3586 	/*
3587 	 * Now that we have an rcu_barrier_callback() callback on each
3588 	 * CPU, and thus each counted, remove the initial count.
3589 	 */
3590 	if (atomic_dec_and_test(&rsp->barrier_cpu_count))
3591 		complete(&rsp->barrier_completion);
3592 
3593 	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3594 	wait_for_completion(&rsp->barrier_completion);
3595 
3596 	/* Mark the end of the barrier operation. */
3597 	_rcu_barrier_trace(rsp, TPS("Inc2"), -1, rsp->barrier_sequence);
3598 	rcu_seq_end(&rsp->barrier_sequence);
3599 
3600 	/* Other rcu_barrier() invocations can now safely proceed. */
3601 	mutex_unlock(&rsp->barrier_mutex);
3602 }
3603 
3604 /**
3605  * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
3606  */
3607 void rcu_barrier_bh(void)
3608 {
3609 	_rcu_barrier(&rcu_bh_state);
3610 }
3611 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
3612 
3613 /**
3614  * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3615  */
3616 void rcu_barrier_sched(void)
3617 {
3618 	_rcu_barrier(&rcu_sched_state);
3619 }
3620 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
3621 
3622 /*
3623  * Propagate ->qsinitmask bits up the rcu_node tree to account for the
3624  * first CPU in a given leaf rcu_node structure coming online.  The caller
3625  * must hold the corresponding leaf rcu_node ->lock with interrrupts
3626  * disabled.
3627  */
3628 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
3629 {
3630 	long mask;
3631 	struct rcu_node *rnp = rnp_leaf;
3632 
3633 	lockdep_assert_held(&rnp->lock);
3634 	for (;;) {
3635 		mask = rnp->grpmask;
3636 		rnp = rnp->parent;
3637 		if (rnp == NULL)
3638 			return;
3639 		raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
3640 		rnp->qsmaskinit |= mask;
3641 		raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
3642 	}
3643 }
3644 
3645 /*
3646  * Do boot-time initialization of a CPU's per-CPU RCU data.
3647  */
3648 static void __init
3649 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
3650 {
3651 	unsigned long flags;
3652 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3653 	struct rcu_node *rnp = rcu_get_root(rsp);
3654 
3655 	/* Set up local state, ensuring consistent view of global state. */
3656 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3657 	rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
3658 	rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
3659 	WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
3660 	WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp->dynticks)));
3661 	rdp->cpu = cpu;
3662 	rdp->rsp = rsp;
3663 	rcu_boot_init_nocb_percpu_data(rdp);
3664 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3665 }
3666 
3667 /*
3668  * Initialize a CPU's per-CPU RCU data.  Note that only one online or
3669  * offline event can be happening at a given time.  Note also that we
3670  * can accept some slop in the rsp->completed access due to the fact
3671  * that this CPU cannot possibly have any RCU callbacks in flight yet.
3672  */
3673 static void
3674 rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
3675 {
3676 	unsigned long flags;
3677 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3678 	struct rcu_node *rnp = rcu_get_root(rsp);
3679 
3680 	/* Set up local state, ensuring consistent view of global state. */
3681 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3682 	rdp->qlen_last_fqs_check = 0;
3683 	rdp->n_force_qs_snap = rsp->n_force_qs;
3684 	rdp->blimit = blimit;
3685 	if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */
3686 	    !init_nocb_callback_list(rdp))
3687 		rcu_segcblist_init(&rdp->cblist);  /* Re-enable callbacks. */
3688 	rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
3689 	rcu_dynticks_eqs_online();
3690 	raw_spin_unlock_rcu_node(rnp);		/* irqs remain disabled. */
3691 
3692 	/*
3693 	 * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
3694 	 * propagation up the rcu_node tree will happen at the beginning
3695 	 * of the next grace period.
3696 	 */
3697 	rnp = rdp->mynode;
3698 	raw_spin_lock_rcu_node(rnp);		/* irqs already disabled. */
3699 	rdp->beenonline = true;	 /* We have now been online. */
3700 	rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
3701 	rdp->completed = rnp->completed;
3702 	rdp->cpu_no_qs.b.norm = true;
3703 	rdp->rcu_qs_ctr_snap = per_cpu(rcu_dynticks.rcu_qs_ctr, cpu);
3704 	rdp->core_needs_qs = false;
3705 	trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
3706 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3707 }
3708 
3709 /*
3710  * Invoked early in the CPU-online process, when pretty much all
3711  * services are available.  The incoming CPU is not present.
3712  */
3713 int rcutree_prepare_cpu(unsigned int cpu)
3714 {
3715 	struct rcu_state *rsp;
3716 
3717 	for_each_rcu_flavor(rsp)
3718 		rcu_init_percpu_data(cpu, rsp);
3719 
3720 	rcu_prepare_kthreads(cpu);
3721 	rcu_spawn_all_nocb_kthreads(cpu);
3722 
3723 	return 0;
3724 }
3725 
3726 /*
3727  * Update RCU priority boot kthread affinity for CPU-hotplug changes.
3728  */
3729 static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
3730 {
3731 	struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
3732 
3733 	rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
3734 }
3735 
3736 /*
3737  * Near the end of the CPU-online process.  Pretty much all services
3738  * enabled, and the CPU is now very much alive.
3739  */
3740 int rcutree_online_cpu(unsigned int cpu)
3741 {
3742 	sync_sched_exp_online_cleanup(cpu);
3743 	rcutree_affinity_setting(cpu, -1);
3744 	if (IS_ENABLED(CONFIG_TREE_SRCU))
3745 		srcu_online_cpu(cpu);
3746 	return 0;
3747 }
3748 
3749 /*
3750  * Near the beginning of the process.  The CPU is still very much alive
3751  * with pretty much all services enabled.
3752  */
3753 int rcutree_offline_cpu(unsigned int cpu)
3754 {
3755 	rcutree_affinity_setting(cpu, cpu);
3756 	if (IS_ENABLED(CONFIG_TREE_SRCU))
3757 		srcu_offline_cpu(cpu);
3758 	return 0;
3759 }
3760 
3761 /*
3762  * Near the end of the offline process.  We do only tracing here.
3763  */
3764 int rcutree_dying_cpu(unsigned int cpu)
3765 {
3766 	struct rcu_state *rsp;
3767 
3768 	for_each_rcu_flavor(rsp)
3769 		rcu_cleanup_dying_cpu(rsp);
3770 	return 0;
3771 }
3772 
3773 /*
3774  * The outgoing CPU is gone and we are running elsewhere.
3775  */
3776 int rcutree_dead_cpu(unsigned int cpu)
3777 {
3778 	struct rcu_state *rsp;
3779 
3780 	for_each_rcu_flavor(rsp) {
3781 		rcu_cleanup_dead_cpu(cpu, rsp);
3782 		do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
3783 	}
3784 	return 0;
3785 }
3786 
3787 /*
3788  * Mark the specified CPU as being online so that subsequent grace periods
3789  * (both expedited and normal) will wait on it.  Note that this means that
3790  * incoming CPUs are not allowed to use RCU read-side critical sections
3791  * until this function is called.  Failing to observe this restriction
3792  * will result in lockdep splats.
3793  *
3794  * Note that this function is special in that it is invoked directly
3795  * from the incoming CPU rather than from the cpuhp_step mechanism.
3796  * This is because this function must be invoked at a precise location.
3797  */
3798 void rcu_cpu_starting(unsigned int cpu)
3799 {
3800 	unsigned long flags;
3801 	unsigned long mask;
3802 	int nbits;
3803 	unsigned long oldmask;
3804 	struct rcu_data *rdp;
3805 	struct rcu_node *rnp;
3806 	struct rcu_state *rsp;
3807 
3808 	for_each_rcu_flavor(rsp) {
3809 		rdp = per_cpu_ptr(rsp->rda, cpu);
3810 		rnp = rdp->mynode;
3811 		mask = rdp->grpmask;
3812 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
3813 		rnp->qsmaskinitnext |= mask;
3814 		oldmask = rnp->expmaskinitnext;
3815 		rnp->expmaskinitnext |= mask;
3816 		oldmask ^= rnp->expmaskinitnext;
3817 		nbits = bitmap_weight(&oldmask, BITS_PER_LONG);
3818 		/* Allow lockless access for expedited grace periods. */
3819 		smp_store_release(&rsp->ncpus, rsp->ncpus + nbits); /* ^^^ */
3820 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3821 	}
3822 	smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
3823 }
3824 
3825 #ifdef CONFIG_HOTPLUG_CPU
3826 /*
3827  * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
3828  * function.  We now remove it from the rcu_node tree's ->qsmaskinit
3829  * bit masks.
3830  */
3831 static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
3832 {
3833 	unsigned long flags;
3834 	unsigned long mask;
3835 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3836 	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
3837 
3838 	/* Remove outgoing CPU from mask in the leaf rcu_node structure. */
3839 	mask = rdp->grpmask;
3840 	raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
3841 	rnp->qsmaskinitnext &= ~mask;
3842 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3843 }
3844 
3845 /*
3846  * The outgoing function has no further need of RCU, so remove it from
3847  * the list of CPUs that RCU must track.
3848  *
3849  * Note that this function is special in that it is invoked directly
3850  * from the outgoing CPU rather than from the cpuhp_step mechanism.
3851  * This is because this function must be invoked at a precise location.
3852  */
3853 void rcu_report_dead(unsigned int cpu)
3854 {
3855 	struct rcu_state *rsp;
3856 
3857 	/* QS for any half-done expedited RCU-sched GP. */
3858 	preempt_disable();
3859 	rcu_report_exp_rdp(&rcu_sched_state,
3860 			   this_cpu_ptr(rcu_sched_state.rda), true);
3861 	preempt_enable();
3862 	for_each_rcu_flavor(rsp)
3863 		rcu_cleanup_dying_idle_cpu(cpu, rsp);
3864 }
3865 
3866 /* Migrate the dead CPU's callbacks to the current CPU. */
3867 static void rcu_migrate_callbacks(int cpu, struct rcu_state *rsp)
3868 {
3869 	unsigned long flags;
3870 	struct rcu_data *my_rdp;
3871 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3872 	struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
3873 
3874 	if (rcu_is_nocb_cpu(cpu) || rcu_segcblist_empty(&rdp->cblist))
3875 		return;  /* No callbacks to migrate. */
3876 
3877 	local_irq_save(flags);
3878 	my_rdp = this_cpu_ptr(rsp->rda);
3879 	if (rcu_nocb_adopt_orphan_cbs(my_rdp, rdp, flags)) {
3880 		local_irq_restore(flags);
3881 		return;
3882 	}
3883 	raw_spin_lock_rcu_node(rnp_root); /* irqs already disabled. */
3884 	rcu_advance_cbs(rsp, rnp_root, rdp); /* Leverage recent GPs. */
3885 	rcu_advance_cbs(rsp, rnp_root, my_rdp); /* Assign GP to pending CBs. */
3886 	rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
3887 	WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) !=
3888 		     !rcu_segcblist_n_cbs(&my_rdp->cblist));
3889 	raw_spin_unlock_irqrestore_rcu_node(rnp_root, flags);
3890 	WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
3891 		  !rcu_segcblist_empty(&rdp->cblist),
3892 		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
3893 		  cpu, rcu_segcblist_n_cbs(&rdp->cblist),
3894 		  rcu_segcblist_first_cb(&rdp->cblist));
3895 }
3896 
3897 /*
3898  * The outgoing CPU has just passed through the dying-idle state,
3899  * and we are being invoked from the CPU that was IPIed to continue the
3900  * offline operation.  We need to migrate the outgoing CPU's callbacks.
3901  */
3902 void rcutree_migrate_callbacks(int cpu)
3903 {
3904 	struct rcu_state *rsp;
3905 
3906 	for_each_rcu_flavor(rsp)
3907 		rcu_migrate_callbacks(cpu, rsp);
3908 }
3909 #endif
3910 
3911 /*
3912  * On non-huge systems, use expedited RCU grace periods to make suspend
3913  * and hibernation run faster.
3914  */
3915 static int rcu_pm_notify(struct notifier_block *self,
3916 			 unsigned long action, void *hcpu)
3917 {
3918 	switch (action) {
3919 	case PM_HIBERNATION_PREPARE:
3920 	case PM_SUSPEND_PREPARE:
3921 		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3922 			rcu_expedite_gp();
3923 		break;
3924 	case PM_POST_HIBERNATION:
3925 	case PM_POST_SUSPEND:
3926 		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3927 			rcu_unexpedite_gp();
3928 		break;
3929 	default:
3930 		break;
3931 	}
3932 	return NOTIFY_OK;
3933 }
3934 
3935 /*
3936  * Spawn the kthreads that handle each RCU flavor's grace periods.
3937  */
3938 static int __init rcu_spawn_gp_kthread(void)
3939 {
3940 	unsigned long flags;
3941 	int kthread_prio_in = kthread_prio;
3942 	struct rcu_node *rnp;
3943 	struct rcu_state *rsp;
3944 	struct sched_param sp;
3945 	struct task_struct *t;
3946 
3947 	/* Force priority into range. */
3948 	if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
3949 		kthread_prio = 1;
3950 	else if (kthread_prio < 0)
3951 		kthread_prio = 0;
3952 	else if (kthread_prio > 99)
3953 		kthread_prio = 99;
3954 	if (kthread_prio != kthread_prio_in)
3955 		pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
3956 			 kthread_prio, kthread_prio_in);
3957 
3958 	rcu_scheduler_fully_active = 1;
3959 	for_each_rcu_flavor(rsp) {
3960 		t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
3961 		BUG_ON(IS_ERR(t));
3962 		rnp = rcu_get_root(rsp);
3963 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
3964 		rsp->gp_kthread = t;
3965 		if (kthread_prio) {
3966 			sp.sched_priority = kthread_prio;
3967 			sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
3968 		}
3969 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3970 		wake_up_process(t);
3971 	}
3972 	rcu_spawn_nocb_kthreads();
3973 	rcu_spawn_boost_kthreads();
3974 	return 0;
3975 }
3976 early_initcall(rcu_spawn_gp_kthread);
3977 
3978 /*
3979  * This function is invoked towards the end of the scheduler's
3980  * initialization process.  Before this is called, the idle task might
3981  * contain synchronous grace-period primitives (during which time, this idle
3982  * task is booting the system, and such primitives are no-ops).  After this
3983  * function is called, any synchronous grace-period primitives are run as
3984  * expedited, with the requesting task driving the grace period forward.
3985  * A later core_initcall() rcu_set_runtime_mode() will switch to full
3986  * runtime RCU functionality.
3987  */
3988 void rcu_scheduler_starting(void)
3989 {
3990 	WARN_ON(num_online_cpus() != 1);
3991 	WARN_ON(nr_context_switches() > 0);
3992 	rcu_test_sync_prims();
3993 	rcu_scheduler_active = RCU_SCHEDULER_INIT;
3994 	rcu_test_sync_prims();
3995 }
3996 
3997 /*
3998  * Helper function for rcu_init() that initializes one rcu_state structure.
3999  */
4000 static void __init rcu_init_one(struct rcu_state *rsp)
4001 {
4002 	static const char * const buf[] = RCU_NODE_NAME_INIT;
4003 	static const char * const fqs[] = RCU_FQS_NAME_INIT;
4004 	static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
4005 	static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
4006 
4007 	int levelspread[RCU_NUM_LVLS];		/* kids/node in each level. */
4008 	int cpustride = 1;
4009 	int i;
4010 	int j;
4011 	struct rcu_node *rnp;
4012 
4013 	BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
4014 
4015 	/* Silence gcc 4.8 false positive about array index out of range. */
4016 	if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4017 		panic("rcu_init_one: rcu_num_lvls out of range");
4018 
4019 	/* Initialize the level-tracking arrays. */
4020 
4021 	for (i = 1; i < rcu_num_lvls; i++)
4022 		rsp->level[i] = rsp->level[i - 1] + num_rcu_lvl[i - 1];
4023 	rcu_init_levelspread(levelspread, num_rcu_lvl);
4024 
4025 	/* Initialize the elements themselves, starting from the leaves. */
4026 
4027 	for (i = rcu_num_lvls - 1; i >= 0; i--) {
4028 		cpustride *= levelspread[i];
4029 		rnp = rsp->level[i];
4030 		for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
4031 			raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4032 			lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
4033 						   &rcu_node_class[i], buf[i]);
4034 			raw_spin_lock_init(&rnp->fqslock);
4035 			lockdep_set_class_and_name(&rnp->fqslock,
4036 						   &rcu_fqs_class[i], fqs[i]);
4037 			rnp->gpnum = rsp->gpnum;
4038 			rnp->completed = rsp->completed;
4039 			rnp->qsmask = 0;
4040 			rnp->qsmaskinit = 0;
4041 			rnp->grplo = j * cpustride;
4042 			rnp->grphi = (j + 1) * cpustride - 1;
4043 			if (rnp->grphi >= nr_cpu_ids)
4044 				rnp->grphi = nr_cpu_ids - 1;
4045 			if (i == 0) {
4046 				rnp->grpnum = 0;
4047 				rnp->grpmask = 0;
4048 				rnp->parent = NULL;
4049 			} else {
4050 				rnp->grpnum = j % levelspread[i - 1];
4051 				rnp->grpmask = 1UL << rnp->grpnum;
4052 				rnp->parent = rsp->level[i - 1] +
4053 					      j / levelspread[i - 1];
4054 			}
4055 			rnp->level = i;
4056 			INIT_LIST_HEAD(&rnp->blkd_tasks);
4057 			rcu_init_one_nocb(rnp);
4058 			init_waitqueue_head(&rnp->exp_wq[0]);
4059 			init_waitqueue_head(&rnp->exp_wq[1]);
4060 			init_waitqueue_head(&rnp->exp_wq[2]);
4061 			init_waitqueue_head(&rnp->exp_wq[3]);
4062 			spin_lock_init(&rnp->exp_lock);
4063 		}
4064 	}
4065 
4066 	init_swait_queue_head(&rsp->gp_wq);
4067 	init_swait_queue_head(&rsp->expedited_wq);
4068 	rnp = rsp->level[rcu_num_lvls - 1];
4069 	for_each_possible_cpu(i) {
4070 		while (i > rnp->grphi)
4071 			rnp++;
4072 		per_cpu_ptr(rsp->rda, i)->mynode = rnp;
4073 		rcu_boot_init_percpu_data(i, rsp);
4074 	}
4075 	list_add(&rsp->flavors, &rcu_struct_flavors);
4076 }
4077 
4078 /*
4079  * Compute the rcu_node tree geometry from kernel parameters.  This cannot
4080  * replace the definitions in tree.h because those are needed to size
4081  * the ->node array in the rcu_state structure.
4082  */
4083 static void __init rcu_init_geometry(void)
4084 {
4085 	ulong d;
4086 	int i;
4087 	int rcu_capacity[RCU_NUM_LVLS];
4088 
4089 	/*
4090 	 * Initialize any unspecified boot parameters.
4091 	 * The default values of jiffies_till_first_fqs and
4092 	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4093 	 * value, which is a function of HZ, then adding one for each
4094 	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4095 	 */
4096 	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4097 	if (jiffies_till_first_fqs == ULONG_MAX)
4098 		jiffies_till_first_fqs = d;
4099 	if (jiffies_till_next_fqs == ULONG_MAX)
4100 		jiffies_till_next_fqs = d;
4101 
4102 	/* If the compile-time values are accurate, just leave. */
4103 	if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4104 	    nr_cpu_ids == NR_CPUS)
4105 		return;
4106 	pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
4107 		rcu_fanout_leaf, nr_cpu_ids);
4108 
4109 	/*
4110 	 * The boot-time rcu_fanout_leaf parameter must be at least two
4111 	 * and cannot exceed the number of bits in the rcu_node masks.
4112 	 * Complain and fall back to the compile-time values if this
4113 	 * limit is exceeded.
4114 	 */
4115 	if (rcu_fanout_leaf < 2 ||
4116 	    rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4117 		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4118 		WARN_ON(1);
4119 		return;
4120 	}
4121 
4122 	/*
4123 	 * Compute number of nodes that can be handled an rcu_node tree
4124 	 * with the given number of levels.
4125 	 */
4126 	rcu_capacity[0] = rcu_fanout_leaf;
4127 	for (i = 1; i < RCU_NUM_LVLS; i++)
4128 		rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4129 
4130 	/*
4131 	 * The tree must be able to accommodate the configured number of CPUs.
4132 	 * If this limit is exceeded, fall back to the compile-time values.
4133 	 */
4134 	if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4135 		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4136 		WARN_ON(1);
4137 		return;
4138 	}
4139 
4140 	/* Calculate the number of levels in the tree. */
4141 	for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4142 	}
4143 	rcu_num_lvls = i + 1;
4144 
4145 	/* Calculate the number of rcu_nodes at each level of the tree. */
4146 	for (i = 0; i < rcu_num_lvls; i++) {
4147 		int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4148 		num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4149 	}
4150 
4151 	/* Calculate the total number of rcu_node structures. */
4152 	rcu_num_nodes = 0;
4153 	for (i = 0; i < rcu_num_lvls; i++)
4154 		rcu_num_nodes += num_rcu_lvl[i];
4155 }
4156 
4157 /*
4158  * Dump out the structure of the rcu_node combining tree associated
4159  * with the rcu_state structure referenced by rsp.
4160  */
4161 static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
4162 {
4163 	int level = 0;
4164 	struct rcu_node *rnp;
4165 
4166 	pr_info("rcu_node tree layout dump\n");
4167 	pr_info(" ");
4168 	rcu_for_each_node_breadth_first(rsp, rnp) {
4169 		if (rnp->level != level) {
4170 			pr_cont("\n");
4171 			pr_info(" ");
4172 			level = rnp->level;
4173 		}
4174 		pr_cont("%d:%d ^%d  ", rnp->grplo, rnp->grphi, rnp->grpnum);
4175 	}
4176 	pr_cont("\n");
4177 }
4178 
4179 void __init rcu_init(void)
4180 {
4181 	int cpu;
4182 
4183 	rcu_early_boot_tests();
4184 
4185 	rcu_bootup_announce();
4186 	rcu_init_geometry();
4187 	rcu_init_one(&rcu_bh_state);
4188 	rcu_init_one(&rcu_sched_state);
4189 	if (dump_tree)
4190 		rcu_dump_rcu_node_tree(&rcu_sched_state);
4191 	__rcu_init_preempt();
4192 	open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
4193 
4194 	/*
4195 	 * We don't need protection against CPU-hotplug here because
4196 	 * this is called early in boot, before either interrupts
4197 	 * or the scheduler are operational.
4198 	 */
4199 	pm_notifier(rcu_pm_notify, 0);
4200 	for_each_online_cpu(cpu) {
4201 		rcutree_prepare_cpu(cpu);
4202 		rcu_cpu_starting(cpu);
4203 		if (IS_ENABLED(CONFIG_TREE_SRCU))
4204 			srcu_online_cpu(cpu);
4205 	}
4206 }
4207 
4208 #include "tree_exp.h"
4209 #include "tree_plugin.h"
4210