1 /* 2 * Read-Copy Update mechanism for mutual exclusion 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, you can access it online at 16 * http://www.gnu.org/licenses/gpl-2.0.html. 17 * 18 * Copyright IBM Corporation, 2008 19 * 20 * Authors: Dipankar Sarma <dipankar@in.ibm.com> 21 * Manfred Spraul <manfred@colorfullife.com> 22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version 23 * 24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com> 25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 26 * 27 * For detailed explanation of Read-Copy Update mechanism see - 28 * Documentation/RCU 29 */ 30 31 #define pr_fmt(fmt) "rcu: " fmt 32 33 #include <linux/types.h> 34 #include <linux/kernel.h> 35 #include <linux/init.h> 36 #include <linux/spinlock.h> 37 #include <linux/smp.h> 38 #include <linux/rcupdate_wait.h> 39 #include <linux/interrupt.h> 40 #include <linux/sched.h> 41 #include <linux/sched/debug.h> 42 #include <linux/nmi.h> 43 #include <linux/atomic.h> 44 #include <linux/bitops.h> 45 #include <linux/export.h> 46 #include <linux/completion.h> 47 #include <linux/moduleparam.h> 48 #include <linux/percpu.h> 49 #include <linux/notifier.h> 50 #include <linux/cpu.h> 51 #include <linux/mutex.h> 52 #include <linux/time.h> 53 #include <linux/kernel_stat.h> 54 #include <linux/wait.h> 55 #include <linux/kthread.h> 56 #include <uapi/linux/sched/types.h> 57 #include <linux/prefetch.h> 58 #include <linux/delay.h> 59 #include <linux/stop_machine.h> 60 #include <linux/random.h> 61 #include <linux/trace_events.h> 62 #include <linux/suspend.h> 63 #include <linux/ftrace.h> 64 #include <linux/tick.h> 65 #include <linux/kprobes.h> 66 67 #include "tree.h" 68 #include "rcu.h" 69 70 #ifdef MODULE_PARAM_PREFIX 71 #undef MODULE_PARAM_PREFIX 72 #endif 73 #define MODULE_PARAM_PREFIX "rcutree." 74 75 /* Data structures. */ 76 77 /* 78 * Steal a bit from the bottom of ->dynticks for idle entry/exit 79 * control. Initially this is for TLB flushing. 80 */ 81 #define RCU_DYNTICK_CTRL_MASK 0x1 82 #define RCU_DYNTICK_CTRL_CTR (RCU_DYNTICK_CTRL_MASK + 1) 83 #ifndef rcu_eqs_special_exit 84 #define rcu_eqs_special_exit() do { } while (0) 85 #endif 86 87 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = { 88 .dynticks_nesting = 1, 89 .dynticks_nmi_nesting = DYNTICK_IRQ_NONIDLE, 90 .dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR), 91 }; 92 struct rcu_state rcu_state = { 93 .level = { &rcu_state.node[0] }, 94 .gp_state = RCU_GP_IDLE, 95 .gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT, 96 .barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex), 97 .name = RCU_NAME, 98 .abbr = RCU_ABBR, 99 .exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex), 100 .exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex), 101 .ofl_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.ofl_lock), 102 }; 103 104 /* Dump rcu_node combining tree at boot to verify correct setup. */ 105 static bool dump_tree; 106 module_param(dump_tree, bool, 0444); 107 /* Control rcu_node-tree auto-balancing at boot time. */ 108 static bool rcu_fanout_exact; 109 module_param(rcu_fanout_exact, bool, 0444); 110 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */ 111 static int rcu_fanout_leaf = RCU_FANOUT_LEAF; 112 module_param(rcu_fanout_leaf, int, 0444); 113 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS; 114 /* Number of rcu_nodes at specified level. */ 115 int num_rcu_lvl[] = NUM_RCU_LVL_INIT; 116 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */ 117 /* panic() on RCU Stall sysctl. */ 118 int sysctl_panic_on_rcu_stall __read_mostly; 119 120 /* 121 * The rcu_scheduler_active variable is initialized to the value 122 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the 123 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE, 124 * RCU can assume that there is but one task, allowing RCU to (for example) 125 * optimize synchronize_rcu() to a simple barrier(). When this variable 126 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required 127 * to detect real grace periods. This variable is also used to suppress 128 * boot-time false positives from lockdep-RCU error checking. Finally, it 129 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU 130 * is fully initialized, including all of its kthreads having been spawned. 131 */ 132 int rcu_scheduler_active __read_mostly; 133 EXPORT_SYMBOL_GPL(rcu_scheduler_active); 134 135 /* 136 * The rcu_scheduler_fully_active variable transitions from zero to one 137 * during the early_initcall() processing, which is after the scheduler 138 * is capable of creating new tasks. So RCU processing (for example, 139 * creating tasks for RCU priority boosting) must be delayed until after 140 * rcu_scheduler_fully_active transitions from zero to one. We also 141 * currently delay invocation of any RCU callbacks until after this point. 142 * 143 * It might later prove better for people registering RCU callbacks during 144 * early boot to take responsibility for these callbacks, but one step at 145 * a time. 146 */ 147 static int rcu_scheduler_fully_active __read_mostly; 148 149 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp, 150 unsigned long gps, unsigned long flags); 151 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf); 152 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf); 153 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu); 154 static void invoke_rcu_core(void); 155 static void invoke_rcu_callbacks(struct rcu_data *rdp); 156 static void rcu_report_exp_rdp(struct rcu_data *rdp); 157 static void sync_sched_exp_online_cleanup(int cpu); 158 159 /* rcuc/rcub kthread realtime priority */ 160 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0; 161 module_param(kthread_prio, int, 0644); 162 163 /* Delay in jiffies for grace-period initialization delays, debug only. */ 164 165 static int gp_preinit_delay; 166 module_param(gp_preinit_delay, int, 0444); 167 static int gp_init_delay; 168 module_param(gp_init_delay, int, 0444); 169 static int gp_cleanup_delay; 170 module_param(gp_cleanup_delay, int, 0444); 171 172 /* Retrieve RCU kthreads priority for rcutorture */ 173 int rcu_get_gp_kthreads_prio(void) 174 { 175 return kthread_prio; 176 } 177 EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio); 178 179 /* 180 * Number of grace periods between delays, normalized by the duration of 181 * the delay. The longer the delay, the more the grace periods between 182 * each delay. The reason for this normalization is that it means that, 183 * for non-zero delays, the overall slowdown of grace periods is constant 184 * regardless of the duration of the delay. This arrangement balances 185 * the need for long delays to increase some race probabilities with the 186 * need for fast grace periods to increase other race probabilities. 187 */ 188 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */ 189 190 /* 191 * Compute the mask of online CPUs for the specified rcu_node structure. 192 * This will not be stable unless the rcu_node structure's ->lock is 193 * held, but the bit corresponding to the current CPU will be stable 194 * in most contexts. 195 */ 196 unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp) 197 { 198 return READ_ONCE(rnp->qsmaskinitnext); 199 } 200 201 /* 202 * Return true if an RCU grace period is in progress. The READ_ONCE()s 203 * permit this function to be invoked without holding the root rcu_node 204 * structure's ->lock, but of course results can be subject to change. 205 */ 206 static int rcu_gp_in_progress(void) 207 { 208 return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq)); 209 } 210 211 /* 212 * Return the number of callbacks queued on the specified CPU. 213 * Handles both the nocbs and normal cases. 214 */ 215 static long rcu_get_n_cbs_cpu(int cpu) 216 { 217 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 218 219 if (rcu_segcblist_is_enabled(&rdp->cblist)) /* Online normal CPU? */ 220 return rcu_segcblist_n_cbs(&rdp->cblist); 221 return rcu_get_n_cbs_nocb_cpu(rdp); /* Works for offline, too. */ 222 } 223 224 void rcu_softirq_qs(void) 225 { 226 rcu_qs(); 227 rcu_preempt_deferred_qs(current); 228 } 229 230 /* 231 * Record entry into an extended quiescent state. This is only to be 232 * called when not already in an extended quiescent state. 233 */ 234 static void rcu_dynticks_eqs_enter(void) 235 { 236 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 237 int seq; 238 239 /* 240 * CPUs seeing atomic_add_return() must see prior RCU read-side 241 * critical sections, and we also must force ordering with the 242 * next idle sojourn. 243 */ 244 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks); 245 /* Better be in an extended quiescent state! */ 246 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 247 (seq & RCU_DYNTICK_CTRL_CTR)); 248 /* Better not have special action (TLB flush) pending! */ 249 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 250 (seq & RCU_DYNTICK_CTRL_MASK)); 251 } 252 253 /* 254 * Record exit from an extended quiescent state. This is only to be 255 * called from an extended quiescent state. 256 */ 257 static void rcu_dynticks_eqs_exit(void) 258 { 259 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 260 int seq; 261 262 /* 263 * CPUs seeing atomic_add_return() must see prior idle sojourns, 264 * and we also must force ordering with the next RCU read-side 265 * critical section. 266 */ 267 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks); 268 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 269 !(seq & RCU_DYNTICK_CTRL_CTR)); 270 if (seq & RCU_DYNTICK_CTRL_MASK) { 271 atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdp->dynticks); 272 smp_mb__after_atomic(); /* _exit after clearing mask. */ 273 /* Prefer duplicate flushes to losing a flush. */ 274 rcu_eqs_special_exit(); 275 } 276 } 277 278 /* 279 * Reset the current CPU's ->dynticks counter to indicate that the 280 * newly onlined CPU is no longer in an extended quiescent state. 281 * This will either leave the counter unchanged, or increment it 282 * to the next non-quiescent value. 283 * 284 * The non-atomic test/increment sequence works because the upper bits 285 * of the ->dynticks counter are manipulated only by the corresponding CPU, 286 * or when the corresponding CPU is offline. 287 */ 288 static void rcu_dynticks_eqs_online(void) 289 { 290 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 291 292 if (atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR) 293 return; 294 atomic_add(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks); 295 } 296 297 /* 298 * Is the current CPU in an extended quiescent state? 299 * 300 * No ordering, as we are sampling CPU-local information. 301 */ 302 bool rcu_dynticks_curr_cpu_in_eqs(void) 303 { 304 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 305 306 return !(atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR); 307 } 308 309 /* 310 * Snapshot the ->dynticks counter with full ordering so as to allow 311 * stable comparison of this counter with past and future snapshots. 312 */ 313 int rcu_dynticks_snap(struct rcu_data *rdp) 314 { 315 int snap = atomic_add_return(0, &rdp->dynticks); 316 317 return snap & ~RCU_DYNTICK_CTRL_MASK; 318 } 319 320 /* 321 * Return true if the snapshot returned from rcu_dynticks_snap() 322 * indicates that RCU is in an extended quiescent state. 323 */ 324 static bool rcu_dynticks_in_eqs(int snap) 325 { 326 return !(snap & RCU_DYNTICK_CTRL_CTR); 327 } 328 329 /* 330 * Return true if the CPU corresponding to the specified rcu_data 331 * structure has spent some time in an extended quiescent state since 332 * rcu_dynticks_snap() returned the specified snapshot. 333 */ 334 static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap) 335 { 336 return snap != rcu_dynticks_snap(rdp); 337 } 338 339 /* 340 * Set the special (bottom) bit of the specified CPU so that it 341 * will take special action (such as flushing its TLB) on the 342 * next exit from an extended quiescent state. Returns true if 343 * the bit was successfully set, or false if the CPU was not in 344 * an extended quiescent state. 345 */ 346 bool rcu_eqs_special_set(int cpu) 347 { 348 int old; 349 int new; 350 struct rcu_data *rdp = &per_cpu(rcu_data, cpu); 351 352 do { 353 old = atomic_read(&rdp->dynticks); 354 if (old & RCU_DYNTICK_CTRL_CTR) 355 return false; 356 new = old | RCU_DYNTICK_CTRL_MASK; 357 } while (atomic_cmpxchg(&rdp->dynticks, old, new) != old); 358 return true; 359 } 360 361 /* 362 * Let the RCU core know that this CPU has gone through the scheduler, 363 * which is a quiescent state. This is called when the need for a 364 * quiescent state is urgent, so we burn an atomic operation and full 365 * memory barriers to let the RCU core know about it, regardless of what 366 * this CPU might (or might not) do in the near future. 367 * 368 * We inform the RCU core by emulating a zero-duration dyntick-idle period. 369 * 370 * The caller must have disabled interrupts and must not be idle. 371 */ 372 static void __maybe_unused rcu_momentary_dyntick_idle(void) 373 { 374 int special; 375 376 raw_cpu_write(rcu_data.rcu_need_heavy_qs, false); 377 special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR, 378 &this_cpu_ptr(&rcu_data)->dynticks); 379 /* It is illegal to call this from idle state. */ 380 WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR)); 381 rcu_preempt_deferred_qs(current); 382 } 383 384 /** 385 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle 386 * 387 * If the current CPU is idle or running at a first-level (not nested) 388 * interrupt from idle, return true. The caller must have at least 389 * disabled preemption. 390 */ 391 static int rcu_is_cpu_rrupt_from_idle(void) 392 { 393 return __this_cpu_read(rcu_data.dynticks_nesting) <= 0 && 394 __this_cpu_read(rcu_data.dynticks_nmi_nesting) <= 1; 395 } 396 397 #define DEFAULT_RCU_BLIMIT 10 /* Maximum callbacks per rcu_do_batch. */ 398 static long blimit = DEFAULT_RCU_BLIMIT; 399 #define DEFAULT_RCU_QHIMARK 10000 /* If this many pending, ignore blimit. */ 400 static long qhimark = DEFAULT_RCU_QHIMARK; 401 #define DEFAULT_RCU_QLOMARK 100 /* Once only this many pending, use blimit. */ 402 static long qlowmark = DEFAULT_RCU_QLOMARK; 403 404 module_param(blimit, long, 0444); 405 module_param(qhimark, long, 0444); 406 module_param(qlowmark, long, 0444); 407 408 static ulong jiffies_till_first_fqs = ULONG_MAX; 409 static ulong jiffies_till_next_fqs = ULONG_MAX; 410 static bool rcu_kick_kthreads; 411 412 /* 413 * How long the grace period must be before we start recruiting 414 * quiescent-state help from rcu_note_context_switch(). 415 */ 416 static ulong jiffies_till_sched_qs = ULONG_MAX; 417 module_param(jiffies_till_sched_qs, ulong, 0444); 418 static ulong jiffies_to_sched_qs; /* Adjusted version of above if not default */ 419 module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */ 420 421 /* 422 * Make sure that we give the grace-period kthread time to detect any 423 * idle CPUs before taking active measures to force quiescent states. 424 * However, don't go below 100 milliseconds, adjusted upwards for really 425 * large systems. 426 */ 427 static void adjust_jiffies_till_sched_qs(void) 428 { 429 unsigned long j; 430 431 /* If jiffies_till_sched_qs was specified, respect the request. */ 432 if (jiffies_till_sched_qs != ULONG_MAX) { 433 WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs); 434 return; 435 } 436 j = READ_ONCE(jiffies_till_first_fqs) + 437 2 * READ_ONCE(jiffies_till_next_fqs); 438 if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV) 439 j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; 440 pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j); 441 WRITE_ONCE(jiffies_to_sched_qs, j); 442 } 443 444 static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp) 445 { 446 ulong j; 447 int ret = kstrtoul(val, 0, &j); 448 449 if (!ret) { 450 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j); 451 adjust_jiffies_till_sched_qs(); 452 } 453 return ret; 454 } 455 456 static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp) 457 { 458 ulong j; 459 int ret = kstrtoul(val, 0, &j); 460 461 if (!ret) { 462 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1)); 463 adjust_jiffies_till_sched_qs(); 464 } 465 return ret; 466 } 467 468 static struct kernel_param_ops first_fqs_jiffies_ops = { 469 .set = param_set_first_fqs_jiffies, 470 .get = param_get_ulong, 471 }; 472 473 static struct kernel_param_ops next_fqs_jiffies_ops = { 474 .set = param_set_next_fqs_jiffies, 475 .get = param_get_ulong, 476 }; 477 478 module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644); 479 module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644); 480 module_param(rcu_kick_kthreads, bool, 0644); 481 482 static void force_qs_rnp(int (*f)(struct rcu_data *rdp)); 483 static void force_quiescent_state(void); 484 static int rcu_pending(void); 485 486 /* 487 * Return the number of RCU GPs completed thus far for debug & stats. 488 */ 489 unsigned long rcu_get_gp_seq(void) 490 { 491 return READ_ONCE(rcu_state.gp_seq); 492 } 493 EXPORT_SYMBOL_GPL(rcu_get_gp_seq); 494 495 /* 496 * Return the number of RCU expedited batches completed thus far for 497 * debug & stats. Odd numbers mean that a batch is in progress, even 498 * numbers mean idle. The value returned will thus be roughly double 499 * the cumulative batches since boot. 500 */ 501 unsigned long rcu_exp_batches_completed(void) 502 { 503 return rcu_state.expedited_sequence; 504 } 505 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed); 506 507 /* 508 * Force a quiescent state. 509 */ 510 void rcu_force_quiescent_state(void) 511 { 512 force_quiescent_state(); 513 } 514 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state); 515 516 /* 517 * Convert a ->gp_state value to a character string. 518 */ 519 static const char *gp_state_getname(short gs) 520 { 521 if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names)) 522 return "???"; 523 return gp_state_names[gs]; 524 } 525 526 /* 527 * Show the state of the grace-period kthreads. 528 */ 529 void show_rcu_gp_kthreads(void) 530 { 531 int cpu; 532 unsigned long j; 533 struct rcu_data *rdp; 534 struct rcu_node *rnp; 535 536 j = jiffies - READ_ONCE(rcu_state.gp_activity); 537 pr_info("%s: wait state: %s(%d) ->state: %#lx delta ->gp_activity %ld\n", 538 rcu_state.name, gp_state_getname(rcu_state.gp_state), 539 rcu_state.gp_state, rcu_state.gp_kthread->state, j); 540 rcu_for_each_node_breadth_first(rnp) { 541 if (ULONG_CMP_GE(rcu_state.gp_seq, rnp->gp_seq_needed)) 542 continue; 543 pr_info("\trcu_node %d:%d ->gp_seq %lu ->gp_seq_needed %lu\n", 544 rnp->grplo, rnp->grphi, rnp->gp_seq, 545 rnp->gp_seq_needed); 546 if (!rcu_is_leaf_node(rnp)) 547 continue; 548 for_each_leaf_node_possible_cpu(rnp, cpu) { 549 rdp = per_cpu_ptr(&rcu_data, cpu); 550 if (rdp->gpwrap || 551 ULONG_CMP_GE(rcu_state.gp_seq, 552 rdp->gp_seq_needed)) 553 continue; 554 pr_info("\tcpu %d ->gp_seq_needed %lu\n", 555 cpu, rdp->gp_seq_needed); 556 } 557 } 558 /* sched_show_task(rcu_state.gp_kthread); */ 559 } 560 EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads); 561 562 /* 563 * Send along grace-period-related data for rcutorture diagnostics. 564 */ 565 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags, 566 unsigned long *gp_seq) 567 { 568 switch (test_type) { 569 case RCU_FLAVOR: 570 case RCU_BH_FLAVOR: 571 case RCU_SCHED_FLAVOR: 572 *flags = READ_ONCE(rcu_state.gp_flags); 573 *gp_seq = rcu_seq_current(&rcu_state.gp_seq); 574 break; 575 default: 576 break; 577 } 578 } 579 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data); 580 581 /* 582 * Return the root node of the rcu_state structure. 583 */ 584 static struct rcu_node *rcu_get_root(void) 585 { 586 return &rcu_state.node[0]; 587 } 588 589 /* 590 * Enter an RCU extended quiescent state, which can be either the 591 * idle loop or adaptive-tickless usermode execution. 592 * 593 * We crowbar the ->dynticks_nmi_nesting field to zero to allow for 594 * the possibility of usermode upcalls having messed up our count 595 * of interrupt nesting level during the prior busy period. 596 */ 597 static void rcu_eqs_enter(bool user) 598 { 599 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 600 601 WARN_ON_ONCE(rdp->dynticks_nmi_nesting != DYNTICK_IRQ_NONIDLE); 602 WRITE_ONCE(rdp->dynticks_nmi_nesting, 0); 603 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 604 rdp->dynticks_nesting == 0); 605 if (rdp->dynticks_nesting != 1) { 606 rdp->dynticks_nesting--; 607 return; 608 } 609 610 lockdep_assert_irqs_disabled(); 611 trace_rcu_dyntick(TPS("Start"), rdp->dynticks_nesting, 0, rdp->dynticks); 612 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current)); 613 rdp = this_cpu_ptr(&rcu_data); 614 do_nocb_deferred_wakeup(rdp); 615 rcu_prepare_for_idle(); 616 rcu_preempt_deferred_qs(current); 617 WRITE_ONCE(rdp->dynticks_nesting, 0); /* Avoid irq-access tearing. */ 618 rcu_dynticks_eqs_enter(); 619 rcu_dynticks_task_enter(); 620 } 621 622 /** 623 * rcu_idle_enter - inform RCU that current CPU is entering idle 624 * 625 * Enter idle mode, in other words, -leave- the mode in which RCU 626 * read-side critical sections can occur. (Though RCU read-side 627 * critical sections can occur in irq handlers in idle, a possibility 628 * handled by irq_enter() and irq_exit().) 629 * 630 * If you add or remove a call to rcu_idle_enter(), be sure to test with 631 * CONFIG_RCU_EQS_DEBUG=y. 632 */ 633 void rcu_idle_enter(void) 634 { 635 lockdep_assert_irqs_disabled(); 636 rcu_eqs_enter(false); 637 } 638 639 #ifdef CONFIG_NO_HZ_FULL 640 /** 641 * rcu_user_enter - inform RCU that we are resuming userspace. 642 * 643 * Enter RCU idle mode right before resuming userspace. No use of RCU 644 * is permitted between this call and rcu_user_exit(). This way the 645 * CPU doesn't need to maintain the tick for RCU maintenance purposes 646 * when the CPU runs in userspace. 647 * 648 * If you add or remove a call to rcu_user_enter(), be sure to test with 649 * CONFIG_RCU_EQS_DEBUG=y. 650 */ 651 void rcu_user_enter(void) 652 { 653 lockdep_assert_irqs_disabled(); 654 rcu_eqs_enter(true); 655 } 656 #endif /* CONFIG_NO_HZ_FULL */ 657 658 /* 659 * If we are returning from the outermost NMI handler that interrupted an 660 * RCU-idle period, update rdp->dynticks and rdp->dynticks_nmi_nesting 661 * to let the RCU grace-period handling know that the CPU is back to 662 * being RCU-idle. 663 * 664 * If you add or remove a call to rcu_nmi_exit_common(), be sure to test 665 * with CONFIG_RCU_EQS_DEBUG=y. 666 */ 667 static __always_inline void rcu_nmi_exit_common(bool irq) 668 { 669 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 670 671 /* 672 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks. 673 * (We are exiting an NMI handler, so RCU better be paying attention 674 * to us!) 675 */ 676 WARN_ON_ONCE(rdp->dynticks_nmi_nesting <= 0); 677 WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs()); 678 679 /* 680 * If the nesting level is not 1, the CPU wasn't RCU-idle, so 681 * leave it in non-RCU-idle state. 682 */ 683 if (rdp->dynticks_nmi_nesting != 1) { 684 trace_rcu_dyntick(TPS("--="), rdp->dynticks_nmi_nesting, rdp->dynticks_nmi_nesting - 2, rdp->dynticks); 685 WRITE_ONCE(rdp->dynticks_nmi_nesting, /* No store tearing. */ 686 rdp->dynticks_nmi_nesting - 2); 687 return; 688 } 689 690 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */ 691 trace_rcu_dyntick(TPS("Startirq"), rdp->dynticks_nmi_nesting, 0, rdp->dynticks); 692 WRITE_ONCE(rdp->dynticks_nmi_nesting, 0); /* Avoid store tearing. */ 693 694 if (irq) 695 rcu_prepare_for_idle(); 696 697 rcu_dynticks_eqs_enter(); 698 699 if (irq) 700 rcu_dynticks_task_enter(); 701 } 702 703 /** 704 * rcu_nmi_exit - inform RCU of exit from NMI context 705 * @irq: Is this call from rcu_irq_exit? 706 * 707 * If you add or remove a call to rcu_nmi_exit(), be sure to test 708 * with CONFIG_RCU_EQS_DEBUG=y. 709 */ 710 void rcu_nmi_exit(void) 711 { 712 rcu_nmi_exit_common(false); 713 } 714 715 /** 716 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle 717 * 718 * Exit from an interrupt handler, which might possibly result in entering 719 * idle mode, in other words, leaving the mode in which read-side critical 720 * sections can occur. The caller must have disabled interrupts. 721 * 722 * This code assumes that the idle loop never does anything that might 723 * result in unbalanced calls to irq_enter() and irq_exit(). If your 724 * architecture's idle loop violates this assumption, RCU will give you what 725 * you deserve, good and hard. But very infrequently and irreproducibly. 726 * 727 * Use things like work queues to work around this limitation. 728 * 729 * You have been warned. 730 * 731 * If you add or remove a call to rcu_irq_exit(), be sure to test with 732 * CONFIG_RCU_EQS_DEBUG=y. 733 */ 734 void rcu_irq_exit(void) 735 { 736 lockdep_assert_irqs_disabled(); 737 rcu_nmi_exit_common(true); 738 } 739 740 /* 741 * Wrapper for rcu_irq_exit() where interrupts are enabled. 742 * 743 * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test 744 * with CONFIG_RCU_EQS_DEBUG=y. 745 */ 746 void rcu_irq_exit_irqson(void) 747 { 748 unsigned long flags; 749 750 local_irq_save(flags); 751 rcu_irq_exit(); 752 local_irq_restore(flags); 753 } 754 755 /* 756 * Exit an RCU extended quiescent state, which can be either the 757 * idle loop or adaptive-tickless usermode execution. 758 * 759 * We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to 760 * allow for the possibility of usermode upcalls messing up our count of 761 * interrupt nesting level during the busy period that is just now starting. 762 */ 763 static void rcu_eqs_exit(bool user) 764 { 765 struct rcu_data *rdp; 766 long oldval; 767 768 lockdep_assert_irqs_disabled(); 769 rdp = this_cpu_ptr(&rcu_data); 770 oldval = rdp->dynticks_nesting; 771 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0); 772 if (oldval) { 773 rdp->dynticks_nesting++; 774 return; 775 } 776 rcu_dynticks_task_exit(); 777 rcu_dynticks_eqs_exit(); 778 rcu_cleanup_after_idle(); 779 trace_rcu_dyntick(TPS("End"), rdp->dynticks_nesting, 1, rdp->dynticks); 780 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current)); 781 WRITE_ONCE(rdp->dynticks_nesting, 1); 782 WARN_ON_ONCE(rdp->dynticks_nmi_nesting); 783 WRITE_ONCE(rdp->dynticks_nmi_nesting, DYNTICK_IRQ_NONIDLE); 784 } 785 786 /** 787 * rcu_idle_exit - inform RCU that current CPU is leaving idle 788 * 789 * Exit idle mode, in other words, -enter- the mode in which RCU 790 * read-side critical sections can occur. 791 * 792 * If you add or remove a call to rcu_idle_exit(), be sure to test with 793 * CONFIG_RCU_EQS_DEBUG=y. 794 */ 795 void rcu_idle_exit(void) 796 { 797 unsigned long flags; 798 799 local_irq_save(flags); 800 rcu_eqs_exit(false); 801 local_irq_restore(flags); 802 } 803 804 #ifdef CONFIG_NO_HZ_FULL 805 /** 806 * rcu_user_exit - inform RCU that we are exiting userspace. 807 * 808 * Exit RCU idle mode while entering the kernel because it can 809 * run a RCU read side critical section anytime. 810 * 811 * If you add or remove a call to rcu_user_exit(), be sure to test with 812 * CONFIG_RCU_EQS_DEBUG=y. 813 */ 814 void rcu_user_exit(void) 815 { 816 rcu_eqs_exit(1); 817 } 818 #endif /* CONFIG_NO_HZ_FULL */ 819 820 /** 821 * rcu_nmi_enter_common - inform RCU of entry to NMI context 822 * @irq: Is this call from rcu_irq_enter? 823 * 824 * If the CPU was idle from RCU's viewpoint, update rdp->dynticks and 825 * rdp->dynticks_nmi_nesting to let the RCU grace-period handling know 826 * that the CPU is active. This implementation permits nested NMIs, as 827 * long as the nesting level does not overflow an int. (You will probably 828 * run out of stack space first.) 829 * 830 * If you add or remove a call to rcu_nmi_enter_common(), be sure to test 831 * with CONFIG_RCU_EQS_DEBUG=y. 832 */ 833 static __always_inline void rcu_nmi_enter_common(bool irq) 834 { 835 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 836 long incby = 2; 837 838 /* Complain about underflow. */ 839 WARN_ON_ONCE(rdp->dynticks_nmi_nesting < 0); 840 841 /* 842 * If idle from RCU viewpoint, atomically increment ->dynticks 843 * to mark non-idle and increment ->dynticks_nmi_nesting by one. 844 * Otherwise, increment ->dynticks_nmi_nesting by two. This means 845 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed 846 * to be in the outermost NMI handler that interrupted an RCU-idle 847 * period (observation due to Andy Lutomirski). 848 */ 849 if (rcu_dynticks_curr_cpu_in_eqs()) { 850 851 if (irq) 852 rcu_dynticks_task_exit(); 853 854 rcu_dynticks_eqs_exit(); 855 856 if (irq) 857 rcu_cleanup_after_idle(); 858 859 incby = 1; 860 } 861 trace_rcu_dyntick(incby == 1 ? TPS("Endirq") : TPS("++="), 862 rdp->dynticks_nmi_nesting, 863 rdp->dynticks_nmi_nesting + incby, rdp->dynticks); 864 WRITE_ONCE(rdp->dynticks_nmi_nesting, /* Prevent store tearing. */ 865 rdp->dynticks_nmi_nesting + incby); 866 barrier(); 867 } 868 869 /** 870 * rcu_nmi_enter - inform RCU of entry to NMI context 871 */ 872 void rcu_nmi_enter(void) 873 { 874 rcu_nmi_enter_common(false); 875 } 876 NOKPROBE_SYMBOL(rcu_nmi_enter); 877 878 /** 879 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle 880 * 881 * Enter an interrupt handler, which might possibly result in exiting 882 * idle mode, in other words, entering the mode in which read-side critical 883 * sections can occur. The caller must have disabled interrupts. 884 * 885 * Note that the Linux kernel is fully capable of entering an interrupt 886 * handler that it never exits, for example when doing upcalls to user mode! 887 * This code assumes that the idle loop never does upcalls to user mode. 888 * If your architecture's idle loop does do upcalls to user mode (or does 889 * anything else that results in unbalanced calls to the irq_enter() and 890 * irq_exit() functions), RCU will give you what you deserve, good and hard. 891 * But very infrequently and irreproducibly. 892 * 893 * Use things like work queues to work around this limitation. 894 * 895 * You have been warned. 896 * 897 * If you add or remove a call to rcu_irq_enter(), be sure to test with 898 * CONFIG_RCU_EQS_DEBUG=y. 899 */ 900 void rcu_irq_enter(void) 901 { 902 lockdep_assert_irqs_disabled(); 903 rcu_nmi_enter_common(true); 904 } 905 906 /* 907 * Wrapper for rcu_irq_enter() where interrupts are enabled. 908 * 909 * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test 910 * with CONFIG_RCU_EQS_DEBUG=y. 911 */ 912 void rcu_irq_enter_irqson(void) 913 { 914 unsigned long flags; 915 916 local_irq_save(flags); 917 rcu_irq_enter(); 918 local_irq_restore(flags); 919 } 920 921 /** 922 * rcu_is_watching - see if RCU thinks that the current CPU is not idle 923 * 924 * Return true if RCU is watching the running CPU, which means that this 925 * CPU can safely enter RCU read-side critical sections. In other words, 926 * if the current CPU is not in its idle loop or is in an interrupt or 927 * NMI handler, return true. 928 */ 929 bool notrace rcu_is_watching(void) 930 { 931 bool ret; 932 933 preempt_disable_notrace(); 934 ret = !rcu_dynticks_curr_cpu_in_eqs(); 935 preempt_enable_notrace(); 936 return ret; 937 } 938 EXPORT_SYMBOL_GPL(rcu_is_watching); 939 940 /* 941 * If a holdout task is actually running, request an urgent quiescent 942 * state from its CPU. This is unsynchronized, so migrations can cause 943 * the request to go to the wrong CPU. Which is OK, all that will happen 944 * is that the CPU's next context switch will be a bit slower and next 945 * time around this task will generate another request. 946 */ 947 void rcu_request_urgent_qs_task(struct task_struct *t) 948 { 949 int cpu; 950 951 barrier(); 952 cpu = task_cpu(t); 953 if (!task_curr(t)) 954 return; /* This task is not running on that CPU. */ 955 smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true); 956 } 957 958 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) 959 960 /* 961 * Is the current CPU online as far as RCU is concerned? 962 * 963 * Disable preemption to avoid false positives that could otherwise 964 * happen due to the current CPU number being sampled, this task being 965 * preempted, its old CPU being taken offline, resuming on some other CPU, 966 * then determining that its old CPU is now offline. 967 * 968 * Disable checking if in an NMI handler because we cannot safely 969 * report errors from NMI handlers anyway. In addition, it is OK to use 970 * RCU on an offline processor during initial boot, hence the check for 971 * rcu_scheduler_fully_active. 972 */ 973 bool rcu_lockdep_current_cpu_online(void) 974 { 975 struct rcu_data *rdp; 976 struct rcu_node *rnp; 977 bool ret = false; 978 979 if (in_nmi() || !rcu_scheduler_fully_active) 980 return true; 981 preempt_disable(); 982 rdp = this_cpu_ptr(&rcu_data); 983 rnp = rdp->mynode; 984 if (rdp->grpmask & rcu_rnp_online_cpus(rnp)) 985 ret = true; 986 preempt_enable(); 987 return ret; 988 } 989 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online); 990 991 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */ 992 993 /* 994 * We are reporting a quiescent state on behalf of some other CPU, so 995 * it is our responsibility to check for and handle potential overflow 996 * of the rcu_node ->gp_seq counter with respect to the rcu_data counters. 997 * After all, the CPU might be in deep idle state, and thus executing no 998 * code whatsoever. 999 */ 1000 static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp) 1001 { 1002 raw_lockdep_assert_held_rcu_node(rnp); 1003 if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4, 1004 rnp->gp_seq)) 1005 WRITE_ONCE(rdp->gpwrap, true); 1006 if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq)) 1007 rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4; 1008 } 1009 1010 /* 1011 * Snapshot the specified CPU's dynticks counter so that we can later 1012 * credit them with an implicit quiescent state. Return 1 if this CPU 1013 * is in dynticks idle mode, which is an extended quiescent state. 1014 */ 1015 static int dyntick_save_progress_counter(struct rcu_data *rdp) 1016 { 1017 rdp->dynticks_snap = rcu_dynticks_snap(rdp); 1018 if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) { 1019 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti")); 1020 rcu_gpnum_ovf(rdp->mynode, rdp); 1021 return 1; 1022 } 1023 return 0; 1024 } 1025 1026 /* 1027 * Handler for the irq_work request posted when a grace period has 1028 * gone on for too long, but not yet long enough for an RCU CPU 1029 * stall warning. Set state appropriately, but just complain if 1030 * there is unexpected state on entry. 1031 */ 1032 static void rcu_iw_handler(struct irq_work *iwp) 1033 { 1034 struct rcu_data *rdp; 1035 struct rcu_node *rnp; 1036 1037 rdp = container_of(iwp, struct rcu_data, rcu_iw); 1038 rnp = rdp->mynode; 1039 raw_spin_lock_rcu_node(rnp); 1040 if (!WARN_ON_ONCE(!rdp->rcu_iw_pending)) { 1041 rdp->rcu_iw_gp_seq = rnp->gp_seq; 1042 rdp->rcu_iw_pending = false; 1043 } 1044 raw_spin_unlock_rcu_node(rnp); 1045 } 1046 1047 /* 1048 * Return true if the specified CPU has passed through a quiescent 1049 * state by virtue of being in or having passed through an dynticks 1050 * idle state since the last call to dyntick_save_progress_counter() 1051 * for this same CPU, or by virtue of having been offline. 1052 */ 1053 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp) 1054 { 1055 unsigned long jtsq; 1056 bool *rnhqp; 1057 bool *ruqp; 1058 struct rcu_node *rnp = rdp->mynode; 1059 1060 /* 1061 * If the CPU passed through or entered a dynticks idle phase with 1062 * no active irq/NMI handlers, then we can safely pretend that the CPU 1063 * already acknowledged the request to pass through a quiescent 1064 * state. Either way, that CPU cannot possibly be in an RCU 1065 * read-side critical section that started before the beginning 1066 * of the current RCU grace period. 1067 */ 1068 if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) { 1069 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti")); 1070 rcu_gpnum_ovf(rnp, rdp); 1071 return 1; 1072 } 1073 1074 /* If waiting too long on an offline CPU, complain. */ 1075 if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp)) && 1076 time_after(jiffies, rcu_state.gp_start + HZ)) { 1077 bool onl; 1078 struct rcu_node *rnp1; 1079 1080 WARN_ON(1); /* Offline CPUs are supposed to report QS! */ 1081 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n", 1082 __func__, rnp->grplo, rnp->grphi, rnp->level, 1083 (long)rnp->gp_seq, (long)rnp->completedqs); 1084 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent) 1085 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n", 1086 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask); 1087 onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp)); 1088 pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n", 1089 __func__, rdp->cpu, ".o"[onl], 1090 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags, 1091 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags); 1092 return 1; /* Break things loose after complaining. */ 1093 } 1094 1095 /* 1096 * A CPU running for an extended time within the kernel can 1097 * delay RCU grace periods: (1) At age jiffies_to_sched_qs, 1098 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set 1099 * both .rcu_need_heavy_qs and .rcu_urgent_qs. Note that the 1100 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs 1101 * variable are safe because the assignments are repeated if this 1102 * CPU failed to pass through a quiescent state. This code 1103 * also checks .jiffies_resched in case jiffies_to_sched_qs 1104 * is set way high. 1105 */ 1106 jtsq = READ_ONCE(jiffies_to_sched_qs); 1107 ruqp = per_cpu_ptr(&rcu_data.rcu_urgent_qs, rdp->cpu); 1108 rnhqp = &per_cpu(rcu_data.rcu_need_heavy_qs, rdp->cpu); 1109 if (!READ_ONCE(*rnhqp) && 1110 (time_after(jiffies, rcu_state.gp_start + jtsq * 2) || 1111 time_after(jiffies, rcu_state.jiffies_resched))) { 1112 WRITE_ONCE(*rnhqp, true); 1113 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */ 1114 smp_store_release(ruqp, true); 1115 } else if (time_after(jiffies, rcu_state.gp_start + jtsq)) { 1116 WRITE_ONCE(*ruqp, true); 1117 } 1118 1119 /* 1120 * NO_HZ_FULL CPUs can run in-kernel without rcu_check_callbacks! 1121 * The above code handles this, but only for straight cond_resched(). 1122 * And some in-kernel loops check need_resched() before calling 1123 * cond_resched(), which defeats the above code for CPUs that are 1124 * running in-kernel with scheduling-clock interrupts disabled. 1125 * So hit them over the head with the resched_cpu() hammer! 1126 */ 1127 if (tick_nohz_full_cpu(rdp->cpu) && 1128 time_after(jiffies, 1129 READ_ONCE(rdp->last_fqs_resched) + jtsq * 3)) { 1130 resched_cpu(rdp->cpu); 1131 WRITE_ONCE(rdp->last_fqs_resched, jiffies); 1132 } 1133 1134 /* 1135 * If more than halfway to RCU CPU stall-warning time, invoke 1136 * resched_cpu() more frequently to try to loosen things up a bit. 1137 * Also check to see if the CPU is getting hammered with interrupts, 1138 * but only once per grace period, just to keep the IPIs down to 1139 * a dull roar. 1140 */ 1141 if (time_after(jiffies, rcu_state.jiffies_resched)) { 1142 if (time_after(jiffies, 1143 READ_ONCE(rdp->last_fqs_resched) + jtsq)) { 1144 resched_cpu(rdp->cpu); 1145 WRITE_ONCE(rdp->last_fqs_resched, jiffies); 1146 } 1147 if (IS_ENABLED(CONFIG_IRQ_WORK) && 1148 !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq && 1149 (rnp->ffmask & rdp->grpmask)) { 1150 init_irq_work(&rdp->rcu_iw, rcu_iw_handler); 1151 rdp->rcu_iw_pending = true; 1152 rdp->rcu_iw_gp_seq = rnp->gp_seq; 1153 irq_work_queue_on(&rdp->rcu_iw, rdp->cpu); 1154 } 1155 } 1156 1157 return 0; 1158 } 1159 1160 static void record_gp_stall_check_time(void) 1161 { 1162 unsigned long j = jiffies; 1163 unsigned long j1; 1164 1165 rcu_state.gp_start = j; 1166 j1 = rcu_jiffies_till_stall_check(); 1167 /* Record ->gp_start before ->jiffies_stall. */ 1168 smp_store_release(&rcu_state.jiffies_stall, j + j1); /* ^^^ */ 1169 rcu_state.jiffies_resched = j + j1 / 2; 1170 rcu_state.n_force_qs_gpstart = READ_ONCE(rcu_state.n_force_qs); 1171 } 1172 1173 /* 1174 * Complain about starvation of grace-period kthread. 1175 */ 1176 static void rcu_check_gp_kthread_starvation(void) 1177 { 1178 struct task_struct *gpk = rcu_state.gp_kthread; 1179 unsigned long j; 1180 1181 j = jiffies - READ_ONCE(rcu_state.gp_activity); 1182 if (j > 2 * HZ) { 1183 pr_err("%s kthread starved for %ld jiffies! g%ld f%#x %s(%d) ->state=%#lx ->cpu=%d\n", 1184 rcu_state.name, j, 1185 (long)rcu_seq_current(&rcu_state.gp_seq), 1186 rcu_state.gp_flags, 1187 gp_state_getname(rcu_state.gp_state), rcu_state.gp_state, 1188 gpk ? gpk->state : ~0, gpk ? task_cpu(gpk) : -1); 1189 if (gpk) { 1190 pr_err("RCU grace-period kthread stack dump:\n"); 1191 sched_show_task(gpk); 1192 wake_up_process(gpk); 1193 } 1194 } 1195 } 1196 1197 /* 1198 * Dump stacks of all tasks running on stalled CPUs. First try using 1199 * NMIs, but fall back to manual remote stack tracing on architectures 1200 * that don't support NMI-based stack dumps. The NMI-triggered stack 1201 * traces are more accurate because they are printed by the target CPU. 1202 */ 1203 static void rcu_dump_cpu_stacks(void) 1204 { 1205 int cpu; 1206 unsigned long flags; 1207 struct rcu_node *rnp; 1208 1209 rcu_for_each_leaf_node(rnp) { 1210 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1211 for_each_leaf_node_possible_cpu(rnp, cpu) 1212 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) 1213 if (!trigger_single_cpu_backtrace(cpu)) 1214 dump_cpu_task(cpu); 1215 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1216 } 1217 } 1218 1219 /* 1220 * If too much time has passed in the current grace period, and if 1221 * so configured, go kick the relevant kthreads. 1222 */ 1223 static void rcu_stall_kick_kthreads(void) 1224 { 1225 unsigned long j; 1226 1227 if (!rcu_kick_kthreads) 1228 return; 1229 j = READ_ONCE(rcu_state.jiffies_kick_kthreads); 1230 if (time_after(jiffies, j) && rcu_state.gp_kthread && 1231 (rcu_gp_in_progress() || READ_ONCE(rcu_state.gp_flags))) { 1232 WARN_ONCE(1, "Kicking %s grace-period kthread\n", 1233 rcu_state.name); 1234 rcu_ftrace_dump(DUMP_ALL); 1235 wake_up_process(rcu_state.gp_kthread); 1236 WRITE_ONCE(rcu_state.jiffies_kick_kthreads, j + HZ); 1237 } 1238 } 1239 1240 static void panic_on_rcu_stall(void) 1241 { 1242 if (sysctl_panic_on_rcu_stall) 1243 panic("RCU Stall\n"); 1244 } 1245 1246 static void print_other_cpu_stall(unsigned long gp_seq) 1247 { 1248 int cpu; 1249 unsigned long flags; 1250 unsigned long gpa; 1251 unsigned long j; 1252 int ndetected = 0; 1253 struct rcu_node *rnp = rcu_get_root(); 1254 long totqlen = 0; 1255 1256 /* Kick and suppress, if so configured. */ 1257 rcu_stall_kick_kthreads(); 1258 if (rcu_cpu_stall_suppress) 1259 return; 1260 1261 /* 1262 * OK, time to rat on our buddy... 1263 * See Documentation/RCU/stallwarn.txt for info on how to debug 1264 * RCU CPU stall warnings. 1265 */ 1266 pr_err("INFO: %s detected stalls on CPUs/tasks:", rcu_state.name); 1267 print_cpu_stall_info_begin(); 1268 rcu_for_each_leaf_node(rnp) { 1269 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1270 ndetected += rcu_print_task_stall(rnp); 1271 if (rnp->qsmask != 0) { 1272 for_each_leaf_node_possible_cpu(rnp, cpu) 1273 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) { 1274 print_cpu_stall_info(cpu); 1275 ndetected++; 1276 } 1277 } 1278 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1279 } 1280 1281 print_cpu_stall_info_end(); 1282 for_each_possible_cpu(cpu) 1283 totqlen += rcu_get_n_cbs_cpu(cpu); 1284 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, q=%lu)\n", 1285 smp_processor_id(), (long)(jiffies - rcu_state.gp_start), 1286 (long)rcu_seq_current(&rcu_state.gp_seq), totqlen); 1287 if (ndetected) { 1288 rcu_dump_cpu_stacks(); 1289 1290 /* Complain about tasks blocking the grace period. */ 1291 rcu_print_detail_task_stall(); 1292 } else { 1293 if (rcu_seq_current(&rcu_state.gp_seq) != gp_seq) { 1294 pr_err("INFO: Stall ended before state dump start\n"); 1295 } else { 1296 j = jiffies; 1297 gpa = READ_ONCE(rcu_state.gp_activity); 1298 pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n", 1299 rcu_state.name, j - gpa, j, gpa, 1300 READ_ONCE(jiffies_till_next_fqs), 1301 rcu_get_root()->qsmask); 1302 /* In this case, the current CPU might be at fault. */ 1303 sched_show_task(current); 1304 } 1305 } 1306 /* Rewrite if needed in case of slow consoles. */ 1307 if (ULONG_CMP_GE(jiffies, READ_ONCE(rcu_state.jiffies_stall))) 1308 WRITE_ONCE(rcu_state.jiffies_stall, 1309 jiffies + 3 * rcu_jiffies_till_stall_check() + 3); 1310 1311 rcu_check_gp_kthread_starvation(); 1312 1313 panic_on_rcu_stall(); 1314 1315 force_quiescent_state(); /* Kick them all. */ 1316 } 1317 1318 static void print_cpu_stall(void) 1319 { 1320 int cpu; 1321 unsigned long flags; 1322 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 1323 struct rcu_node *rnp = rcu_get_root(); 1324 long totqlen = 0; 1325 1326 /* Kick and suppress, if so configured. */ 1327 rcu_stall_kick_kthreads(); 1328 if (rcu_cpu_stall_suppress) 1329 return; 1330 1331 /* 1332 * OK, time to rat on ourselves... 1333 * See Documentation/RCU/stallwarn.txt for info on how to debug 1334 * RCU CPU stall warnings. 1335 */ 1336 pr_err("INFO: %s self-detected stall on CPU", rcu_state.name); 1337 print_cpu_stall_info_begin(); 1338 raw_spin_lock_irqsave_rcu_node(rdp->mynode, flags); 1339 print_cpu_stall_info(smp_processor_id()); 1340 raw_spin_unlock_irqrestore_rcu_node(rdp->mynode, flags); 1341 print_cpu_stall_info_end(); 1342 for_each_possible_cpu(cpu) 1343 totqlen += rcu_get_n_cbs_cpu(cpu); 1344 pr_cont(" (t=%lu jiffies g=%ld q=%lu)\n", 1345 jiffies - rcu_state.gp_start, 1346 (long)rcu_seq_current(&rcu_state.gp_seq), totqlen); 1347 1348 rcu_check_gp_kthread_starvation(); 1349 1350 rcu_dump_cpu_stacks(); 1351 1352 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1353 /* Rewrite if needed in case of slow consoles. */ 1354 if (ULONG_CMP_GE(jiffies, READ_ONCE(rcu_state.jiffies_stall))) 1355 WRITE_ONCE(rcu_state.jiffies_stall, 1356 jiffies + 3 * rcu_jiffies_till_stall_check() + 3); 1357 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1358 1359 panic_on_rcu_stall(); 1360 1361 /* 1362 * Attempt to revive the RCU machinery by forcing a context switch. 1363 * 1364 * A context switch would normally allow the RCU state machine to make 1365 * progress and it could be we're stuck in kernel space without context 1366 * switches for an entirely unreasonable amount of time. 1367 */ 1368 set_tsk_need_resched(current); 1369 set_preempt_need_resched(); 1370 } 1371 1372 static void check_cpu_stall(struct rcu_data *rdp) 1373 { 1374 unsigned long gs1; 1375 unsigned long gs2; 1376 unsigned long gps; 1377 unsigned long j; 1378 unsigned long jn; 1379 unsigned long js; 1380 struct rcu_node *rnp; 1381 1382 if ((rcu_cpu_stall_suppress && !rcu_kick_kthreads) || 1383 !rcu_gp_in_progress()) 1384 return; 1385 rcu_stall_kick_kthreads(); 1386 j = jiffies; 1387 1388 /* 1389 * Lots of memory barriers to reject false positives. 1390 * 1391 * The idea is to pick up rcu_state.gp_seq, then 1392 * rcu_state.jiffies_stall, then rcu_state.gp_start, and finally 1393 * another copy of rcu_state.gp_seq. These values are updated in 1394 * the opposite order with memory barriers (or equivalent) during 1395 * grace-period initialization and cleanup. Now, a false positive 1396 * can occur if we get an new value of rcu_state.gp_start and a old 1397 * value of rcu_state.jiffies_stall. But given the memory barriers, 1398 * the only way that this can happen is if one grace period ends 1399 * and another starts between these two fetches. This is detected 1400 * by comparing the second fetch of rcu_state.gp_seq with the 1401 * previous fetch from rcu_state.gp_seq. 1402 * 1403 * Given this check, comparisons of jiffies, rcu_state.jiffies_stall, 1404 * and rcu_state.gp_start suffice to forestall false positives. 1405 */ 1406 gs1 = READ_ONCE(rcu_state.gp_seq); 1407 smp_rmb(); /* Pick up ->gp_seq first... */ 1408 js = READ_ONCE(rcu_state.jiffies_stall); 1409 smp_rmb(); /* ...then ->jiffies_stall before the rest... */ 1410 gps = READ_ONCE(rcu_state.gp_start); 1411 smp_rmb(); /* ...and finally ->gp_start before ->gp_seq again. */ 1412 gs2 = READ_ONCE(rcu_state.gp_seq); 1413 if (gs1 != gs2 || 1414 ULONG_CMP_LT(j, js) || 1415 ULONG_CMP_GE(gps, js)) 1416 return; /* No stall or GP completed since entering function. */ 1417 rnp = rdp->mynode; 1418 jn = jiffies + 3 * rcu_jiffies_till_stall_check() + 3; 1419 if (rcu_gp_in_progress() && 1420 (READ_ONCE(rnp->qsmask) & rdp->grpmask) && 1421 cmpxchg(&rcu_state.jiffies_stall, js, jn) == js) { 1422 1423 /* We haven't checked in, so go dump stack. */ 1424 print_cpu_stall(); 1425 1426 } else if (rcu_gp_in_progress() && 1427 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY) && 1428 cmpxchg(&rcu_state.jiffies_stall, js, jn) == js) { 1429 1430 /* They had a few time units to dump stack, so complain. */ 1431 print_other_cpu_stall(gs2); 1432 } 1433 } 1434 1435 /** 1436 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period 1437 * 1438 * Set the stall-warning timeout way off into the future, thus preventing 1439 * any RCU CPU stall-warning messages from appearing in the current set of 1440 * RCU grace periods. 1441 * 1442 * The caller must disable hard irqs. 1443 */ 1444 void rcu_cpu_stall_reset(void) 1445 { 1446 WRITE_ONCE(rcu_state.jiffies_stall, jiffies + ULONG_MAX / 2); 1447 } 1448 1449 /* Trace-event wrapper function for trace_rcu_future_grace_period. */ 1450 static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp, 1451 unsigned long gp_seq_req, const char *s) 1452 { 1453 trace_rcu_future_grace_period(rcu_state.name, rnp->gp_seq, gp_seq_req, 1454 rnp->level, rnp->grplo, rnp->grphi, s); 1455 } 1456 1457 /* 1458 * rcu_start_this_gp - Request the start of a particular grace period 1459 * @rnp_start: The leaf node of the CPU from which to start. 1460 * @rdp: The rcu_data corresponding to the CPU from which to start. 1461 * @gp_seq_req: The gp_seq of the grace period to start. 1462 * 1463 * Start the specified grace period, as needed to handle newly arrived 1464 * callbacks. The required future grace periods are recorded in each 1465 * rcu_node structure's ->gp_seq_needed field. Returns true if there 1466 * is reason to awaken the grace-period kthread. 1467 * 1468 * The caller must hold the specified rcu_node structure's ->lock, which 1469 * is why the caller is responsible for waking the grace-period kthread. 1470 * 1471 * Returns true if the GP thread needs to be awakened else false. 1472 */ 1473 static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp, 1474 unsigned long gp_seq_req) 1475 { 1476 bool ret = false; 1477 struct rcu_node *rnp; 1478 1479 /* 1480 * Use funnel locking to either acquire the root rcu_node 1481 * structure's lock or bail out if the need for this grace period 1482 * has already been recorded -- or if that grace period has in 1483 * fact already started. If there is already a grace period in 1484 * progress in a non-leaf node, no recording is needed because the 1485 * end of the grace period will scan the leaf rcu_node structures. 1486 * Note that rnp_start->lock must not be released. 1487 */ 1488 raw_lockdep_assert_held_rcu_node(rnp_start); 1489 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf")); 1490 for (rnp = rnp_start; 1; rnp = rnp->parent) { 1491 if (rnp != rnp_start) 1492 raw_spin_lock_rcu_node(rnp); 1493 if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) || 1494 rcu_seq_started(&rnp->gp_seq, gp_seq_req) || 1495 (rnp != rnp_start && 1496 rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) { 1497 trace_rcu_this_gp(rnp, rdp, gp_seq_req, 1498 TPS("Prestarted")); 1499 goto unlock_out; 1500 } 1501 rnp->gp_seq_needed = gp_seq_req; 1502 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) { 1503 /* 1504 * We just marked the leaf or internal node, and a 1505 * grace period is in progress, which means that 1506 * rcu_gp_cleanup() will see the marking. Bail to 1507 * reduce contention. 1508 */ 1509 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, 1510 TPS("Startedleaf")); 1511 goto unlock_out; 1512 } 1513 if (rnp != rnp_start && rnp->parent != NULL) 1514 raw_spin_unlock_rcu_node(rnp); 1515 if (!rnp->parent) 1516 break; /* At root, and perhaps also leaf. */ 1517 } 1518 1519 /* If GP already in progress, just leave, otherwise start one. */ 1520 if (rcu_gp_in_progress()) { 1521 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot")); 1522 goto unlock_out; 1523 } 1524 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot")); 1525 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT); 1526 rcu_state.gp_req_activity = jiffies; 1527 if (!rcu_state.gp_kthread) { 1528 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread")); 1529 goto unlock_out; 1530 } 1531 trace_rcu_grace_period(rcu_state.name, READ_ONCE(rcu_state.gp_seq), TPS("newreq")); 1532 ret = true; /* Caller must wake GP kthread. */ 1533 unlock_out: 1534 /* Push furthest requested GP to leaf node and rcu_data structure. */ 1535 if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) { 1536 rnp_start->gp_seq_needed = rnp->gp_seq_needed; 1537 rdp->gp_seq_needed = rnp->gp_seq_needed; 1538 } 1539 if (rnp != rnp_start) 1540 raw_spin_unlock_rcu_node(rnp); 1541 return ret; 1542 } 1543 1544 /* 1545 * Clean up any old requests for the just-ended grace period. Also return 1546 * whether any additional grace periods have been requested. 1547 */ 1548 static bool rcu_future_gp_cleanup(struct rcu_node *rnp) 1549 { 1550 bool needmore; 1551 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 1552 1553 needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed); 1554 if (!needmore) 1555 rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */ 1556 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq, 1557 needmore ? TPS("CleanupMore") : TPS("Cleanup")); 1558 return needmore; 1559 } 1560 1561 /* 1562 * Awaken the grace-period kthread. Don't do a self-awaken, and don't 1563 * bother awakening when there is nothing for the grace-period kthread 1564 * to do (as in several CPUs raced to awaken, and we lost), and finally 1565 * don't try to awaken a kthread that has not yet been created. 1566 */ 1567 static void rcu_gp_kthread_wake(void) 1568 { 1569 if (current == rcu_state.gp_kthread || 1570 !READ_ONCE(rcu_state.gp_flags) || 1571 !rcu_state.gp_kthread) 1572 return; 1573 swake_up_one(&rcu_state.gp_wq); 1574 } 1575 1576 /* 1577 * If there is room, assign a ->gp_seq number to any callbacks on this 1578 * CPU that have not already been assigned. Also accelerate any callbacks 1579 * that were previously assigned a ->gp_seq number that has since proven 1580 * to be too conservative, which can happen if callbacks get assigned a 1581 * ->gp_seq number while RCU is idle, but with reference to a non-root 1582 * rcu_node structure. This function is idempotent, so it does not hurt 1583 * to call it repeatedly. Returns an flag saying that we should awaken 1584 * the RCU grace-period kthread. 1585 * 1586 * The caller must hold rnp->lock with interrupts disabled. 1587 */ 1588 static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp) 1589 { 1590 unsigned long gp_seq_req; 1591 bool ret = false; 1592 1593 raw_lockdep_assert_held_rcu_node(rnp); 1594 1595 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */ 1596 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) 1597 return false; 1598 1599 /* 1600 * Callbacks are often registered with incomplete grace-period 1601 * information. Something about the fact that getting exact 1602 * information requires acquiring a global lock... RCU therefore 1603 * makes a conservative estimate of the grace period number at which 1604 * a given callback will become ready to invoke. The following 1605 * code checks this estimate and improves it when possible, thus 1606 * accelerating callback invocation to an earlier grace-period 1607 * number. 1608 */ 1609 gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq); 1610 if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req)) 1611 ret = rcu_start_this_gp(rnp, rdp, gp_seq_req); 1612 1613 /* Trace depending on how much we were able to accelerate. */ 1614 if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL)) 1615 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("AccWaitCB")); 1616 else 1617 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("AccReadyCB")); 1618 return ret; 1619 } 1620 1621 /* 1622 * Similar to rcu_accelerate_cbs(), but does not require that the leaf 1623 * rcu_node structure's ->lock be held. It consults the cached value 1624 * of ->gp_seq_needed in the rcu_data structure, and if that indicates 1625 * that a new grace-period request be made, invokes rcu_accelerate_cbs() 1626 * while holding the leaf rcu_node structure's ->lock. 1627 */ 1628 static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp, 1629 struct rcu_data *rdp) 1630 { 1631 unsigned long c; 1632 bool needwake; 1633 1634 lockdep_assert_irqs_disabled(); 1635 c = rcu_seq_snap(&rcu_state.gp_seq); 1636 if (!rdp->gpwrap && ULONG_CMP_GE(rdp->gp_seq_needed, c)) { 1637 /* Old request still live, so mark recent callbacks. */ 1638 (void)rcu_segcblist_accelerate(&rdp->cblist, c); 1639 return; 1640 } 1641 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 1642 needwake = rcu_accelerate_cbs(rnp, rdp); 1643 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 1644 if (needwake) 1645 rcu_gp_kthread_wake(); 1646 } 1647 1648 /* 1649 * Move any callbacks whose grace period has completed to the 1650 * RCU_DONE_TAIL sublist, then compact the remaining sublists and 1651 * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL 1652 * sublist. This function is idempotent, so it does not hurt to 1653 * invoke it repeatedly. As long as it is not invoked -too- often... 1654 * Returns true if the RCU grace-period kthread needs to be awakened. 1655 * 1656 * The caller must hold rnp->lock with interrupts disabled. 1657 */ 1658 static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp) 1659 { 1660 raw_lockdep_assert_held_rcu_node(rnp); 1661 1662 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */ 1663 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) 1664 return false; 1665 1666 /* 1667 * Find all callbacks whose ->gp_seq numbers indicate that they 1668 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist. 1669 */ 1670 rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq); 1671 1672 /* Classify any remaining callbacks. */ 1673 return rcu_accelerate_cbs(rnp, rdp); 1674 } 1675 1676 /* 1677 * Update CPU-local rcu_data state to record the beginnings and ends of 1678 * grace periods. The caller must hold the ->lock of the leaf rcu_node 1679 * structure corresponding to the current CPU, and must have irqs disabled. 1680 * Returns true if the grace-period kthread needs to be awakened. 1681 */ 1682 static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp) 1683 { 1684 bool ret; 1685 bool need_gp; 1686 1687 raw_lockdep_assert_held_rcu_node(rnp); 1688 1689 if (rdp->gp_seq == rnp->gp_seq) 1690 return false; /* Nothing to do. */ 1691 1692 /* Handle the ends of any preceding grace periods first. */ 1693 if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) || 1694 unlikely(READ_ONCE(rdp->gpwrap))) { 1695 ret = rcu_advance_cbs(rnp, rdp); /* Advance callbacks. */ 1696 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend")); 1697 } else { 1698 ret = rcu_accelerate_cbs(rnp, rdp); /* Recent callbacks. */ 1699 } 1700 1701 /* Now handle the beginnings of any new-to-this-CPU grace periods. */ 1702 if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) || 1703 unlikely(READ_ONCE(rdp->gpwrap))) { 1704 /* 1705 * If the current grace period is waiting for this CPU, 1706 * set up to detect a quiescent state, otherwise don't 1707 * go looking for one. 1708 */ 1709 trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart")); 1710 need_gp = !!(rnp->qsmask & rdp->grpmask); 1711 rdp->cpu_no_qs.b.norm = need_gp; 1712 rdp->core_needs_qs = need_gp; 1713 zero_cpu_stall_ticks(rdp); 1714 } 1715 rdp->gp_seq = rnp->gp_seq; /* Remember new grace-period state. */ 1716 if (ULONG_CMP_GE(rnp->gp_seq_needed, rdp->gp_seq_needed) || rdp->gpwrap) 1717 rdp->gp_seq_needed = rnp->gp_seq_needed; 1718 WRITE_ONCE(rdp->gpwrap, false); 1719 rcu_gpnum_ovf(rnp, rdp); 1720 return ret; 1721 } 1722 1723 static void note_gp_changes(struct rcu_data *rdp) 1724 { 1725 unsigned long flags; 1726 bool needwake; 1727 struct rcu_node *rnp; 1728 1729 local_irq_save(flags); 1730 rnp = rdp->mynode; 1731 if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) && 1732 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */ 1733 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */ 1734 local_irq_restore(flags); 1735 return; 1736 } 1737 needwake = __note_gp_changes(rnp, rdp); 1738 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1739 if (needwake) 1740 rcu_gp_kthread_wake(); 1741 } 1742 1743 static void rcu_gp_slow(int delay) 1744 { 1745 if (delay > 0 && 1746 !(rcu_seq_ctr(rcu_state.gp_seq) % 1747 (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay))) 1748 schedule_timeout_uninterruptible(delay); 1749 } 1750 1751 /* 1752 * Initialize a new grace period. Return false if no grace period required. 1753 */ 1754 static bool rcu_gp_init(void) 1755 { 1756 unsigned long flags; 1757 unsigned long oldmask; 1758 unsigned long mask; 1759 struct rcu_data *rdp; 1760 struct rcu_node *rnp = rcu_get_root(); 1761 1762 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1763 raw_spin_lock_irq_rcu_node(rnp); 1764 if (!READ_ONCE(rcu_state.gp_flags)) { 1765 /* Spurious wakeup, tell caller to go back to sleep. */ 1766 raw_spin_unlock_irq_rcu_node(rnp); 1767 return false; 1768 } 1769 WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */ 1770 1771 if (WARN_ON_ONCE(rcu_gp_in_progress())) { 1772 /* 1773 * Grace period already in progress, don't start another. 1774 * Not supposed to be able to happen. 1775 */ 1776 raw_spin_unlock_irq_rcu_node(rnp); 1777 return false; 1778 } 1779 1780 /* Advance to a new grace period and initialize state. */ 1781 record_gp_stall_check_time(); 1782 /* Record GP times before starting GP, hence rcu_seq_start(). */ 1783 rcu_seq_start(&rcu_state.gp_seq); 1784 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start")); 1785 raw_spin_unlock_irq_rcu_node(rnp); 1786 1787 /* 1788 * Apply per-leaf buffered online and offline operations to the 1789 * rcu_node tree. Note that this new grace period need not wait 1790 * for subsequent online CPUs, and that quiescent-state forcing 1791 * will handle subsequent offline CPUs. 1792 */ 1793 rcu_state.gp_state = RCU_GP_ONOFF; 1794 rcu_for_each_leaf_node(rnp) { 1795 raw_spin_lock(&rcu_state.ofl_lock); 1796 raw_spin_lock_irq_rcu_node(rnp); 1797 if (rnp->qsmaskinit == rnp->qsmaskinitnext && 1798 !rnp->wait_blkd_tasks) { 1799 /* Nothing to do on this leaf rcu_node structure. */ 1800 raw_spin_unlock_irq_rcu_node(rnp); 1801 raw_spin_unlock(&rcu_state.ofl_lock); 1802 continue; 1803 } 1804 1805 /* Record old state, apply changes to ->qsmaskinit field. */ 1806 oldmask = rnp->qsmaskinit; 1807 rnp->qsmaskinit = rnp->qsmaskinitnext; 1808 1809 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */ 1810 if (!oldmask != !rnp->qsmaskinit) { 1811 if (!oldmask) { /* First online CPU for rcu_node. */ 1812 if (!rnp->wait_blkd_tasks) /* Ever offline? */ 1813 rcu_init_new_rnp(rnp); 1814 } else if (rcu_preempt_has_tasks(rnp)) { 1815 rnp->wait_blkd_tasks = true; /* blocked tasks */ 1816 } else { /* Last offline CPU and can propagate. */ 1817 rcu_cleanup_dead_rnp(rnp); 1818 } 1819 } 1820 1821 /* 1822 * If all waited-on tasks from prior grace period are 1823 * done, and if all this rcu_node structure's CPUs are 1824 * still offline, propagate up the rcu_node tree and 1825 * clear ->wait_blkd_tasks. Otherwise, if one of this 1826 * rcu_node structure's CPUs has since come back online, 1827 * simply clear ->wait_blkd_tasks. 1828 */ 1829 if (rnp->wait_blkd_tasks && 1830 (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) { 1831 rnp->wait_blkd_tasks = false; 1832 if (!rnp->qsmaskinit) 1833 rcu_cleanup_dead_rnp(rnp); 1834 } 1835 1836 raw_spin_unlock_irq_rcu_node(rnp); 1837 raw_spin_unlock(&rcu_state.ofl_lock); 1838 } 1839 rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */ 1840 1841 /* 1842 * Set the quiescent-state-needed bits in all the rcu_node 1843 * structures for all currently online CPUs in breadth-first 1844 * order, starting from the root rcu_node structure, relying on the 1845 * layout of the tree within the rcu_state.node[] array. Note that 1846 * other CPUs will access only the leaves of the hierarchy, thus 1847 * seeing that no grace period is in progress, at least until the 1848 * corresponding leaf node has been initialized. 1849 * 1850 * The grace period cannot complete until the initialization 1851 * process finishes, because this kthread handles both. 1852 */ 1853 rcu_state.gp_state = RCU_GP_INIT; 1854 rcu_for_each_node_breadth_first(rnp) { 1855 rcu_gp_slow(gp_init_delay); 1856 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1857 rdp = this_cpu_ptr(&rcu_data); 1858 rcu_preempt_check_blocked_tasks(rnp); 1859 rnp->qsmask = rnp->qsmaskinit; 1860 WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq); 1861 if (rnp == rdp->mynode) 1862 (void)__note_gp_changes(rnp, rdp); 1863 rcu_preempt_boost_start_gp(rnp); 1864 trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq, 1865 rnp->level, rnp->grplo, 1866 rnp->grphi, rnp->qsmask); 1867 /* Quiescent states for tasks on any now-offline CPUs. */ 1868 mask = rnp->qsmask & ~rnp->qsmaskinitnext; 1869 rnp->rcu_gp_init_mask = mask; 1870 if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp)) 1871 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 1872 else 1873 raw_spin_unlock_irq_rcu_node(rnp); 1874 cond_resched_tasks_rcu_qs(); 1875 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1876 } 1877 1878 return true; 1879 } 1880 1881 /* 1882 * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state 1883 * time. 1884 */ 1885 static bool rcu_gp_fqs_check_wake(int *gfp) 1886 { 1887 struct rcu_node *rnp = rcu_get_root(); 1888 1889 /* Someone like call_rcu() requested a force-quiescent-state scan. */ 1890 *gfp = READ_ONCE(rcu_state.gp_flags); 1891 if (*gfp & RCU_GP_FLAG_FQS) 1892 return true; 1893 1894 /* The current grace period has completed. */ 1895 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp)) 1896 return true; 1897 1898 return false; 1899 } 1900 1901 /* 1902 * Do one round of quiescent-state forcing. 1903 */ 1904 static void rcu_gp_fqs(bool first_time) 1905 { 1906 struct rcu_node *rnp = rcu_get_root(); 1907 1908 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1909 rcu_state.n_force_qs++; 1910 if (first_time) { 1911 /* Collect dyntick-idle snapshots. */ 1912 force_qs_rnp(dyntick_save_progress_counter); 1913 } else { 1914 /* Handle dyntick-idle and offline CPUs. */ 1915 force_qs_rnp(rcu_implicit_dynticks_qs); 1916 } 1917 /* Clear flag to prevent immediate re-entry. */ 1918 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) { 1919 raw_spin_lock_irq_rcu_node(rnp); 1920 WRITE_ONCE(rcu_state.gp_flags, 1921 READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS); 1922 raw_spin_unlock_irq_rcu_node(rnp); 1923 } 1924 } 1925 1926 /* 1927 * Loop doing repeated quiescent-state forcing until the grace period ends. 1928 */ 1929 static void rcu_gp_fqs_loop(void) 1930 { 1931 bool first_gp_fqs; 1932 int gf; 1933 unsigned long j; 1934 int ret; 1935 struct rcu_node *rnp = rcu_get_root(); 1936 1937 first_gp_fqs = true; 1938 j = READ_ONCE(jiffies_till_first_fqs); 1939 ret = 0; 1940 for (;;) { 1941 if (!ret) { 1942 rcu_state.jiffies_force_qs = jiffies + j; 1943 WRITE_ONCE(rcu_state.jiffies_kick_kthreads, 1944 jiffies + 3 * j); 1945 } 1946 trace_rcu_grace_period(rcu_state.name, 1947 READ_ONCE(rcu_state.gp_seq), 1948 TPS("fqswait")); 1949 rcu_state.gp_state = RCU_GP_WAIT_FQS; 1950 ret = swait_event_idle_timeout_exclusive( 1951 rcu_state.gp_wq, rcu_gp_fqs_check_wake(&gf), j); 1952 rcu_state.gp_state = RCU_GP_DOING_FQS; 1953 /* Locking provides needed memory barriers. */ 1954 /* If grace period done, leave loop. */ 1955 if (!READ_ONCE(rnp->qsmask) && 1956 !rcu_preempt_blocked_readers_cgp(rnp)) 1957 break; 1958 /* If time for quiescent-state forcing, do it. */ 1959 if (ULONG_CMP_GE(jiffies, rcu_state.jiffies_force_qs) || 1960 (gf & RCU_GP_FLAG_FQS)) { 1961 trace_rcu_grace_period(rcu_state.name, 1962 READ_ONCE(rcu_state.gp_seq), 1963 TPS("fqsstart")); 1964 rcu_gp_fqs(first_gp_fqs); 1965 first_gp_fqs = false; 1966 trace_rcu_grace_period(rcu_state.name, 1967 READ_ONCE(rcu_state.gp_seq), 1968 TPS("fqsend")); 1969 cond_resched_tasks_rcu_qs(); 1970 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1971 ret = 0; /* Force full wait till next FQS. */ 1972 j = READ_ONCE(jiffies_till_next_fqs); 1973 } else { 1974 /* Deal with stray signal. */ 1975 cond_resched_tasks_rcu_qs(); 1976 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1977 WARN_ON(signal_pending(current)); 1978 trace_rcu_grace_period(rcu_state.name, 1979 READ_ONCE(rcu_state.gp_seq), 1980 TPS("fqswaitsig")); 1981 ret = 1; /* Keep old FQS timing. */ 1982 j = jiffies; 1983 if (time_after(jiffies, rcu_state.jiffies_force_qs)) 1984 j = 1; 1985 else 1986 j = rcu_state.jiffies_force_qs - j; 1987 } 1988 } 1989 } 1990 1991 /* 1992 * Clean up after the old grace period. 1993 */ 1994 static void rcu_gp_cleanup(void) 1995 { 1996 unsigned long gp_duration; 1997 bool needgp = false; 1998 unsigned long new_gp_seq; 1999 struct rcu_data *rdp; 2000 struct rcu_node *rnp = rcu_get_root(); 2001 struct swait_queue_head *sq; 2002 2003 WRITE_ONCE(rcu_state.gp_activity, jiffies); 2004 raw_spin_lock_irq_rcu_node(rnp); 2005 rcu_state.gp_end = jiffies; 2006 gp_duration = rcu_state.gp_end - rcu_state.gp_start; 2007 if (gp_duration > rcu_state.gp_max) 2008 rcu_state.gp_max = gp_duration; 2009 2010 /* 2011 * We know the grace period is complete, but to everyone else 2012 * it appears to still be ongoing. But it is also the case 2013 * that to everyone else it looks like there is nothing that 2014 * they can do to advance the grace period. It is therefore 2015 * safe for us to drop the lock in order to mark the grace 2016 * period as completed in all of the rcu_node structures. 2017 */ 2018 raw_spin_unlock_irq_rcu_node(rnp); 2019 2020 /* 2021 * Propagate new ->gp_seq value to rcu_node structures so that 2022 * other CPUs don't have to wait until the start of the next grace 2023 * period to process their callbacks. This also avoids some nasty 2024 * RCU grace-period initialization races by forcing the end of 2025 * the current grace period to be completely recorded in all of 2026 * the rcu_node structures before the beginning of the next grace 2027 * period is recorded in any of the rcu_node structures. 2028 */ 2029 new_gp_seq = rcu_state.gp_seq; 2030 rcu_seq_end(&new_gp_seq); 2031 rcu_for_each_node_breadth_first(rnp) { 2032 raw_spin_lock_irq_rcu_node(rnp); 2033 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp))) 2034 dump_blkd_tasks(rnp, 10); 2035 WARN_ON_ONCE(rnp->qsmask); 2036 WRITE_ONCE(rnp->gp_seq, new_gp_seq); 2037 rdp = this_cpu_ptr(&rcu_data); 2038 if (rnp == rdp->mynode) 2039 needgp = __note_gp_changes(rnp, rdp) || needgp; 2040 /* smp_mb() provided by prior unlock-lock pair. */ 2041 needgp = rcu_future_gp_cleanup(rnp) || needgp; 2042 sq = rcu_nocb_gp_get(rnp); 2043 raw_spin_unlock_irq_rcu_node(rnp); 2044 rcu_nocb_gp_cleanup(sq); 2045 cond_resched_tasks_rcu_qs(); 2046 WRITE_ONCE(rcu_state.gp_activity, jiffies); 2047 rcu_gp_slow(gp_cleanup_delay); 2048 } 2049 rnp = rcu_get_root(); 2050 raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */ 2051 2052 /* Declare grace period done, trace first to use old GP number. */ 2053 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end")); 2054 rcu_seq_end(&rcu_state.gp_seq); 2055 rcu_state.gp_state = RCU_GP_IDLE; 2056 /* Check for GP requests since above loop. */ 2057 rdp = this_cpu_ptr(&rcu_data); 2058 if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) { 2059 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed, 2060 TPS("CleanupMore")); 2061 needgp = true; 2062 } 2063 /* Advance CBs to reduce false positives below. */ 2064 if (!rcu_accelerate_cbs(rnp, rdp) && needgp) { 2065 WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT); 2066 rcu_state.gp_req_activity = jiffies; 2067 trace_rcu_grace_period(rcu_state.name, 2068 READ_ONCE(rcu_state.gp_seq), 2069 TPS("newreq")); 2070 } else { 2071 WRITE_ONCE(rcu_state.gp_flags, 2072 rcu_state.gp_flags & RCU_GP_FLAG_INIT); 2073 } 2074 raw_spin_unlock_irq_rcu_node(rnp); 2075 } 2076 2077 /* 2078 * Body of kthread that handles grace periods. 2079 */ 2080 static int __noreturn rcu_gp_kthread(void *unused) 2081 { 2082 rcu_bind_gp_kthread(); 2083 for (;;) { 2084 2085 /* Handle grace-period start. */ 2086 for (;;) { 2087 trace_rcu_grace_period(rcu_state.name, 2088 READ_ONCE(rcu_state.gp_seq), 2089 TPS("reqwait")); 2090 rcu_state.gp_state = RCU_GP_WAIT_GPS; 2091 swait_event_idle_exclusive(rcu_state.gp_wq, 2092 READ_ONCE(rcu_state.gp_flags) & 2093 RCU_GP_FLAG_INIT); 2094 rcu_state.gp_state = RCU_GP_DONE_GPS; 2095 /* Locking provides needed memory barrier. */ 2096 if (rcu_gp_init()) 2097 break; 2098 cond_resched_tasks_rcu_qs(); 2099 WRITE_ONCE(rcu_state.gp_activity, jiffies); 2100 WARN_ON(signal_pending(current)); 2101 trace_rcu_grace_period(rcu_state.name, 2102 READ_ONCE(rcu_state.gp_seq), 2103 TPS("reqwaitsig")); 2104 } 2105 2106 /* Handle quiescent-state forcing. */ 2107 rcu_gp_fqs_loop(); 2108 2109 /* Handle grace-period end. */ 2110 rcu_state.gp_state = RCU_GP_CLEANUP; 2111 rcu_gp_cleanup(); 2112 rcu_state.gp_state = RCU_GP_CLEANED; 2113 } 2114 } 2115 2116 /* 2117 * Report a full set of quiescent states to the rcu_state data structure. 2118 * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if 2119 * another grace period is required. Whether we wake the grace-period 2120 * kthread or it awakens itself for the next round of quiescent-state 2121 * forcing, that kthread will clean up after the just-completed grace 2122 * period. Note that the caller must hold rnp->lock, which is released 2123 * before return. 2124 */ 2125 static void rcu_report_qs_rsp(unsigned long flags) 2126 __releases(rcu_get_root()->lock) 2127 { 2128 raw_lockdep_assert_held_rcu_node(rcu_get_root()); 2129 WARN_ON_ONCE(!rcu_gp_in_progress()); 2130 WRITE_ONCE(rcu_state.gp_flags, 2131 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS); 2132 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags); 2133 rcu_gp_kthread_wake(); 2134 } 2135 2136 /* 2137 * Similar to rcu_report_qs_rdp(), for which it is a helper function. 2138 * Allows quiescent states for a group of CPUs to be reported at one go 2139 * to the specified rcu_node structure, though all the CPUs in the group 2140 * must be represented by the same rcu_node structure (which need not be a 2141 * leaf rcu_node structure, though it often will be). The gps parameter 2142 * is the grace-period snapshot, which means that the quiescent states 2143 * are valid only if rnp->gp_seq is equal to gps. That structure's lock 2144 * must be held upon entry, and it is released before return. 2145 * 2146 * As a special case, if mask is zero, the bit-already-cleared check is 2147 * disabled. This allows propagating quiescent state due to resumed tasks 2148 * during grace-period initialization. 2149 */ 2150 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp, 2151 unsigned long gps, unsigned long flags) 2152 __releases(rnp->lock) 2153 { 2154 unsigned long oldmask = 0; 2155 struct rcu_node *rnp_c; 2156 2157 raw_lockdep_assert_held_rcu_node(rnp); 2158 2159 /* Walk up the rcu_node hierarchy. */ 2160 for (;;) { 2161 if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) { 2162 2163 /* 2164 * Our bit has already been cleared, or the 2165 * relevant grace period is already over, so done. 2166 */ 2167 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2168 return; 2169 } 2170 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */ 2171 WARN_ON_ONCE(!rcu_is_leaf_node(rnp) && 2172 rcu_preempt_blocked_readers_cgp(rnp)); 2173 rnp->qsmask &= ~mask; 2174 trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq, 2175 mask, rnp->qsmask, rnp->level, 2176 rnp->grplo, rnp->grphi, 2177 !!rnp->gp_tasks); 2178 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) { 2179 2180 /* Other bits still set at this level, so done. */ 2181 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2182 return; 2183 } 2184 rnp->completedqs = rnp->gp_seq; 2185 mask = rnp->grpmask; 2186 if (rnp->parent == NULL) { 2187 2188 /* No more levels. Exit loop holding root lock. */ 2189 2190 break; 2191 } 2192 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2193 rnp_c = rnp; 2194 rnp = rnp->parent; 2195 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2196 oldmask = rnp_c->qsmask; 2197 } 2198 2199 /* 2200 * Get here if we are the last CPU to pass through a quiescent 2201 * state for this grace period. Invoke rcu_report_qs_rsp() 2202 * to clean up and start the next grace period if one is needed. 2203 */ 2204 rcu_report_qs_rsp(flags); /* releases rnp->lock. */ 2205 } 2206 2207 /* 2208 * Record a quiescent state for all tasks that were previously queued 2209 * on the specified rcu_node structure and that were blocking the current 2210 * RCU grace period. The caller must hold the corresponding rnp->lock with 2211 * irqs disabled, and this lock is released upon return, but irqs remain 2212 * disabled. 2213 */ 2214 static void __maybe_unused 2215 rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags) 2216 __releases(rnp->lock) 2217 { 2218 unsigned long gps; 2219 unsigned long mask; 2220 struct rcu_node *rnp_p; 2221 2222 raw_lockdep_assert_held_rcu_node(rnp); 2223 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT)) || 2224 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) || 2225 rnp->qsmask != 0) { 2226 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2227 return; /* Still need more quiescent states! */ 2228 } 2229 2230 rnp->completedqs = rnp->gp_seq; 2231 rnp_p = rnp->parent; 2232 if (rnp_p == NULL) { 2233 /* 2234 * Only one rcu_node structure in the tree, so don't 2235 * try to report up to its nonexistent parent! 2236 */ 2237 rcu_report_qs_rsp(flags); 2238 return; 2239 } 2240 2241 /* Report up the rest of the hierarchy, tracking current ->gp_seq. */ 2242 gps = rnp->gp_seq; 2243 mask = rnp->grpmask; 2244 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 2245 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */ 2246 rcu_report_qs_rnp(mask, rnp_p, gps, flags); 2247 } 2248 2249 /* 2250 * Record a quiescent state for the specified CPU to that CPU's rcu_data 2251 * structure. This must be called from the specified CPU. 2252 */ 2253 static void 2254 rcu_report_qs_rdp(int cpu, struct rcu_data *rdp) 2255 { 2256 unsigned long flags; 2257 unsigned long mask; 2258 bool needwake; 2259 struct rcu_node *rnp; 2260 2261 rnp = rdp->mynode; 2262 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2263 if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq || 2264 rdp->gpwrap) { 2265 2266 /* 2267 * The grace period in which this quiescent state was 2268 * recorded has ended, so don't report it upwards. 2269 * We will instead need a new quiescent state that lies 2270 * within the current grace period. 2271 */ 2272 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */ 2273 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2274 return; 2275 } 2276 mask = rdp->grpmask; 2277 if ((rnp->qsmask & mask) == 0) { 2278 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2279 } else { 2280 rdp->core_needs_qs = false; 2281 2282 /* 2283 * This GP can't end until cpu checks in, so all of our 2284 * callbacks can be processed during the next GP. 2285 */ 2286 needwake = rcu_accelerate_cbs(rnp, rdp); 2287 2288 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 2289 /* ^^^ Released rnp->lock */ 2290 if (needwake) 2291 rcu_gp_kthread_wake(); 2292 } 2293 } 2294 2295 /* 2296 * Check to see if there is a new grace period of which this CPU 2297 * is not yet aware, and if so, set up local rcu_data state for it. 2298 * Otherwise, see if this CPU has just passed through its first 2299 * quiescent state for this grace period, and record that fact if so. 2300 */ 2301 static void 2302 rcu_check_quiescent_state(struct rcu_data *rdp) 2303 { 2304 /* Check for grace-period ends and beginnings. */ 2305 note_gp_changes(rdp); 2306 2307 /* 2308 * Does this CPU still need to do its part for current grace period? 2309 * If no, return and let the other CPUs do their part as well. 2310 */ 2311 if (!rdp->core_needs_qs) 2312 return; 2313 2314 /* 2315 * Was there a quiescent state since the beginning of the grace 2316 * period? If no, then exit and wait for the next call. 2317 */ 2318 if (rdp->cpu_no_qs.b.norm) 2319 return; 2320 2321 /* 2322 * Tell RCU we are done (but rcu_report_qs_rdp() will be the 2323 * judge of that). 2324 */ 2325 rcu_report_qs_rdp(rdp->cpu, rdp); 2326 } 2327 2328 /* 2329 * Near the end of the offline process. Trace the fact that this CPU 2330 * is going offline. 2331 */ 2332 int rcutree_dying_cpu(unsigned int cpu) 2333 { 2334 RCU_TRACE(bool blkd;) 2335 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(&rcu_data);) 2336 RCU_TRACE(struct rcu_node *rnp = rdp->mynode;) 2337 2338 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) 2339 return 0; 2340 2341 RCU_TRACE(blkd = !!(rnp->qsmask & rdp->grpmask);) 2342 trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, 2343 blkd ? TPS("cpuofl") : TPS("cpuofl-bgp")); 2344 return 0; 2345 } 2346 2347 /* 2348 * All CPUs for the specified rcu_node structure have gone offline, 2349 * and all tasks that were preempted within an RCU read-side critical 2350 * section while running on one of those CPUs have since exited their RCU 2351 * read-side critical section. Some other CPU is reporting this fact with 2352 * the specified rcu_node structure's ->lock held and interrupts disabled. 2353 * This function therefore goes up the tree of rcu_node structures, 2354 * clearing the corresponding bits in the ->qsmaskinit fields. Note that 2355 * the leaf rcu_node structure's ->qsmaskinit field has already been 2356 * updated. 2357 * 2358 * This function does check that the specified rcu_node structure has 2359 * all CPUs offline and no blocked tasks, so it is OK to invoke it 2360 * prematurely. That said, invoking it after the fact will cost you 2361 * a needless lock acquisition. So once it has done its work, don't 2362 * invoke it again. 2363 */ 2364 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf) 2365 { 2366 long mask; 2367 struct rcu_node *rnp = rnp_leaf; 2368 2369 raw_lockdep_assert_held_rcu_node(rnp_leaf); 2370 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || 2371 WARN_ON_ONCE(rnp_leaf->qsmaskinit) || 2372 WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf))) 2373 return; 2374 for (;;) { 2375 mask = rnp->grpmask; 2376 rnp = rnp->parent; 2377 if (!rnp) 2378 break; 2379 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 2380 rnp->qsmaskinit &= ~mask; 2381 /* Between grace periods, so better already be zero! */ 2382 WARN_ON_ONCE(rnp->qsmask); 2383 if (rnp->qsmaskinit) { 2384 raw_spin_unlock_rcu_node(rnp); 2385 /* irqs remain disabled. */ 2386 return; 2387 } 2388 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 2389 } 2390 } 2391 2392 /* 2393 * The CPU has been completely removed, and some other CPU is reporting 2394 * this fact from process context. Do the remainder of the cleanup. 2395 * There can only be one CPU hotplug operation at a time, so no need for 2396 * explicit locking. 2397 */ 2398 int rcutree_dead_cpu(unsigned int cpu) 2399 { 2400 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 2401 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ 2402 2403 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) 2404 return 0; 2405 2406 /* Adjust any no-longer-needed kthreads. */ 2407 rcu_boost_kthread_setaffinity(rnp, -1); 2408 /* Do any needed no-CB deferred wakeups from this CPU. */ 2409 do_nocb_deferred_wakeup(per_cpu_ptr(&rcu_data, cpu)); 2410 return 0; 2411 } 2412 2413 /* 2414 * Invoke any RCU callbacks that have made it to the end of their grace 2415 * period. Thottle as specified by rdp->blimit. 2416 */ 2417 static void rcu_do_batch(struct rcu_data *rdp) 2418 { 2419 unsigned long flags; 2420 struct rcu_head *rhp; 2421 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl); 2422 long bl, count; 2423 2424 /* If no callbacks are ready, just return. */ 2425 if (!rcu_segcblist_ready_cbs(&rdp->cblist)) { 2426 trace_rcu_batch_start(rcu_state.name, 2427 rcu_segcblist_n_lazy_cbs(&rdp->cblist), 2428 rcu_segcblist_n_cbs(&rdp->cblist), 0); 2429 trace_rcu_batch_end(rcu_state.name, 0, 2430 !rcu_segcblist_empty(&rdp->cblist), 2431 need_resched(), is_idle_task(current), 2432 rcu_is_callbacks_kthread()); 2433 return; 2434 } 2435 2436 /* 2437 * Extract the list of ready callbacks, disabling to prevent 2438 * races with call_rcu() from interrupt handlers. Leave the 2439 * callback counts, as rcu_barrier() needs to be conservative. 2440 */ 2441 local_irq_save(flags); 2442 WARN_ON_ONCE(cpu_is_offline(smp_processor_id())); 2443 bl = rdp->blimit; 2444 trace_rcu_batch_start(rcu_state.name, 2445 rcu_segcblist_n_lazy_cbs(&rdp->cblist), 2446 rcu_segcblist_n_cbs(&rdp->cblist), bl); 2447 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl); 2448 local_irq_restore(flags); 2449 2450 /* Invoke callbacks. */ 2451 rhp = rcu_cblist_dequeue(&rcl); 2452 for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) { 2453 debug_rcu_head_unqueue(rhp); 2454 if (__rcu_reclaim(rcu_state.name, rhp)) 2455 rcu_cblist_dequeued_lazy(&rcl); 2456 /* 2457 * Stop only if limit reached and CPU has something to do. 2458 * Note: The rcl structure counts down from zero. 2459 */ 2460 if (-rcl.len >= bl && 2461 (need_resched() || 2462 (!is_idle_task(current) && !rcu_is_callbacks_kthread()))) 2463 break; 2464 } 2465 2466 local_irq_save(flags); 2467 count = -rcl.len; 2468 trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(), 2469 is_idle_task(current), rcu_is_callbacks_kthread()); 2470 2471 /* Update counts and requeue any remaining callbacks. */ 2472 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl); 2473 smp_mb(); /* List handling before counting for rcu_barrier(). */ 2474 rcu_segcblist_insert_count(&rdp->cblist, &rcl); 2475 2476 /* Reinstate batch limit if we have worked down the excess. */ 2477 count = rcu_segcblist_n_cbs(&rdp->cblist); 2478 if (rdp->blimit == LONG_MAX && count <= qlowmark) 2479 rdp->blimit = blimit; 2480 2481 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */ 2482 if (count == 0 && rdp->qlen_last_fqs_check != 0) { 2483 rdp->qlen_last_fqs_check = 0; 2484 rdp->n_force_qs_snap = rcu_state.n_force_qs; 2485 } else if (count < rdp->qlen_last_fqs_check - qhimark) 2486 rdp->qlen_last_fqs_check = count; 2487 2488 /* 2489 * The following usually indicates a double call_rcu(). To track 2490 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y. 2491 */ 2492 WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) != (count == 0)); 2493 2494 local_irq_restore(flags); 2495 2496 /* Re-invoke RCU core processing if there are callbacks remaining. */ 2497 if (rcu_segcblist_ready_cbs(&rdp->cblist)) 2498 invoke_rcu_core(); 2499 } 2500 2501 /* 2502 * Check to see if this CPU is in a non-context-switch quiescent state 2503 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh). 2504 * Also schedule RCU core processing. 2505 * 2506 * This function must be called from hardirq context. It is normally 2507 * invoked from the scheduling-clock interrupt. 2508 */ 2509 void rcu_check_callbacks(int user) 2510 { 2511 trace_rcu_utilization(TPS("Start scheduler-tick")); 2512 raw_cpu_inc(rcu_data.ticks_this_gp); 2513 /* The load-acquire pairs with the store-release setting to true. */ 2514 if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) { 2515 /* Idle and userspace execution already are quiescent states. */ 2516 if (!rcu_is_cpu_rrupt_from_idle() && !user) { 2517 set_tsk_need_resched(current); 2518 set_preempt_need_resched(); 2519 } 2520 __this_cpu_write(rcu_data.rcu_urgent_qs, false); 2521 } 2522 rcu_flavor_check_callbacks(user); 2523 if (rcu_pending()) 2524 invoke_rcu_core(); 2525 2526 trace_rcu_utilization(TPS("End scheduler-tick")); 2527 } 2528 2529 /* 2530 * Scan the leaf rcu_node structures, processing dyntick state for any that 2531 * have not yet encountered a quiescent state, using the function specified. 2532 * Also initiate boosting for any threads blocked on the root rcu_node. 2533 * 2534 * The caller must have suppressed start of new grace periods. 2535 */ 2536 static void force_qs_rnp(int (*f)(struct rcu_data *rdp)) 2537 { 2538 int cpu; 2539 unsigned long flags; 2540 unsigned long mask; 2541 struct rcu_node *rnp; 2542 2543 rcu_for_each_leaf_node(rnp) { 2544 cond_resched_tasks_rcu_qs(); 2545 mask = 0; 2546 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2547 if (rnp->qsmask == 0) { 2548 if (!IS_ENABLED(CONFIG_PREEMPT) || 2549 rcu_preempt_blocked_readers_cgp(rnp)) { 2550 /* 2551 * No point in scanning bits because they 2552 * are all zero. But we might need to 2553 * priority-boost blocked readers. 2554 */ 2555 rcu_initiate_boost(rnp, flags); 2556 /* rcu_initiate_boost() releases rnp->lock */ 2557 continue; 2558 } 2559 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2560 continue; 2561 } 2562 for_each_leaf_node_possible_cpu(rnp, cpu) { 2563 unsigned long bit = leaf_node_cpu_bit(rnp, cpu); 2564 if ((rnp->qsmask & bit) != 0) { 2565 if (f(per_cpu_ptr(&rcu_data, cpu))) 2566 mask |= bit; 2567 } 2568 } 2569 if (mask != 0) { 2570 /* Idle/offline CPUs, report (releases rnp->lock). */ 2571 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 2572 } else { 2573 /* Nothing to do here, so just drop the lock. */ 2574 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2575 } 2576 } 2577 } 2578 2579 /* 2580 * Force quiescent states on reluctant CPUs, and also detect which 2581 * CPUs are in dyntick-idle mode. 2582 */ 2583 static void force_quiescent_state(void) 2584 { 2585 unsigned long flags; 2586 bool ret; 2587 struct rcu_node *rnp; 2588 struct rcu_node *rnp_old = NULL; 2589 2590 /* Funnel through hierarchy to reduce memory contention. */ 2591 rnp = __this_cpu_read(rcu_data.mynode); 2592 for (; rnp != NULL; rnp = rnp->parent) { 2593 ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) || 2594 !raw_spin_trylock(&rnp->fqslock); 2595 if (rnp_old != NULL) 2596 raw_spin_unlock(&rnp_old->fqslock); 2597 if (ret) 2598 return; 2599 rnp_old = rnp; 2600 } 2601 /* rnp_old == rcu_get_root(), rnp == NULL. */ 2602 2603 /* Reached the root of the rcu_node tree, acquire lock. */ 2604 raw_spin_lock_irqsave_rcu_node(rnp_old, flags); 2605 raw_spin_unlock(&rnp_old->fqslock); 2606 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) { 2607 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); 2608 return; /* Someone beat us to it. */ 2609 } 2610 WRITE_ONCE(rcu_state.gp_flags, 2611 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS); 2612 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); 2613 rcu_gp_kthread_wake(); 2614 } 2615 2616 /* 2617 * This function checks for grace-period requests that fail to motivate 2618 * RCU to come out of its idle mode. 2619 */ 2620 void 2621 rcu_check_gp_start_stall(struct rcu_node *rnp, struct rcu_data *rdp, 2622 const unsigned long gpssdelay) 2623 { 2624 unsigned long flags; 2625 unsigned long j; 2626 struct rcu_node *rnp_root = rcu_get_root(); 2627 static atomic_t warned = ATOMIC_INIT(0); 2628 2629 if (!IS_ENABLED(CONFIG_PROVE_RCU) || rcu_gp_in_progress() || 2630 ULONG_CMP_GE(rnp_root->gp_seq, rnp_root->gp_seq_needed)) 2631 return; 2632 j = jiffies; /* Expensive access, and in common case don't get here. */ 2633 if (time_before(j, READ_ONCE(rcu_state.gp_req_activity) + gpssdelay) || 2634 time_before(j, READ_ONCE(rcu_state.gp_activity) + gpssdelay) || 2635 atomic_read(&warned)) 2636 return; 2637 2638 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2639 j = jiffies; 2640 if (rcu_gp_in_progress() || 2641 ULONG_CMP_GE(rnp_root->gp_seq, rnp_root->gp_seq_needed) || 2642 time_before(j, READ_ONCE(rcu_state.gp_req_activity) + gpssdelay) || 2643 time_before(j, READ_ONCE(rcu_state.gp_activity) + gpssdelay) || 2644 atomic_read(&warned)) { 2645 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2646 return; 2647 } 2648 /* Hold onto the leaf lock to make others see warned==1. */ 2649 2650 if (rnp_root != rnp) 2651 raw_spin_lock_rcu_node(rnp_root); /* irqs already disabled. */ 2652 j = jiffies; 2653 if (rcu_gp_in_progress() || 2654 ULONG_CMP_GE(rnp_root->gp_seq, rnp_root->gp_seq_needed) || 2655 time_before(j, rcu_state.gp_req_activity + gpssdelay) || 2656 time_before(j, rcu_state.gp_activity + gpssdelay) || 2657 atomic_xchg(&warned, 1)) { 2658 raw_spin_unlock_rcu_node(rnp_root); /* irqs remain disabled. */ 2659 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2660 return; 2661 } 2662 pr_alert("%s: g%ld->%ld gar:%lu ga:%lu f%#x gs:%d %s->state:%#lx\n", 2663 __func__, (long)READ_ONCE(rcu_state.gp_seq), 2664 (long)READ_ONCE(rnp_root->gp_seq_needed), 2665 j - rcu_state.gp_req_activity, j - rcu_state.gp_activity, 2666 rcu_state.gp_flags, rcu_state.gp_state, rcu_state.name, 2667 rcu_state.gp_kthread ? rcu_state.gp_kthread->state : 0x1ffffL); 2668 WARN_ON(1); 2669 if (rnp_root != rnp) 2670 raw_spin_unlock_rcu_node(rnp_root); 2671 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2672 } 2673 2674 /* 2675 * Do a forward-progress check for rcutorture. This is normally invoked 2676 * due to an OOM event. The argument "j" gives the time period during 2677 * which rcutorture would like progress to have been made. 2678 */ 2679 void rcu_fwd_progress_check(unsigned long j) 2680 { 2681 unsigned long cbs; 2682 int cpu; 2683 unsigned long max_cbs = 0; 2684 int max_cpu = -1; 2685 struct rcu_data *rdp; 2686 2687 if (rcu_gp_in_progress()) { 2688 pr_info("%s: GP age %lu jiffies\n", 2689 __func__, jiffies - rcu_state.gp_start); 2690 show_rcu_gp_kthreads(); 2691 } else { 2692 pr_info("%s: Last GP end %lu jiffies ago\n", 2693 __func__, jiffies - rcu_state.gp_end); 2694 preempt_disable(); 2695 rdp = this_cpu_ptr(&rcu_data); 2696 rcu_check_gp_start_stall(rdp->mynode, rdp, j); 2697 preempt_enable(); 2698 } 2699 for_each_possible_cpu(cpu) { 2700 cbs = rcu_get_n_cbs_cpu(cpu); 2701 if (!cbs) 2702 continue; 2703 if (max_cpu < 0) 2704 pr_info("%s: callbacks", __func__); 2705 pr_cont(" %d: %lu", cpu, cbs); 2706 if (cbs <= max_cbs) 2707 continue; 2708 max_cbs = cbs; 2709 max_cpu = cpu; 2710 } 2711 if (max_cpu >= 0) 2712 pr_cont("\n"); 2713 } 2714 EXPORT_SYMBOL_GPL(rcu_fwd_progress_check); 2715 2716 /* 2717 * This does the RCU core processing work for the specified rcu_data 2718 * structures. This may be called only from the CPU to whom the rdp 2719 * belongs. 2720 */ 2721 static __latent_entropy void rcu_process_callbacks(struct softirq_action *unused) 2722 { 2723 unsigned long flags; 2724 struct rcu_data *rdp = raw_cpu_ptr(&rcu_data); 2725 struct rcu_node *rnp = rdp->mynode; 2726 2727 if (cpu_is_offline(smp_processor_id())) 2728 return; 2729 trace_rcu_utilization(TPS("Start RCU core")); 2730 WARN_ON_ONCE(!rdp->beenonline); 2731 2732 /* Report any deferred quiescent states if preemption enabled. */ 2733 if (!(preempt_count() & PREEMPT_MASK)) { 2734 rcu_preempt_deferred_qs(current); 2735 } else if (rcu_preempt_need_deferred_qs(current)) { 2736 set_tsk_need_resched(current); 2737 set_preempt_need_resched(); 2738 } 2739 2740 /* Update RCU state based on any recent quiescent states. */ 2741 rcu_check_quiescent_state(rdp); 2742 2743 /* No grace period and unregistered callbacks? */ 2744 if (!rcu_gp_in_progress() && 2745 rcu_segcblist_is_enabled(&rdp->cblist)) { 2746 local_irq_save(flags); 2747 if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL)) 2748 rcu_accelerate_cbs_unlocked(rnp, rdp); 2749 local_irq_restore(flags); 2750 } 2751 2752 rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check()); 2753 2754 /* If there are callbacks ready, invoke them. */ 2755 if (rcu_segcblist_ready_cbs(&rdp->cblist)) 2756 invoke_rcu_callbacks(rdp); 2757 2758 /* Do any needed deferred wakeups of rcuo kthreads. */ 2759 do_nocb_deferred_wakeup(rdp); 2760 trace_rcu_utilization(TPS("End RCU core")); 2761 } 2762 2763 /* 2764 * Schedule RCU callback invocation. If the running implementation of RCU 2765 * does not support RCU priority boosting, just do a direct call, otherwise 2766 * wake up the per-CPU kernel kthread. Note that because we are running 2767 * on the current CPU with softirqs disabled, the rcu_cpu_kthread_task 2768 * cannot disappear out from under us. 2769 */ 2770 static void invoke_rcu_callbacks(struct rcu_data *rdp) 2771 { 2772 if (unlikely(!READ_ONCE(rcu_scheduler_fully_active))) 2773 return; 2774 if (likely(!rcu_state.boost)) { 2775 rcu_do_batch(rdp); 2776 return; 2777 } 2778 invoke_rcu_callbacks_kthread(); 2779 } 2780 2781 static void invoke_rcu_core(void) 2782 { 2783 if (cpu_online(smp_processor_id())) 2784 raise_softirq(RCU_SOFTIRQ); 2785 } 2786 2787 /* 2788 * Handle any core-RCU processing required by a call_rcu() invocation. 2789 */ 2790 static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head, 2791 unsigned long flags) 2792 { 2793 /* 2794 * If called from an extended quiescent state, invoke the RCU 2795 * core in order to force a re-evaluation of RCU's idleness. 2796 */ 2797 if (!rcu_is_watching()) 2798 invoke_rcu_core(); 2799 2800 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */ 2801 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id())) 2802 return; 2803 2804 /* 2805 * Force the grace period if too many callbacks or too long waiting. 2806 * Enforce hysteresis, and don't invoke force_quiescent_state() 2807 * if some other CPU has recently done so. Also, don't bother 2808 * invoking force_quiescent_state() if the newly enqueued callback 2809 * is the only one waiting for a grace period to complete. 2810 */ 2811 if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) > 2812 rdp->qlen_last_fqs_check + qhimark)) { 2813 2814 /* Are we ignoring a completed grace period? */ 2815 note_gp_changes(rdp); 2816 2817 /* Start a new grace period if one not already started. */ 2818 if (!rcu_gp_in_progress()) { 2819 rcu_accelerate_cbs_unlocked(rdp->mynode, rdp); 2820 } else { 2821 /* Give the grace period a kick. */ 2822 rdp->blimit = LONG_MAX; 2823 if (rcu_state.n_force_qs == rdp->n_force_qs_snap && 2824 rcu_segcblist_first_pend_cb(&rdp->cblist) != head) 2825 force_quiescent_state(); 2826 rdp->n_force_qs_snap = rcu_state.n_force_qs; 2827 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist); 2828 } 2829 } 2830 } 2831 2832 /* 2833 * RCU callback function to leak a callback. 2834 */ 2835 static void rcu_leak_callback(struct rcu_head *rhp) 2836 { 2837 } 2838 2839 /* 2840 * Helper function for call_rcu() and friends. The cpu argument will 2841 * normally be -1, indicating "currently running CPU". It may specify 2842 * a CPU only if that CPU is a no-CBs CPU. Currently, only rcu_barrier() 2843 * is expected to specify a CPU. 2844 */ 2845 static void 2846 __call_rcu(struct rcu_head *head, rcu_callback_t func, int cpu, bool lazy) 2847 { 2848 unsigned long flags; 2849 struct rcu_data *rdp; 2850 2851 /* Misaligned rcu_head! */ 2852 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1)); 2853 2854 if (debug_rcu_head_queue(head)) { 2855 /* 2856 * Probable double call_rcu(), so leak the callback. 2857 * Use rcu:rcu_callback trace event to find the previous 2858 * time callback was passed to __call_rcu(). 2859 */ 2860 WARN_ONCE(1, "__call_rcu(): Double-freed CB %p->%pF()!!!\n", 2861 head, head->func); 2862 WRITE_ONCE(head->func, rcu_leak_callback); 2863 return; 2864 } 2865 head->func = func; 2866 head->next = NULL; 2867 local_irq_save(flags); 2868 rdp = this_cpu_ptr(&rcu_data); 2869 2870 /* Add the callback to our list. */ 2871 if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist)) || cpu != -1) { 2872 int offline; 2873 2874 if (cpu != -1) 2875 rdp = per_cpu_ptr(&rcu_data, cpu); 2876 if (likely(rdp->mynode)) { 2877 /* Post-boot, so this should be for a no-CBs CPU. */ 2878 offline = !__call_rcu_nocb(rdp, head, lazy, flags); 2879 WARN_ON_ONCE(offline); 2880 /* Offline CPU, _call_rcu() illegal, leak callback. */ 2881 local_irq_restore(flags); 2882 return; 2883 } 2884 /* 2885 * Very early boot, before rcu_init(). Initialize if needed 2886 * and then drop through to queue the callback. 2887 */ 2888 WARN_ON_ONCE(cpu != -1); 2889 WARN_ON_ONCE(!rcu_is_watching()); 2890 if (rcu_segcblist_empty(&rdp->cblist)) 2891 rcu_segcblist_init(&rdp->cblist); 2892 } 2893 rcu_segcblist_enqueue(&rdp->cblist, head, lazy); 2894 if (!lazy) 2895 rcu_idle_count_callbacks_posted(); 2896 2897 if (__is_kfree_rcu_offset((unsigned long)func)) 2898 trace_rcu_kfree_callback(rcu_state.name, head, 2899 (unsigned long)func, 2900 rcu_segcblist_n_lazy_cbs(&rdp->cblist), 2901 rcu_segcblist_n_cbs(&rdp->cblist)); 2902 else 2903 trace_rcu_callback(rcu_state.name, head, 2904 rcu_segcblist_n_lazy_cbs(&rdp->cblist), 2905 rcu_segcblist_n_cbs(&rdp->cblist)); 2906 2907 /* Go handle any RCU core processing required. */ 2908 __call_rcu_core(rdp, head, flags); 2909 local_irq_restore(flags); 2910 } 2911 2912 /** 2913 * call_rcu() - Queue an RCU callback for invocation after a grace period. 2914 * @head: structure to be used for queueing the RCU updates. 2915 * @func: actual callback function to be invoked after the grace period 2916 * 2917 * The callback function will be invoked some time after a full grace 2918 * period elapses, in other words after all pre-existing RCU read-side 2919 * critical sections have completed. However, the callback function 2920 * might well execute concurrently with RCU read-side critical sections 2921 * that started after call_rcu() was invoked. RCU read-side critical 2922 * sections are delimited by rcu_read_lock() and rcu_read_unlock(), and 2923 * may be nested. In addition, regions of code across which interrupts, 2924 * preemption, or softirqs have been disabled also serve as RCU read-side 2925 * critical sections. This includes hardware interrupt handlers, softirq 2926 * handlers, and NMI handlers. 2927 * 2928 * Note that all CPUs must agree that the grace period extended beyond 2929 * all pre-existing RCU read-side critical section. On systems with more 2930 * than one CPU, this means that when "func()" is invoked, each CPU is 2931 * guaranteed to have executed a full memory barrier since the end of its 2932 * last RCU read-side critical section whose beginning preceded the call 2933 * to call_rcu(). It also means that each CPU executing an RCU read-side 2934 * critical section that continues beyond the start of "func()" must have 2935 * executed a memory barrier after the call_rcu() but before the beginning 2936 * of that RCU read-side critical section. Note that these guarantees 2937 * include CPUs that are offline, idle, or executing in user mode, as 2938 * well as CPUs that are executing in the kernel. 2939 * 2940 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the 2941 * resulting RCU callback function "func()", then both CPU A and CPU B are 2942 * guaranteed to execute a full memory barrier during the time interval 2943 * between the call to call_rcu() and the invocation of "func()" -- even 2944 * if CPU A and CPU B are the same CPU (but again only if the system has 2945 * more than one CPU). 2946 */ 2947 void call_rcu(struct rcu_head *head, rcu_callback_t func) 2948 { 2949 __call_rcu(head, func, -1, 0); 2950 } 2951 EXPORT_SYMBOL_GPL(call_rcu); 2952 2953 /* 2954 * Queue an RCU callback for lazy invocation after a grace period. 2955 * This will likely be later named something like "call_rcu_lazy()", 2956 * but this change will require some way of tagging the lazy RCU 2957 * callbacks in the list of pending callbacks. Until then, this 2958 * function may only be called from __kfree_rcu(). 2959 */ 2960 void kfree_call_rcu(struct rcu_head *head, rcu_callback_t func) 2961 { 2962 __call_rcu(head, func, -1, 1); 2963 } 2964 EXPORT_SYMBOL_GPL(kfree_call_rcu); 2965 2966 /** 2967 * get_state_synchronize_rcu - Snapshot current RCU state 2968 * 2969 * Returns a cookie that is used by a later call to cond_synchronize_rcu() 2970 * to determine whether or not a full grace period has elapsed in the 2971 * meantime. 2972 */ 2973 unsigned long get_state_synchronize_rcu(void) 2974 { 2975 /* 2976 * Any prior manipulation of RCU-protected data must happen 2977 * before the load from ->gp_seq. 2978 */ 2979 smp_mb(); /* ^^^ */ 2980 return rcu_seq_snap(&rcu_state.gp_seq); 2981 } 2982 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu); 2983 2984 /** 2985 * cond_synchronize_rcu - Conditionally wait for an RCU grace period 2986 * 2987 * @oldstate: return value from earlier call to get_state_synchronize_rcu() 2988 * 2989 * If a full RCU grace period has elapsed since the earlier call to 2990 * get_state_synchronize_rcu(), just return. Otherwise, invoke 2991 * synchronize_rcu() to wait for a full grace period. 2992 * 2993 * Yes, this function does not take counter wrap into account. But 2994 * counter wrap is harmless. If the counter wraps, we have waited for 2995 * more than 2 billion grace periods (and way more on a 64-bit system!), 2996 * so waiting for one additional grace period should be just fine. 2997 */ 2998 void cond_synchronize_rcu(unsigned long oldstate) 2999 { 3000 if (!rcu_seq_done(&rcu_state.gp_seq, oldstate)) 3001 synchronize_rcu(); 3002 else 3003 smp_mb(); /* Ensure GP ends before subsequent accesses. */ 3004 } 3005 EXPORT_SYMBOL_GPL(cond_synchronize_rcu); 3006 3007 /* 3008 * Check to see if there is any immediate RCU-related work to be done by 3009 * the current CPU, returning 1 if so and zero otherwise. The checks are 3010 * in order of increasing expense: checks that can be carried out against 3011 * CPU-local state are performed first. However, we must check for CPU 3012 * stalls first, else we might not get a chance. 3013 */ 3014 static int rcu_pending(void) 3015 { 3016 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 3017 struct rcu_node *rnp = rdp->mynode; 3018 3019 /* Check for CPU stalls, if enabled. */ 3020 check_cpu_stall(rdp); 3021 3022 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */ 3023 if (rcu_nohz_full_cpu()) 3024 return 0; 3025 3026 /* Is the RCU core waiting for a quiescent state from this CPU? */ 3027 if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm) 3028 return 1; 3029 3030 /* Does this CPU have callbacks ready to invoke? */ 3031 if (rcu_segcblist_ready_cbs(&rdp->cblist)) 3032 return 1; 3033 3034 /* Has RCU gone idle with this CPU needing another grace period? */ 3035 if (!rcu_gp_in_progress() && 3036 rcu_segcblist_is_enabled(&rdp->cblist) && 3037 !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL)) 3038 return 1; 3039 3040 /* Have RCU grace period completed or started? */ 3041 if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq || 3042 unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */ 3043 return 1; 3044 3045 /* Does this CPU need a deferred NOCB wakeup? */ 3046 if (rcu_nocb_need_deferred_wakeup(rdp)) 3047 return 1; 3048 3049 /* nothing to do */ 3050 return 0; 3051 } 3052 3053 /* 3054 * Return true if the specified CPU has any callback. If all_lazy is 3055 * non-NULL, store an indication of whether all callbacks are lazy. 3056 * (If there are no callbacks, all of them are deemed to be lazy.) 3057 */ 3058 static bool rcu_cpu_has_callbacks(bool *all_lazy) 3059 { 3060 bool al = true; 3061 bool hc = false; 3062 struct rcu_data *rdp; 3063 3064 rdp = this_cpu_ptr(&rcu_data); 3065 if (!rcu_segcblist_empty(&rdp->cblist)) { 3066 hc = true; 3067 if (rcu_segcblist_n_nonlazy_cbs(&rdp->cblist)) 3068 al = false; 3069 } 3070 if (all_lazy) 3071 *all_lazy = al; 3072 return hc; 3073 } 3074 3075 /* 3076 * Helper function for rcu_barrier() tracing. If tracing is disabled, 3077 * the compiler is expected to optimize this away. 3078 */ 3079 static void rcu_barrier_trace(const char *s, int cpu, unsigned long done) 3080 { 3081 trace_rcu_barrier(rcu_state.name, s, cpu, 3082 atomic_read(&rcu_state.barrier_cpu_count), done); 3083 } 3084 3085 /* 3086 * RCU callback function for rcu_barrier(). If we are last, wake 3087 * up the task executing rcu_barrier(). 3088 */ 3089 static void rcu_barrier_callback(struct rcu_head *rhp) 3090 { 3091 if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) { 3092 rcu_barrier_trace(TPS("LastCB"), -1, 3093 rcu_state.barrier_sequence); 3094 complete(&rcu_state.barrier_completion); 3095 } else { 3096 rcu_barrier_trace(TPS("CB"), -1, rcu_state.barrier_sequence); 3097 } 3098 } 3099 3100 /* 3101 * Called with preemption disabled, and from cross-cpu IRQ context. 3102 */ 3103 static void rcu_barrier_func(void *unused) 3104 { 3105 struct rcu_data *rdp = raw_cpu_ptr(&rcu_data); 3106 3107 rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence); 3108 rdp->barrier_head.func = rcu_barrier_callback; 3109 debug_rcu_head_queue(&rdp->barrier_head); 3110 if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head, 0)) { 3111 atomic_inc(&rcu_state.barrier_cpu_count); 3112 } else { 3113 debug_rcu_head_unqueue(&rdp->barrier_head); 3114 rcu_barrier_trace(TPS("IRQNQ"), -1, 3115 rcu_state.barrier_sequence); 3116 } 3117 } 3118 3119 /** 3120 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete. 3121 * 3122 * Note that this primitive does not necessarily wait for an RCU grace period 3123 * to complete. For example, if there are no RCU callbacks queued anywhere 3124 * in the system, then rcu_barrier() is within its rights to return 3125 * immediately, without waiting for anything, much less an RCU grace period. 3126 */ 3127 void rcu_barrier(void) 3128 { 3129 int cpu; 3130 struct rcu_data *rdp; 3131 unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence); 3132 3133 rcu_barrier_trace(TPS("Begin"), -1, s); 3134 3135 /* Take mutex to serialize concurrent rcu_barrier() requests. */ 3136 mutex_lock(&rcu_state.barrier_mutex); 3137 3138 /* Did someone else do our work for us? */ 3139 if (rcu_seq_done(&rcu_state.barrier_sequence, s)) { 3140 rcu_barrier_trace(TPS("EarlyExit"), -1, 3141 rcu_state.barrier_sequence); 3142 smp_mb(); /* caller's subsequent code after above check. */ 3143 mutex_unlock(&rcu_state.barrier_mutex); 3144 return; 3145 } 3146 3147 /* Mark the start of the barrier operation. */ 3148 rcu_seq_start(&rcu_state.barrier_sequence); 3149 rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence); 3150 3151 /* 3152 * Initialize the count to one rather than to zero in order to 3153 * avoid a too-soon return to zero in case of a short grace period 3154 * (or preemption of this task). Exclude CPU-hotplug operations 3155 * to ensure that no offline CPU has callbacks queued. 3156 */ 3157 init_completion(&rcu_state.barrier_completion); 3158 atomic_set(&rcu_state.barrier_cpu_count, 1); 3159 get_online_cpus(); 3160 3161 /* 3162 * Force each CPU with callbacks to register a new callback. 3163 * When that callback is invoked, we will know that all of the 3164 * corresponding CPU's preceding callbacks have been invoked. 3165 */ 3166 for_each_possible_cpu(cpu) { 3167 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu)) 3168 continue; 3169 rdp = per_cpu_ptr(&rcu_data, cpu); 3170 if (rcu_is_nocb_cpu(cpu)) { 3171 if (!rcu_nocb_cpu_needs_barrier(cpu)) { 3172 rcu_barrier_trace(TPS("OfflineNoCB"), cpu, 3173 rcu_state.barrier_sequence); 3174 } else { 3175 rcu_barrier_trace(TPS("OnlineNoCB"), cpu, 3176 rcu_state.barrier_sequence); 3177 smp_mb__before_atomic(); 3178 atomic_inc(&rcu_state.barrier_cpu_count); 3179 __call_rcu(&rdp->barrier_head, 3180 rcu_barrier_callback, cpu, 0); 3181 } 3182 } else if (rcu_segcblist_n_cbs(&rdp->cblist)) { 3183 rcu_barrier_trace(TPS("OnlineQ"), cpu, 3184 rcu_state.barrier_sequence); 3185 smp_call_function_single(cpu, rcu_barrier_func, NULL, 1); 3186 } else { 3187 rcu_barrier_trace(TPS("OnlineNQ"), cpu, 3188 rcu_state.barrier_sequence); 3189 } 3190 } 3191 put_online_cpus(); 3192 3193 /* 3194 * Now that we have an rcu_barrier_callback() callback on each 3195 * CPU, and thus each counted, remove the initial count. 3196 */ 3197 if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) 3198 complete(&rcu_state.barrier_completion); 3199 3200 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */ 3201 wait_for_completion(&rcu_state.barrier_completion); 3202 3203 /* Mark the end of the barrier operation. */ 3204 rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence); 3205 rcu_seq_end(&rcu_state.barrier_sequence); 3206 3207 /* Other rcu_barrier() invocations can now safely proceed. */ 3208 mutex_unlock(&rcu_state.barrier_mutex); 3209 } 3210 EXPORT_SYMBOL_GPL(rcu_barrier); 3211 3212 /* 3213 * Propagate ->qsinitmask bits up the rcu_node tree to account for the 3214 * first CPU in a given leaf rcu_node structure coming online. The caller 3215 * must hold the corresponding leaf rcu_node ->lock with interrrupts 3216 * disabled. 3217 */ 3218 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf) 3219 { 3220 long mask; 3221 long oldmask; 3222 struct rcu_node *rnp = rnp_leaf; 3223 3224 raw_lockdep_assert_held_rcu_node(rnp_leaf); 3225 WARN_ON_ONCE(rnp->wait_blkd_tasks); 3226 for (;;) { 3227 mask = rnp->grpmask; 3228 rnp = rnp->parent; 3229 if (rnp == NULL) 3230 return; 3231 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */ 3232 oldmask = rnp->qsmaskinit; 3233 rnp->qsmaskinit |= mask; 3234 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */ 3235 if (oldmask) 3236 return; 3237 } 3238 } 3239 3240 /* 3241 * Do boot-time initialization of a CPU's per-CPU RCU data. 3242 */ 3243 static void __init 3244 rcu_boot_init_percpu_data(int cpu) 3245 { 3246 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 3247 3248 /* Set up local state, ensuring consistent view of global state. */ 3249 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu); 3250 WARN_ON_ONCE(rdp->dynticks_nesting != 1); 3251 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp))); 3252 rdp->rcu_ofl_gp_seq = rcu_state.gp_seq; 3253 rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED; 3254 rdp->rcu_onl_gp_seq = rcu_state.gp_seq; 3255 rdp->rcu_onl_gp_flags = RCU_GP_CLEANED; 3256 rdp->cpu = cpu; 3257 rcu_boot_init_nocb_percpu_data(rdp); 3258 } 3259 3260 /* 3261 * Invoked early in the CPU-online process, when pretty much all services 3262 * are available. The incoming CPU is not present. 3263 * 3264 * Initializes a CPU's per-CPU RCU data. Note that only one online or 3265 * offline event can be happening at a given time. Note also that we can 3266 * accept some slop in the rsp->gp_seq access due to the fact that this 3267 * CPU cannot possibly have any RCU callbacks in flight yet. 3268 */ 3269 int rcutree_prepare_cpu(unsigned int cpu) 3270 { 3271 unsigned long flags; 3272 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 3273 struct rcu_node *rnp = rcu_get_root(); 3274 3275 /* Set up local state, ensuring consistent view of global state. */ 3276 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3277 rdp->qlen_last_fqs_check = 0; 3278 rdp->n_force_qs_snap = rcu_state.n_force_qs; 3279 rdp->blimit = blimit; 3280 if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */ 3281 !init_nocb_callback_list(rdp)) 3282 rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */ 3283 rdp->dynticks_nesting = 1; /* CPU not up, no tearing. */ 3284 rcu_dynticks_eqs_online(); 3285 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 3286 3287 /* 3288 * Add CPU to leaf rcu_node pending-online bitmask. Any needed 3289 * propagation up the rcu_node tree will happen at the beginning 3290 * of the next grace period. 3291 */ 3292 rnp = rdp->mynode; 3293 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 3294 rdp->beenonline = true; /* We have now been online. */ 3295 rdp->gp_seq = rnp->gp_seq; 3296 rdp->gp_seq_needed = rnp->gp_seq; 3297 rdp->cpu_no_qs.b.norm = true; 3298 rdp->core_needs_qs = false; 3299 rdp->rcu_iw_pending = false; 3300 rdp->rcu_iw_gp_seq = rnp->gp_seq - 1; 3301 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl")); 3302 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3303 rcu_prepare_kthreads(cpu); 3304 rcu_spawn_all_nocb_kthreads(cpu); 3305 3306 return 0; 3307 } 3308 3309 /* 3310 * Update RCU priority boot kthread affinity for CPU-hotplug changes. 3311 */ 3312 static void rcutree_affinity_setting(unsigned int cpu, int outgoing) 3313 { 3314 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 3315 3316 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing); 3317 } 3318 3319 /* 3320 * Near the end of the CPU-online process. Pretty much all services 3321 * enabled, and the CPU is now very much alive. 3322 */ 3323 int rcutree_online_cpu(unsigned int cpu) 3324 { 3325 unsigned long flags; 3326 struct rcu_data *rdp; 3327 struct rcu_node *rnp; 3328 3329 rdp = per_cpu_ptr(&rcu_data, cpu); 3330 rnp = rdp->mynode; 3331 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3332 rnp->ffmask |= rdp->grpmask; 3333 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3334 if (IS_ENABLED(CONFIG_TREE_SRCU)) 3335 srcu_online_cpu(cpu); 3336 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE) 3337 return 0; /* Too early in boot for scheduler work. */ 3338 sync_sched_exp_online_cleanup(cpu); 3339 rcutree_affinity_setting(cpu, -1); 3340 return 0; 3341 } 3342 3343 /* 3344 * Near the beginning of the process. The CPU is still very much alive 3345 * with pretty much all services enabled. 3346 */ 3347 int rcutree_offline_cpu(unsigned int cpu) 3348 { 3349 unsigned long flags; 3350 struct rcu_data *rdp; 3351 struct rcu_node *rnp; 3352 3353 rdp = per_cpu_ptr(&rcu_data, cpu); 3354 rnp = rdp->mynode; 3355 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3356 rnp->ffmask &= ~rdp->grpmask; 3357 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3358 3359 rcutree_affinity_setting(cpu, cpu); 3360 if (IS_ENABLED(CONFIG_TREE_SRCU)) 3361 srcu_offline_cpu(cpu); 3362 return 0; 3363 } 3364 3365 static DEFINE_PER_CPU(int, rcu_cpu_started); 3366 3367 /* 3368 * Mark the specified CPU as being online so that subsequent grace periods 3369 * (both expedited and normal) will wait on it. Note that this means that 3370 * incoming CPUs are not allowed to use RCU read-side critical sections 3371 * until this function is called. Failing to observe this restriction 3372 * will result in lockdep splats. 3373 * 3374 * Note that this function is special in that it is invoked directly 3375 * from the incoming CPU rather than from the cpuhp_step mechanism. 3376 * This is because this function must be invoked at a precise location. 3377 */ 3378 void rcu_cpu_starting(unsigned int cpu) 3379 { 3380 unsigned long flags; 3381 unsigned long mask; 3382 int nbits; 3383 unsigned long oldmask; 3384 struct rcu_data *rdp; 3385 struct rcu_node *rnp; 3386 3387 if (per_cpu(rcu_cpu_started, cpu)) 3388 return; 3389 3390 per_cpu(rcu_cpu_started, cpu) = 1; 3391 3392 rdp = per_cpu_ptr(&rcu_data, cpu); 3393 rnp = rdp->mynode; 3394 mask = rdp->grpmask; 3395 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3396 rnp->qsmaskinitnext |= mask; 3397 oldmask = rnp->expmaskinitnext; 3398 rnp->expmaskinitnext |= mask; 3399 oldmask ^= rnp->expmaskinitnext; 3400 nbits = bitmap_weight(&oldmask, BITS_PER_LONG); 3401 /* Allow lockless access for expedited grace periods. */ 3402 smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + nbits); /* ^^^ */ 3403 rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */ 3404 rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq); 3405 rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags); 3406 if (rnp->qsmask & mask) { /* RCU waiting on incoming CPU? */ 3407 /* Report QS -after- changing ->qsmaskinitnext! */ 3408 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 3409 } else { 3410 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3411 } 3412 smp_mb(); /* Ensure RCU read-side usage follows above initialization. */ 3413 } 3414 3415 #ifdef CONFIG_HOTPLUG_CPU 3416 /* 3417 * The outgoing function has no further need of RCU, so remove it from 3418 * the rcu_node tree's ->qsmaskinitnext bit masks. 3419 * 3420 * Note that this function is special in that it is invoked directly 3421 * from the outgoing CPU rather than from the cpuhp_step mechanism. 3422 * This is because this function must be invoked at a precise location. 3423 */ 3424 void rcu_report_dead(unsigned int cpu) 3425 { 3426 unsigned long flags; 3427 unsigned long mask; 3428 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 3429 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ 3430 3431 /* QS for any half-done expedited grace period. */ 3432 preempt_disable(); 3433 rcu_report_exp_rdp(this_cpu_ptr(&rcu_data)); 3434 preempt_enable(); 3435 rcu_preempt_deferred_qs(current); 3436 3437 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */ 3438 mask = rdp->grpmask; 3439 raw_spin_lock(&rcu_state.ofl_lock); 3440 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */ 3441 rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq); 3442 rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags); 3443 if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */ 3444 /* Report quiescent state -before- changing ->qsmaskinitnext! */ 3445 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 3446 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3447 } 3448 rnp->qsmaskinitnext &= ~mask; 3449 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3450 raw_spin_unlock(&rcu_state.ofl_lock); 3451 3452 per_cpu(rcu_cpu_started, cpu) = 0; 3453 } 3454 3455 /* 3456 * The outgoing CPU has just passed through the dying-idle state, and we 3457 * are being invoked from the CPU that was IPIed to continue the offline 3458 * operation. Migrate the outgoing CPU's callbacks to the current CPU. 3459 */ 3460 void rcutree_migrate_callbacks(int cpu) 3461 { 3462 unsigned long flags; 3463 struct rcu_data *my_rdp; 3464 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 3465 struct rcu_node *rnp_root = rcu_get_root(); 3466 bool needwake; 3467 3468 if (rcu_is_nocb_cpu(cpu) || rcu_segcblist_empty(&rdp->cblist)) 3469 return; /* No callbacks to migrate. */ 3470 3471 local_irq_save(flags); 3472 my_rdp = this_cpu_ptr(&rcu_data); 3473 if (rcu_nocb_adopt_orphan_cbs(my_rdp, rdp, flags)) { 3474 local_irq_restore(flags); 3475 return; 3476 } 3477 raw_spin_lock_rcu_node(rnp_root); /* irqs already disabled. */ 3478 /* Leverage recent GPs and set GP for new callbacks. */ 3479 needwake = rcu_advance_cbs(rnp_root, rdp) || 3480 rcu_advance_cbs(rnp_root, my_rdp); 3481 rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist); 3482 WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) != 3483 !rcu_segcblist_n_cbs(&my_rdp->cblist)); 3484 raw_spin_unlock_irqrestore_rcu_node(rnp_root, flags); 3485 if (needwake) 3486 rcu_gp_kthread_wake(); 3487 WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 || 3488 !rcu_segcblist_empty(&rdp->cblist), 3489 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n", 3490 cpu, rcu_segcblist_n_cbs(&rdp->cblist), 3491 rcu_segcblist_first_cb(&rdp->cblist)); 3492 } 3493 #endif 3494 3495 /* 3496 * On non-huge systems, use expedited RCU grace periods to make suspend 3497 * and hibernation run faster. 3498 */ 3499 static int rcu_pm_notify(struct notifier_block *self, 3500 unsigned long action, void *hcpu) 3501 { 3502 switch (action) { 3503 case PM_HIBERNATION_PREPARE: 3504 case PM_SUSPEND_PREPARE: 3505 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */ 3506 rcu_expedite_gp(); 3507 break; 3508 case PM_POST_HIBERNATION: 3509 case PM_POST_SUSPEND: 3510 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */ 3511 rcu_unexpedite_gp(); 3512 break; 3513 default: 3514 break; 3515 } 3516 return NOTIFY_OK; 3517 } 3518 3519 /* 3520 * Spawn the kthreads that handle RCU's grace periods. 3521 */ 3522 static int __init rcu_spawn_gp_kthread(void) 3523 { 3524 unsigned long flags; 3525 int kthread_prio_in = kthread_prio; 3526 struct rcu_node *rnp; 3527 struct sched_param sp; 3528 struct task_struct *t; 3529 3530 /* Force priority into range. */ 3531 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2 3532 && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST)) 3533 kthread_prio = 2; 3534 else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1) 3535 kthread_prio = 1; 3536 else if (kthread_prio < 0) 3537 kthread_prio = 0; 3538 else if (kthread_prio > 99) 3539 kthread_prio = 99; 3540 3541 if (kthread_prio != kthread_prio_in) 3542 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n", 3543 kthread_prio, kthread_prio_in); 3544 3545 rcu_scheduler_fully_active = 1; 3546 t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name); 3547 if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__)) 3548 return 0; 3549 rnp = rcu_get_root(); 3550 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3551 rcu_state.gp_kthread = t; 3552 if (kthread_prio) { 3553 sp.sched_priority = kthread_prio; 3554 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 3555 } 3556 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3557 wake_up_process(t); 3558 rcu_spawn_nocb_kthreads(); 3559 rcu_spawn_boost_kthreads(); 3560 return 0; 3561 } 3562 early_initcall(rcu_spawn_gp_kthread); 3563 3564 /* 3565 * This function is invoked towards the end of the scheduler's 3566 * initialization process. Before this is called, the idle task might 3567 * contain synchronous grace-period primitives (during which time, this idle 3568 * task is booting the system, and such primitives are no-ops). After this 3569 * function is called, any synchronous grace-period primitives are run as 3570 * expedited, with the requesting task driving the grace period forward. 3571 * A later core_initcall() rcu_set_runtime_mode() will switch to full 3572 * runtime RCU functionality. 3573 */ 3574 void rcu_scheduler_starting(void) 3575 { 3576 WARN_ON(num_online_cpus() != 1); 3577 WARN_ON(nr_context_switches() > 0); 3578 rcu_test_sync_prims(); 3579 rcu_scheduler_active = RCU_SCHEDULER_INIT; 3580 rcu_test_sync_prims(); 3581 } 3582 3583 /* 3584 * Helper function for rcu_init() that initializes the rcu_state structure. 3585 */ 3586 static void __init rcu_init_one(void) 3587 { 3588 static const char * const buf[] = RCU_NODE_NAME_INIT; 3589 static const char * const fqs[] = RCU_FQS_NAME_INIT; 3590 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS]; 3591 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS]; 3592 3593 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */ 3594 int cpustride = 1; 3595 int i; 3596 int j; 3597 struct rcu_node *rnp; 3598 3599 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */ 3600 3601 /* Silence gcc 4.8 false positive about array index out of range. */ 3602 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS) 3603 panic("rcu_init_one: rcu_num_lvls out of range"); 3604 3605 /* Initialize the level-tracking arrays. */ 3606 3607 for (i = 1; i < rcu_num_lvls; i++) 3608 rcu_state.level[i] = 3609 rcu_state.level[i - 1] + num_rcu_lvl[i - 1]; 3610 rcu_init_levelspread(levelspread, num_rcu_lvl); 3611 3612 /* Initialize the elements themselves, starting from the leaves. */ 3613 3614 for (i = rcu_num_lvls - 1; i >= 0; i--) { 3615 cpustride *= levelspread[i]; 3616 rnp = rcu_state.level[i]; 3617 for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) { 3618 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock)); 3619 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock), 3620 &rcu_node_class[i], buf[i]); 3621 raw_spin_lock_init(&rnp->fqslock); 3622 lockdep_set_class_and_name(&rnp->fqslock, 3623 &rcu_fqs_class[i], fqs[i]); 3624 rnp->gp_seq = rcu_state.gp_seq; 3625 rnp->gp_seq_needed = rcu_state.gp_seq; 3626 rnp->completedqs = rcu_state.gp_seq; 3627 rnp->qsmask = 0; 3628 rnp->qsmaskinit = 0; 3629 rnp->grplo = j * cpustride; 3630 rnp->grphi = (j + 1) * cpustride - 1; 3631 if (rnp->grphi >= nr_cpu_ids) 3632 rnp->grphi = nr_cpu_ids - 1; 3633 if (i == 0) { 3634 rnp->grpnum = 0; 3635 rnp->grpmask = 0; 3636 rnp->parent = NULL; 3637 } else { 3638 rnp->grpnum = j % levelspread[i - 1]; 3639 rnp->grpmask = BIT(rnp->grpnum); 3640 rnp->parent = rcu_state.level[i - 1] + 3641 j / levelspread[i - 1]; 3642 } 3643 rnp->level = i; 3644 INIT_LIST_HEAD(&rnp->blkd_tasks); 3645 rcu_init_one_nocb(rnp); 3646 init_waitqueue_head(&rnp->exp_wq[0]); 3647 init_waitqueue_head(&rnp->exp_wq[1]); 3648 init_waitqueue_head(&rnp->exp_wq[2]); 3649 init_waitqueue_head(&rnp->exp_wq[3]); 3650 spin_lock_init(&rnp->exp_lock); 3651 } 3652 } 3653 3654 init_swait_queue_head(&rcu_state.gp_wq); 3655 init_swait_queue_head(&rcu_state.expedited_wq); 3656 rnp = rcu_first_leaf_node(); 3657 for_each_possible_cpu(i) { 3658 while (i > rnp->grphi) 3659 rnp++; 3660 per_cpu_ptr(&rcu_data, i)->mynode = rnp; 3661 rcu_boot_init_percpu_data(i); 3662 } 3663 } 3664 3665 /* 3666 * Compute the rcu_node tree geometry from kernel parameters. This cannot 3667 * replace the definitions in tree.h because those are needed to size 3668 * the ->node array in the rcu_state structure. 3669 */ 3670 static void __init rcu_init_geometry(void) 3671 { 3672 ulong d; 3673 int i; 3674 int rcu_capacity[RCU_NUM_LVLS]; 3675 3676 /* 3677 * Initialize any unspecified boot parameters. 3678 * The default values of jiffies_till_first_fqs and 3679 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS 3680 * value, which is a function of HZ, then adding one for each 3681 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system. 3682 */ 3683 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; 3684 if (jiffies_till_first_fqs == ULONG_MAX) 3685 jiffies_till_first_fqs = d; 3686 if (jiffies_till_next_fqs == ULONG_MAX) 3687 jiffies_till_next_fqs = d; 3688 if (jiffies_till_sched_qs == ULONG_MAX) 3689 adjust_jiffies_till_sched_qs(); 3690 3691 /* If the compile-time values are accurate, just leave. */ 3692 if (rcu_fanout_leaf == RCU_FANOUT_LEAF && 3693 nr_cpu_ids == NR_CPUS) 3694 return; 3695 pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n", 3696 rcu_fanout_leaf, nr_cpu_ids); 3697 3698 /* 3699 * The boot-time rcu_fanout_leaf parameter must be at least two 3700 * and cannot exceed the number of bits in the rcu_node masks. 3701 * Complain and fall back to the compile-time values if this 3702 * limit is exceeded. 3703 */ 3704 if (rcu_fanout_leaf < 2 || 3705 rcu_fanout_leaf > sizeof(unsigned long) * 8) { 3706 rcu_fanout_leaf = RCU_FANOUT_LEAF; 3707 WARN_ON(1); 3708 return; 3709 } 3710 3711 /* 3712 * Compute number of nodes that can be handled an rcu_node tree 3713 * with the given number of levels. 3714 */ 3715 rcu_capacity[0] = rcu_fanout_leaf; 3716 for (i = 1; i < RCU_NUM_LVLS; i++) 3717 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT; 3718 3719 /* 3720 * The tree must be able to accommodate the configured number of CPUs. 3721 * If this limit is exceeded, fall back to the compile-time values. 3722 */ 3723 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) { 3724 rcu_fanout_leaf = RCU_FANOUT_LEAF; 3725 WARN_ON(1); 3726 return; 3727 } 3728 3729 /* Calculate the number of levels in the tree. */ 3730 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) { 3731 } 3732 rcu_num_lvls = i + 1; 3733 3734 /* Calculate the number of rcu_nodes at each level of the tree. */ 3735 for (i = 0; i < rcu_num_lvls; i++) { 3736 int cap = rcu_capacity[(rcu_num_lvls - 1) - i]; 3737 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap); 3738 } 3739 3740 /* Calculate the total number of rcu_node structures. */ 3741 rcu_num_nodes = 0; 3742 for (i = 0; i < rcu_num_lvls; i++) 3743 rcu_num_nodes += num_rcu_lvl[i]; 3744 } 3745 3746 /* 3747 * Dump out the structure of the rcu_node combining tree associated 3748 * with the rcu_state structure. 3749 */ 3750 static void __init rcu_dump_rcu_node_tree(void) 3751 { 3752 int level = 0; 3753 struct rcu_node *rnp; 3754 3755 pr_info("rcu_node tree layout dump\n"); 3756 pr_info(" "); 3757 rcu_for_each_node_breadth_first(rnp) { 3758 if (rnp->level != level) { 3759 pr_cont("\n"); 3760 pr_info(" "); 3761 level = rnp->level; 3762 } 3763 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum); 3764 } 3765 pr_cont("\n"); 3766 } 3767 3768 struct workqueue_struct *rcu_gp_wq; 3769 struct workqueue_struct *rcu_par_gp_wq; 3770 3771 void __init rcu_init(void) 3772 { 3773 int cpu; 3774 3775 rcu_early_boot_tests(); 3776 3777 rcu_bootup_announce(); 3778 rcu_init_geometry(); 3779 rcu_init_one(); 3780 if (dump_tree) 3781 rcu_dump_rcu_node_tree(); 3782 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks); 3783 3784 /* 3785 * We don't need protection against CPU-hotplug here because 3786 * this is called early in boot, before either interrupts 3787 * or the scheduler are operational. 3788 */ 3789 pm_notifier(rcu_pm_notify, 0); 3790 for_each_online_cpu(cpu) { 3791 rcutree_prepare_cpu(cpu); 3792 rcu_cpu_starting(cpu); 3793 rcutree_online_cpu(cpu); 3794 } 3795 3796 /* Create workqueue for expedited GPs and for Tree SRCU. */ 3797 rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0); 3798 WARN_ON(!rcu_gp_wq); 3799 rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0); 3800 WARN_ON(!rcu_par_gp_wq); 3801 srcu_init(); 3802 } 3803 3804 #include "tree_exp.h" 3805 #include "tree_plugin.h" 3806