1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Read-Copy Update mechanism for mutual exclusion (tree-based version) 4 * 5 * Copyright IBM Corporation, 2008 6 * 7 * Authors: Dipankar Sarma <dipankar@in.ibm.com> 8 * Manfred Spraul <manfred@colorfullife.com> 9 * Paul E. McKenney <paulmck@linux.ibm.com> 10 * 11 * Based on the original work by Paul McKenney <paulmck@linux.ibm.com> 12 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 13 * 14 * For detailed explanation of Read-Copy Update mechanism see - 15 * Documentation/RCU 16 */ 17 18 #define pr_fmt(fmt) "rcu: " fmt 19 20 #include <linux/types.h> 21 #include <linux/kernel.h> 22 #include <linux/init.h> 23 #include <linux/spinlock.h> 24 #include <linux/smp.h> 25 #include <linux/rcupdate_wait.h> 26 #include <linux/interrupt.h> 27 #include <linux/sched.h> 28 #include <linux/sched/debug.h> 29 #include <linux/nmi.h> 30 #include <linux/atomic.h> 31 #include <linux/bitops.h> 32 #include <linux/export.h> 33 #include <linux/completion.h> 34 #include <linux/kmemleak.h> 35 #include <linux/moduleparam.h> 36 #include <linux/panic.h> 37 #include <linux/panic_notifier.h> 38 #include <linux/percpu.h> 39 #include <linux/notifier.h> 40 #include <linux/cpu.h> 41 #include <linux/mutex.h> 42 #include <linux/time.h> 43 #include <linux/kernel_stat.h> 44 #include <linux/wait.h> 45 #include <linux/kthread.h> 46 #include <uapi/linux/sched/types.h> 47 #include <linux/prefetch.h> 48 #include <linux/delay.h> 49 #include <linux/random.h> 50 #include <linux/trace_events.h> 51 #include <linux/suspend.h> 52 #include <linux/ftrace.h> 53 #include <linux/tick.h> 54 #include <linux/sysrq.h> 55 #include <linux/kprobes.h> 56 #include <linux/gfp.h> 57 #include <linux/oom.h> 58 #include <linux/smpboot.h> 59 #include <linux/jiffies.h> 60 #include <linux/slab.h> 61 #include <linux/sched/isolation.h> 62 #include <linux/sched/clock.h> 63 #include <linux/vmalloc.h> 64 #include <linux/mm.h> 65 #include <linux/kasan.h> 66 #include <linux/context_tracking.h> 67 #include "../time/tick-internal.h" 68 69 #include "tree.h" 70 #include "rcu.h" 71 72 #ifdef MODULE_PARAM_PREFIX 73 #undef MODULE_PARAM_PREFIX 74 #endif 75 #define MODULE_PARAM_PREFIX "rcutree." 76 77 /* Data structures. */ 78 static void rcu_sr_normal_gp_cleanup_work(struct work_struct *); 79 80 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = { 81 .gpwrap = true, 82 #ifdef CONFIG_RCU_NOCB_CPU 83 .cblist.flags = SEGCBLIST_RCU_CORE, 84 #endif 85 }; 86 static struct rcu_state rcu_state = { 87 .level = { &rcu_state.node[0] }, 88 .gp_state = RCU_GP_IDLE, 89 .gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT, 90 .barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex), 91 .barrier_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.barrier_lock), 92 .name = RCU_NAME, 93 .abbr = RCU_ABBR, 94 .exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex), 95 .exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex), 96 .ofl_lock = __ARCH_SPIN_LOCK_UNLOCKED, 97 .srs_cleanup_work = __WORK_INITIALIZER(rcu_state.srs_cleanup_work, 98 rcu_sr_normal_gp_cleanup_work), 99 .srs_cleanups_pending = ATOMIC_INIT(0), 100 }; 101 102 /* Dump rcu_node combining tree at boot to verify correct setup. */ 103 static bool dump_tree; 104 module_param(dump_tree, bool, 0444); 105 /* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */ 106 static bool use_softirq = !IS_ENABLED(CONFIG_PREEMPT_RT); 107 #ifndef CONFIG_PREEMPT_RT 108 module_param(use_softirq, bool, 0444); 109 #endif 110 /* Control rcu_node-tree auto-balancing at boot time. */ 111 static bool rcu_fanout_exact; 112 module_param(rcu_fanout_exact, bool, 0444); 113 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */ 114 static int rcu_fanout_leaf = RCU_FANOUT_LEAF; 115 module_param(rcu_fanout_leaf, int, 0444); 116 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS; 117 /* Number of rcu_nodes at specified level. */ 118 int num_rcu_lvl[] = NUM_RCU_LVL_INIT; 119 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */ 120 121 /* 122 * The rcu_scheduler_active variable is initialized to the value 123 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the 124 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE, 125 * RCU can assume that there is but one task, allowing RCU to (for example) 126 * optimize synchronize_rcu() to a simple barrier(). When this variable 127 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required 128 * to detect real grace periods. This variable is also used to suppress 129 * boot-time false positives from lockdep-RCU error checking. Finally, it 130 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU 131 * is fully initialized, including all of its kthreads having been spawned. 132 */ 133 int rcu_scheduler_active __read_mostly; 134 EXPORT_SYMBOL_GPL(rcu_scheduler_active); 135 136 /* 137 * The rcu_scheduler_fully_active variable transitions from zero to one 138 * during the early_initcall() processing, which is after the scheduler 139 * is capable of creating new tasks. So RCU processing (for example, 140 * creating tasks for RCU priority boosting) must be delayed until after 141 * rcu_scheduler_fully_active transitions from zero to one. We also 142 * currently delay invocation of any RCU callbacks until after this point. 143 * 144 * It might later prove better for people registering RCU callbacks during 145 * early boot to take responsibility for these callbacks, but one step at 146 * a time. 147 */ 148 static int rcu_scheduler_fully_active __read_mostly; 149 150 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp, 151 unsigned long gps, unsigned long flags); 152 static struct task_struct *rcu_boost_task(struct rcu_node *rnp); 153 static void invoke_rcu_core(void); 154 static void rcu_report_exp_rdp(struct rcu_data *rdp); 155 static void sync_sched_exp_online_cleanup(int cpu); 156 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp); 157 static bool rcu_rdp_is_offloaded(struct rcu_data *rdp); 158 static bool rcu_rdp_cpu_online(struct rcu_data *rdp); 159 static bool rcu_init_invoked(void); 160 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf); 161 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf); 162 163 /* 164 * rcuc/rcub/rcuop kthread realtime priority. The "rcuop" 165 * real-time priority(enabling/disabling) is controlled by 166 * the extra CONFIG_RCU_NOCB_CPU_CB_BOOST configuration. 167 */ 168 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0; 169 module_param(kthread_prio, int, 0444); 170 171 /* Delay in jiffies for grace-period initialization delays, debug only. */ 172 173 static int gp_preinit_delay; 174 module_param(gp_preinit_delay, int, 0444); 175 static int gp_init_delay; 176 module_param(gp_init_delay, int, 0444); 177 static int gp_cleanup_delay; 178 module_param(gp_cleanup_delay, int, 0444); 179 static int nohz_full_patience_delay; 180 module_param(nohz_full_patience_delay, int, 0444); 181 static int nohz_full_patience_delay_jiffies; 182 183 // Add delay to rcu_read_unlock() for strict grace periods. 184 static int rcu_unlock_delay; 185 #ifdef CONFIG_RCU_STRICT_GRACE_PERIOD 186 module_param(rcu_unlock_delay, int, 0444); 187 #endif 188 189 /* 190 * This rcu parameter is runtime-read-only. It reflects 191 * a minimum allowed number of objects which can be cached 192 * per-CPU. Object size is equal to one page. This value 193 * can be changed at boot time. 194 */ 195 static int rcu_min_cached_objs = 5; 196 module_param(rcu_min_cached_objs, int, 0444); 197 198 // A page shrinker can ask for pages to be freed to make them 199 // available for other parts of the system. This usually happens 200 // under low memory conditions, and in that case we should also 201 // defer page-cache filling for a short time period. 202 // 203 // The default value is 5 seconds, which is long enough to reduce 204 // interference with the shrinker while it asks other systems to 205 // drain their caches. 206 static int rcu_delay_page_cache_fill_msec = 5000; 207 module_param(rcu_delay_page_cache_fill_msec, int, 0444); 208 209 /* Retrieve RCU kthreads priority for rcutorture */ 210 int rcu_get_gp_kthreads_prio(void) 211 { 212 return kthread_prio; 213 } 214 EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio); 215 216 /* 217 * Number of grace periods between delays, normalized by the duration of 218 * the delay. The longer the delay, the more the grace periods between 219 * each delay. The reason for this normalization is that it means that, 220 * for non-zero delays, the overall slowdown of grace periods is constant 221 * regardless of the duration of the delay. This arrangement balances 222 * the need for long delays to increase some race probabilities with the 223 * need for fast grace periods to increase other race probabilities. 224 */ 225 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays for debugging. */ 226 227 /* 228 * Return true if an RCU grace period is in progress. The READ_ONCE()s 229 * permit this function to be invoked without holding the root rcu_node 230 * structure's ->lock, but of course results can be subject to change. 231 */ 232 static int rcu_gp_in_progress(void) 233 { 234 return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq)); 235 } 236 237 /* 238 * Return the number of callbacks queued on the specified CPU. 239 * Handles both the nocbs and normal cases. 240 */ 241 static long rcu_get_n_cbs_cpu(int cpu) 242 { 243 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 244 245 if (rcu_segcblist_is_enabled(&rdp->cblist)) 246 return rcu_segcblist_n_cbs(&rdp->cblist); 247 return 0; 248 } 249 250 /** 251 * rcu_softirq_qs - Provide a set of RCU quiescent states in softirq processing 252 * 253 * Mark a quiescent state for RCU, Tasks RCU, and Tasks Trace RCU. 254 * This is a special-purpose function to be used in the softirq 255 * infrastructure and perhaps the occasional long-running softirq 256 * handler. 257 * 258 * Note that from RCU's viewpoint, a call to rcu_softirq_qs() is 259 * equivalent to momentarily completely enabling preemption. For 260 * example, given this code:: 261 * 262 * local_bh_disable(); 263 * do_something(); 264 * rcu_softirq_qs(); // A 265 * do_something_else(); 266 * local_bh_enable(); // B 267 * 268 * A call to synchronize_rcu() that began concurrently with the 269 * call to do_something() would be guaranteed to wait only until 270 * execution reached statement A. Without that rcu_softirq_qs(), 271 * that same synchronize_rcu() would instead be guaranteed to wait 272 * until execution reached statement B. 273 */ 274 void rcu_softirq_qs(void) 275 { 276 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) || 277 lock_is_held(&rcu_lock_map) || 278 lock_is_held(&rcu_sched_lock_map), 279 "Illegal rcu_softirq_qs() in RCU read-side critical section"); 280 rcu_qs(); 281 rcu_preempt_deferred_qs(current); 282 rcu_tasks_qs(current, false); 283 } 284 285 /* 286 * Reset the current CPU's ->dynticks counter to indicate that the 287 * newly onlined CPU is no longer in an extended quiescent state. 288 * This will either leave the counter unchanged, or increment it 289 * to the next non-quiescent value. 290 * 291 * The non-atomic test/increment sequence works because the upper bits 292 * of the ->dynticks counter are manipulated only by the corresponding CPU, 293 * or when the corresponding CPU is offline. 294 */ 295 static void rcu_dynticks_eqs_online(void) 296 { 297 if (ct_dynticks() & RCU_DYNTICKS_IDX) 298 return; 299 ct_state_inc(RCU_DYNTICKS_IDX); 300 } 301 302 /* 303 * Return true if the snapshot returned from rcu_dynticks_snap() 304 * indicates that RCU is in an extended quiescent state. 305 */ 306 static bool rcu_dynticks_in_eqs(int snap) 307 { 308 return !(snap & RCU_DYNTICKS_IDX); 309 } 310 311 /* 312 * Return true if the CPU corresponding to the specified rcu_data 313 * structure has spent some time in an extended quiescent state since 314 * rcu_dynticks_snap() returned the specified snapshot. 315 */ 316 static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap) 317 { 318 /* 319 * The first failing snapshot is already ordered against the accesses 320 * performed by the remote CPU after it exits idle. 321 * 322 * The second snapshot therefore only needs to order against accesses 323 * performed by the remote CPU prior to entering idle and therefore can 324 * rely solely on acquire semantics. 325 */ 326 return snap != ct_dynticks_cpu_acquire(rdp->cpu); 327 } 328 329 /* 330 * Return true if the referenced integer is zero while the specified 331 * CPU remains within a single extended quiescent state. 332 */ 333 bool rcu_dynticks_zero_in_eqs(int cpu, int *vp) 334 { 335 int snap; 336 337 // If not quiescent, force back to earlier extended quiescent state. 338 snap = ct_dynticks_cpu(cpu) & ~RCU_DYNTICKS_IDX; 339 smp_rmb(); // Order ->dynticks and *vp reads. 340 if (READ_ONCE(*vp)) 341 return false; // Non-zero, so report failure; 342 smp_rmb(); // Order *vp read and ->dynticks re-read. 343 344 // If still in the same extended quiescent state, we are good! 345 return snap == ct_dynticks_cpu(cpu); 346 } 347 348 /* 349 * Let the RCU core know that this CPU has gone through the scheduler, 350 * which is a quiescent state. This is called when the need for a 351 * quiescent state is urgent, so we burn an atomic operation and full 352 * memory barriers to let the RCU core know about it, regardless of what 353 * this CPU might (or might not) do in the near future. 354 * 355 * We inform the RCU core by emulating a zero-duration dyntick-idle period. 356 * 357 * The caller must have disabled interrupts and must not be idle. 358 */ 359 notrace void rcu_momentary_dyntick_idle(void) 360 { 361 int seq; 362 363 raw_cpu_write(rcu_data.rcu_need_heavy_qs, false); 364 seq = ct_state_inc(2 * RCU_DYNTICKS_IDX); 365 /* It is illegal to call this from idle state. */ 366 WARN_ON_ONCE(!(seq & RCU_DYNTICKS_IDX)); 367 rcu_preempt_deferred_qs(current); 368 } 369 EXPORT_SYMBOL_GPL(rcu_momentary_dyntick_idle); 370 371 /** 372 * rcu_is_cpu_rrupt_from_idle - see if 'interrupted' from idle 373 * 374 * If the current CPU is idle and running at a first-level (not nested) 375 * interrupt, or directly, from idle, return true. 376 * 377 * The caller must have at least disabled IRQs. 378 */ 379 static int rcu_is_cpu_rrupt_from_idle(void) 380 { 381 long nesting; 382 383 /* 384 * Usually called from the tick; but also used from smp_function_call() 385 * for expedited grace periods. This latter can result in running from 386 * the idle task, instead of an actual IPI. 387 */ 388 lockdep_assert_irqs_disabled(); 389 390 /* Check for counter underflows */ 391 RCU_LOCKDEP_WARN(ct_dynticks_nesting() < 0, 392 "RCU dynticks_nesting counter underflow!"); 393 RCU_LOCKDEP_WARN(ct_dynticks_nmi_nesting() <= 0, 394 "RCU dynticks_nmi_nesting counter underflow/zero!"); 395 396 /* Are we at first interrupt nesting level? */ 397 nesting = ct_dynticks_nmi_nesting(); 398 if (nesting > 1) 399 return false; 400 401 /* 402 * If we're not in an interrupt, we must be in the idle task! 403 */ 404 WARN_ON_ONCE(!nesting && !is_idle_task(current)); 405 406 /* Does CPU appear to be idle from an RCU standpoint? */ 407 return ct_dynticks_nesting() == 0; 408 } 409 410 #define DEFAULT_RCU_BLIMIT (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 1000 : 10) 411 // Maximum callbacks per rcu_do_batch ... 412 #define DEFAULT_MAX_RCU_BLIMIT 10000 // ... even during callback flood. 413 static long blimit = DEFAULT_RCU_BLIMIT; 414 #define DEFAULT_RCU_QHIMARK 10000 // If this many pending, ignore blimit. 415 static long qhimark = DEFAULT_RCU_QHIMARK; 416 #define DEFAULT_RCU_QLOMARK 100 // Once only this many pending, use blimit. 417 static long qlowmark = DEFAULT_RCU_QLOMARK; 418 #define DEFAULT_RCU_QOVLD_MULT 2 419 #define DEFAULT_RCU_QOVLD (DEFAULT_RCU_QOVLD_MULT * DEFAULT_RCU_QHIMARK) 420 static long qovld = DEFAULT_RCU_QOVLD; // If this many pending, hammer QS. 421 static long qovld_calc = -1; // No pre-initialization lock acquisitions! 422 423 module_param(blimit, long, 0444); 424 module_param(qhimark, long, 0444); 425 module_param(qlowmark, long, 0444); 426 module_param(qovld, long, 0444); 427 428 static ulong jiffies_till_first_fqs = IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 0 : ULONG_MAX; 429 static ulong jiffies_till_next_fqs = ULONG_MAX; 430 static bool rcu_kick_kthreads; 431 static int rcu_divisor = 7; 432 module_param(rcu_divisor, int, 0644); 433 434 /* Force an exit from rcu_do_batch() after 3 milliseconds. */ 435 static long rcu_resched_ns = 3 * NSEC_PER_MSEC; 436 module_param(rcu_resched_ns, long, 0644); 437 438 /* 439 * How long the grace period must be before we start recruiting 440 * quiescent-state help from rcu_note_context_switch(). 441 */ 442 static ulong jiffies_till_sched_qs = ULONG_MAX; 443 module_param(jiffies_till_sched_qs, ulong, 0444); 444 static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */ 445 module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */ 446 447 /* 448 * Make sure that we give the grace-period kthread time to detect any 449 * idle CPUs before taking active measures to force quiescent states. 450 * However, don't go below 100 milliseconds, adjusted upwards for really 451 * large systems. 452 */ 453 static void adjust_jiffies_till_sched_qs(void) 454 { 455 unsigned long j; 456 457 /* If jiffies_till_sched_qs was specified, respect the request. */ 458 if (jiffies_till_sched_qs != ULONG_MAX) { 459 WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs); 460 return; 461 } 462 /* Otherwise, set to third fqs scan, but bound below on large system. */ 463 j = READ_ONCE(jiffies_till_first_fqs) + 464 2 * READ_ONCE(jiffies_till_next_fqs); 465 if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV) 466 j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; 467 pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j); 468 WRITE_ONCE(jiffies_to_sched_qs, j); 469 } 470 471 static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp) 472 { 473 ulong j; 474 int ret = kstrtoul(val, 0, &j); 475 476 if (!ret) { 477 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j); 478 adjust_jiffies_till_sched_qs(); 479 } 480 return ret; 481 } 482 483 static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp) 484 { 485 ulong j; 486 int ret = kstrtoul(val, 0, &j); 487 488 if (!ret) { 489 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1)); 490 adjust_jiffies_till_sched_qs(); 491 } 492 return ret; 493 } 494 495 static const struct kernel_param_ops first_fqs_jiffies_ops = { 496 .set = param_set_first_fqs_jiffies, 497 .get = param_get_ulong, 498 }; 499 500 static const struct kernel_param_ops next_fqs_jiffies_ops = { 501 .set = param_set_next_fqs_jiffies, 502 .get = param_get_ulong, 503 }; 504 505 module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644); 506 module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644); 507 module_param(rcu_kick_kthreads, bool, 0644); 508 509 static void force_qs_rnp(int (*f)(struct rcu_data *rdp)); 510 static int rcu_pending(int user); 511 512 /* 513 * Return the number of RCU GPs completed thus far for debug & stats. 514 */ 515 unsigned long rcu_get_gp_seq(void) 516 { 517 return READ_ONCE(rcu_state.gp_seq); 518 } 519 EXPORT_SYMBOL_GPL(rcu_get_gp_seq); 520 521 /* 522 * Return the number of RCU expedited batches completed thus far for 523 * debug & stats. Odd numbers mean that a batch is in progress, even 524 * numbers mean idle. The value returned will thus be roughly double 525 * the cumulative batches since boot. 526 */ 527 unsigned long rcu_exp_batches_completed(void) 528 { 529 return rcu_state.expedited_sequence; 530 } 531 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed); 532 533 /* 534 * Return the root node of the rcu_state structure. 535 */ 536 static struct rcu_node *rcu_get_root(void) 537 { 538 return &rcu_state.node[0]; 539 } 540 541 /* 542 * Send along grace-period-related data for rcutorture diagnostics. 543 */ 544 void rcutorture_get_gp_data(int *flags, unsigned long *gp_seq) 545 { 546 *flags = READ_ONCE(rcu_state.gp_flags); 547 *gp_seq = rcu_seq_current(&rcu_state.gp_seq); 548 } 549 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data); 550 551 #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK)) 552 /* 553 * An empty function that will trigger a reschedule on 554 * IRQ tail once IRQs get re-enabled on userspace/guest resume. 555 */ 556 static void late_wakeup_func(struct irq_work *work) 557 { 558 } 559 560 static DEFINE_PER_CPU(struct irq_work, late_wakeup_work) = 561 IRQ_WORK_INIT(late_wakeup_func); 562 563 /* 564 * If either: 565 * 566 * 1) the task is about to enter in guest mode and $ARCH doesn't support KVM generic work 567 * 2) the task is about to enter in user mode and $ARCH doesn't support generic entry. 568 * 569 * In these cases the late RCU wake ups aren't supported in the resched loops and our 570 * last resort is to fire a local irq_work that will trigger a reschedule once IRQs 571 * get re-enabled again. 572 */ 573 noinstr void rcu_irq_work_resched(void) 574 { 575 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 576 577 if (IS_ENABLED(CONFIG_GENERIC_ENTRY) && !(current->flags & PF_VCPU)) 578 return; 579 580 if (IS_ENABLED(CONFIG_KVM_XFER_TO_GUEST_WORK) && (current->flags & PF_VCPU)) 581 return; 582 583 instrumentation_begin(); 584 if (do_nocb_deferred_wakeup(rdp) && need_resched()) { 585 irq_work_queue(this_cpu_ptr(&late_wakeup_work)); 586 } 587 instrumentation_end(); 588 } 589 #endif /* #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK)) */ 590 591 #ifdef CONFIG_PROVE_RCU 592 /** 593 * rcu_irq_exit_check_preempt - Validate that scheduling is possible 594 */ 595 void rcu_irq_exit_check_preempt(void) 596 { 597 lockdep_assert_irqs_disabled(); 598 599 RCU_LOCKDEP_WARN(ct_dynticks_nesting() <= 0, 600 "RCU dynticks_nesting counter underflow/zero!"); 601 RCU_LOCKDEP_WARN(ct_dynticks_nmi_nesting() != 602 DYNTICK_IRQ_NONIDLE, 603 "Bad RCU dynticks_nmi_nesting counter\n"); 604 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(), 605 "RCU in extended quiescent state!"); 606 } 607 #endif /* #ifdef CONFIG_PROVE_RCU */ 608 609 #ifdef CONFIG_NO_HZ_FULL 610 /** 611 * __rcu_irq_enter_check_tick - Enable scheduler tick on CPU if RCU needs it. 612 * 613 * The scheduler tick is not normally enabled when CPUs enter the kernel 614 * from nohz_full userspace execution. After all, nohz_full userspace 615 * execution is an RCU quiescent state and the time executing in the kernel 616 * is quite short. Except of course when it isn't. And it is not hard to 617 * cause a large system to spend tens of seconds or even minutes looping 618 * in the kernel, which can cause a number of problems, include RCU CPU 619 * stall warnings. 620 * 621 * Therefore, if a nohz_full CPU fails to report a quiescent state 622 * in a timely manner, the RCU grace-period kthread sets that CPU's 623 * ->rcu_urgent_qs flag with the expectation that the next interrupt or 624 * exception will invoke this function, which will turn on the scheduler 625 * tick, which will enable RCU to detect that CPU's quiescent states, 626 * for example, due to cond_resched() calls in CONFIG_PREEMPT=n kernels. 627 * The tick will be disabled once a quiescent state is reported for 628 * this CPU. 629 * 630 * Of course, in carefully tuned systems, there might never be an 631 * interrupt or exception. In that case, the RCU grace-period kthread 632 * will eventually cause one to happen. However, in less carefully 633 * controlled environments, this function allows RCU to get what it 634 * needs without creating otherwise useless interruptions. 635 */ 636 void __rcu_irq_enter_check_tick(void) 637 { 638 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 639 640 // If we're here from NMI there's nothing to do. 641 if (in_nmi()) 642 return; 643 644 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(), 645 "Illegal rcu_irq_enter_check_tick() from extended quiescent state"); 646 647 if (!tick_nohz_full_cpu(rdp->cpu) || 648 !READ_ONCE(rdp->rcu_urgent_qs) || 649 READ_ONCE(rdp->rcu_forced_tick)) { 650 // RCU doesn't need nohz_full help from this CPU, or it is 651 // already getting that help. 652 return; 653 } 654 655 // We get here only when not in an extended quiescent state and 656 // from interrupts (as opposed to NMIs). Therefore, (1) RCU is 657 // already watching and (2) The fact that we are in an interrupt 658 // handler and that the rcu_node lock is an irq-disabled lock 659 // prevents self-deadlock. So we can safely recheck under the lock. 660 // Note that the nohz_full state currently cannot change. 661 raw_spin_lock_rcu_node(rdp->mynode); 662 if (READ_ONCE(rdp->rcu_urgent_qs) && !rdp->rcu_forced_tick) { 663 // A nohz_full CPU is in the kernel and RCU needs a 664 // quiescent state. Turn on the tick! 665 WRITE_ONCE(rdp->rcu_forced_tick, true); 666 tick_dep_set_cpu(rdp->cpu, TICK_DEP_BIT_RCU); 667 } 668 raw_spin_unlock_rcu_node(rdp->mynode); 669 } 670 NOKPROBE_SYMBOL(__rcu_irq_enter_check_tick); 671 #endif /* CONFIG_NO_HZ_FULL */ 672 673 /* 674 * Check to see if any future non-offloaded RCU-related work will need 675 * to be done by the current CPU, even if none need be done immediately, 676 * returning 1 if so. This function is part of the RCU implementation; 677 * it is -not- an exported member of the RCU API. This is used by 678 * the idle-entry code to figure out whether it is safe to disable the 679 * scheduler-clock interrupt. 680 * 681 * Just check whether or not this CPU has non-offloaded RCU callbacks 682 * queued. 683 */ 684 int rcu_needs_cpu(void) 685 { 686 return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) && 687 !rcu_rdp_is_offloaded(this_cpu_ptr(&rcu_data)); 688 } 689 690 /* 691 * If any sort of urgency was applied to the current CPU (for example, 692 * the scheduler-clock interrupt was enabled on a nohz_full CPU) in order 693 * to get to a quiescent state, disable it. 694 */ 695 static void rcu_disable_urgency_upon_qs(struct rcu_data *rdp) 696 { 697 raw_lockdep_assert_held_rcu_node(rdp->mynode); 698 WRITE_ONCE(rdp->rcu_urgent_qs, false); 699 WRITE_ONCE(rdp->rcu_need_heavy_qs, false); 700 if (tick_nohz_full_cpu(rdp->cpu) && rdp->rcu_forced_tick) { 701 tick_dep_clear_cpu(rdp->cpu, TICK_DEP_BIT_RCU); 702 WRITE_ONCE(rdp->rcu_forced_tick, false); 703 } 704 } 705 706 /** 707 * rcu_is_watching - RCU read-side critical sections permitted on current CPU? 708 * 709 * Return @true if RCU is watching the running CPU and @false otherwise. 710 * An @true return means that this CPU can safely enter RCU read-side 711 * critical sections. 712 * 713 * Although calls to rcu_is_watching() from most parts of the kernel 714 * will return @true, there are important exceptions. For example, if the 715 * current CPU is deep within its idle loop, in kernel entry/exit code, 716 * or offline, rcu_is_watching() will return @false. 717 * 718 * Make notrace because it can be called by the internal functions of 719 * ftrace, and making this notrace removes unnecessary recursion calls. 720 */ 721 notrace bool rcu_is_watching(void) 722 { 723 bool ret; 724 725 preempt_disable_notrace(); 726 ret = !rcu_dynticks_curr_cpu_in_eqs(); 727 preempt_enable_notrace(); 728 return ret; 729 } 730 EXPORT_SYMBOL_GPL(rcu_is_watching); 731 732 /* 733 * If a holdout task is actually running, request an urgent quiescent 734 * state from its CPU. This is unsynchronized, so migrations can cause 735 * the request to go to the wrong CPU. Which is OK, all that will happen 736 * is that the CPU's next context switch will be a bit slower and next 737 * time around this task will generate another request. 738 */ 739 void rcu_request_urgent_qs_task(struct task_struct *t) 740 { 741 int cpu; 742 743 barrier(); 744 cpu = task_cpu(t); 745 if (!task_curr(t)) 746 return; /* This task is not running on that CPU. */ 747 smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true); 748 } 749 750 /* 751 * When trying to report a quiescent state on behalf of some other CPU, 752 * it is our responsibility to check for and handle potential overflow 753 * of the rcu_node ->gp_seq counter with respect to the rcu_data counters. 754 * After all, the CPU might be in deep idle state, and thus executing no 755 * code whatsoever. 756 */ 757 static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp) 758 { 759 raw_lockdep_assert_held_rcu_node(rnp); 760 if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4, 761 rnp->gp_seq)) 762 WRITE_ONCE(rdp->gpwrap, true); 763 if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq)) 764 rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4; 765 } 766 767 /* 768 * Snapshot the specified CPU's dynticks counter so that we can later 769 * credit them with an implicit quiescent state. Return 1 if this CPU 770 * is in dynticks idle mode, which is an extended quiescent state. 771 */ 772 static int dyntick_save_progress_counter(struct rcu_data *rdp) 773 { 774 /* 775 * Full ordering between remote CPU's post idle accesses and updater's 776 * accesses prior to current GP (and also the started GP sequence number) 777 * is enforced by rcu_seq_start() implicit barrier and even further by 778 * smp_mb__after_unlock_lock() barriers chained all the way throughout the 779 * rnp locking tree since rcu_gp_init() and up to the current leaf rnp 780 * locking. 781 * 782 * Ordering between remote CPU's pre idle accesses and post grace period 783 * updater's accesses is enforced by the below acquire semantic. 784 */ 785 rdp->dynticks_snap = ct_dynticks_cpu_acquire(rdp->cpu); 786 if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) { 787 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti")); 788 rcu_gpnum_ovf(rdp->mynode, rdp); 789 return 1; 790 } 791 return 0; 792 } 793 794 /* 795 * Returns positive if the specified CPU has passed through a quiescent state 796 * by virtue of being in or having passed through an dynticks idle state since 797 * the last call to dyntick_save_progress_counter() for this same CPU, or by 798 * virtue of having been offline. 799 * 800 * Returns negative if the specified CPU needs a force resched. 801 * 802 * Returns zero otherwise. 803 */ 804 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp) 805 { 806 unsigned long jtsq; 807 int ret = 0; 808 struct rcu_node *rnp = rdp->mynode; 809 810 /* 811 * If the CPU passed through or entered a dynticks idle phase with 812 * no active irq/NMI handlers, then we can safely pretend that the CPU 813 * already acknowledged the request to pass through a quiescent 814 * state. Either way, that CPU cannot possibly be in an RCU 815 * read-side critical section that started before the beginning 816 * of the current RCU grace period. 817 */ 818 if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) { 819 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti")); 820 rcu_gpnum_ovf(rnp, rdp); 821 return 1; 822 } 823 824 /* 825 * Complain if a CPU that is considered to be offline from RCU's 826 * perspective has not yet reported a quiescent state. After all, 827 * the offline CPU should have reported a quiescent state during 828 * the CPU-offline process, or, failing that, by rcu_gp_init() 829 * if it ran concurrently with either the CPU going offline or the 830 * last task on a leaf rcu_node structure exiting its RCU read-side 831 * critical section while all CPUs corresponding to that structure 832 * are offline. This added warning detects bugs in any of these 833 * code paths. 834 * 835 * The rcu_node structure's ->lock is held here, which excludes 836 * the relevant portions the CPU-hotplug code, the grace-period 837 * initialization code, and the rcu_read_unlock() code paths. 838 * 839 * For more detail, please refer to the "Hotplug CPU" section 840 * of RCU's Requirements documentation. 841 */ 842 if (WARN_ON_ONCE(!rcu_rdp_cpu_online(rdp))) { 843 struct rcu_node *rnp1; 844 845 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n", 846 __func__, rnp->grplo, rnp->grphi, rnp->level, 847 (long)rnp->gp_seq, (long)rnp->completedqs); 848 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent) 849 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n", 850 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask); 851 pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n", 852 __func__, rdp->cpu, ".o"[rcu_rdp_cpu_online(rdp)], 853 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_state, 854 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_state); 855 return 1; /* Break things loose after complaining. */ 856 } 857 858 /* 859 * A CPU running for an extended time within the kernel can 860 * delay RCU grace periods: (1) At age jiffies_to_sched_qs, 861 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set 862 * both .rcu_need_heavy_qs and .rcu_urgent_qs. Note that the 863 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs 864 * variable are safe because the assignments are repeated if this 865 * CPU failed to pass through a quiescent state. This code 866 * also checks .jiffies_resched in case jiffies_to_sched_qs 867 * is set way high. 868 */ 869 jtsq = READ_ONCE(jiffies_to_sched_qs); 870 if (!READ_ONCE(rdp->rcu_need_heavy_qs) && 871 (time_after(jiffies, rcu_state.gp_start + jtsq * 2) || 872 time_after(jiffies, rcu_state.jiffies_resched) || 873 rcu_state.cbovld)) { 874 WRITE_ONCE(rdp->rcu_need_heavy_qs, true); 875 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */ 876 smp_store_release(&rdp->rcu_urgent_qs, true); 877 } else if (time_after(jiffies, rcu_state.gp_start + jtsq)) { 878 WRITE_ONCE(rdp->rcu_urgent_qs, true); 879 } 880 881 /* 882 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq! 883 * The above code handles this, but only for straight cond_resched(). 884 * And some in-kernel loops check need_resched() before calling 885 * cond_resched(), which defeats the above code for CPUs that are 886 * running in-kernel with scheduling-clock interrupts disabled. 887 * So hit them over the head with the resched_cpu() hammer! 888 */ 889 if (tick_nohz_full_cpu(rdp->cpu) && 890 (time_after(jiffies, READ_ONCE(rdp->last_fqs_resched) + jtsq * 3) || 891 rcu_state.cbovld)) { 892 WRITE_ONCE(rdp->rcu_urgent_qs, true); 893 WRITE_ONCE(rdp->last_fqs_resched, jiffies); 894 ret = -1; 895 } 896 897 /* 898 * If more than halfway to RCU CPU stall-warning time, invoke 899 * resched_cpu() more frequently to try to loosen things up a bit. 900 * Also check to see if the CPU is getting hammered with interrupts, 901 * but only once per grace period, just to keep the IPIs down to 902 * a dull roar. 903 */ 904 if (time_after(jiffies, rcu_state.jiffies_resched)) { 905 if (time_after(jiffies, 906 READ_ONCE(rdp->last_fqs_resched) + jtsq)) { 907 WRITE_ONCE(rdp->last_fqs_resched, jiffies); 908 ret = -1; 909 } 910 if (IS_ENABLED(CONFIG_IRQ_WORK) && 911 !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq && 912 (rnp->ffmask & rdp->grpmask)) { 913 rdp->rcu_iw_pending = true; 914 rdp->rcu_iw_gp_seq = rnp->gp_seq; 915 irq_work_queue_on(&rdp->rcu_iw, rdp->cpu); 916 } 917 918 if (rcu_cpu_stall_cputime && rdp->snap_record.gp_seq != rdp->gp_seq) { 919 int cpu = rdp->cpu; 920 struct rcu_snap_record *rsrp; 921 struct kernel_cpustat *kcsp; 922 923 kcsp = &kcpustat_cpu(cpu); 924 925 rsrp = &rdp->snap_record; 926 rsrp->cputime_irq = kcpustat_field(kcsp, CPUTIME_IRQ, cpu); 927 rsrp->cputime_softirq = kcpustat_field(kcsp, CPUTIME_SOFTIRQ, cpu); 928 rsrp->cputime_system = kcpustat_field(kcsp, CPUTIME_SYSTEM, cpu); 929 rsrp->nr_hardirqs = kstat_cpu_irqs_sum(rdp->cpu); 930 rsrp->nr_softirqs = kstat_cpu_softirqs_sum(rdp->cpu); 931 rsrp->nr_csw = nr_context_switches_cpu(rdp->cpu); 932 rsrp->jiffies = jiffies; 933 rsrp->gp_seq = rdp->gp_seq; 934 } 935 } 936 937 return ret; 938 } 939 940 /* Trace-event wrapper function for trace_rcu_future_grace_period. */ 941 static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp, 942 unsigned long gp_seq_req, const char *s) 943 { 944 trace_rcu_future_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq), 945 gp_seq_req, rnp->level, 946 rnp->grplo, rnp->grphi, s); 947 } 948 949 /* 950 * rcu_start_this_gp - Request the start of a particular grace period 951 * @rnp_start: The leaf node of the CPU from which to start. 952 * @rdp: The rcu_data corresponding to the CPU from which to start. 953 * @gp_seq_req: The gp_seq of the grace period to start. 954 * 955 * Start the specified grace period, as needed to handle newly arrived 956 * callbacks. The required future grace periods are recorded in each 957 * rcu_node structure's ->gp_seq_needed field. Returns true if there 958 * is reason to awaken the grace-period kthread. 959 * 960 * The caller must hold the specified rcu_node structure's ->lock, which 961 * is why the caller is responsible for waking the grace-period kthread. 962 * 963 * Returns true if the GP thread needs to be awakened else false. 964 */ 965 static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp, 966 unsigned long gp_seq_req) 967 { 968 bool ret = false; 969 struct rcu_node *rnp; 970 971 /* 972 * Use funnel locking to either acquire the root rcu_node 973 * structure's lock or bail out if the need for this grace period 974 * has already been recorded -- or if that grace period has in 975 * fact already started. If there is already a grace period in 976 * progress in a non-leaf node, no recording is needed because the 977 * end of the grace period will scan the leaf rcu_node structures. 978 * Note that rnp_start->lock must not be released. 979 */ 980 raw_lockdep_assert_held_rcu_node(rnp_start); 981 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf")); 982 for (rnp = rnp_start; 1; rnp = rnp->parent) { 983 if (rnp != rnp_start) 984 raw_spin_lock_rcu_node(rnp); 985 if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) || 986 rcu_seq_started(&rnp->gp_seq, gp_seq_req) || 987 (rnp != rnp_start && 988 rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) { 989 trace_rcu_this_gp(rnp, rdp, gp_seq_req, 990 TPS("Prestarted")); 991 goto unlock_out; 992 } 993 WRITE_ONCE(rnp->gp_seq_needed, gp_seq_req); 994 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) { 995 /* 996 * We just marked the leaf or internal node, and a 997 * grace period is in progress, which means that 998 * rcu_gp_cleanup() will see the marking. Bail to 999 * reduce contention. 1000 */ 1001 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, 1002 TPS("Startedleaf")); 1003 goto unlock_out; 1004 } 1005 if (rnp != rnp_start && rnp->parent != NULL) 1006 raw_spin_unlock_rcu_node(rnp); 1007 if (!rnp->parent) 1008 break; /* At root, and perhaps also leaf. */ 1009 } 1010 1011 /* If GP already in progress, just leave, otherwise start one. */ 1012 if (rcu_gp_in_progress()) { 1013 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot")); 1014 goto unlock_out; 1015 } 1016 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot")); 1017 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT); 1018 WRITE_ONCE(rcu_state.gp_req_activity, jiffies); 1019 if (!READ_ONCE(rcu_state.gp_kthread)) { 1020 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread")); 1021 goto unlock_out; 1022 } 1023 trace_rcu_grace_period(rcu_state.name, data_race(rcu_state.gp_seq), TPS("newreq")); 1024 ret = true; /* Caller must wake GP kthread. */ 1025 unlock_out: 1026 /* Push furthest requested GP to leaf node and rcu_data structure. */ 1027 if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) { 1028 WRITE_ONCE(rnp_start->gp_seq_needed, rnp->gp_seq_needed); 1029 WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed); 1030 } 1031 if (rnp != rnp_start) 1032 raw_spin_unlock_rcu_node(rnp); 1033 return ret; 1034 } 1035 1036 /* 1037 * Clean up any old requests for the just-ended grace period. Also return 1038 * whether any additional grace periods have been requested. 1039 */ 1040 static bool rcu_future_gp_cleanup(struct rcu_node *rnp) 1041 { 1042 bool needmore; 1043 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 1044 1045 needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed); 1046 if (!needmore) 1047 rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */ 1048 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq, 1049 needmore ? TPS("CleanupMore") : TPS("Cleanup")); 1050 return needmore; 1051 } 1052 1053 static void swake_up_one_online_ipi(void *arg) 1054 { 1055 struct swait_queue_head *wqh = arg; 1056 1057 swake_up_one(wqh); 1058 } 1059 1060 static void swake_up_one_online(struct swait_queue_head *wqh) 1061 { 1062 int cpu = get_cpu(); 1063 1064 /* 1065 * If called from rcutree_report_cpu_starting(), wake up 1066 * is dangerous that late in the CPU-down hotplug process. The 1067 * scheduler might queue an ignored hrtimer. Defer the wake up 1068 * to an online CPU instead. 1069 */ 1070 if (unlikely(cpu_is_offline(cpu))) { 1071 int target; 1072 1073 target = cpumask_any_and(housekeeping_cpumask(HK_TYPE_RCU), 1074 cpu_online_mask); 1075 1076 smp_call_function_single(target, swake_up_one_online_ipi, 1077 wqh, 0); 1078 put_cpu(); 1079 } else { 1080 put_cpu(); 1081 swake_up_one(wqh); 1082 } 1083 } 1084 1085 /* 1086 * Awaken the grace-period kthread. Don't do a self-awaken (unless in an 1087 * interrupt or softirq handler, in which case we just might immediately 1088 * sleep upon return, resulting in a grace-period hang), and don't bother 1089 * awakening when there is nothing for the grace-period kthread to do 1090 * (as in several CPUs raced to awaken, we lost), and finally don't try 1091 * to awaken a kthread that has not yet been created. If all those checks 1092 * are passed, track some debug information and awaken. 1093 * 1094 * So why do the self-wakeup when in an interrupt or softirq handler 1095 * in the grace-period kthread's context? Because the kthread might have 1096 * been interrupted just as it was going to sleep, and just after the final 1097 * pre-sleep check of the awaken condition. In this case, a wakeup really 1098 * is required, and is therefore supplied. 1099 */ 1100 static void rcu_gp_kthread_wake(void) 1101 { 1102 struct task_struct *t = READ_ONCE(rcu_state.gp_kthread); 1103 1104 if ((current == t && !in_hardirq() && !in_serving_softirq()) || 1105 !READ_ONCE(rcu_state.gp_flags) || !t) 1106 return; 1107 WRITE_ONCE(rcu_state.gp_wake_time, jiffies); 1108 WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq)); 1109 swake_up_one_online(&rcu_state.gp_wq); 1110 } 1111 1112 /* 1113 * If there is room, assign a ->gp_seq number to any callbacks on this 1114 * CPU that have not already been assigned. Also accelerate any callbacks 1115 * that were previously assigned a ->gp_seq number that has since proven 1116 * to be too conservative, which can happen if callbacks get assigned a 1117 * ->gp_seq number while RCU is idle, but with reference to a non-root 1118 * rcu_node structure. This function is idempotent, so it does not hurt 1119 * to call it repeatedly. Returns an flag saying that we should awaken 1120 * the RCU grace-period kthread. 1121 * 1122 * The caller must hold rnp->lock with interrupts disabled. 1123 */ 1124 static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp) 1125 { 1126 unsigned long gp_seq_req; 1127 bool ret = false; 1128 1129 rcu_lockdep_assert_cblist_protected(rdp); 1130 raw_lockdep_assert_held_rcu_node(rnp); 1131 1132 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */ 1133 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) 1134 return false; 1135 1136 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPreAcc")); 1137 1138 /* 1139 * Callbacks are often registered with incomplete grace-period 1140 * information. Something about the fact that getting exact 1141 * information requires acquiring a global lock... RCU therefore 1142 * makes a conservative estimate of the grace period number at which 1143 * a given callback will become ready to invoke. The following 1144 * code checks this estimate and improves it when possible, thus 1145 * accelerating callback invocation to an earlier grace-period 1146 * number. 1147 */ 1148 gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq); 1149 if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req)) 1150 ret = rcu_start_this_gp(rnp, rdp, gp_seq_req); 1151 1152 /* Trace depending on how much we were able to accelerate. */ 1153 if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL)) 1154 trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccWaitCB")); 1155 else 1156 trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccReadyCB")); 1157 1158 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPostAcc")); 1159 1160 return ret; 1161 } 1162 1163 /* 1164 * Similar to rcu_accelerate_cbs(), but does not require that the leaf 1165 * rcu_node structure's ->lock be held. It consults the cached value 1166 * of ->gp_seq_needed in the rcu_data structure, and if that indicates 1167 * that a new grace-period request be made, invokes rcu_accelerate_cbs() 1168 * while holding the leaf rcu_node structure's ->lock. 1169 */ 1170 static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp, 1171 struct rcu_data *rdp) 1172 { 1173 unsigned long c; 1174 bool needwake; 1175 1176 rcu_lockdep_assert_cblist_protected(rdp); 1177 c = rcu_seq_snap(&rcu_state.gp_seq); 1178 if (!READ_ONCE(rdp->gpwrap) && ULONG_CMP_GE(rdp->gp_seq_needed, c)) { 1179 /* Old request still live, so mark recent callbacks. */ 1180 (void)rcu_segcblist_accelerate(&rdp->cblist, c); 1181 return; 1182 } 1183 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 1184 needwake = rcu_accelerate_cbs(rnp, rdp); 1185 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 1186 if (needwake) 1187 rcu_gp_kthread_wake(); 1188 } 1189 1190 /* 1191 * Move any callbacks whose grace period has completed to the 1192 * RCU_DONE_TAIL sublist, then compact the remaining sublists and 1193 * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL 1194 * sublist. This function is idempotent, so it does not hurt to 1195 * invoke it repeatedly. As long as it is not invoked -too- often... 1196 * Returns true if the RCU grace-period kthread needs to be awakened. 1197 * 1198 * The caller must hold rnp->lock with interrupts disabled. 1199 */ 1200 static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp) 1201 { 1202 rcu_lockdep_assert_cblist_protected(rdp); 1203 raw_lockdep_assert_held_rcu_node(rnp); 1204 1205 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */ 1206 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) 1207 return false; 1208 1209 /* 1210 * Find all callbacks whose ->gp_seq numbers indicate that they 1211 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist. 1212 */ 1213 rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq); 1214 1215 /* Classify any remaining callbacks. */ 1216 return rcu_accelerate_cbs(rnp, rdp); 1217 } 1218 1219 /* 1220 * Move and classify callbacks, but only if doing so won't require 1221 * that the RCU grace-period kthread be awakened. 1222 */ 1223 static void __maybe_unused rcu_advance_cbs_nowake(struct rcu_node *rnp, 1224 struct rcu_data *rdp) 1225 { 1226 rcu_lockdep_assert_cblist_protected(rdp); 1227 if (!rcu_seq_state(rcu_seq_current(&rnp->gp_seq)) || !raw_spin_trylock_rcu_node(rnp)) 1228 return; 1229 // The grace period cannot end while we hold the rcu_node lock. 1230 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) 1231 WARN_ON_ONCE(rcu_advance_cbs(rnp, rdp)); 1232 raw_spin_unlock_rcu_node(rnp); 1233 } 1234 1235 /* 1236 * In CONFIG_RCU_STRICT_GRACE_PERIOD=y kernels, attempt to generate a 1237 * quiescent state. This is intended to be invoked when the CPU notices 1238 * a new grace period. 1239 */ 1240 static void rcu_strict_gp_check_qs(void) 1241 { 1242 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) { 1243 rcu_read_lock(); 1244 rcu_read_unlock(); 1245 } 1246 } 1247 1248 /* 1249 * Update CPU-local rcu_data state to record the beginnings and ends of 1250 * grace periods. The caller must hold the ->lock of the leaf rcu_node 1251 * structure corresponding to the current CPU, and must have irqs disabled. 1252 * Returns true if the grace-period kthread needs to be awakened. 1253 */ 1254 static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp) 1255 { 1256 bool ret = false; 1257 bool need_qs; 1258 const bool offloaded = rcu_rdp_is_offloaded(rdp); 1259 1260 raw_lockdep_assert_held_rcu_node(rnp); 1261 1262 if (rdp->gp_seq == rnp->gp_seq) 1263 return false; /* Nothing to do. */ 1264 1265 /* Handle the ends of any preceding grace periods first. */ 1266 if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) || 1267 unlikely(READ_ONCE(rdp->gpwrap))) { 1268 if (!offloaded) 1269 ret = rcu_advance_cbs(rnp, rdp); /* Advance CBs. */ 1270 rdp->core_needs_qs = false; 1271 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend")); 1272 } else { 1273 if (!offloaded) 1274 ret = rcu_accelerate_cbs(rnp, rdp); /* Recent CBs. */ 1275 if (rdp->core_needs_qs) 1276 rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask); 1277 } 1278 1279 /* Now handle the beginnings of any new-to-this-CPU grace periods. */ 1280 if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) || 1281 unlikely(READ_ONCE(rdp->gpwrap))) { 1282 /* 1283 * If the current grace period is waiting for this CPU, 1284 * set up to detect a quiescent state, otherwise don't 1285 * go looking for one. 1286 */ 1287 trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart")); 1288 need_qs = !!(rnp->qsmask & rdp->grpmask); 1289 rdp->cpu_no_qs.b.norm = need_qs; 1290 rdp->core_needs_qs = need_qs; 1291 zero_cpu_stall_ticks(rdp); 1292 } 1293 rdp->gp_seq = rnp->gp_seq; /* Remember new grace-period state. */ 1294 if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap) 1295 WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed); 1296 if (IS_ENABLED(CONFIG_PROVE_RCU) && READ_ONCE(rdp->gpwrap)) 1297 WRITE_ONCE(rdp->last_sched_clock, jiffies); 1298 WRITE_ONCE(rdp->gpwrap, false); 1299 rcu_gpnum_ovf(rnp, rdp); 1300 return ret; 1301 } 1302 1303 static void note_gp_changes(struct rcu_data *rdp) 1304 { 1305 unsigned long flags; 1306 bool needwake; 1307 struct rcu_node *rnp; 1308 1309 local_irq_save(flags); 1310 rnp = rdp->mynode; 1311 if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) && 1312 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */ 1313 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */ 1314 local_irq_restore(flags); 1315 return; 1316 } 1317 needwake = __note_gp_changes(rnp, rdp); 1318 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1319 rcu_strict_gp_check_qs(); 1320 if (needwake) 1321 rcu_gp_kthread_wake(); 1322 } 1323 1324 static atomic_t *rcu_gp_slow_suppress; 1325 1326 /* Register a counter to suppress debugging grace-period delays. */ 1327 void rcu_gp_slow_register(atomic_t *rgssp) 1328 { 1329 WARN_ON_ONCE(rcu_gp_slow_suppress); 1330 1331 WRITE_ONCE(rcu_gp_slow_suppress, rgssp); 1332 } 1333 EXPORT_SYMBOL_GPL(rcu_gp_slow_register); 1334 1335 /* Unregister a counter, with NULL for not caring which. */ 1336 void rcu_gp_slow_unregister(atomic_t *rgssp) 1337 { 1338 WARN_ON_ONCE(rgssp && rgssp != rcu_gp_slow_suppress && rcu_gp_slow_suppress != NULL); 1339 1340 WRITE_ONCE(rcu_gp_slow_suppress, NULL); 1341 } 1342 EXPORT_SYMBOL_GPL(rcu_gp_slow_unregister); 1343 1344 static bool rcu_gp_slow_is_suppressed(void) 1345 { 1346 atomic_t *rgssp = READ_ONCE(rcu_gp_slow_suppress); 1347 1348 return rgssp && atomic_read(rgssp); 1349 } 1350 1351 static void rcu_gp_slow(int delay) 1352 { 1353 if (!rcu_gp_slow_is_suppressed() && delay > 0 && 1354 !(rcu_seq_ctr(rcu_state.gp_seq) % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay))) 1355 schedule_timeout_idle(delay); 1356 } 1357 1358 static unsigned long sleep_duration; 1359 1360 /* Allow rcutorture to stall the grace-period kthread. */ 1361 void rcu_gp_set_torture_wait(int duration) 1362 { 1363 if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST) && duration > 0) 1364 WRITE_ONCE(sleep_duration, duration); 1365 } 1366 EXPORT_SYMBOL_GPL(rcu_gp_set_torture_wait); 1367 1368 /* Actually implement the aforementioned wait. */ 1369 static void rcu_gp_torture_wait(void) 1370 { 1371 unsigned long duration; 1372 1373 if (!IS_ENABLED(CONFIG_RCU_TORTURE_TEST)) 1374 return; 1375 duration = xchg(&sleep_duration, 0UL); 1376 if (duration > 0) { 1377 pr_alert("%s: Waiting %lu jiffies\n", __func__, duration); 1378 schedule_timeout_idle(duration); 1379 pr_alert("%s: Wait complete\n", __func__); 1380 } 1381 } 1382 1383 /* 1384 * Handler for on_each_cpu() to invoke the target CPU's RCU core 1385 * processing. 1386 */ 1387 static void rcu_strict_gp_boundary(void *unused) 1388 { 1389 invoke_rcu_core(); 1390 } 1391 1392 // Make the polled API aware of the beginning of a grace period. 1393 static void rcu_poll_gp_seq_start(unsigned long *snap) 1394 { 1395 struct rcu_node *rnp = rcu_get_root(); 1396 1397 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) 1398 raw_lockdep_assert_held_rcu_node(rnp); 1399 1400 // If RCU was idle, note beginning of GP. 1401 if (!rcu_seq_state(rcu_state.gp_seq_polled)) 1402 rcu_seq_start(&rcu_state.gp_seq_polled); 1403 1404 // Either way, record current state. 1405 *snap = rcu_state.gp_seq_polled; 1406 } 1407 1408 // Make the polled API aware of the end of a grace period. 1409 static void rcu_poll_gp_seq_end(unsigned long *snap) 1410 { 1411 struct rcu_node *rnp = rcu_get_root(); 1412 1413 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) 1414 raw_lockdep_assert_held_rcu_node(rnp); 1415 1416 // If the previously noted GP is still in effect, record the 1417 // end of that GP. Either way, zero counter to avoid counter-wrap 1418 // problems. 1419 if (*snap && *snap == rcu_state.gp_seq_polled) { 1420 rcu_seq_end(&rcu_state.gp_seq_polled); 1421 rcu_state.gp_seq_polled_snap = 0; 1422 rcu_state.gp_seq_polled_exp_snap = 0; 1423 } else { 1424 *snap = 0; 1425 } 1426 } 1427 1428 // Make the polled API aware of the beginning of a grace period, but 1429 // where caller does not hold the root rcu_node structure's lock. 1430 static void rcu_poll_gp_seq_start_unlocked(unsigned long *snap) 1431 { 1432 unsigned long flags; 1433 struct rcu_node *rnp = rcu_get_root(); 1434 1435 if (rcu_init_invoked()) { 1436 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) 1437 lockdep_assert_irqs_enabled(); 1438 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1439 } 1440 rcu_poll_gp_seq_start(snap); 1441 if (rcu_init_invoked()) 1442 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1443 } 1444 1445 // Make the polled API aware of the end of a grace period, but where 1446 // caller does not hold the root rcu_node structure's lock. 1447 static void rcu_poll_gp_seq_end_unlocked(unsigned long *snap) 1448 { 1449 unsigned long flags; 1450 struct rcu_node *rnp = rcu_get_root(); 1451 1452 if (rcu_init_invoked()) { 1453 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) 1454 lockdep_assert_irqs_enabled(); 1455 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1456 } 1457 rcu_poll_gp_seq_end(snap); 1458 if (rcu_init_invoked()) 1459 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1460 } 1461 1462 /* 1463 * There is a single llist, which is used for handling 1464 * synchronize_rcu() users' enqueued rcu_synchronize nodes. 1465 * Within this llist, there are two tail pointers: 1466 * 1467 * wait tail: Tracks the set of nodes, which need to 1468 * wait for the current GP to complete. 1469 * done tail: Tracks the set of nodes, for which grace 1470 * period has elapsed. These nodes processing 1471 * will be done as part of the cleanup work 1472 * execution by a kworker. 1473 * 1474 * At every grace period init, a new wait node is added 1475 * to the llist. This wait node is used as wait tail 1476 * for this new grace period. Given that there are a fixed 1477 * number of wait nodes, if all wait nodes are in use 1478 * (which can happen when kworker callback processing 1479 * is delayed) and additional grace period is requested. 1480 * This means, a system is slow in processing callbacks. 1481 * 1482 * TODO: If a slow processing is detected, a first node 1483 * in the llist should be used as a wait-tail for this 1484 * grace period, therefore users which should wait due 1485 * to a slow process are handled by _this_ grace period 1486 * and not next. 1487 * 1488 * Below is an illustration of how the done and wait 1489 * tail pointers move from one set of rcu_synchronize nodes 1490 * to the other, as grace periods start and finish and 1491 * nodes are processed by kworker. 1492 * 1493 * 1494 * a. Initial llist callbacks list: 1495 * 1496 * +----------+ +--------+ +-------+ 1497 * | | | | | | 1498 * | head |---------> | cb2 |--------->| cb1 | 1499 * | | | | | | 1500 * +----------+ +--------+ +-------+ 1501 * 1502 * 1503 * 1504 * b. New GP1 Start: 1505 * 1506 * WAIT TAIL 1507 * | 1508 * | 1509 * v 1510 * +----------+ +--------+ +--------+ +-------+ 1511 * | | | | | | | | 1512 * | head ------> wait |------> cb2 |------> | cb1 | 1513 * | | | head1 | | | | | 1514 * +----------+ +--------+ +--------+ +-------+ 1515 * 1516 * 1517 * 1518 * c. GP completion: 1519 * 1520 * WAIT_TAIL == DONE_TAIL 1521 * 1522 * DONE TAIL 1523 * | 1524 * | 1525 * v 1526 * +----------+ +--------+ +--------+ +-------+ 1527 * | | | | | | | | 1528 * | head ------> wait |------> cb2 |------> | cb1 | 1529 * | | | head1 | | | | | 1530 * +----------+ +--------+ +--------+ +-------+ 1531 * 1532 * 1533 * 1534 * d. New callbacks and GP2 start: 1535 * 1536 * WAIT TAIL DONE TAIL 1537 * | | 1538 * | | 1539 * v v 1540 * +----------+ +------+ +------+ +------+ +-----+ +-----+ +-----+ 1541 * | | | | | | | | | | | | | | 1542 * | head ------> wait |--->| cb4 |--->| cb3 |--->|wait |--->| cb2 |--->| cb1 | 1543 * | | | head2| | | | | |head1| | | | | 1544 * +----------+ +------+ +------+ +------+ +-----+ +-----+ +-----+ 1545 * 1546 * 1547 * 1548 * e. GP2 completion: 1549 * 1550 * WAIT_TAIL == DONE_TAIL 1551 * DONE TAIL 1552 * | 1553 * | 1554 * v 1555 * +----------+ +------+ +------+ +------+ +-----+ +-----+ +-----+ 1556 * | | | | | | | | | | | | | | 1557 * | head ------> wait |--->| cb4 |--->| cb3 |--->|wait |--->| cb2 |--->| cb1 | 1558 * | | | head2| | | | | |head1| | | | | 1559 * +----------+ +------+ +------+ +------+ +-----+ +-----+ +-----+ 1560 * 1561 * 1562 * While the llist state transitions from d to e, a kworker 1563 * can start executing rcu_sr_normal_gp_cleanup_work() and 1564 * can observe either the old done tail (@c) or the new 1565 * done tail (@e). So, done tail updates and reads need 1566 * to use the rel-acq semantics. If the concurrent kworker 1567 * observes the old done tail, the newly queued work 1568 * execution will process the updated done tail. If the 1569 * concurrent kworker observes the new done tail, then 1570 * the newly queued work will skip processing the done 1571 * tail, as workqueue semantics guarantees that the new 1572 * work is executed only after the previous one completes. 1573 * 1574 * f. kworker callbacks processing complete: 1575 * 1576 * 1577 * DONE TAIL 1578 * | 1579 * | 1580 * v 1581 * +----------+ +--------+ 1582 * | | | | 1583 * | head ------> wait | 1584 * | | | head2 | 1585 * +----------+ +--------+ 1586 * 1587 */ 1588 static bool rcu_sr_is_wait_head(struct llist_node *node) 1589 { 1590 return &(rcu_state.srs_wait_nodes)[0].node <= node && 1591 node <= &(rcu_state.srs_wait_nodes)[SR_NORMAL_GP_WAIT_HEAD_MAX - 1].node; 1592 } 1593 1594 static struct llist_node *rcu_sr_get_wait_head(void) 1595 { 1596 struct sr_wait_node *sr_wn; 1597 int i; 1598 1599 for (i = 0; i < SR_NORMAL_GP_WAIT_HEAD_MAX; i++) { 1600 sr_wn = &(rcu_state.srs_wait_nodes)[i]; 1601 1602 if (!atomic_cmpxchg_acquire(&sr_wn->inuse, 0, 1)) 1603 return &sr_wn->node; 1604 } 1605 1606 return NULL; 1607 } 1608 1609 static void rcu_sr_put_wait_head(struct llist_node *node) 1610 { 1611 struct sr_wait_node *sr_wn = container_of(node, struct sr_wait_node, node); 1612 1613 atomic_set_release(&sr_wn->inuse, 0); 1614 } 1615 1616 /* Disabled by default. */ 1617 static int rcu_normal_wake_from_gp; 1618 module_param(rcu_normal_wake_from_gp, int, 0644); 1619 static struct workqueue_struct *sync_wq; 1620 1621 static void rcu_sr_normal_complete(struct llist_node *node) 1622 { 1623 struct rcu_synchronize *rs = container_of( 1624 (struct rcu_head *) node, struct rcu_synchronize, head); 1625 unsigned long oldstate = (unsigned long) rs->head.func; 1626 1627 WARN_ONCE(IS_ENABLED(CONFIG_PROVE_RCU) && 1628 !poll_state_synchronize_rcu(oldstate), 1629 "A full grace period is not passed yet: %lu", 1630 rcu_seq_diff(get_state_synchronize_rcu(), oldstate)); 1631 1632 /* Finally. */ 1633 complete(&rs->completion); 1634 } 1635 1636 static void rcu_sr_normal_gp_cleanup_work(struct work_struct *work) 1637 { 1638 struct llist_node *done, *rcu, *next, *head; 1639 1640 /* 1641 * This work execution can potentially execute 1642 * while a new done tail is being updated by 1643 * grace period kthread in rcu_sr_normal_gp_cleanup(). 1644 * So, read and updates of done tail need to 1645 * follow acq-rel semantics. 1646 * 1647 * Given that wq semantics guarantees that a single work 1648 * cannot execute concurrently by multiple kworkers, 1649 * the done tail list manipulations are protected here. 1650 */ 1651 done = smp_load_acquire(&rcu_state.srs_done_tail); 1652 if (!done) 1653 return; 1654 1655 WARN_ON_ONCE(!rcu_sr_is_wait_head(done)); 1656 head = done->next; 1657 done->next = NULL; 1658 1659 /* 1660 * The dummy node, which is pointed to by the 1661 * done tail which is acq-read above is not removed 1662 * here. This allows lockless additions of new 1663 * rcu_synchronize nodes in rcu_sr_normal_add_req(), 1664 * while the cleanup work executes. The dummy 1665 * nodes is removed, in next round of cleanup 1666 * work execution. 1667 */ 1668 llist_for_each_safe(rcu, next, head) { 1669 if (!rcu_sr_is_wait_head(rcu)) { 1670 rcu_sr_normal_complete(rcu); 1671 continue; 1672 } 1673 1674 rcu_sr_put_wait_head(rcu); 1675 } 1676 1677 /* Order list manipulations with atomic access. */ 1678 atomic_dec_return_release(&rcu_state.srs_cleanups_pending); 1679 } 1680 1681 /* 1682 * Helper function for rcu_gp_cleanup(). 1683 */ 1684 static void rcu_sr_normal_gp_cleanup(void) 1685 { 1686 struct llist_node *wait_tail, *next = NULL, *rcu = NULL; 1687 int done = 0; 1688 1689 wait_tail = rcu_state.srs_wait_tail; 1690 if (wait_tail == NULL) 1691 return; 1692 1693 rcu_state.srs_wait_tail = NULL; 1694 ASSERT_EXCLUSIVE_WRITER(rcu_state.srs_wait_tail); 1695 WARN_ON_ONCE(!rcu_sr_is_wait_head(wait_tail)); 1696 1697 /* 1698 * Process (a) and (d) cases. See an illustration. 1699 */ 1700 llist_for_each_safe(rcu, next, wait_tail->next) { 1701 if (rcu_sr_is_wait_head(rcu)) 1702 break; 1703 1704 rcu_sr_normal_complete(rcu); 1705 // It can be last, update a next on this step. 1706 wait_tail->next = next; 1707 1708 if (++done == SR_MAX_USERS_WAKE_FROM_GP) 1709 break; 1710 } 1711 1712 /* 1713 * Fast path, no more users to process except putting the second last 1714 * wait head if no inflight-workers. If there are in-flight workers, 1715 * they will remove the last wait head. 1716 * 1717 * Note that the ACQUIRE orders atomic access with list manipulation. 1718 */ 1719 if (wait_tail->next && wait_tail->next->next == NULL && 1720 rcu_sr_is_wait_head(wait_tail->next) && 1721 !atomic_read_acquire(&rcu_state.srs_cleanups_pending)) { 1722 rcu_sr_put_wait_head(wait_tail->next); 1723 wait_tail->next = NULL; 1724 } 1725 1726 /* Concurrent sr_normal_gp_cleanup work might observe this update. */ 1727 ASSERT_EXCLUSIVE_WRITER(rcu_state.srs_done_tail); 1728 smp_store_release(&rcu_state.srs_done_tail, wait_tail); 1729 1730 /* 1731 * We schedule a work in order to perform a final processing 1732 * of outstanding users(if still left) and releasing wait-heads 1733 * added by rcu_sr_normal_gp_init() call. 1734 */ 1735 if (wait_tail->next) { 1736 atomic_inc(&rcu_state.srs_cleanups_pending); 1737 if (!queue_work(sync_wq, &rcu_state.srs_cleanup_work)) 1738 atomic_dec(&rcu_state.srs_cleanups_pending); 1739 } 1740 } 1741 1742 /* 1743 * Helper function for rcu_gp_init(). 1744 */ 1745 static bool rcu_sr_normal_gp_init(void) 1746 { 1747 struct llist_node *first; 1748 struct llist_node *wait_head; 1749 bool start_new_poll = false; 1750 1751 first = READ_ONCE(rcu_state.srs_next.first); 1752 if (!first || rcu_sr_is_wait_head(first)) 1753 return start_new_poll; 1754 1755 wait_head = rcu_sr_get_wait_head(); 1756 if (!wait_head) { 1757 // Kick another GP to retry. 1758 start_new_poll = true; 1759 return start_new_poll; 1760 } 1761 1762 /* Inject a wait-dummy-node. */ 1763 llist_add(wait_head, &rcu_state.srs_next); 1764 1765 /* 1766 * A waiting list of rcu_synchronize nodes should be empty on 1767 * this step, since a GP-kthread, rcu_gp_init() -> gp_cleanup(), 1768 * rolls it over. If not, it is a BUG, warn a user. 1769 */ 1770 WARN_ON_ONCE(rcu_state.srs_wait_tail != NULL); 1771 rcu_state.srs_wait_tail = wait_head; 1772 ASSERT_EXCLUSIVE_WRITER(rcu_state.srs_wait_tail); 1773 1774 return start_new_poll; 1775 } 1776 1777 static void rcu_sr_normal_add_req(struct rcu_synchronize *rs) 1778 { 1779 llist_add((struct llist_node *) &rs->head, &rcu_state.srs_next); 1780 } 1781 1782 /* 1783 * Initialize a new grace period. Return false if no grace period required. 1784 */ 1785 static noinline_for_stack bool rcu_gp_init(void) 1786 { 1787 unsigned long flags; 1788 unsigned long oldmask; 1789 unsigned long mask; 1790 struct rcu_data *rdp; 1791 struct rcu_node *rnp = rcu_get_root(); 1792 bool start_new_poll; 1793 1794 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1795 raw_spin_lock_irq_rcu_node(rnp); 1796 if (!rcu_state.gp_flags) { 1797 /* Spurious wakeup, tell caller to go back to sleep. */ 1798 raw_spin_unlock_irq_rcu_node(rnp); 1799 return false; 1800 } 1801 WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */ 1802 1803 if (WARN_ON_ONCE(rcu_gp_in_progress())) { 1804 /* 1805 * Grace period already in progress, don't start another. 1806 * Not supposed to be able to happen. 1807 */ 1808 raw_spin_unlock_irq_rcu_node(rnp); 1809 return false; 1810 } 1811 1812 /* Advance to a new grace period and initialize state. */ 1813 record_gp_stall_check_time(); 1814 /* Record GP times before starting GP, hence rcu_seq_start(). */ 1815 rcu_seq_start(&rcu_state.gp_seq); 1816 ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq); 1817 start_new_poll = rcu_sr_normal_gp_init(); 1818 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start")); 1819 rcu_poll_gp_seq_start(&rcu_state.gp_seq_polled_snap); 1820 raw_spin_unlock_irq_rcu_node(rnp); 1821 1822 /* 1823 * The "start_new_poll" is set to true, only when this GP is not able 1824 * to handle anything and there are outstanding users. It happens when 1825 * the rcu_sr_normal_gp_init() function was not able to insert a dummy 1826 * separator to the llist, because there were no left any dummy-nodes. 1827 * 1828 * Number of dummy-nodes is fixed, it could be that we are run out of 1829 * them, if so we start a new pool request to repeat a try. It is rare 1830 * and it means that a system is doing a slow processing of callbacks. 1831 */ 1832 if (start_new_poll) 1833 (void) start_poll_synchronize_rcu(); 1834 1835 /* 1836 * Apply per-leaf buffered online and offline operations to 1837 * the rcu_node tree. Note that this new grace period need not 1838 * wait for subsequent online CPUs, and that RCU hooks in the CPU 1839 * offlining path, when combined with checks in this function, 1840 * will handle CPUs that are currently going offline or that will 1841 * go offline later. Please also refer to "Hotplug CPU" section 1842 * of RCU's Requirements documentation. 1843 */ 1844 WRITE_ONCE(rcu_state.gp_state, RCU_GP_ONOFF); 1845 /* Exclude CPU hotplug operations. */ 1846 rcu_for_each_leaf_node(rnp) { 1847 local_irq_disable(); 1848 arch_spin_lock(&rcu_state.ofl_lock); 1849 raw_spin_lock_rcu_node(rnp); 1850 if (rnp->qsmaskinit == rnp->qsmaskinitnext && 1851 !rnp->wait_blkd_tasks) { 1852 /* Nothing to do on this leaf rcu_node structure. */ 1853 raw_spin_unlock_rcu_node(rnp); 1854 arch_spin_unlock(&rcu_state.ofl_lock); 1855 local_irq_enable(); 1856 continue; 1857 } 1858 1859 /* Record old state, apply changes to ->qsmaskinit field. */ 1860 oldmask = rnp->qsmaskinit; 1861 rnp->qsmaskinit = rnp->qsmaskinitnext; 1862 1863 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */ 1864 if (!oldmask != !rnp->qsmaskinit) { 1865 if (!oldmask) { /* First online CPU for rcu_node. */ 1866 if (!rnp->wait_blkd_tasks) /* Ever offline? */ 1867 rcu_init_new_rnp(rnp); 1868 } else if (rcu_preempt_has_tasks(rnp)) { 1869 rnp->wait_blkd_tasks = true; /* blocked tasks */ 1870 } else { /* Last offline CPU and can propagate. */ 1871 rcu_cleanup_dead_rnp(rnp); 1872 } 1873 } 1874 1875 /* 1876 * If all waited-on tasks from prior grace period are 1877 * done, and if all this rcu_node structure's CPUs are 1878 * still offline, propagate up the rcu_node tree and 1879 * clear ->wait_blkd_tasks. Otherwise, if one of this 1880 * rcu_node structure's CPUs has since come back online, 1881 * simply clear ->wait_blkd_tasks. 1882 */ 1883 if (rnp->wait_blkd_tasks && 1884 (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) { 1885 rnp->wait_blkd_tasks = false; 1886 if (!rnp->qsmaskinit) 1887 rcu_cleanup_dead_rnp(rnp); 1888 } 1889 1890 raw_spin_unlock_rcu_node(rnp); 1891 arch_spin_unlock(&rcu_state.ofl_lock); 1892 local_irq_enable(); 1893 } 1894 rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */ 1895 1896 /* 1897 * Set the quiescent-state-needed bits in all the rcu_node 1898 * structures for all currently online CPUs in breadth-first 1899 * order, starting from the root rcu_node structure, relying on the 1900 * layout of the tree within the rcu_state.node[] array. Note that 1901 * other CPUs will access only the leaves of the hierarchy, thus 1902 * seeing that no grace period is in progress, at least until the 1903 * corresponding leaf node has been initialized. 1904 * 1905 * The grace period cannot complete until the initialization 1906 * process finishes, because this kthread handles both. 1907 */ 1908 WRITE_ONCE(rcu_state.gp_state, RCU_GP_INIT); 1909 rcu_for_each_node_breadth_first(rnp) { 1910 rcu_gp_slow(gp_init_delay); 1911 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1912 rdp = this_cpu_ptr(&rcu_data); 1913 rcu_preempt_check_blocked_tasks(rnp); 1914 rnp->qsmask = rnp->qsmaskinit; 1915 WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq); 1916 if (rnp == rdp->mynode) 1917 (void)__note_gp_changes(rnp, rdp); 1918 rcu_preempt_boost_start_gp(rnp); 1919 trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq, 1920 rnp->level, rnp->grplo, 1921 rnp->grphi, rnp->qsmask); 1922 /* Quiescent states for tasks on any now-offline CPUs. */ 1923 mask = rnp->qsmask & ~rnp->qsmaskinitnext; 1924 rnp->rcu_gp_init_mask = mask; 1925 if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp)) 1926 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 1927 else 1928 raw_spin_unlock_irq_rcu_node(rnp); 1929 cond_resched_tasks_rcu_qs(); 1930 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1931 } 1932 1933 // If strict, make all CPUs aware of new grace period. 1934 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) 1935 on_each_cpu(rcu_strict_gp_boundary, NULL, 0); 1936 1937 return true; 1938 } 1939 1940 /* 1941 * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state 1942 * time. 1943 */ 1944 static bool rcu_gp_fqs_check_wake(int *gfp) 1945 { 1946 struct rcu_node *rnp = rcu_get_root(); 1947 1948 // If under overload conditions, force an immediate FQS scan. 1949 if (*gfp & RCU_GP_FLAG_OVLD) 1950 return true; 1951 1952 // Someone like call_rcu() requested a force-quiescent-state scan. 1953 *gfp = READ_ONCE(rcu_state.gp_flags); 1954 if (*gfp & RCU_GP_FLAG_FQS) 1955 return true; 1956 1957 // The current grace period has completed. 1958 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp)) 1959 return true; 1960 1961 return false; 1962 } 1963 1964 /* 1965 * Do one round of quiescent-state forcing. 1966 */ 1967 static void rcu_gp_fqs(bool first_time) 1968 { 1969 int nr_fqs = READ_ONCE(rcu_state.nr_fqs_jiffies_stall); 1970 struct rcu_node *rnp = rcu_get_root(); 1971 1972 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1973 WRITE_ONCE(rcu_state.n_force_qs, rcu_state.n_force_qs + 1); 1974 1975 WARN_ON_ONCE(nr_fqs > 3); 1976 /* Only countdown nr_fqs for stall purposes if jiffies moves. */ 1977 if (nr_fqs) { 1978 if (nr_fqs == 1) { 1979 WRITE_ONCE(rcu_state.jiffies_stall, 1980 jiffies + rcu_jiffies_till_stall_check()); 1981 } 1982 WRITE_ONCE(rcu_state.nr_fqs_jiffies_stall, --nr_fqs); 1983 } 1984 1985 if (first_time) { 1986 /* Collect dyntick-idle snapshots. */ 1987 force_qs_rnp(dyntick_save_progress_counter); 1988 } else { 1989 /* Handle dyntick-idle and offline CPUs. */ 1990 force_qs_rnp(rcu_implicit_dynticks_qs); 1991 } 1992 /* Clear flag to prevent immediate re-entry. */ 1993 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) { 1994 raw_spin_lock_irq_rcu_node(rnp); 1995 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags & ~RCU_GP_FLAG_FQS); 1996 raw_spin_unlock_irq_rcu_node(rnp); 1997 } 1998 } 1999 2000 /* 2001 * Loop doing repeated quiescent-state forcing until the grace period ends. 2002 */ 2003 static noinline_for_stack void rcu_gp_fqs_loop(void) 2004 { 2005 bool first_gp_fqs = true; 2006 int gf = 0; 2007 unsigned long j; 2008 int ret; 2009 struct rcu_node *rnp = rcu_get_root(); 2010 2011 j = READ_ONCE(jiffies_till_first_fqs); 2012 if (rcu_state.cbovld) 2013 gf = RCU_GP_FLAG_OVLD; 2014 ret = 0; 2015 for (;;) { 2016 if (rcu_state.cbovld) { 2017 j = (j + 2) / 3; 2018 if (j <= 0) 2019 j = 1; 2020 } 2021 if (!ret || time_before(jiffies + j, rcu_state.jiffies_force_qs)) { 2022 WRITE_ONCE(rcu_state.jiffies_force_qs, jiffies + j); 2023 /* 2024 * jiffies_force_qs before RCU_GP_WAIT_FQS state 2025 * update; required for stall checks. 2026 */ 2027 smp_wmb(); 2028 WRITE_ONCE(rcu_state.jiffies_kick_kthreads, 2029 jiffies + (j ? 3 * j : 2)); 2030 } 2031 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 2032 TPS("fqswait")); 2033 WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_FQS); 2034 (void)swait_event_idle_timeout_exclusive(rcu_state.gp_wq, 2035 rcu_gp_fqs_check_wake(&gf), j); 2036 rcu_gp_torture_wait(); 2037 WRITE_ONCE(rcu_state.gp_state, RCU_GP_DOING_FQS); 2038 /* Locking provides needed memory barriers. */ 2039 /* 2040 * Exit the loop if the root rcu_node structure indicates that the grace period 2041 * has ended, leave the loop. The rcu_preempt_blocked_readers_cgp(rnp) check 2042 * is required only for single-node rcu_node trees because readers blocking 2043 * the current grace period are queued only on leaf rcu_node structures. 2044 * For multi-node trees, checking the root node's ->qsmask suffices, because a 2045 * given root node's ->qsmask bit is cleared only when all CPUs and tasks from 2046 * the corresponding leaf nodes have passed through their quiescent state. 2047 */ 2048 if (!READ_ONCE(rnp->qsmask) && 2049 !rcu_preempt_blocked_readers_cgp(rnp)) 2050 break; 2051 /* If time for quiescent-state forcing, do it. */ 2052 if (!time_after(rcu_state.jiffies_force_qs, jiffies) || 2053 (gf & (RCU_GP_FLAG_FQS | RCU_GP_FLAG_OVLD))) { 2054 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 2055 TPS("fqsstart")); 2056 rcu_gp_fqs(first_gp_fqs); 2057 gf = 0; 2058 if (first_gp_fqs) { 2059 first_gp_fqs = false; 2060 gf = rcu_state.cbovld ? RCU_GP_FLAG_OVLD : 0; 2061 } 2062 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 2063 TPS("fqsend")); 2064 cond_resched_tasks_rcu_qs(); 2065 WRITE_ONCE(rcu_state.gp_activity, jiffies); 2066 ret = 0; /* Force full wait till next FQS. */ 2067 j = READ_ONCE(jiffies_till_next_fqs); 2068 } else { 2069 /* Deal with stray signal. */ 2070 cond_resched_tasks_rcu_qs(); 2071 WRITE_ONCE(rcu_state.gp_activity, jiffies); 2072 WARN_ON(signal_pending(current)); 2073 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 2074 TPS("fqswaitsig")); 2075 ret = 1; /* Keep old FQS timing. */ 2076 j = jiffies; 2077 if (time_after(jiffies, rcu_state.jiffies_force_qs)) 2078 j = 1; 2079 else 2080 j = rcu_state.jiffies_force_qs - j; 2081 gf = 0; 2082 } 2083 } 2084 } 2085 2086 /* 2087 * Clean up after the old grace period. 2088 */ 2089 static noinline void rcu_gp_cleanup(void) 2090 { 2091 int cpu; 2092 bool needgp = false; 2093 unsigned long gp_duration; 2094 unsigned long new_gp_seq; 2095 bool offloaded; 2096 struct rcu_data *rdp; 2097 struct rcu_node *rnp = rcu_get_root(); 2098 struct swait_queue_head *sq; 2099 2100 WRITE_ONCE(rcu_state.gp_activity, jiffies); 2101 raw_spin_lock_irq_rcu_node(rnp); 2102 rcu_state.gp_end = jiffies; 2103 gp_duration = rcu_state.gp_end - rcu_state.gp_start; 2104 if (gp_duration > rcu_state.gp_max) 2105 rcu_state.gp_max = gp_duration; 2106 2107 /* 2108 * We know the grace period is complete, but to everyone else 2109 * it appears to still be ongoing. But it is also the case 2110 * that to everyone else it looks like there is nothing that 2111 * they can do to advance the grace period. It is therefore 2112 * safe for us to drop the lock in order to mark the grace 2113 * period as completed in all of the rcu_node structures. 2114 */ 2115 rcu_poll_gp_seq_end(&rcu_state.gp_seq_polled_snap); 2116 raw_spin_unlock_irq_rcu_node(rnp); 2117 2118 /* 2119 * Propagate new ->gp_seq value to rcu_node structures so that 2120 * other CPUs don't have to wait until the start of the next grace 2121 * period to process their callbacks. This also avoids some nasty 2122 * RCU grace-period initialization races by forcing the end of 2123 * the current grace period to be completely recorded in all of 2124 * the rcu_node structures before the beginning of the next grace 2125 * period is recorded in any of the rcu_node structures. 2126 */ 2127 new_gp_seq = rcu_state.gp_seq; 2128 rcu_seq_end(&new_gp_seq); 2129 rcu_for_each_node_breadth_first(rnp) { 2130 raw_spin_lock_irq_rcu_node(rnp); 2131 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp))) 2132 dump_blkd_tasks(rnp, 10); 2133 WARN_ON_ONCE(rnp->qsmask); 2134 WRITE_ONCE(rnp->gp_seq, new_gp_seq); 2135 if (!rnp->parent) 2136 smp_mb(); // Order against failing poll_state_synchronize_rcu_full(). 2137 rdp = this_cpu_ptr(&rcu_data); 2138 if (rnp == rdp->mynode) 2139 needgp = __note_gp_changes(rnp, rdp) || needgp; 2140 /* smp_mb() provided by prior unlock-lock pair. */ 2141 needgp = rcu_future_gp_cleanup(rnp) || needgp; 2142 // Reset overload indication for CPUs no longer overloaded 2143 if (rcu_is_leaf_node(rnp)) 2144 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->cbovldmask) { 2145 rdp = per_cpu_ptr(&rcu_data, cpu); 2146 check_cb_ovld_locked(rdp, rnp); 2147 } 2148 sq = rcu_nocb_gp_get(rnp); 2149 raw_spin_unlock_irq_rcu_node(rnp); 2150 rcu_nocb_gp_cleanup(sq); 2151 cond_resched_tasks_rcu_qs(); 2152 WRITE_ONCE(rcu_state.gp_activity, jiffies); 2153 rcu_gp_slow(gp_cleanup_delay); 2154 } 2155 rnp = rcu_get_root(); 2156 raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */ 2157 2158 /* Declare grace period done, trace first to use old GP number. */ 2159 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end")); 2160 rcu_seq_end(&rcu_state.gp_seq); 2161 ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq); 2162 WRITE_ONCE(rcu_state.gp_state, RCU_GP_IDLE); 2163 /* Check for GP requests since above loop. */ 2164 rdp = this_cpu_ptr(&rcu_data); 2165 if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) { 2166 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed, 2167 TPS("CleanupMore")); 2168 needgp = true; 2169 } 2170 /* Advance CBs to reduce false positives below. */ 2171 offloaded = rcu_rdp_is_offloaded(rdp); 2172 if ((offloaded || !rcu_accelerate_cbs(rnp, rdp)) && needgp) { 2173 2174 // We get here if a grace period was needed (“needgp”) 2175 // and the above call to rcu_accelerate_cbs() did not set 2176 // the RCU_GP_FLAG_INIT bit in ->gp_state (which records 2177 // the need for another grace period). The purpose 2178 // of the “offloaded” check is to avoid invoking 2179 // rcu_accelerate_cbs() on an offloaded CPU because we do not 2180 // hold the ->nocb_lock needed to safely access an offloaded 2181 // ->cblist. We do not want to acquire that lock because 2182 // it can be heavily contended during callback floods. 2183 2184 WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT); 2185 WRITE_ONCE(rcu_state.gp_req_activity, jiffies); 2186 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("newreq")); 2187 } else { 2188 2189 // We get here either if there is no need for an 2190 // additional grace period or if rcu_accelerate_cbs() has 2191 // already set the RCU_GP_FLAG_INIT bit in ->gp_flags. 2192 // So all we need to do is to clear all of the other 2193 // ->gp_flags bits. 2194 2195 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags & RCU_GP_FLAG_INIT); 2196 } 2197 raw_spin_unlock_irq_rcu_node(rnp); 2198 2199 // Make synchronize_rcu() users aware of the end of old grace period. 2200 rcu_sr_normal_gp_cleanup(); 2201 2202 // If strict, make all CPUs aware of the end of the old grace period. 2203 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) 2204 on_each_cpu(rcu_strict_gp_boundary, NULL, 0); 2205 } 2206 2207 /* 2208 * Body of kthread that handles grace periods. 2209 */ 2210 static int __noreturn rcu_gp_kthread(void *unused) 2211 { 2212 rcu_bind_gp_kthread(); 2213 for (;;) { 2214 2215 /* Handle grace-period start. */ 2216 for (;;) { 2217 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 2218 TPS("reqwait")); 2219 WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_GPS); 2220 swait_event_idle_exclusive(rcu_state.gp_wq, 2221 READ_ONCE(rcu_state.gp_flags) & 2222 RCU_GP_FLAG_INIT); 2223 rcu_gp_torture_wait(); 2224 WRITE_ONCE(rcu_state.gp_state, RCU_GP_DONE_GPS); 2225 /* Locking provides needed memory barrier. */ 2226 if (rcu_gp_init()) 2227 break; 2228 cond_resched_tasks_rcu_qs(); 2229 WRITE_ONCE(rcu_state.gp_activity, jiffies); 2230 WARN_ON(signal_pending(current)); 2231 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 2232 TPS("reqwaitsig")); 2233 } 2234 2235 /* Handle quiescent-state forcing. */ 2236 rcu_gp_fqs_loop(); 2237 2238 /* Handle grace-period end. */ 2239 WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANUP); 2240 rcu_gp_cleanup(); 2241 WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANED); 2242 } 2243 } 2244 2245 /* 2246 * Report a full set of quiescent states to the rcu_state data structure. 2247 * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if 2248 * another grace period is required. Whether we wake the grace-period 2249 * kthread or it awakens itself for the next round of quiescent-state 2250 * forcing, that kthread will clean up after the just-completed grace 2251 * period. Note that the caller must hold rnp->lock, which is released 2252 * before return. 2253 */ 2254 static void rcu_report_qs_rsp(unsigned long flags) 2255 __releases(rcu_get_root()->lock) 2256 { 2257 raw_lockdep_assert_held_rcu_node(rcu_get_root()); 2258 WARN_ON_ONCE(!rcu_gp_in_progress()); 2259 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_FQS); 2260 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags); 2261 rcu_gp_kthread_wake(); 2262 } 2263 2264 /* 2265 * Similar to rcu_report_qs_rdp(), for which it is a helper function. 2266 * Allows quiescent states for a group of CPUs to be reported at one go 2267 * to the specified rcu_node structure, though all the CPUs in the group 2268 * must be represented by the same rcu_node structure (which need not be a 2269 * leaf rcu_node structure, though it often will be). The gps parameter 2270 * is the grace-period snapshot, which means that the quiescent states 2271 * are valid only if rnp->gp_seq is equal to gps. That structure's lock 2272 * must be held upon entry, and it is released before return. 2273 * 2274 * As a special case, if mask is zero, the bit-already-cleared check is 2275 * disabled. This allows propagating quiescent state due to resumed tasks 2276 * during grace-period initialization. 2277 */ 2278 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp, 2279 unsigned long gps, unsigned long flags) 2280 __releases(rnp->lock) 2281 { 2282 unsigned long oldmask = 0; 2283 struct rcu_node *rnp_c; 2284 2285 raw_lockdep_assert_held_rcu_node(rnp); 2286 2287 /* Walk up the rcu_node hierarchy. */ 2288 for (;;) { 2289 if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) { 2290 2291 /* 2292 * Our bit has already been cleared, or the 2293 * relevant grace period is already over, so done. 2294 */ 2295 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2296 return; 2297 } 2298 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */ 2299 WARN_ON_ONCE(!rcu_is_leaf_node(rnp) && 2300 rcu_preempt_blocked_readers_cgp(rnp)); 2301 WRITE_ONCE(rnp->qsmask, rnp->qsmask & ~mask); 2302 trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq, 2303 mask, rnp->qsmask, rnp->level, 2304 rnp->grplo, rnp->grphi, 2305 !!rnp->gp_tasks); 2306 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) { 2307 2308 /* Other bits still set at this level, so done. */ 2309 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2310 return; 2311 } 2312 rnp->completedqs = rnp->gp_seq; 2313 mask = rnp->grpmask; 2314 if (rnp->parent == NULL) { 2315 2316 /* No more levels. Exit loop holding root lock. */ 2317 2318 break; 2319 } 2320 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2321 rnp_c = rnp; 2322 rnp = rnp->parent; 2323 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2324 oldmask = READ_ONCE(rnp_c->qsmask); 2325 } 2326 2327 /* 2328 * Get here if we are the last CPU to pass through a quiescent 2329 * state for this grace period. Invoke rcu_report_qs_rsp() 2330 * to clean up and start the next grace period if one is needed. 2331 */ 2332 rcu_report_qs_rsp(flags); /* releases rnp->lock. */ 2333 } 2334 2335 /* 2336 * Record a quiescent state for all tasks that were previously queued 2337 * on the specified rcu_node structure and that were blocking the current 2338 * RCU grace period. The caller must hold the corresponding rnp->lock with 2339 * irqs disabled, and this lock is released upon return, but irqs remain 2340 * disabled. 2341 */ 2342 static void __maybe_unused 2343 rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags) 2344 __releases(rnp->lock) 2345 { 2346 unsigned long gps; 2347 unsigned long mask; 2348 struct rcu_node *rnp_p; 2349 2350 raw_lockdep_assert_held_rcu_node(rnp); 2351 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT_RCU)) || 2352 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) || 2353 rnp->qsmask != 0) { 2354 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2355 return; /* Still need more quiescent states! */ 2356 } 2357 2358 rnp->completedqs = rnp->gp_seq; 2359 rnp_p = rnp->parent; 2360 if (rnp_p == NULL) { 2361 /* 2362 * Only one rcu_node structure in the tree, so don't 2363 * try to report up to its nonexistent parent! 2364 */ 2365 rcu_report_qs_rsp(flags); 2366 return; 2367 } 2368 2369 /* Report up the rest of the hierarchy, tracking current ->gp_seq. */ 2370 gps = rnp->gp_seq; 2371 mask = rnp->grpmask; 2372 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 2373 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */ 2374 rcu_report_qs_rnp(mask, rnp_p, gps, flags); 2375 } 2376 2377 /* 2378 * Record a quiescent state for the specified CPU to that CPU's rcu_data 2379 * structure. This must be called from the specified CPU. 2380 */ 2381 static void 2382 rcu_report_qs_rdp(struct rcu_data *rdp) 2383 { 2384 unsigned long flags; 2385 unsigned long mask; 2386 bool needacc = false; 2387 struct rcu_node *rnp; 2388 2389 WARN_ON_ONCE(rdp->cpu != smp_processor_id()); 2390 rnp = rdp->mynode; 2391 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2392 if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq || 2393 rdp->gpwrap) { 2394 2395 /* 2396 * The grace period in which this quiescent state was 2397 * recorded has ended, so don't report it upwards. 2398 * We will instead need a new quiescent state that lies 2399 * within the current grace period. 2400 */ 2401 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */ 2402 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2403 return; 2404 } 2405 mask = rdp->grpmask; 2406 rdp->core_needs_qs = false; 2407 if ((rnp->qsmask & mask) == 0) { 2408 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2409 } else { 2410 /* 2411 * This GP can't end until cpu checks in, so all of our 2412 * callbacks can be processed during the next GP. 2413 * 2414 * NOCB kthreads have their own way to deal with that... 2415 */ 2416 if (!rcu_rdp_is_offloaded(rdp)) { 2417 /* 2418 * The current GP has not yet ended, so it 2419 * should not be possible for rcu_accelerate_cbs() 2420 * to return true. So complain, but don't awaken. 2421 */ 2422 WARN_ON_ONCE(rcu_accelerate_cbs(rnp, rdp)); 2423 } else if (!rcu_segcblist_completely_offloaded(&rdp->cblist)) { 2424 /* 2425 * ...but NOCB kthreads may miss or delay callbacks acceleration 2426 * if in the middle of a (de-)offloading process. 2427 */ 2428 needacc = true; 2429 } 2430 2431 rcu_disable_urgency_upon_qs(rdp); 2432 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 2433 /* ^^^ Released rnp->lock */ 2434 2435 if (needacc) { 2436 rcu_nocb_lock_irqsave(rdp, flags); 2437 rcu_accelerate_cbs_unlocked(rnp, rdp); 2438 rcu_nocb_unlock_irqrestore(rdp, flags); 2439 } 2440 } 2441 } 2442 2443 /* 2444 * Check to see if there is a new grace period of which this CPU 2445 * is not yet aware, and if so, set up local rcu_data state for it. 2446 * Otherwise, see if this CPU has just passed through its first 2447 * quiescent state for this grace period, and record that fact if so. 2448 */ 2449 static void 2450 rcu_check_quiescent_state(struct rcu_data *rdp) 2451 { 2452 /* Check for grace-period ends and beginnings. */ 2453 note_gp_changes(rdp); 2454 2455 /* 2456 * Does this CPU still need to do its part for current grace period? 2457 * If no, return and let the other CPUs do their part as well. 2458 */ 2459 if (!rdp->core_needs_qs) 2460 return; 2461 2462 /* 2463 * Was there a quiescent state since the beginning of the grace 2464 * period? If no, then exit and wait for the next call. 2465 */ 2466 if (rdp->cpu_no_qs.b.norm) 2467 return; 2468 2469 /* 2470 * Tell RCU we are done (but rcu_report_qs_rdp() will be the 2471 * judge of that). 2472 */ 2473 rcu_report_qs_rdp(rdp); 2474 } 2475 2476 /* Return true if callback-invocation time limit exceeded. */ 2477 static bool rcu_do_batch_check_time(long count, long tlimit, 2478 bool jlimit_check, unsigned long jlimit) 2479 { 2480 // Invoke local_clock() only once per 32 consecutive callbacks. 2481 return unlikely(tlimit) && 2482 (!likely(count & 31) || 2483 (IS_ENABLED(CONFIG_RCU_DOUBLE_CHECK_CB_TIME) && 2484 jlimit_check && time_after(jiffies, jlimit))) && 2485 local_clock() >= tlimit; 2486 } 2487 2488 /* 2489 * Invoke any RCU callbacks that have made it to the end of their grace 2490 * period. Throttle as specified by rdp->blimit. 2491 */ 2492 static void rcu_do_batch(struct rcu_data *rdp) 2493 { 2494 long bl; 2495 long count = 0; 2496 int div; 2497 bool __maybe_unused empty; 2498 unsigned long flags; 2499 unsigned long jlimit; 2500 bool jlimit_check = false; 2501 long pending; 2502 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl); 2503 struct rcu_head *rhp; 2504 long tlimit = 0; 2505 2506 /* If no callbacks are ready, just return. */ 2507 if (!rcu_segcblist_ready_cbs(&rdp->cblist)) { 2508 trace_rcu_batch_start(rcu_state.name, 2509 rcu_segcblist_n_cbs(&rdp->cblist), 0); 2510 trace_rcu_batch_end(rcu_state.name, 0, 2511 !rcu_segcblist_empty(&rdp->cblist), 2512 need_resched(), is_idle_task(current), 2513 rcu_is_callbacks_kthread(rdp)); 2514 return; 2515 } 2516 2517 /* 2518 * Extract the list of ready callbacks, disabling IRQs to prevent 2519 * races with call_rcu() from interrupt handlers. Leave the 2520 * callback counts, as rcu_barrier() needs to be conservative. 2521 * 2522 * Callbacks execution is fully ordered against preceding grace period 2523 * completion (materialized by rnp->gp_seq update) thanks to the 2524 * smp_mb__after_unlock_lock() upon node locking required for callbacks 2525 * advancing. In NOCB mode this ordering is then further relayed through 2526 * the nocb locking that protects both callbacks advancing and extraction. 2527 */ 2528 rcu_nocb_lock_irqsave(rdp, flags); 2529 WARN_ON_ONCE(cpu_is_offline(smp_processor_id())); 2530 pending = rcu_segcblist_get_seglen(&rdp->cblist, RCU_DONE_TAIL); 2531 div = READ_ONCE(rcu_divisor); 2532 div = div < 0 ? 7 : div > sizeof(long) * 8 - 2 ? sizeof(long) * 8 - 2 : div; 2533 bl = max(rdp->blimit, pending >> div); 2534 if ((in_serving_softirq() || rdp->rcu_cpu_kthread_status == RCU_KTHREAD_RUNNING) && 2535 (IS_ENABLED(CONFIG_RCU_DOUBLE_CHECK_CB_TIME) || unlikely(bl > 100))) { 2536 const long npj = NSEC_PER_SEC / HZ; 2537 long rrn = READ_ONCE(rcu_resched_ns); 2538 2539 rrn = rrn < NSEC_PER_MSEC ? NSEC_PER_MSEC : rrn > NSEC_PER_SEC ? NSEC_PER_SEC : rrn; 2540 tlimit = local_clock() + rrn; 2541 jlimit = jiffies + (rrn + npj + 1) / npj; 2542 jlimit_check = true; 2543 } 2544 trace_rcu_batch_start(rcu_state.name, 2545 rcu_segcblist_n_cbs(&rdp->cblist), bl); 2546 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl); 2547 if (rcu_rdp_is_offloaded(rdp)) 2548 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist); 2549 2550 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbDequeued")); 2551 rcu_nocb_unlock_irqrestore(rdp, flags); 2552 2553 /* Invoke callbacks. */ 2554 tick_dep_set_task(current, TICK_DEP_BIT_RCU); 2555 rhp = rcu_cblist_dequeue(&rcl); 2556 2557 for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) { 2558 rcu_callback_t f; 2559 2560 count++; 2561 debug_rcu_head_unqueue(rhp); 2562 2563 rcu_lock_acquire(&rcu_callback_map); 2564 trace_rcu_invoke_callback(rcu_state.name, rhp); 2565 2566 f = rhp->func; 2567 debug_rcu_head_callback(rhp); 2568 WRITE_ONCE(rhp->func, (rcu_callback_t)0L); 2569 f(rhp); 2570 2571 rcu_lock_release(&rcu_callback_map); 2572 2573 /* 2574 * Stop only if limit reached and CPU has something to do. 2575 */ 2576 if (in_serving_softirq()) { 2577 if (count >= bl && (need_resched() || !is_idle_task(current))) 2578 break; 2579 /* 2580 * Make sure we don't spend too much time here and deprive other 2581 * softirq vectors of CPU cycles. 2582 */ 2583 if (rcu_do_batch_check_time(count, tlimit, jlimit_check, jlimit)) 2584 break; 2585 } else { 2586 // In rcuc/rcuoc context, so no worries about 2587 // depriving other softirq vectors of CPU cycles. 2588 local_bh_enable(); 2589 lockdep_assert_irqs_enabled(); 2590 cond_resched_tasks_rcu_qs(); 2591 lockdep_assert_irqs_enabled(); 2592 local_bh_disable(); 2593 // But rcuc kthreads can delay quiescent-state 2594 // reporting, so check time limits for them. 2595 if (rdp->rcu_cpu_kthread_status == RCU_KTHREAD_RUNNING && 2596 rcu_do_batch_check_time(count, tlimit, jlimit_check, jlimit)) { 2597 rdp->rcu_cpu_has_work = 1; 2598 break; 2599 } 2600 } 2601 } 2602 2603 rcu_nocb_lock_irqsave(rdp, flags); 2604 rdp->n_cbs_invoked += count; 2605 trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(), 2606 is_idle_task(current), rcu_is_callbacks_kthread(rdp)); 2607 2608 /* Update counts and requeue any remaining callbacks. */ 2609 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl); 2610 rcu_segcblist_add_len(&rdp->cblist, -count); 2611 2612 /* Reinstate batch limit if we have worked down the excess. */ 2613 count = rcu_segcblist_n_cbs(&rdp->cblist); 2614 if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark) 2615 rdp->blimit = blimit; 2616 2617 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */ 2618 if (count == 0 && rdp->qlen_last_fqs_check != 0) { 2619 rdp->qlen_last_fqs_check = 0; 2620 rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs); 2621 } else if (count < rdp->qlen_last_fqs_check - qhimark) 2622 rdp->qlen_last_fqs_check = count; 2623 2624 /* 2625 * The following usually indicates a double call_rcu(). To track 2626 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y. 2627 */ 2628 empty = rcu_segcblist_empty(&rdp->cblist); 2629 WARN_ON_ONCE(count == 0 && !empty); 2630 WARN_ON_ONCE(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) && 2631 count != 0 && empty); 2632 WARN_ON_ONCE(count == 0 && rcu_segcblist_n_segment_cbs(&rdp->cblist) != 0); 2633 WARN_ON_ONCE(!empty && rcu_segcblist_n_segment_cbs(&rdp->cblist) == 0); 2634 2635 rcu_nocb_unlock_irqrestore(rdp, flags); 2636 2637 tick_dep_clear_task(current, TICK_DEP_BIT_RCU); 2638 } 2639 2640 /* 2641 * This function is invoked from each scheduling-clock interrupt, 2642 * and checks to see if this CPU is in a non-context-switch quiescent 2643 * state, for example, user mode or idle loop. It also schedules RCU 2644 * core processing. If the current grace period has gone on too long, 2645 * it will ask the scheduler to manufacture a context switch for the sole 2646 * purpose of providing the needed quiescent state. 2647 */ 2648 void rcu_sched_clock_irq(int user) 2649 { 2650 unsigned long j; 2651 2652 if (IS_ENABLED(CONFIG_PROVE_RCU)) { 2653 j = jiffies; 2654 WARN_ON_ONCE(time_before(j, __this_cpu_read(rcu_data.last_sched_clock))); 2655 __this_cpu_write(rcu_data.last_sched_clock, j); 2656 } 2657 trace_rcu_utilization(TPS("Start scheduler-tick")); 2658 lockdep_assert_irqs_disabled(); 2659 raw_cpu_inc(rcu_data.ticks_this_gp); 2660 /* The load-acquire pairs with the store-release setting to true. */ 2661 if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) { 2662 /* Idle and userspace execution already are quiescent states. */ 2663 if (!rcu_is_cpu_rrupt_from_idle() && !user) { 2664 set_tsk_need_resched(current); 2665 set_preempt_need_resched(); 2666 } 2667 __this_cpu_write(rcu_data.rcu_urgent_qs, false); 2668 } 2669 rcu_flavor_sched_clock_irq(user); 2670 if (rcu_pending(user)) 2671 invoke_rcu_core(); 2672 if (user || rcu_is_cpu_rrupt_from_idle()) 2673 rcu_note_voluntary_context_switch(current); 2674 lockdep_assert_irqs_disabled(); 2675 2676 trace_rcu_utilization(TPS("End scheduler-tick")); 2677 } 2678 2679 /* 2680 * Scan the leaf rcu_node structures. For each structure on which all 2681 * CPUs have reported a quiescent state and on which there are tasks 2682 * blocking the current grace period, initiate RCU priority boosting. 2683 * Otherwise, invoke the specified function to check dyntick state for 2684 * each CPU that has not yet reported a quiescent state. 2685 */ 2686 static void force_qs_rnp(int (*f)(struct rcu_data *rdp)) 2687 { 2688 int cpu; 2689 unsigned long flags; 2690 struct rcu_node *rnp; 2691 2692 rcu_state.cbovld = rcu_state.cbovldnext; 2693 rcu_state.cbovldnext = false; 2694 rcu_for_each_leaf_node(rnp) { 2695 unsigned long mask = 0; 2696 unsigned long rsmask = 0; 2697 2698 cond_resched_tasks_rcu_qs(); 2699 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2700 rcu_state.cbovldnext |= !!rnp->cbovldmask; 2701 if (rnp->qsmask == 0) { 2702 if (rcu_preempt_blocked_readers_cgp(rnp)) { 2703 /* 2704 * No point in scanning bits because they 2705 * are all zero. But we might need to 2706 * priority-boost blocked readers. 2707 */ 2708 rcu_initiate_boost(rnp, flags); 2709 /* rcu_initiate_boost() releases rnp->lock */ 2710 continue; 2711 } 2712 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2713 continue; 2714 } 2715 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->qsmask) { 2716 struct rcu_data *rdp; 2717 int ret; 2718 2719 rdp = per_cpu_ptr(&rcu_data, cpu); 2720 ret = f(rdp); 2721 if (ret > 0) { 2722 mask |= rdp->grpmask; 2723 rcu_disable_urgency_upon_qs(rdp); 2724 } 2725 if (ret < 0) 2726 rsmask |= rdp->grpmask; 2727 } 2728 if (mask != 0) { 2729 /* Idle/offline CPUs, report (releases rnp->lock). */ 2730 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 2731 } else { 2732 /* Nothing to do here, so just drop the lock. */ 2733 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2734 } 2735 2736 for_each_leaf_node_cpu_mask(rnp, cpu, rsmask) 2737 resched_cpu(cpu); 2738 } 2739 } 2740 2741 /* 2742 * Force quiescent states on reluctant CPUs, and also detect which 2743 * CPUs are in dyntick-idle mode. 2744 */ 2745 void rcu_force_quiescent_state(void) 2746 { 2747 unsigned long flags; 2748 bool ret; 2749 struct rcu_node *rnp; 2750 struct rcu_node *rnp_old = NULL; 2751 2752 if (!rcu_gp_in_progress()) 2753 return; 2754 /* Funnel through hierarchy to reduce memory contention. */ 2755 rnp = raw_cpu_read(rcu_data.mynode); 2756 for (; rnp != NULL; rnp = rnp->parent) { 2757 ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) || 2758 !raw_spin_trylock(&rnp->fqslock); 2759 if (rnp_old != NULL) 2760 raw_spin_unlock(&rnp_old->fqslock); 2761 if (ret) 2762 return; 2763 rnp_old = rnp; 2764 } 2765 /* rnp_old == rcu_get_root(), rnp == NULL. */ 2766 2767 /* Reached the root of the rcu_node tree, acquire lock. */ 2768 raw_spin_lock_irqsave_rcu_node(rnp_old, flags); 2769 raw_spin_unlock(&rnp_old->fqslock); 2770 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) { 2771 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); 2772 return; /* Someone beat us to it. */ 2773 } 2774 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_FQS); 2775 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); 2776 rcu_gp_kthread_wake(); 2777 } 2778 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state); 2779 2780 // Workqueue handler for an RCU reader for kernels enforcing struct RCU 2781 // grace periods. 2782 static void strict_work_handler(struct work_struct *work) 2783 { 2784 rcu_read_lock(); 2785 rcu_read_unlock(); 2786 } 2787 2788 /* Perform RCU core processing work for the current CPU. */ 2789 static __latent_entropy void rcu_core(void) 2790 { 2791 unsigned long flags; 2792 struct rcu_data *rdp = raw_cpu_ptr(&rcu_data); 2793 struct rcu_node *rnp = rdp->mynode; 2794 /* 2795 * On RT rcu_core() can be preempted when IRQs aren't disabled. 2796 * Therefore this function can race with concurrent NOCB (de-)offloading 2797 * on this CPU and the below condition must be considered volatile. 2798 * However if we race with: 2799 * 2800 * _ Offloading: In the worst case we accelerate or process callbacks 2801 * concurrently with NOCB kthreads. We are guaranteed to 2802 * call rcu_nocb_lock() if that happens. 2803 * 2804 * _ Deoffloading: In the worst case we miss callbacks acceleration or 2805 * processing. This is fine because the early stage 2806 * of deoffloading invokes rcu_core() after setting 2807 * SEGCBLIST_RCU_CORE. So we guarantee that we'll process 2808 * what could have been dismissed without the need to wait 2809 * for the next rcu_pending() check in the next jiffy. 2810 */ 2811 const bool do_batch = !rcu_segcblist_completely_offloaded(&rdp->cblist); 2812 2813 if (cpu_is_offline(smp_processor_id())) 2814 return; 2815 trace_rcu_utilization(TPS("Start RCU core")); 2816 WARN_ON_ONCE(!rdp->beenonline); 2817 2818 /* Report any deferred quiescent states if preemption enabled. */ 2819 if (IS_ENABLED(CONFIG_PREEMPT_COUNT) && (!(preempt_count() & PREEMPT_MASK))) { 2820 rcu_preempt_deferred_qs(current); 2821 } else if (rcu_preempt_need_deferred_qs(current)) { 2822 set_tsk_need_resched(current); 2823 set_preempt_need_resched(); 2824 } 2825 2826 /* Update RCU state based on any recent quiescent states. */ 2827 rcu_check_quiescent_state(rdp); 2828 2829 /* No grace period and unregistered callbacks? */ 2830 if (!rcu_gp_in_progress() && 2831 rcu_segcblist_is_enabled(&rdp->cblist) && do_batch) { 2832 rcu_nocb_lock_irqsave(rdp, flags); 2833 if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL)) 2834 rcu_accelerate_cbs_unlocked(rnp, rdp); 2835 rcu_nocb_unlock_irqrestore(rdp, flags); 2836 } 2837 2838 rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check()); 2839 2840 /* If there are callbacks ready, invoke them. */ 2841 if (do_batch && rcu_segcblist_ready_cbs(&rdp->cblist) && 2842 likely(READ_ONCE(rcu_scheduler_fully_active))) { 2843 rcu_do_batch(rdp); 2844 /* Re-invoke RCU core processing if there are callbacks remaining. */ 2845 if (rcu_segcblist_ready_cbs(&rdp->cblist)) 2846 invoke_rcu_core(); 2847 } 2848 2849 /* Do any needed deferred wakeups of rcuo kthreads. */ 2850 do_nocb_deferred_wakeup(rdp); 2851 trace_rcu_utilization(TPS("End RCU core")); 2852 2853 // If strict GPs, schedule an RCU reader in a clean environment. 2854 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) 2855 queue_work_on(rdp->cpu, rcu_gp_wq, &rdp->strict_work); 2856 } 2857 2858 static void rcu_core_si(struct softirq_action *h) 2859 { 2860 rcu_core(); 2861 } 2862 2863 static void rcu_wake_cond(struct task_struct *t, int status) 2864 { 2865 /* 2866 * If the thread is yielding, only wake it when this 2867 * is invoked from idle 2868 */ 2869 if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current))) 2870 wake_up_process(t); 2871 } 2872 2873 static void invoke_rcu_core_kthread(void) 2874 { 2875 struct task_struct *t; 2876 unsigned long flags; 2877 2878 local_irq_save(flags); 2879 __this_cpu_write(rcu_data.rcu_cpu_has_work, 1); 2880 t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task); 2881 if (t != NULL && t != current) 2882 rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status)); 2883 local_irq_restore(flags); 2884 } 2885 2886 /* 2887 * Wake up this CPU's rcuc kthread to do RCU core processing. 2888 */ 2889 static void invoke_rcu_core(void) 2890 { 2891 if (!cpu_online(smp_processor_id())) 2892 return; 2893 if (use_softirq) 2894 raise_softirq(RCU_SOFTIRQ); 2895 else 2896 invoke_rcu_core_kthread(); 2897 } 2898 2899 static void rcu_cpu_kthread_park(unsigned int cpu) 2900 { 2901 per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU; 2902 } 2903 2904 static int rcu_cpu_kthread_should_run(unsigned int cpu) 2905 { 2906 return __this_cpu_read(rcu_data.rcu_cpu_has_work); 2907 } 2908 2909 /* 2910 * Per-CPU kernel thread that invokes RCU callbacks. This replaces 2911 * the RCU softirq used in configurations of RCU that do not support RCU 2912 * priority boosting. 2913 */ 2914 static void rcu_cpu_kthread(unsigned int cpu) 2915 { 2916 unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status); 2917 char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work); 2918 unsigned long *j = this_cpu_ptr(&rcu_data.rcuc_activity); 2919 int spincnt; 2920 2921 trace_rcu_utilization(TPS("Start CPU kthread@rcu_run")); 2922 for (spincnt = 0; spincnt < 10; spincnt++) { 2923 WRITE_ONCE(*j, jiffies); 2924 local_bh_disable(); 2925 *statusp = RCU_KTHREAD_RUNNING; 2926 local_irq_disable(); 2927 work = *workp; 2928 WRITE_ONCE(*workp, 0); 2929 local_irq_enable(); 2930 if (work) 2931 rcu_core(); 2932 local_bh_enable(); 2933 if (!READ_ONCE(*workp)) { 2934 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait")); 2935 *statusp = RCU_KTHREAD_WAITING; 2936 return; 2937 } 2938 } 2939 *statusp = RCU_KTHREAD_YIELDING; 2940 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield")); 2941 schedule_timeout_idle(2); 2942 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield")); 2943 *statusp = RCU_KTHREAD_WAITING; 2944 WRITE_ONCE(*j, jiffies); 2945 } 2946 2947 static struct smp_hotplug_thread rcu_cpu_thread_spec = { 2948 .store = &rcu_data.rcu_cpu_kthread_task, 2949 .thread_should_run = rcu_cpu_kthread_should_run, 2950 .thread_fn = rcu_cpu_kthread, 2951 .thread_comm = "rcuc/%u", 2952 .setup = rcu_cpu_kthread_setup, 2953 .park = rcu_cpu_kthread_park, 2954 }; 2955 2956 /* 2957 * Spawn per-CPU RCU core processing kthreads. 2958 */ 2959 static int __init rcu_spawn_core_kthreads(void) 2960 { 2961 int cpu; 2962 2963 for_each_possible_cpu(cpu) 2964 per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0; 2965 if (use_softirq) 2966 return 0; 2967 WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec), 2968 "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__); 2969 return 0; 2970 } 2971 2972 static void rcutree_enqueue(struct rcu_data *rdp, struct rcu_head *head, rcu_callback_t func) 2973 { 2974 rcu_segcblist_enqueue(&rdp->cblist, head); 2975 if (__is_kvfree_rcu_offset((unsigned long)func)) 2976 trace_rcu_kvfree_callback(rcu_state.name, head, 2977 (unsigned long)func, 2978 rcu_segcblist_n_cbs(&rdp->cblist)); 2979 else 2980 trace_rcu_callback(rcu_state.name, head, 2981 rcu_segcblist_n_cbs(&rdp->cblist)); 2982 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCBQueued")); 2983 } 2984 2985 /* 2986 * Handle any core-RCU processing required by a call_rcu() invocation. 2987 */ 2988 static void call_rcu_core(struct rcu_data *rdp, struct rcu_head *head, 2989 rcu_callback_t func, unsigned long flags) 2990 { 2991 rcutree_enqueue(rdp, head, func); 2992 /* 2993 * If called from an extended quiescent state, invoke the RCU 2994 * core in order to force a re-evaluation of RCU's idleness. 2995 */ 2996 if (!rcu_is_watching()) 2997 invoke_rcu_core(); 2998 2999 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */ 3000 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id())) 3001 return; 3002 3003 /* 3004 * Force the grace period if too many callbacks or too long waiting. 3005 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state() 3006 * if some other CPU has recently done so. Also, don't bother 3007 * invoking rcu_force_quiescent_state() if the newly enqueued callback 3008 * is the only one waiting for a grace period to complete. 3009 */ 3010 if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) > 3011 rdp->qlen_last_fqs_check + qhimark)) { 3012 3013 /* Are we ignoring a completed grace period? */ 3014 note_gp_changes(rdp); 3015 3016 /* Start a new grace period if one not already started. */ 3017 if (!rcu_gp_in_progress()) { 3018 rcu_accelerate_cbs_unlocked(rdp->mynode, rdp); 3019 } else { 3020 /* Give the grace period a kick. */ 3021 rdp->blimit = DEFAULT_MAX_RCU_BLIMIT; 3022 if (READ_ONCE(rcu_state.n_force_qs) == rdp->n_force_qs_snap && 3023 rcu_segcblist_first_pend_cb(&rdp->cblist) != head) 3024 rcu_force_quiescent_state(); 3025 rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs); 3026 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist); 3027 } 3028 } 3029 } 3030 3031 /* 3032 * RCU callback function to leak a callback. 3033 */ 3034 static void rcu_leak_callback(struct rcu_head *rhp) 3035 { 3036 } 3037 3038 /* 3039 * Check and if necessary update the leaf rcu_node structure's 3040 * ->cbovldmask bit corresponding to the current CPU based on that CPU's 3041 * number of queued RCU callbacks. The caller must hold the leaf rcu_node 3042 * structure's ->lock. 3043 */ 3044 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp) 3045 { 3046 raw_lockdep_assert_held_rcu_node(rnp); 3047 if (qovld_calc <= 0) 3048 return; // Early boot and wildcard value set. 3049 if (rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) 3050 WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask | rdp->grpmask); 3051 else 3052 WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask & ~rdp->grpmask); 3053 } 3054 3055 /* 3056 * Check and if necessary update the leaf rcu_node structure's 3057 * ->cbovldmask bit corresponding to the current CPU based on that CPU's 3058 * number of queued RCU callbacks. No locks need be held, but the 3059 * caller must have disabled interrupts. 3060 * 3061 * Note that this function ignores the possibility that there are a lot 3062 * of callbacks all of which have already seen the end of their respective 3063 * grace periods. This omission is due to the need for no-CBs CPUs to 3064 * be holding ->nocb_lock to do this check, which is too heavy for a 3065 * common-case operation. 3066 */ 3067 static void check_cb_ovld(struct rcu_data *rdp) 3068 { 3069 struct rcu_node *const rnp = rdp->mynode; 3070 3071 if (qovld_calc <= 0 || 3072 ((rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) == 3073 !!(READ_ONCE(rnp->cbovldmask) & rdp->grpmask))) 3074 return; // Early boot wildcard value or already set correctly. 3075 raw_spin_lock_rcu_node(rnp); 3076 check_cb_ovld_locked(rdp, rnp); 3077 raw_spin_unlock_rcu_node(rnp); 3078 } 3079 3080 static void 3081 __call_rcu_common(struct rcu_head *head, rcu_callback_t func, bool lazy_in) 3082 { 3083 static atomic_t doublefrees; 3084 unsigned long flags; 3085 bool lazy; 3086 struct rcu_data *rdp; 3087 3088 /* Misaligned rcu_head! */ 3089 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1)); 3090 3091 if (debug_rcu_head_queue(head)) { 3092 /* 3093 * Probable double call_rcu(), so leak the callback. 3094 * Use rcu:rcu_callback trace event to find the previous 3095 * time callback was passed to call_rcu(). 3096 */ 3097 if (atomic_inc_return(&doublefrees) < 4) { 3098 pr_err("%s(): Double-freed CB %p->%pS()!!! ", __func__, head, head->func); 3099 mem_dump_obj(head); 3100 } 3101 WRITE_ONCE(head->func, rcu_leak_callback); 3102 return; 3103 } 3104 head->func = func; 3105 head->next = NULL; 3106 kasan_record_aux_stack_noalloc(head); 3107 local_irq_save(flags); 3108 rdp = this_cpu_ptr(&rcu_data); 3109 lazy = lazy_in && !rcu_async_should_hurry(); 3110 3111 /* Add the callback to our list. */ 3112 if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist))) { 3113 // This can trigger due to call_rcu() from offline CPU: 3114 WARN_ON_ONCE(rcu_scheduler_active != RCU_SCHEDULER_INACTIVE); 3115 WARN_ON_ONCE(!rcu_is_watching()); 3116 // Very early boot, before rcu_init(). Initialize if needed 3117 // and then drop through to queue the callback. 3118 if (rcu_segcblist_empty(&rdp->cblist)) 3119 rcu_segcblist_init(&rdp->cblist); 3120 } 3121 3122 check_cb_ovld(rdp); 3123 3124 if (unlikely(rcu_rdp_is_offloaded(rdp))) 3125 call_rcu_nocb(rdp, head, func, flags, lazy); 3126 else 3127 call_rcu_core(rdp, head, func, flags); 3128 local_irq_restore(flags); 3129 } 3130 3131 #ifdef CONFIG_RCU_LAZY 3132 static bool enable_rcu_lazy __read_mostly = !IS_ENABLED(CONFIG_RCU_LAZY_DEFAULT_OFF); 3133 module_param(enable_rcu_lazy, bool, 0444); 3134 3135 /** 3136 * call_rcu_hurry() - Queue RCU callback for invocation after grace period, and 3137 * flush all lazy callbacks (including the new one) to the main ->cblist while 3138 * doing so. 3139 * 3140 * @head: structure to be used for queueing the RCU updates. 3141 * @func: actual callback function to be invoked after the grace period 3142 * 3143 * The callback function will be invoked some time after a full grace 3144 * period elapses, in other words after all pre-existing RCU read-side 3145 * critical sections have completed. 3146 * 3147 * Use this API instead of call_rcu() if you don't want the callback to be 3148 * invoked after very long periods of time, which can happen on systems without 3149 * memory pressure and on systems which are lightly loaded or mostly idle. 3150 * This function will cause callbacks to be invoked sooner than later at the 3151 * expense of extra power. Other than that, this function is identical to, and 3152 * reuses call_rcu()'s logic. Refer to call_rcu() for more details about memory 3153 * ordering and other functionality. 3154 */ 3155 void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func) 3156 { 3157 __call_rcu_common(head, func, false); 3158 } 3159 EXPORT_SYMBOL_GPL(call_rcu_hurry); 3160 #else 3161 #define enable_rcu_lazy false 3162 #endif 3163 3164 /** 3165 * call_rcu() - Queue an RCU callback for invocation after a grace period. 3166 * By default the callbacks are 'lazy' and are kept hidden from the main 3167 * ->cblist to prevent starting of grace periods too soon. 3168 * If you desire grace periods to start very soon, use call_rcu_hurry(). 3169 * 3170 * @head: structure to be used for queueing the RCU updates. 3171 * @func: actual callback function to be invoked after the grace period 3172 * 3173 * The callback function will be invoked some time after a full grace 3174 * period elapses, in other words after all pre-existing RCU read-side 3175 * critical sections have completed. However, the callback function 3176 * might well execute concurrently with RCU read-side critical sections 3177 * that started after call_rcu() was invoked. 3178 * 3179 * RCU read-side critical sections are delimited by rcu_read_lock() 3180 * and rcu_read_unlock(), and may be nested. In addition, but only in 3181 * v5.0 and later, regions of code across which interrupts, preemption, 3182 * or softirqs have been disabled also serve as RCU read-side critical 3183 * sections. This includes hardware interrupt handlers, softirq handlers, 3184 * and NMI handlers. 3185 * 3186 * Note that all CPUs must agree that the grace period extended beyond 3187 * all pre-existing RCU read-side critical section. On systems with more 3188 * than one CPU, this means that when "func()" is invoked, each CPU is 3189 * guaranteed to have executed a full memory barrier since the end of its 3190 * last RCU read-side critical section whose beginning preceded the call 3191 * to call_rcu(). It also means that each CPU executing an RCU read-side 3192 * critical section that continues beyond the start of "func()" must have 3193 * executed a memory barrier after the call_rcu() but before the beginning 3194 * of that RCU read-side critical section. Note that these guarantees 3195 * include CPUs that are offline, idle, or executing in user mode, as 3196 * well as CPUs that are executing in the kernel. 3197 * 3198 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the 3199 * resulting RCU callback function "func()", then both CPU A and CPU B are 3200 * guaranteed to execute a full memory barrier during the time interval 3201 * between the call to call_rcu() and the invocation of "func()" -- even 3202 * if CPU A and CPU B are the same CPU (but again only if the system has 3203 * more than one CPU). 3204 * 3205 * Implementation of these memory-ordering guarantees is described here: 3206 * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst. 3207 */ 3208 void call_rcu(struct rcu_head *head, rcu_callback_t func) 3209 { 3210 __call_rcu_common(head, func, enable_rcu_lazy); 3211 } 3212 EXPORT_SYMBOL_GPL(call_rcu); 3213 3214 /* Maximum number of jiffies to wait before draining a batch. */ 3215 #define KFREE_DRAIN_JIFFIES (5 * HZ) 3216 #define KFREE_N_BATCHES 2 3217 #define FREE_N_CHANNELS 2 3218 3219 /** 3220 * struct kvfree_rcu_bulk_data - single block to store kvfree_rcu() pointers 3221 * @list: List node. All blocks are linked between each other 3222 * @gp_snap: Snapshot of RCU state for objects placed to this bulk 3223 * @nr_records: Number of active pointers in the array 3224 * @records: Array of the kvfree_rcu() pointers 3225 */ 3226 struct kvfree_rcu_bulk_data { 3227 struct list_head list; 3228 struct rcu_gp_oldstate gp_snap; 3229 unsigned long nr_records; 3230 void *records[]; 3231 }; 3232 3233 /* 3234 * This macro defines how many entries the "records" array 3235 * will contain. It is based on the fact that the size of 3236 * kvfree_rcu_bulk_data structure becomes exactly one page. 3237 */ 3238 #define KVFREE_BULK_MAX_ENTR \ 3239 ((PAGE_SIZE - sizeof(struct kvfree_rcu_bulk_data)) / sizeof(void *)) 3240 3241 /** 3242 * struct kfree_rcu_cpu_work - single batch of kfree_rcu() requests 3243 * @rcu_work: Let queue_rcu_work() invoke workqueue handler after grace period 3244 * @head_free: List of kfree_rcu() objects waiting for a grace period 3245 * @head_free_gp_snap: Grace-period snapshot to check for attempted premature frees. 3246 * @bulk_head_free: Bulk-List of kvfree_rcu() objects waiting for a grace period 3247 * @krcp: Pointer to @kfree_rcu_cpu structure 3248 */ 3249 3250 struct kfree_rcu_cpu_work { 3251 struct rcu_work rcu_work; 3252 struct rcu_head *head_free; 3253 struct rcu_gp_oldstate head_free_gp_snap; 3254 struct list_head bulk_head_free[FREE_N_CHANNELS]; 3255 struct kfree_rcu_cpu *krcp; 3256 }; 3257 3258 /** 3259 * struct kfree_rcu_cpu - batch up kfree_rcu() requests for RCU grace period 3260 * @head: List of kfree_rcu() objects not yet waiting for a grace period 3261 * @head_gp_snap: Snapshot of RCU state for objects placed to "@head" 3262 * @bulk_head: Bulk-List of kvfree_rcu() objects not yet waiting for a grace period 3263 * @krw_arr: Array of batches of kfree_rcu() objects waiting for a grace period 3264 * @lock: Synchronize access to this structure 3265 * @monitor_work: Promote @head to @head_free after KFREE_DRAIN_JIFFIES 3266 * @initialized: The @rcu_work fields have been initialized 3267 * @head_count: Number of objects in rcu_head singular list 3268 * @bulk_count: Number of objects in bulk-list 3269 * @bkvcache: 3270 * A simple cache list that contains objects for reuse purpose. 3271 * In order to save some per-cpu space the list is singular. 3272 * Even though it is lockless an access has to be protected by the 3273 * per-cpu lock. 3274 * @page_cache_work: A work to refill the cache when it is empty 3275 * @backoff_page_cache_fill: Delay cache refills 3276 * @work_in_progress: Indicates that page_cache_work is running 3277 * @hrtimer: A hrtimer for scheduling a page_cache_work 3278 * @nr_bkv_objs: number of allocated objects at @bkvcache. 3279 * 3280 * This is a per-CPU structure. The reason that it is not included in 3281 * the rcu_data structure is to permit this code to be extracted from 3282 * the RCU files. Such extraction could allow further optimization of 3283 * the interactions with the slab allocators. 3284 */ 3285 struct kfree_rcu_cpu { 3286 // Objects queued on a linked list 3287 // through their rcu_head structures. 3288 struct rcu_head *head; 3289 unsigned long head_gp_snap; 3290 atomic_t head_count; 3291 3292 // Objects queued on a bulk-list. 3293 struct list_head bulk_head[FREE_N_CHANNELS]; 3294 atomic_t bulk_count[FREE_N_CHANNELS]; 3295 3296 struct kfree_rcu_cpu_work krw_arr[KFREE_N_BATCHES]; 3297 raw_spinlock_t lock; 3298 struct delayed_work monitor_work; 3299 bool initialized; 3300 3301 struct delayed_work page_cache_work; 3302 atomic_t backoff_page_cache_fill; 3303 atomic_t work_in_progress; 3304 struct hrtimer hrtimer; 3305 3306 struct llist_head bkvcache; 3307 int nr_bkv_objs; 3308 }; 3309 3310 static DEFINE_PER_CPU(struct kfree_rcu_cpu, krc) = { 3311 .lock = __RAW_SPIN_LOCK_UNLOCKED(krc.lock), 3312 }; 3313 3314 static __always_inline void 3315 debug_rcu_bhead_unqueue(struct kvfree_rcu_bulk_data *bhead) 3316 { 3317 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD 3318 int i; 3319 3320 for (i = 0; i < bhead->nr_records; i++) 3321 debug_rcu_head_unqueue((struct rcu_head *)(bhead->records[i])); 3322 #endif 3323 } 3324 3325 static inline struct kfree_rcu_cpu * 3326 krc_this_cpu_lock(unsigned long *flags) 3327 { 3328 struct kfree_rcu_cpu *krcp; 3329 3330 local_irq_save(*flags); // For safely calling this_cpu_ptr(). 3331 krcp = this_cpu_ptr(&krc); 3332 raw_spin_lock(&krcp->lock); 3333 3334 return krcp; 3335 } 3336 3337 static inline void 3338 krc_this_cpu_unlock(struct kfree_rcu_cpu *krcp, unsigned long flags) 3339 { 3340 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3341 } 3342 3343 static inline struct kvfree_rcu_bulk_data * 3344 get_cached_bnode(struct kfree_rcu_cpu *krcp) 3345 { 3346 if (!krcp->nr_bkv_objs) 3347 return NULL; 3348 3349 WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs - 1); 3350 return (struct kvfree_rcu_bulk_data *) 3351 llist_del_first(&krcp->bkvcache); 3352 } 3353 3354 static inline bool 3355 put_cached_bnode(struct kfree_rcu_cpu *krcp, 3356 struct kvfree_rcu_bulk_data *bnode) 3357 { 3358 // Check the limit. 3359 if (krcp->nr_bkv_objs >= rcu_min_cached_objs) 3360 return false; 3361 3362 llist_add((struct llist_node *) bnode, &krcp->bkvcache); 3363 WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs + 1); 3364 return true; 3365 } 3366 3367 static int 3368 drain_page_cache(struct kfree_rcu_cpu *krcp) 3369 { 3370 unsigned long flags; 3371 struct llist_node *page_list, *pos, *n; 3372 int freed = 0; 3373 3374 if (!rcu_min_cached_objs) 3375 return 0; 3376 3377 raw_spin_lock_irqsave(&krcp->lock, flags); 3378 page_list = llist_del_all(&krcp->bkvcache); 3379 WRITE_ONCE(krcp->nr_bkv_objs, 0); 3380 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3381 3382 llist_for_each_safe(pos, n, page_list) { 3383 free_page((unsigned long)pos); 3384 freed++; 3385 } 3386 3387 return freed; 3388 } 3389 3390 static void 3391 kvfree_rcu_bulk(struct kfree_rcu_cpu *krcp, 3392 struct kvfree_rcu_bulk_data *bnode, int idx) 3393 { 3394 unsigned long flags; 3395 int i; 3396 3397 if (!WARN_ON_ONCE(!poll_state_synchronize_rcu_full(&bnode->gp_snap))) { 3398 debug_rcu_bhead_unqueue(bnode); 3399 rcu_lock_acquire(&rcu_callback_map); 3400 if (idx == 0) { // kmalloc() / kfree(). 3401 trace_rcu_invoke_kfree_bulk_callback( 3402 rcu_state.name, bnode->nr_records, 3403 bnode->records); 3404 3405 kfree_bulk(bnode->nr_records, bnode->records); 3406 } else { // vmalloc() / vfree(). 3407 for (i = 0; i < bnode->nr_records; i++) { 3408 trace_rcu_invoke_kvfree_callback( 3409 rcu_state.name, bnode->records[i], 0); 3410 3411 vfree(bnode->records[i]); 3412 } 3413 } 3414 rcu_lock_release(&rcu_callback_map); 3415 } 3416 3417 raw_spin_lock_irqsave(&krcp->lock, flags); 3418 if (put_cached_bnode(krcp, bnode)) 3419 bnode = NULL; 3420 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3421 3422 if (bnode) 3423 free_page((unsigned long) bnode); 3424 3425 cond_resched_tasks_rcu_qs(); 3426 } 3427 3428 static void 3429 kvfree_rcu_list(struct rcu_head *head) 3430 { 3431 struct rcu_head *next; 3432 3433 for (; head; head = next) { 3434 void *ptr = (void *) head->func; 3435 unsigned long offset = (void *) head - ptr; 3436 3437 next = head->next; 3438 debug_rcu_head_unqueue((struct rcu_head *)ptr); 3439 rcu_lock_acquire(&rcu_callback_map); 3440 trace_rcu_invoke_kvfree_callback(rcu_state.name, head, offset); 3441 3442 if (!WARN_ON_ONCE(!__is_kvfree_rcu_offset(offset))) 3443 kvfree(ptr); 3444 3445 rcu_lock_release(&rcu_callback_map); 3446 cond_resched_tasks_rcu_qs(); 3447 } 3448 } 3449 3450 /* 3451 * This function is invoked in workqueue context after a grace period. 3452 * It frees all the objects queued on ->bulk_head_free or ->head_free. 3453 */ 3454 static void kfree_rcu_work(struct work_struct *work) 3455 { 3456 unsigned long flags; 3457 struct kvfree_rcu_bulk_data *bnode, *n; 3458 struct list_head bulk_head[FREE_N_CHANNELS]; 3459 struct rcu_head *head; 3460 struct kfree_rcu_cpu *krcp; 3461 struct kfree_rcu_cpu_work *krwp; 3462 struct rcu_gp_oldstate head_gp_snap; 3463 int i; 3464 3465 krwp = container_of(to_rcu_work(work), 3466 struct kfree_rcu_cpu_work, rcu_work); 3467 krcp = krwp->krcp; 3468 3469 raw_spin_lock_irqsave(&krcp->lock, flags); 3470 // Channels 1 and 2. 3471 for (i = 0; i < FREE_N_CHANNELS; i++) 3472 list_replace_init(&krwp->bulk_head_free[i], &bulk_head[i]); 3473 3474 // Channel 3. 3475 head = krwp->head_free; 3476 krwp->head_free = NULL; 3477 head_gp_snap = krwp->head_free_gp_snap; 3478 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3479 3480 // Handle the first two channels. 3481 for (i = 0; i < FREE_N_CHANNELS; i++) { 3482 // Start from the tail page, so a GP is likely passed for it. 3483 list_for_each_entry_safe(bnode, n, &bulk_head[i], list) 3484 kvfree_rcu_bulk(krcp, bnode, i); 3485 } 3486 3487 /* 3488 * This is used when the "bulk" path can not be used for the 3489 * double-argument of kvfree_rcu(). This happens when the 3490 * page-cache is empty, which means that objects are instead 3491 * queued on a linked list through their rcu_head structures. 3492 * This list is named "Channel 3". 3493 */ 3494 if (head && !WARN_ON_ONCE(!poll_state_synchronize_rcu_full(&head_gp_snap))) 3495 kvfree_rcu_list(head); 3496 } 3497 3498 static bool 3499 need_offload_krc(struct kfree_rcu_cpu *krcp) 3500 { 3501 int i; 3502 3503 for (i = 0; i < FREE_N_CHANNELS; i++) 3504 if (!list_empty(&krcp->bulk_head[i])) 3505 return true; 3506 3507 return !!READ_ONCE(krcp->head); 3508 } 3509 3510 static bool 3511 need_wait_for_krwp_work(struct kfree_rcu_cpu_work *krwp) 3512 { 3513 int i; 3514 3515 for (i = 0; i < FREE_N_CHANNELS; i++) 3516 if (!list_empty(&krwp->bulk_head_free[i])) 3517 return true; 3518 3519 return !!krwp->head_free; 3520 } 3521 3522 static int krc_count(struct kfree_rcu_cpu *krcp) 3523 { 3524 int sum = atomic_read(&krcp->head_count); 3525 int i; 3526 3527 for (i = 0; i < FREE_N_CHANNELS; i++) 3528 sum += atomic_read(&krcp->bulk_count[i]); 3529 3530 return sum; 3531 } 3532 3533 static void 3534 schedule_delayed_monitor_work(struct kfree_rcu_cpu *krcp) 3535 { 3536 long delay, delay_left; 3537 3538 delay = krc_count(krcp) >= KVFREE_BULK_MAX_ENTR ? 1:KFREE_DRAIN_JIFFIES; 3539 if (delayed_work_pending(&krcp->monitor_work)) { 3540 delay_left = krcp->monitor_work.timer.expires - jiffies; 3541 if (delay < delay_left) 3542 mod_delayed_work(system_wq, &krcp->monitor_work, delay); 3543 return; 3544 } 3545 queue_delayed_work(system_wq, &krcp->monitor_work, delay); 3546 } 3547 3548 static void 3549 kvfree_rcu_drain_ready(struct kfree_rcu_cpu *krcp) 3550 { 3551 struct list_head bulk_ready[FREE_N_CHANNELS]; 3552 struct kvfree_rcu_bulk_data *bnode, *n; 3553 struct rcu_head *head_ready = NULL; 3554 unsigned long flags; 3555 int i; 3556 3557 raw_spin_lock_irqsave(&krcp->lock, flags); 3558 for (i = 0; i < FREE_N_CHANNELS; i++) { 3559 INIT_LIST_HEAD(&bulk_ready[i]); 3560 3561 list_for_each_entry_safe_reverse(bnode, n, &krcp->bulk_head[i], list) { 3562 if (!poll_state_synchronize_rcu_full(&bnode->gp_snap)) 3563 break; 3564 3565 atomic_sub(bnode->nr_records, &krcp->bulk_count[i]); 3566 list_move(&bnode->list, &bulk_ready[i]); 3567 } 3568 } 3569 3570 if (krcp->head && poll_state_synchronize_rcu(krcp->head_gp_snap)) { 3571 head_ready = krcp->head; 3572 atomic_set(&krcp->head_count, 0); 3573 WRITE_ONCE(krcp->head, NULL); 3574 } 3575 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3576 3577 for (i = 0; i < FREE_N_CHANNELS; i++) { 3578 list_for_each_entry_safe(bnode, n, &bulk_ready[i], list) 3579 kvfree_rcu_bulk(krcp, bnode, i); 3580 } 3581 3582 if (head_ready) 3583 kvfree_rcu_list(head_ready); 3584 } 3585 3586 /* 3587 * This function is invoked after the KFREE_DRAIN_JIFFIES timeout. 3588 */ 3589 static void kfree_rcu_monitor(struct work_struct *work) 3590 { 3591 struct kfree_rcu_cpu *krcp = container_of(work, 3592 struct kfree_rcu_cpu, monitor_work.work); 3593 unsigned long flags; 3594 int i, j; 3595 3596 // Drain ready for reclaim. 3597 kvfree_rcu_drain_ready(krcp); 3598 3599 raw_spin_lock_irqsave(&krcp->lock, flags); 3600 3601 // Attempt to start a new batch. 3602 for (i = 0; i < KFREE_N_BATCHES; i++) { 3603 struct kfree_rcu_cpu_work *krwp = &(krcp->krw_arr[i]); 3604 3605 // Try to detach bulk_head or head and attach it, only when 3606 // all channels are free. Any channel is not free means at krwp 3607 // there is on-going rcu work to handle krwp's free business. 3608 if (need_wait_for_krwp_work(krwp)) 3609 continue; 3610 3611 // kvfree_rcu_drain_ready() might handle this krcp, if so give up. 3612 if (need_offload_krc(krcp)) { 3613 // Channel 1 corresponds to the SLAB-pointer bulk path. 3614 // Channel 2 corresponds to vmalloc-pointer bulk path. 3615 for (j = 0; j < FREE_N_CHANNELS; j++) { 3616 if (list_empty(&krwp->bulk_head_free[j])) { 3617 atomic_set(&krcp->bulk_count[j], 0); 3618 list_replace_init(&krcp->bulk_head[j], 3619 &krwp->bulk_head_free[j]); 3620 } 3621 } 3622 3623 // Channel 3 corresponds to both SLAB and vmalloc 3624 // objects queued on the linked list. 3625 if (!krwp->head_free) { 3626 krwp->head_free = krcp->head; 3627 get_state_synchronize_rcu_full(&krwp->head_free_gp_snap); 3628 atomic_set(&krcp->head_count, 0); 3629 WRITE_ONCE(krcp->head, NULL); 3630 } 3631 3632 // One work is per one batch, so there are three 3633 // "free channels", the batch can handle. It can 3634 // be that the work is in the pending state when 3635 // channels have been detached following by each 3636 // other. 3637 queue_rcu_work(system_wq, &krwp->rcu_work); 3638 } 3639 } 3640 3641 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3642 3643 // If there is nothing to detach, it means that our job is 3644 // successfully done here. In case of having at least one 3645 // of the channels that is still busy we should rearm the 3646 // work to repeat an attempt. Because previous batches are 3647 // still in progress. 3648 if (need_offload_krc(krcp)) 3649 schedule_delayed_monitor_work(krcp); 3650 } 3651 3652 static enum hrtimer_restart 3653 schedule_page_work_fn(struct hrtimer *t) 3654 { 3655 struct kfree_rcu_cpu *krcp = 3656 container_of(t, struct kfree_rcu_cpu, hrtimer); 3657 3658 queue_delayed_work(system_highpri_wq, &krcp->page_cache_work, 0); 3659 return HRTIMER_NORESTART; 3660 } 3661 3662 static void fill_page_cache_func(struct work_struct *work) 3663 { 3664 struct kvfree_rcu_bulk_data *bnode; 3665 struct kfree_rcu_cpu *krcp = 3666 container_of(work, struct kfree_rcu_cpu, 3667 page_cache_work.work); 3668 unsigned long flags; 3669 int nr_pages; 3670 bool pushed; 3671 int i; 3672 3673 nr_pages = atomic_read(&krcp->backoff_page_cache_fill) ? 3674 1 : rcu_min_cached_objs; 3675 3676 for (i = READ_ONCE(krcp->nr_bkv_objs); i < nr_pages; i++) { 3677 bnode = (struct kvfree_rcu_bulk_data *) 3678 __get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); 3679 3680 if (!bnode) 3681 break; 3682 3683 raw_spin_lock_irqsave(&krcp->lock, flags); 3684 pushed = put_cached_bnode(krcp, bnode); 3685 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3686 3687 if (!pushed) { 3688 free_page((unsigned long) bnode); 3689 break; 3690 } 3691 } 3692 3693 atomic_set(&krcp->work_in_progress, 0); 3694 atomic_set(&krcp->backoff_page_cache_fill, 0); 3695 } 3696 3697 static void 3698 run_page_cache_worker(struct kfree_rcu_cpu *krcp) 3699 { 3700 // If cache disabled, bail out. 3701 if (!rcu_min_cached_objs) 3702 return; 3703 3704 if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING && 3705 !atomic_xchg(&krcp->work_in_progress, 1)) { 3706 if (atomic_read(&krcp->backoff_page_cache_fill)) { 3707 queue_delayed_work(system_wq, 3708 &krcp->page_cache_work, 3709 msecs_to_jiffies(rcu_delay_page_cache_fill_msec)); 3710 } else { 3711 hrtimer_init(&krcp->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 3712 krcp->hrtimer.function = schedule_page_work_fn; 3713 hrtimer_start(&krcp->hrtimer, 0, HRTIMER_MODE_REL); 3714 } 3715 } 3716 } 3717 3718 // Record ptr in a page managed by krcp, with the pre-krc_this_cpu_lock() 3719 // state specified by flags. If can_alloc is true, the caller must 3720 // be schedulable and not be holding any locks or mutexes that might be 3721 // acquired by the memory allocator or anything that it might invoke. 3722 // Returns true if ptr was successfully recorded, else the caller must 3723 // use a fallback. 3724 static inline bool 3725 add_ptr_to_bulk_krc_lock(struct kfree_rcu_cpu **krcp, 3726 unsigned long *flags, void *ptr, bool can_alloc) 3727 { 3728 struct kvfree_rcu_bulk_data *bnode; 3729 int idx; 3730 3731 *krcp = krc_this_cpu_lock(flags); 3732 if (unlikely(!(*krcp)->initialized)) 3733 return false; 3734 3735 idx = !!is_vmalloc_addr(ptr); 3736 bnode = list_first_entry_or_null(&(*krcp)->bulk_head[idx], 3737 struct kvfree_rcu_bulk_data, list); 3738 3739 /* Check if a new block is required. */ 3740 if (!bnode || bnode->nr_records == KVFREE_BULK_MAX_ENTR) { 3741 bnode = get_cached_bnode(*krcp); 3742 if (!bnode && can_alloc) { 3743 krc_this_cpu_unlock(*krcp, *flags); 3744 3745 // __GFP_NORETRY - allows a light-weight direct reclaim 3746 // what is OK from minimizing of fallback hitting point of 3747 // view. Apart of that it forbids any OOM invoking what is 3748 // also beneficial since we are about to release memory soon. 3749 // 3750 // __GFP_NOMEMALLOC - prevents from consuming of all the 3751 // memory reserves. Please note we have a fallback path. 3752 // 3753 // __GFP_NOWARN - it is supposed that an allocation can 3754 // be failed under low memory or high memory pressure 3755 // scenarios. 3756 bnode = (struct kvfree_rcu_bulk_data *) 3757 __get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); 3758 raw_spin_lock_irqsave(&(*krcp)->lock, *flags); 3759 } 3760 3761 if (!bnode) 3762 return false; 3763 3764 // Initialize the new block and attach it. 3765 bnode->nr_records = 0; 3766 list_add(&bnode->list, &(*krcp)->bulk_head[idx]); 3767 } 3768 3769 // Finally insert and update the GP for this page. 3770 bnode->records[bnode->nr_records++] = ptr; 3771 get_state_synchronize_rcu_full(&bnode->gp_snap); 3772 atomic_inc(&(*krcp)->bulk_count[idx]); 3773 3774 return true; 3775 } 3776 3777 /* 3778 * Queue a request for lazy invocation of the appropriate free routine 3779 * after a grace period. Please note that three paths are maintained, 3780 * two for the common case using arrays of pointers and a third one that 3781 * is used only when the main paths cannot be used, for example, due to 3782 * memory pressure. 3783 * 3784 * Each kvfree_call_rcu() request is added to a batch. The batch will be drained 3785 * every KFREE_DRAIN_JIFFIES number of jiffies. All the objects in the batch will 3786 * be free'd in workqueue context. This allows us to: batch requests together to 3787 * reduce the number of grace periods during heavy kfree_rcu()/kvfree_rcu() load. 3788 */ 3789 void kvfree_call_rcu(struct rcu_head *head, void *ptr) 3790 { 3791 unsigned long flags; 3792 struct kfree_rcu_cpu *krcp; 3793 bool success; 3794 3795 /* 3796 * Please note there is a limitation for the head-less 3797 * variant, that is why there is a clear rule for such 3798 * objects: it can be used from might_sleep() context 3799 * only. For other places please embed an rcu_head to 3800 * your data. 3801 */ 3802 if (!head) 3803 might_sleep(); 3804 3805 // Queue the object but don't yet schedule the batch. 3806 if (debug_rcu_head_queue(ptr)) { 3807 // Probable double kfree_rcu(), just leak. 3808 WARN_ONCE(1, "%s(): Double-freed call. rcu_head %p\n", 3809 __func__, head); 3810 3811 // Mark as success and leave. 3812 return; 3813 } 3814 3815 kasan_record_aux_stack_noalloc(ptr); 3816 success = add_ptr_to_bulk_krc_lock(&krcp, &flags, ptr, !head); 3817 if (!success) { 3818 run_page_cache_worker(krcp); 3819 3820 if (head == NULL) 3821 // Inline if kvfree_rcu(one_arg) call. 3822 goto unlock_return; 3823 3824 head->func = ptr; 3825 head->next = krcp->head; 3826 WRITE_ONCE(krcp->head, head); 3827 atomic_inc(&krcp->head_count); 3828 3829 // Take a snapshot for this krcp. 3830 krcp->head_gp_snap = get_state_synchronize_rcu(); 3831 success = true; 3832 } 3833 3834 /* 3835 * The kvfree_rcu() caller considers the pointer freed at this point 3836 * and likely removes any references to it. Since the actual slab 3837 * freeing (and kmemleak_free()) is deferred, tell kmemleak to ignore 3838 * this object (no scanning or false positives reporting). 3839 */ 3840 kmemleak_ignore(ptr); 3841 3842 // Set timer to drain after KFREE_DRAIN_JIFFIES. 3843 if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING) 3844 schedule_delayed_monitor_work(krcp); 3845 3846 unlock_return: 3847 krc_this_cpu_unlock(krcp, flags); 3848 3849 /* 3850 * Inline kvfree() after synchronize_rcu(). We can do 3851 * it from might_sleep() context only, so the current 3852 * CPU can pass the QS state. 3853 */ 3854 if (!success) { 3855 debug_rcu_head_unqueue((struct rcu_head *) ptr); 3856 synchronize_rcu(); 3857 kvfree(ptr); 3858 } 3859 } 3860 EXPORT_SYMBOL_GPL(kvfree_call_rcu); 3861 3862 static unsigned long 3863 kfree_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc) 3864 { 3865 int cpu; 3866 unsigned long count = 0; 3867 3868 /* Snapshot count of all CPUs */ 3869 for_each_possible_cpu(cpu) { 3870 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); 3871 3872 count += krc_count(krcp); 3873 count += READ_ONCE(krcp->nr_bkv_objs); 3874 atomic_set(&krcp->backoff_page_cache_fill, 1); 3875 } 3876 3877 return count == 0 ? SHRINK_EMPTY : count; 3878 } 3879 3880 static unsigned long 3881 kfree_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) 3882 { 3883 int cpu, freed = 0; 3884 3885 for_each_possible_cpu(cpu) { 3886 int count; 3887 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); 3888 3889 count = krc_count(krcp); 3890 count += drain_page_cache(krcp); 3891 kfree_rcu_monitor(&krcp->monitor_work.work); 3892 3893 sc->nr_to_scan -= count; 3894 freed += count; 3895 3896 if (sc->nr_to_scan <= 0) 3897 break; 3898 } 3899 3900 return freed == 0 ? SHRINK_STOP : freed; 3901 } 3902 3903 void __init kfree_rcu_scheduler_running(void) 3904 { 3905 int cpu; 3906 3907 for_each_possible_cpu(cpu) { 3908 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); 3909 3910 if (need_offload_krc(krcp)) 3911 schedule_delayed_monitor_work(krcp); 3912 } 3913 } 3914 3915 /* 3916 * During early boot, any blocking grace-period wait automatically 3917 * implies a grace period. 3918 * 3919 * Later on, this could in theory be the case for kernels built with 3920 * CONFIG_SMP=y && CONFIG_PREEMPTION=y running on a single CPU, but this 3921 * is not a common case. Furthermore, this optimization would cause 3922 * the rcu_gp_oldstate structure to expand by 50%, so this potential 3923 * grace-period optimization is ignored once the scheduler is running. 3924 */ 3925 static int rcu_blocking_is_gp(void) 3926 { 3927 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) { 3928 might_sleep(); 3929 return false; 3930 } 3931 return true; 3932 } 3933 3934 /* 3935 * Helper function for the synchronize_rcu() API. 3936 */ 3937 static void synchronize_rcu_normal(void) 3938 { 3939 struct rcu_synchronize rs; 3940 3941 trace_rcu_sr_normal(rcu_state.name, &rs.head, TPS("request")); 3942 3943 if (!READ_ONCE(rcu_normal_wake_from_gp)) { 3944 wait_rcu_gp(call_rcu_hurry); 3945 goto trace_complete_out; 3946 } 3947 3948 init_rcu_head_on_stack(&rs.head); 3949 init_completion(&rs.completion); 3950 3951 /* 3952 * This code might be preempted, therefore take a GP 3953 * snapshot before adding a request. 3954 */ 3955 if (IS_ENABLED(CONFIG_PROVE_RCU)) 3956 rs.head.func = (void *) get_state_synchronize_rcu(); 3957 3958 rcu_sr_normal_add_req(&rs); 3959 3960 /* Kick a GP and start waiting. */ 3961 (void) start_poll_synchronize_rcu(); 3962 3963 /* Now we can wait. */ 3964 wait_for_completion(&rs.completion); 3965 destroy_rcu_head_on_stack(&rs.head); 3966 3967 trace_complete_out: 3968 trace_rcu_sr_normal(rcu_state.name, &rs.head, TPS("complete")); 3969 } 3970 3971 /** 3972 * synchronize_rcu - wait until a grace period has elapsed. 3973 * 3974 * Control will return to the caller some time after a full grace 3975 * period has elapsed, in other words after all currently executing RCU 3976 * read-side critical sections have completed. Note, however, that 3977 * upon return from synchronize_rcu(), the caller might well be executing 3978 * concurrently with new RCU read-side critical sections that began while 3979 * synchronize_rcu() was waiting. 3980 * 3981 * RCU read-side critical sections are delimited by rcu_read_lock() 3982 * and rcu_read_unlock(), and may be nested. In addition, but only in 3983 * v5.0 and later, regions of code across which interrupts, preemption, 3984 * or softirqs have been disabled also serve as RCU read-side critical 3985 * sections. This includes hardware interrupt handlers, softirq handlers, 3986 * and NMI handlers. 3987 * 3988 * Note that this guarantee implies further memory-ordering guarantees. 3989 * On systems with more than one CPU, when synchronize_rcu() returns, 3990 * each CPU is guaranteed to have executed a full memory barrier since 3991 * the end of its last RCU read-side critical section whose beginning 3992 * preceded the call to synchronize_rcu(). In addition, each CPU having 3993 * an RCU read-side critical section that extends beyond the return from 3994 * synchronize_rcu() is guaranteed to have executed a full memory barrier 3995 * after the beginning of synchronize_rcu() and before the beginning of 3996 * that RCU read-side critical section. Note that these guarantees include 3997 * CPUs that are offline, idle, or executing in user mode, as well as CPUs 3998 * that are executing in the kernel. 3999 * 4000 * Furthermore, if CPU A invoked synchronize_rcu(), which returned 4001 * to its caller on CPU B, then both CPU A and CPU B are guaranteed 4002 * to have executed a full memory barrier during the execution of 4003 * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but 4004 * again only if the system has more than one CPU). 4005 * 4006 * Implementation of these memory-ordering guarantees is described here: 4007 * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst. 4008 */ 4009 void synchronize_rcu(void) 4010 { 4011 unsigned long flags; 4012 struct rcu_node *rnp; 4013 4014 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) || 4015 lock_is_held(&rcu_lock_map) || 4016 lock_is_held(&rcu_sched_lock_map), 4017 "Illegal synchronize_rcu() in RCU read-side critical section"); 4018 if (!rcu_blocking_is_gp()) { 4019 if (rcu_gp_is_expedited()) 4020 synchronize_rcu_expedited(); 4021 else 4022 synchronize_rcu_normal(); 4023 return; 4024 } 4025 4026 // Context allows vacuous grace periods. 4027 // Note well that this code runs with !PREEMPT && !SMP. 4028 // In addition, all code that advances grace periods runs at 4029 // process level. Therefore, this normal GP overlaps with other 4030 // normal GPs only by being fully nested within them, which allows 4031 // reuse of ->gp_seq_polled_snap. 4032 rcu_poll_gp_seq_start_unlocked(&rcu_state.gp_seq_polled_snap); 4033 rcu_poll_gp_seq_end_unlocked(&rcu_state.gp_seq_polled_snap); 4034 4035 // Update the normal grace-period counters to record 4036 // this grace period, but only those used by the boot CPU. 4037 // The rcu_scheduler_starting() will take care of the rest of 4038 // these counters. 4039 local_irq_save(flags); 4040 WARN_ON_ONCE(num_online_cpus() > 1); 4041 rcu_state.gp_seq += (1 << RCU_SEQ_CTR_SHIFT); 4042 for (rnp = this_cpu_ptr(&rcu_data)->mynode; rnp; rnp = rnp->parent) 4043 rnp->gp_seq_needed = rnp->gp_seq = rcu_state.gp_seq; 4044 local_irq_restore(flags); 4045 } 4046 EXPORT_SYMBOL_GPL(synchronize_rcu); 4047 4048 /** 4049 * get_completed_synchronize_rcu_full - Return a full pre-completed polled state cookie 4050 * @rgosp: Place to put state cookie 4051 * 4052 * Stores into @rgosp a value that will always be treated by functions 4053 * like poll_state_synchronize_rcu_full() as a cookie whose grace period 4054 * has already completed. 4055 */ 4056 void get_completed_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp) 4057 { 4058 rgosp->rgos_norm = RCU_GET_STATE_COMPLETED; 4059 rgosp->rgos_exp = RCU_GET_STATE_COMPLETED; 4060 } 4061 EXPORT_SYMBOL_GPL(get_completed_synchronize_rcu_full); 4062 4063 /** 4064 * get_state_synchronize_rcu - Snapshot current RCU state 4065 * 4066 * Returns a cookie that is used by a later call to cond_synchronize_rcu() 4067 * or poll_state_synchronize_rcu() to determine whether or not a full 4068 * grace period has elapsed in the meantime. 4069 */ 4070 unsigned long get_state_synchronize_rcu(void) 4071 { 4072 /* 4073 * Any prior manipulation of RCU-protected data must happen 4074 * before the load from ->gp_seq. 4075 */ 4076 smp_mb(); /* ^^^ */ 4077 return rcu_seq_snap(&rcu_state.gp_seq_polled); 4078 } 4079 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu); 4080 4081 /** 4082 * get_state_synchronize_rcu_full - Snapshot RCU state, both normal and expedited 4083 * @rgosp: location to place combined normal/expedited grace-period state 4084 * 4085 * Places the normal and expedited grace-period states in @rgosp. This 4086 * state value can be passed to a later call to cond_synchronize_rcu_full() 4087 * or poll_state_synchronize_rcu_full() to determine whether or not a 4088 * grace period (whether normal or expedited) has elapsed in the meantime. 4089 * The rcu_gp_oldstate structure takes up twice the memory of an unsigned 4090 * long, but is guaranteed to see all grace periods. In contrast, the 4091 * combined state occupies less memory, but can sometimes fail to take 4092 * grace periods into account. 4093 * 4094 * This does not guarantee that the needed grace period will actually 4095 * start. 4096 */ 4097 void get_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp) 4098 { 4099 struct rcu_node *rnp = rcu_get_root(); 4100 4101 /* 4102 * Any prior manipulation of RCU-protected data must happen 4103 * before the loads from ->gp_seq and ->expedited_sequence. 4104 */ 4105 smp_mb(); /* ^^^ */ 4106 rgosp->rgos_norm = rcu_seq_snap(&rnp->gp_seq); 4107 rgosp->rgos_exp = rcu_seq_snap(&rcu_state.expedited_sequence); 4108 } 4109 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu_full); 4110 4111 /* 4112 * Helper function for start_poll_synchronize_rcu() and 4113 * start_poll_synchronize_rcu_full(). 4114 */ 4115 static void start_poll_synchronize_rcu_common(void) 4116 { 4117 unsigned long flags; 4118 bool needwake; 4119 struct rcu_data *rdp; 4120 struct rcu_node *rnp; 4121 4122 lockdep_assert_irqs_enabled(); 4123 local_irq_save(flags); 4124 rdp = this_cpu_ptr(&rcu_data); 4125 rnp = rdp->mynode; 4126 raw_spin_lock_rcu_node(rnp); // irqs already disabled. 4127 // Note it is possible for a grace period to have elapsed between 4128 // the above call to get_state_synchronize_rcu() and the below call 4129 // to rcu_seq_snap. This is OK, the worst that happens is that we 4130 // get a grace period that no one needed. These accesses are ordered 4131 // by smp_mb(), and we are accessing them in the opposite order 4132 // from which they are updated at grace-period start, as required. 4133 needwake = rcu_start_this_gp(rnp, rdp, rcu_seq_snap(&rcu_state.gp_seq)); 4134 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4135 if (needwake) 4136 rcu_gp_kthread_wake(); 4137 } 4138 4139 /** 4140 * start_poll_synchronize_rcu - Snapshot and start RCU grace period 4141 * 4142 * Returns a cookie that is used by a later call to cond_synchronize_rcu() 4143 * or poll_state_synchronize_rcu() to determine whether or not a full 4144 * grace period has elapsed in the meantime. If the needed grace period 4145 * is not already slated to start, notifies RCU core of the need for that 4146 * grace period. 4147 * 4148 * Interrupts must be enabled for the case where it is necessary to awaken 4149 * the grace-period kthread. 4150 */ 4151 unsigned long start_poll_synchronize_rcu(void) 4152 { 4153 unsigned long gp_seq = get_state_synchronize_rcu(); 4154 4155 start_poll_synchronize_rcu_common(); 4156 return gp_seq; 4157 } 4158 EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu); 4159 4160 /** 4161 * start_poll_synchronize_rcu_full - Take a full snapshot and start RCU grace period 4162 * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full() 4163 * 4164 * Places the normal and expedited grace-period states in *@rgos. This 4165 * state value can be passed to a later call to cond_synchronize_rcu_full() 4166 * or poll_state_synchronize_rcu_full() to determine whether or not a 4167 * grace period (whether normal or expedited) has elapsed in the meantime. 4168 * If the needed grace period is not already slated to start, notifies 4169 * RCU core of the need for that grace period. 4170 * 4171 * Interrupts must be enabled for the case where it is necessary to awaken 4172 * the grace-period kthread. 4173 */ 4174 void start_poll_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp) 4175 { 4176 get_state_synchronize_rcu_full(rgosp); 4177 4178 start_poll_synchronize_rcu_common(); 4179 } 4180 EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu_full); 4181 4182 /** 4183 * poll_state_synchronize_rcu - Has the specified RCU grace period completed? 4184 * @oldstate: value from get_state_synchronize_rcu() or start_poll_synchronize_rcu() 4185 * 4186 * If a full RCU grace period has elapsed since the earlier call from 4187 * which @oldstate was obtained, return @true, otherwise return @false. 4188 * If @false is returned, it is the caller's responsibility to invoke this 4189 * function later on until it does return @true. Alternatively, the caller 4190 * can explicitly wait for a grace period, for example, by passing @oldstate 4191 * to either cond_synchronize_rcu() or cond_synchronize_rcu_expedited() 4192 * on the one hand or by directly invoking either synchronize_rcu() or 4193 * synchronize_rcu_expedited() on the other. 4194 * 4195 * Yes, this function does not take counter wrap into account. 4196 * But counter wrap is harmless. If the counter wraps, we have waited for 4197 * more than a billion grace periods (and way more on a 64-bit system!). 4198 * Those needing to keep old state values for very long time periods 4199 * (many hours even on 32-bit systems) should check them occasionally and 4200 * either refresh them or set a flag indicating that the grace period has 4201 * completed. Alternatively, they can use get_completed_synchronize_rcu() 4202 * to get a guaranteed-completed grace-period state. 4203 * 4204 * In addition, because oldstate compresses the grace-period state for 4205 * both normal and expedited grace periods into a single unsigned long, 4206 * it can miss a grace period when synchronize_rcu() runs concurrently 4207 * with synchronize_rcu_expedited(). If this is unacceptable, please 4208 * instead use the _full() variant of these polling APIs. 4209 * 4210 * This function provides the same memory-ordering guarantees that 4211 * would be provided by a synchronize_rcu() that was invoked at the call 4212 * to the function that provided @oldstate, and that returned at the end 4213 * of this function. 4214 */ 4215 bool poll_state_synchronize_rcu(unsigned long oldstate) 4216 { 4217 if (oldstate == RCU_GET_STATE_COMPLETED || 4218 rcu_seq_done_exact(&rcu_state.gp_seq_polled, oldstate)) { 4219 smp_mb(); /* Ensure GP ends before subsequent accesses. */ 4220 return true; 4221 } 4222 return false; 4223 } 4224 EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu); 4225 4226 /** 4227 * poll_state_synchronize_rcu_full - Has the specified RCU grace period completed? 4228 * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full() 4229 * 4230 * If a full RCU grace period has elapsed since the earlier call from 4231 * which *rgosp was obtained, return @true, otherwise return @false. 4232 * If @false is returned, it is the caller's responsibility to invoke this 4233 * function later on until it does return @true. Alternatively, the caller 4234 * can explicitly wait for a grace period, for example, by passing @rgosp 4235 * to cond_synchronize_rcu() or by directly invoking synchronize_rcu(). 4236 * 4237 * Yes, this function does not take counter wrap into account. 4238 * But counter wrap is harmless. If the counter wraps, we have waited 4239 * for more than a billion grace periods (and way more on a 64-bit 4240 * system!). Those needing to keep rcu_gp_oldstate values for very 4241 * long time periods (many hours even on 32-bit systems) should check 4242 * them occasionally and either refresh them or set a flag indicating 4243 * that the grace period has completed. Alternatively, they can use 4244 * get_completed_synchronize_rcu_full() to get a guaranteed-completed 4245 * grace-period state. 4246 * 4247 * This function provides the same memory-ordering guarantees that would 4248 * be provided by a synchronize_rcu() that was invoked at the call to 4249 * the function that provided @rgosp, and that returned at the end of this 4250 * function. And this guarantee requires that the root rcu_node structure's 4251 * ->gp_seq field be checked instead of that of the rcu_state structure. 4252 * The problem is that the just-ending grace-period's callbacks can be 4253 * invoked between the time that the root rcu_node structure's ->gp_seq 4254 * field is updated and the time that the rcu_state structure's ->gp_seq 4255 * field is updated. Therefore, if a single synchronize_rcu() is to 4256 * cause a subsequent poll_state_synchronize_rcu_full() to return @true, 4257 * then the root rcu_node structure is the one that needs to be polled. 4258 */ 4259 bool poll_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp) 4260 { 4261 struct rcu_node *rnp = rcu_get_root(); 4262 4263 smp_mb(); // Order against root rcu_node structure grace-period cleanup. 4264 if (rgosp->rgos_norm == RCU_GET_STATE_COMPLETED || 4265 rcu_seq_done_exact(&rnp->gp_seq, rgosp->rgos_norm) || 4266 rgosp->rgos_exp == RCU_GET_STATE_COMPLETED || 4267 rcu_seq_done_exact(&rcu_state.expedited_sequence, rgosp->rgos_exp)) { 4268 smp_mb(); /* Ensure GP ends before subsequent accesses. */ 4269 return true; 4270 } 4271 return false; 4272 } 4273 EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu_full); 4274 4275 /** 4276 * cond_synchronize_rcu - Conditionally wait for an RCU grace period 4277 * @oldstate: value from get_state_synchronize_rcu(), start_poll_synchronize_rcu(), or start_poll_synchronize_rcu_expedited() 4278 * 4279 * If a full RCU grace period has elapsed since the earlier call to 4280 * get_state_synchronize_rcu() or start_poll_synchronize_rcu(), just return. 4281 * Otherwise, invoke synchronize_rcu() to wait for a full grace period. 4282 * 4283 * Yes, this function does not take counter wrap into account. 4284 * But counter wrap is harmless. If the counter wraps, we have waited for 4285 * more than 2 billion grace periods (and way more on a 64-bit system!), 4286 * so waiting for a couple of additional grace periods should be just fine. 4287 * 4288 * This function provides the same memory-ordering guarantees that 4289 * would be provided by a synchronize_rcu() that was invoked at the call 4290 * to the function that provided @oldstate and that returned at the end 4291 * of this function. 4292 */ 4293 void cond_synchronize_rcu(unsigned long oldstate) 4294 { 4295 if (!poll_state_synchronize_rcu(oldstate)) 4296 synchronize_rcu(); 4297 } 4298 EXPORT_SYMBOL_GPL(cond_synchronize_rcu); 4299 4300 /** 4301 * cond_synchronize_rcu_full - Conditionally wait for an RCU grace period 4302 * @rgosp: value from get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(), or start_poll_synchronize_rcu_expedited_full() 4303 * 4304 * If a full RCU grace period has elapsed since the call to 4305 * get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(), 4306 * or start_poll_synchronize_rcu_expedited_full() from which @rgosp was 4307 * obtained, just return. Otherwise, invoke synchronize_rcu() to wait 4308 * for a full grace period. 4309 * 4310 * Yes, this function does not take counter wrap into account. 4311 * But counter wrap is harmless. If the counter wraps, we have waited for 4312 * more than 2 billion grace periods (and way more on a 64-bit system!), 4313 * so waiting for a couple of additional grace periods should be just fine. 4314 * 4315 * This function provides the same memory-ordering guarantees that 4316 * would be provided by a synchronize_rcu() that was invoked at the call 4317 * to the function that provided @rgosp and that returned at the end of 4318 * this function. 4319 */ 4320 void cond_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp) 4321 { 4322 if (!poll_state_synchronize_rcu_full(rgosp)) 4323 synchronize_rcu(); 4324 } 4325 EXPORT_SYMBOL_GPL(cond_synchronize_rcu_full); 4326 4327 /* 4328 * Check to see if there is any immediate RCU-related work to be done by 4329 * the current CPU, returning 1 if so and zero otherwise. The checks are 4330 * in order of increasing expense: checks that can be carried out against 4331 * CPU-local state are performed first. However, we must check for CPU 4332 * stalls first, else we might not get a chance. 4333 */ 4334 static int rcu_pending(int user) 4335 { 4336 bool gp_in_progress; 4337 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 4338 struct rcu_node *rnp = rdp->mynode; 4339 4340 lockdep_assert_irqs_disabled(); 4341 4342 /* Check for CPU stalls, if enabled. */ 4343 check_cpu_stall(rdp); 4344 4345 /* Does this CPU need a deferred NOCB wakeup? */ 4346 if (rcu_nocb_need_deferred_wakeup(rdp, RCU_NOCB_WAKE)) 4347 return 1; 4348 4349 /* Is this a nohz_full CPU in userspace or idle? (Ignore RCU if so.) */ 4350 gp_in_progress = rcu_gp_in_progress(); 4351 if ((user || rcu_is_cpu_rrupt_from_idle() || 4352 (gp_in_progress && 4353 time_before(jiffies, READ_ONCE(rcu_state.gp_start) + 4354 nohz_full_patience_delay_jiffies))) && 4355 rcu_nohz_full_cpu()) 4356 return 0; 4357 4358 /* Is the RCU core waiting for a quiescent state from this CPU? */ 4359 if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm && gp_in_progress) 4360 return 1; 4361 4362 /* Does this CPU have callbacks ready to invoke? */ 4363 if (!rcu_rdp_is_offloaded(rdp) && 4364 rcu_segcblist_ready_cbs(&rdp->cblist)) 4365 return 1; 4366 4367 /* Has RCU gone idle with this CPU needing another grace period? */ 4368 if (!gp_in_progress && rcu_segcblist_is_enabled(&rdp->cblist) && 4369 !rcu_rdp_is_offloaded(rdp) && 4370 !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL)) 4371 return 1; 4372 4373 /* Have RCU grace period completed or started? */ 4374 if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq || 4375 unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */ 4376 return 1; 4377 4378 /* nothing to do */ 4379 return 0; 4380 } 4381 4382 /* 4383 * Helper function for rcu_barrier() tracing. If tracing is disabled, 4384 * the compiler is expected to optimize this away. 4385 */ 4386 static void rcu_barrier_trace(const char *s, int cpu, unsigned long done) 4387 { 4388 trace_rcu_barrier(rcu_state.name, s, cpu, 4389 atomic_read(&rcu_state.barrier_cpu_count), done); 4390 } 4391 4392 /* 4393 * RCU callback function for rcu_barrier(). If we are last, wake 4394 * up the task executing rcu_barrier(). 4395 * 4396 * Note that the value of rcu_state.barrier_sequence must be captured 4397 * before the atomic_dec_and_test(). Otherwise, if this CPU is not last, 4398 * other CPUs might count the value down to zero before this CPU gets 4399 * around to invoking rcu_barrier_trace(), which might result in bogus 4400 * data from the next instance of rcu_barrier(). 4401 */ 4402 static void rcu_barrier_callback(struct rcu_head *rhp) 4403 { 4404 unsigned long __maybe_unused s = rcu_state.barrier_sequence; 4405 4406 if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) { 4407 rcu_barrier_trace(TPS("LastCB"), -1, s); 4408 complete(&rcu_state.barrier_completion); 4409 } else { 4410 rcu_barrier_trace(TPS("CB"), -1, s); 4411 } 4412 } 4413 4414 /* 4415 * If needed, entrain an rcu_barrier() callback on rdp->cblist. 4416 */ 4417 static void rcu_barrier_entrain(struct rcu_data *rdp) 4418 { 4419 unsigned long gseq = READ_ONCE(rcu_state.barrier_sequence); 4420 unsigned long lseq = READ_ONCE(rdp->barrier_seq_snap); 4421 bool wake_nocb = false; 4422 bool was_alldone = false; 4423 4424 lockdep_assert_held(&rcu_state.barrier_lock); 4425 if (rcu_seq_state(lseq) || !rcu_seq_state(gseq) || rcu_seq_ctr(lseq) != rcu_seq_ctr(gseq)) 4426 return; 4427 rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence); 4428 rdp->barrier_head.func = rcu_barrier_callback; 4429 debug_rcu_head_queue(&rdp->barrier_head); 4430 rcu_nocb_lock(rdp); 4431 /* 4432 * Flush bypass and wakeup rcuog if we add callbacks to an empty regular 4433 * queue. This way we don't wait for bypass timer that can reach seconds 4434 * if it's fully lazy. 4435 */ 4436 was_alldone = rcu_rdp_is_offloaded(rdp) && !rcu_segcblist_pend_cbs(&rdp->cblist); 4437 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies, false)); 4438 wake_nocb = was_alldone && rcu_segcblist_pend_cbs(&rdp->cblist); 4439 if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head)) { 4440 atomic_inc(&rcu_state.barrier_cpu_count); 4441 } else { 4442 debug_rcu_head_unqueue(&rdp->barrier_head); 4443 rcu_barrier_trace(TPS("IRQNQ"), -1, rcu_state.barrier_sequence); 4444 } 4445 rcu_nocb_unlock(rdp); 4446 if (wake_nocb) 4447 wake_nocb_gp(rdp, false); 4448 smp_store_release(&rdp->barrier_seq_snap, gseq); 4449 } 4450 4451 /* 4452 * Called with preemption disabled, and from cross-cpu IRQ context. 4453 */ 4454 static void rcu_barrier_handler(void *cpu_in) 4455 { 4456 uintptr_t cpu = (uintptr_t)cpu_in; 4457 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4458 4459 lockdep_assert_irqs_disabled(); 4460 WARN_ON_ONCE(cpu != rdp->cpu); 4461 WARN_ON_ONCE(cpu != smp_processor_id()); 4462 raw_spin_lock(&rcu_state.barrier_lock); 4463 rcu_barrier_entrain(rdp); 4464 raw_spin_unlock(&rcu_state.barrier_lock); 4465 } 4466 4467 /** 4468 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete. 4469 * 4470 * Note that this primitive does not necessarily wait for an RCU grace period 4471 * to complete. For example, if there are no RCU callbacks queued anywhere 4472 * in the system, then rcu_barrier() is within its rights to return 4473 * immediately, without waiting for anything, much less an RCU grace period. 4474 */ 4475 void rcu_barrier(void) 4476 { 4477 uintptr_t cpu; 4478 unsigned long flags; 4479 unsigned long gseq; 4480 struct rcu_data *rdp; 4481 unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence); 4482 4483 rcu_barrier_trace(TPS("Begin"), -1, s); 4484 4485 /* Take mutex to serialize concurrent rcu_barrier() requests. */ 4486 mutex_lock(&rcu_state.barrier_mutex); 4487 4488 /* Did someone else do our work for us? */ 4489 if (rcu_seq_done(&rcu_state.barrier_sequence, s)) { 4490 rcu_barrier_trace(TPS("EarlyExit"), -1, rcu_state.barrier_sequence); 4491 smp_mb(); /* caller's subsequent code after above check. */ 4492 mutex_unlock(&rcu_state.barrier_mutex); 4493 return; 4494 } 4495 4496 /* Mark the start of the barrier operation. */ 4497 raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags); 4498 rcu_seq_start(&rcu_state.barrier_sequence); 4499 gseq = rcu_state.barrier_sequence; 4500 rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence); 4501 4502 /* 4503 * Initialize the count to two rather than to zero in order 4504 * to avoid a too-soon return to zero in case of an immediate 4505 * invocation of the just-enqueued callback (or preemption of 4506 * this task). Exclude CPU-hotplug operations to ensure that no 4507 * offline non-offloaded CPU has callbacks queued. 4508 */ 4509 init_completion(&rcu_state.barrier_completion); 4510 atomic_set(&rcu_state.barrier_cpu_count, 2); 4511 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags); 4512 4513 /* 4514 * Force each CPU with callbacks to register a new callback. 4515 * When that callback is invoked, we will know that all of the 4516 * corresponding CPU's preceding callbacks have been invoked. 4517 */ 4518 for_each_possible_cpu(cpu) { 4519 rdp = per_cpu_ptr(&rcu_data, cpu); 4520 retry: 4521 if (smp_load_acquire(&rdp->barrier_seq_snap) == gseq) 4522 continue; 4523 raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags); 4524 if (!rcu_segcblist_n_cbs(&rdp->cblist)) { 4525 WRITE_ONCE(rdp->barrier_seq_snap, gseq); 4526 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags); 4527 rcu_barrier_trace(TPS("NQ"), cpu, rcu_state.barrier_sequence); 4528 continue; 4529 } 4530 if (!rcu_rdp_cpu_online(rdp)) { 4531 rcu_barrier_entrain(rdp); 4532 WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq); 4533 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags); 4534 rcu_barrier_trace(TPS("OfflineNoCBQ"), cpu, rcu_state.barrier_sequence); 4535 continue; 4536 } 4537 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags); 4538 if (smp_call_function_single(cpu, rcu_barrier_handler, (void *)cpu, 1)) { 4539 schedule_timeout_uninterruptible(1); 4540 goto retry; 4541 } 4542 WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq); 4543 rcu_barrier_trace(TPS("OnlineQ"), cpu, rcu_state.barrier_sequence); 4544 } 4545 4546 /* 4547 * Now that we have an rcu_barrier_callback() callback on each 4548 * CPU, and thus each counted, remove the initial count. 4549 */ 4550 if (atomic_sub_and_test(2, &rcu_state.barrier_cpu_count)) 4551 complete(&rcu_state.barrier_completion); 4552 4553 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */ 4554 wait_for_completion(&rcu_state.barrier_completion); 4555 4556 /* Mark the end of the barrier operation. */ 4557 rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence); 4558 rcu_seq_end(&rcu_state.barrier_sequence); 4559 gseq = rcu_state.barrier_sequence; 4560 for_each_possible_cpu(cpu) { 4561 rdp = per_cpu_ptr(&rcu_data, cpu); 4562 4563 WRITE_ONCE(rdp->barrier_seq_snap, gseq); 4564 } 4565 4566 /* Other rcu_barrier() invocations can now safely proceed. */ 4567 mutex_unlock(&rcu_state.barrier_mutex); 4568 } 4569 EXPORT_SYMBOL_GPL(rcu_barrier); 4570 4571 static unsigned long rcu_barrier_last_throttle; 4572 4573 /** 4574 * rcu_barrier_throttled - Do rcu_barrier(), but limit to one per second 4575 * 4576 * This can be thought of as guard rails around rcu_barrier() that 4577 * permits unrestricted userspace use, at least assuming the hardware's 4578 * try_cmpxchg() is robust. There will be at most one call per second to 4579 * rcu_barrier() system-wide from use of this function, which means that 4580 * callers might needlessly wait a second or three. 4581 * 4582 * This is intended for use by test suites to avoid OOM by flushing RCU 4583 * callbacks from the previous test before starting the next. See the 4584 * rcutree.do_rcu_barrier module parameter for more information. 4585 * 4586 * Why not simply make rcu_barrier() more scalable? That might be 4587 * the eventual endpoint, but let's keep it simple for the time being. 4588 * Note that the module parameter infrastructure serializes calls to a 4589 * given .set() function, but should concurrent .set() invocation ever be 4590 * possible, we are ready! 4591 */ 4592 static void rcu_barrier_throttled(void) 4593 { 4594 unsigned long j = jiffies; 4595 unsigned long old = READ_ONCE(rcu_barrier_last_throttle); 4596 unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence); 4597 4598 while (time_in_range(j, old, old + HZ / 16) || 4599 !try_cmpxchg(&rcu_barrier_last_throttle, &old, j)) { 4600 schedule_timeout_idle(HZ / 16); 4601 if (rcu_seq_done(&rcu_state.barrier_sequence, s)) { 4602 smp_mb(); /* caller's subsequent code after above check. */ 4603 return; 4604 } 4605 j = jiffies; 4606 old = READ_ONCE(rcu_barrier_last_throttle); 4607 } 4608 rcu_barrier(); 4609 } 4610 4611 /* 4612 * Invoke rcu_barrier_throttled() when a rcutree.do_rcu_barrier 4613 * request arrives. We insist on a true value to allow for possible 4614 * future expansion. 4615 */ 4616 static int param_set_do_rcu_barrier(const char *val, const struct kernel_param *kp) 4617 { 4618 bool b; 4619 int ret; 4620 4621 if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING) 4622 return -EAGAIN; 4623 ret = kstrtobool(val, &b); 4624 if (!ret && b) { 4625 atomic_inc((atomic_t *)kp->arg); 4626 rcu_barrier_throttled(); 4627 atomic_dec((atomic_t *)kp->arg); 4628 } 4629 return ret; 4630 } 4631 4632 /* 4633 * Output the number of outstanding rcutree.do_rcu_barrier requests. 4634 */ 4635 static int param_get_do_rcu_barrier(char *buffer, const struct kernel_param *kp) 4636 { 4637 return sprintf(buffer, "%d\n", atomic_read((atomic_t *)kp->arg)); 4638 } 4639 4640 static const struct kernel_param_ops do_rcu_barrier_ops = { 4641 .set = param_set_do_rcu_barrier, 4642 .get = param_get_do_rcu_barrier, 4643 }; 4644 static atomic_t do_rcu_barrier; 4645 module_param_cb(do_rcu_barrier, &do_rcu_barrier_ops, &do_rcu_barrier, 0644); 4646 4647 /* 4648 * Compute the mask of online CPUs for the specified rcu_node structure. 4649 * This will not be stable unless the rcu_node structure's ->lock is 4650 * held, but the bit corresponding to the current CPU will be stable 4651 * in most contexts. 4652 */ 4653 static unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp) 4654 { 4655 return READ_ONCE(rnp->qsmaskinitnext); 4656 } 4657 4658 /* 4659 * Is the CPU corresponding to the specified rcu_data structure online 4660 * from RCU's perspective? This perspective is given by that structure's 4661 * ->qsmaskinitnext field rather than by the global cpu_online_mask. 4662 */ 4663 static bool rcu_rdp_cpu_online(struct rcu_data *rdp) 4664 { 4665 return !!(rdp->grpmask & rcu_rnp_online_cpus(rdp->mynode)); 4666 } 4667 4668 bool rcu_cpu_online(int cpu) 4669 { 4670 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4671 4672 return rcu_rdp_cpu_online(rdp); 4673 } 4674 4675 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) 4676 4677 /* 4678 * Is the current CPU online as far as RCU is concerned? 4679 * 4680 * Disable preemption to avoid false positives that could otherwise 4681 * happen due to the current CPU number being sampled, this task being 4682 * preempted, its old CPU being taken offline, resuming on some other CPU, 4683 * then determining that its old CPU is now offline. 4684 * 4685 * Disable checking if in an NMI handler because we cannot safely 4686 * report errors from NMI handlers anyway. In addition, it is OK to use 4687 * RCU on an offline processor during initial boot, hence the check for 4688 * rcu_scheduler_fully_active. 4689 */ 4690 bool rcu_lockdep_current_cpu_online(void) 4691 { 4692 struct rcu_data *rdp; 4693 bool ret = false; 4694 4695 if (in_nmi() || !rcu_scheduler_fully_active) 4696 return true; 4697 preempt_disable_notrace(); 4698 rdp = this_cpu_ptr(&rcu_data); 4699 /* 4700 * Strictly, we care here about the case where the current CPU is 4701 * in rcutree_report_cpu_starting() and thus has an excuse for rdp->grpmask 4702 * not being up to date. So arch_spin_is_locked() might have a 4703 * false positive if it's held by some *other* CPU, but that's 4704 * OK because that just means a false *negative* on the warning. 4705 */ 4706 if (rcu_rdp_cpu_online(rdp) || arch_spin_is_locked(&rcu_state.ofl_lock)) 4707 ret = true; 4708 preempt_enable_notrace(); 4709 return ret; 4710 } 4711 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online); 4712 4713 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */ 4714 4715 // Has rcu_init() been invoked? This is used (for example) to determine 4716 // whether spinlocks may be acquired safely. 4717 static bool rcu_init_invoked(void) 4718 { 4719 return !!READ_ONCE(rcu_state.n_online_cpus); 4720 } 4721 4722 /* 4723 * All CPUs for the specified rcu_node structure have gone offline, 4724 * and all tasks that were preempted within an RCU read-side critical 4725 * section while running on one of those CPUs have since exited their RCU 4726 * read-side critical section. Some other CPU is reporting this fact with 4727 * the specified rcu_node structure's ->lock held and interrupts disabled. 4728 * This function therefore goes up the tree of rcu_node structures, 4729 * clearing the corresponding bits in the ->qsmaskinit fields. Note that 4730 * the leaf rcu_node structure's ->qsmaskinit field has already been 4731 * updated. 4732 * 4733 * This function does check that the specified rcu_node structure has 4734 * all CPUs offline and no blocked tasks, so it is OK to invoke it 4735 * prematurely. That said, invoking it after the fact will cost you 4736 * a needless lock acquisition. So once it has done its work, don't 4737 * invoke it again. 4738 */ 4739 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf) 4740 { 4741 long mask; 4742 struct rcu_node *rnp = rnp_leaf; 4743 4744 raw_lockdep_assert_held_rcu_node(rnp_leaf); 4745 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || 4746 WARN_ON_ONCE(rnp_leaf->qsmaskinit) || 4747 WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf))) 4748 return; 4749 for (;;) { 4750 mask = rnp->grpmask; 4751 rnp = rnp->parent; 4752 if (!rnp) 4753 break; 4754 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 4755 rnp->qsmaskinit &= ~mask; 4756 /* Between grace periods, so better already be zero! */ 4757 WARN_ON_ONCE(rnp->qsmask); 4758 if (rnp->qsmaskinit) { 4759 raw_spin_unlock_rcu_node(rnp); 4760 /* irqs remain disabled. */ 4761 return; 4762 } 4763 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 4764 } 4765 } 4766 4767 /* 4768 * Propagate ->qsinitmask bits up the rcu_node tree to account for the 4769 * first CPU in a given leaf rcu_node structure coming online. The caller 4770 * must hold the corresponding leaf rcu_node ->lock with interrupts 4771 * disabled. 4772 */ 4773 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf) 4774 { 4775 long mask; 4776 long oldmask; 4777 struct rcu_node *rnp = rnp_leaf; 4778 4779 raw_lockdep_assert_held_rcu_node(rnp_leaf); 4780 WARN_ON_ONCE(rnp->wait_blkd_tasks); 4781 for (;;) { 4782 mask = rnp->grpmask; 4783 rnp = rnp->parent; 4784 if (rnp == NULL) 4785 return; 4786 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */ 4787 oldmask = rnp->qsmaskinit; 4788 rnp->qsmaskinit |= mask; 4789 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */ 4790 if (oldmask) 4791 return; 4792 } 4793 } 4794 4795 /* 4796 * Do boot-time initialization of a CPU's per-CPU RCU data. 4797 */ 4798 static void __init 4799 rcu_boot_init_percpu_data(int cpu) 4800 { 4801 struct context_tracking *ct = this_cpu_ptr(&context_tracking); 4802 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4803 4804 /* Set up local state, ensuring consistent view of global state. */ 4805 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu); 4806 INIT_WORK(&rdp->strict_work, strict_work_handler); 4807 WARN_ON_ONCE(ct->dynticks_nesting != 1); 4808 WARN_ON_ONCE(rcu_dynticks_in_eqs(ct_dynticks_cpu(cpu))); 4809 rdp->barrier_seq_snap = rcu_state.barrier_sequence; 4810 rdp->rcu_ofl_gp_seq = rcu_state.gp_seq; 4811 rdp->rcu_ofl_gp_state = RCU_GP_CLEANED; 4812 rdp->rcu_onl_gp_seq = rcu_state.gp_seq; 4813 rdp->rcu_onl_gp_state = RCU_GP_CLEANED; 4814 rdp->last_sched_clock = jiffies; 4815 rdp->cpu = cpu; 4816 rcu_boot_init_nocb_percpu_data(rdp); 4817 } 4818 4819 struct kthread_worker *rcu_exp_gp_kworker; 4820 4821 static void rcu_spawn_exp_par_gp_kworker(struct rcu_node *rnp) 4822 { 4823 struct kthread_worker *kworker; 4824 const char *name = "rcu_exp_par_gp_kthread_worker/%d"; 4825 struct sched_param param = { .sched_priority = kthread_prio }; 4826 int rnp_index = rnp - rcu_get_root(); 4827 4828 if (rnp->exp_kworker) 4829 return; 4830 4831 kworker = kthread_create_worker(0, name, rnp_index); 4832 if (IS_ERR_OR_NULL(kworker)) { 4833 pr_err("Failed to create par gp kworker on %d/%d\n", 4834 rnp->grplo, rnp->grphi); 4835 return; 4836 } 4837 WRITE_ONCE(rnp->exp_kworker, kworker); 4838 4839 if (IS_ENABLED(CONFIG_RCU_EXP_KTHREAD)) 4840 sched_setscheduler_nocheck(kworker->task, SCHED_FIFO, ¶m); 4841 } 4842 4843 static struct task_struct *rcu_exp_par_gp_task(struct rcu_node *rnp) 4844 { 4845 struct kthread_worker *kworker = READ_ONCE(rnp->exp_kworker); 4846 4847 if (!kworker) 4848 return NULL; 4849 4850 return kworker->task; 4851 } 4852 4853 static void __init rcu_start_exp_gp_kworker(void) 4854 { 4855 const char *name = "rcu_exp_gp_kthread_worker"; 4856 struct sched_param param = { .sched_priority = kthread_prio }; 4857 4858 rcu_exp_gp_kworker = kthread_create_worker(0, name); 4859 if (IS_ERR_OR_NULL(rcu_exp_gp_kworker)) { 4860 pr_err("Failed to create %s!\n", name); 4861 rcu_exp_gp_kworker = NULL; 4862 return; 4863 } 4864 4865 if (IS_ENABLED(CONFIG_RCU_EXP_KTHREAD)) 4866 sched_setscheduler_nocheck(rcu_exp_gp_kworker->task, SCHED_FIFO, ¶m); 4867 } 4868 4869 static void rcu_spawn_rnp_kthreads(struct rcu_node *rnp) 4870 { 4871 if (rcu_scheduler_fully_active) { 4872 mutex_lock(&rnp->kthread_mutex); 4873 rcu_spawn_one_boost_kthread(rnp); 4874 rcu_spawn_exp_par_gp_kworker(rnp); 4875 mutex_unlock(&rnp->kthread_mutex); 4876 } 4877 } 4878 4879 /* 4880 * Invoked early in the CPU-online process, when pretty much all services 4881 * are available. The incoming CPU is not present. 4882 * 4883 * Initializes a CPU's per-CPU RCU data. Note that only one online or 4884 * offline event can be happening at a given time. Note also that we can 4885 * accept some slop in the rsp->gp_seq access due to the fact that this 4886 * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet. 4887 * And any offloaded callbacks are being numbered elsewhere. 4888 */ 4889 int rcutree_prepare_cpu(unsigned int cpu) 4890 { 4891 unsigned long flags; 4892 struct context_tracking *ct = per_cpu_ptr(&context_tracking, cpu); 4893 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4894 struct rcu_node *rnp = rcu_get_root(); 4895 4896 /* Set up local state, ensuring consistent view of global state. */ 4897 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4898 rdp->qlen_last_fqs_check = 0; 4899 rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs); 4900 rdp->blimit = blimit; 4901 ct->dynticks_nesting = 1; /* CPU not up, no tearing. */ 4902 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 4903 4904 /* 4905 * Only non-NOCB CPUs that didn't have early-boot callbacks need to be 4906 * (re-)initialized. 4907 */ 4908 if (!rcu_segcblist_is_enabled(&rdp->cblist)) 4909 rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */ 4910 4911 /* 4912 * Add CPU to leaf rcu_node pending-online bitmask. Any needed 4913 * propagation up the rcu_node tree will happen at the beginning 4914 * of the next grace period. 4915 */ 4916 rnp = rdp->mynode; 4917 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 4918 rdp->gp_seq = READ_ONCE(rnp->gp_seq); 4919 rdp->gp_seq_needed = rdp->gp_seq; 4920 rdp->cpu_no_qs.b.norm = true; 4921 rdp->core_needs_qs = false; 4922 rdp->rcu_iw_pending = false; 4923 rdp->rcu_iw = IRQ_WORK_INIT_HARD(rcu_iw_handler); 4924 rdp->rcu_iw_gp_seq = rdp->gp_seq - 1; 4925 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl")); 4926 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4927 rcu_spawn_rnp_kthreads(rnp); 4928 rcu_spawn_cpu_nocb_kthread(cpu); 4929 ASSERT_EXCLUSIVE_WRITER(rcu_state.n_online_cpus); 4930 WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus + 1); 4931 4932 return 0; 4933 } 4934 4935 /* 4936 * Update kthreads affinity during CPU-hotplug changes. 4937 * 4938 * Set the per-rcu_node kthread's affinity to cover all CPUs that are 4939 * served by the rcu_node in question. The CPU hotplug lock is still 4940 * held, so the value of rnp->qsmaskinit will be stable. 4941 * 4942 * We don't include outgoingcpu in the affinity set, use -1 if there is 4943 * no outgoing CPU. If there are no CPUs left in the affinity set, 4944 * this function allows the kthread to execute on any CPU. 4945 * 4946 * Any future concurrent calls are serialized via ->kthread_mutex. 4947 */ 4948 static void rcutree_affinity_setting(unsigned int cpu, int outgoingcpu) 4949 { 4950 cpumask_var_t cm; 4951 unsigned long mask; 4952 struct rcu_data *rdp; 4953 struct rcu_node *rnp; 4954 struct task_struct *task_boost, *task_exp; 4955 4956 rdp = per_cpu_ptr(&rcu_data, cpu); 4957 rnp = rdp->mynode; 4958 4959 task_boost = rcu_boost_task(rnp); 4960 task_exp = rcu_exp_par_gp_task(rnp); 4961 4962 /* 4963 * If CPU is the boot one, those tasks are created later from early 4964 * initcall since kthreadd must be created first. 4965 */ 4966 if (!task_boost && !task_exp) 4967 return; 4968 4969 if (!zalloc_cpumask_var(&cm, GFP_KERNEL)) 4970 return; 4971 4972 mutex_lock(&rnp->kthread_mutex); 4973 mask = rcu_rnp_online_cpus(rnp); 4974 for_each_leaf_node_possible_cpu(rnp, cpu) 4975 if ((mask & leaf_node_cpu_bit(rnp, cpu)) && 4976 cpu != outgoingcpu) 4977 cpumask_set_cpu(cpu, cm); 4978 cpumask_and(cm, cm, housekeeping_cpumask(HK_TYPE_RCU)); 4979 if (cpumask_empty(cm)) { 4980 cpumask_copy(cm, housekeeping_cpumask(HK_TYPE_RCU)); 4981 if (outgoingcpu >= 0) 4982 cpumask_clear_cpu(outgoingcpu, cm); 4983 } 4984 4985 if (task_exp) 4986 set_cpus_allowed_ptr(task_exp, cm); 4987 4988 if (task_boost) 4989 set_cpus_allowed_ptr(task_boost, cm); 4990 4991 mutex_unlock(&rnp->kthread_mutex); 4992 4993 free_cpumask_var(cm); 4994 } 4995 4996 /* 4997 * Has the specified (known valid) CPU ever been fully online? 4998 */ 4999 bool rcu_cpu_beenfullyonline(int cpu) 5000 { 5001 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 5002 5003 return smp_load_acquire(&rdp->beenonline); 5004 } 5005 5006 /* 5007 * Near the end of the CPU-online process. Pretty much all services 5008 * enabled, and the CPU is now very much alive. 5009 */ 5010 int rcutree_online_cpu(unsigned int cpu) 5011 { 5012 unsigned long flags; 5013 struct rcu_data *rdp; 5014 struct rcu_node *rnp; 5015 5016 rdp = per_cpu_ptr(&rcu_data, cpu); 5017 rnp = rdp->mynode; 5018 raw_spin_lock_irqsave_rcu_node(rnp, flags); 5019 rnp->ffmask |= rdp->grpmask; 5020 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 5021 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE) 5022 return 0; /* Too early in boot for scheduler work. */ 5023 sync_sched_exp_online_cleanup(cpu); 5024 rcutree_affinity_setting(cpu, -1); 5025 5026 // Stop-machine done, so allow nohz_full to disable tick. 5027 tick_dep_clear(TICK_DEP_BIT_RCU); 5028 return 0; 5029 } 5030 5031 /* 5032 * Mark the specified CPU as being online so that subsequent grace periods 5033 * (both expedited and normal) will wait on it. Note that this means that 5034 * incoming CPUs are not allowed to use RCU read-side critical sections 5035 * until this function is called. Failing to observe this restriction 5036 * will result in lockdep splats. 5037 * 5038 * Note that this function is special in that it is invoked directly 5039 * from the incoming CPU rather than from the cpuhp_step mechanism. 5040 * This is because this function must be invoked at a precise location. 5041 * This incoming CPU must not have enabled interrupts yet. 5042 * 5043 * This mirrors the effects of rcutree_report_cpu_dead(). 5044 */ 5045 void rcutree_report_cpu_starting(unsigned int cpu) 5046 { 5047 unsigned long mask; 5048 struct rcu_data *rdp; 5049 struct rcu_node *rnp; 5050 bool newcpu; 5051 5052 lockdep_assert_irqs_disabled(); 5053 rdp = per_cpu_ptr(&rcu_data, cpu); 5054 if (rdp->cpu_started) 5055 return; 5056 rdp->cpu_started = true; 5057 5058 rnp = rdp->mynode; 5059 mask = rdp->grpmask; 5060 arch_spin_lock(&rcu_state.ofl_lock); 5061 rcu_dynticks_eqs_online(); 5062 raw_spin_lock(&rcu_state.barrier_lock); 5063 raw_spin_lock_rcu_node(rnp); 5064 WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext | mask); 5065 raw_spin_unlock(&rcu_state.barrier_lock); 5066 newcpu = !(rnp->expmaskinitnext & mask); 5067 rnp->expmaskinitnext |= mask; 5068 /* Allow lockless access for expedited grace periods. */ 5069 smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + newcpu); /* ^^^ */ 5070 ASSERT_EXCLUSIVE_WRITER(rcu_state.ncpus); 5071 rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */ 5072 rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq); 5073 rdp->rcu_onl_gp_state = READ_ONCE(rcu_state.gp_state); 5074 5075 /* An incoming CPU should never be blocking a grace period. */ 5076 if (WARN_ON_ONCE(rnp->qsmask & mask)) { /* RCU waiting on incoming CPU? */ 5077 /* rcu_report_qs_rnp() *really* wants some flags to restore */ 5078 unsigned long flags; 5079 5080 local_irq_save(flags); 5081 rcu_disable_urgency_upon_qs(rdp); 5082 /* Report QS -after- changing ->qsmaskinitnext! */ 5083 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 5084 } else { 5085 raw_spin_unlock_rcu_node(rnp); 5086 } 5087 arch_spin_unlock(&rcu_state.ofl_lock); 5088 smp_store_release(&rdp->beenonline, true); 5089 smp_mb(); /* Ensure RCU read-side usage follows above initialization. */ 5090 } 5091 5092 /* 5093 * The outgoing function has no further need of RCU, so remove it from 5094 * the rcu_node tree's ->qsmaskinitnext bit masks. 5095 * 5096 * Note that this function is special in that it is invoked directly 5097 * from the outgoing CPU rather than from the cpuhp_step mechanism. 5098 * This is because this function must be invoked at a precise location. 5099 * 5100 * This mirrors the effect of rcutree_report_cpu_starting(). 5101 */ 5102 void rcutree_report_cpu_dead(void) 5103 { 5104 unsigned long flags; 5105 unsigned long mask; 5106 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 5107 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ 5108 5109 /* 5110 * IRQS must be disabled from now on and until the CPU dies, or an interrupt 5111 * may introduce a new READ-side while it is actually off the QS masks. 5112 */ 5113 lockdep_assert_irqs_disabled(); 5114 // Do any dangling deferred wakeups. 5115 do_nocb_deferred_wakeup(rdp); 5116 5117 rcu_preempt_deferred_qs(current); 5118 5119 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */ 5120 mask = rdp->grpmask; 5121 arch_spin_lock(&rcu_state.ofl_lock); 5122 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */ 5123 rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq); 5124 rdp->rcu_ofl_gp_state = READ_ONCE(rcu_state.gp_state); 5125 if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */ 5126 /* Report quiescent state -before- changing ->qsmaskinitnext! */ 5127 rcu_disable_urgency_upon_qs(rdp); 5128 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 5129 raw_spin_lock_irqsave_rcu_node(rnp, flags); 5130 } 5131 WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext & ~mask); 5132 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 5133 arch_spin_unlock(&rcu_state.ofl_lock); 5134 rdp->cpu_started = false; 5135 } 5136 5137 #ifdef CONFIG_HOTPLUG_CPU 5138 /* 5139 * The outgoing CPU has just passed through the dying-idle state, and we 5140 * are being invoked from the CPU that was IPIed to continue the offline 5141 * operation. Migrate the outgoing CPU's callbacks to the current CPU. 5142 */ 5143 void rcutree_migrate_callbacks(int cpu) 5144 { 5145 unsigned long flags; 5146 struct rcu_data *my_rdp; 5147 struct rcu_node *my_rnp; 5148 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 5149 bool needwake; 5150 5151 if (rcu_rdp_is_offloaded(rdp)) 5152 return; 5153 5154 raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags); 5155 if (rcu_segcblist_empty(&rdp->cblist)) { 5156 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags); 5157 return; /* No callbacks to migrate. */ 5158 } 5159 5160 WARN_ON_ONCE(rcu_rdp_cpu_online(rdp)); 5161 rcu_barrier_entrain(rdp); 5162 my_rdp = this_cpu_ptr(&rcu_data); 5163 my_rnp = my_rdp->mynode; 5164 rcu_nocb_lock(my_rdp); /* irqs already disabled. */ 5165 WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies, false)); 5166 raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */ 5167 /* Leverage recent GPs and set GP for new callbacks. */ 5168 needwake = rcu_advance_cbs(my_rnp, rdp) || 5169 rcu_advance_cbs(my_rnp, my_rdp); 5170 rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist); 5171 raw_spin_unlock(&rcu_state.barrier_lock); /* irqs remain disabled. */ 5172 needwake = needwake || rcu_advance_cbs(my_rnp, my_rdp); 5173 rcu_segcblist_disable(&rdp->cblist); 5174 WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) != !rcu_segcblist_n_cbs(&my_rdp->cblist)); 5175 check_cb_ovld_locked(my_rdp, my_rnp); 5176 if (rcu_rdp_is_offloaded(my_rdp)) { 5177 raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */ 5178 __call_rcu_nocb_wake(my_rdp, true, flags); 5179 } else { 5180 rcu_nocb_unlock(my_rdp); /* irqs remain disabled. */ 5181 raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */ 5182 } 5183 local_irq_restore(flags); 5184 if (needwake) 5185 rcu_gp_kthread_wake(); 5186 lockdep_assert_irqs_enabled(); 5187 WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 || 5188 !rcu_segcblist_empty(&rdp->cblist), 5189 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n", 5190 cpu, rcu_segcblist_n_cbs(&rdp->cblist), 5191 rcu_segcblist_first_cb(&rdp->cblist)); 5192 } 5193 5194 /* 5195 * The CPU has been completely removed, and some other CPU is reporting 5196 * this fact from process context. Do the remainder of the cleanup. 5197 * There can only be one CPU hotplug operation at a time, so no need for 5198 * explicit locking. 5199 */ 5200 int rcutree_dead_cpu(unsigned int cpu) 5201 { 5202 ASSERT_EXCLUSIVE_WRITER(rcu_state.n_online_cpus); 5203 WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus - 1); 5204 // Stop-machine done, so allow nohz_full to disable tick. 5205 tick_dep_clear(TICK_DEP_BIT_RCU); 5206 return 0; 5207 } 5208 5209 /* 5210 * Near the end of the offline process. Trace the fact that this CPU 5211 * is going offline. 5212 */ 5213 int rcutree_dying_cpu(unsigned int cpu) 5214 { 5215 bool blkd; 5216 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 5217 struct rcu_node *rnp = rdp->mynode; 5218 5219 blkd = !!(READ_ONCE(rnp->qsmask) & rdp->grpmask); 5220 trace_rcu_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq), 5221 blkd ? TPS("cpuofl-bgp") : TPS("cpuofl")); 5222 return 0; 5223 } 5224 5225 /* 5226 * Near the beginning of the process. The CPU is still very much alive 5227 * with pretty much all services enabled. 5228 */ 5229 int rcutree_offline_cpu(unsigned int cpu) 5230 { 5231 unsigned long flags; 5232 struct rcu_data *rdp; 5233 struct rcu_node *rnp; 5234 5235 rdp = per_cpu_ptr(&rcu_data, cpu); 5236 rnp = rdp->mynode; 5237 raw_spin_lock_irqsave_rcu_node(rnp, flags); 5238 rnp->ffmask &= ~rdp->grpmask; 5239 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 5240 5241 rcutree_affinity_setting(cpu, cpu); 5242 5243 // nohz_full CPUs need the tick for stop-machine to work quickly 5244 tick_dep_set(TICK_DEP_BIT_RCU); 5245 return 0; 5246 } 5247 #endif /* #ifdef CONFIG_HOTPLUG_CPU */ 5248 5249 /* 5250 * On non-huge systems, use expedited RCU grace periods to make suspend 5251 * and hibernation run faster. 5252 */ 5253 static int rcu_pm_notify(struct notifier_block *self, 5254 unsigned long action, void *hcpu) 5255 { 5256 switch (action) { 5257 case PM_HIBERNATION_PREPARE: 5258 case PM_SUSPEND_PREPARE: 5259 rcu_async_hurry(); 5260 rcu_expedite_gp(); 5261 break; 5262 case PM_POST_HIBERNATION: 5263 case PM_POST_SUSPEND: 5264 rcu_unexpedite_gp(); 5265 rcu_async_relax(); 5266 break; 5267 default: 5268 break; 5269 } 5270 return NOTIFY_OK; 5271 } 5272 5273 /* 5274 * Spawn the kthreads that handle RCU's grace periods. 5275 */ 5276 static int __init rcu_spawn_gp_kthread(void) 5277 { 5278 unsigned long flags; 5279 struct rcu_node *rnp; 5280 struct sched_param sp; 5281 struct task_struct *t; 5282 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 5283 5284 rcu_scheduler_fully_active = 1; 5285 t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name); 5286 if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__)) 5287 return 0; 5288 if (kthread_prio) { 5289 sp.sched_priority = kthread_prio; 5290 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 5291 } 5292 rnp = rcu_get_root(); 5293 raw_spin_lock_irqsave_rcu_node(rnp, flags); 5294 WRITE_ONCE(rcu_state.gp_activity, jiffies); 5295 WRITE_ONCE(rcu_state.gp_req_activity, jiffies); 5296 // Reset .gp_activity and .gp_req_activity before setting .gp_kthread. 5297 smp_store_release(&rcu_state.gp_kthread, t); /* ^^^ */ 5298 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 5299 wake_up_process(t); 5300 /* This is a pre-SMP initcall, we expect a single CPU */ 5301 WARN_ON(num_online_cpus() > 1); 5302 /* 5303 * Those kthreads couldn't be created on rcu_init() -> rcutree_prepare_cpu() 5304 * due to rcu_scheduler_fully_active. 5305 */ 5306 rcu_spawn_cpu_nocb_kthread(smp_processor_id()); 5307 rcu_spawn_rnp_kthreads(rdp->mynode); 5308 rcu_spawn_core_kthreads(); 5309 /* Create kthread worker for expedited GPs */ 5310 rcu_start_exp_gp_kworker(); 5311 return 0; 5312 } 5313 early_initcall(rcu_spawn_gp_kthread); 5314 5315 /* 5316 * This function is invoked towards the end of the scheduler's 5317 * initialization process. Before this is called, the idle task might 5318 * contain synchronous grace-period primitives (during which time, this idle 5319 * task is booting the system, and such primitives are no-ops). After this 5320 * function is called, any synchronous grace-period primitives are run as 5321 * expedited, with the requesting task driving the grace period forward. 5322 * A later core_initcall() rcu_set_runtime_mode() will switch to full 5323 * runtime RCU functionality. 5324 */ 5325 void rcu_scheduler_starting(void) 5326 { 5327 unsigned long flags; 5328 struct rcu_node *rnp; 5329 5330 WARN_ON(num_online_cpus() != 1); 5331 WARN_ON(nr_context_switches() > 0); 5332 rcu_test_sync_prims(); 5333 5334 // Fix up the ->gp_seq counters. 5335 local_irq_save(flags); 5336 rcu_for_each_node_breadth_first(rnp) 5337 rnp->gp_seq_needed = rnp->gp_seq = rcu_state.gp_seq; 5338 local_irq_restore(flags); 5339 5340 // Switch out of early boot mode. 5341 rcu_scheduler_active = RCU_SCHEDULER_INIT; 5342 rcu_test_sync_prims(); 5343 } 5344 5345 /* 5346 * Helper function for rcu_init() that initializes the rcu_state structure. 5347 */ 5348 static void __init rcu_init_one(void) 5349 { 5350 static const char * const buf[] = RCU_NODE_NAME_INIT; 5351 static const char * const fqs[] = RCU_FQS_NAME_INIT; 5352 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS]; 5353 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS]; 5354 5355 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */ 5356 int cpustride = 1; 5357 int i; 5358 int j; 5359 struct rcu_node *rnp; 5360 5361 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */ 5362 5363 /* Silence gcc 4.8 false positive about array index out of range. */ 5364 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS) 5365 panic("rcu_init_one: rcu_num_lvls out of range"); 5366 5367 /* Initialize the level-tracking arrays. */ 5368 5369 for (i = 1; i < rcu_num_lvls; i++) 5370 rcu_state.level[i] = 5371 rcu_state.level[i - 1] + num_rcu_lvl[i - 1]; 5372 rcu_init_levelspread(levelspread, num_rcu_lvl); 5373 5374 /* Initialize the elements themselves, starting from the leaves. */ 5375 5376 for (i = rcu_num_lvls - 1; i >= 0; i--) { 5377 cpustride *= levelspread[i]; 5378 rnp = rcu_state.level[i]; 5379 for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) { 5380 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock)); 5381 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock), 5382 &rcu_node_class[i], buf[i]); 5383 raw_spin_lock_init(&rnp->fqslock); 5384 lockdep_set_class_and_name(&rnp->fqslock, 5385 &rcu_fqs_class[i], fqs[i]); 5386 rnp->gp_seq = rcu_state.gp_seq; 5387 rnp->gp_seq_needed = rcu_state.gp_seq; 5388 rnp->completedqs = rcu_state.gp_seq; 5389 rnp->qsmask = 0; 5390 rnp->qsmaskinit = 0; 5391 rnp->grplo = j * cpustride; 5392 rnp->grphi = (j + 1) * cpustride - 1; 5393 if (rnp->grphi >= nr_cpu_ids) 5394 rnp->grphi = nr_cpu_ids - 1; 5395 if (i == 0) { 5396 rnp->grpnum = 0; 5397 rnp->grpmask = 0; 5398 rnp->parent = NULL; 5399 } else { 5400 rnp->grpnum = j % levelspread[i - 1]; 5401 rnp->grpmask = BIT(rnp->grpnum); 5402 rnp->parent = rcu_state.level[i - 1] + 5403 j / levelspread[i - 1]; 5404 } 5405 rnp->level = i; 5406 INIT_LIST_HEAD(&rnp->blkd_tasks); 5407 rcu_init_one_nocb(rnp); 5408 init_waitqueue_head(&rnp->exp_wq[0]); 5409 init_waitqueue_head(&rnp->exp_wq[1]); 5410 init_waitqueue_head(&rnp->exp_wq[2]); 5411 init_waitqueue_head(&rnp->exp_wq[3]); 5412 spin_lock_init(&rnp->exp_lock); 5413 mutex_init(&rnp->kthread_mutex); 5414 raw_spin_lock_init(&rnp->exp_poll_lock); 5415 rnp->exp_seq_poll_rq = RCU_GET_STATE_COMPLETED; 5416 INIT_WORK(&rnp->exp_poll_wq, sync_rcu_do_polled_gp); 5417 } 5418 } 5419 5420 init_swait_queue_head(&rcu_state.gp_wq); 5421 init_swait_queue_head(&rcu_state.expedited_wq); 5422 rnp = rcu_first_leaf_node(); 5423 for_each_possible_cpu(i) { 5424 while (i > rnp->grphi) 5425 rnp++; 5426 per_cpu_ptr(&rcu_data, i)->mynode = rnp; 5427 rcu_boot_init_percpu_data(i); 5428 } 5429 } 5430 5431 /* 5432 * Force priority from the kernel command-line into range. 5433 */ 5434 static void __init sanitize_kthread_prio(void) 5435 { 5436 int kthread_prio_in = kthread_prio; 5437 5438 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2 5439 && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST)) 5440 kthread_prio = 2; 5441 else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1) 5442 kthread_prio = 1; 5443 else if (kthread_prio < 0) 5444 kthread_prio = 0; 5445 else if (kthread_prio > 99) 5446 kthread_prio = 99; 5447 5448 if (kthread_prio != kthread_prio_in) 5449 pr_alert("%s: Limited prio to %d from %d\n", 5450 __func__, kthread_prio, kthread_prio_in); 5451 } 5452 5453 /* 5454 * Compute the rcu_node tree geometry from kernel parameters. This cannot 5455 * replace the definitions in tree.h because those are needed to size 5456 * the ->node array in the rcu_state structure. 5457 */ 5458 void rcu_init_geometry(void) 5459 { 5460 ulong d; 5461 int i; 5462 static unsigned long old_nr_cpu_ids; 5463 int rcu_capacity[RCU_NUM_LVLS]; 5464 static bool initialized; 5465 5466 if (initialized) { 5467 /* 5468 * Warn if setup_nr_cpu_ids() had not yet been invoked, 5469 * unless nr_cpus_ids == NR_CPUS, in which case who cares? 5470 */ 5471 WARN_ON_ONCE(old_nr_cpu_ids != nr_cpu_ids); 5472 return; 5473 } 5474 5475 old_nr_cpu_ids = nr_cpu_ids; 5476 initialized = true; 5477 5478 /* 5479 * Initialize any unspecified boot parameters. 5480 * The default values of jiffies_till_first_fqs and 5481 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS 5482 * value, which is a function of HZ, then adding one for each 5483 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system. 5484 */ 5485 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; 5486 if (jiffies_till_first_fqs == ULONG_MAX) 5487 jiffies_till_first_fqs = d; 5488 if (jiffies_till_next_fqs == ULONG_MAX) 5489 jiffies_till_next_fqs = d; 5490 adjust_jiffies_till_sched_qs(); 5491 5492 /* If the compile-time values are accurate, just leave. */ 5493 if (rcu_fanout_leaf == RCU_FANOUT_LEAF && 5494 nr_cpu_ids == NR_CPUS) 5495 return; 5496 pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n", 5497 rcu_fanout_leaf, nr_cpu_ids); 5498 5499 /* 5500 * The boot-time rcu_fanout_leaf parameter must be at least two 5501 * and cannot exceed the number of bits in the rcu_node masks. 5502 * Complain and fall back to the compile-time values if this 5503 * limit is exceeded. 5504 */ 5505 if (rcu_fanout_leaf < 2 || 5506 rcu_fanout_leaf > sizeof(unsigned long) * 8) { 5507 rcu_fanout_leaf = RCU_FANOUT_LEAF; 5508 WARN_ON(1); 5509 return; 5510 } 5511 5512 /* 5513 * Compute number of nodes that can be handled an rcu_node tree 5514 * with the given number of levels. 5515 */ 5516 rcu_capacity[0] = rcu_fanout_leaf; 5517 for (i = 1; i < RCU_NUM_LVLS; i++) 5518 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT; 5519 5520 /* 5521 * The tree must be able to accommodate the configured number of CPUs. 5522 * If this limit is exceeded, fall back to the compile-time values. 5523 */ 5524 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) { 5525 rcu_fanout_leaf = RCU_FANOUT_LEAF; 5526 WARN_ON(1); 5527 return; 5528 } 5529 5530 /* Calculate the number of levels in the tree. */ 5531 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) { 5532 } 5533 rcu_num_lvls = i + 1; 5534 5535 /* Calculate the number of rcu_nodes at each level of the tree. */ 5536 for (i = 0; i < rcu_num_lvls; i++) { 5537 int cap = rcu_capacity[(rcu_num_lvls - 1) - i]; 5538 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap); 5539 } 5540 5541 /* Calculate the total number of rcu_node structures. */ 5542 rcu_num_nodes = 0; 5543 for (i = 0; i < rcu_num_lvls; i++) 5544 rcu_num_nodes += num_rcu_lvl[i]; 5545 } 5546 5547 /* 5548 * Dump out the structure of the rcu_node combining tree associated 5549 * with the rcu_state structure. 5550 */ 5551 static void __init rcu_dump_rcu_node_tree(void) 5552 { 5553 int level = 0; 5554 struct rcu_node *rnp; 5555 5556 pr_info("rcu_node tree layout dump\n"); 5557 pr_info(" "); 5558 rcu_for_each_node_breadth_first(rnp) { 5559 if (rnp->level != level) { 5560 pr_cont("\n"); 5561 pr_info(" "); 5562 level = rnp->level; 5563 } 5564 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum); 5565 } 5566 pr_cont("\n"); 5567 } 5568 5569 struct workqueue_struct *rcu_gp_wq; 5570 5571 static void __init kfree_rcu_batch_init(void) 5572 { 5573 int cpu; 5574 int i, j; 5575 struct shrinker *kfree_rcu_shrinker; 5576 5577 /* Clamp it to [0:100] seconds interval. */ 5578 if (rcu_delay_page_cache_fill_msec < 0 || 5579 rcu_delay_page_cache_fill_msec > 100 * MSEC_PER_SEC) { 5580 5581 rcu_delay_page_cache_fill_msec = 5582 clamp(rcu_delay_page_cache_fill_msec, 0, 5583 (int) (100 * MSEC_PER_SEC)); 5584 5585 pr_info("Adjusting rcutree.rcu_delay_page_cache_fill_msec to %d ms.\n", 5586 rcu_delay_page_cache_fill_msec); 5587 } 5588 5589 for_each_possible_cpu(cpu) { 5590 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); 5591 5592 for (i = 0; i < KFREE_N_BATCHES; i++) { 5593 INIT_RCU_WORK(&krcp->krw_arr[i].rcu_work, kfree_rcu_work); 5594 krcp->krw_arr[i].krcp = krcp; 5595 5596 for (j = 0; j < FREE_N_CHANNELS; j++) 5597 INIT_LIST_HEAD(&krcp->krw_arr[i].bulk_head_free[j]); 5598 } 5599 5600 for (i = 0; i < FREE_N_CHANNELS; i++) 5601 INIT_LIST_HEAD(&krcp->bulk_head[i]); 5602 5603 INIT_DELAYED_WORK(&krcp->monitor_work, kfree_rcu_monitor); 5604 INIT_DELAYED_WORK(&krcp->page_cache_work, fill_page_cache_func); 5605 krcp->initialized = true; 5606 } 5607 5608 kfree_rcu_shrinker = shrinker_alloc(0, "rcu-kfree"); 5609 if (!kfree_rcu_shrinker) { 5610 pr_err("Failed to allocate kfree_rcu() shrinker!\n"); 5611 return; 5612 } 5613 5614 kfree_rcu_shrinker->count_objects = kfree_rcu_shrink_count; 5615 kfree_rcu_shrinker->scan_objects = kfree_rcu_shrink_scan; 5616 5617 shrinker_register(kfree_rcu_shrinker); 5618 } 5619 5620 void __init rcu_init(void) 5621 { 5622 int cpu = smp_processor_id(); 5623 5624 rcu_early_boot_tests(); 5625 5626 kfree_rcu_batch_init(); 5627 rcu_bootup_announce(); 5628 sanitize_kthread_prio(); 5629 rcu_init_geometry(); 5630 rcu_init_one(); 5631 if (dump_tree) 5632 rcu_dump_rcu_node_tree(); 5633 if (use_softirq) 5634 open_softirq(RCU_SOFTIRQ, rcu_core_si); 5635 5636 /* 5637 * We don't need protection against CPU-hotplug here because 5638 * this is called early in boot, before either interrupts 5639 * or the scheduler are operational. 5640 */ 5641 pm_notifier(rcu_pm_notify, 0); 5642 WARN_ON(num_online_cpus() > 1); // Only one CPU this early in boot. 5643 rcutree_prepare_cpu(cpu); 5644 rcutree_report_cpu_starting(cpu); 5645 rcutree_online_cpu(cpu); 5646 5647 /* Create workqueue for Tree SRCU and for expedited GPs. */ 5648 rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0); 5649 WARN_ON(!rcu_gp_wq); 5650 5651 sync_wq = alloc_workqueue("sync_wq", WQ_MEM_RECLAIM, 0); 5652 WARN_ON(!sync_wq); 5653 5654 /* Fill in default value for rcutree.qovld boot parameter. */ 5655 /* -After- the rcu_node ->lock fields are initialized! */ 5656 if (qovld < 0) 5657 qovld_calc = DEFAULT_RCU_QOVLD_MULT * qhimark; 5658 else 5659 qovld_calc = qovld; 5660 5661 // Kick-start in case any polled grace periods started early. 5662 (void)start_poll_synchronize_rcu_expedited(); 5663 5664 rcu_test_sync_prims(); 5665 5666 tasks_cblist_init_generic(); 5667 } 5668 5669 #include "tree_stall.h" 5670 #include "tree_exp.h" 5671 #include "tree_nocb.h" 5672 #include "tree_plugin.h" 5673