1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Read-Copy Update mechanism for mutual exclusion (tree-based version) 4 * 5 * Copyright IBM Corporation, 2008 6 * 7 * Authors: Dipankar Sarma <dipankar@in.ibm.com> 8 * Manfred Spraul <manfred@colorfullife.com> 9 * Paul E. McKenney <paulmck@linux.ibm.com> 10 * 11 * Based on the original work by Paul McKenney <paulmck@linux.ibm.com> 12 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 13 * 14 * For detailed explanation of Read-Copy Update mechanism see - 15 * Documentation/RCU 16 */ 17 18 #define pr_fmt(fmt) "rcu: " fmt 19 20 #include <linux/types.h> 21 #include <linux/kernel.h> 22 #include <linux/init.h> 23 #include <linux/spinlock.h> 24 #include <linux/smp.h> 25 #include <linux/rcupdate_wait.h> 26 #include <linux/interrupt.h> 27 #include <linux/sched.h> 28 #include <linux/sched/debug.h> 29 #include <linux/nmi.h> 30 #include <linux/atomic.h> 31 #include <linux/bitops.h> 32 #include <linux/export.h> 33 #include <linux/completion.h> 34 #include <linux/kmemleak.h> 35 #include <linux/moduleparam.h> 36 #include <linux/panic.h> 37 #include <linux/panic_notifier.h> 38 #include <linux/percpu.h> 39 #include <linux/notifier.h> 40 #include <linux/cpu.h> 41 #include <linux/mutex.h> 42 #include <linux/time.h> 43 #include <linux/kernel_stat.h> 44 #include <linux/wait.h> 45 #include <linux/kthread.h> 46 #include <uapi/linux/sched/types.h> 47 #include <linux/prefetch.h> 48 #include <linux/delay.h> 49 #include <linux/random.h> 50 #include <linux/trace_events.h> 51 #include <linux/suspend.h> 52 #include <linux/ftrace.h> 53 #include <linux/tick.h> 54 #include <linux/sysrq.h> 55 #include <linux/kprobes.h> 56 #include <linux/gfp.h> 57 #include <linux/oom.h> 58 #include <linux/smpboot.h> 59 #include <linux/jiffies.h> 60 #include <linux/slab.h> 61 #include <linux/sched/isolation.h> 62 #include <linux/sched/clock.h> 63 #include <linux/vmalloc.h> 64 #include <linux/mm.h> 65 #include <linux/kasan.h> 66 #include <linux/context_tracking.h> 67 #include "../time/tick-internal.h" 68 69 #include "tree.h" 70 #include "rcu.h" 71 72 #ifdef MODULE_PARAM_PREFIX 73 #undef MODULE_PARAM_PREFIX 74 #endif 75 #define MODULE_PARAM_PREFIX "rcutree." 76 77 /* Data structures. */ 78 static void rcu_sr_normal_gp_cleanup_work(struct work_struct *); 79 80 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = { 81 .gpwrap = true, 82 #ifdef CONFIG_RCU_NOCB_CPU 83 .cblist.flags = SEGCBLIST_RCU_CORE, 84 #endif 85 }; 86 static struct rcu_state rcu_state = { 87 .level = { &rcu_state.node[0] }, 88 .gp_state = RCU_GP_IDLE, 89 .gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT, 90 .barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex), 91 .barrier_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.barrier_lock), 92 .name = RCU_NAME, 93 .abbr = RCU_ABBR, 94 .exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex), 95 .exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex), 96 .ofl_lock = __ARCH_SPIN_LOCK_UNLOCKED, 97 .srs_cleanup_work = __WORK_INITIALIZER(rcu_state.srs_cleanup_work, 98 rcu_sr_normal_gp_cleanup_work), 99 }; 100 101 /* Dump rcu_node combining tree at boot to verify correct setup. */ 102 static bool dump_tree; 103 module_param(dump_tree, bool, 0444); 104 /* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */ 105 static bool use_softirq = !IS_ENABLED(CONFIG_PREEMPT_RT); 106 #ifndef CONFIG_PREEMPT_RT 107 module_param(use_softirq, bool, 0444); 108 #endif 109 /* Control rcu_node-tree auto-balancing at boot time. */ 110 static bool rcu_fanout_exact; 111 module_param(rcu_fanout_exact, bool, 0444); 112 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */ 113 static int rcu_fanout_leaf = RCU_FANOUT_LEAF; 114 module_param(rcu_fanout_leaf, int, 0444); 115 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS; 116 /* Number of rcu_nodes at specified level. */ 117 int num_rcu_lvl[] = NUM_RCU_LVL_INIT; 118 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */ 119 120 /* 121 * The rcu_scheduler_active variable is initialized to the value 122 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the 123 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE, 124 * RCU can assume that there is but one task, allowing RCU to (for example) 125 * optimize synchronize_rcu() to a simple barrier(). When this variable 126 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required 127 * to detect real grace periods. This variable is also used to suppress 128 * boot-time false positives from lockdep-RCU error checking. Finally, it 129 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU 130 * is fully initialized, including all of its kthreads having been spawned. 131 */ 132 int rcu_scheduler_active __read_mostly; 133 EXPORT_SYMBOL_GPL(rcu_scheduler_active); 134 135 /* 136 * The rcu_scheduler_fully_active variable transitions from zero to one 137 * during the early_initcall() processing, which is after the scheduler 138 * is capable of creating new tasks. So RCU processing (for example, 139 * creating tasks for RCU priority boosting) must be delayed until after 140 * rcu_scheduler_fully_active transitions from zero to one. We also 141 * currently delay invocation of any RCU callbacks until after this point. 142 * 143 * It might later prove better for people registering RCU callbacks during 144 * early boot to take responsibility for these callbacks, but one step at 145 * a time. 146 */ 147 static int rcu_scheduler_fully_active __read_mostly; 148 149 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp, 150 unsigned long gps, unsigned long flags); 151 static struct task_struct *rcu_boost_task(struct rcu_node *rnp); 152 static void invoke_rcu_core(void); 153 static void rcu_report_exp_rdp(struct rcu_data *rdp); 154 static void sync_sched_exp_online_cleanup(int cpu); 155 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp); 156 static bool rcu_rdp_is_offloaded(struct rcu_data *rdp); 157 static bool rcu_rdp_cpu_online(struct rcu_data *rdp); 158 static bool rcu_init_invoked(void); 159 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf); 160 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf); 161 162 /* 163 * rcuc/rcub/rcuop kthread realtime priority. The "rcuop" 164 * real-time priority(enabling/disabling) is controlled by 165 * the extra CONFIG_RCU_NOCB_CPU_CB_BOOST configuration. 166 */ 167 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0; 168 module_param(kthread_prio, int, 0444); 169 170 /* Delay in jiffies for grace-period initialization delays, debug only. */ 171 172 static int gp_preinit_delay; 173 module_param(gp_preinit_delay, int, 0444); 174 static int gp_init_delay; 175 module_param(gp_init_delay, int, 0444); 176 static int gp_cleanup_delay; 177 module_param(gp_cleanup_delay, int, 0444); 178 179 // Add delay to rcu_read_unlock() for strict grace periods. 180 static int rcu_unlock_delay; 181 #ifdef CONFIG_RCU_STRICT_GRACE_PERIOD 182 module_param(rcu_unlock_delay, int, 0444); 183 #endif 184 185 /* 186 * This rcu parameter is runtime-read-only. It reflects 187 * a minimum allowed number of objects which can be cached 188 * per-CPU. Object size is equal to one page. This value 189 * can be changed at boot time. 190 */ 191 static int rcu_min_cached_objs = 5; 192 module_param(rcu_min_cached_objs, int, 0444); 193 194 // A page shrinker can ask for pages to be freed to make them 195 // available for other parts of the system. This usually happens 196 // under low memory conditions, and in that case we should also 197 // defer page-cache filling for a short time period. 198 // 199 // The default value is 5 seconds, which is long enough to reduce 200 // interference with the shrinker while it asks other systems to 201 // drain their caches. 202 static int rcu_delay_page_cache_fill_msec = 5000; 203 module_param(rcu_delay_page_cache_fill_msec, int, 0444); 204 205 /* Retrieve RCU kthreads priority for rcutorture */ 206 int rcu_get_gp_kthreads_prio(void) 207 { 208 return kthread_prio; 209 } 210 EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio); 211 212 /* 213 * Number of grace periods between delays, normalized by the duration of 214 * the delay. The longer the delay, the more the grace periods between 215 * each delay. The reason for this normalization is that it means that, 216 * for non-zero delays, the overall slowdown of grace periods is constant 217 * regardless of the duration of the delay. This arrangement balances 218 * the need for long delays to increase some race probabilities with the 219 * need for fast grace periods to increase other race probabilities. 220 */ 221 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays for debugging. */ 222 223 /* 224 * Return true if an RCU grace period is in progress. The READ_ONCE()s 225 * permit this function to be invoked without holding the root rcu_node 226 * structure's ->lock, but of course results can be subject to change. 227 */ 228 static int rcu_gp_in_progress(void) 229 { 230 return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq)); 231 } 232 233 /* 234 * Return the number of callbacks queued on the specified CPU. 235 * Handles both the nocbs and normal cases. 236 */ 237 static long rcu_get_n_cbs_cpu(int cpu) 238 { 239 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 240 241 if (rcu_segcblist_is_enabled(&rdp->cblist)) 242 return rcu_segcblist_n_cbs(&rdp->cblist); 243 return 0; 244 } 245 246 /** 247 * rcu_softirq_qs - Provide a set of RCU quiescent states in softirq processing 248 * 249 * Mark a quiescent state for RCU, Tasks RCU, and Tasks Trace RCU. 250 * This is a special-purpose function to be used in the softirq 251 * infrastructure and perhaps the occasional long-running softirq 252 * handler. 253 * 254 * Note that from RCU's viewpoint, a call to rcu_softirq_qs() is 255 * equivalent to momentarily completely enabling preemption. For 256 * example, given this code:: 257 * 258 * local_bh_disable(); 259 * do_something(); 260 * rcu_softirq_qs(); // A 261 * do_something_else(); 262 * local_bh_enable(); // B 263 * 264 * A call to synchronize_rcu() that began concurrently with the 265 * call to do_something() would be guaranteed to wait only until 266 * execution reached statement A. Without that rcu_softirq_qs(), 267 * that same synchronize_rcu() would instead be guaranteed to wait 268 * until execution reached statement B. 269 */ 270 void rcu_softirq_qs(void) 271 { 272 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) || 273 lock_is_held(&rcu_lock_map) || 274 lock_is_held(&rcu_sched_lock_map), 275 "Illegal rcu_softirq_qs() in RCU read-side critical section"); 276 rcu_qs(); 277 rcu_preempt_deferred_qs(current); 278 rcu_tasks_qs(current, false); 279 } 280 281 /* 282 * Reset the current CPU's ->dynticks counter to indicate that the 283 * newly onlined CPU is no longer in an extended quiescent state. 284 * This will either leave the counter unchanged, or increment it 285 * to the next non-quiescent value. 286 * 287 * The non-atomic test/increment sequence works because the upper bits 288 * of the ->dynticks counter are manipulated only by the corresponding CPU, 289 * or when the corresponding CPU is offline. 290 */ 291 static void rcu_dynticks_eqs_online(void) 292 { 293 if (ct_dynticks() & RCU_DYNTICKS_IDX) 294 return; 295 ct_state_inc(RCU_DYNTICKS_IDX); 296 } 297 298 /* 299 * Snapshot the ->dynticks counter with full ordering so as to allow 300 * stable comparison of this counter with past and future snapshots. 301 */ 302 static int rcu_dynticks_snap(int cpu) 303 { 304 smp_mb(); // Fundamental RCU ordering guarantee. 305 return ct_dynticks_cpu_acquire(cpu); 306 } 307 308 /* 309 * Return true if the snapshot returned from rcu_dynticks_snap() 310 * indicates that RCU is in an extended quiescent state. 311 */ 312 static bool rcu_dynticks_in_eqs(int snap) 313 { 314 return !(snap & RCU_DYNTICKS_IDX); 315 } 316 317 /* 318 * Return true if the CPU corresponding to the specified rcu_data 319 * structure has spent some time in an extended quiescent state since 320 * rcu_dynticks_snap() returned the specified snapshot. 321 */ 322 static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap) 323 { 324 return snap != rcu_dynticks_snap(rdp->cpu); 325 } 326 327 /* 328 * Return true if the referenced integer is zero while the specified 329 * CPU remains within a single extended quiescent state. 330 */ 331 bool rcu_dynticks_zero_in_eqs(int cpu, int *vp) 332 { 333 int snap; 334 335 // If not quiescent, force back to earlier extended quiescent state. 336 snap = ct_dynticks_cpu(cpu) & ~RCU_DYNTICKS_IDX; 337 smp_rmb(); // Order ->dynticks and *vp reads. 338 if (READ_ONCE(*vp)) 339 return false; // Non-zero, so report failure; 340 smp_rmb(); // Order *vp read and ->dynticks re-read. 341 342 // If still in the same extended quiescent state, we are good! 343 return snap == ct_dynticks_cpu(cpu); 344 } 345 346 /* 347 * Let the RCU core know that this CPU has gone through the scheduler, 348 * which is a quiescent state. This is called when the need for a 349 * quiescent state is urgent, so we burn an atomic operation and full 350 * memory barriers to let the RCU core know about it, regardless of what 351 * this CPU might (or might not) do in the near future. 352 * 353 * We inform the RCU core by emulating a zero-duration dyntick-idle period. 354 * 355 * The caller must have disabled interrupts and must not be idle. 356 */ 357 notrace void rcu_momentary_dyntick_idle(void) 358 { 359 int seq; 360 361 raw_cpu_write(rcu_data.rcu_need_heavy_qs, false); 362 seq = ct_state_inc(2 * RCU_DYNTICKS_IDX); 363 /* It is illegal to call this from idle state. */ 364 WARN_ON_ONCE(!(seq & RCU_DYNTICKS_IDX)); 365 rcu_preempt_deferred_qs(current); 366 } 367 EXPORT_SYMBOL_GPL(rcu_momentary_dyntick_idle); 368 369 /** 370 * rcu_is_cpu_rrupt_from_idle - see if 'interrupted' from idle 371 * 372 * If the current CPU is idle and running at a first-level (not nested) 373 * interrupt, or directly, from idle, return true. 374 * 375 * The caller must have at least disabled IRQs. 376 */ 377 static int rcu_is_cpu_rrupt_from_idle(void) 378 { 379 long nesting; 380 381 /* 382 * Usually called from the tick; but also used from smp_function_call() 383 * for expedited grace periods. This latter can result in running from 384 * the idle task, instead of an actual IPI. 385 */ 386 lockdep_assert_irqs_disabled(); 387 388 /* Check for counter underflows */ 389 RCU_LOCKDEP_WARN(ct_dynticks_nesting() < 0, 390 "RCU dynticks_nesting counter underflow!"); 391 RCU_LOCKDEP_WARN(ct_dynticks_nmi_nesting() <= 0, 392 "RCU dynticks_nmi_nesting counter underflow/zero!"); 393 394 /* Are we at first interrupt nesting level? */ 395 nesting = ct_dynticks_nmi_nesting(); 396 if (nesting > 1) 397 return false; 398 399 /* 400 * If we're not in an interrupt, we must be in the idle task! 401 */ 402 WARN_ON_ONCE(!nesting && !is_idle_task(current)); 403 404 /* Does CPU appear to be idle from an RCU standpoint? */ 405 return ct_dynticks_nesting() == 0; 406 } 407 408 #define DEFAULT_RCU_BLIMIT (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 1000 : 10) 409 // Maximum callbacks per rcu_do_batch ... 410 #define DEFAULT_MAX_RCU_BLIMIT 10000 // ... even during callback flood. 411 static long blimit = DEFAULT_RCU_BLIMIT; 412 #define DEFAULT_RCU_QHIMARK 10000 // If this many pending, ignore blimit. 413 static long qhimark = DEFAULT_RCU_QHIMARK; 414 #define DEFAULT_RCU_QLOMARK 100 // Once only this many pending, use blimit. 415 static long qlowmark = DEFAULT_RCU_QLOMARK; 416 #define DEFAULT_RCU_QOVLD_MULT 2 417 #define DEFAULT_RCU_QOVLD (DEFAULT_RCU_QOVLD_MULT * DEFAULT_RCU_QHIMARK) 418 static long qovld = DEFAULT_RCU_QOVLD; // If this many pending, hammer QS. 419 static long qovld_calc = -1; // No pre-initialization lock acquisitions! 420 421 module_param(blimit, long, 0444); 422 module_param(qhimark, long, 0444); 423 module_param(qlowmark, long, 0444); 424 module_param(qovld, long, 0444); 425 426 static ulong jiffies_till_first_fqs = IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 0 : ULONG_MAX; 427 static ulong jiffies_till_next_fqs = ULONG_MAX; 428 static bool rcu_kick_kthreads; 429 static int rcu_divisor = 7; 430 module_param(rcu_divisor, int, 0644); 431 432 /* Force an exit from rcu_do_batch() after 3 milliseconds. */ 433 static long rcu_resched_ns = 3 * NSEC_PER_MSEC; 434 module_param(rcu_resched_ns, long, 0644); 435 436 /* 437 * How long the grace period must be before we start recruiting 438 * quiescent-state help from rcu_note_context_switch(). 439 */ 440 static ulong jiffies_till_sched_qs = ULONG_MAX; 441 module_param(jiffies_till_sched_qs, ulong, 0444); 442 static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */ 443 module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */ 444 445 /* 446 * Make sure that we give the grace-period kthread time to detect any 447 * idle CPUs before taking active measures to force quiescent states. 448 * However, don't go below 100 milliseconds, adjusted upwards for really 449 * large systems. 450 */ 451 static void adjust_jiffies_till_sched_qs(void) 452 { 453 unsigned long j; 454 455 /* If jiffies_till_sched_qs was specified, respect the request. */ 456 if (jiffies_till_sched_qs != ULONG_MAX) { 457 WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs); 458 return; 459 } 460 /* Otherwise, set to third fqs scan, but bound below on large system. */ 461 j = READ_ONCE(jiffies_till_first_fqs) + 462 2 * READ_ONCE(jiffies_till_next_fqs); 463 if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV) 464 j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; 465 pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j); 466 WRITE_ONCE(jiffies_to_sched_qs, j); 467 } 468 469 static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp) 470 { 471 ulong j; 472 int ret = kstrtoul(val, 0, &j); 473 474 if (!ret) { 475 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j); 476 adjust_jiffies_till_sched_qs(); 477 } 478 return ret; 479 } 480 481 static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp) 482 { 483 ulong j; 484 int ret = kstrtoul(val, 0, &j); 485 486 if (!ret) { 487 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1)); 488 adjust_jiffies_till_sched_qs(); 489 } 490 return ret; 491 } 492 493 static const struct kernel_param_ops first_fqs_jiffies_ops = { 494 .set = param_set_first_fqs_jiffies, 495 .get = param_get_ulong, 496 }; 497 498 static const struct kernel_param_ops next_fqs_jiffies_ops = { 499 .set = param_set_next_fqs_jiffies, 500 .get = param_get_ulong, 501 }; 502 503 module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644); 504 module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644); 505 module_param(rcu_kick_kthreads, bool, 0644); 506 507 static void force_qs_rnp(int (*f)(struct rcu_data *rdp)); 508 static int rcu_pending(int user); 509 510 /* 511 * Return the number of RCU GPs completed thus far for debug & stats. 512 */ 513 unsigned long rcu_get_gp_seq(void) 514 { 515 return READ_ONCE(rcu_state.gp_seq); 516 } 517 EXPORT_SYMBOL_GPL(rcu_get_gp_seq); 518 519 /* 520 * Return the number of RCU expedited batches completed thus far for 521 * debug & stats. Odd numbers mean that a batch is in progress, even 522 * numbers mean idle. The value returned will thus be roughly double 523 * the cumulative batches since boot. 524 */ 525 unsigned long rcu_exp_batches_completed(void) 526 { 527 return rcu_state.expedited_sequence; 528 } 529 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed); 530 531 /* 532 * Return the root node of the rcu_state structure. 533 */ 534 static struct rcu_node *rcu_get_root(void) 535 { 536 return &rcu_state.node[0]; 537 } 538 539 /* 540 * Send along grace-period-related data for rcutorture diagnostics. 541 */ 542 void rcutorture_get_gp_data(int *flags, unsigned long *gp_seq) 543 { 544 *flags = READ_ONCE(rcu_state.gp_flags); 545 *gp_seq = rcu_seq_current(&rcu_state.gp_seq); 546 } 547 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data); 548 549 #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK)) 550 /* 551 * An empty function that will trigger a reschedule on 552 * IRQ tail once IRQs get re-enabled on userspace/guest resume. 553 */ 554 static void late_wakeup_func(struct irq_work *work) 555 { 556 } 557 558 static DEFINE_PER_CPU(struct irq_work, late_wakeup_work) = 559 IRQ_WORK_INIT(late_wakeup_func); 560 561 /* 562 * If either: 563 * 564 * 1) the task is about to enter in guest mode and $ARCH doesn't support KVM generic work 565 * 2) the task is about to enter in user mode and $ARCH doesn't support generic entry. 566 * 567 * In these cases the late RCU wake ups aren't supported in the resched loops and our 568 * last resort is to fire a local irq_work that will trigger a reschedule once IRQs 569 * get re-enabled again. 570 */ 571 noinstr void rcu_irq_work_resched(void) 572 { 573 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 574 575 if (IS_ENABLED(CONFIG_GENERIC_ENTRY) && !(current->flags & PF_VCPU)) 576 return; 577 578 if (IS_ENABLED(CONFIG_KVM_XFER_TO_GUEST_WORK) && (current->flags & PF_VCPU)) 579 return; 580 581 instrumentation_begin(); 582 if (do_nocb_deferred_wakeup(rdp) && need_resched()) { 583 irq_work_queue(this_cpu_ptr(&late_wakeup_work)); 584 } 585 instrumentation_end(); 586 } 587 #endif /* #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK)) */ 588 589 #ifdef CONFIG_PROVE_RCU 590 /** 591 * rcu_irq_exit_check_preempt - Validate that scheduling is possible 592 */ 593 void rcu_irq_exit_check_preempt(void) 594 { 595 lockdep_assert_irqs_disabled(); 596 597 RCU_LOCKDEP_WARN(ct_dynticks_nesting() <= 0, 598 "RCU dynticks_nesting counter underflow/zero!"); 599 RCU_LOCKDEP_WARN(ct_dynticks_nmi_nesting() != 600 DYNTICK_IRQ_NONIDLE, 601 "Bad RCU dynticks_nmi_nesting counter\n"); 602 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(), 603 "RCU in extended quiescent state!"); 604 } 605 #endif /* #ifdef CONFIG_PROVE_RCU */ 606 607 #ifdef CONFIG_NO_HZ_FULL 608 /** 609 * __rcu_irq_enter_check_tick - Enable scheduler tick on CPU if RCU needs it. 610 * 611 * The scheduler tick is not normally enabled when CPUs enter the kernel 612 * from nohz_full userspace execution. After all, nohz_full userspace 613 * execution is an RCU quiescent state and the time executing in the kernel 614 * is quite short. Except of course when it isn't. And it is not hard to 615 * cause a large system to spend tens of seconds or even minutes looping 616 * in the kernel, which can cause a number of problems, include RCU CPU 617 * stall warnings. 618 * 619 * Therefore, if a nohz_full CPU fails to report a quiescent state 620 * in a timely manner, the RCU grace-period kthread sets that CPU's 621 * ->rcu_urgent_qs flag with the expectation that the next interrupt or 622 * exception will invoke this function, which will turn on the scheduler 623 * tick, which will enable RCU to detect that CPU's quiescent states, 624 * for example, due to cond_resched() calls in CONFIG_PREEMPT=n kernels. 625 * The tick will be disabled once a quiescent state is reported for 626 * this CPU. 627 * 628 * Of course, in carefully tuned systems, there might never be an 629 * interrupt or exception. In that case, the RCU grace-period kthread 630 * will eventually cause one to happen. However, in less carefully 631 * controlled environments, this function allows RCU to get what it 632 * needs without creating otherwise useless interruptions. 633 */ 634 void __rcu_irq_enter_check_tick(void) 635 { 636 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 637 638 // If we're here from NMI there's nothing to do. 639 if (in_nmi()) 640 return; 641 642 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(), 643 "Illegal rcu_irq_enter_check_tick() from extended quiescent state"); 644 645 if (!tick_nohz_full_cpu(rdp->cpu) || 646 !READ_ONCE(rdp->rcu_urgent_qs) || 647 READ_ONCE(rdp->rcu_forced_tick)) { 648 // RCU doesn't need nohz_full help from this CPU, or it is 649 // already getting that help. 650 return; 651 } 652 653 // We get here only when not in an extended quiescent state and 654 // from interrupts (as opposed to NMIs). Therefore, (1) RCU is 655 // already watching and (2) The fact that we are in an interrupt 656 // handler and that the rcu_node lock is an irq-disabled lock 657 // prevents self-deadlock. So we can safely recheck under the lock. 658 // Note that the nohz_full state currently cannot change. 659 raw_spin_lock_rcu_node(rdp->mynode); 660 if (READ_ONCE(rdp->rcu_urgent_qs) && !rdp->rcu_forced_tick) { 661 // A nohz_full CPU is in the kernel and RCU needs a 662 // quiescent state. Turn on the tick! 663 WRITE_ONCE(rdp->rcu_forced_tick, true); 664 tick_dep_set_cpu(rdp->cpu, TICK_DEP_BIT_RCU); 665 } 666 raw_spin_unlock_rcu_node(rdp->mynode); 667 } 668 NOKPROBE_SYMBOL(__rcu_irq_enter_check_tick); 669 #endif /* CONFIG_NO_HZ_FULL */ 670 671 /* 672 * Check to see if any future non-offloaded RCU-related work will need 673 * to be done by the current CPU, even if none need be done immediately, 674 * returning 1 if so. This function is part of the RCU implementation; 675 * it is -not- an exported member of the RCU API. This is used by 676 * the idle-entry code to figure out whether it is safe to disable the 677 * scheduler-clock interrupt. 678 * 679 * Just check whether or not this CPU has non-offloaded RCU callbacks 680 * queued. 681 */ 682 int rcu_needs_cpu(void) 683 { 684 return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) && 685 !rcu_rdp_is_offloaded(this_cpu_ptr(&rcu_data)); 686 } 687 688 /* 689 * If any sort of urgency was applied to the current CPU (for example, 690 * the scheduler-clock interrupt was enabled on a nohz_full CPU) in order 691 * to get to a quiescent state, disable it. 692 */ 693 static void rcu_disable_urgency_upon_qs(struct rcu_data *rdp) 694 { 695 raw_lockdep_assert_held_rcu_node(rdp->mynode); 696 WRITE_ONCE(rdp->rcu_urgent_qs, false); 697 WRITE_ONCE(rdp->rcu_need_heavy_qs, false); 698 if (tick_nohz_full_cpu(rdp->cpu) && rdp->rcu_forced_tick) { 699 tick_dep_clear_cpu(rdp->cpu, TICK_DEP_BIT_RCU); 700 WRITE_ONCE(rdp->rcu_forced_tick, false); 701 } 702 } 703 704 /** 705 * rcu_is_watching - RCU read-side critical sections permitted on current CPU? 706 * 707 * Return @true if RCU is watching the running CPU and @false otherwise. 708 * An @true return means that this CPU can safely enter RCU read-side 709 * critical sections. 710 * 711 * Although calls to rcu_is_watching() from most parts of the kernel 712 * will return @true, there are important exceptions. For example, if the 713 * current CPU is deep within its idle loop, in kernel entry/exit code, 714 * or offline, rcu_is_watching() will return @false. 715 * 716 * Make notrace because it can be called by the internal functions of 717 * ftrace, and making this notrace removes unnecessary recursion calls. 718 */ 719 notrace bool rcu_is_watching(void) 720 { 721 bool ret; 722 723 preempt_disable_notrace(); 724 ret = !rcu_dynticks_curr_cpu_in_eqs(); 725 preempt_enable_notrace(); 726 return ret; 727 } 728 EXPORT_SYMBOL_GPL(rcu_is_watching); 729 730 /* 731 * If a holdout task is actually running, request an urgent quiescent 732 * state from its CPU. This is unsynchronized, so migrations can cause 733 * the request to go to the wrong CPU. Which is OK, all that will happen 734 * is that the CPU's next context switch will be a bit slower and next 735 * time around this task will generate another request. 736 */ 737 void rcu_request_urgent_qs_task(struct task_struct *t) 738 { 739 int cpu; 740 741 barrier(); 742 cpu = task_cpu(t); 743 if (!task_curr(t)) 744 return; /* This task is not running on that CPU. */ 745 smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true); 746 } 747 748 /* 749 * When trying to report a quiescent state on behalf of some other CPU, 750 * it is our responsibility to check for and handle potential overflow 751 * of the rcu_node ->gp_seq counter with respect to the rcu_data counters. 752 * After all, the CPU might be in deep idle state, and thus executing no 753 * code whatsoever. 754 */ 755 static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp) 756 { 757 raw_lockdep_assert_held_rcu_node(rnp); 758 if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4, 759 rnp->gp_seq)) 760 WRITE_ONCE(rdp->gpwrap, true); 761 if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq)) 762 rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4; 763 } 764 765 /* 766 * Snapshot the specified CPU's dynticks counter so that we can later 767 * credit them with an implicit quiescent state. Return 1 if this CPU 768 * is in dynticks idle mode, which is an extended quiescent state. 769 */ 770 static int dyntick_save_progress_counter(struct rcu_data *rdp) 771 { 772 rdp->dynticks_snap = rcu_dynticks_snap(rdp->cpu); 773 if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) { 774 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti")); 775 rcu_gpnum_ovf(rdp->mynode, rdp); 776 return 1; 777 } 778 return 0; 779 } 780 781 /* 782 * Returns positive if the specified CPU has passed through a quiescent state 783 * by virtue of being in or having passed through an dynticks idle state since 784 * the last call to dyntick_save_progress_counter() for this same CPU, or by 785 * virtue of having been offline. 786 * 787 * Returns negative if the specified CPU needs a force resched. 788 * 789 * Returns zero otherwise. 790 */ 791 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp) 792 { 793 unsigned long jtsq; 794 int ret = 0; 795 struct rcu_node *rnp = rdp->mynode; 796 797 /* 798 * If the CPU passed through or entered a dynticks idle phase with 799 * no active irq/NMI handlers, then we can safely pretend that the CPU 800 * already acknowledged the request to pass through a quiescent 801 * state. Either way, that CPU cannot possibly be in an RCU 802 * read-side critical section that started before the beginning 803 * of the current RCU grace period. 804 */ 805 if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) { 806 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti")); 807 rcu_gpnum_ovf(rnp, rdp); 808 return 1; 809 } 810 811 /* 812 * Complain if a CPU that is considered to be offline from RCU's 813 * perspective has not yet reported a quiescent state. After all, 814 * the offline CPU should have reported a quiescent state during 815 * the CPU-offline process, or, failing that, by rcu_gp_init() 816 * if it ran concurrently with either the CPU going offline or the 817 * last task on a leaf rcu_node structure exiting its RCU read-side 818 * critical section while all CPUs corresponding to that structure 819 * are offline. This added warning detects bugs in any of these 820 * code paths. 821 * 822 * The rcu_node structure's ->lock is held here, which excludes 823 * the relevant portions the CPU-hotplug code, the grace-period 824 * initialization code, and the rcu_read_unlock() code paths. 825 * 826 * For more detail, please refer to the "Hotplug CPU" section 827 * of RCU's Requirements documentation. 828 */ 829 if (WARN_ON_ONCE(!rcu_rdp_cpu_online(rdp))) { 830 struct rcu_node *rnp1; 831 832 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n", 833 __func__, rnp->grplo, rnp->grphi, rnp->level, 834 (long)rnp->gp_seq, (long)rnp->completedqs); 835 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent) 836 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n", 837 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask); 838 pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n", 839 __func__, rdp->cpu, ".o"[rcu_rdp_cpu_online(rdp)], 840 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_state, 841 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_state); 842 return 1; /* Break things loose after complaining. */ 843 } 844 845 /* 846 * A CPU running for an extended time within the kernel can 847 * delay RCU grace periods: (1) At age jiffies_to_sched_qs, 848 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set 849 * both .rcu_need_heavy_qs and .rcu_urgent_qs. Note that the 850 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs 851 * variable are safe because the assignments are repeated if this 852 * CPU failed to pass through a quiescent state. This code 853 * also checks .jiffies_resched in case jiffies_to_sched_qs 854 * is set way high. 855 */ 856 jtsq = READ_ONCE(jiffies_to_sched_qs); 857 if (!READ_ONCE(rdp->rcu_need_heavy_qs) && 858 (time_after(jiffies, rcu_state.gp_start + jtsq * 2) || 859 time_after(jiffies, rcu_state.jiffies_resched) || 860 rcu_state.cbovld)) { 861 WRITE_ONCE(rdp->rcu_need_heavy_qs, true); 862 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */ 863 smp_store_release(&rdp->rcu_urgent_qs, true); 864 } else if (time_after(jiffies, rcu_state.gp_start + jtsq)) { 865 WRITE_ONCE(rdp->rcu_urgent_qs, true); 866 } 867 868 /* 869 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq! 870 * The above code handles this, but only for straight cond_resched(). 871 * And some in-kernel loops check need_resched() before calling 872 * cond_resched(), which defeats the above code for CPUs that are 873 * running in-kernel with scheduling-clock interrupts disabled. 874 * So hit them over the head with the resched_cpu() hammer! 875 */ 876 if (tick_nohz_full_cpu(rdp->cpu) && 877 (time_after(jiffies, READ_ONCE(rdp->last_fqs_resched) + jtsq * 3) || 878 rcu_state.cbovld)) { 879 WRITE_ONCE(rdp->rcu_urgent_qs, true); 880 WRITE_ONCE(rdp->last_fqs_resched, jiffies); 881 ret = -1; 882 } 883 884 /* 885 * If more than halfway to RCU CPU stall-warning time, invoke 886 * resched_cpu() more frequently to try to loosen things up a bit. 887 * Also check to see if the CPU is getting hammered with interrupts, 888 * but only once per grace period, just to keep the IPIs down to 889 * a dull roar. 890 */ 891 if (time_after(jiffies, rcu_state.jiffies_resched)) { 892 if (time_after(jiffies, 893 READ_ONCE(rdp->last_fqs_resched) + jtsq)) { 894 WRITE_ONCE(rdp->last_fqs_resched, jiffies); 895 ret = -1; 896 } 897 if (IS_ENABLED(CONFIG_IRQ_WORK) && 898 !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq && 899 (rnp->ffmask & rdp->grpmask)) { 900 rdp->rcu_iw_pending = true; 901 rdp->rcu_iw_gp_seq = rnp->gp_seq; 902 irq_work_queue_on(&rdp->rcu_iw, rdp->cpu); 903 } 904 905 if (rcu_cpu_stall_cputime && rdp->snap_record.gp_seq != rdp->gp_seq) { 906 int cpu = rdp->cpu; 907 struct rcu_snap_record *rsrp; 908 struct kernel_cpustat *kcsp; 909 910 kcsp = &kcpustat_cpu(cpu); 911 912 rsrp = &rdp->snap_record; 913 rsrp->cputime_irq = kcpustat_field(kcsp, CPUTIME_IRQ, cpu); 914 rsrp->cputime_softirq = kcpustat_field(kcsp, CPUTIME_SOFTIRQ, cpu); 915 rsrp->cputime_system = kcpustat_field(kcsp, CPUTIME_SYSTEM, cpu); 916 rsrp->nr_hardirqs = kstat_cpu_irqs_sum(rdp->cpu); 917 rsrp->nr_softirqs = kstat_cpu_softirqs_sum(rdp->cpu); 918 rsrp->nr_csw = nr_context_switches_cpu(rdp->cpu); 919 rsrp->jiffies = jiffies; 920 rsrp->gp_seq = rdp->gp_seq; 921 } 922 } 923 924 return ret; 925 } 926 927 /* Trace-event wrapper function for trace_rcu_future_grace_period. */ 928 static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp, 929 unsigned long gp_seq_req, const char *s) 930 { 931 trace_rcu_future_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq), 932 gp_seq_req, rnp->level, 933 rnp->grplo, rnp->grphi, s); 934 } 935 936 /* 937 * rcu_start_this_gp - Request the start of a particular grace period 938 * @rnp_start: The leaf node of the CPU from which to start. 939 * @rdp: The rcu_data corresponding to the CPU from which to start. 940 * @gp_seq_req: The gp_seq of the grace period to start. 941 * 942 * Start the specified grace period, as needed to handle newly arrived 943 * callbacks. The required future grace periods are recorded in each 944 * rcu_node structure's ->gp_seq_needed field. Returns true if there 945 * is reason to awaken the grace-period kthread. 946 * 947 * The caller must hold the specified rcu_node structure's ->lock, which 948 * is why the caller is responsible for waking the grace-period kthread. 949 * 950 * Returns true if the GP thread needs to be awakened else false. 951 */ 952 static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp, 953 unsigned long gp_seq_req) 954 { 955 bool ret = false; 956 struct rcu_node *rnp; 957 958 /* 959 * Use funnel locking to either acquire the root rcu_node 960 * structure's lock or bail out if the need for this grace period 961 * has already been recorded -- or if that grace period has in 962 * fact already started. If there is already a grace period in 963 * progress in a non-leaf node, no recording is needed because the 964 * end of the grace period will scan the leaf rcu_node structures. 965 * Note that rnp_start->lock must not be released. 966 */ 967 raw_lockdep_assert_held_rcu_node(rnp_start); 968 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf")); 969 for (rnp = rnp_start; 1; rnp = rnp->parent) { 970 if (rnp != rnp_start) 971 raw_spin_lock_rcu_node(rnp); 972 if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) || 973 rcu_seq_started(&rnp->gp_seq, gp_seq_req) || 974 (rnp != rnp_start && 975 rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) { 976 trace_rcu_this_gp(rnp, rdp, gp_seq_req, 977 TPS("Prestarted")); 978 goto unlock_out; 979 } 980 WRITE_ONCE(rnp->gp_seq_needed, gp_seq_req); 981 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) { 982 /* 983 * We just marked the leaf or internal node, and a 984 * grace period is in progress, which means that 985 * rcu_gp_cleanup() will see the marking. Bail to 986 * reduce contention. 987 */ 988 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, 989 TPS("Startedleaf")); 990 goto unlock_out; 991 } 992 if (rnp != rnp_start && rnp->parent != NULL) 993 raw_spin_unlock_rcu_node(rnp); 994 if (!rnp->parent) 995 break; /* At root, and perhaps also leaf. */ 996 } 997 998 /* If GP already in progress, just leave, otherwise start one. */ 999 if (rcu_gp_in_progress()) { 1000 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot")); 1001 goto unlock_out; 1002 } 1003 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot")); 1004 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT); 1005 WRITE_ONCE(rcu_state.gp_req_activity, jiffies); 1006 if (!READ_ONCE(rcu_state.gp_kthread)) { 1007 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread")); 1008 goto unlock_out; 1009 } 1010 trace_rcu_grace_period(rcu_state.name, data_race(rcu_state.gp_seq), TPS("newreq")); 1011 ret = true; /* Caller must wake GP kthread. */ 1012 unlock_out: 1013 /* Push furthest requested GP to leaf node and rcu_data structure. */ 1014 if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) { 1015 WRITE_ONCE(rnp_start->gp_seq_needed, rnp->gp_seq_needed); 1016 WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed); 1017 } 1018 if (rnp != rnp_start) 1019 raw_spin_unlock_rcu_node(rnp); 1020 return ret; 1021 } 1022 1023 /* 1024 * Clean up any old requests for the just-ended grace period. Also return 1025 * whether any additional grace periods have been requested. 1026 */ 1027 static bool rcu_future_gp_cleanup(struct rcu_node *rnp) 1028 { 1029 bool needmore; 1030 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 1031 1032 needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed); 1033 if (!needmore) 1034 rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */ 1035 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq, 1036 needmore ? TPS("CleanupMore") : TPS("Cleanup")); 1037 return needmore; 1038 } 1039 1040 static void swake_up_one_online_ipi(void *arg) 1041 { 1042 struct swait_queue_head *wqh = arg; 1043 1044 swake_up_one(wqh); 1045 } 1046 1047 static void swake_up_one_online(struct swait_queue_head *wqh) 1048 { 1049 int cpu = get_cpu(); 1050 1051 /* 1052 * If called from rcutree_report_cpu_starting(), wake up 1053 * is dangerous that late in the CPU-down hotplug process. The 1054 * scheduler might queue an ignored hrtimer. Defer the wake up 1055 * to an online CPU instead. 1056 */ 1057 if (unlikely(cpu_is_offline(cpu))) { 1058 int target; 1059 1060 target = cpumask_any_and(housekeeping_cpumask(HK_TYPE_RCU), 1061 cpu_online_mask); 1062 1063 smp_call_function_single(target, swake_up_one_online_ipi, 1064 wqh, 0); 1065 put_cpu(); 1066 } else { 1067 put_cpu(); 1068 swake_up_one(wqh); 1069 } 1070 } 1071 1072 /* 1073 * Awaken the grace-period kthread. Don't do a self-awaken (unless in an 1074 * interrupt or softirq handler, in which case we just might immediately 1075 * sleep upon return, resulting in a grace-period hang), and don't bother 1076 * awakening when there is nothing for the grace-period kthread to do 1077 * (as in several CPUs raced to awaken, we lost), and finally don't try 1078 * to awaken a kthread that has not yet been created. If all those checks 1079 * are passed, track some debug information and awaken. 1080 * 1081 * So why do the self-wakeup when in an interrupt or softirq handler 1082 * in the grace-period kthread's context? Because the kthread might have 1083 * been interrupted just as it was going to sleep, and just after the final 1084 * pre-sleep check of the awaken condition. In this case, a wakeup really 1085 * is required, and is therefore supplied. 1086 */ 1087 static void rcu_gp_kthread_wake(void) 1088 { 1089 struct task_struct *t = READ_ONCE(rcu_state.gp_kthread); 1090 1091 if ((current == t && !in_hardirq() && !in_serving_softirq()) || 1092 !READ_ONCE(rcu_state.gp_flags) || !t) 1093 return; 1094 WRITE_ONCE(rcu_state.gp_wake_time, jiffies); 1095 WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq)); 1096 swake_up_one_online(&rcu_state.gp_wq); 1097 } 1098 1099 /* 1100 * If there is room, assign a ->gp_seq number to any callbacks on this 1101 * CPU that have not already been assigned. Also accelerate any callbacks 1102 * that were previously assigned a ->gp_seq number that has since proven 1103 * to be too conservative, which can happen if callbacks get assigned a 1104 * ->gp_seq number while RCU is idle, but with reference to a non-root 1105 * rcu_node structure. This function is idempotent, so it does not hurt 1106 * to call it repeatedly. Returns an flag saying that we should awaken 1107 * the RCU grace-period kthread. 1108 * 1109 * The caller must hold rnp->lock with interrupts disabled. 1110 */ 1111 static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp) 1112 { 1113 unsigned long gp_seq_req; 1114 bool ret = false; 1115 1116 rcu_lockdep_assert_cblist_protected(rdp); 1117 raw_lockdep_assert_held_rcu_node(rnp); 1118 1119 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */ 1120 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) 1121 return false; 1122 1123 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPreAcc")); 1124 1125 /* 1126 * Callbacks are often registered with incomplete grace-period 1127 * information. Something about the fact that getting exact 1128 * information requires acquiring a global lock... RCU therefore 1129 * makes a conservative estimate of the grace period number at which 1130 * a given callback will become ready to invoke. The following 1131 * code checks this estimate and improves it when possible, thus 1132 * accelerating callback invocation to an earlier grace-period 1133 * number. 1134 */ 1135 gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq); 1136 if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req)) 1137 ret = rcu_start_this_gp(rnp, rdp, gp_seq_req); 1138 1139 /* Trace depending on how much we were able to accelerate. */ 1140 if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL)) 1141 trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccWaitCB")); 1142 else 1143 trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccReadyCB")); 1144 1145 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPostAcc")); 1146 1147 return ret; 1148 } 1149 1150 /* 1151 * Similar to rcu_accelerate_cbs(), but does not require that the leaf 1152 * rcu_node structure's ->lock be held. It consults the cached value 1153 * of ->gp_seq_needed in the rcu_data structure, and if that indicates 1154 * that a new grace-period request be made, invokes rcu_accelerate_cbs() 1155 * while holding the leaf rcu_node structure's ->lock. 1156 */ 1157 static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp, 1158 struct rcu_data *rdp) 1159 { 1160 unsigned long c; 1161 bool needwake; 1162 1163 rcu_lockdep_assert_cblist_protected(rdp); 1164 c = rcu_seq_snap(&rcu_state.gp_seq); 1165 if (!READ_ONCE(rdp->gpwrap) && ULONG_CMP_GE(rdp->gp_seq_needed, c)) { 1166 /* Old request still live, so mark recent callbacks. */ 1167 (void)rcu_segcblist_accelerate(&rdp->cblist, c); 1168 return; 1169 } 1170 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 1171 needwake = rcu_accelerate_cbs(rnp, rdp); 1172 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 1173 if (needwake) 1174 rcu_gp_kthread_wake(); 1175 } 1176 1177 /* 1178 * Move any callbacks whose grace period has completed to the 1179 * RCU_DONE_TAIL sublist, then compact the remaining sublists and 1180 * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL 1181 * sublist. This function is idempotent, so it does not hurt to 1182 * invoke it repeatedly. As long as it is not invoked -too- often... 1183 * Returns true if the RCU grace-period kthread needs to be awakened. 1184 * 1185 * The caller must hold rnp->lock with interrupts disabled. 1186 */ 1187 static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp) 1188 { 1189 rcu_lockdep_assert_cblist_protected(rdp); 1190 raw_lockdep_assert_held_rcu_node(rnp); 1191 1192 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */ 1193 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) 1194 return false; 1195 1196 /* 1197 * Find all callbacks whose ->gp_seq numbers indicate that they 1198 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist. 1199 */ 1200 rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq); 1201 1202 /* Classify any remaining callbacks. */ 1203 return rcu_accelerate_cbs(rnp, rdp); 1204 } 1205 1206 /* 1207 * Move and classify callbacks, but only if doing so won't require 1208 * that the RCU grace-period kthread be awakened. 1209 */ 1210 static void __maybe_unused rcu_advance_cbs_nowake(struct rcu_node *rnp, 1211 struct rcu_data *rdp) 1212 { 1213 rcu_lockdep_assert_cblist_protected(rdp); 1214 if (!rcu_seq_state(rcu_seq_current(&rnp->gp_seq)) || !raw_spin_trylock_rcu_node(rnp)) 1215 return; 1216 // The grace period cannot end while we hold the rcu_node lock. 1217 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) 1218 WARN_ON_ONCE(rcu_advance_cbs(rnp, rdp)); 1219 raw_spin_unlock_rcu_node(rnp); 1220 } 1221 1222 /* 1223 * In CONFIG_RCU_STRICT_GRACE_PERIOD=y kernels, attempt to generate a 1224 * quiescent state. This is intended to be invoked when the CPU notices 1225 * a new grace period. 1226 */ 1227 static void rcu_strict_gp_check_qs(void) 1228 { 1229 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) { 1230 rcu_read_lock(); 1231 rcu_read_unlock(); 1232 } 1233 } 1234 1235 /* 1236 * Update CPU-local rcu_data state to record the beginnings and ends of 1237 * grace periods. The caller must hold the ->lock of the leaf rcu_node 1238 * structure corresponding to the current CPU, and must have irqs disabled. 1239 * Returns true if the grace-period kthread needs to be awakened. 1240 */ 1241 static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp) 1242 { 1243 bool ret = false; 1244 bool need_qs; 1245 const bool offloaded = rcu_rdp_is_offloaded(rdp); 1246 1247 raw_lockdep_assert_held_rcu_node(rnp); 1248 1249 if (rdp->gp_seq == rnp->gp_seq) 1250 return false; /* Nothing to do. */ 1251 1252 /* Handle the ends of any preceding grace periods first. */ 1253 if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) || 1254 unlikely(READ_ONCE(rdp->gpwrap))) { 1255 if (!offloaded) 1256 ret = rcu_advance_cbs(rnp, rdp); /* Advance CBs. */ 1257 rdp->core_needs_qs = false; 1258 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend")); 1259 } else { 1260 if (!offloaded) 1261 ret = rcu_accelerate_cbs(rnp, rdp); /* Recent CBs. */ 1262 if (rdp->core_needs_qs) 1263 rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask); 1264 } 1265 1266 /* Now handle the beginnings of any new-to-this-CPU grace periods. */ 1267 if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) || 1268 unlikely(READ_ONCE(rdp->gpwrap))) { 1269 /* 1270 * If the current grace period is waiting for this CPU, 1271 * set up to detect a quiescent state, otherwise don't 1272 * go looking for one. 1273 */ 1274 trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart")); 1275 need_qs = !!(rnp->qsmask & rdp->grpmask); 1276 rdp->cpu_no_qs.b.norm = need_qs; 1277 rdp->core_needs_qs = need_qs; 1278 zero_cpu_stall_ticks(rdp); 1279 } 1280 rdp->gp_seq = rnp->gp_seq; /* Remember new grace-period state. */ 1281 if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap) 1282 WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed); 1283 if (IS_ENABLED(CONFIG_PROVE_RCU) && READ_ONCE(rdp->gpwrap)) 1284 WRITE_ONCE(rdp->last_sched_clock, jiffies); 1285 WRITE_ONCE(rdp->gpwrap, false); 1286 rcu_gpnum_ovf(rnp, rdp); 1287 return ret; 1288 } 1289 1290 static void note_gp_changes(struct rcu_data *rdp) 1291 { 1292 unsigned long flags; 1293 bool needwake; 1294 struct rcu_node *rnp; 1295 1296 local_irq_save(flags); 1297 rnp = rdp->mynode; 1298 if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) && 1299 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */ 1300 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */ 1301 local_irq_restore(flags); 1302 return; 1303 } 1304 needwake = __note_gp_changes(rnp, rdp); 1305 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1306 rcu_strict_gp_check_qs(); 1307 if (needwake) 1308 rcu_gp_kthread_wake(); 1309 } 1310 1311 static atomic_t *rcu_gp_slow_suppress; 1312 1313 /* Register a counter to suppress debugging grace-period delays. */ 1314 void rcu_gp_slow_register(atomic_t *rgssp) 1315 { 1316 WARN_ON_ONCE(rcu_gp_slow_suppress); 1317 1318 WRITE_ONCE(rcu_gp_slow_suppress, rgssp); 1319 } 1320 EXPORT_SYMBOL_GPL(rcu_gp_slow_register); 1321 1322 /* Unregister a counter, with NULL for not caring which. */ 1323 void rcu_gp_slow_unregister(atomic_t *rgssp) 1324 { 1325 WARN_ON_ONCE(rgssp && rgssp != rcu_gp_slow_suppress && rcu_gp_slow_suppress != NULL); 1326 1327 WRITE_ONCE(rcu_gp_slow_suppress, NULL); 1328 } 1329 EXPORT_SYMBOL_GPL(rcu_gp_slow_unregister); 1330 1331 static bool rcu_gp_slow_is_suppressed(void) 1332 { 1333 atomic_t *rgssp = READ_ONCE(rcu_gp_slow_suppress); 1334 1335 return rgssp && atomic_read(rgssp); 1336 } 1337 1338 static void rcu_gp_slow(int delay) 1339 { 1340 if (!rcu_gp_slow_is_suppressed() && delay > 0 && 1341 !(rcu_seq_ctr(rcu_state.gp_seq) % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay))) 1342 schedule_timeout_idle(delay); 1343 } 1344 1345 static unsigned long sleep_duration; 1346 1347 /* Allow rcutorture to stall the grace-period kthread. */ 1348 void rcu_gp_set_torture_wait(int duration) 1349 { 1350 if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST) && duration > 0) 1351 WRITE_ONCE(sleep_duration, duration); 1352 } 1353 EXPORT_SYMBOL_GPL(rcu_gp_set_torture_wait); 1354 1355 /* Actually implement the aforementioned wait. */ 1356 static void rcu_gp_torture_wait(void) 1357 { 1358 unsigned long duration; 1359 1360 if (!IS_ENABLED(CONFIG_RCU_TORTURE_TEST)) 1361 return; 1362 duration = xchg(&sleep_duration, 0UL); 1363 if (duration > 0) { 1364 pr_alert("%s: Waiting %lu jiffies\n", __func__, duration); 1365 schedule_timeout_idle(duration); 1366 pr_alert("%s: Wait complete\n", __func__); 1367 } 1368 } 1369 1370 /* 1371 * Handler for on_each_cpu() to invoke the target CPU's RCU core 1372 * processing. 1373 */ 1374 static void rcu_strict_gp_boundary(void *unused) 1375 { 1376 invoke_rcu_core(); 1377 } 1378 1379 // Make the polled API aware of the beginning of a grace period. 1380 static void rcu_poll_gp_seq_start(unsigned long *snap) 1381 { 1382 struct rcu_node *rnp = rcu_get_root(); 1383 1384 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) 1385 raw_lockdep_assert_held_rcu_node(rnp); 1386 1387 // If RCU was idle, note beginning of GP. 1388 if (!rcu_seq_state(rcu_state.gp_seq_polled)) 1389 rcu_seq_start(&rcu_state.gp_seq_polled); 1390 1391 // Either way, record current state. 1392 *snap = rcu_state.gp_seq_polled; 1393 } 1394 1395 // Make the polled API aware of the end of a grace period. 1396 static void rcu_poll_gp_seq_end(unsigned long *snap) 1397 { 1398 struct rcu_node *rnp = rcu_get_root(); 1399 1400 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) 1401 raw_lockdep_assert_held_rcu_node(rnp); 1402 1403 // If the previously noted GP is still in effect, record the 1404 // end of that GP. Either way, zero counter to avoid counter-wrap 1405 // problems. 1406 if (*snap && *snap == rcu_state.gp_seq_polled) { 1407 rcu_seq_end(&rcu_state.gp_seq_polled); 1408 rcu_state.gp_seq_polled_snap = 0; 1409 rcu_state.gp_seq_polled_exp_snap = 0; 1410 } else { 1411 *snap = 0; 1412 } 1413 } 1414 1415 // Make the polled API aware of the beginning of a grace period, but 1416 // where caller does not hold the root rcu_node structure's lock. 1417 static void rcu_poll_gp_seq_start_unlocked(unsigned long *snap) 1418 { 1419 unsigned long flags; 1420 struct rcu_node *rnp = rcu_get_root(); 1421 1422 if (rcu_init_invoked()) { 1423 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) 1424 lockdep_assert_irqs_enabled(); 1425 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1426 } 1427 rcu_poll_gp_seq_start(snap); 1428 if (rcu_init_invoked()) 1429 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1430 } 1431 1432 // Make the polled API aware of the end of a grace period, but where 1433 // caller does not hold the root rcu_node structure's lock. 1434 static void rcu_poll_gp_seq_end_unlocked(unsigned long *snap) 1435 { 1436 unsigned long flags; 1437 struct rcu_node *rnp = rcu_get_root(); 1438 1439 if (rcu_init_invoked()) { 1440 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) 1441 lockdep_assert_irqs_enabled(); 1442 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1443 } 1444 rcu_poll_gp_seq_end(snap); 1445 if (rcu_init_invoked()) 1446 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1447 } 1448 1449 /* 1450 * There is a single llist, which is used for handling 1451 * synchronize_rcu() users' enqueued rcu_synchronize nodes. 1452 * Within this llist, there are two tail pointers: 1453 * 1454 * wait tail: Tracks the set of nodes, which need to 1455 * wait for the current GP to complete. 1456 * done tail: Tracks the set of nodes, for which grace 1457 * period has elapsed. These nodes processing 1458 * will be done as part of the cleanup work 1459 * execution by a kworker. 1460 * 1461 * At every grace period init, a new wait node is added 1462 * to the llist. This wait node is used as wait tail 1463 * for this new grace period. Given that there are a fixed 1464 * number of wait nodes, if all wait nodes are in use 1465 * (which can happen when kworker callback processing 1466 * is delayed) and additional grace period is requested. 1467 * This means, a system is slow in processing callbacks. 1468 * 1469 * TODO: If a slow processing is detected, a first node 1470 * in the llist should be used as a wait-tail for this 1471 * grace period, therefore users which should wait due 1472 * to a slow process are handled by _this_ grace period 1473 * and not next. 1474 * 1475 * Below is an illustration of how the done and wait 1476 * tail pointers move from one set of rcu_synchronize nodes 1477 * to the other, as grace periods start and finish and 1478 * nodes are processed by kworker. 1479 * 1480 * 1481 * a. Initial llist callbacks list: 1482 * 1483 * +----------+ +--------+ +-------+ 1484 * | | | | | | 1485 * | head |---------> | cb2 |--------->| cb1 | 1486 * | | | | | | 1487 * +----------+ +--------+ +-------+ 1488 * 1489 * 1490 * 1491 * b. New GP1 Start: 1492 * 1493 * WAIT TAIL 1494 * | 1495 * | 1496 * v 1497 * +----------+ +--------+ +--------+ +-------+ 1498 * | | | | | | | | 1499 * | head ------> wait |------> cb2 |------> | cb1 | 1500 * | | | head1 | | | | | 1501 * +----------+ +--------+ +--------+ +-------+ 1502 * 1503 * 1504 * 1505 * c. GP completion: 1506 * 1507 * WAIT_TAIL == DONE_TAIL 1508 * 1509 * DONE TAIL 1510 * | 1511 * | 1512 * v 1513 * +----------+ +--------+ +--------+ +-------+ 1514 * | | | | | | | | 1515 * | head ------> wait |------> cb2 |------> | cb1 | 1516 * | | | head1 | | | | | 1517 * +----------+ +--------+ +--------+ +-------+ 1518 * 1519 * 1520 * 1521 * d. New callbacks and GP2 start: 1522 * 1523 * WAIT TAIL DONE TAIL 1524 * | | 1525 * | | 1526 * v v 1527 * +----------+ +------+ +------+ +------+ +-----+ +-----+ +-----+ 1528 * | | | | | | | | | | | | | | 1529 * | head ------> wait |--->| cb4 |--->| cb3 |--->|wait |--->| cb2 |--->| cb1 | 1530 * | | | head2| | | | | |head1| | | | | 1531 * +----------+ +------+ +------+ +------+ +-----+ +-----+ +-----+ 1532 * 1533 * 1534 * 1535 * e. GP2 completion: 1536 * 1537 * WAIT_TAIL == DONE_TAIL 1538 * DONE TAIL 1539 * | 1540 * | 1541 * v 1542 * +----------+ +------+ +------+ +------+ +-----+ +-----+ +-----+ 1543 * | | | | | | | | | | | | | | 1544 * | head ------> wait |--->| cb4 |--->| cb3 |--->|wait |--->| cb2 |--->| cb1 | 1545 * | | | head2| | | | | |head1| | | | | 1546 * +----------+ +------+ +------+ +------+ +-----+ +-----+ +-----+ 1547 * 1548 * 1549 * While the llist state transitions from d to e, a kworker 1550 * can start executing rcu_sr_normal_gp_cleanup_work() and 1551 * can observe either the old done tail (@c) or the new 1552 * done tail (@e). So, done tail updates and reads need 1553 * to use the rel-acq semantics. If the concurrent kworker 1554 * observes the old done tail, the newly queued work 1555 * execution will process the updated done tail. If the 1556 * concurrent kworker observes the new done tail, then 1557 * the newly queued work will skip processing the done 1558 * tail, as workqueue semantics guarantees that the new 1559 * work is executed only after the previous one completes. 1560 * 1561 * f. kworker callbacks processing complete: 1562 * 1563 * 1564 * DONE TAIL 1565 * | 1566 * | 1567 * v 1568 * +----------+ +--------+ 1569 * | | | | 1570 * | head ------> wait | 1571 * | | | head2 | 1572 * +----------+ +--------+ 1573 * 1574 */ 1575 static bool rcu_sr_is_wait_head(struct llist_node *node) 1576 { 1577 return &(rcu_state.srs_wait_nodes)[0].node <= node && 1578 node <= &(rcu_state.srs_wait_nodes)[SR_NORMAL_GP_WAIT_HEAD_MAX - 1].node; 1579 } 1580 1581 static struct llist_node *rcu_sr_get_wait_head(void) 1582 { 1583 struct sr_wait_node *sr_wn; 1584 int i; 1585 1586 for (i = 0; i < SR_NORMAL_GP_WAIT_HEAD_MAX; i++) { 1587 sr_wn = &(rcu_state.srs_wait_nodes)[i]; 1588 1589 if (!atomic_cmpxchg_acquire(&sr_wn->inuse, 0, 1)) 1590 return &sr_wn->node; 1591 } 1592 1593 return NULL; 1594 } 1595 1596 static void rcu_sr_put_wait_head(struct llist_node *node) 1597 { 1598 struct sr_wait_node *sr_wn = container_of(node, struct sr_wait_node, node); 1599 1600 atomic_set_release(&sr_wn->inuse, 0); 1601 } 1602 1603 /* Disabled by default. */ 1604 static int rcu_normal_wake_from_gp; 1605 module_param(rcu_normal_wake_from_gp, int, 0644); 1606 static struct workqueue_struct *sync_wq; 1607 1608 static void rcu_sr_normal_complete(struct llist_node *node) 1609 { 1610 struct rcu_synchronize *rs = container_of( 1611 (struct rcu_head *) node, struct rcu_synchronize, head); 1612 unsigned long oldstate = (unsigned long) rs->head.func; 1613 1614 WARN_ONCE(IS_ENABLED(CONFIG_PROVE_RCU) && 1615 !poll_state_synchronize_rcu(oldstate), 1616 "A full grace period is not passed yet: %lu", 1617 rcu_seq_diff(get_state_synchronize_rcu(), oldstate)); 1618 1619 /* Finally. */ 1620 complete(&rs->completion); 1621 } 1622 1623 static void rcu_sr_normal_gp_cleanup_work(struct work_struct *work) 1624 { 1625 struct llist_node *done, *rcu, *next, *head; 1626 1627 /* 1628 * This work execution can potentially execute 1629 * while a new done tail is being updated by 1630 * grace period kthread in rcu_sr_normal_gp_cleanup(). 1631 * So, read and updates of done tail need to 1632 * follow acq-rel semantics. 1633 * 1634 * Given that wq semantics guarantees that a single work 1635 * cannot execute concurrently by multiple kworkers, 1636 * the done tail list manipulations are protected here. 1637 */ 1638 done = smp_load_acquire(&rcu_state.srs_done_tail); 1639 if (!done) 1640 return; 1641 1642 WARN_ON_ONCE(!rcu_sr_is_wait_head(done)); 1643 head = done->next; 1644 done->next = NULL; 1645 1646 /* 1647 * The dummy node, which is pointed to by the 1648 * done tail which is acq-read above is not removed 1649 * here. This allows lockless additions of new 1650 * rcu_synchronize nodes in rcu_sr_normal_add_req(), 1651 * while the cleanup work executes. The dummy 1652 * nodes is removed, in next round of cleanup 1653 * work execution. 1654 */ 1655 llist_for_each_safe(rcu, next, head) { 1656 if (!rcu_sr_is_wait_head(rcu)) { 1657 rcu_sr_normal_complete(rcu); 1658 continue; 1659 } 1660 1661 rcu_sr_put_wait_head(rcu); 1662 } 1663 } 1664 1665 /* 1666 * Helper function for rcu_gp_cleanup(). 1667 */ 1668 static void rcu_sr_normal_gp_cleanup(void) 1669 { 1670 struct llist_node *wait_tail, *next, *rcu; 1671 int done = 0; 1672 1673 wait_tail = rcu_state.srs_wait_tail; 1674 if (wait_tail == NULL) 1675 return; 1676 1677 rcu_state.srs_wait_tail = NULL; 1678 ASSERT_EXCLUSIVE_WRITER(rcu_state.srs_wait_tail); 1679 WARN_ON_ONCE(!rcu_sr_is_wait_head(wait_tail)); 1680 1681 /* 1682 * Process (a) and (d) cases. See an illustration. 1683 */ 1684 llist_for_each_safe(rcu, next, wait_tail->next) { 1685 if (rcu_sr_is_wait_head(rcu)) 1686 break; 1687 1688 rcu_sr_normal_complete(rcu); 1689 // It can be last, update a next on this step. 1690 wait_tail->next = next; 1691 1692 if (++done == SR_MAX_USERS_WAKE_FROM_GP) 1693 break; 1694 } 1695 1696 // concurrent sr_normal_gp_cleanup work might observe this update. 1697 smp_store_release(&rcu_state.srs_done_tail, wait_tail); 1698 ASSERT_EXCLUSIVE_WRITER(rcu_state.srs_done_tail); 1699 1700 /* 1701 * We schedule a work in order to perform a final processing 1702 * of outstanding users(if still left) and releasing wait-heads 1703 * added by rcu_sr_normal_gp_init() call. 1704 */ 1705 queue_work(sync_wq, &rcu_state.srs_cleanup_work); 1706 } 1707 1708 /* 1709 * Helper function for rcu_gp_init(). 1710 */ 1711 static bool rcu_sr_normal_gp_init(void) 1712 { 1713 struct llist_node *first; 1714 struct llist_node *wait_head; 1715 bool start_new_poll = false; 1716 1717 first = READ_ONCE(rcu_state.srs_next.first); 1718 if (!first || rcu_sr_is_wait_head(first)) 1719 return start_new_poll; 1720 1721 wait_head = rcu_sr_get_wait_head(); 1722 if (!wait_head) { 1723 // Kick another GP to retry. 1724 start_new_poll = true; 1725 return start_new_poll; 1726 } 1727 1728 /* Inject a wait-dummy-node. */ 1729 llist_add(wait_head, &rcu_state.srs_next); 1730 1731 /* 1732 * A waiting list of rcu_synchronize nodes should be empty on 1733 * this step, since a GP-kthread, rcu_gp_init() -> gp_cleanup(), 1734 * rolls it over. If not, it is a BUG, warn a user. 1735 */ 1736 WARN_ON_ONCE(rcu_state.srs_wait_tail != NULL); 1737 rcu_state.srs_wait_tail = wait_head; 1738 ASSERT_EXCLUSIVE_WRITER(rcu_state.srs_wait_tail); 1739 1740 return start_new_poll; 1741 } 1742 1743 static void rcu_sr_normal_add_req(struct rcu_synchronize *rs) 1744 { 1745 llist_add((struct llist_node *) &rs->head, &rcu_state.srs_next); 1746 } 1747 1748 /* 1749 * Initialize a new grace period. Return false if no grace period required. 1750 */ 1751 static noinline_for_stack bool rcu_gp_init(void) 1752 { 1753 unsigned long flags; 1754 unsigned long oldmask; 1755 unsigned long mask; 1756 struct rcu_data *rdp; 1757 struct rcu_node *rnp = rcu_get_root(); 1758 bool start_new_poll; 1759 1760 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1761 raw_spin_lock_irq_rcu_node(rnp); 1762 if (!rcu_state.gp_flags) { 1763 /* Spurious wakeup, tell caller to go back to sleep. */ 1764 raw_spin_unlock_irq_rcu_node(rnp); 1765 return false; 1766 } 1767 WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */ 1768 1769 if (WARN_ON_ONCE(rcu_gp_in_progress())) { 1770 /* 1771 * Grace period already in progress, don't start another. 1772 * Not supposed to be able to happen. 1773 */ 1774 raw_spin_unlock_irq_rcu_node(rnp); 1775 return false; 1776 } 1777 1778 /* Advance to a new grace period and initialize state. */ 1779 record_gp_stall_check_time(); 1780 /* Record GP times before starting GP, hence rcu_seq_start(). */ 1781 rcu_seq_start(&rcu_state.gp_seq); 1782 ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq); 1783 start_new_poll = rcu_sr_normal_gp_init(); 1784 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start")); 1785 rcu_poll_gp_seq_start(&rcu_state.gp_seq_polled_snap); 1786 raw_spin_unlock_irq_rcu_node(rnp); 1787 1788 /* 1789 * The "start_new_poll" is set to true, only when this GP is not able 1790 * to handle anything and there are outstanding users. It happens when 1791 * the rcu_sr_normal_gp_init() function was not able to insert a dummy 1792 * separator to the llist, because there were no left any dummy-nodes. 1793 * 1794 * Number of dummy-nodes is fixed, it could be that we are run out of 1795 * them, if so we start a new pool request to repeat a try. It is rare 1796 * and it means that a system is doing a slow processing of callbacks. 1797 */ 1798 if (start_new_poll) 1799 (void) start_poll_synchronize_rcu(); 1800 1801 /* 1802 * Apply per-leaf buffered online and offline operations to 1803 * the rcu_node tree. Note that this new grace period need not 1804 * wait for subsequent online CPUs, and that RCU hooks in the CPU 1805 * offlining path, when combined with checks in this function, 1806 * will handle CPUs that are currently going offline or that will 1807 * go offline later. Please also refer to "Hotplug CPU" section 1808 * of RCU's Requirements documentation. 1809 */ 1810 WRITE_ONCE(rcu_state.gp_state, RCU_GP_ONOFF); 1811 /* Exclude CPU hotplug operations. */ 1812 rcu_for_each_leaf_node(rnp) { 1813 local_irq_save(flags); 1814 arch_spin_lock(&rcu_state.ofl_lock); 1815 raw_spin_lock_rcu_node(rnp); 1816 if (rnp->qsmaskinit == rnp->qsmaskinitnext && 1817 !rnp->wait_blkd_tasks) { 1818 /* Nothing to do on this leaf rcu_node structure. */ 1819 raw_spin_unlock_rcu_node(rnp); 1820 arch_spin_unlock(&rcu_state.ofl_lock); 1821 local_irq_restore(flags); 1822 continue; 1823 } 1824 1825 /* Record old state, apply changes to ->qsmaskinit field. */ 1826 oldmask = rnp->qsmaskinit; 1827 rnp->qsmaskinit = rnp->qsmaskinitnext; 1828 1829 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */ 1830 if (!oldmask != !rnp->qsmaskinit) { 1831 if (!oldmask) { /* First online CPU for rcu_node. */ 1832 if (!rnp->wait_blkd_tasks) /* Ever offline? */ 1833 rcu_init_new_rnp(rnp); 1834 } else if (rcu_preempt_has_tasks(rnp)) { 1835 rnp->wait_blkd_tasks = true; /* blocked tasks */ 1836 } else { /* Last offline CPU and can propagate. */ 1837 rcu_cleanup_dead_rnp(rnp); 1838 } 1839 } 1840 1841 /* 1842 * If all waited-on tasks from prior grace period are 1843 * done, and if all this rcu_node structure's CPUs are 1844 * still offline, propagate up the rcu_node tree and 1845 * clear ->wait_blkd_tasks. Otherwise, if one of this 1846 * rcu_node structure's CPUs has since come back online, 1847 * simply clear ->wait_blkd_tasks. 1848 */ 1849 if (rnp->wait_blkd_tasks && 1850 (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) { 1851 rnp->wait_blkd_tasks = false; 1852 if (!rnp->qsmaskinit) 1853 rcu_cleanup_dead_rnp(rnp); 1854 } 1855 1856 raw_spin_unlock_rcu_node(rnp); 1857 arch_spin_unlock(&rcu_state.ofl_lock); 1858 local_irq_restore(flags); 1859 } 1860 rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */ 1861 1862 /* 1863 * Set the quiescent-state-needed bits in all the rcu_node 1864 * structures for all currently online CPUs in breadth-first 1865 * order, starting from the root rcu_node structure, relying on the 1866 * layout of the tree within the rcu_state.node[] array. Note that 1867 * other CPUs will access only the leaves of the hierarchy, thus 1868 * seeing that no grace period is in progress, at least until the 1869 * corresponding leaf node has been initialized. 1870 * 1871 * The grace period cannot complete until the initialization 1872 * process finishes, because this kthread handles both. 1873 */ 1874 WRITE_ONCE(rcu_state.gp_state, RCU_GP_INIT); 1875 rcu_for_each_node_breadth_first(rnp) { 1876 rcu_gp_slow(gp_init_delay); 1877 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1878 rdp = this_cpu_ptr(&rcu_data); 1879 rcu_preempt_check_blocked_tasks(rnp); 1880 rnp->qsmask = rnp->qsmaskinit; 1881 WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq); 1882 if (rnp == rdp->mynode) 1883 (void)__note_gp_changes(rnp, rdp); 1884 rcu_preempt_boost_start_gp(rnp); 1885 trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq, 1886 rnp->level, rnp->grplo, 1887 rnp->grphi, rnp->qsmask); 1888 /* Quiescent states for tasks on any now-offline CPUs. */ 1889 mask = rnp->qsmask & ~rnp->qsmaskinitnext; 1890 rnp->rcu_gp_init_mask = mask; 1891 if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp)) 1892 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 1893 else 1894 raw_spin_unlock_irq_rcu_node(rnp); 1895 cond_resched_tasks_rcu_qs(); 1896 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1897 } 1898 1899 // If strict, make all CPUs aware of new grace period. 1900 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) 1901 on_each_cpu(rcu_strict_gp_boundary, NULL, 0); 1902 1903 return true; 1904 } 1905 1906 /* 1907 * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state 1908 * time. 1909 */ 1910 static bool rcu_gp_fqs_check_wake(int *gfp) 1911 { 1912 struct rcu_node *rnp = rcu_get_root(); 1913 1914 // If under overload conditions, force an immediate FQS scan. 1915 if (*gfp & RCU_GP_FLAG_OVLD) 1916 return true; 1917 1918 // Someone like call_rcu() requested a force-quiescent-state scan. 1919 *gfp = READ_ONCE(rcu_state.gp_flags); 1920 if (*gfp & RCU_GP_FLAG_FQS) 1921 return true; 1922 1923 // The current grace period has completed. 1924 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp)) 1925 return true; 1926 1927 return false; 1928 } 1929 1930 /* 1931 * Do one round of quiescent-state forcing. 1932 */ 1933 static void rcu_gp_fqs(bool first_time) 1934 { 1935 int nr_fqs = READ_ONCE(rcu_state.nr_fqs_jiffies_stall); 1936 struct rcu_node *rnp = rcu_get_root(); 1937 1938 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1939 WRITE_ONCE(rcu_state.n_force_qs, rcu_state.n_force_qs + 1); 1940 1941 WARN_ON_ONCE(nr_fqs > 3); 1942 /* Only countdown nr_fqs for stall purposes if jiffies moves. */ 1943 if (nr_fqs) { 1944 if (nr_fqs == 1) { 1945 WRITE_ONCE(rcu_state.jiffies_stall, 1946 jiffies + rcu_jiffies_till_stall_check()); 1947 } 1948 WRITE_ONCE(rcu_state.nr_fqs_jiffies_stall, --nr_fqs); 1949 } 1950 1951 if (first_time) { 1952 /* Collect dyntick-idle snapshots. */ 1953 force_qs_rnp(dyntick_save_progress_counter); 1954 } else { 1955 /* Handle dyntick-idle and offline CPUs. */ 1956 force_qs_rnp(rcu_implicit_dynticks_qs); 1957 } 1958 /* Clear flag to prevent immediate re-entry. */ 1959 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) { 1960 raw_spin_lock_irq_rcu_node(rnp); 1961 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags & ~RCU_GP_FLAG_FQS); 1962 raw_spin_unlock_irq_rcu_node(rnp); 1963 } 1964 } 1965 1966 /* 1967 * Loop doing repeated quiescent-state forcing until the grace period ends. 1968 */ 1969 static noinline_for_stack void rcu_gp_fqs_loop(void) 1970 { 1971 bool first_gp_fqs = true; 1972 int gf = 0; 1973 unsigned long j; 1974 int ret; 1975 struct rcu_node *rnp = rcu_get_root(); 1976 1977 j = READ_ONCE(jiffies_till_first_fqs); 1978 if (rcu_state.cbovld) 1979 gf = RCU_GP_FLAG_OVLD; 1980 ret = 0; 1981 for (;;) { 1982 if (rcu_state.cbovld) { 1983 j = (j + 2) / 3; 1984 if (j <= 0) 1985 j = 1; 1986 } 1987 if (!ret || time_before(jiffies + j, rcu_state.jiffies_force_qs)) { 1988 WRITE_ONCE(rcu_state.jiffies_force_qs, jiffies + j); 1989 /* 1990 * jiffies_force_qs before RCU_GP_WAIT_FQS state 1991 * update; required for stall checks. 1992 */ 1993 smp_wmb(); 1994 WRITE_ONCE(rcu_state.jiffies_kick_kthreads, 1995 jiffies + (j ? 3 * j : 2)); 1996 } 1997 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 1998 TPS("fqswait")); 1999 WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_FQS); 2000 (void)swait_event_idle_timeout_exclusive(rcu_state.gp_wq, 2001 rcu_gp_fqs_check_wake(&gf), j); 2002 rcu_gp_torture_wait(); 2003 WRITE_ONCE(rcu_state.gp_state, RCU_GP_DOING_FQS); 2004 /* Locking provides needed memory barriers. */ 2005 /* 2006 * Exit the loop if the root rcu_node structure indicates that the grace period 2007 * has ended, leave the loop. The rcu_preempt_blocked_readers_cgp(rnp) check 2008 * is required only for single-node rcu_node trees because readers blocking 2009 * the current grace period are queued only on leaf rcu_node structures. 2010 * For multi-node trees, checking the root node's ->qsmask suffices, because a 2011 * given root node's ->qsmask bit is cleared only when all CPUs and tasks from 2012 * the corresponding leaf nodes have passed through their quiescent state. 2013 */ 2014 if (!READ_ONCE(rnp->qsmask) && 2015 !rcu_preempt_blocked_readers_cgp(rnp)) 2016 break; 2017 /* If time for quiescent-state forcing, do it. */ 2018 if (!time_after(rcu_state.jiffies_force_qs, jiffies) || 2019 (gf & (RCU_GP_FLAG_FQS | RCU_GP_FLAG_OVLD))) { 2020 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 2021 TPS("fqsstart")); 2022 rcu_gp_fqs(first_gp_fqs); 2023 gf = 0; 2024 if (first_gp_fqs) { 2025 first_gp_fqs = false; 2026 gf = rcu_state.cbovld ? RCU_GP_FLAG_OVLD : 0; 2027 } 2028 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 2029 TPS("fqsend")); 2030 cond_resched_tasks_rcu_qs(); 2031 WRITE_ONCE(rcu_state.gp_activity, jiffies); 2032 ret = 0; /* Force full wait till next FQS. */ 2033 j = READ_ONCE(jiffies_till_next_fqs); 2034 } else { 2035 /* Deal with stray signal. */ 2036 cond_resched_tasks_rcu_qs(); 2037 WRITE_ONCE(rcu_state.gp_activity, jiffies); 2038 WARN_ON(signal_pending(current)); 2039 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 2040 TPS("fqswaitsig")); 2041 ret = 1; /* Keep old FQS timing. */ 2042 j = jiffies; 2043 if (time_after(jiffies, rcu_state.jiffies_force_qs)) 2044 j = 1; 2045 else 2046 j = rcu_state.jiffies_force_qs - j; 2047 gf = 0; 2048 } 2049 } 2050 } 2051 2052 /* 2053 * Clean up after the old grace period. 2054 */ 2055 static noinline void rcu_gp_cleanup(void) 2056 { 2057 int cpu; 2058 bool needgp = false; 2059 unsigned long gp_duration; 2060 unsigned long new_gp_seq; 2061 bool offloaded; 2062 struct rcu_data *rdp; 2063 struct rcu_node *rnp = rcu_get_root(); 2064 struct swait_queue_head *sq; 2065 2066 WRITE_ONCE(rcu_state.gp_activity, jiffies); 2067 raw_spin_lock_irq_rcu_node(rnp); 2068 rcu_state.gp_end = jiffies; 2069 gp_duration = rcu_state.gp_end - rcu_state.gp_start; 2070 if (gp_duration > rcu_state.gp_max) 2071 rcu_state.gp_max = gp_duration; 2072 2073 /* 2074 * We know the grace period is complete, but to everyone else 2075 * it appears to still be ongoing. But it is also the case 2076 * that to everyone else it looks like there is nothing that 2077 * they can do to advance the grace period. It is therefore 2078 * safe for us to drop the lock in order to mark the grace 2079 * period as completed in all of the rcu_node structures. 2080 */ 2081 rcu_poll_gp_seq_end(&rcu_state.gp_seq_polled_snap); 2082 raw_spin_unlock_irq_rcu_node(rnp); 2083 2084 /* 2085 * Propagate new ->gp_seq value to rcu_node structures so that 2086 * other CPUs don't have to wait until the start of the next grace 2087 * period to process their callbacks. This also avoids some nasty 2088 * RCU grace-period initialization races by forcing the end of 2089 * the current grace period to be completely recorded in all of 2090 * the rcu_node structures before the beginning of the next grace 2091 * period is recorded in any of the rcu_node structures. 2092 */ 2093 new_gp_seq = rcu_state.gp_seq; 2094 rcu_seq_end(&new_gp_seq); 2095 rcu_for_each_node_breadth_first(rnp) { 2096 raw_spin_lock_irq_rcu_node(rnp); 2097 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp))) 2098 dump_blkd_tasks(rnp, 10); 2099 WARN_ON_ONCE(rnp->qsmask); 2100 WRITE_ONCE(rnp->gp_seq, new_gp_seq); 2101 if (!rnp->parent) 2102 smp_mb(); // Order against failing poll_state_synchronize_rcu_full(). 2103 rdp = this_cpu_ptr(&rcu_data); 2104 if (rnp == rdp->mynode) 2105 needgp = __note_gp_changes(rnp, rdp) || needgp; 2106 /* smp_mb() provided by prior unlock-lock pair. */ 2107 needgp = rcu_future_gp_cleanup(rnp) || needgp; 2108 // Reset overload indication for CPUs no longer overloaded 2109 if (rcu_is_leaf_node(rnp)) 2110 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->cbovldmask) { 2111 rdp = per_cpu_ptr(&rcu_data, cpu); 2112 check_cb_ovld_locked(rdp, rnp); 2113 } 2114 sq = rcu_nocb_gp_get(rnp); 2115 raw_spin_unlock_irq_rcu_node(rnp); 2116 rcu_nocb_gp_cleanup(sq); 2117 cond_resched_tasks_rcu_qs(); 2118 WRITE_ONCE(rcu_state.gp_activity, jiffies); 2119 rcu_gp_slow(gp_cleanup_delay); 2120 } 2121 rnp = rcu_get_root(); 2122 raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */ 2123 2124 /* Declare grace period done, trace first to use old GP number. */ 2125 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end")); 2126 rcu_seq_end(&rcu_state.gp_seq); 2127 ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq); 2128 WRITE_ONCE(rcu_state.gp_state, RCU_GP_IDLE); 2129 /* Check for GP requests since above loop. */ 2130 rdp = this_cpu_ptr(&rcu_data); 2131 if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) { 2132 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed, 2133 TPS("CleanupMore")); 2134 needgp = true; 2135 } 2136 /* Advance CBs to reduce false positives below. */ 2137 offloaded = rcu_rdp_is_offloaded(rdp); 2138 if ((offloaded || !rcu_accelerate_cbs(rnp, rdp)) && needgp) { 2139 2140 // We get here if a grace period was needed (“needgp”) 2141 // and the above call to rcu_accelerate_cbs() did not set 2142 // the RCU_GP_FLAG_INIT bit in ->gp_state (which records 2143 // the need for another grace period). The purpose 2144 // of the “offloaded” check is to avoid invoking 2145 // rcu_accelerate_cbs() on an offloaded CPU because we do not 2146 // hold the ->nocb_lock needed to safely access an offloaded 2147 // ->cblist. We do not want to acquire that lock because 2148 // it can be heavily contended during callback floods. 2149 2150 WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT); 2151 WRITE_ONCE(rcu_state.gp_req_activity, jiffies); 2152 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("newreq")); 2153 } else { 2154 2155 // We get here either if there is no need for an 2156 // additional grace period or if rcu_accelerate_cbs() has 2157 // already set the RCU_GP_FLAG_INIT bit in ->gp_flags. 2158 // So all we need to do is to clear all of the other 2159 // ->gp_flags bits. 2160 2161 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags & RCU_GP_FLAG_INIT); 2162 } 2163 raw_spin_unlock_irq_rcu_node(rnp); 2164 2165 // Make synchronize_rcu() users aware of the end of old grace period. 2166 rcu_sr_normal_gp_cleanup(); 2167 2168 // If strict, make all CPUs aware of the end of the old grace period. 2169 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) 2170 on_each_cpu(rcu_strict_gp_boundary, NULL, 0); 2171 } 2172 2173 /* 2174 * Body of kthread that handles grace periods. 2175 */ 2176 static int __noreturn rcu_gp_kthread(void *unused) 2177 { 2178 rcu_bind_gp_kthread(); 2179 for (;;) { 2180 2181 /* Handle grace-period start. */ 2182 for (;;) { 2183 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 2184 TPS("reqwait")); 2185 WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_GPS); 2186 swait_event_idle_exclusive(rcu_state.gp_wq, 2187 READ_ONCE(rcu_state.gp_flags) & 2188 RCU_GP_FLAG_INIT); 2189 rcu_gp_torture_wait(); 2190 WRITE_ONCE(rcu_state.gp_state, RCU_GP_DONE_GPS); 2191 /* Locking provides needed memory barrier. */ 2192 if (rcu_gp_init()) 2193 break; 2194 cond_resched_tasks_rcu_qs(); 2195 WRITE_ONCE(rcu_state.gp_activity, jiffies); 2196 WARN_ON(signal_pending(current)); 2197 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 2198 TPS("reqwaitsig")); 2199 } 2200 2201 /* Handle quiescent-state forcing. */ 2202 rcu_gp_fqs_loop(); 2203 2204 /* Handle grace-period end. */ 2205 WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANUP); 2206 rcu_gp_cleanup(); 2207 WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANED); 2208 } 2209 } 2210 2211 /* 2212 * Report a full set of quiescent states to the rcu_state data structure. 2213 * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if 2214 * another grace period is required. Whether we wake the grace-period 2215 * kthread or it awakens itself for the next round of quiescent-state 2216 * forcing, that kthread will clean up after the just-completed grace 2217 * period. Note that the caller must hold rnp->lock, which is released 2218 * before return. 2219 */ 2220 static void rcu_report_qs_rsp(unsigned long flags) 2221 __releases(rcu_get_root()->lock) 2222 { 2223 raw_lockdep_assert_held_rcu_node(rcu_get_root()); 2224 WARN_ON_ONCE(!rcu_gp_in_progress()); 2225 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_FQS); 2226 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags); 2227 rcu_gp_kthread_wake(); 2228 } 2229 2230 /* 2231 * Similar to rcu_report_qs_rdp(), for which it is a helper function. 2232 * Allows quiescent states for a group of CPUs to be reported at one go 2233 * to the specified rcu_node structure, though all the CPUs in the group 2234 * must be represented by the same rcu_node structure (which need not be a 2235 * leaf rcu_node structure, though it often will be). The gps parameter 2236 * is the grace-period snapshot, which means that the quiescent states 2237 * are valid only if rnp->gp_seq is equal to gps. That structure's lock 2238 * must be held upon entry, and it is released before return. 2239 * 2240 * As a special case, if mask is zero, the bit-already-cleared check is 2241 * disabled. This allows propagating quiescent state due to resumed tasks 2242 * during grace-period initialization. 2243 */ 2244 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp, 2245 unsigned long gps, unsigned long flags) 2246 __releases(rnp->lock) 2247 { 2248 unsigned long oldmask = 0; 2249 struct rcu_node *rnp_c; 2250 2251 raw_lockdep_assert_held_rcu_node(rnp); 2252 2253 /* Walk up the rcu_node hierarchy. */ 2254 for (;;) { 2255 if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) { 2256 2257 /* 2258 * Our bit has already been cleared, or the 2259 * relevant grace period is already over, so done. 2260 */ 2261 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2262 return; 2263 } 2264 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */ 2265 WARN_ON_ONCE(!rcu_is_leaf_node(rnp) && 2266 rcu_preempt_blocked_readers_cgp(rnp)); 2267 WRITE_ONCE(rnp->qsmask, rnp->qsmask & ~mask); 2268 trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq, 2269 mask, rnp->qsmask, rnp->level, 2270 rnp->grplo, rnp->grphi, 2271 !!rnp->gp_tasks); 2272 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) { 2273 2274 /* Other bits still set at this level, so done. */ 2275 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2276 return; 2277 } 2278 rnp->completedqs = rnp->gp_seq; 2279 mask = rnp->grpmask; 2280 if (rnp->parent == NULL) { 2281 2282 /* No more levels. Exit loop holding root lock. */ 2283 2284 break; 2285 } 2286 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2287 rnp_c = rnp; 2288 rnp = rnp->parent; 2289 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2290 oldmask = READ_ONCE(rnp_c->qsmask); 2291 } 2292 2293 /* 2294 * Get here if we are the last CPU to pass through a quiescent 2295 * state for this grace period. Invoke rcu_report_qs_rsp() 2296 * to clean up and start the next grace period if one is needed. 2297 */ 2298 rcu_report_qs_rsp(flags); /* releases rnp->lock. */ 2299 } 2300 2301 /* 2302 * Record a quiescent state for all tasks that were previously queued 2303 * on the specified rcu_node structure and that were blocking the current 2304 * RCU grace period. The caller must hold the corresponding rnp->lock with 2305 * irqs disabled, and this lock is released upon return, but irqs remain 2306 * disabled. 2307 */ 2308 static void __maybe_unused 2309 rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags) 2310 __releases(rnp->lock) 2311 { 2312 unsigned long gps; 2313 unsigned long mask; 2314 struct rcu_node *rnp_p; 2315 2316 raw_lockdep_assert_held_rcu_node(rnp); 2317 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT_RCU)) || 2318 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) || 2319 rnp->qsmask != 0) { 2320 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2321 return; /* Still need more quiescent states! */ 2322 } 2323 2324 rnp->completedqs = rnp->gp_seq; 2325 rnp_p = rnp->parent; 2326 if (rnp_p == NULL) { 2327 /* 2328 * Only one rcu_node structure in the tree, so don't 2329 * try to report up to its nonexistent parent! 2330 */ 2331 rcu_report_qs_rsp(flags); 2332 return; 2333 } 2334 2335 /* Report up the rest of the hierarchy, tracking current ->gp_seq. */ 2336 gps = rnp->gp_seq; 2337 mask = rnp->grpmask; 2338 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 2339 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */ 2340 rcu_report_qs_rnp(mask, rnp_p, gps, flags); 2341 } 2342 2343 /* 2344 * Record a quiescent state for the specified CPU to that CPU's rcu_data 2345 * structure. This must be called from the specified CPU. 2346 */ 2347 static void 2348 rcu_report_qs_rdp(struct rcu_data *rdp) 2349 { 2350 unsigned long flags; 2351 unsigned long mask; 2352 bool needacc = false; 2353 struct rcu_node *rnp; 2354 2355 WARN_ON_ONCE(rdp->cpu != smp_processor_id()); 2356 rnp = rdp->mynode; 2357 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2358 if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq || 2359 rdp->gpwrap) { 2360 2361 /* 2362 * The grace period in which this quiescent state was 2363 * recorded has ended, so don't report it upwards. 2364 * We will instead need a new quiescent state that lies 2365 * within the current grace period. 2366 */ 2367 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */ 2368 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2369 return; 2370 } 2371 mask = rdp->grpmask; 2372 rdp->core_needs_qs = false; 2373 if ((rnp->qsmask & mask) == 0) { 2374 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2375 } else { 2376 /* 2377 * This GP can't end until cpu checks in, so all of our 2378 * callbacks can be processed during the next GP. 2379 * 2380 * NOCB kthreads have their own way to deal with that... 2381 */ 2382 if (!rcu_rdp_is_offloaded(rdp)) { 2383 /* 2384 * The current GP has not yet ended, so it 2385 * should not be possible for rcu_accelerate_cbs() 2386 * to return true. So complain, but don't awaken. 2387 */ 2388 WARN_ON_ONCE(rcu_accelerate_cbs(rnp, rdp)); 2389 } else if (!rcu_segcblist_completely_offloaded(&rdp->cblist)) { 2390 /* 2391 * ...but NOCB kthreads may miss or delay callbacks acceleration 2392 * if in the middle of a (de-)offloading process. 2393 */ 2394 needacc = true; 2395 } 2396 2397 rcu_disable_urgency_upon_qs(rdp); 2398 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 2399 /* ^^^ Released rnp->lock */ 2400 2401 if (needacc) { 2402 rcu_nocb_lock_irqsave(rdp, flags); 2403 rcu_accelerate_cbs_unlocked(rnp, rdp); 2404 rcu_nocb_unlock_irqrestore(rdp, flags); 2405 } 2406 } 2407 } 2408 2409 /* 2410 * Check to see if there is a new grace period of which this CPU 2411 * is not yet aware, and if so, set up local rcu_data state for it. 2412 * Otherwise, see if this CPU has just passed through its first 2413 * quiescent state for this grace period, and record that fact if so. 2414 */ 2415 static void 2416 rcu_check_quiescent_state(struct rcu_data *rdp) 2417 { 2418 /* Check for grace-period ends and beginnings. */ 2419 note_gp_changes(rdp); 2420 2421 /* 2422 * Does this CPU still need to do its part for current grace period? 2423 * If no, return and let the other CPUs do their part as well. 2424 */ 2425 if (!rdp->core_needs_qs) 2426 return; 2427 2428 /* 2429 * Was there a quiescent state since the beginning of the grace 2430 * period? If no, then exit and wait for the next call. 2431 */ 2432 if (rdp->cpu_no_qs.b.norm) 2433 return; 2434 2435 /* 2436 * Tell RCU we are done (but rcu_report_qs_rdp() will be the 2437 * judge of that). 2438 */ 2439 rcu_report_qs_rdp(rdp); 2440 } 2441 2442 /* Return true if callback-invocation time limit exceeded. */ 2443 static bool rcu_do_batch_check_time(long count, long tlimit, 2444 bool jlimit_check, unsigned long jlimit) 2445 { 2446 // Invoke local_clock() only once per 32 consecutive callbacks. 2447 return unlikely(tlimit) && 2448 (!likely(count & 31) || 2449 (IS_ENABLED(CONFIG_RCU_DOUBLE_CHECK_CB_TIME) && 2450 jlimit_check && time_after(jiffies, jlimit))) && 2451 local_clock() >= tlimit; 2452 } 2453 2454 /* 2455 * Invoke any RCU callbacks that have made it to the end of their grace 2456 * period. Throttle as specified by rdp->blimit. 2457 */ 2458 static void rcu_do_batch(struct rcu_data *rdp) 2459 { 2460 long bl; 2461 long count = 0; 2462 int div; 2463 bool __maybe_unused empty; 2464 unsigned long flags; 2465 unsigned long jlimit; 2466 bool jlimit_check = false; 2467 long pending; 2468 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl); 2469 struct rcu_head *rhp; 2470 long tlimit = 0; 2471 2472 /* If no callbacks are ready, just return. */ 2473 if (!rcu_segcblist_ready_cbs(&rdp->cblist)) { 2474 trace_rcu_batch_start(rcu_state.name, 2475 rcu_segcblist_n_cbs(&rdp->cblist), 0); 2476 trace_rcu_batch_end(rcu_state.name, 0, 2477 !rcu_segcblist_empty(&rdp->cblist), 2478 need_resched(), is_idle_task(current), 2479 rcu_is_callbacks_kthread(rdp)); 2480 return; 2481 } 2482 2483 /* 2484 * Extract the list of ready callbacks, disabling IRQs to prevent 2485 * races with call_rcu() from interrupt handlers. Leave the 2486 * callback counts, as rcu_barrier() needs to be conservative. 2487 * 2488 * Callbacks execution is fully ordered against preceding grace period 2489 * completion (materialized by rnp->gp_seq update) thanks to the 2490 * smp_mb__after_unlock_lock() upon node locking required for callbacks 2491 * advancing. In NOCB mode this ordering is then further relayed through 2492 * the nocb locking that protects both callbacks advancing and extraction. 2493 */ 2494 rcu_nocb_lock_irqsave(rdp, flags); 2495 WARN_ON_ONCE(cpu_is_offline(smp_processor_id())); 2496 pending = rcu_segcblist_get_seglen(&rdp->cblist, RCU_DONE_TAIL); 2497 div = READ_ONCE(rcu_divisor); 2498 div = div < 0 ? 7 : div > sizeof(long) * 8 - 2 ? sizeof(long) * 8 - 2 : div; 2499 bl = max(rdp->blimit, pending >> div); 2500 if ((in_serving_softirq() || rdp->rcu_cpu_kthread_status == RCU_KTHREAD_RUNNING) && 2501 (IS_ENABLED(CONFIG_RCU_DOUBLE_CHECK_CB_TIME) || unlikely(bl > 100))) { 2502 const long npj = NSEC_PER_SEC / HZ; 2503 long rrn = READ_ONCE(rcu_resched_ns); 2504 2505 rrn = rrn < NSEC_PER_MSEC ? NSEC_PER_MSEC : rrn > NSEC_PER_SEC ? NSEC_PER_SEC : rrn; 2506 tlimit = local_clock() + rrn; 2507 jlimit = jiffies + (rrn + npj + 1) / npj; 2508 jlimit_check = true; 2509 } 2510 trace_rcu_batch_start(rcu_state.name, 2511 rcu_segcblist_n_cbs(&rdp->cblist), bl); 2512 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl); 2513 if (rcu_rdp_is_offloaded(rdp)) 2514 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist); 2515 2516 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbDequeued")); 2517 rcu_nocb_unlock_irqrestore(rdp, flags); 2518 2519 /* Invoke callbacks. */ 2520 tick_dep_set_task(current, TICK_DEP_BIT_RCU); 2521 rhp = rcu_cblist_dequeue(&rcl); 2522 2523 for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) { 2524 rcu_callback_t f; 2525 2526 count++; 2527 debug_rcu_head_unqueue(rhp); 2528 2529 rcu_lock_acquire(&rcu_callback_map); 2530 trace_rcu_invoke_callback(rcu_state.name, rhp); 2531 2532 f = rhp->func; 2533 debug_rcu_head_callback(rhp); 2534 WRITE_ONCE(rhp->func, (rcu_callback_t)0L); 2535 f(rhp); 2536 2537 rcu_lock_release(&rcu_callback_map); 2538 2539 /* 2540 * Stop only if limit reached and CPU has something to do. 2541 */ 2542 if (in_serving_softirq()) { 2543 if (count >= bl && (need_resched() || !is_idle_task(current))) 2544 break; 2545 /* 2546 * Make sure we don't spend too much time here and deprive other 2547 * softirq vectors of CPU cycles. 2548 */ 2549 if (rcu_do_batch_check_time(count, tlimit, jlimit_check, jlimit)) 2550 break; 2551 } else { 2552 // In rcuc/rcuoc context, so no worries about 2553 // depriving other softirq vectors of CPU cycles. 2554 local_bh_enable(); 2555 lockdep_assert_irqs_enabled(); 2556 cond_resched_tasks_rcu_qs(); 2557 lockdep_assert_irqs_enabled(); 2558 local_bh_disable(); 2559 // But rcuc kthreads can delay quiescent-state 2560 // reporting, so check time limits for them. 2561 if (rdp->rcu_cpu_kthread_status == RCU_KTHREAD_RUNNING && 2562 rcu_do_batch_check_time(count, tlimit, jlimit_check, jlimit)) { 2563 rdp->rcu_cpu_has_work = 1; 2564 break; 2565 } 2566 } 2567 } 2568 2569 rcu_nocb_lock_irqsave(rdp, flags); 2570 rdp->n_cbs_invoked += count; 2571 trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(), 2572 is_idle_task(current), rcu_is_callbacks_kthread(rdp)); 2573 2574 /* Update counts and requeue any remaining callbacks. */ 2575 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl); 2576 rcu_segcblist_add_len(&rdp->cblist, -count); 2577 2578 /* Reinstate batch limit if we have worked down the excess. */ 2579 count = rcu_segcblist_n_cbs(&rdp->cblist); 2580 if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark) 2581 rdp->blimit = blimit; 2582 2583 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */ 2584 if (count == 0 && rdp->qlen_last_fqs_check != 0) { 2585 rdp->qlen_last_fqs_check = 0; 2586 rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs); 2587 } else if (count < rdp->qlen_last_fqs_check - qhimark) 2588 rdp->qlen_last_fqs_check = count; 2589 2590 /* 2591 * The following usually indicates a double call_rcu(). To track 2592 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y. 2593 */ 2594 empty = rcu_segcblist_empty(&rdp->cblist); 2595 WARN_ON_ONCE(count == 0 && !empty); 2596 WARN_ON_ONCE(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) && 2597 count != 0 && empty); 2598 WARN_ON_ONCE(count == 0 && rcu_segcblist_n_segment_cbs(&rdp->cblist) != 0); 2599 WARN_ON_ONCE(!empty && rcu_segcblist_n_segment_cbs(&rdp->cblist) == 0); 2600 2601 rcu_nocb_unlock_irqrestore(rdp, flags); 2602 2603 tick_dep_clear_task(current, TICK_DEP_BIT_RCU); 2604 } 2605 2606 /* 2607 * This function is invoked from each scheduling-clock interrupt, 2608 * and checks to see if this CPU is in a non-context-switch quiescent 2609 * state, for example, user mode or idle loop. It also schedules RCU 2610 * core processing. If the current grace period has gone on too long, 2611 * it will ask the scheduler to manufacture a context switch for the sole 2612 * purpose of providing the needed quiescent state. 2613 */ 2614 void rcu_sched_clock_irq(int user) 2615 { 2616 unsigned long j; 2617 2618 if (IS_ENABLED(CONFIG_PROVE_RCU)) { 2619 j = jiffies; 2620 WARN_ON_ONCE(time_before(j, __this_cpu_read(rcu_data.last_sched_clock))); 2621 __this_cpu_write(rcu_data.last_sched_clock, j); 2622 } 2623 trace_rcu_utilization(TPS("Start scheduler-tick")); 2624 lockdep_assert_irqs_disabled(); 2625 raw_cpu_inc(rcu_data.ticks_this_gp); 2626 /* The load-acquire pairs with the store-release setting to true. */ 2627 if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) { 2628 /* Idle and userspace execution already are quiescent states. */ 2629 if (!rcu_is_cpu_rrupt_from_idle() && !user) { 2630 set_tsk_need_resched(current); 2631 set_preempt_need_resched(); 2632 } 2633 __this_cpu_write(rcu_data.rcu_urgent_qs, false); 2634 } 2635 rcu_flavor_sched_clock_irq(user); 2636 if (rcu_pending(user)) 2637 invoke_rcu_core(); 2638 if (user || rcu_is_cpu_rrupt_from_idle()) 2639 rcu_note_voluntary_context_switch(current); 2640 lockdep_assert_irqs_disabled(); 2641 2642 trace_rcu_utilization(TPS("End scheduler-tick")); 2643 } 2644 2645 /* 2646 * Scan the leaf rcu_node structures. For each structure on which all 2647 * CPUs have reported a quiescent state and on which there are tasks 2648 * blocking the current grace period, initiate RCU priority boosting. 2649 * Otherwise, invoke the specified function to check dyntick state for 2650 * each CPU that has not yet reported a quiescent state. 2651 */ 2652 static void force_qs_rnp(int (*f)(struct rcu_data *rdp)) 2653 { 2654 int cpu; 2655 unsigned long flags; 2656 struct rcu_node *rnp; 2657 2658 rcu_state.cbovld = rcu_state.cbovldnext; 2659 rcu_state.cbovldnext = false; 2660 rcu_for_each_leaf_node(rnp) { 2661 unsigned long mask = 0; 2662 unsigned long rsmask = 0; 2663 2664 cond_resched_tasks_rcu_qs(); 2665 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2666 rcu_state.cbovldnext |= !!rnp->cbovldmask; 2667 if (rnp->qsmask == 0) { 2668 if (rcu_preempt_blocked_readers_cgp(rnp)) { 2669 /* 2670 * No point in scanning bits because they 2671 * are all zero. But we might need to 2672 * priority-boost blocked readers. 2673 */ 2674 rcu_initiate_boost(rnp, flags); 2675 /* rcu_initiate_boost() releases rnp->lock */ 2676 continue; 2677 } 2678 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2679 continue; 2680 } 2681 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->qsmask) { 2682 struct rcu_data *rdp; 2683 int ret; 2684 2685 rdp = per_cpu_ptr(&rcu_data, cpu); 2686 ret = f(rdp); 2687 if (ret > 0) { 2688 mask |= rdp->grpmask; 2689 rcu_disable_urgency_upon_qs(rdp); 2690 } 2691 if (ret < 0) 2692 rsmask |= rdp->grpmask; 2693 } 2694 if (mask != 0) { 2695 /* Idle/offline CPUs, report (releases rnp->lock). */ 2696 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 2697 } else { 2698 /* Nothing to do here, so just drop the lock. */ 2699 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2700 } 2701 2702 for_each_leaf_node_cpu_mask(rnp, cpu, rsmask) 2703 resched_cpu(cpu); 2704 } 2705 } 2706 2707 /* 2708 * Force quiescent states on reluctant CPUs, and also detect which 2709 * CPUs are in dyntick-idle mode. 2710 */ 2711 void rcu_force_quiescent_state(void) 2712 { 2713 unsigned long flags; 2714 bool ret; 2715 struct rcu_node *rnp; 2716 struct rcu_node *rnp_old = NULL; 2717 2718 if (!rcu_gp_in_progress()) 2719 return; 2720 /* Funnel through hierarchy to reduce memory contention. */ 2721 rnp = raw_cpu_read(rcu_data.mynode); 2722 for (; rnp != NULL; rnp = rnp->parent) { 2723 ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) || 2724 !raw_spin_trylock(&rnp->fqslock); 2725 if (rnp_old != NULL) 2726 raw_spin_unlock(&rnp_old->fqslock); 2727 if (ret) 2728 return; 2729 rnp_old = rnp; 2730 } 2731 /* rnp_old == rcu_get_root(), rnp == NULL. */ 2732 2733 /* Reached the root of the rcu_node tree, acquire lock. */ 2734 raw_spin_lock_irqsave_rcu_node(rnp_old, flags); 2735 raw_spin_unlock(&rnp_old->fqslock); 2736 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) { 2737 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); 2738 return; /* Someone beat us to it. */ 2739 } 2740 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_FQS); 2741 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); 2742 rcu_gp_kthread_wake(); 2743 } 2744 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state); 2745 2746 // Workqueue handler for an RCU reader for kernels enforcing struct RCU 2747 // grace periods. 2748 static void strict_work_handler(struct work_struct *work) 2749 { 2750 rcu_read_lock(); 2751 rcu_read_unlock(); 2752 } 2753 2754 /* Perform RCU core processing work for the current CPU. */ 2755 static __latent_entropy void rcu_core(void) 2756 { 2757 unsigned long flags; 2758 struct rcu_data *rdp = raw_cpu_ptr(&rcu_data); 2759 struct rcu_node *rnp = rdp->mynode; 2760 /* 2761 * On RT rcu_core() can be preempted when IRQs aren't disabled. 2762 * Therefore this function can race with concurrent NOCB (de-)offloading 2763 * on this CPU and the below condition must be considered volatile. 2764 * However if we race with: 2765 * 2766 * _ Offloading: In the worst case we accelerate or process callbacks 2767 * concurrently with NOCB kthreads. We are guaranteed to 2768 * call rcu_nocb_lock() if that happens. 2769 * 2770 * _ Deoffloading: In the worst case we miss callbacks acceleration or 2771 * processing. This is fine because the early stage 2772 * of deoffloading invokes rcu_core() after setting 2773 * SEGCBLIST_RCU_CORE. So we guarantee that we'll process 2774 * what could have been dismissed without the need to wait 2775 * for the next rcu_pending() check in the next jiffy. 2776 */ 2777 const bool do_batch = !rcu_segcblist_completely_offloaded(&rdp->cblist); 2778 2779 if (cpu_is_offline(smp_processor_id())) 2780 return; 2781 trace_rcu_utilization(TPS("Start RCU core")); 2782 WARN_ON_ONCE(!rdp->beenonline); 2783 2784 /* Report any deferred quiescent states if preemption enabled. */ 2785 if (IS_ENABLED(CONFIG_PREEMPT_COUNT) && (!(preempt_count() & PREEMPT_MASK))) { 2786 rcu_preempt_deferred_qs(current); 2787 } else if (rcu_preempt_need_deferred_qs(current)) { 2788 set_tsk_need_resched(current); 2789 set_preempt_need_resched(); 2790 } 2791 2792 /* Update RCU state based on any recent quiescent states. */ 2793 rcu_check_quiescent_state(rdp); 2794 2795 /* No grace period and unregistered callbacks? */ 2796 if (!rcu_gp_in_progress() && 2797 rcu_segcblist_is_enabled(&rdp->cblist) && do_batch) { 2798 rcu_nocb_lock_irqsave(rdp, flags); 2799 if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL)) 2800 rcu_accelerate_cbs_unlocked(rnp, rdp); 2801 rcu_nocb_unlock_irqrestore(rdp, flags); 2802 } 2803 2804 rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check()); 2805 2806 /* If there are callbacks ready, invoke them. */ 2807 if (do_batch && rcu_segcblist_ready_cbs(&rdp->cblist) && 2808 likely(READ_ONCE(rcu_scheduler_fully_active))) { 2809 rcu_do_batch(rdp); 2810 /* Re-invoke RCU core processing if there are callbacks remaining. */ 2811 if (rcu_segcblist_ready_cbs(&rdp->cblist)) 2812 invoke_rcu_core(); 2813 } 2814 2815 /* Do any needed deferred wakeups of rcuo kthreads. */ 2816 do_nocb_deferred_wakeup(rdp); 2817 trace_rcu_utilization(TPS("End RCU core")); 2818 2819 // If strict GPs, schedule an RCU reader in a clean environment. 2820 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) 2821 queue_work_on(rdp->cpu, rcu_gp_wq, &rdp->strict_work); 2822 } 2823 2824 static void rcu_core_si(struct softirq_action *h) 2825 { 2826 rcu_core(); 2827 } 2828 2829 static void rcu_wake_cond(struct task_struct *t, int status) 2830 { 2831 /* 2832 * If the thread is yielding, only wake it when this 2833 * is invoked from idle 2834 */ 2835 if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current))) 2836 wake_up_process(t); 2837 } 2838 2839 static void invoke_rcu_core_kthread(void) 2840 { 2841 struct task_struct *t; 2842 unsigned long flags; 2843 2844 local_irq_save(flags); 2845 __this_cpu_write(rcu_data.rcu_cpu_has_work, 1); 2846 t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task); 2847 if (t != NULL && t != current) 2848 rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status)); 2849 local_irq_restore(flags); 2850 } 2851 2852 /* 2853 * Wake up this CPU's rcuc kthread to do RCU core processing. 2854 */ 2855 static void invoke_rcu_core(void) 2856 { 2857 if (!cpu_online(smp_processor_id())) 2858 return; 2859 if (use_softirq) 2860 raise_softirq(RCU_SOFTIRQ); 2861 else 2862 invoke_rcu_core_kthread(); 2863 } 2864 2865 static void rcu_cpu_kthread_park(unsigned int cpu) 2866 { 2867 per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU; 2868 } 2869 2870 static int rcu_cpu_kthread_should_run(unsigned int cpu) 2871 { 2872 return __this_cpu_read(rcu_data.rcu_cpu_has_work); 2873 } 2874 2875 /* 2876 * Per-CPU kernel thread that invokes RCU callbacks. This replaces 2877 * the RCU softirq used in configurations of RCU that do not support RCU 2878 * priority boosting. 2879 */ 2880 static void rcu_cpu_kthread(unsigned int cpu) 2881 { 2882 unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status); 2883 char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work); 2884 unsigned long *j = this_cpu_ptr(&rcu_data.rcuc_activity); 2885 int spincnt; 2886 2887 trace_rcu_utilization(TPS("Start CPU kthread@rcu_run")); 2888 for (spincnt = 0; spincnt < 10; spincnt++) { 2889 WRITE_ONCE(*j, jiffies); 2890 local_bh_disable(); 2891 *statusp = RCU_KTHREAD_RUNNING; 2892 local_irq_disable(); 2893 work = *workp; 2894 WRITE_ONCE(*workp, 0); 2895 local_irq_enable(); 2896 if (work) 2897 rcu_core(); 2898 local_bh_enable(); 2899 if (!READ_ONCE(*workp)) { 2900 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait")); 2901 *statusp = RCU_KTHREAD_WAITING; 2902 return; 2903 } 2904 } 2905 *statusp = RCU_KTHREAD_YIELDING; 2906 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield")); 2907 schedule_timeout_idle(2); 2908 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield")); 2909 *statusp = RCU_KTHREAD_WAITING; 2910 WRITE_ONCE(*j, jiffies); 2911 } 2912 2913 static struct smp_hotplug_thread rcu_cpu_thread_spec = { 2914 .store = &rcu_data.rcu_cpu_kthread_task, 2915 .thread_should_run = rcu_cpu_kthread_should_run, 2916 .thread_fn = rcu_cpu_kthread, 2917 .thread_comm = "rcuc/%u", 2918 .setup = rcu_cpu_kthread_setup, 2919 .park = rcu_cpu_kthread_park, 2920 }; 2921 2922 /* 2923 * Spawn per-CPU RCU core processing kthreads. 2924 */ 2925 static int __init rcu_spawn_core_kthreads(void) 2926 { 2927 int cpu; 2928 2929 for_each_possible_cpu(cpu) 2930 per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0; 2931 if (use_softirq) 2932 return 0; 2933 WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec), 2934 "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__); 2935 return 0; 2936 } 2937 2938 static void rcutree_enqueue(struct rcu_data *rdp, struct rcu_head *head, rcu_callback_t func) 2939 { 2940 rcu_segcblist_enqueue(&rdp->cblist, head); 2941 if (__is_kvfree_rcu_offset((unsigned long)func)) 2942 trace_rcu_kvfree_callback(rcu_state.name, head, 2943 (unsigned long)func, 2944 rcu_segcblist_n_cbs(&rdp->cblist)); 2945 else 2946 trace_rcu_callback(rcu_state.name, head, 2947 rcu_segcblist_n_cbs(&rdp->cblist)); 2948 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCBQueued")); 2949 } 2950 2951 /* 2952 * Handle any core-RCU processing required by a call_rcu() invocation. 2953 */ 2954 static void call_rcu_core(struct rcu_data *rdp, struct rcu_head *head, 2955 rcu_callback_t func, unsigned long flags) 2956 { 2957 rcutree_enqueue(rdp, head, func); 2958 /* 2959 * If called from an extended quiescent state, invoke the RCU 2960 * core in order to force a re-evaluation of RCU's idleness. 2961 */ 2962 if (!rcu_is_watching()) 2963 invoke_rcu_core(); 2964 2965 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */ 2966 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id())) 2967 return; 2968 2969 /* 2970 * Force the grace period if too many callbacks or too long waiting. 2971 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state() 2972 * if some other CPU has recently done so. Also, don't bother 2973 * invoking rcu_force_quiescent_state() if the newly enqueued callback 2974 * is the only one waiting for a grace period to complete. 2975 */ 2976 if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) > 2977 rdp->qlen_last_fqs_check + qhimark)) { 2978 2979 /* Are we ignoring a completed grace period? */ 2980 note_gp_changes(rdp); 2981 2982 /* Start a new grace period if one not already started. */ 2983 if (!rcu_gp_in_progress()) { 2984 rcu_accelerate_cbs_unlocked(rdp->mynode, rdp); 2985 } else { 2986 /* Give the grace period a kick. */ 2987 rdp->blimit = DEFAULT_MAX_RCU_BLIMIT; 2988 if (READ_ONCE(rcu_state.n_force_qs) == rdp->n_force_qs_snap && 2989 rcu_segcblist_first_pend_cb(&rdp->cblist) != head) 2990 rcu_force_quiescent_state(); 2991 rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs); 2992 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist); 2993 } 2994 } 2995 } 2996 2997 /* 2998 * RCU callback function to leak a callback. 2999 */ 3000 static void rcu_leak_callback(struct rcu_head *rhp) 3001 { 3002 } 3003 3004 /* 3005 * Check and if necessary update the leaf rcu_node structure's 3006 * ->cbovldmask bit corresponding to the current CPU based on that CPU's 3007 * number of queued RCU callbacks. The caller must hold the leaf rcu_node 3008 * structure's ->lock. 3009 */ 3010 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp) 3011 { 3012 raw_lockdep_assert_held_rcu_node(rnp); 3013 if (qovld_calc <= 0) 3014 return; // Early boot and wildcard value set. 3015 if (rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) 3016 WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask | rdp->grpmask); 3017 else 3018 WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask & ~rdp->grpmask); 3019 } 3020 3021 /* 3022 * Check and if necessary update the leaf rcu_node structure's 3023 * ->cbovldmask bit corresponding to the current CPU based on that CPU's 3024 * number of queued RCU callbacks. No locks need be held, but the 3025 * caller must have disabled interrupts. 3026 * 3027 * Note that this function ignores the possibility that there are a lot 3028 * of callbacks all of which have already seen the end of their respective 3029 * grace periods. This omission is due to the need for no-CBs CPUs to 3030 * be holding ->nocb_lock to do this check, which is too heavy for a 3031 * common-case operation. 3032 */ 3033 static void check_cb_ovld(struct rcu_data *rdp) 3034 { 3035 struct rcu_node *const rnp = rdp->mynode; 3036 3037 if (qovld_calc <= 0 || 3038 ((rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) == 3039 !!(READ_ONCE(rnp->cbovldmask) & rdp->grpmask))) 3040 return; // Early boot wildcard value or already set correctly. 3041 raw_spin_lock_rcu_node(rnp); 3042 check_cb_ovld_locked(rdp, rnp); 3043 raw_spin_unlock_rcu_node(rnp); 3044 } 3045 3046 static void 3047 __call_rcu_common(struct rcu_head *head, rcu_callback_t func, bool lazy_in) 3048 { 3049 static atomic_t doublefrees; 3050 unsigned long flags; 3051 bool lazy; 3052 struct rcu_data *rdp; 3053 3054 /* Misaligned rcu_head! */ 3055 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1)); 3056 3057 if (debug_rcu_head_queue(head)) { 3058 /* 3059 * Probable double call_rcu(), so leak the callback. 3060 * Use rcu:rcu_callback trace event to find the previous 3061 * time callback was passed to call_rcu(). 3062 */ 3063 if (atomic_inc_return(&doublefrees) < 4) { 3064 pr_err("%s(): Double-freed CB %p->%pS()!!! ", __func__, head, head->func); 3065 mem_dump_obj(head); 3066 } 3067 WRITE_ONCE(head->func, rcu_leak_callback); 3068 return; 3069 } 3070 head->func = func; 3071 head->next = NULL; 3072 kasan_record_aux_stack_noalloc(head); 3073 local_irq_save(flags); 3074 rdp = this_cpu_ptr(&rcu_data); 3075 lazy = lazy_in && !rcu_async_should_hurry(); 3076 3077 /* Add the callback to our list. */ 3078 if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist))) { 3079 // This can trigger due to call_rcu() from offline CPU: 3080 WARN_ON_ONCE(rcu_scheduler_active != RCU_SCHEDULER_INACTIVE); 3081 WARN_ON_ONCE(!rcu_is_watching()); 3082 // Very early boot, before rcu_init(). Initialize if needed 3083 // and then drop through to queue the callback. 3084 if (rcu_segcblist_empty(&rdp->cblist)) 3085 rcu_segcblist_init(&rdp->cblist); 3086 } 3087 3088 check_cb_ovld(rdp); 3089 3090 if (unlikely(rcu_rdp_is_offloaded(rdp))) 3091 call_rcu_nocb(rdp, head, func, flags, lazy); 3092 else 3093 call_rcu_core(rdp, head, func, flags); 3094 local_irq_restore(flags); 3095 } 3096 3097 #ifdef CONFIG_RCU_LAZY 3098 static bool enable_rcu_lazy __read_mostly = !IS_ENABLED(CONFIG_RCU_LAZY_DEFAULT_OFF); 3099 module_param(enable_rcu_lazy, bool, 0444); 3100 3101 /** 3102 * call_rcu_hurry() - Queue RCU callback for invocation after grace period, and 3103 * flush all lazy callbacks (including the new one) to the main ->cblist while 3104 * doing so. 3105 * 3106 * @head: structure to be used for queueing the RCU updates. 3107 * @func: actual callback function to be invoked after the grace period 3108 * 3109 * The callback function will be invoked some time after a full grace 3110 * period elapses, in other words after all pre-existing RCU read-side 3111 * critical sections have completed. 3112 * 3113 * Use this API instead of call_rcu() if you don't want the callback to be 3114 * invoked after very long periods of time, which can happen on systems without 3115 * memory pressure and on systems which are lightly loaded or mostly idle. 3116 * This function will cause callbacks to be invoked sooner than later at the 3117 * expense of extra power. Other than that, this function is identical to, and 3118 * reuses call_rcu()'s logic. Refer to call_rcu() for more details about memory 3119 * ordering and other functionality. 3120 */ 3121 void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func) 3122 { 3123 __call_rcu_common(head, func, false); 3124 } 3125 EXPORT_SYMBOL_GPL(call_rcu_hurry); 3126 #else 3127 #define enable_rcu_lazy false 3128 #endif 3129 3130 /** 3131 * call_rcu() - Queue an RCU callback for invocation after a grace period. 3132 * By default the callbacks are 'lazy' and are kept hidden from the main 3133 * ->cblist to prevent starting of grace periods too soon. 3134 * If you desire grace periods to start very soon, use call_rcu_hurry(). 3135 * 3136 * @head: structure to be used for queueing the RCU updates. 3137 * @func: actual callback function to be invoked after the grace period 3138 * 3139 * The callback function will be invoked some time after a full grace 3140 * period elapses, in other words after all pre-existing RCU read-side 3141 * critical sections have completed. However, the callback function 3142 * might well execute concurrently with RCU read-side critical sections 3143 * that started after call_rcu() was invoked. 3144 * 3145 * RCU read-side critical sections are delimited by rcu_read_lock() 3146 * and rcu_read_unlock(), and may be nested. In addition, but only in 3147 * v5.0 and later, regions of code across which interrupts, preemption, 3148 * or softirqs have been disabled also serve as RCU read-side critical 3149 * sections. This includes hardware interrupt handlers, softirq handlers, 3150 * and NMI handlers. 3151 * 3152 * Note that all CPUs must agree that the grace period extended beyond 3153 * all pre-existing RCU read-side critical section. On systems with more 3154 * than one CPU, this means that when "func()" is invoked, each CPU is 3155 * guaranteed to have executed a full memory barrier since the end of its 3156 * last RCU read-side critical section whose beginning preceded the call 3157 * to call_rcu(). It also means that each CPU executing an RCU read-side 3158 * critical section that continues beyond the start of "func()" must have 3159 * executed a memory barrier after the call_rcu() but before the beginning 3160 * of that RCU read-side critical section. Note that these guarantees 3161 * include CPUs that are offline, idle, or executing in user mode, as 3162 * well as CPUs that are executing in the kernel. 3163 * 3164 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the 3165 * resulting RCU callback function "func()", then both CPU A and CPU B are 3166 * guaranteed to execute a full memory barrier during the time interval 3167 * between the call to call_rcu() and the invocation of "func()" -- even 3168 * if CPU A and CPU B are the same CPU (but again only if the system has 3169 * more than one CPU). 3170 * 3171 * Implementation of these memory-ordering guarantees is described here: 3172 * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst. 3173 */ 3174 void call_rcu(struct rcu_head *head, rcu_callback_t func) 3175 { 3176 __call_rcu_common(head, func, enable_rcu_lazy); 3177 } 3178 EXPORT_SYMBOL_GPL(call_rcu); 3179 3180 /* Maximum number of jiffies to wait before draining a batch. */ 3181 #define KFREE_DRAIN_JIFFIES (5 * HZ) 3182 #define KFREE_N_BATCHES 2 3183 #define FREE_N_CHANNELS 2 3184 3185 /** 3186 * struct kvfree_rcu_bulk_data - single block to store kvfree_rcu() pointers 3187 * @list: List node. All blocks are linked between each other 3188 * @gp_snap: Snapshot of RCU state for objects placed to this bulk 3189 * @nr_records: Number of active pointers in the array 3190 * @records: Array of the kvfree_rcu() pointers 3191 */ 3192 struct kvfree_rcu_bulk_data { 3193 struct list_head list; 3194 struct rcu_gp_oldstate gp_snap; 3195 unsigned long nr_records; 3196 void *records[]; 3197 }; 3198 3199 /* 3200 * This macro defines how many entries the "records" array 3201 * will contain. It is based on the fact that the size of 3202 * kvfree_rcu_bulk_data structure becomes exactly one page. 3203 */ 3204 #define KVFREE_BULK_MAX_ENTR \ 3205 ((PAGE_SIZE - sizeof(struct kvfree_rcu_bulk_data)) / sizeof(void *)) 3206 3207 /** 3208 * struct kfree_rcu_cpu_work - single batch of kfree_rcu() requests 3209 * @rcu_work: Let queue_rcu_work() invoke workqueue handler after grace period 3210 * @head_free: List of kfree_rcu() objects waiting for a grace period 3211 * @head_free_gp_snap: Grace-period snapshot to check for attempted premature frees. 3212 * @bulk_head_free: Bulk-List of kvfree_rcu() objects waiting for a grace period 3213 * @krcp: Pointer to @kfree_rcu_cpu structure 3214 */ 3215 3216 struct kfree_rcu_cpu_work { 3217 struct rcu_work rcu_work; 3218 struct rcu_head *head_free; 3219 struct rcu_gp_oldstate head_free_gp_snap; 3220 struct list_head bulk_head_free[FREE_N_CHANNELS]; 3221 struct kfree_rcu_cpu *krcp; 3222 }; 3223 3224 /** 3225 * struct kfree_rcu_cpu - batch up kfree_rcu() requests for RCU grace period 3226 * @head: List of kfree_rcu() objects not yet waiting for a grace period 3227 * @head_gp_snap: Snapshot of RCU state for objects placed to "@head" 3228 * @bulk_head: Bulk-List of kvfree_rcu() objects not yet waiting for a grace period 3229 * @krw_arr: Array of batches of kfree_rcu() objects waiting for a grace period 3230 * @lock: Synchronize access to this structure 3231 * @monitor_work: Promote @head to @head_free after KFREE_DRAIN_JIFFIES 3232 * @initialized: The @rcu_work fields have been initialized 3233 * @head_count: Number of objects in rcu_head singular list 3234 * @bulk_count: Number of objects in bulk-list 3235 * @bkvcache: 3236 * A simple cache list that contains objects for reuse purpose. 3237 * In order to save some per-cpu space the list is singular. 3238 * Even though it is lockless an access has to be protected by the 3239 * per-cpu lock. 3240 * @page_cache_work: A work to refill the cache when it is empty 3241 * @backoff_page_cache_fill: Delay cache refills 3242 * @work_in_progress: Indicates that page_cache_work is running 3243 * @hrtimer: A hrtimer for scheduling a page_cache_work 3244 * @nr_bkv_objs: number of allocated objects at @bkvcache. 3245 * 3246 * This is a per-CPU structure. The reason that it is not included in 3247 * the rcu_data structure is to permit this code to be extracted from 3248 * the RCU files. Such extraction could allow further optimization of 3249 * the interactions with the slab allocators. 3250 */ 3251 struct kfree_rcu_cpu { 3252 // Objects queued on a linked list 3253 // through their rcu_head structures. 3254 struct rcu_head *head; 3255 unsigned long head_gp_snap; 3256 atomic_t head_count; 3257 3258 // Objects queued on a bulk-list. 3259 struct list_head bulk_head[FREE_N_CHANNELS]; 3260 atomic_t bulk_count[FREE_N_CHANNELS]; 3261 3262 struct kfree_rcu_cpu_work krw_arr[KFREE_N_BATCHES]; 3263 raw_spinlock_t lock; 3264 struct delayed_work monitor_work; 3265 bool initialized; 3266 3267 struct delayed_work page_cache_work; 3268 atomic_t backoff_page_cache_fill; 3269 atomic_t work_in_progress; 3270 struct hrtimer hrtimer; 3271 3272 struct llist_head bkvcache; 3273 int nr_bkv_objs; 3274 }; 3275 3276 static DEFINE_PER_CPU(struct kfree_rcu_cpu, krc) = { 3277 .lock = __RAW_SPIN_LOCK_UNLOCKED(krc.lock), 3278 }; 3279 3280 static __always_inline void 3281 debug_rcu_bhead_unqueue(struct kvfree_rcu_bulk_data *bhead) 3282 { 3283 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD 3284 int i; 3285 3286 for (i = 0; i < bhead->nr_records; i++) 3287 debug_rcu_head_unqueue((struct rcu_head *)(bhead->records[i])); 3288 #endif 3289 } 3290 3291 static inline struct kfree_rcu_cpu * 3292 krc_this_cpu_lock(unsigned long *flags) 3293 { 3294 struct kfree_rcu_cpu *krcp; 3295 3296 local_irq_save(*flags); // For safely calling this_cpu_ptr(). 3297 krcp = this_cpu_ptr(&krc); 3298 raw_spin_lock(&krcp->lock); 3299 3300 return krcp; 3301 } 3302 3303 static inline void 3304 krc_this_cpu_unlock(struct kfree_rcu_cpu *krcp, unsigned long flags) 3305 { 3306 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3307 } 3308 3309 static inline struct kvfree_rcu_bulk_data * 3310 get_cached_bnode(struct kfree_rcu_cpu *krcp) 3311 { 3312 if (!krcp->nr_bkv_objs) 3313 return NULL; 3314 3315 WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs - 1); 3316 return (struct kvfree_rcu_bulk_data *) 3317 llist_del_first(&krcp->bkvcache); 3318 } 3319 3320 static inline bool 3321 put_cached_bnode(struct kfree_rcu_cpu *krcp, 3322 struct kvfree_rcu_bulk_data *bnode) 3323 { 3324 // Check the limit. 3325 if (krcp->nr_bkv_objs >= rcu_min_cached_objs) 3326 return false; 3327 3328 llist_add((struct llist_node *) bnode, &krcp->bkvcache); 3329 WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs + 1); 3330 return true; 3331 } 3332 3333 static int 3334 drain_page_cache(struct kfree_rcu_cpu *krcp) 3335 { 3336 unsigned long flags; 3337 struct llist_node *page_list, *pos, *n; 3338 int freed = 0; 3339 3340 if (!rcu_min_cached_objs) 3341 return 0; 3342 3343 raw_spin_lock_irqsave(&krcp->lock, flags); 3344 page_list = llist_del_all(&krcp->bkvcache); 3345 WRITE_ONCE(krcp->nr_bkv_objs, 0); 3346 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3347 3348 llist_for_each_safe(pos, n, page_list) { 3349 free_page((unsigned long)pos); 3350 freed++; 3351 } 3352 3353 return freed; 3354 } 3355 3356 static void 3357 kvfree_rcu_bulk(struct kfree_rcu_cpu *krcp, 3358 struct kvfree_rcu_bulk_data *bnode, int idx) 3359 { 3360 unsigned long flags; 3361 int i; 3362 3363 if (!WARN_ON_ONCE(!poll_state_synchronize_rcu_full(&bnode->gp_snap))) { 3364 debug_rcu_bhead_unqueue(bnode); 3365 rcu_lock_acquire(&rcu_callback_map); 3366 if (idx == 0) { // kmalloc() / kfree(). 3367 trace_rcu_invoke_kfree_bulk_callback( 3368 rcu_state.name, bnode->nr_records, 3369 bnode->records); 3370 3371 kfree_bulk(bnode->nr_records, bnode->records); 3372 } else { // vmalloc() / vfree(). 3373 for (i = 0; i < bnode->nr_records; i++) { 3374 trace_rcu_invoke_kvfree_callback( 3375 rcu_state.name, bnode->records[i], 0); 3376 3377 vfree(bnode->records[i]); 3378 } 3379 } 3380 rcu_lock_release(&rcu_callback_map); 3381 } 3382 3383 raw_spin_lock_irqsave(&krcp->lock, flags); 3384 if (put_cached_bnode(krcp, bnode)) 3385 bnode = NULL; 3386 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3387 3388 if (bnode) 3389 free_page((unsigned long) bnode); 3390 3391 cond_resched_tasks_rcu_qs(); 3392 } 3393 3394 static void 3395 kvfree_rcu_list(struct rcu_head *head) 3396 { 3397 struct rcu_head *next; 3398 3399 for (; head; head = next) { 3400 void *ptr = (void *) head->func; 3401 unsigned long offset = (void *) head - ptr; 3402 3403 next = head->next; 3404 debug_rcu_head_unqueue((struct rcu_head *)ptr); 3405 rcu_lock_acquire(&rcu_callback_map); 3406 trace_rcu_invoke_kvfree_callback(rcu_state.name, head, offset); 3407 3408 if (!WARN_ON_ONCE(!__is_kvfree_rcu_offset(offset))) 3409 kvfree(ptr); 3410 3411 rcu_lock_release(&rcu_callback_map); 3412 cond_resched_tasks_rcu_qs(); 3413 } 3414 } 3415 3416 /* 3417 * This function is invoked in workqueue context after a grace period. 3418 * It frees all the objects queued on ->bulk_head_free or ->head_free. 3419 */ 3420 static void kfree_rcu_work(struct work_struct *work) 3421 { 3422 unsigned long flags; 3423 struct kvfree_rcu_bulk_data *bnode, *n; 3424 struct list_head bulk_head[FREE_N_CHANNELS]; 3425 struct rcu_head *head; 3426 struct kfree_rcu_cpu *krcp; 3427 struct kfree_rcu_cpu_work *krwp; 3428 struct rcu_gp_oldstate head_gp_snap; 3429 int i; 3430 3431 krwp = container_of(to_rcu_work(work), 3432 struct kfree_rcu_cpu_work, rcu_work); 3433 krcp = krwp->krcp; 3434 3435 raw_spin_lock_irqsave(&krcp->lock, flags); 3436 // Channels 1 and 2. 3437 for (i = 0; i < FREE_N_CHANNELS; i++) 3438 list_replace_init(&krwp->bulk_head_free[i], &bulk_head[i]); 3439 3440 // Channel 3. 3441 head = krwp->head_free; 3442 krwp->head_free = NULL; 3443 head_gp_snap = krwp->head_free_gp_snap; 3444 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3445 3446 // Handle the first two channels. 3447 for (i = 0; i < FREE_N_CHANNELS; i++) { 3448 // Start from the tail page, so a GP is likely passed for it. 3449 list_for_each_entry_safe(bnode, n, &bulk_head[i], list) 3450 kvfree_rcu_bulk(krcp, bnode, i); 3451 } 3452 3453 /* 3454 * This is used when the "bulk" path can not be used for the 3455 * double-argument of kvfree_rcu(). This happens when the 3456 * page-cache is empty, which means that objects are instead 3457 * queued on a linked list through their rcu_head structures. 3458 * This list is named "Channel 3". 3459 */ 3460 if (head && !WARN_ON_ONCE(!poll_state_synchronize_rcu_full(&head_gp_snap))) 3461 kvfree_rcu_list(head); 3462 } 3463 3464 static bool 3465 need_offload_krc(struct kfree_rcu_cpu *krcp) 3466 { 3467 int i; 3468 3469 for (i = 0; i < FREE_N_CHANNELS; i++) 3470 if (!list_empty(&krcp->bulk_head[i])) 3471 return true; 3472 3473 return !!READ_ONCE(krcp->head); 3474 } 3475 3476 static bool 3477 need_wait_for_krwp_work(struct kfree_rcu_cpu_work *krwp) 3478 { 3479 int i; 3480 3481 for (i = 0; i < FREE_N_CHANNELS; i++) 3482 if (!list_empty(&krwp->bulk_head_free[i])) 3483 return true; 3484 3485 return !!krwp->head_free; 3486 } 3487 3488 static int krc_count(struct kfree_rcu_cpu *krcp) 3489 { 3490 int sum = atomic_read(&krcp->head_count); 3491 int i; 3492 3493 for (i = 0; i < FREE_N_CHANNELS; i++) 3494 sum += atomic_read(&krcp->bulk_count[i]); 3495 3496 return sum; 3497 } 3498 3499 static void 3500 schedule_delayed_monitor_work(struct kfree_rcu_cpu *krcp) 3501 { 3502 long delay, delay_left; 3503 3504 delay = krc_count(krcp) >= KVFREE_BULK_MAX_ENTR ? 1:KFREE_DRAIN_JIFFIES; 3505 if (delayed_work_pending(&krcp->monitor_work)) { 3506 delay_left = krcp->monitor_work.timer.expires - jiffies; 3507 if (delay < delay_left) 3508 mod_delayed_work(system_wq, &krcp->monitor_work, delay); 3509 return; 3510 } 3511 queue_delayed_work(system_wq, &krcp->monitor_work, delay); 3512 } 3513 3514 static void 3515 kvfree_rcu_drain_ready(struct kfree_rcu_cpu *krcp) 3516 { 3517 struct list_head bulk_ready[FREE_N_CHANNELS]; 3518 struct kvfree_rcu_bulk_data *bnode, *n; 3519 struct rcu_head *head_ready = NULL; 3520 unsigned long flags; 3521 int i; 3522 3523 raw_spin_lock_irqsave(&krcp->lock, flags); 3524 for (i = 0; i < FREE_N_CHANNELS; i++) { 3525 INIT_LIST_HEAD(&bulk_ready[i]); 3526 3527 list_for_each_entry_safe_reverse(bnode, n, &krcp->bulk_head[i], list) { 3528 if (!poll_state_synchronize_rcu_full(&bnode->gp_snap)) 3529 break; 3530 3531 atomic_sub(bnode->nr_records, &krcp->bulk_count[i]); 3532 list_move(&bnode->list, &bulk_ready[i]); 3533 } 3534 } 3535 3536 if (krcp->head && poll_state_synchronize_rcu(krcp->head_gp_snap)) { 3537 head_ready = krcp->head; 3538 atomic_set(&krcp->head_count, 0); 3539 WRITE_ONCE(krcp->head, NULL); 3540 } 3541 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3542 3543 for (i = 0; i < FREE_N_CHANNELS; i++) { 3544 list_for_each_entry_safe(bnode, n, &bulk_ready[i], list) 3545 kvfree_rcu_bulk(krcp, bnode, i); 3546 } 3547 3548 if (head_ready) 3549 kvfree_rcu_list(head_ready); 3550 } 3551 3552 /* 3553 * This function is invoked after the KFREE_DRAIN_JIFFIES timeout. 3554 */ 3555 static void kfree_rcu_monitor(struct work_struct *work) 3556 { 3557 struct kfree_rcu_cpu *krcp = container_of(work, 3558 struct kfree_rcu_cpu, monitor_work.work); 3559 unsigned long flags; 3560 int i, j; 3561 3562 // Drain ready for reclaim. 3563 kvfree_rcu_drain_ready(krcp); 3564 3565 raw_spin_lock_irqsave(&krcp->lock, flags); 3566 3567 // Attempt to start a new batch. 3568 for (i = 0; i < KFREE_N_BATCHES; i++) { 3569 struct kfree_rcu_cpu_work *krwp = &(krcp->krw_arr[i]); 3570 3571 // Try to detach bulk_head or head and attach it, only when 3572 // all channels are free. Any channel is not free means at krwp 3573 // there is on-going rcu work to handle krwp's free business. 3574 if (need_wait_for_krwp_work(krwp)) 3575 continue; 3576 3577 // kvfree_rcu_drain_ready() might handle this krcp, if so give up. 3578 if (need_offload_krc(krcp)) { 3579 // Channel 1 corresponds to the SLAB-pointer bulk path. 3580 // Channel 2 corresponds to vmalloc-pointer bulk path. 3581 for (j = 0; j < FREE_N_CHANNELS; j++) { 3582 if (list_empty(&krwp->bulk_head_free[j])) { 3583 atomic_set(&krcp->bulk_count[j], 0); 3584 list_replace_init(&krcp->bulk_head[j], 3585 &krwp->bulk_head_free[j]); 3586 } 3587 } 3588 3589 // Channel 3 corresponds to both SLAB and vmalloc 3590 // objects queued on the linked list. 3591 if (!krwp->head_free) { 3592 krwp->head_free = krcp->head; 3593 get_state_synchronize_rcu_full(&krwp->head_free_gp_snap); 3594 atomic_set(&krcp->head_count, 0); 3595 WRITE_ONCE(krcp->head, NULL); 3596 } 3597 3598 // One work is per one batch, so there are three 3599 // "free channels", the batch can handle. It can 3600 // be that the work is in the pending state when 3601 // channels have been detached following by each 3602 // other. 3603 queue_rcu_work(system_wq, &krwp->rcu_work); 3604 } 3605 } 3606 3607 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3608 3609 // If there is nothing to detach, it means that our job is 3610 // successfully done here. In case of having at least one 3611 // of the channels that is still busy we should rearm the 3612 // work to repeat an attempt. Because previous batches are 3613 // still in progress. 3614 if (need_offload_krc(krcp)) 3615 schedule_delayed_monitor_work(krcp); 3616 } 3617 3618 static enum hrtimer_restart 3619 schedule_page_work_fn(struct hrtimer *t) 3620 { 3621 struct kfree_rcu_cpu *krcp = 3622 container_of(t, struct kfree_rcu_cpu, hrtimer); 3623 3624 queue_delayed_work(system_highpri_wq, &krcp->page_cache_work, 0); 3625 return HRTIMER_NORESTART; 3626 } 3627 3628 static void fill_page_cache_func(struct work_struct *work) 3629 { 3630 struct kvfree_rcu_bulk_data *bnode; 3631 struct kfree_rcu_cpu *krcp = 3632 container_of(work, struct kfree_rcu_cpu, 3633 page_cache_work.work); 3634 unsigned long flags; 3635 int nr_pages; 3636 bool pushed; 3637 int i; 3638 3639 nr_pages = atomic_read(&krcp->backoff_page_cache_fill) ? 3640 1 : rcu_min_cached_objs; 3641 3642 for (i = READ_ONCE(krcp->nr_bkv_objs); i < nr_pages; i++) { 3643 bnode = (struct kvfree_rcu_bulk_data *) 3644 __get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); 3645 3646 if (!bnode) 3647 break; 3648 3649 raw_spin_lock_irqsave(&krcp->lock, flags); 3650 pushed = put_cached_bnode(krcp, bnode); 3651 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3652 3653 if (!pushed) { 3654 free_page((unsigned long) bnode); 3655 break; 3656 } 3657 } 3658 3659 atomic_set(&krcp->work_in_progress, 0); 3660 atomic_set(&krcp->backoff_page_cache_fill, 0); 3661 } 3662 3663 static void 3664 run_page_cache_worker(struct kfree_rcu_cpu *krcp) 3665 { 3666 // If cache disabled, bail out. 3667 if (!rcu_min_cached_objs) 3668 return; 3669 3670 if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING && 3671 !atomic_xchg(&krcp->work_in_progress, 1)) { 3672 if (atomic_read(&krcp->backoff_page_cache_fill)) { 3673 queue_delayed_work(system_wq, 3674 &krcp->page_cache_work, 3675 msecs_to_jiffies(rcu_delay_page_cache_fill_msec)); 3676 } else { 3677 hrtimer_init(&krcp->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 3678 krcp->hrtimer.function = schedule_page_work_fn; 3679 hrtimer_start(&krcp->hrtimer, 0, HRTIMER_MODE_REL); 3680 } 3681 } 3682 } 3683 3684 // Record ptr in a page managed by krcp, with the pre-krc_this_cpu_lock() 3685 // state specified by flags. If can_alloc is true, the caller must 3686 // be schedulable and not be holding any locks or mutexes that might be 3687 // acquired by the memory allocator or anything that it might invoke. 3688 // Returns true if ptr was successfully recorded, else the caller must 3689 // use a fallback. 3690 static inline bool 3691 add_ptr_to_bulk_krc_lock(struct kfree_rcu_cpu **krcp, 3692 unsigned long *flags, void *ptr, bool can_alloc) 3693 { 3694 struct kvfree_rcu_bulk_data *bnode; 3695 int idx; 3696 3697 *krcp = krc_this_cpu_lock(flags); 3698 if (unlikely(!(*krcp)->initialized)) 3699 return false; 3700 3701 idx = !!is_vmalloc_addr(ptr); 3702 bnode = list_first_entry_or_null(&(*krcp)->bulk_head[idx], 3703 struct kvfree_rcu_bulk_data, list); 3704 3705 /* Check if a new block is required. */ 3706 if (!bnode || bnode->nr_records == KVFREE_BULK_MAX_ENTR) { 3707 bnode = get_cached_bnode(*krcp); 3708 if (!bnode && can_alloc) { 3709 krc_this_cpu_unlock(*krcp, *flags); 3710 3711 // __GFP_NORETRY - allows a light-weight direct reclaim 3712 // what is OK from minimizing of fallback hitting point of 3713 // view. Apart of that it forbids any OOM invoking what is 3714 // also beneficial since we are about to release memory soon. 3715 // 3716 // __GFP_NOMEMALLOC - prevents from consuming of all the 3717 // memory reserves. Please note we have a fallback path. 3718 // 3719 // __GFP_NOWARN - it is supposed that an allocation can 3720 // be failed under low memory or high memory pressure 3721 // scenarios. 3722 bnode = (struct kvfree_rcu_bulk_data *) 3723 __get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); 3724 raw_spin_lock_irqsave(&(*krcp)->lock, *flags); 3725 } 3726 3727 if (!bnode) 3728 return false; 3729 3730 // Initialize the new block and attach it. 3731 bnode->nr_records = 0; 3732 list_add(&bnode->list, &(*krcp)->bulk_head[idx]); 3733 } 3734 3735 // Finally insert and update the GP for this page. 3736 bnode->records[bnode->nr_records++] = ptr; 3737 get_state_synchronize_rcu_full(&bnode->gp_snap); 3738 atomic_inc(&(*krcp)->bulk_count[idx]); 3739 3740 return true; 3741 } 3742 3743 /* 3744 * Queue a request for lazy invocation of the appropriate free routine 3745 * after a grace period. Please note that three paths are maintained, 3746 * two for the common case using arrays of pointers and a third one that 3747 * is used only when the main paths cannot be used, for example, due to 3748 * memory pressure. 3749 * 3750 * Each kvfree_call_rcu() request is added to a batch. The batch will be drained 3751 * every KFREE_DRAIN_JIFFIES number of jiffies. All the objects in the batch will 3752 * be free'd in workqueue context. This allows us to: batch requests together to 3753 * reduce the number of grace periods during heavy kfree_rcu()/kvfree_rcu() load. 3754 */ 3755 void kvfree_call_rcu(struct rcu_head *head, void *ptr) 3756 { 3757 unsigned long flags; 3758 struct kfree_rcu_cpu *krcp; 3759 bool success; 3760 3761 /* 3762 * Please note there is a limitation for the head-less 3763 * variant, that is why there is a clear rule for such 3764 * objects: it can be used from might_sleep() context 3765 * only. For other places please embed an rcu_head to 3766 * your data. 3767 */ 3768 if (!head) 3769 might_sleep(); 3770 3771 // Queue the object but don't yet schedule the batch. 3772 if (debug_rcu_head_queue(ptr)) { 3773 // Probable double kfree_rcu(), just leak. 3774 WARN_ONCE(1, "%s(): Double-freed call. rcu_head %p\n", 3775 __func__, head); 3776 3777 // Mark as success and leave. 3778 return; 3779 } 3780 3781 kasan_record_aux_stack_noalloc(ptr); 3782 success = add_ptr_to_bulk_krc_lock(&krcp, &flags, ptr, !head); 3783 if (!success) { 3784 run_page_cache_worker(krcp); 3785 3786 if (head == NULL) 3787 // Inline if kvfree_rcu(one_arg) call. 3788 goto unlock_return; 3789 3790 head->func = ptr; 3791 head->next = krcp->head; 3792 WRITE_ONCE(krcp->head, head); 3793 atomic_inc(&krcp->head_count); 3794 3795 // Take a snapshot for this krcp. 3796 krcp->head_gp_snap = get_state_synchronize_rcu(); 3797 success = true; 3798 } 3799 3800 /* 3801 * The kvfree_rcu() caller considers the pointer freed at this point 3802 * and likely removes any references to it. Since the actual slab 3803 * freeing (and kmemleak_free()) is deferred, tell kmemleak to ignore 3804 * this object (no scanning or false positives reporting). 3805 */ 3806 kmemleak_ignore(ptr); 3807 3808 // Set timer to drain after KFREE_DRAIN_JIFFIES. 3809 if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING) 3810 schedule_delayed_monitor_work(krcp); 3811 3812 unlock_return: 3813 krc_this_cpu_unlock(krcp, flags); 3814 3815 /* 3816 * Inline kvfree() after synchronize_rcu(). We can do 3817 * it from might_sleep() context only, so the current 3818 * CPU can pass the QS state. 3819 */ 3820 if (!success) { 3821 debug_rcu_head_unqueue((struct rcu_head *) ptr); 3822 synchronize_rcu(); 3823 kvfree(ptr); 3824 } 3825 } 3826 EXPORT_SYMBOL_GPL(kvfree_call_rcu); 3827 3828 static unsigned long 3829 kfree_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc) 3830 { 3831 int cpu; 3832 unsigned long count = 0; 3833 3834 /* Snapshot count of all CPUs */ 3835 for_each_possible_cpu(cpu) { 3836 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); 3837 3838 count += krc_count(krcp); 3839 count += READ_ONCE(krcp->nr_bkv_objs); 3840 atomic_set(&krcp->backoff_page_cache_fill, 1); 3841 } 3842 3843 return count == 0 ? SHRINK_EMPTY : count; 3844 } 3845 3846 static unsigned long 3847 kfree_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) 3848 { 3849 int cpu, freed = 0; 3850 3851 for_each_possible_cpu(cpu) { 3852 int count; 3853 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); 3854 3855 count = krc_count(krcp); 3856 count += drain_page_cache(krcp); 3857 kfree_rcu_monitor(&krcp->monitor_work.work); 3858 3859 sc->nr_to_scan -= count; 3860 freed += count; 3861 3862 if (sc->nr_to_scan <= 0) 3863 break; 3864 } 3865 3866 return freed == 0 ? SHRINK_STOP : freed; 3867 } 3868 3869 void __init kfree_rcu_scheduler_running(void) 3870 { 3871 int cpu; 3872 3873 for_each_possible_cpu(cpu) { 3874 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); 3875 3876 if (need_offload_krc(krcp)) 3877 schedule_delayed_monitor_work(krcp); 3878 } 3879 } 3880 3881 /* 3882 * During early boot, any blocking grace-period wait automatically 3883 * implies a grace period. 3884 * 3885 * Later on, this could in theory be the case for kernels built with 3886 * CONFIG_SMP=y && CONFIG_PREEMPTION=y running on a single CPU, but this 3887 * is not a common case. Furthermore, this optimization would cause 3888 * the rcu_gp_oldstate structure to expand by 50%, so this potential 3889 * grace-period optimization is ignored once the scheduler is running. 3890 */ 3891 static int rcu_blocking_is_gp(void) 3892 { 3893 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) { 3894 might_sleep(); 3895 return false; 3896 } 3897 return true; 3898 } 3899 3900 /* 3901 * Helper function for the synchronize_rcu() API. 3902 */ 3903 static void synchronize_rcu_normal(void) 3904 { 3905 struct rcu_synchronize rs; 3906 3907 trace_rcu_sr_normal(rcu_state.name, &rs.head, TPS("request")); 3908 3909 if (!READ_ONCE(rcu_normal_wake_from_gp)) { 3910 wait_rcu_gp(call_rcu_hurry); 3911 goto trace_complete_out; 3912 } 3913 3914 init_rcu_head_on_stack(&rs.head); 3915 init_completion(&rs.completion); 3916 3917 /* 3918 * This code might be preempted, therefore take a GP 3919 * snapshot before adding a request. 3920 */ 3921 if (IS_ENABLED(CONFIG_PROVE_RCU)) 3922 rs.head.func = (void *) get_state_synchronize_rcu(); 3923 3924 rcu_sr_normal_add_req(&rs); 3925 3926 /* Kick a GP and start waiting. */ 3927 (void) start_poll_synchronize_rcu(); 3928 3929 /* Now we can wait. */ 3930 wait_for_completion(&rs.completion); 3931 destroy_rcu_head_on_stack(&rs.head); 3932 3933 trace_complete_out: 3934 trace_rcu_sr_normal(rcu_state.name, &rs.head, TPS("complete")); 3935 } 3936 3937 /** 3938 * synchronize_rcu - wait until a grace period has elapsed. 3939 * 3940 * Control will return to the caller some time after a full grace 3941 * period has elapsed, in other words after all currently executing RCU 3942 * read-side critical sections have completed. Note, however, that 3943 * upon return from synchronize_rcu(), the caller might well be executing 3944 * concurrently with new RCU read-side critical sections that began while 3945 * synchronize_rcu() was waiting. 3946 * 3947 * RCU read-side critical sections are delimited by rcu_read_lock() 3948 * and rcu_read_unlock(), and may be nested. In addition, but only in 3949 * v5.0 and later, regions of code across which interrupts, preemption, 3950 * or softirqs have been disabled also serve as RCU read-side critical 3951 * sections. This includes hardware interrupt handlers, softirq handlers, 3952 * and NMI handlers. 3953 * 3954 * Note that this guarantee implies further memory-ordering guarantees. 3955 * On systems with more than one CPU, when synchronize_rcu() returns, 3956 * each CPU is guaranteed to have executed a full memory barrier since 3957 * the end of its last RCU read-side critical section whose beginning 3958 * preceded the call to synchronize_rcu(). In addition, each CPU having 3959 * an RCU read-side critical section that extends beyond the return from 3960 * synchronize_rcu() is guaranteed to have executed a full memory barrier 3961 * after the beginning of synchronize_rcu() and before the beginning of 3962 * that RCU read-side critical section. Note that these guarantees include 3963 * CPUs that are offline, idle, or executing in user mode, as well as CPUs 3964 * that are executing in the kernel. 3965 * 3966 * Furthermore, if CPU A invoked synchronize_rcu(), which returned 3967 * to its caller on CPU B, then both CPU A and CPU B are guaranteed 3968 * to have executed a full memory barrier during the execution of 3969 * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but 3970 * again only if the system has more than one CPU). 3971 * 3972 * Implementation of these memory-ordering guarantees is described here: 3973 * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst. 3974 */ 3975 void synchronize_rcu(void) 3976 { 3977 unsigned long flags; 3978 struct rcu_node *rnp; 3979 3980 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) || 3981 lock_is_held(&rcu_lock_map) || 3982 lock_is_held(&rcu_sched_lock_map), 3983 "Illegal synchronize_rcu() in RCU read-side critical section"); 3984 if (!rcu_blocking_is_gp()) { 3985 if (rcu_gp_is_expedited()) 3986 synchronize_rcu_expedited(); 3987 else 3988 synchronize_rcu_normal(); 3989 return; 3990 } 3991 3992 // Context allows vacuous grace periods. 3993 // Note well that this code runs with !PREEMPT && !SMP. 3994 // In addition, all code that advances grace periods runs at 3995 // process level. Therefore, this normal GP overlaps with other 3996 // normal GPs only by being fully nested within them, which allows 3997 // reuse of ->gp_seq_polled_snap. 3998 rcu_poll_gp_seq_start_unlocked(&rcu_state.gp_seq_polled_snap); 3999 rcu_poll_gp_seq_end_unlocked(&rcu_state.gp_seq_polled_snap); 4000 4001 // Update the normal grace-period counters to record 4002 // this grace period, but only those used by the boot CPU. 4003 // The rcu_scheduler_starting() will take care of the rest of 4004 // these counters. 4005 local_irq_save(flags); 4006 WARN_ON_ONCE(num_online_cpus() > 1); 4007 rcu_state.gp_seq += (1 << RCU_SEQ_CTR_SHIFT); 4008 for (rnp = this_cpu_ptr(&rcu_data)->mynode; rnp; rnp = rnp->parent) 4009 rnp->gp_seq_needed = rnp->gp_seq = rcu_state.gp_seq; 4010 local_irq_restore(flags); 4011 } 4012 EXPORT_SYMBOL_GPL(synchronize_rcu); 4013 4014 /** 4015 * get_completed_synchronize_rcu_full - Return a full pre-completed polled state cookie 4016 * @rgosp: Place to put state cookie 4017 * 4018 * Stores into @rgosp a value that will always be treated by functions 4019 * like poll_state_synchronize_rcu_full() as a cookie whose grace period 4020 * has already completed. 4021 */ 4022 void get_completed_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp) 4023 { 4024 rgosp->rgos_norm = RCU_GET_STATE_COMPLETED; 4025 rgosp->rgos_exp = RCU_GET_STATE_COMPLETED; 4026 } 4027 EXPORT_SYMBOL_GPL(get_completed_synchronize_rcu_full); 4028 4029 /** 4030 * get_state_synchronize_rcu - Snapshot current RCU state 4031 * 4032 * Returns a cookie that is used by a later call to cond_synchronize_rcu() 4033 * or poll_state_synchronize_rcu() to determine whether or not a full 4034 * grace period has elapsed in the meantime. 4035 */ 4036 unsigned long get_state_synchronize_rcu(void) 4037 { 4038 /* 4039 * Any prior manipulation of RCU-protected data must happen 4040 * before the load from ->gp_seq. 4041 */ 4042 smp_mb(); /* ^^^ */ 4043 return rcu_seq_snap(&rcu_state.gp_seq_polled); 4044 } 4045 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu); 4046 4047 /** 4048 * get_state_synchronize_rcu_full - Snapshot RCU state, both normal and expedited 4049 * @rgosp: location to place combined normal/expedited grace-period state 4050 * 4051 * Places the normal and expedited grace-period states in @rgosp. This 4052 * state value can be passed to a later call to cond_synchronize_rcu_full() 4053 * or poll_state_synchronize_rcu_full() to determine whether or not a 4054 * grace period (whether normal or expedited) has elapsed in the meantime. 4055 * The rcu_gp_oldstate structure takes up twice the memory of an unsigned 4056 * long, but is guaranteed to see all grace periods. In contrast, the 4057 * combined state occupies less memory, but can sometimes fail to take 4058 * grace periods into account. 4059 * 4060 * This does not guarantee that the needed grace period will actually 4061 * start. 4062 */ 4063 void get_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp) 4064 { 4065 struct rcu_node *rnp = rcu_get_root(); 4066 4067 /* 4068 * Any prior manipulation of RCU-protected data must happen 4069 * before the loads from ->gp_seq and ->expedited_sequence. 4070 */ 4071 smp_mb(); /* ^^^ */ 4072 rgosp->rgos_norm = rcu_seq_snap(&rnp->gp_seq); 4073 rgosp->rgos_exp = rcu_seq_snap(&rcu_state.expedited_sequence); 4074 } 4075 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu_full); 4076 4077 /* 4078 * Helper function for start_poll_synchronize_rcu() and 4079 * start_poll_synchronize_rcu_full(). 4080 */ 4081 static void start_poll_synchronize_rcu_common(void) 4082 { 4083 unsigned long flags; 4084 bool needwake; 4085 struct rcu_data *rdp; 4086 struct rcu_node *rnp; 4087 4088 lockdep_assert_irqs_enabled(); 4089 local_irq_save(flags); 4090 rdp = this_cpu_ptr(&rcu_data); 4091 rnp = rdp->mynode; 4092 raw_spin_lock_rcu_node(rnp); // irqs already disabled. 4093 // Note it is possible for a grace period to have elapsed between 4094 // the above call to get_state_synchronize_rcu() and the below call 4095 // to rcu_seq_snap. This is OK, the worst that happens is that we 4096 // get a grace period that no one needed. These accesses are ordered 4097 // by smp_mb(), and we are accessing them in the opposite order 4098 // from which they are updated at grace-period start, as required. 4099 needwake = rcu_start_this_gp(rnp, rdp, rcu_seq_snap(&rcu_state.gp_seq)); 4100 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4101 if (needwake) 4102 rcu_gp_kthread_wake(); 4103 } 4104 4105 /** 4106 * start_poll_synchronize_rcu - Snapshot and start RCU grace period 4107 * 4108 * Returns a cookie that is used by a later call to cond_synchronize_rcu() 4109 * or poll_state_synchronize_rcu() to determine whether or not a full 4110 * grace period has elapsed in the meantime. If the needed grace period 4111 * is not already slated to start, notifies RCU core of the need for that 4112 * grace period. 4113 * 4114 * Interrupts must be enabled for the case where it is necessary to awaken 4115 * the grace-period kthread. 4116 */ 4117 unsigned long start_poll_synchronize_rcu(void) 4118 { 4119 unsigned long gp_seq = get_state_synchronize_rcu(); 4120 4121 start_poll_synchronize_rcu_common(); 4122 return gp_seq; 4123 } 4124 EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu); 4125 4126 /** 4127 * start_poll_synchronize_rcu_full - Take a full snapshot and start RCU grace period 4128 * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full() 4129 * 4130 * Places the normal and expedited grace-period states in *@rgos. This 4131 * state value can be passed to a later call to cond_synchronize_rcu_full() 4132 * or poll_state_synchronize_rcu_full() to determine whether or not a 4133 * grace period (whether normal or expedited) has elapsed in the meantime. 4134 * If the needed grace period is not already slated to start, notifies 4135 * RCU core of the need for that grace period. 4136 * 4137 * Interrupts must be enabled for the case where it is necessary to awaken 4138 * the grace-period kthread. 4139 */ 4140 void start_poll_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp) 4141 { 4142 get_state_synchronize_rcu_full(rgosp); 4143 4144 start_poll_synchronize_rcu_common(); 4145 } 4146 EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu_full); 4147 4148 /** 4149 * poll_state_synchronize_rcu - Has the specified RCU grace period completed? 4150 * @oldstate: value from get_state_synchronize_rcu() or start_poll_synchronize_rcu() 4151 * 4152 * If a full RCU grace period has elapsed since the earlier call from 4153 * which @oldstate was obtained, return @true, otherwise return @false. 4154 * If @false is returned, it is the caller's responsibility to invoke this 4155 * function later on until it does return @true. Alternatively, the caller 4156 * can explicitly wait for a grace period, for example, by passing @oldstate 4157 * to either cond_synchronize_rcu() or cond_synchronize_rcu_expedited() 4158 * on the one hand or by directly invoking either synchronize_rcu() or 4159 * synchronize_rcu_expedited() on the other. 4160 * 4161 * Yes, this function does not take counter wrap into account. 4162 * But counter wrap is harmless. If the counter wraps, we have waited for 4163 * more than a billion grace periods (and way more on a 64-bit system!). 4164 * Those needing to keep old state values for very long time periods 4165 * (many hours even on 32-bit systems) should check them occasionally and 4166 * either refresh them or set a flag indicating that the grace period has 4167 * completed. Alternatively, they can use get_completed_synchronize_rcu() 4168 * to get a guaranteed-completed grace-period state. 4169 * 4170 * In addition, because oldstate compresses the grace-period state for 4171 * both normal and expedited grace periods into a single unsigned long, 4172 * it can miss a grace period when synchronize_rcu() runs concurrently 4173 * with synchronize_rcu_expedited(). If this is unacceptable, please 4174 * instead use the _full() variant of these polling APIs. 4175 * 4176 * This function provides the same memory-ordering guarantees that 4177 * would be provided by a synchronize_rcu() that was invoked at the call 4178 * to the function that provided @oldstate, and that returned at the end 4179 * of this function. 4180 */ 4181 bool poll_state_synchronize_rcu(unsigned long oldstate) 4182 { 4183 if (oldstate == RCU_GET_STATE_COMPLETED || 4184 rcu_seq_done_exact(&rcu_state.gp_seq_polled, oldstate)) { 4185 smp_mb(); /* Ensure GP ends before subsequent accesses. */ 4186 return true; 4187 } 4188 return false; 4189 } 4190 EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu); 4191 4192 /** 4193 * poll_state_synchronize_rcu_full - Has the specified RCU grace period completed? 4194 * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full() 4195 * 4196 * If a full RCU grace period has elapsed since the earlier call from 4197 * which *rgosp was obtained, return @true, otherwise return @false. 4198 * If @false is returned, it is the caller's responsibility to invoke this 4199 * function later on until it does return @true. Alternatively, the caller 4200 * can explicitly wait for a grace period, for example, by passing @rgosp 4201 * to cond_synchronize_rcu() or by directly invoking synchronize_rcu(). 4202 * 4203 * Yes, this function does not take counter wrap into account. 4204 * But counter wrap is harmless. If the counter wraps, we have waited 4205 * for more than a billion grace periods (and way more on a 64-bit 4206 * system!). Those needing to keep rcu_gp_oldstate values for very 4207 * long time periods (many hours even on 32-bit systems) should check 4208 * them occasionally and either refresh them or set a flag indicating 4209 * that the grace period has completed. Alternatively, they can use 4210 * get_completed_synchronize_rcu_full() to get a guaranteed-completed 4211 * grace-period state. 4212 * 4213 * This function provides the same memory-ordering guarantees that would 4214 * be provided by a synchronize_rcu() that was invoked at the call to 4215 * the function that provided @rgosp, and that returned at the end of this 4216 * function. And this guarantee requires that the root rcu_node structure's 4217 * ->gp_seq field be checked instead of that of the rcu_state structure. 4218 * The problem is that the just-ending grace-period's callbacks can be 4219 * invoked between the time that the root rcu_node structure's ->gp_seq 4220 * field is updated and the time that the rcu_state structure's ->gp_seq 4221 * field is updated. Therefore, if a single synchronize_rcu() is to 4222 * cause a subsequent poll_state_synchronize_rcu_full() to return @true, 4223 * then the root rcu_node structure is the one that needs to be polled. 4224 */ 4225 bool poll_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp) 4226 { 4227 struct rcu_node *rnp = rcu_get_root(); 4228 4229 smp_mb(); // Order against root rcu_node structure grace-period cleanup. 4230 if (rgosp->rgos_norm == RCU_GET_STATE_COMPLETED || 4231 rcu_seq_done_exact(&rnp->gp_seq, rgosp->rgos_norm) || 4232 rgosp->rgos_exp == RCU_GET_STATE_COMPLETED || 4233 rcu_seq_done_exact(&rcu_state.expedited_sequence, rgosp->rgos_exp)) { 4234 smp_mb(); /* Ensure GP ends before subsequent accesses. */ 4235 return true; 4236 } 4237 return false; 4238 } 4239 EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu_full); 4240 4241 /** 4242 * cond_synchronize_rcu - Conditionally wait for an RCU grace period 4243 * @oldstate: value from get_state_synchronize_rcu(), start_poll_synchronize_rcu(), or start_poll_synchronize_rcu_expedited() 4244 * 4245 * If a full RCU grace period has elapsed since the earlier call to 4246 * get_state_synchronize_rcu() or start_poll_synchronize_rcu(), just return. 4247 * Otherwise, invoke synchronize_rcu() to wait for a full grace period. 4248 * 4249 * Yes, this function does not take counter wrap into account. 4250 * But counter wrap is harmless. If the counter wraps, we have waited for 4251 * more than 2 billion grace periods (and way more on a 64-bit system!), 4252 * so waiting for a couple of additional grace periods should be just fine. 4253 * 4254 * This function provides the same memory-ordering guarantees that 4255 * would be provided by a synchronize_rcu() that was invoked at the call 4256 * to the function that provided @oldstate and that returned at the end 4257 * of this function. 4258 */ 4259 void cond_synchronize_rcu(unsigned long oldstate) 4260 { 4261 if (!poll_state_synchronize_rcu(oldstate)) 4262 synchronize_rcu(); 4263 } 4264 EXPORT_SYMBOL_GPL(cond_synchronize_rcu); 4265 4266 /** 4267 * cond_synchronize_rcu_full - Conditionally wait for an RCU grace period 4268 * @rgosp: value from get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(), or start_poll_synchronize_rcu_expedited_full() 4269 * 4270 * If a full RCU grace period has elapsed since the call to 4271 * get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(), 4272 * or start_poll_synchronize_rcu_expedited_full() from which @rgosp was 4273 * obtained, just return. Otherwise, invoke synchronize_rcu() to wait 4274 * for a full grace period. 4275 * 4276 * Yes, this function does not take counter wrap into account. 4277 * But counter wrap is harmless. If the counter wraps, we have waited for 4278 * more than 2 billion grace periods (and way more on a 64-bit system!), 4279 * so waiting for a couple of additional grace periods should be just fine. 4280 * 4281 * This function provides the same memory-ordering guarantees that 4282 * would be provided by a synchronize_rcu() that was invoked at the call 4283 * to the function that provided @rgosp and that returned at the end of 4284 * this function. 4285 */ 4286 void cond_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp) 4287 { 4288 if (!poll_state_synchronize_rcu_full(rgosp)) 4289 synchronize_rcu(); 4290 } 4291 EXPORT_SYMBOL_GPL(cond_synchronize_rcu_full); 4292 4293 /* 4294 * Check to see if there is any immediate RCU-related work to be done by 4295 * the current CPU, returning 1 if so and zero otherwise. The checks are 4296 * in order of increasing expense: checks that can be carried out against 4297 * CPU-local state are performed first. However, we must check for CPU 4298 * stalls first, else we might not get a chance. 4299 */ 4300 static int rcu_pending(int user) 4301 { 4302 bool gp_in_progress; 4303 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 4304 struct rcu_node *rnp = rdp->mynode; 4305 4306 lockdep_assert_irqs_disabled(); 4307 4308 /* Check for CPU stalls, if enabled. */ 4309 check_cpu_stall(rdp); 4310 4311 /* Does this CPU need a deferred NOCB wakeup? */ 4312 if (rcu_nocb_need_deferred_wakeup(rdp, RCU_NOCB_WAKE)) 4313 return 1; 4314 4315 /* Is this a nohz_full CPU in userspace or idle? (Ignore RCU if so.) */ 4316 if ((user || rcu_is_cpu_rrupt_from_idle()) && rcu_nohz_full_cpu()) 4317 return 0; 4318 4319 /* Is the RCU core waiting for a quiescent state from this CPU? */ 4320 gp_in_progress = rcu_gp_in_progress(); 4321 if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm && gp_in_progress) 4322 return 1; 4323 4324 /* Does this CPU have callbacks ready to invoke? */ 4325 if (!rcu_rdp_is_offloaded(rdp) && 4326 rcu_segcblist_ready_cbs(&rdp->cblist)) 4327 return 1; 4328 4329 /* Has RCU gone idle with this CPU needing another grace period? */ 4330 if (!gp_in_progress && rcu_segcblist_is_enabled(&rdp->cblist) && 4331 !rcu_rdp_is_offloaded(rdp) && 4332 !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL)) 4333 return 1; 4334 4335 /* Have RCU grace period completed or started? */ 4336 if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq || 4337 unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */ 4338 return 1; 4339 4340 /* nothing to do */ 4341 return 0; 4342 } 4343 4344 /* 4345 * Helper function for rcu_barrier() tracing. If tracing is disabled, 4346 * the compiler is expected to optimize this away. 4347 */ 4348 static void rcu_barrier_trace(const char *s, int cpu, unsigned long done) 4349 { 4350 trace_rcu_barrier(rcu_state.name, s, cpu, 4351 atomic_read(&rcu_state.barrier_cpu_count), done); 4352 } 4353 4354 /* 4355 * RCU callback function for rcu_barrier(). If we are last, wake 4356 * up the task executing rcu_barrier(). 4357 * 4358 * Note that the value of rcu_state.barrier_sequence must be captured 4359 * before the atomic_dec_and_test(). Otherwise, if this CPU is not last, 4360 * other CPUs might count the value down to zero before this CPU gets 4361 * around to invoking rcu_barrier_trace(), which might result in bogus 4362 * data from the next instance of rcu_barrier(). 4363 */ 4364 static void rcu_barrier_callback(struct rcu_head *rhp) 4365 { 4366 unsigned long __maybe_unused s = rcu_state.barrier_sequence; 4367 4368 if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) { 4369 rcu_barrier_trace(TPS("LastCB"), -1, s); 4370 complete(&rcu_state.barrier_completion); 4371 } else { 4372 rcu_barrier_trace(TPS("CB"), -1, s); 4373 } 4374 } 4375 4376 /* 4377 * If needed, entrain an rcu_barrier() callback on rdp->cblist. 4378 */ 4379 static void rcu_barrier_entrain(struct rcu_data *rdp) 4380 { 4381 unsigned long gseq = READ_ONCE(rcu_state.barrier_sequence); 4382 unsigned long lseq = READ_ONCE(rdp->barrier_seq_snap); 4383 bool wake_nocb = false; 4384 bool was_alldone = false; 4385 4386 lockdep_assert_held(&rcu_state.barrier_lock); 4387 if (rcu_seq_state(lseq) || !rcu_seq_state(gseq) || rcu_seq_ctr(lseq) != rcu_seq_ctr(gseq)) 4388 return; 4389 rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence); 4390 rdp->barrier_head.func = rcu_barrier_callback; 4391 debug_rcu_head_queue(&rdp->barrier_head); 4392 rcu_nocb_lock(rdp); 4393 /* 4394 * Flush bypass and wakeup rcuog if we add callbacks to an empty regular 4395 * queue. This way we don't wait for bypass timer that can reach seconds 4396 * if it's fully lazy. 4397 */ 4398 was_alldone = rcu_rdp_is_offloaded(rdp) && !rcu_segcblist_pend_cbs(&rdp->cblist); 4399 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies, false)); 4400 wake_nocb = was_alldone && rcu_segcblist_pend_cbs(&rdp->cblist); 4401 if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head)) { 4402 atomic_inc(&rcu_state.barrier_cpu_count); 4403 } else { 4404 debug_rcu_head_unqueue(&rdp->barrier_head); 4405 rcu_barrier_trace(TPS("IRQNQ"), -1, rcu_state.barrier_sequence); 4406 } 4407 rcu_nocb_unlock(rdp); 4408 if (wake_nocb) 4409 wake_nocb_gp(rdp, false); 4410 smp_store_release(&rdp->barrier_seq_snap, gseq); 4411 } 4412 4413 /* 4414 * Called with preemption disabled, and from cross-cpu IRQ context. 4415 */ 4416 static void rcu_barrier_handler(void *cpu_in) 4417 { 4418 uintptr_t cpu = (uintptr_t)cpu_in; 4419 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4420 4421 lockdep_assert_irqs_disabled(); 4422 WARN_ON_ONCE(cpu != rdp->cpu); 4423 WARN_ON_ONCE(cpu != smp_processor_id()); 4424 raw_spin_lock(&rcu_state.barrier_lock); 4425 rcu_barrier_entrain(rdp); 4426 raw_spin_unlock(&rcu_state.barrier_lock); 4427 } 4428 4429 /** 4430 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete. 4431 * 4432 * Note that this primitive does not necessarily wait for an RCU grace period 4433 * to complete. For example, if there are no RCU callbacks queued anywhere 4434 * in the system, then rcu_barrier() is within its rights to return 4435 * immediately, without waiting for anything, much less an RCU grace period. 4436 */ 4437 void rcu_barrier(void) 4438 { 4439 uintptr_t cpu; 4440 unsigned long flags; 4441 unsigned long gseq; 4442 struct rcu_data *rdp; 4443 unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence); 4444 4445 rcu_barrier_trace(TPS("Begin"), -1, s); 4446 4447 /* Take mutex to serialize concurrent rcu_barrier() requests. */ 4448 mutex_lock(&rcu_state.barrier_mutex); 4449 4450 /* Did someone else do our work for us? */ 4451 if (rcu_seq_done(&rcu_state.barrier_sequence, s)) { 4452 rcu_barrier_trace(TPS("EarlyExit"), -1, rcu_state.barrier_sequence); 4453 smp_mb(); /* caller's subsequent code after above check. */ 4454 mutex_unlock(&rcu_state.barrier_mutex); 4455 return; 4456 } 4457 4458 /* Mark the start of the barrier operation. */ 4459 raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags); 4460 rcu_seq_start(&rcu_state.barrier_sequence); 4461 gseq = rcu_state.barrier_sequence; 4462 rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence); 4463 4464 /* 4465 * Initialize the count to two rather than to zero in order 4466 * to avoid a too-soon return to zero in case of an immediate 4467 * invocation of the just-enqueued callback (or preemption of 4468 * this task). Exclude CPU-hotplug operations to ensure that no 4469 * offline non-offloaded CPU has callbacks queued. 4470 */ 4471 init_completion(&rcu_state.barrier_completion); 4472 atomic_set(&rcu_state.barrier_cpu_count, 2); 4473 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags); 4474 4475 /* 4476 * Force each CPU with callbacks to register a new callback. 4477 * When that callback is invoked, we will know that all of the 4478 * corresponding CPU's preceding callbacks have been invoked. 4479 */ 4480 for_each_possible_cpu(cpu) { 4481 rdp = per_cpu_ptr(&rcu_data, cpu); 4482 retry: 4483 if (smp_load_acquire(&rdp->barrier_seq_snap) == gseq) 4484 continue; 4485 raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags); 4486 if (!rcu_segcblist_n_cbs(&rdp->cblist)) { 4487 WRITE_ONCE(rdp->barrier_seq_snap, gseq); 4488 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags); 4489 rcu_barrier_trace(TPS("NQ"), cpu, rcu_state.barrier_sequence); 4490 continue; 4491 } 4492 if (!rcu_rdp_cpu_online(rdp)) { 4493 rcu_barrier_entrain(rdp); 4494 WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq); 4495 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags); 4496 rcu_barrier_trace(TPS("OfflineNoCBQ"), cpu, rcu_state.barrier_sequence); 4497 continue; 4498 } 4499 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags); 4500 if (smp_call_function_single(cpu, rcu_barrier_handler, (void *)cpu, 1)) { 4501 schedule_timeout_uninterruptible(1); 4502 goto retry; 4503 } 4504 WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq); 4505 rcu_barrier_trace(TPS("OnlineQ"), cpu, rcu_state.barrier_sequence); 4506 } 4507 4508 /* 4509 * Now that we have an rcu_barrier_callback() callback on each 4510 * CPU, and thus each counted, remove the initial count. 4511 */ 4512 if (atomic_sub_and_test(2, &rcu_state.barrier_cpu_count)) 4513 complete(&rcu_state.barrier_completion); 4514 4515 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */ 4516 wait_for_completion(&rcu_state.barrier_completion); 4517 4518 /* Mark the end of the barrier operation. */ 4519 rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence); 4520 rcu_seq_end(&rcu_state.barrier_sequence); 4521 gseq = rcu_state.barrier_sequence; 4522 for_each_possible_cpu(cpu) { 4523 rdp = per_cpu_ptr(&rcu_data, cpu); 4524 4525 WRITE_ONCE(rdp->barrier_seq_snap, gseq); 4526 } 4527 4528 /* Other rcu_barrier() invocations can now safely proceed. */ 4529 mutex_unlock(&rcu_state.barrier_mutex); 4530 } 4531 EXPORT_SYMBOL_GPL(rcu_barrier); 4532 4533 static unsigned long rcu_barrier_last_throttle; 4534 4535 /** 4536 * rcu_barrier_throttled - Do rcu_barrier(), but limit to one per second 4537 * 4538 * This can be thought of as guard rails around rcu_barrier() that 4539 * permits unrestricted userspace use, at least assuming the hardware's 4540 * try_cmpxchg() is robust. There will be at most one call per second to 4541 * rcu_barrier() system-wide from use of this function, which means that 4542 * callers might needlessly wait a second or three. 4543 * 4544 * This is intended for use by test suites to avoid OOM by flushing RCU 4545 * callbacks from the previous test before starting the next. See the 4546 * rcutree.do_rcu_barrier module parameter for more information. 4547 * 4548 * Why not simply make rcu_barrier() more scalable? That might be 4549 * the eventual endpoint, but let's keep it simple for the time being. 4550 * Note that the module parameter infrastructure serializes calls to a 4551 * given .set() function, but should concurrent .set() invocation ever be 4552 * possible, we are ready! 4553 */ 4554 static void rcu_barrier_throttled(void) 4555 { 4556 unsigned long j = jiffies; 4557 unsigned long old = READ_ONCE(rcu_barrier_last_throttle); 4558 unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence); 4559 4560 while (time_in_range(j, old, old + HZ / 16) || 4561 !try_cmpxchg(&rcu_barrier_last_throttle, &old, j)) { 4562 schedule_timeout_idle(HZ / 16); 4563 if (rcu_seq_done(&rcu_state.barrier_sequence, s)) { 4564 smp_mb(); /* caller's subsequent code after above check. */ 4565 return; 4566 } 4567 j = jiffies; 4568 old = READ_ONCE(rcu_barrier_last_throttle); 4569 } 4570 rcu_barrier(); 4571 } 4572 4573 /* 4574 * Invoke rcu_barrier_throttled() when a rcutree.do_rcu_barrier 4575 * request arrives. We insist on a true value to allow for possible 4576 * future expansion. 4577 */ 4578 static int param_set_do_rcu_barrier(const char *val, const struct kernel_param *kp) 4579 { 4580 bool b; 4581 int ret; 4582 4583 if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING) 4584 return -EAGAIN; 4585 ret = kstrtobool(val, &b); 4586 if (!ret && b) { 4587 atomic_inc((atomic_t *)kp->arg); 4588 rcu_barrier_throttled(); 4589 atomic_dec((atomic_t *)kp->arg); 4590 } 4591 return ret; 4592 } 4593 4594 /* 4595 * Output the number of outstanding rcutree.do_rcu_barrier requests. 4596 */ 4597 static int param_get_do_rcu_barrier(char *buffer, const struct kernel_param *kp) 4598 { 4599 return sprintf(buffer, "%d\n", atomic_read((atomic_t *)kp->arg)); 4600 } 4601 4602 static const struct kernel_param_ops do_rcu_barrier_ops = { 4603 .set = param_set_do_rcu_barrier, 4604 .get = param_get_do_rcu_barrier, 4605 }; 4606 static atomic_t do_rcu_barrier; 4607 module_param_cb(do_rcu_barrier, &do_rcu_barrier_ops, &do_rcu_barrier, 0644); 4608 4609 /* 4610 * Compute the mask of online CPUs for the specified rcu_node structure. 4611 * This will not be stable unless the rcu_node structure's ->lock is 4612 * held, but the bit corresponding to the current CPU will be stable 4613 * in most contexts. 4614 */ 4615 static unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp) 4616 { 4617 return READ_ONCE(rnp->qsmaskinitnext); 4618 } 4619 4620 /* 4621 * Is the CPU corresponding to the specified rcu_data structure online 4622 * from RCU's perspective? This perspective is given by that structure's 4623 * ->qsmaskinitnext field rather than by the global cpu_online_mask. 4624 */ 4625 static bool rcu_rdp_cpu_online(struct rcu_data *rdp) 4626 { 4627 return !!(rdp->grpmask & rcu_rnp_online_cpus(rdp->mynode)); 4628 } 4629 4630 bool rcu_cpu_online(int cpu) 4631 { 4632 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4633 4634 return rcu_rdp_cpu_online(rdp); 4635 } 4636 4637 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) 4638 4639 /* 4640 * Is the current CPU online as far as RCU is concerned? 4641 * 4642 * Disable preemption to avoid false positives that could otherwise 4643 * happen due to the current CPU number being sampled, this task being 4644 * preempted, its old CPU being taken offline, resuming on some other CPU, 4645 * then determining that its old CPU is now offline. 4646 * 4647 * Disable checking if in an NMI handler because we cannot safely 4648 * report errors from NMI handlers anyway. In addition, it is OK to use 4649 * RCU on an offline processor during initial boot, hence the check for 4650 * rcu_scheduler_fully_active. 4651 */ 4652 bool rcu_lockdep_current_cpu_online(void) 4653 { 4654 struct rcu_data *rdp; 4655 bool ret = false; 4656 4657 if (in_nmi() || !rcu_scheduler_fully_active) 4658 return true; 4659 preempt_disable_notrace(); 4660 rdp = this_cpu_ptr(&rcu_data); 4661 /* 4662 * Strictly, we care here about the case where the current CPU is 4663 * in rcutree_report_cpu_starting() and thus has an excuse for rdp->grpmask 4664 * not being up to date. So arch_spin_is_locked() might have a 4665 * false positive if it's held by some *other* CPU, but that's 4666 * OK because that just means a false *negative* on the warning. 4667 */ 4668 if (rcu_rdp_cpu_online(rdp) || arch_spin_is_locked(&rcu_state.ofl_lock)) 4669 ret = true; 4670 preempt_enable_notrace(); 4671 return ret; 4672 } 4673 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online); 4674 4675 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */ 4676 4677 // Has rcu_init() been invoked? This is used (for example) to determine 4678 // whether spinlocks may be acquired safely. 4679 static bool rcu_init_invoked(void) 4680 { 4681 return !!READ_ONCE(rcu_state.n_online_cpus); 4682 } 4683 4684 /* 4685 * All CPUs for the specified rcu_node structure have gone offline, 4686 * and all tasks that were preempted within an RCU read-side critical 4687 * section while running on one of those CPUs have since exited their RCU 4688 * read-side critical section. Some other CPU is reporting this fact with 4689 * the specified rcu_node structure's ->lock held and interrupts disabled. 4690 * This function therefore goes up the tree of rcu_node structures, 4691 * clearing the corresponding bits in the ->qsmaskinit fields. Note that 4692 * the leaf rcu_node structure's ->qsmaskinit field has already been 4693 * updated. 4694 * 4695 * This function does check that the specified rcu_node structure has 4696 * all CPUs offline and no blocked tasks, so it is OK to invoke it 4697 * prematurely. That said, invoking it after the fact will cost you 4698 * a needless lock acquisition. So once it has done its work, don't 4699 * invoke it again. 4700 */ 4701 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf) 4702 { 4703 long mask; 4704 struct rcu_node *rnp = rnp_leaf; 4705 4706 raw_lockdep_assert_held_rcu_node(rnp_leaf); 4707 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || 4708 WARN_ON_ONCE(rnp_leaf->qsmaskinit) || 4709 WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf))) 4710 return; 4711 for (;;) { 4712 mask = rnp->grpmask; 4713 rnp = rnp->parent; 4714 if (!rnp) 4715 break; 4716 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 4717 rnp->qsmaskinit &= ~mask; 4718 /* Between grace periods, so better already be zero! */ 4719 WARN_ON_ONCE(rnp->qsmask); 4720 if (rnp->qsmaskinit) { 4721 raw_spin_unlock_rcu_node(rnp); 4722 /* irqs remain disabled. */ 4723 return; 4724 } 4725 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 4726 } 4727 } 4728 4729 /* 4730 * Propagate ->qsinitmask bits up the rcu_node tree to account for the 4731 * first CPU in a given leaf rcu_node structure coming online. The caller 4732 * must hold the corresponding leaf rcu_node ->lock with interrupts 4733 * disabled. 4734 */ 4735 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf) 4736 { 4737 long mask; 4738 long oldmask; 4739 struct rcu_node *rnp = rnp_leaf; 4740 4741 raw_lockdep_assert_held_rcu_node(rnp_leaf); 4742 WARN_ON_ONCE(rnp->wait_blkd_tasks); 4743 for (;;) { 4744 mask = rnp->grpmask; 4745 rnp = rnp->parent; 4746 if (rnp == NULL) 4747 return; 4748 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */ 4749 oldmask = rnp->qsmaskinit; 4750 rnp->qsmaskinit |= mask; 4751 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */ 4752 if (oldmask) 4753 return; 4754 } 4755 } 4756 4757 /* 4758 * Do boot-time initialization of a CPU's per-CPU RCU data. 4759 */ 4760 static void __init 4761 rcu_boot_init_percpu_data(int cpu) 4762 { 4763 struct context_tracking *ct = this_cpu_ptr(&context_tracking); 4764 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4765 4766 /* Set up local state, ensuring consistent view of global state. */ 4767 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu); 4768 INIT_WORK(&rdp->strict_work, strict_work_handler); 4769 WARN_ON_ONCE(ct->dynticks_nesting != 1); 4770 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(cpu))); 4771 rdp->barrier_seq_snap = rcu_state.barrier_sequence; 4772 rdp->rcu_ofl_gp_seq = rcu_state.gp_seq; 4773 rdp->rcu_ofl_gp_state = RCU_GP_CLEANED; 4774 rdp->rcu_onl_gp_seq = rcu_state.gp_seq; 4775 rdp->rcu_onl_gp_state = RCU_GP_CLEANED; 4776 rdp->last_sched_clock = jiffies; 4777 rdp->cpu = cpu; 4778 rcu_boot_init_nocb_percpu_data(rdp); 4779 } 4780 4781 struct kthread_worker *rcu_exp_gp_kworker; 4782 4783 static void rcu_spawn_exp_par_gp_kworker(struct rcu_node *rnp) 4784 { 4785 struct kthread_worker *kworker; 4786 const char *name = "rcu_exp_par_gp_kthread_worker/%d"; 4787 struct sched_param param = { .sched_priority = kthread_prio }; 4788 int rnp_index = rnp - rcu_get_root(); 4789 4790 if (rnp->exp_kworker) 4791 return; 4792 4793 kworker = kthread_create_worker(0, name, rnp_index); 4794 if (IS_ERR_OR_NULL(kworker)) { 4795 pr_err("Failed to create par gp kworker on %d/%d\n", 4796 rnp->grplo, rnp->grphi); 4797 return; 4798 } 4799 WRITE_ONCE(rnp->exp_kworker, kworker); 4800 4801 if (IS_ENABLED(CONFIG_RCU_EXP_KTHREAD)) 4802 sched_setscheduler_nocheck(kworker->task, SCHED_FIFO, ¶m); 4803 } 4804 4805 static struct task_struct *rcu_exp_par_gp_task(struct rcu_node *rnp) 4806 { 4807 struct kthread_worker *kworker = READ_ONCE(rnp->exp_kworker); 4808 4809 if (!kworker) 4810 return NULL; 4811 4812 return kworker->task; 4813 } 4814 4815 static void __init rcu_start_exp_gp_kworker(void) 4816 { 4817 const char *name = "rcu_exp_gp_kthread_worker"; 4818 struct sched_param param = { .sched_priority = kthread_prio }; 4819 4820 rcu_exp_gp_kworker = kthread_create_worker(0, name); 4821 if (IS_ERR_OR_NULL(rcu_exp_gp_kworker)) { 4822 pr_err("Failed to create %s!\n", name); 4823 rcu_exp_gp_kworker = NULL; 4824 return; 4825 } 4826 4827 if (IS_ENABLED(CONFIG_RCU_EXP_KTHREAD)) 4828 sched_setscheduler_nocheck(rcu_exp_gp_kworker->task, SCHED_FIFO, ¶m); 4829 } 4830 4831 static void rcu_spawn_rnp_kthreads(struct rcu_node *rnp) 4832 { 4833 if (rcu_scheduler_fully_active) { 4834 mutex_lock(&rnp->kthread_mutex); 4835 rcu_spawn_one_boost_kthread(rnp); 4836 rcu_spawn_exp_par_gp_kworker(rnp); 4837 mutex_unlock(&rnp->kthread_mutex); 4838 } 4839 } 4840 4841 /* 4842 * Invoked early in the CPU-online process, when pretty much all services 4843 * are available. The incoming CPU is not present. 4844 * 4845 * Initializes a CPU's per-CPU RCU data. Note that only one online or 4846 * offline event can be happening at a given time. Note also that we can 4847 * accept some slop in the rsp->gp_seq access due to the fact that this 4848 * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet. 4849 * And any offloaded callbacks are being numbered elsewhere. 4850 */ 4851 int rcutree_prepare_cpu(unsigned int cpu) 4852 { 4853 unsigned long flags; 4854 struct context_tracking *ct = per_cpu_ptr(&context_tracking, cpu); 4855 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4856 struct rcu_node *rnp = rcu_get_root(); 4857 4858 /* Set up local state, ensuring consistent view of global state. */ 4859 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4860 rdp->qlen_last_fqs_check = 0; 4861 rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs); 4862 rdp->blimit = blimit; 4863 ct->dynticks_nesting = 1; /* CPU not up, no tearing. */ 4864 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 4865 4866 /* 4867 * Only non-NOCB CPUs that didn't have early-boot callbacks need to be 4868 * (re-)initialized. 4869 */ 4870 if (!rcu_segcblist_is_enabled(&rdp->cblist)) 4871 rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */ 4872 4873 /* 4874 * Add CPU to leaf rcu_node pending-online bitmask. Any needed 4875 * propagation up the rcu_node tree will happen at the beginning 4876 * of the next grace period. 4877 */ 4878 rnp = rdp->mynode; 4879 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 4880 rdp->gp_seq = READ_ONCE(rnp->gp_seq); 4881 rdp->gp_seq_needed = rdp->gp_seq; 4882 rdp->cpu_no_qs.b.norm = true; 4883 rdp->core_needs_qs = false; 4884 rdp->rcu_iw_pending = false; 4885 rdp->rcu_iw = IRQ_WORK_INIT_HARD(rcu_iw_handler); 4886 rdp->rcu_iw_gp_seq = rdp->gp_seq - 1; 4887 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl")); 4888 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4889 rcu_spawn_rnp_kthreads(rnp); 4890 rcu_spawn_cpu_nocb_kthread(cpu); 4891 ASSERT_EXCLUSIVE_WRITER(rcu_state.n_online_cpus); 4892 WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus + 1); 4893 4894 return 0; 4895 } 4896 4897 /* 4898 * Update kthreads affinity during CPU-hotplug changes. 4899 * 4900 * Set the per-rcu_node kthread's affinity to cover all CPUs that are 4901 * served by the rcu_node in question. The CPU hotplug lock is still 4902 * held, so the value of rnp->qsmaskinit will be stable. 4903 * 4904 * We don't include outgoingcpu in the affinity set, use -1 if there is 4905 * no outgoing CPU. If there are no CPUs left in the affinity set, 4906 * this function allows the kthread to execute on any CPU. 4907 * 4908 * Any future concurrent calls are serialized via ->kthread_mutex. 4909 */ 4910 static void rcutree_affinity_setting(unsigned int cpu, int outgoingcpu) 4911 { 4912 cpumask_var_t cm; 4913 unsigned long mask; 4914 struct rcu_data *rdp; 4915 struct rcu_node *rnp; 4916 struct task_struct *task_boost, *task_exp; 4917 4918 rdp = per_cpu_ptr(&rcu_data, cpu); 4919 rnp = rdp->mynode; 4920 4921 task_boost = rcu_boost_task(rnp); 4922 task_exp = rcu_exp_par_gp_task(rnp); 4923 4924 /* 4925 * If CPU is the boot one, those tasks are created later from early 4926 * initcall since kthreadd must be created first. 4927 */ 4928 if (!task_boost && !task_exp) 4929 return; 4930 4931 if (!zalloc_cpumask_var(&cm, GFP_KERNEL)) 4932 return; 4933 4934 mutex_lock(&rnp->kthread_mutex); 4935 mask = rcu_rnp_online_cpus(rnp); 4936 for_each_leaf_node_possible_cpu(rnp, cpu) 4937 if ((mask & leaf_node_cpu_bit(rnp, cpu)) && 4938 cpu != outgoingcpu) 4939 cpumask_set_cpu(cpu, cm); 4940 cpumask_and(cm, cm, housekeeping_cpumask(HK_TYPE_RCU)); 4941 if (cpumask_empty(cm)) { 4942 cpumask_copy(cm, housekeeping_cpumask(HK_TYPE_RCU)); 4943 if (outgoingcpu >= 0) 4944 cpumask_clear_cpu(outgoingcpu, cm); 4945 } 4946 4947 if (task_exp) 4948 set_cpus_allowed_ptr(task_exp, cm); 4949 4950 if (task_boost) 4951 set_cpus_allowed_ptr(task_boost, cm); 4952 4953 mutex_unlock(&rnp->kthread_mutex); 4954 4955 free_cpumask_var(cm); 4956 } 4957 4958 /* 4959 * Has the specified (known valid) CPU ever been fully online? 4960 */ 4961 bool rcu_cpu_beenfullyonline(int cpu) 4962 { 4963 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4964 4965 return smp_load_acquire(&rdp->beenonline); 4966 } 4967 4968 /* 4969 * Near the end of the CPU-online process. Pretty much all services 4970 * enabled, and the CPU is now very much alive. 4971 */ 4972 int rcutree_online_cpu(unsigned int cpu) 4973 { 4974 unsigned long flags; 4975 struct rcu_data *rdp; 4976 struct rcu_node *rnp; 4977 4978 rdp = per_cpu_ptr(&rcu_data, cpu); 4979 rnp = rdp->mynode; 4980 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4981 rnp->ffmask |= rdp->grpmask; 4982 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4983 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE) 4984 return 0; /* Too early in boot for scheduler work. */ 4985 sync_sched_exp_online_cleanup(cpu); 4986 rcutree_affinity_setting(cpu, -1); 4987 4988 // Stop-machine done, so allow nohz_full to disable tick. 4989 tick_dep_clear(TICK_DEP_BIT_RCU); 4990 return 0; 4991 } 4992 4993 /* 4994 * Mark the specified CPU as being online so that subsequent grace periods 4995 * (both expedited and normal) will wait on it. Note that this means that 4996 * incoming CPUs are not allowed to use RCU read-side critical sections 4997 * until this function is called. Failing to observe this restriction 4998 * will result in lockdep splats. 4999 * 5000 * Note that this function is special in that it is invoked directly 5001 * from the incoming CPU rather than from the cpuhp_step mechanism. 5002 * This is because this function must be invoked at a precise location. 5003 * This incoming CPU must not have enabled interrupts yet. 5004 * 5005 * This mirrors the effects of rcutree_report_cpu_dead(). 5006 */ 5007 void rcutree_report_cpu_starting(unsigned int cpu) 5008 { 5009 unsigned long mask; 5010 struct rcu_data *rdp; 5011 struct rcu_node *rnp; 5012 bool newcpu; 5013 5014 lockdep_assert_irqs_disabled(); 5015 rdp = per_cpu_ptr(&rcu_data, cpu); 5016 if (rdp->cpu_started) 5017 return; 5018 rdp->cpu_started = true; 5019 5020 rnp = rdp->mynode; 5021 mask = rdp->grpmask; 5022 arch_spin_lock(&rcu_state.ofl_lock); 5023 rcu_dynticks_eqs_online(); 5024 raw_spin_lock(&rcu_state.barrier_lock); 5025 raw_spin_lock_rcu_node(rnp); 5026 WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext | mask); 5027 raw_spin_unlock(&rcu_state.barrier_lock); 5028 newcpu = !(rnp->expmaskinitnext & mask); 5029 rnp->expmaskinitnext |= mask; 5030 /* Allow lockless access for expedited grace periods. */ 5031 smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + newcpu); /* ^^^ */ 5032 ASSERT_EXCLUSIVE_WRITER(rcu_state.ncpus); 5033 rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */ 5034 rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq); 5035 rdp->rcu_onl_gp_state = READ_ONCE(rcu_state.gp_state); 5036 5037 /* An incoming CPU should never be blocking a grace period. */ 5038 if (WARN_ON_ONCE(rnp->qsmask & mask)) { /* RCU waiting on incoming CPU? */ 5039 /* rcu_report_qs_rnp() *really* wants some flags to restore */ 5040 unsigned long flags; 5041 5042 local_irq_save(flags); 5043 rcu_disable_urgency_upon_qs(rdp); 5044 /* Report QS -after- changing ->qsmaskinitnext! */ 5045 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 5046 } else { 5047 raw_spin_unlock_rcu_node(rnp); 5048 } 5049 arch_spin_unlock(&rcu_state.ofl_lock); 5050 smp_store_release(&rdp->beenonline, true); 5051 smp_mb(); /* Ensure RCU read-side usage follows above initialization. */ 5052 } 5053 5054 /* 5055 * The outgoing function has no further need of RCU, so remove it from 5056 * the rcu_node tree's ->qsmaskinitnext bit masks. 5057 * 5058 * Note that this function is special in that it is invoked directly 5059 * from the outgoing CPU rather than from the cpuhp_step mechanism. 5060 * This is because this function must be invoked at a precise location. 5061 * 5062 * This mirrors the effect of rcutree_report_cpu_starting(). 5063 */ 5064 void rcutree_report_cpu_dead(void) 5065 { 5066 unsigned long flags; 5067 unsigned long mask; 5068 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 5069 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ 5070 5071 /* 5072 * IRQS must be disabled from now on and until the CPU dies, or an interrupt 5073 * may introduce a new READ-side while it is actually off the QS masks. 5074 */ 5075 lockdep_assert_irqs_disabled(); 5076 // Do any dangling deferred wakeups. 5077 do_nocb_deferred_wakeup(rdp); 5078 5079 rcu_preempt_deferred_qs(current); 5080 5081 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */ 5082 mask = rdp->grpmask; 5083 arch_spin_lock(&rcu_state.ofl_lock); 5084 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */ 5085 rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq); 5086 rdp->rcu_ofl_gp_state = READ_ONCE(rcu_state.gp_state); 5087 if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */ 5088 /* Report quiescent state -before- changing ->qsmaskinitnext! */ 5089 rcu_disable_urgency_upon_qs(rdp); 5090 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 5091 raw_spin_lock_irqsave_rcu_node(rnp, flags); 5092 } 5093 WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext & ~mask); 5094 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 5095 arch_spin_unlock(&rcu_state.ofl_lock); 5096 rdp->cpu_started = false; 5097 } 5098 5099 #ifdef CONFIG_HOTPLUG_CPU 5100 /* 5101 * The outgoing CPU has just passed through the dying-idle state, and we 5102 * are being invoked from the CPU that was IPIed to continue the offline 5103 * operation. Migrate the outgoing CPU's callbacks to the current CPU. 5104 */ 5105 void rcutree_migrate_callbacks(int cpu) 5106 { 5107 unsigned long flags; 5108 struct rcu_data *my_rdp; 5109 struct rcu_node *my_rnp; 5110 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 5111 bool needwake; 5112 5113 if (rcu_rdp_is_offloaded(rdp) || 5114 rcu_segcblist_empty(&rdp->cblist)) 5115 return; /* No callbacks to migrate. */ 5116 5117 raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags); 5118 WARN_ON_ONCE(rcu_rdp_cpu_online(rdp)); 5119 rcu_barrier_entrain(rdp); 5120 my_rdp = this_cpu_ptr(&rcu_data); 5121 my_rnp = my_rdp->mynode; 5122 rcu_nocb_lock(my_rdp); /* irqs already disabled. */ 5123 WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies, false)); 5124 raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */ 5125 /* Leverage recent GPs and set GP for new callbacks. */ 5126 needwake = rcu_advance_cbs(my_rnp, rdp) || 5127 rcu_advance_cbs(my_rnp, my_rdp); 5128 rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist); 5129 raw_spin_unlock(&rcu_state.barrier_lock); /* irqs remain disabled. */ 5130 needwake = needwake || rcu_advance_cbs(my_rnp, my_rdp); 5131 rcu_segcblist_disable(&rdp->cblist); 5132 WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) != !rcu_segcblist_n_cbs(&my_rdp->cblist)); 5133 check_cb_ovld_locked(my_rdp, my_rnp); 5134 if (rcu_rdp_is_offloaded(my_rdp)) { 5135 raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */ 5136 __call_rcu_nocb_wake(my_rdp, true, flags); 5137 } else { 5138 rcu_nocb_unlock(my_rdp); /* irqs remain disabled. */ 5139 raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */ 5140 } 5141 local_irq_restore(flags); 5142 if (needwake) 5143 rcu_gp_kthread_wake(); 5144 lockdep_assert_irqs_enabled(); 5145 WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 || 5146 !rcu_segcblist_empty(&rdp->cblist), 5147 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n", 5148 cpu, rcu_segcblist_n_cbs(&rdp->cblist), 5149 rcu_segcblist_first_cb(&rdp->cblist)); 5150 } 5151 5152 /* 5153 * The CPU has been completely removed, and some other CPU is reporting 5154 * this fact from process context. Do the remainder of the cleanup. 5155 * There can only be one CPU hotplug operation at a time, so no need for 5156 * explicit locking. 5157 */ 5158 int rcutree_dead_cpu(unsigned int cpu) 5159 { 5160 ASSERT_EXCLUSIVE_WRITER(rcu_state.n_online_cpus); 5161 WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus - 1); 5162 // Stop-machine done, so allow nohz_full to disable tick. 5163 tick_dep_clear(TICK_DEP_BIT_RCU); 5164 return 0; 5165 } 5166 5167 /* 5168 * Near the end of the offline process. Trace the fact that this CPU 5169 * is going offline. 5170 */ 5171 int rcutree_dying_cpu(unsigned int cpu) 5172 { 5173 bool blkd; 5174 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 5175 struct rcu_node *rnp = rdp->mynode; 5176 5177 blkd = !!(READ_ONCE(rnp->qsmask) & rdp->grpmask); 5178 trace_rcu_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq), 5179 blkd ? TPS("cpuofl-bgp") : TPS("cpuofl")); 5180 return 0; 5181 } 5182 5183 /* 5184 * Near the beginning of the process. The CPU is still very much alive 5185 * with pretty much all services enabled. 5186 */ 5187 int rcutree_offline_cpu(unsigned int cpu) 5188 { 5189 unsigned long flags; 5190 struct rcu_data *rdp; 5191 struct rcu_node *rnp; 5192 5193 rdp = per_cpu_ptr(&rcu_data, cpu); 5194 rnp = rdp->mynode; 5195 raw_spin_lock_irqsave_rcu_node(rnp, flags); 5196 rnp->ffmask &= ~rdp->grpmask; 5197 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 5198 5199 rcutree_affinity_setting(cpu, cpu); 5200 5201 // nohz_full CPUs need the tick for stop-machine to work quickly 5202 tick_dep_set(TICK_DEP_BIT_RCU); 5203 return 0; 5204 } 5205 #endif /* #ifdef CONFIG_HOTPLUG_CPU */ 5206 5207 /* 5208 * On non-huge systems, use expedited RCU grace periods to make suspend 5209 * and hibernation run faster. 5210 */ 5211 static int rcu_pm_notify(struct notifier_block *self, 5212 unsigned long action, void *hcpu) 5213 { 5214 switch (action) { 5215 case PM_HIBERNATION_PREPARE: 5216 case PM_SUSPEND_PREPARE: 5217 rcu_async_hurry(); 5218 rcu_expedite_gp(); 5219 break; 5220 case PM_POST_HIBERNATION: 5221 case PM_POST_SUSPEND: 5222 rcu_unexpedite_gp(); 5223 rcu_async_relax(); 5224 break; 5225 default: 5226 break; 5227 } 5228 return NOTIFY_OK; 5229 } 5230 5231 /* 5232 * Spawn the kthreads that handle RCU's grace periods. 5233 */ 5234 static int __init rcu_spawn_gp_kthread(void) 5235 { 5236 unsigned long flags; 5237 struct rcu_node *rnp; 5238 struct sched_param sp; 5239 struct task_struct *t; 5240 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 5241 5242 rcu_scheduler_fully_active = 1; 5243 t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name); 5244 if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__)) 5245 return 0; 5246 if (kthread_prio) { 5247 sp.sched_priority = kthread_prio; 5248 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 5249 } 5250 rnp = rcu_get_root(); 5251 raw_spin_lock_irqsave_rcu_node(rnp, flags); 5252 WRITE_ONCE(rcu_state.gp_activity, jiffies); 5253 WRITE_ONCE(rcu_state.gp_req_activity, jiffies); 5254 // Reset .gp_activity and .gp_req_activity before setting .gp_kthread. 5255 smp_store_release(&rcu_state.gp_kthread, t); /* ^^^ */ 5256 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 5257 wake_up_process(t); 5258 /* This is a pre-SMP initcall, we expect a single CPU */ 5259 WARN_ON(num_online_cpus() > 1); 5260 /* 5261 * Those kthreads couldn't be created on rcu_init() -> rcutree_prepare_cpu() 5262 * due to rcu_scheduler_fully_active. 5263 */ 5264 rcu_spawn_cpu_nocb_kthread(smp_processor_id()); 5265 rcu_spawn_rnp_kthreads(rdp->mynode); 5266 rcu_spawn_core_kthreads(); 5267 /* Create kthread worker for expedited GPs */ 5268 rcu_start_exp_gp_kworker(); 5269 return 0; 5270 } 5271 early_initcall(rcu_spawn_gp_kthread); 5272 5273 /* 5274 * This function is invoked towards the end of the scheduler's 5275 * initialization process. Before this is called, the idle task might 5276 * contain synchronous grace-period primitives (during which time, this idle 5277 * task is booting the system, and such primitives are no-ops). After this 5278 * function is called, any synchronous grace-period primitives are run as 5279 * expedited, with the requesting task driving the grace period forward. 5280 * A later core_initcall() rcu_set_runtime_mode() will switch to full 5281 * runtime RCU functionality. 5282 */ 5283 void rcu_scheduler_starting(void) 5284 { 5285 unsigned long flags; 5286 struct rcu_node *rnp; 5287 5288 WARN_ON(num_online_cpus() != 1); 5289 WARN_ON(nr_context_switches() > 0); 5290 rcu_test_sync_prims(); 5291 5292 // Fix up the ->gp_seq counters. 5293 local_irq_save(flags); 5294 rcu_for_each_node_breadth_first(rnp) 5295 rnp->gp_seq_needed = rnp->gp_seq = rcu_state.gp_seq; 5296 local_irq_restore(flags); 5297 5298 // Switch out of early boot mode. 5299 rcu_scheduler_active = RCU_SCHEDULER_INIT; 5300 rcu_test_sync_prims(); 5301 } 5302 5303 /* 5304 * Helper function for rcu_init() that initializes the rcu_state structure. 5305 */ 5306 static void __init rcu_init_one(void) 5307 { 5308 static const char * const buf[] = RCU_NODE_NAME_INIT; 5309 static const char * const fqs[] = RCU_FQS_NAME_INIT; 5310 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS]; 5311 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS]; 5312 5313 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */ 5314 int cpustride = 1; 5315 int i; 5316 int j; 5317 struct rcu_node *rnp; 5318 5319 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */ 5320 5321 /* Silence gcc 4.8 false positive about array index out of range. */ 5322 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS) 5323 panic("rcu_init_one: rcu_num_lvls out of range"); 5324 5325 /* Initialize the level-tracking arrays. */ 5326 5327 for (i = 1; i < rcu_num_lvls; i++) 5328 rcu_state.level[i] = 5329 rcu_state.level[i - 1] + num_rcu_lvl[i - 1]; 5330 rcu_init_levelspread(levelspread, num_rcu_lvl); 5331 5332 /* Initialize the elements themselves, starting from the leaves. */ 5333 5334 for (i = rcu_num_lvls - 1; i >= 0; i--) { 5335 cpustride *= levelspread[i]; 5336 rnp = rcu_state.level[i]; 5337 for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) { 5338 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock)); 5339 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock), 5340 &rcu_node_class[i], buf[i]); 5341 raw_spin_lock_init(&rnp->fqslock); 5342 lockdep_set_class_and_name(&rnp->fqslock, 5343 &rcu_fqs_class[i], fqs[i]); 5344 rnp->gp_seq = rcu_state.gp_seq; 5345 rnp->gp_seq_needed = rcu_state.gp_seq; 5346 rnp->completedqs = rcu_state.gp_seq; 5347 rnp->qsmask = 0; 5348 rnp->qsmaskinit = 0; 5349 rnp->grplo = j * cpustride; 5350 rnp->grphi = (j + 1) * cpustride - 1; 5351 if (rnp->grphi >= nr_cpu_ids) 5352 rnp->grphi = nr_cpu_ids - 1; 5353 if (i == 0) { 5354 rnp->grpnum = 0; 5355 rnp->grpmask = 0; 5356 rnp->parent = NULL; 5357 } else { 5358 rnp->grpnum = j % levelspread[i - 1]; 5359 rnp->grpmask = BIT(rnp->grpnum); 5360 rnp->parent = rcu_state.level[i - 1] + 5361 j / levelspread[i - 1]; 5362 } 5363 rnp->level = i; 5364 INIT_LIST_HEAD(&rnp->blkd_tasks); 5365 rcu_init_one_nocb(rnp); 5366 init_waitqueue_head(&rnp->exp_wq[0]); 5367 init_waitqueue_head(&rnp->exp_wq[1]); 5368 init_waitqueue_head(&rnp->exp_wq[2]); 5369 init_waitqueue_head(&rnp->exp_wq[3]); 5370 spin_lock_init(&rnp->exp_lock); 5371 mutex_init(&rnp->kthread_mutex); 5372 raw_spin_lock_init(&rnp->exp_poll_lock); 5373 rnp->exp_seq_poll_rq = RCU_GET_STATE_COMPLETED; 5374 INIT_WORK(&rnp->exp_poll_wq, sync_rcu_do_polled_gp); 5375 } 5376 } 5377 5378 init_swait_queue_head(&rcu_state.gp_wq); 5379 init_swait_queue_head(&rcu_state.expedited_wq); 5380 rnp = rcu_first_leaf_node(); 5381 for_each_possible_cpu(i) { 5382 while (i > rnp->grphi) 5383 rnp++; 5384 per_cpu_ptr(&rcu_data, i)->mynode = rnp; 5385 rcu_boot_init_percpu_data(i); 5386 } 5387 } 5388 5389 /* 5390 * Force priority from the kernel command-line into range. 5391 */ 5392 static void __init sanitize_kthread_prio(void) 5393 { 5394 int kthread_prio_in = kthread_prio; 5395 5396 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2 5397 && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST)) 5398 kthread_prio = 2; 5399 else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1) 5400 kthread_prio = 1; 5401 else if (kthread_prio < 0) 5402 kthread_prio = 0; 5403 else if (kthread_prio > 99) 5404 kthread_prio = 99; 5405 5406 if (kthread_prio != kthread_prio_in) 5407 pr_alert("%s: Limited prio to %d from %d\n", 5408 __func__, kthread_prio, kthread_prio_in); 5409 } 5410 5411 /* 5412 * Compute the rcu_node tree geometry from kernel parameters. This cannot 5413 * replace the definitions in tree.h because those are needed to size 5414 * the ->node array in the rcu_state structure. 5415 */ 5416 void rcu_init_geometry(void) 5417 { 5418 ulong d; 5419 int i; 5420 static unsigned long old_nr_cpu_ids; 5421 int rcu_capacity[RCU_NUM_LVLS]; 5422 static bool initialized; 5423 5424 if (initialized) { 5425 /* 5426 * Warn if setup_nr_cpu_ids() had not yet been invoked, 5427 * unless nr_cpus_ids == NR_CPUS, in which case who cares? 5428 */ 5429 WARN_ON_ONCE(old_nr_cpu_ids != nr_cpu_ids); 5430 return; 5431 } 5432 5433 old_nr_cpu_ids = nr_cpu_ids; 5434 initialized = true; 5435 5436 /* 5437 * Initialize any unspecified boot parameters. 5438 * The default values of jiffies_till_first_fqs and 5439 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS 5440 * value, which is a function of HZ, then adding one for each 5441 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system. 5442 */ 5443 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; 5444 if (jiffies_till_first_fqs == ULONG_MAX) 5445 jiffies_till_first_fqs = d; 5446 if (jiffies_till_next_fqs == ULONG_MAX) 5447 jiffies_till_next_fqs = d; 5448 adjust_jiffies_till_sched_qs(); 5449 5450 /* If the compile-time values are accurate, just leave. */ 5451 if (rcu_fanout_leaf == RCU_FANOUT_LEAF && 5452 nr_cpu_ids == NR_CPUS) 5453 return; 5454 pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n", 5455 rcu_fanout_leaf, nr_cpu_ids); 5456 5457 /* 5458 * The boot-time rcu_fanout_leaf parameter must be at least two 5459 * and cannot exceed the number of bits in the rcu_node masks. 5460 * Complain and fall back to the compile-time values if this 5461 * limit is exceeded. 5462 */ 5463 if (rcu_fanout_leaf < 2 || 5464 rcu_fanout_leaf > sizeof(unsigned long) * 8) { 5465 rcu_fanout_leaf = RCU_FANOUT_LEAF; 5466 WARN_ON(1); 5467 return; 5468 } 5469 5470 /* 5471 * Compute number of nodes that can be handled an rcu_node tree 5472 * with the given number of levels. 5473 */ 5474 rcu_capacity[0] = rcu_fanout_leaf; 5475 for (i = 1; i < RCU_NUM_LVLS; i++) 5476 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT; 5477 5478 /* 5479 * The tree must be able to accommodate the configured number of CPUs. 5480 * If this limit is exceeded, fall back to the compile-time values. 5481 */ 5482 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) { 5483 rcu_fanout_leaf = RCU_FANOUT_LEAF; 5484 WARN_ON(1); 5485 return; 5486 } 5487 5488 /* Calculate the number of levels in the tree. */ 5489 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) { 5490 } 5491 rcu_num_lvls = i + 1; 5492 5493 /* Calculate the number of rcu_nodes at each level of the tree. */ 5494 for (i = 0; i < rcu_num_lvls; i++) { 5495 int cap = rcu_capacity[(rcu_num_lvls - 1) - i]; 5496 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap); 5497 } 5498 5499 /* Calculate the total number of rcu_node structures. */ 5500 rcu_num_nodes = 0; 5501 for (i = 0; i < rcu_num_lvls; i++) 5502 rcu_num_nodes += num_rcu_lvl[i]; 5503 } 5504 5505 /* 5506 * Dump out the structure of the rcu_node combining tree associated 5507 * with the rcu_state structure. 5508 */ 5509 static void __init rcu_dump_rcu_node_tree(void) 5510 { 5511 int level = 0; 5512 struct rcu_node *rnp; 5513 5514 pr_info("rcu_node tree layout dump\n"); 5515 pr_info(" "); 5516 rcu_for_each_node_breadth_first(rnp) { 5517 if (rnp->level != level) { 5518 pr_cont("\n"); 5519 pr_info(" "); 5520 level = rnp->level; 5521 } 5522 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum); 5523 } 5524 pr_cont("\n"); 5525 } 5526 5527 struct workqueue_struct *rcu_gp_wq; 5528 5529 static void __init kfree_rcu_batch_init(void) 5530 { 5531 int cpu; 5532 int i, j; 5533 struct shrinker *kfree_rcu_shrinker; 5534 5535 /* Clamp it to [0:100] seconds interval. */ 5536 if (rcu_delay_page_cache_fill_msec < 0 || 5537 rcu_delay_page_cache_fill_msec > 100 * MSEC_PER_SEC) { 5538 5539 rcu_delay_page_cache_fill_msec = 5540 clamp(rcu_delay_page_cache_fill_msec, 0, 5541 (int) (100 * MSEC_PER_SEC)); 5542 5543 pr_info("Adjusting rcutree.rcu_delay_page_cache_fill_msec to %d ms.\n", 5544 rcu_delay_page_cache_fill_msec); 5545 } 5546 5547 for_each_possible_cpu(cpu) { 5548 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); 5549 5550 for (i = 0; i < KFREE_N_BATCHES; i++) { 5551 INIT_RCU_WORK(&krcp->krw_arr[i].rcu_work, kfree_rcu_work); 5552 krcp->krw_arr[i].krcp = krcp; 5553 5554 for (j = 0; j < FREE_N_CHANNELS; j++) 5555 INIT_LIST_HEAD(&krcp->krw_arr[i].bulk_head_free[j]); 5556 } 5557 5558 for (i = 0; i < FREE_N_CHANNELS; i++) 5559 INIT_LIST_HEAD(&krcp->bulk_head[i]); 5560 5561 INIT_DELAYED_WORK(&krcp->monitor_work, kfree_rcu_monitor); 5562 INIT_DELAYED_WORK(&krcp->page_cache_work, fill_page_cache_func); 5563 krcp->initialized = true; 5564 } 5565 5566 kfree_rcu_shrinker = shrinker_alloc(0, "rcu-kfree"); 5567 if (!kfree_rcu_shrinker) { 5568 pr_err("Failed to allocate kfree_rcu() shrinker!\n"); 5569 return; 5570 } 5571 5572 kfree_rcu_shrinker->count_objects = kfree_rcu_shrink_count; 5573 kfree_rcu_shrinker->scan_objects = kfree_rcu_shrink_scan; 5574 5575 shrinker_register(kfree_rcu_shrinker); 5576 } 5577 5578 void __init rcu_init(void) 5579 { 5580 int cpu = smp_processor_id(); 5581 5582 rcu_early_boot_tests(); 5583 5584 kfree_rcu_batch_init(); 5585 rcu_bootup_announce(); 5586 sanitize_kthread_prio(); 5587 rcu_init_geometry(); 5588 rcu_init_one(); 5589 if (dump_tree) 5590 rcu_dump_rcu_node_tree(); 5591 if (use_softirq) 5592 open_softirq(RCU_SOFTIRQ, rcu_core_si); 5593 5594 /* 5595 * We don't need protection against CPU-hotplug here because 5596 * this is called early in boot, before either interrupts 5597 * or the scheduler are operational. 5598 */ 5599 pm_notifier(rcu_pm_notify, 0); 5600 WARN_ON(num_online_cpus() > 1); // Only one CPU this early in boot. 5601 rcutree_prepare_cpu(cpu); 5602 rcutree_report_cpu_starting(cpu); 5603 rcutree_online_cpu(cpu); 5604 5605 /* Create workqueue for Tree SRCU and for expedited GPs. */ 5606 rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0); 5607 WARN_ON(!rcu_gp_wq); 5608 5609 sync_wq = alloc_workqueue("sync_wq", WQ_MEM_RECLAIM, 0); 5610 WARN_ON(!sync_wq); 5611 5612 /* Fill in default value for rcutree.qovld boot parameter. */ 5613 /* -After- the rcu_node ->lock fields are initialized! */ 5614 if (qovld < 0) 5615 qovld_calc = DEFAULT_RCU_QOVLD_MULT * qhimark; 5616 else 5617 qovld_calc = qovld; 5618 5619 // Kick-start in case any polled grace periods started early. 5620 (void)start_poll_synchronize_rcu_expedited(); 5621 5622 rcu_test_sync_prims(); 5623 5624 tasks_cblist_init_generic(); 5625 } 5626 5627 #include "tree_stall.h" 5628 #include "tree_exp.h" 5629 #include "tree_nocb.h" 5630 #include "tree_plugin.h" 5631