xref: /linux/kernel/rcu/tree.c (revision 1f2367a39f17bd553a75e179a747f9b257bc9478)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Read-Copy Update mechanism for mutual exclusion
4  *
5  * Copyright IBM Corporation, 2008
6  *
7  * Authors: Dipankar Sarma <dipankar@in.ibm.com>
8  *	    Manfred Spraul <manfred@colorfullife.com>
9  *	    Paul E. McKenney <paulmck@linux.ibm.com> Hierarchical version
10  *
11  * Based on the original work by Paul McKenney <paulmck@linux.ibm.com>
12  * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
13  *
14  * For detailed explanation of Read-Copy Update mechanism see -
15  *	Documentation/RCU
16  */
17 
18 #define pr_fmt(fmt) "rcu: " fmt
19 
20 #include <linux/types.h>
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/spinlock.h>
24 #include <linux/smp.h>
25 #include <linux/rcupdate_wait.h>
26 #include <linux/interrupt.h>
27 #include <linux/sched.h>
28 #include <linux/sched/debug.h>
29 #include <linux/nmi.h>
30 #include <linux/atomic.h>
31 #include <linux/bitops.h>
32 #include <linux/export.h>
33 #include <linux/completion.h>
34 #include <linux/moduleparam.h>
35 #include <linux/percpu.h>
36 #include <linux/notifier.h>
37 #include <linux/cpu.h>
38 #include <linux/mutex.h>
39 #include <linux/time.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/wait.h>
42 #include <linux/kthread.h>
43 #include <uapi/linux/sched/types.h>
44 #include <linux/prefetch.h>
45 #include <linux/delay.h>
46 #include <linux/stop_machine.h>
47 #include <linux/random.h>
48 #include <linux/trace_events.h>
49 #include <linux/suspend.h>
50 #include <linux/ftrace.h>
51 #include <linux/tick.h>
52 #include <linux/sysrq.h>
53 #include <linux/kprobes.h>
54 
55 #include "tree.h"
56 #include "rcu.h"
57 
58 #ifdef MODULE_PARAM_PREFIX
59 #undef MODULE_PARAM_PREFIX
60 #endif
61 #define MODULE_PARAM_PREFIX "rcutree."
62 
63 /* Data structures. */
64 
65 /*
66  * Steal a bit from the bottom of ->dynticks for idle entry/exit
67  * control.  Initially this is for TLB flushing.
68  */
69 #define RCU_DYNTICK_CTRL_MASK 0x1
70 #define RCU_DYNTICK_CTRL_CTR  (RCU_DYNTICK_CTRL_MASK + 1)
71 #ifndef rcu_eqs_special_exit
72 #define rcu_eqs_special_exit() do { } while (0)
73 #endif
74 
75 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = {
76 	.dynticks_nesting = 1,
77 	.dynticks_nmi_nesting = DYNTICK_IRQ_NONIDLE,
78 	.dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR),
79 };
80 struct rcu_state rcu_state = {
81 	.level = { &rcu_state.node[0] },
82 	.gp_state = RCU_GP_IDLE,
83 	.gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT,
84 	.barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex),
85 	.name = RCU_NAME,
86 	.abbr = RCU_ABBR,
87 	.exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex),
88 	.exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex),
89 	.ofl_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.ofl_lock),
90 };
91 
92 /* Dump rcu_node combining tree at boot to verify correct setup. */
93 static bool dump_tree;
94 module_param(dump_tree, bool, 0444);
95 /* Control rcu_node-tree auto-balancing at boot time. */
96 static bool rcu_fanout_exact;
97 module_param(rcu_fanout_exact, bool, 0444);
98 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
99 static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
100 module_param(rcu_fanout_leaf, int, 0444);
101 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
102 /* Number of rcu_nodes at specified level. */
103 int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
104 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
105 /* panic() on RCU Stall sysctl. */
106 int sysctl_panic_on_rcu_stall __read_mostly;
107 /* Commandeer a sysrq key to dump RCU's tree. */
108 static bool sysrq_rcu;
109 module_param(sysrq_rcu, bool, 0444);
110 
111 /*
112  * The rcu_scheduler_active variable is initialized to the value
113  * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
114  * first task is spawned.  So when this variable is RCU_SCHEDULER_INACTIVE,
115  * RCU can assume that there is but one task, allowing RCU to (for example)
116  * optimize synchronize_rcu() to a simple barrier().  When this variable
117  * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
118  * to detect real grace periods.  This variable is also used to suppress
119  * boot-time false positives from lockdep-RCU error checking.  Finally, it
120  * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
121  * is fully initialized, including all of its kthreads having been spawned.
122  */
123 int rcu_scheduler_active __read_mostly;
124 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
125 
126 /*
127  * The rcu_scheduler_fully_active variable transitions from zero to one
128  * during the early_initcall() processing, which is after the scheduler
129  * is capable of creating new tasks.  So RCU processing (for example,
130  * creating tasks for RCU priority boosting) must be delayed until after
131  * rcu_scheduler_fully_active transitions from zero to one.  We also
132  * currently delay invocation of any RCU callbacks until after this point.
133  *
134  * It might later prove better for people registering RCU callbacks during
135  * early boot to take responsibility for these callbacks, but one step at
136  * a time.
137  */
138 static int rcu_scheduler_fully_active __read_mostly;
139 
140 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
141 			      unsigned long gps, unsigned long flags);
142 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
143 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
144 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
145 static void invoke_rcu_core(void);
146 static void invoke_rcu_callbacks(struct rcu_data *rdp);
147 static void rcu_report_exp_rdp(struct rcu_data *rdp);
148 static void sync_sched_exp_online_cleanup(int cpu);
149 
150 /* rcuc/rcub kthread realtime priority */
151 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
152 module_param(kthread_prio, int, 0644);
153 
154 /* Delay in jiffies for grace-period initialization delays, debug only. */
155 
156 static int gp_preinit_delay;
157 module_param(gp_preinit_delay, int, 0444);
158 static int gp_init_delay;
159 module_param(gp_init_delay, int, 0444);
160 static int gp_cleanup_delay;
161 module_param(gp_cleanup_delay, int, 0444);
162 
163 /* Retrieve RCU kthreads priority for rcutorture */
164 int rcu_get_gp_kthreads_prio(void)
165 {
166 	return kthread_prio;
167 }
168 EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio);
169 
170 /*
171  * Number of grace periods between delays, normalized by the duration of
172  * the delay.  The longer the delay, the more the grace periods between
173  * each delay.  The reason for this normalization is that it means that,
174  * for non-zero delays, the overall slowdown of grace periods is constant
175  * regardless of the duration of the delay.  This arrangement balances
176  * the need for long delays to increase some race probabilities with the
177  * need for fast grace periods to increase other race probabilities.
178  */
179 #define PER_RCU_NODE_PERIOD 3	/* Number of grace periods between delays. */
180 
181 /*
182  * Compute the mask of online CPUs for the specified rcu_node structure.
183  * This will not be stable unless the rcu_node structure's ->lock is
184  * held, but the bit corresponding to the current CPU will be stable
185  * in most contexts.
186  */
187 unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
188 {
189 	return READ_ONCE(rnp->qsmaskinitnext);
190 }
191 
192 /*
193  * Return true if an RCU grace period is in progress.  The READ_ONCE()s
194  * permit this function to be invoked without holding the root rcu_node
195  * structure's ->lock, but of course results can be subject to change.
196  */
197 static int rcu_gp_in_progress(void)
198 {
199 	return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq));
200 }
201 
202 /*
203  * Return the number of callbacks queued on the specified CPU.
204  * Handles both the nocbs and normal cases.
205  */
206 static long rcu_get_n_cbs_cpu(int cpu)
207 {
208 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
209 
210 	if (rcu_segcblist_is_enabled(&rdp->cblist)) /* Online normal CPU? */
211 		return rcu_segcblist_n_cbs(&rdp->cblist);
212 	return rcu_get_n_cbs_nocb_cpu(rdp); /* Works for offline, too. */
213 }
214 
215 void rcu_softirq_qs(void)
216 {
217 	rcu_qs();
218 	rcu_preempt_deferred_qs(current);
219 }
220 
221 /*
222  * Record entry into an extended quiescent state.  This is only to be
223  * called when not already in an extended quiescent state.
224  */
225 static void rcu_dynticks_eqs_enter(void)
226 {
227 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
228 	int seq;
229 
230 	/*
231 	 * CPUs seeing atomic_add_return() must see prior RCU read-side
232 	 * critical sections, and we also must force ordering with the
233 	 * next idle sojourn.
234 	 */
235 	seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
236 	/* Better be in an extended quiescent state! */
237 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
238 		     (seq & RCU_DYNTICK_CTRL_CTR));
239 	/* Better not have special action (TLB flush) pending! */
240 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
241 		     (seq & RCU_DYNTICK_CTRL_MASK));
242 }
243 
244 /*
245  * Record exit from an extended quiescent state.  This is only to be
246  * called from an extended quiescent state.
247  */
248 static void rcu_dynticks_eqs_exit(void)
249 {
250 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
251 	int seq;
252 
253 	/*
254 	 * CPUs seeing atomic_add_return() must see prior idle sojourns,
255 	 * and we also must force ordering with the next RCU read-side
256 	 * critical section.
257 	 */
258 	seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
259 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
260 		     !(seq & RCU_DYNTICK_CTRL_CTR));
261 	if (seq & RCU_DYNTICK_CTRL_MASK) {
262 		atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdp->dynticks);
263 		smp_mb__after_atomic(); /* _exit after clearing mask. */
264 		/* Prefer duplicate flushes to losing a flush. */
265 		rcu_eqs_special_exit();
266 	}
267 }
268 
269 /*
270  * Reset the current CPU's ->dynticks counter to indicate that the
271  * newly onlined CPU is no longer in an extended quiescent state.
272  * This will either leave the counter unchanged, or increment it
273  * to the next non-quiescent value.
274  *
275  * The non-atomic test/increment sequence works because the upper bits
276  * of the ->dynticks counter are manipulated only by the corresponding CPU,
277  * or when the corresponding CPU is offline.
278  */
279 static void rcu_dynticks_eqs_online(void)
280 {
281 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
282 
283 	if (atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR)
284 		return;
285 	atomic_add(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
286 }
287 
288 /*
289  * Is the current CPU in an extended quiescent state?
290  *
291  * No ordering, as we are sampling CPU-local information.
292  */
293 bool rcu_dynticks_curr_cpu_in_eqs(void)
294 {
295 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
296 
297 	return !(atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR);
298 }
299 
300 /*
301  * Snapshot the ->dynticks counter with full ordering so as to allow
302  * stable comparison of this counter with past and future snapshots.
303  */
304 int rcu_dynticks_snap(struct rcu_data *rdp)
305 {
306 	int snap = atomic_add_return(0, &rdp->dynticks);
307 
308 	return snap & ~RCU_DYNTICK_CTRL_MASK;
309 }
310 
311 /*
312  * Return true if the snapshot returned from rcu_dynticks_snap()
313  * indicates that RCU is in an extended quiescent state.
314  */
315 static bool rcu_dynticks_in_eqs(int snap)
316 {
317 	return !(snap & RCU_DYNTICK_CTRL_CTR);
318 }
319 
320 /*
321  * Return true if the CPU corresponding to the specified rcu_data
322  * structure has spent some time in an extended quiescent state since
323  * rcu_dynticks_snap() returned the specified snapshot.
324  */
325 static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap)
326 {
327 	return snap != rcu_dynticks_snap(rdp);
328 }
329 
330 /*
331  * Set the special (bottom) bit of the specified CPU so that it
332  * will take special action (such as flushing its TLB) on the
333  * next exit from an extended quiescent state.  Returns true if
334  * the bit was successfully set, or false if the CPU was not in
335  * an extended quiescent state.
336  */
337 bool rcu_eqs_special_set(int cpu)
338 {
339 	int old;
340 	int new;
341 	struct rcu_data *rdp = &per_cpu(rcu_data, cpu);
342 
343 	do {
344 		old = atomic_read(&rdp->dynticks);
345 		if (old & RCU_DYNTICK_CTRL_CTR)
346 			return false;
347 		new = old | RCU_DYNTICK_CTRL_MASK;
348 	} while (atomic_cmpxchg(&rdp->dynticks, old, new) != old);
349 	return true;
350 }
351 
352 /*
353  * Let the RCU core know that this CPU has gone through the scheduler,
354  * which is a quiescent state.  This is called when the need for a
355  * quiescent state is urgent, so we burn an atomic operation and full
356  * memory barriers to let the RCU core know about it, regardless of what
357  * this CPU might (or might not) do in the near future.
358  *
359  * We inform the RCU core by emulating a zero-duration dyntick-idle period.
360  *
361  * The caller must have disabled interrupts and must not be idle.
362  */
363 static void __maybe_unused rcu_momentary_dyntick_idle(void)
364 {
365 	int special;
366 
367 	raw_cpu_write(rcu_data.rcu_need_heavy_qs, false);
368 	special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR,
369 				    &this_cpu_ptr(&rcu_data)->dynticks);
370 	/* It is illegal to call this from idle state. */
371 	WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR));
372 	rcu_preempt_deferred_qs(current);
373 }
374 
375 /**
376  * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
377  *
378  * If the current CPU is idle or running at a first-level (not nested)
379  * interrupt from idle, return true.  The caller must have at least
380  * disabled preemption.
381  */
382 static int rcu_is_cpu_rrupt_from_idle(void)
383 {
384 	return __this_cpu_read(rcu_data.dynticks_nesting) <= 0 &&
385 	       __this_cpu_read(rcu_data.dynticks_nmi_nesting) <= 1;
386 }
387 
388 #define DEFAULT_RCU_BLIMIT 10     /* Maximum callbacks per rcu_do_batch. */
389 static long blimit = DEFAULT_RCU_BLIMIT;
390 #define DEFAULT_RCU_QHIMARK 10000 /* If this many pending, ignore blimit. */
391 static long qhimark = DEFAULT_RCU_QHIMARK;
392 #define DEFAULT_RCU_QLOMARK 100   /* Once only this many pending, use blimit. */
393 static long qlowmark = DEFAULT_RCU_QLOMARK;
394 
395 module_param(blimit, long, 0444);
396 module_param(qhimark, long, 0444);
397 module_param(qlowmark, long, 0444);
398 
399 static ulong jiffies_till_first_fqs = ULONG_MAX;
400 static ulong jiffies_till_next_fqs = ULONG_MAX;
401 static bool rcu_kick_kthreads;
402 
403 /*
404  * How long the grace period must be before we start recruiting
405  * quiescent-state help from rcu_note_context_switch().
406  */
407 static ulong jiffies_till_sched_qs = ULONG_MAX;
408 module_param(jiffies_till_sched_qs, ulong, 0444);
409 static ulong jiffies_to_sched_qs; /* Adjusted version of above if not default */
410 module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */
411 
412 /*
413  * Make sure that we give the grace-period kthread time to detect any
414  * idle CPUs before taking active measures to force quiescent states.
415  * However, don't go below 100 milliseconds, adjusted upwards for really
416  * large systems.
417  */
418 static void adjust_jiffies_till_sched_qs(void)
419 {
420 	unsigned long j;
421 
422 	/* If jiffies_till_sched_qs was specified, respect the request. */
423 	if (jiffies_till_sched_qs != ULONG_MAX) {
424 		WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs);
425 		return;
426 	}
427 	j = READ_ONCE(jiffies_till_first_fqs) +
428 		      2 * READ_ONCE(jiffies_till_next_fqs);
429 	if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV)
430 		j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
431 	pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j);
432 	WRITE_ONCE(jiffies_to_sched_qs, j);
433 }
434 
435 static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp)
436 {
437 	ulong j;
438 	int ret = kstrtoul(val, 0, &j);
439 
440 	if (!ret) {
441 		WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j);
442 		adjust_jiffies_till_sched_qs();
443 	}
444 	return ret;
445 }
446 
447 static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp)
448 {
449 	ulong j;
450 	int ret = kstrtoul(val, 0, &j);
451 
452 	if (!ret) {
453 		WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1));
454 		adjust_jiffies_till_sched_qs();
455 	}
456 	return ret;
457 }
458 
459 static struct kernel_param_ops first_fqs_jiffies_ops = {
460 	.set = param_set_first_fqs_jiffies,
461 	.get = param_get_ulong,
462 };
463 
464 static struct kernel_param_ops next_fqs_jiffies_ops = {
465 	.set = param_set_next_fqs_jiffies,
466 	.get = param_get_ulong,
467 };
468 
469 module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644);
470 module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644);
471 module_param(rcu_kick_kthreads, bool, 0644);
472 
473 static void force_qs_rnp(int (*f)(struct rcu_data *rdp));
474 static int rcu_pending(void);
475 
476 /*
477  * Return the number of RCU GPs completed thus far for debug & stats.
478  */
479 unsigned long rcu_get_gp_seq(void)
480 {
481 	return READ_ONCE(rcu_state.gp_seq);
482 }
483 EXPORT_SYMBOL_GPL(rcu_get_gp_seq);
484 
485 /*
486  * Return the number of RCU expedited batches completed thus far for
487  * debug & stats.  Odd numbers mean that a batch is in progress, even
488  * numbers mean idle.  The value returned will thus be roughly double
489  * the cumulative batches since boot.
490  */
491 unsigned long rcu_exp_batches_completed(void)
492 {
493 	return rcu_state.expedited_sequence;
494 }
495 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
496 
497 /*
498  * Return the root node of the rcu_state structure.
499  */
500 static struct rcu_node *rcu_get_root(void)
501 {
502 	return &rcu_state.node[0];
503 }
504 
505 /*
506  * Convert a ->gp_state value to a character string.
507  */
508 static const char *gp_state_getname(short gs)
509 {
510 	if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
511 		return "???";
512 	return gp_state_names[gs];
513 }
514 
515 /*
516  * Show the state of the grace-period kthreads.
517  */
518 void show_rcu_gp_kthreads(void)
519 {
520 	int cpu;
521 	unsigned long j;
522 	unsigned long ja;
523 	unsigned long jr;
524 	unsigned long jw;
525 	struct rcu_data *rdp;
526 	struct rcu_node *rnp;
527 
528 	j = jiffies;
529 	ja = j - READ_ONCE(rcu_state.gp_activity);
530 	jr = j - READ_ONCE(rcu_state.gp_req_activity);
531 	jw = j - READ_ONCE(rcu_state.gp_wake_time);
532 	pr_info("%s: wait state: %s(%d) ->state: %#lx delta ->gp_activity %lu ->gp_req_activity %lu ->gp_wake_time %lu ->gp_wake_seq %ld ->gp_seq %ld ->gp_seq_needed %ld ->gp_flags %#x\n",
533 		rcu_state.name, gp_state_getname(rcu_state.gp_state),
534 		rcu_state.gp_state,
535 		rcu_state.gp_kthread ? rcu_state.gp_kthread->state : 0x1ffffL,
536 		ja, jr, jw, (long)READ_ONCE(rcu_state.gp_wake_seq),
537 		(long)READ_ONCE(rcu_state.gp_seq),
538 		(long)READ_ONCE(rcu_get_root()->gp_seq_needed),
539 		READ_ONCE(rcu_state.gp_flags));
540 	rcu_for_each_node_breadth_first(rnp) {
541 		if (ULONG_CMP_GE(rcu_state.gp_seq, rnp->gp_seq_needed))
542 			continue;
543 		pr_info("\trcu_node %d:%d ->gp_seq %ld ->gp_seq_needed %ld\n",
544 			rnp->grplo, rnp->grphi, (long)rnp->gp_seq,
545 			(long)rnp->gp_seq_needed);
546 		if (!rcu_is_leaf_node(rnp))
547 			continue;
548 		for_each_leaf_node_possible_cpu(rnp, cpu) {
549 			rdp = per_cpu_ptr(&rcu_data, cpu);
550 			if (rdp->gpwrap ||
551 			    ULONG_CMP_GE(rcu_state.gp_seq,
552 					 rdp->gp_seq_needed))
553 				continue;
554 			pr_info("\tcpu %d ->gp_seq_needed %ld\n",
555 				cpu, (long)rdp->gp_seq_needed);
556 		}
557 	}
558 	/* sched_show_task(rcu_state.gp_kthread); */
559 }
560 EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
561 
562 /* Dump grace-period-request information due to commandeered sysrq. */
563 static void sysrq_show_rcu(int key)
564 {
565 	show_rcu_gp_kthreads();
566 }
567 
568 static struct sysrq_key_op sysrq_rcudump_op = {
569 	.handler = sysrq_show_rcu,
570 	.help_msg = "show-rcu(y)",
571 	.action_msg = "Show RCU tree",
572 	.enable_mask = SYSRQ_ENABLE_DUMP,
573 };
574 
575 static int __init rcu_sysrq_init(void)
576 {
577 	if (sysrq_rcu)
578 		return register_sysrq_key('y', &sysrq_rcudump_op);
579 	return 0;
580 }
581 early_initcall(rcu_sysrq_init);
582 
583 /*
584  * Send along grace-period-related data for rcutorture diagnostics.
585  */
586 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
587 			    unsigned long *gp_seq)
588 {
589 	switch (test_type) {
590 	case RCU_FLAVOR:
591 		*flags = READ_ONCE(rcu_state.gp_flags);
592 		*gp_seq = rcu_seq_current(&rcu_state.gp_seq);
593 		break;
594 	default:
595 		break;
596 	}
597 }
598 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
599 
600 /*
601  * Enter an RCU extended quiescent state, which can be either the
602  * idle loop or adaptive-tickless usermode execution.
603  *
604  * We crowbar the ->dynticks_nmi_nesting field to zero to allow for
605  * the possibility of usermode upcalls having messed up our count
606  * of interrupt nesting level during the prior busy period.
607  */
608 static void rcu_eqs_enter(bool user)
609 {
610 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
611 
612 	WARN_ON_ONCE(rdp->dynticks_nmi_nesting != DYNTICK_IRQ_NONIDLE);
613 	WRITE_ONCE(rdp->dynticks_nmi_nesting, 0);
614 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
615 		     rdp->dynticks_nesting == 0);
616 	if (rdp->dynticks_nesting != 1) {
617 		rdp->dynticks_nesting--;
618 		return;
619 	}
620 
621 	lockdep_assert_irqs_disabled();
622 	trace_rcu_dyntick(TPS("Start"), rdp->dynticks_nesting, 0, rdp->dynticks);
623 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
624 	rdp = this_cpu_ptr(&rcu_data);
625 	do_nocb_deferred_wakeup(rdp);
626 	rcu_prepare_for_idle();
627 	rcu_preempt_deferred_qs(current);
628 	WRITE_ONCE(rdp->dynticks_nesting, 0); /* Avoid irq-access tearing. */
629 	rcu_dynticks_eqs_enter();
630 	rcu_dynticks_task_enter();
631 }
632 
633 /**
634  * rcu_idle_enter - inform RCU that current CPU is entering idle
635  *
636  * Enter idle mode, in other words, -leave- the mode in which RCU
637  * read-side critical sections can occur.  (Though RCU read-side
638  * critical sections can occur in irq handlers in idle, a possibility
639  * handled by irq_enter() and irq_exit().)
640  *
641  * If you add or remove a call to rcu_idle_enter(), be sure to test with
642  * CONFIG_RCU_EQS_DEBUG=y.
643  */
644 void rcu_idle_enter(void)
645 {
646 	lockdep_assert_irqs_disabled();
647 	rcu_eqs_enter(false);
648 }
649 
650 #ifdef CONFIG_NO_HZ_FULL
651 /**
652  * rcu_user_enter - inform RCU that we are resuming userspace.
653  *
654  * Enter RCU idle mode right before resuming userspace.  No use of RCU
655  * is permitted between this call and rcu_user_exit(). This way the
656  * CPU doesn't need to maintain the tick for RCU maintenance purposes
657  * when the CPU runs in userspace.
658  *
659  * If you add or remove a call to rcu_user_enter(), be sure to test with
660  * CONFIG_RCU_EQS_DEBUG=y.
661  */
662 void rcu_user_enter(void)
663 {
664 	lockdep_assert_irqs_disabled();
665 	rcu_eqs_enter(true);
666 }
667 #endif /* CONFIG_NO_HZ_FULL */
668 
669 /*
670  * If we are returning from the outermost NMI handler that interrupted an
671  * RCU-idle period, update rdp->dynticks and rdp->dynticks_nmi_nesting
672  * to let the RCU grace-period handling know that the CPU is back to
673  * being RCU-idle.
674  *
675  * If you add or remove a call to rcu_nmi_exit_common(), be sure to test
676  * with CONFIG_RCU_EQS_DEBUG=y.
677  */
678 static __always_inline void rcu_nmi_exit_common(bool irq)
679 {
680 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
681 
682 	/*
683 	 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
684 	 * (We are exiting an NMI handler, so RCU better be paying attention
685 	 * to us!)
686 	 */
687 	WARN_ON_ONCE(rdp->dynticks_nmi_nesting <= 0);
688 	WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
689 
690 	/*
691 	 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
692 	 * leave it in non-RCU-idle state.
693 	 */
694 	if (rdp->dynticks_nmi_nesting != 1) {
695 		trace_rcu_dyntick(TPS("--="), rdp->dynticks_nmi_nesting, rdp->dynticks_nmi_nesting - 2, rdp->dynticks);
696 		WRITE_ONCE(rdp->dynticks_nmi_nesting, /* No store tearing. */
697 			   rdp->dynticks_nmi_nesting - 2);
698 		return;
699 	}
700 
701 	/* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
702 	trace_rcu_dyntick(TPS("Startirq"), rdp->dynticks_nmi_nesting, 0, rdp->dynticks);
703 	WRITE_ONCE(rdp->dynticks_nmi_nesting, 0); /* Avoid store tearing. */
704 
705 	if (irq)
706 		rcu_prepare_for_idle();
707 
708 	rcu_dynticks_eqs_enter();
709 
710 	if (irq)
711 		rcu_dynticks_task_enter();
712 }
713 
714 /**
715  * rcu_nmi_exit - inform RCU of exit from NMI context
716  *
717  * If you add or remove a call to rcu_nmi_exit(), be sure to test
718  * with CONFIG_RCU_EQS_DEBUG=y.
719  */
720 void rcu_nmi_exit(void)
721 {
722 	rcu_nmi_exit_common(false);
723 }
724 
725 /**
726  * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
727  *
728  * Exit from an interrupt handler, which might possibly result in entering
729  * idle mode, in other words, leaving the mode in which read-side critical
730  * sections can occur.  The caller must have disabled interrupts.
731  *
732  * This code assumes that the idle loop never does anything that might
733  * result in unbalanced calls to irq_enter() and irq_exit().  If your
734  * architecture's idle loop violates this assumption, RCU will give you what
735  * you deserve, good and hard.  But very infrequently and irreproducibly.
736  *
737  * Use things like work queues to work around this limitation.
738  *
739  * You have been warned.
740  *
741  * If you add or remove a call to rcu_irq_exit(), be sure to test with
742  * CONFIG_RCU_EQS_DEBUG=y.
743  */
744 void rcu_irq_exit(void)
745 {
746 	lockdep_assert_irqs_disabled();
747 	rcu_nmi_exit_common(true);
748 }
749 
750 /*
751  * Wrapper for rcu_irq_exit() where interrupts are enabled.
752  *
753  * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test
754  * with CONFIG_RCU_EQS_DEBUG=y.
755  */
756 void rcu_irq_exit_irqson(void)
757 {
758 	unsigned long flags;
759 
760 	local_irq_save(flags);
761 	rcu_irq_exit();
762 	local_irq_restore(flags);
763 }
764 
765 /*
766  * Exit an RCU extended quiescent state, which can be either the
767  * idle loop or adaptive-tickless usermode execution.
768  *
769  * We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to
770  * allow for the possibility of usermode upcalls messing up our count of
771  * interrupt nesting level during the busy period that is just now starting.
772  */
773 static void rcu_eqs_exit(bool user)
774 {
775 	struct rcu_data *rdp;
776 	long oldval;
777 
778 	lockdep_assert_irqs_disabled();
779 	rdp = this_cpu_ptr(&rcu_data);
780 	oldval = rdp->dynticks_nesting;
781 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
782 	if (oldval) {
783 		rdp->dynticks_nesting++;
784 		return;
785 	}
786 	rcu_dynticks_task_exit();
787 	rcu_dynticks_eqs_exit();
788 	rcu_cleanup_after_idle();
789 	trace_rcu_dyntick(TPS("End"), rdp->dynticks_nesting, 1, rdp->dynticks);
790 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
791 	WRITE_ONCE(rdp->dynticks_nesting, 1);
792 	WARN_ON_ONCE(rdp->dynticks_nmi_nesting);
793 	WRITE_ONCE(rdp->dynticks_nmi_nesting, DYNTICK_IRQ_NONIDLE);
794 }
795 
796 /**
797  * rcu_idle_exit - inform RCU that current CPU is leaving idle
798  *
799  * Exit idle mode, in other words, -enter- the mode in which RCU
800  * read-side critical sections can occur.
801  *
802  * If you add or remove a call to rcu_idle_exit(), be sure to test with
803  * CONFIG_RCU_EQS_DEBUG=y.
804  */
805 void rcu_idle_exit(void)
806 {
807 	unsigned long flags;
808 
809 	local_irq_save(flags);
810 	rcu_eqs_exit(false);
811 	local_irq_restore(flags);
812 }
813 
814 #ifdef CONFIG_NO_HZ_FULL
815 /**
816  * rcu_user_exit - inform RCU that we are exiting userspace.
817  *
818  * Exit RCU idle mode while entering the kernel because it can
819  * run a RCU read side critical section anytime.
820  *
821  * If you add or remove a call to rcu_user_exit(), be sure to test with
822  * CONFIG_RCU_EQS_DEBUG=y.
823  */
824 void rcu_user_exit(void)
825 {
826 	rcu_eqs_exit(1);
827 }
828 #endif /* CONFIG_NO_HZ_FULL */
829 
830 /**
831  * rcu_nmi_enter_common - inform RCU of entry to NMI context
832  * @irq: Is this call from rcu_irq_enter?
833  *
834  * If the CPU was idle from RCU's viewpoint, update rdp->dynticks and
835  * rdp->dynticks_nmi_nesting to let the RCU grace-period handling know
836  * that the CPU is active.  This implementation permits nested NMIs, as
837  * long as the nesting level does not overflow an int.  (You will probably
838  * run out of stack space first.)
839  *
840  * If you add or remove a call to rcu_nmi_enter_common(), be sure to test
841  * with CONFIG_RCU_EQS_DEBUG=y.
842  */
843 static __always_inline void rcu_nmi_enter_common(bool irq)
844 {
845 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
846 	long incby = 2;
847 
848 	/* Complain about underflow. */
849 	WARN_ON_ONCE(rdp->dynticks_nmi_nesting < 0);
850 
851 	/*
852 	 * If idle from RCU viewpoint, atomically increment ->dynticks
853 	 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
854 	 * Otherwise, increment ->dynticks_nmi_nesting by two.  This means
855 	 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
856 	 * to be in the outermost NMI handler that interrupted an RCU-idle
857 	 * period (observation due to Andy Lutomirski).
858 	 */
859 	if (rcu_dynticks_curr_cpu_in_eqs()) {
860 
861 		if (irq)
862 			rcu_dynticks_task_exit();
863 
864 		rcu_dynticks_eqs_exit();
865 
866 		if (irq)
867 			rcu_cleanup_after_idle();
868 
869 		incby = 1;
870 	}
871 	trace_rcu_dyntick(incby == 1 ? TPS("Endirq") : TPS("++="),
872 			  rdp->dynticks_nmi_nesting,
873 			  rdp->dynticks_nmi_nesting + incby, rdp->dynticks);
874 	WRITE_ONCE(rdp->dynticks_nmi_nesting, /* Prevent store tearing. */
875 		   rdp->dynticks_nmi_nesting + incby);
876 	barrier();
877 }
878 
879 /**
880  * rcu_nmi_enter - inform RCU of entry to NMI context
881  */
882 void rcu_nmi_enter(void)
883 {
884 	rcu_nmi_enter_common(false);
885 }
886 NOKPROBE_SYMBOL(rcu_nmi_enter);
887 
888 /**
889  * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
890  *
891  * Enter an interrupt handler, which might possibly result in exiting
892  * idle mode, in other words, entering the mode in which read-side critical
893  * sections can occur.  The caller must have disabled interrupts.
894  *
895  * Note that the Linux kernel is fully capable of entering an interrupt
896  * handler that it never exits, for example when doing upcalls to user mode!
897  * This code assumes that the idle loop never does upcalls to user mode.
898  * If your architecture's idle loop does do upcalls to user mode (or does
899  * anything else that results in unbalanced calls to the irq_enter() and
900  * irq_exit() functions), RCU will give you what you deserve, good and hard.
901  * But very infrequently and irreproducibly.
902  *
903  * Use things like work queues to work around this limitation.
904  *
905  * You have been warned.
906  *
907  * If you add or remove a call to rcu_irq_enter(), be sure to test with
908  * CONFIG_RCU_EQS_DEBUG=y.
909  */
910 void rcu_irq_enter(void)
911 {
912 	lockdep_assert_irqs_disabled();
913 	rcu_nmi_enter_common(true);
914 }
915 
916 /*
917  * Wrapper for rcu_irq_enter() where interrupts are enabled.
918  *
919  * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test
920  * with CONFIG_RCU_EQS_DEBUG=y.
921  */
922 void rcu_irq_enter_irqson(void)
923 {
924 	unsigned long flags;
925 
926 	local_irq_save(flags);
927 	rcu_irq_enter();
928 	local_irq_restore(flags);
929 }
930 
931 /**
932  * rcu_is_watching - see if RCU thinks that the current CPU is not idle
933  *
934  * Return true if RCU is watching the running CPU, which means that this
935  * CPU can safely enter RCU read-side critical sections.  In other words,
936  * if the current CPU is not in its idle loop or is in an interrupt or
937  * NMI handler, return true.
938  */
939 bool notrace rcu_is_watching(void)
940 {
941 	bool ret;
942 
943 	preempt_disable_notrace();
944 	ret = !rcu_dynticks_curr_cpu_in_eqs();
945 	preempt_enable_notrace();
946 	return ret;
947 }
948 EXPORT_SYMBOL_GPL(rcu_is_watching);
949 
950 /*
951  * If a holdout task is actually running, request an urgent quiescent
952  * state from its CPU.  This is unsynchronized, so migrations can cause
953  * the request to go to the wrong CPU.  Which is OK, all that will happen
954  * is that the CPU's next context switch will be a bit slower and next
955  * time around this task will generate another request.
956  */
957 void rcu_request_urgent_qs_task(struct task_struct *t)
958 {
959 	int cpu;
960 
961 	barrier();
962 	cpu = task_cpu(t);
963 	if (!task_curr(t))
964 		return; /* This task is not running on that CPU. */
965 	smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true);
966 }
967 
968 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
969 
970 /*
971  * Is the current CPU online as far as RCU is concerned?
972  *
973  * Disable preemption to avoid false positives that could otherwise
974  * happen due to the current CPU number being sampled, this task being
975  * preempted, its old CPU being taken offline, resuming on some other CPU,
976  * then determining that its old CPU is now offline.
977  *
978  * Disable checking if in an NMI handler because we cannot safely
979  * report errors from NMI handlers anyway.  In addition, it is OK to use
980  * RCU on an offline processor during initial boot, hence the check for
981  * rcu_scheduler_fully_active.
982  */
983 bool rcu_lockdep_current_cpu_online(void)
984 {
985 	struct rcu_data *rdp;
986 	struct rcu_node *rnp;
987 	bool ret = false;
988 
989 	if (in_nmi() || !rcu_scheduler_fully_active)
990 		return true;
991 	preempt_disable();
992 	rdp = this_cpu_ptr(&rcu_data);
993 	rnp = rdp->mynode;
994 	if (rdp->grpmask & rcu_rnp_online_cpus(rnp))
995 		ret = true;
996 	preempt_enable();
997 	return ret;
998 }
999 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
1000 
1001 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1002 
1003 /*
1004  * We are reporting a quiescent state on behalf of some other CPU, so
1005  * it is our responsibility to check for and handle potential overflow
1006  * of the rcu_node ->gp_seq counter with respect to the rcu_data counters.
1007  * After all, the CPU might be in deep idle state, and thus executing no
1008  * code whatsoever.
1009  */
1010 static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
1011 {
1012 	raw_lockdep_assert_held_rcu_node(rnp);
1013 	if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4,
1014 			 rnp->gp_seq))
1015 		WRITE_ONCE(rdp->gpwrap, true);
1016 	if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq))
1017 		rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4;
1018 }
1019 
1020 /*
1021  * Snapshot the specified CPU's dynticks counter so that we can later
1022  * credit them with an implicit quiescent state.  Return 1 if this CPU
1023  * is in dynticks idle mode, which is an extended quiescent state.
1024  */
1025 static int dyntick_save_progress_counter(struct rcu_data *rdp)
1026 {
1027 	rdp->dynticks_snap = rcu_dynticks_snap(rdp);
1028 	if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
1029 		trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
1030 		rcu_gpnum_ovf(rdp->mynode, rdp);
1031 		return 1;
1032 	}
1033 	return 0;
1034 }
1035 
1036 /*
1037  * Handler for the irq_work request posted when a grace period has
1038  * gone on for too long, but not yet long enough for an RCU CPU
1039  * stall warning.  Set state appropriately, but just complain if
1040  * there is unexpected state on entry.
1041  */
1042 static void rcu_iw_handler(struct irq_work *iwp)
1043 {
1044 	struct rcu_data *rdp;
1045 	struct rcu_node *rnp;
1046 
1047 	rdp = container_of(iwp, struct rcu_data, rcu_iw);
1048 	rnp = rdp->mynode;
1049 	raw_spin_lock_rcu_node(rnp);
1050 	if (!WARN_ON_ONCE(!rdp->rcu_iw_pending)) {
1051 		rdp->rcu_iw_gp_seq = rnp->gp_seq;
1052 		rdp->rcu_iw_pending = false;
1053 	}
1054 	raw_spin_unlock_rcu_node(rnp);
1055 }
1056 
1057 /*
1058  * Return true if the specified CPU has passed through a quiescent
1059  * state by virtue of being in or having passed through an dynticks
1060  * idle state since the last call to dyntick_save_progress_counter()
1061  * for this same CPU, or by virtue of having been offline.
1062  */
1063 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
1064 {
1065 	unsigned long jtsq;
1066 	bool *rnhqp;
1067 	bool *ruqp;
1068 	struct rcu_node *rnp = rdp->mynode;
1069 
1070 	/*
1071 	 * If the CPU passed through or entered a dynticks idle phase with
1072 	 * no active irq/NMI handlers, then we can safely pretend that the CPU
1073 	 * already acknowledged the request to pass through a quiescent
1074 	 * state.  Either way, that CPU cannot possibly be in an RCU
1075 	 * read-side critical section that started before the beginning
1076 	 * of the current RCU grace period.
1077 	 */
1078 	if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) {
1079 		trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
1080 		rcu_gpnum_ovf(rnp, rdp);
1081 		return 1;
1082 	}
1083 
1084 	/* If waiting too long on an offline CPU, complain. */
1085 	if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp)) &&
1086 	    time_after(jiffies, rcu_state.gp_start + HZ)) {
1087 		bool onl;
1088 		struct rcu_node *rnp1;
1089 
1090 		WARN_ON(1);  /* Offline CPUs are supposed to report QS! */
1091 		pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
1092 			__func__, rnp->grplo, rnp->grphi, rnp->level,
1093 			(long)rnp->gp_seq, (long)rnp->completedqs);
1094 		for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
1095 			pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n",
1096 				__func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask);
1097 		onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
1098 		pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n",
1099 			__func__, rdp->cpu, ".o"[onl],
1100 			(long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
1101 			(long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
1102 		return 1; /* Break things loose after complaining. */
1103 	}
1104 
1105 	/*
1106 	 * A CPU running for an extended time within the kernel can
1107 	 * delay RCU grace periods: (1) At age jiffies_to_sched_qs,
1108 	 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set
1109 	 * both .rcu_need_heavy_qs and .rcu_urgent_qs.  Note that the
1110 	 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs
1111 	 * variable are safe because the assignments are repeated if this
1112 	 * CPU failed to pass through a quiescent state.  This code
1113 	 * also checks .jiffies_resched in case jiffies_to_sched_qs
1114 	 * is set way high.
1115 	 */
1116 	jtsq = READ_ONCE(jiffies_to_sched_qs);
1117 	ruqp = per_cpu_ptr(&rcu_data.rcu_urgent_qs, rdp->cpu);
1118 	rnhqp = &per_cpu(rcu_data.rcu_need_heavy_qs, rdp->cpu);
1119 	if (!READ_ONCE(*rnhqp) &&
1120 	    (time_after(jiffies, rcu_state.gp_start + jtsq * 2) ||
1121 	     time_after(jiffies, rcu_state.jiffies_resched))) {
1122 		WRITE_ONCE(*rnhqp, true);
1123 		/* Store rcu_need_heavy_qs before rcu_urgent_qs. */
1124 		smp_store_release(ruqp, true);
1125 	} else if (time_after(jiffies, rcu_state.gp_start + jtsq)) {
1126 		WRITE_ONCE(*ruqp, true);
1127 	}
1128 
1129 	/*
1130 	 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq!
1131 	 * The above code handles this, but only for straight cond_resched().
1132 	 * And some in-kernel loops check need_resched() before calling
1133 	 * cond_resched(), which defeats the above code for CPUs that are
1134 	 * running in-kernel with scheduling-clock interrupts disabled.
1135 	 * So hit them over the head with the resched_cpu() hammer!
1136 	 */
1137 	if (tick_nohz_full_cpu(rdp->cpu) &&
1138 		   time_after(jiffies,
1139 			      READ_ONCE(rdp->last_fqs_resched) + jtsq * 3)) {
1140 		resched_cpu(rdp->cpu);
1141 		WRITE_ONCE(rdp->last_fqs_resched, jiffies);
1142 	}
1143 
1144 	/*
1145 	 * If more than halfway to RCU CPU stall-warning time, invoke
1146 	 * resched_cpu() more frequently to try to loosen things up a bit.
1147 	 * Also check to see if the CPU is getting hammered with interrupts,
1148 	 * but only once per grace period, just to keep the IPIs down to
1149 	 * a dull roar.
1150 	 */
1151 	if (time_after(jiffies, rcu_state.jiffies_resched)) {
1152 		if (time_after(jiffies,
1153 			       READ_ONCE(rdp->last_fqs_resched) + jtsq)) {
1154 			resched_cpu(rdp->cpu);
1155 			WRITE_ONCE(rdp->last_fqs_resched, jiffies);
1156 		}
1157 		if (IS_ENABLED(CONFIG_IRQ_WORK) &&
1158 		    !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq &&
1159 		    (rnp->ffmask & rdp->grpmask)) {
1160 			init_irq_work(&rdp->rcu_iw, rcu_iw_handler);
1161 			rdp->rcu_iw_pending = true;
1162 			rdp->rcu_iw_gp_seq = rnp->gp_seq;
1163 			irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
1164 		}
1165 	}
1166 
1167 	return 0;
1168 }
1169 
1170 static void record_gp_stall_check_time(void)
1171 {
1172 	unsigned long j = jiffies;
1173 	unsigned long j1;
1174 
1175 	rcu_state.gp_start = j;
1176 	j1 = rcu_jiffies_till_stall_check();
1177 	/* Record ->gp_start before ->jiffies_stall. */
1178 	smp_store_release(&rcu_state.jiffies_stall, j + j1); /* ^^^ */
1179 	rcu_state.jiffies_resched = j + j1 / 2;
1180 	rcu_state.n_force_qs_gpstart = READ_ONCE(rcu_state.n_force_qs);
1181 }
1182 
1183 /*
1184  * Complain about starvation of grace-period kthread.
1185  */
1186 static void rcu_check_gp_kthread_starvation(void)
1187 {
1188 	struct task_struct *gpk = rcu_state.gp_kthread;
1189 	unsigned long j;
1190 
1191 	j = jiffies - READ_ONCE(rcu_state.gp_activity);
1192 	if (j > 2 * HZ) {
1193 		pr_err("%s kthread starved for %ld jiffies! g%ld f%#x %s(%d) ->state=%#lx ->cpu=%d\n",
1194 		       rcu_state.name, j,
1195 		       (long)rcu_seq_current(&rcu_state.gp_seq),
1196 		       READ_ONCE(rcu_state.gp_flags),
1197 		       gp_state_getname(rcu_state.gp_state), rcu_state.gp_state,
1198 		       gpk ? gpk->state : ~0, gpk ? task_cpu(gpk) : -1);
1199 		if (gpk) {
1200 			pr_err("RCU grace-period kthread stack dump:\n");
1201 			sched_show_task(gpk);
1202 			wake_up_process(gpk);
1203 		}
1204 	}
1205 }
1206 
1207 /*
1208  * Dump stacks of all tasks running on stalled CPUs.  First try using
1209  * NMIs, but fall back to manual remote stack tracing on architectures
1210  * that don't support NMI-based stack dumps.  The NMI-triggered stack
1211  * traces are more accurate because they are printed by the target CPU.
1212  */
1213 static void rcu_dump_cpu_stacks(void)
1214 {
1215 	int cpu;
1216 	unsigned long flags;
1217 	struct rcu_node *rnp;
1218 
1219 	rcu_for_each_leaf_node(rnp) {
1220 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1221 		for_each_leaf_node_possible_cpu(rnp, cpu)
1222 			if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu))
1223 				if (!trigger_single_cpu_backtrace(cpu))
1224 					dump_cpu_task(cpu);
1225 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1226 	}
1227 }
1228 
1229 /*
1230  * If too much time has passed in the current grace period, and if
1231  * so configured, go kick the relevant kthreads.
1232  */
1233 static void rcu_stall_kick_kthreads(void)
1234 {
1235 	unsigned long j;
1236 
1237 	if (!rcu_kick_kthreads)
1238 		return;
1239 	j = READ_ONCE(rcu_state.jiffies_kick_kthreads);
1240 	if (time_after(jiffies, j) && rcu_state.gp_kthread &&
1241 	    (rcu_gp_in_progress() || READ_ONCE(rcu_state.gp_flags))) {
1242 		WARN_ONCE(1, "Kicking %s grace-period kthread\n",
1243 			  rcu_state.name);
1244 		rcu_ftrace_dump(DUMP_ALL);
1245 		wake_up_process(rcu_state.gp_kthread);
1246 		WRITE_ONCE(rcu_state.jiffies_kick_kthreads, j + HZ);
1247 	}
1248 }
1249 
1250 static void panic_on_rcu_stall(void)
1251 {
1252 	if (sysctl_panic_on_rcu_stall)
1253 		panic("RCU Stall\n");
1254 }
1255 
1256 static void print_other_cpu_stall(unsigned long gp_seq)
1257 {
1258 	int cpu;
1259 	unsigned long flags;
1260 	unsigned long gpa;
1261 	unsigned long j;
1262 	int ndetected = 0;
1263 	struct rcu_node *rnp = rcu_get_root();
1264 	long totqlen = 0;
1265 
1266 	/* Kick and suppress, if so configured. */
1267 	rcu_stall_kick_kthreads();
1268 	if (rcu_cpu_stall_suppress)
1269 		return;
1270 
1271 	/*
1272 	 * OK, time to rat on our buddy...
1273 	 * See Documentation/RCU/stallwarn.txt for info on how to debug
1274 	 * RCU CPU stall warnings.
1275 	 */
1276 	pr_err("INFO: %s detected stalls on CPUs/tasks:", rcu_state.name);
1277 	print_cpu_stall_info_begin();
1278 	rcu_for_each_leaf_node(rnp) {
1279 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1280 		ndetected += rcu_print_task_stall(rnp);
1281 		if (rnp->qsmask != 0) {
1282 			for_each_leaf_node_possible_cpu(rnp, cpu)
1283 				if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) {
1284 					print_cpu_stall_info(cpu);
1285 					ndetected++;
1286 				}
1287 		}
1288 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1289 	}
1290 
1291 	print_cpu_stall_info_end();
1292 	for_each_possible_cpu(cpu)
1293 		totqlen += rcu_get_n_cbs_cpu(cpu);
1294 	pr_cont("(detected by %d, t=%ld jiffies, g=%ld, q=%lu)\n",
1295 	       smp_processor_id(), (long)(jiffies - rcu_state.gp_start),
1296 	       (long)rcu_seq_current(&rcu_state.gp_seq), totqlen);
1297 	if (ndetected) {
1298 		rcu_dump_cpu_stacks();
1299 
1300 		/* Complain about tasks blocking the grace period. */
1301 		rcu_print_detail_task_stall();
1302 	} else {
1303 		if (rcu_seq_current(&rcu_state.gp_seq) != gp_seq) {
1304 			pr_err("INFO: Stall ended before state dump start\n");
1305 		} else {
1306 			j = jiffies;
1307 			gpa = READ_ONCE(rcu_state.gp_activity);
1308 			pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
1309 			       rcu_state.name, j - gpa, j, gpa,
1310 			       READ_ONCE(jiffies_till_next_fqs),
1311 			       rcu_get_root()->qsmask);
1312 			/* In this case, the current CPU might be at fault. */
1313 			sched_show_task(current);
1314 		}
1315 	}
1316 	/* Rewrite if needed in case of slow consoles. */
1317 	if (ULONG_CMP_GE(jiffies, READ_ONCE(rcu_state.jiffies_stall)))
1318 		WRITE_ONCE(rcu_state.jiffies_stall,
1319 			   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1320 
1321 	rcu_check_gp_kthread_starvation();
1322 
1323 	panic_on_rcu_stall();
1324 
1325 	rcu_force_quiescent_state();  /* Kick them all. */
1326 }
1327 
1328 static void print_cpu_stall(void)
1329 {
1330 	int cpu;
1331 	unsigned long flags;
1332 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1333 	struct rcu_node *rnp = rcu_get_root();
1334 	long totqlen = 0;
1335 
1336 	/* Kick and suppress, if so configured. */
1337 	rcu_stall_kick_kthreads();
1338 	if (rcu_cpu_stall_suppress)
1339 		return;
1340 
1341 	/*
1342 	 * OK, time to rat on ourselves...
1343 	 * See Documentation/RCU/stallwarn.txt for info on how to debug
1344 	 * RCU CPU stall warnings.
1345 	 */
1346 	pr_err("INFO: %s self-detected stall on CPU", rcu_state.name);
1347 	print_cpu_stall_info_begin();
1348 	raw_spin_lock_irqsave_rcu_node(rdp->mynode, flags);
1349 	print_cpu_stall_info(smp_processor_id());
1350 	raw_spin_unlock_irqrestore_rcu_node(rdp->mynode, flags);
1351 	print_cpu_stall_info_end();
1352 	for_each_possible_cpu(cpu)
1353 		totqlen += rcu_get_n_cbs_cpu(cpu);
1354 	pr_cont(" (t=%lu jiffies g=%ld q=%lu)\n",
1355 		jiffies - rcu_state.gp_start,
1356 		(long)rcu_seq_current(&rcu_state.gp_seq), totqlen);
1357 
1358 	rcu_check_gp_kthread_starvation();
1359 
1360 	rcu_dump_cpu_stacks();
1361 
1362 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1363 	/* Rewrite if needed in case of slow consoles. */
1364 	if (ULONG_CMP_GE(jiffies, READ_ONCE(rcu_state.jiffies_stall)))
1365 		WRITE_ONCE(rcu_state.jiffies_stall,
1366 			   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1367 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1368 
1369 	panic_on_rcu_stall();
1370 
1371 	/*
1372 	 * Attempt to revive the RCU machinery by forcing a context switch.
1373 	 *
1374 	 * A context switch would normally allow the RCU state machine to make
1375 	 * progress and it could be we're stuck in kernel space without context
1376 	 * switches for an entirely unreasonable amount of time.
1377 	 */
1378 	set_tsk_need_resched(current);
1379 	set_preempt_need_resched();
1380 }
1381 
1382 static void check_cpu_stall(struct rcu_data *rdp)
1383 {
1384 	unsigned long gs1;
1385 	unsigned long gs2;
1386 	unsigned long gps;
1387 	unsigned long j;
1388 	unsigned long jn;
1389 	unsigned long js;
1390 	struct rcu_node *rnp;
1391 
1392 	if ((rcu_cpu_stall_suppress && !rcu_kick_kthreads) ||
1393 	    !rcu_gp_in_progress())
1394 		return;
1395 	rcu_stall_kick_kthreads();
1396 	j = jiffies;
1397 
1398 	/*
1399 	 * Lots of memory barriers to reject false positives.
1400 	 *
1401 	 * The idea is to pick up rcu_state.gp_seq, then
1402 	 * rcu_state.jiffies_stall, then rcu_state.gp_start, and finally
1403 	 * another copy of rcu_state.gp_seq.  These values are updated in
1404 	 * the opposite order with memory barriers (or equivalent) during
1405 	 * grace-period initialization and cleanup.  Now, a false positive
1406 	 * can occur if we get an new value of rcu_state.gp_start and a old
1407 	 * value of rcu_state.jiffies_stall.  But given the memory barriers,
1408 	 * the only way that this can happen is if one grace period ends
1409 	 * and another starts between these two fetches.  This is detected
1410 	 * by comparing the second fetch of rcu_state.gp_seq with the
1411 	 * previous fetch from rcu_state.gp_seq.
1412 	 *
1413 	 * Given this check, comparisons of jiffies, rcu_state.jiffies_stall,
1414 	 * and rcu_state.gp_start suffice to forestall false positives.
1415 	 */
1416 	gs1 = READ_ONCE(rcu_state.gp_seq);
1417 	smp_rmb(); /* Pick up ->gp_seq first... */
1418 	js = READ_ONCE(rcu_state.jiffies_stall);
1419 	smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1420 	gps = READ_ONCE(rcu_state.gp_start);
1421 	smp_rmb(); /* ...and finally ->gp_start before ->gp_seq again. */
1422 	gs2 = READ_ONCE(rcu_state.gp_seq);
1423 	if (gs1 != gs2 ||
1424 	    ULONG_CMP_LT(j, js) ||
1425 	    ULONG_CMP_GE(gps, js))
1426 		return; /* No stall or GP completed since entering function. */
1427 	rnp = rdp->mynode;
1428 	jn = jiffies + 3 * rcu_jiffies_till_stall_check() + 3;
1429 	if (rcu_gp_in_progress() &&
1430 	    (READ_ONCE(rnp->qsmask) & rdp->grpmask) &&
1431 	    cmpxchg(&rcu_state.jiffies_stall, js, jn) == js) {
1432 
1433 		/* We haven't checked in, so go dump stack. */
1434 		print_cpu_stall();
1435 
1436 	} else if (rcu_gp_in_progress() &&
1437 		   ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY) &&
1438 		   cmpxchg(&rcu_state.jiffies_stall, js, jn) == js) {
1439 
1440 		/* They had a few time units to dump stack, so complain. */
1441 		print_other_cpu_stall(gs2);
1442 	}
1443 }
1444 
1445 /**
1446  * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1447  *
1448  * Set the stall-warning timeout way off into the future, thus preventing
1449  * any RCU CPU stall-warning messages from appearing in the current set of
1450  * RCU grace periods.
1451  *
1452  * The caller must disable hard irqs.
1453  */
1454 void rcu_cpu_stall_reset(void)
1455 {
1456 	WRITE_ONCE(rcu_state.jiffies_stall, jiffies + ULONG_MAX / 2);
1457 }
1458 
1459 /* Trace-event wrapper function for trace_rcu_future_grace_period.  */
1460 static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1461 			      unsigned long gp_seq_req, const char *s)
1462 {
1463 	trace_rcu_future_grace_period(rcu_state.name, rnp->gp_seq, gp_seq_req,
1464 				      rnp->level, rnp->grplo, rnp->grphi, s);
1465 }
1466 
1467 /*
1468  * rcu_start_this_gp - Request the start of a particular grace period
1469  * @rnp_start: The leaf node of the CPU from which to start.
1470  * @rdp: The rcu_data corresponding to the CPU from which to start.
1471  * @gp_seq_req: The gp_seq of the grace period to start.
1472  *
1473  * Start the specified grace period, as needed to handle newly arrived
1474  * callbacks.  The required future grace periods are recorded in each
1475  * rcu_node structure's ->gp_seq_needed field.  Returns true if there
1476  * is reason to awaken the grace-period kthread.
1477  *
1478  * The caller must hold the specified rcu_node structure's ->lock, which
1479  * is why the caller is responsible for waking the grace-period kthread.
1480  *
1481  * Returns true if the GP thread needs to be awakened else false.
1482  */
1483 static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp,
1484 			      unsigned long gp_seq_req)
1485 {
1486 	bool ret = false;
1487 	struct rcu_node *rnp;
1488 
1489 	/*
1490 	 * Use funnel locking to either acquire the root rcu_node
1491 	 * structure's lock or bail out if the need for this grace period
1492 	 * has already been recorded -- or if that grace period has in
1493 	 * fact already started.  If there is already a grace period in
1494 	 * progress in a non-leaf node, no recording is needed because the
1495 	 * end of the grace period will scan the leaf rcu_node structures.
1496 	 * Note that rnp_start->lock must not be released.
1497 	 */
1498 	raw_lockdep_assert_held_rcu_node(rnp_start);
1499 	trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf"));
1500 	for (rnp = rnp_start; 1; rnp = rnp->parent) {
1501 		if (rnp != rnp_start)
1502 			raw_spin_lock_rcu_node(rnp);
1503 		if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) ||
1504 		    rcu_seq_started(&rnp->gp_seq, gp_seq_req) ||
1505 		    (rnp != rnp_start &&
1506 		     rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) {
1507 			trace_rcu_this_gp(rnp, rdp, gp_seq_req,
1508 					  TPS("Prestarted"));
1509 			goto unlock_out;
1510 		}
1511 		rnp->gp_seq_needed = gp_seq_req;
1512 		if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) {
1513 			/*
1514 			 * We just marked the leaf or internal node, and a
1515 			 * grace period is in progress, which means that
1516 			 * rcu_gp_cleanup() will see the marking.  Bail to
1517 			 * reduce contention.
1518 			 */
1519 			trace_rcu_this_gp(rnp_start, rdp, gp_seq_req,
1520 					  TPS("Startedleaf"));
1521 			goto unlock_out;
1522 		}
1523 		if (rnp != rnp_start && rnp->parent != NULL)
1524 			raw_spin_unlock_rcu_node(rnp);
1525 		if (!rnp->parent)
1526 			break;  /* At root, and perhaps also leaf. */
1527 	}
1528 
1529 	/* If GP already in progress, just leave, otherwise start one. */
1530 	if (rcu_gp_in_progress()) {
1531 		trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot"));
1532 		goto unlock_out;
1533 	}
1534 	trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot"));
1535 	WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT);
1536 	rcu_state.gp_req_activity = jiffies;
1537 	if (!rcu_state.gp_kthread) {
1538 		trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread"));
1539 		goto unlock_out;
1540 	}
1541 	trace_rcu_grace_period(rcu_state.name, READ_ONCE(rcu_state.gp_seq), TPS("newreq"));
1542 	ret = true;  /* Caller must wake GP kthread. */
1543 unlock_out:
1544 	/* Push furthest requested GP to leaf node and rcu_data structure. */
1545 	if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) {
1546 		rnp_start->gp_seq_needed = rnp->gp_seq_needed;
1547 		rdp->gp_seq_needed = rnp->gp_seq_needed;
1548 	}
1549 	if (rnp != rnp_start)
1550 		raw_spin_unlock_rcu_node(rnp);
1551 	return ret;
1552 }
1553 
1554 /*
1555  * Clean up any old requests for the just-ended grace period.  Also return
1556  * whether any additional grace periods have been requested.
1557  */
1558 static bool rcu_future_gp_cleanup(struct rcu_node *rnp)
1559 {
1560 	bool needmore;
1561 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1562 
1563 	needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed);
1564 	if (!needmore)
1565 		rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */
1566 	trace_rcu_this_gp(rnp, rdp, rnp->gp_seq,
1567 			  needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1568 	return needmore;
1569 }
1570 
1571 /*
1572  * Awaken the grace-period kthread.  Don't do a self-awaken (unless in
1573  * an interrupt or softirq handler), and don't bother awakening when there
1574  * is nothing for the grace-period kthread to do (as in several CPUs raced
1575  * to awaken, and we lost), and finally don't try to awaken a kthread that
1576  * has not yet been created.  If all those checks are passed, track some
1577  * debug information and awaken.
1578  *
1579  * So why do the self-wakeup when in an interrupt or softirq handler
1580  * in the grace-period kthread's context?  Because the kthread might have
1581  * been interrupted just as it was going to sleep, and just after the final
1582  * pre-sleep check of the awaken condition.  In this case, a wakeup really
1583  * is required, and is therefore supplied.
1584  */
1585 static void rcu_gp_kthread_wake(void)
1586 {
1587 	if ((current == rcu_state.gp_kthread &&
1588 	     !in_interrupt() && !in_serving_softirq()) ||
1589 	    !READ_ONCE(rcu_state.gp_flags) ||
1590 	    !rcu_state.gp_kthread)
1591 		return;
1592 	WRITE_ONCE(rcu_state.gp_wake_time, jiffies);
1593 	WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq));
1594 	swake_up_one(&rcu_state.gp_wq);
1595 }
1596 
1597 /*
1598  * If there is room, assign a ->gp_seq number to any callbacks on this
1599  * CPU that have not already been assigned.  Also accelerate any callbacks
1600  * that were previously assigned a ->gp_seq number that has since proven
1601  * to be too conservative, which can happen if callbacks get assigned a
1602  * ->gp_seq number while RCU is idle, but with reference to a non-root
1603  * rcu_node structure.  This function is idempotent, so it does not hurt
1604  * to call it repeatedly.  Returns an flag saying that we should awaken
1605  * the RCU grace-period kthread.
1606  *
1607  * The caller must hold rnp->lock with interrupts disabled.
1608  */
1609 static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1610 {
1611 	unsigned long gp_seq_req;
1612 	bool ret = false;
1613 
1614 	raw_lockdep_assert_held_rcu_node(rnp);
1615 
1616 	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1617 	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1618 		return false;
1619 
1620 	/*
1621 	 * Callbacks are often registered with incomplete grace-period
1622 	 * information.  Something about the fact that getting exact
1623 	 * information requires acquiring a global lock...  RCU therefore
1624 	 * makes a conservative estimate of the grace period number at which
1625 	 * a given callback will become ready to invoke.	The following
1626 	 * code checks this estimate and improves it when possible, thus
1627 	 * accelerating callback invocation to an earlier grace-period
1628 	 * number.
1629 	 */
1630 	gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq);
1631 	if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req))
1632 		ret = rcu_start_this_gp(rnp, rdp, gp_seq_req);
1633 
1634 	/* Trace depending on how much we were able to accelerate. */
1635 	if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
1636 		trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("AccWaitCB"));
1637 	else
1638 		trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("AccReadyCB"));
1639 	return ret;
1640 }
1641 
1642 /*
1643  * Similar to rcu_accelerate_cbs(), but does not require that the leaf
1644  * rcu_node structure's ->lock be held.  It consults the cached value
1645  * of ->gp_seq_needed in the rcu_data structure, and if that indicates
1646  * that a new grace-period request be made, invokes rcu_accelerate_cbs()
1647  * while holding the leaf rcu_node structure's ->lock.
1648  */
1649 static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp,
1650 					struct rcu_data *rdp)
1651 {
1652 	unsigned long c;
1653 	bool needwake;
1654 
1655 	lockdep_assert_irqs_disabled();
1656 	c = rcu_seq_snap(&rcu_state.gp_seq);
1657 	if (!rdp->gpwrap && ULONG_CMP_GE(rdp->gp_seq_needed, c)) {
1658 		/* Old request still live, so mark recent callbacks. */
1659 		(void)rcu_segcblist_accelerate(&rdp->cblist, c);
1660 		return;
1661 	}
1662 	raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1663 	needwake = rcu_accelerate_cbs(rnp, rdp);
1664 	raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1665 	if (needwake)
1666 		rcu_gp_kthread_wake();
1667 }
1668 
1669 /*
1670  * Move any callbacks whose grace period has completed to the
1671  * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1672  * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL
1673  * sublist.  This function is idempotent, so it does not hurt to
1674  * invoke it repeatedly.  As long as it is not invoked -too- often...
1675  * Returns true if the RCU grace-period kthread needs to be awakened.
1676  *
1677  * The caller must hold rnp->lock with interrupts disabled.
1678  */
1679 static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1680 {
1681 	raw_lockdep_assert_held_rcu_node(rnp);
1682 
1683 	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1684 	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1685 		return false;
1686 
1687 	/*
1688 	 * Find all callbacks whose ->gp_seq numbers indicate that they
1689 	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1690 	 */
1691 	rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq);
1692 
1693 	/* Classify any remaining callbacks. */
1694 	return rcu_accelerate_cbs(rnp, rdp);
1695 }
1696 
1697 /*
1698  * Update CPU-local rcu_data state to record the beginnings and ends of
1699  * grace periods.  The caller must hold the ->lock of the leaf rcu_node
1700  * structure corresponding to the current CPU, and must have irqs disabled.
1701  * Returns true if the grace-period kthread needs to be awakened.
1702  */
1703 static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp)
1704 {
1705 	bool ret;
1706 	bool need_gp;
1707 
1708 	raw_lockdep_assert_held_rcu_node(rnp);
1709 
1710 	if (rdp->gp_seq == rnp->gp_seq)
1711 		return false; /* Nothing to do. */
1712 
1713 	/* Handle the ends of any preceding grace periods first. */
1714 	if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) ||
1715 	    unlikely(READ_ONCE(rdp->gpwrap))) {
1716 		ret = rcu_advance_cbs(rnp, rdp); /* Advance callbacks. */
1717 		trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend"));
1718 	} else {
1719 		ret = rcu_accelerate_cbs(rnp, rdp); /* Recent callbacks. */
1720 	}
1721 
1722 	/* Now handle the beginnings of any new-to-this-CPU grace periods. */
1723 	if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) ||
1724 	    unlikely(READ_ONCE(rdp->gpwrap))) {
1725 		/*
1726 		 * If the current grace period is waiting for this CPU,
1727 		 * set up to detect a quiescent state, otherwise don't
1728 		 * go looking for one.
1729 		 */
1730 		trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart"));
1731 		need_gp = !!(rnp->qsmask & rdp->grpmask);
1732 		rdp->cpu_no_qs.b.norm = need_gp;
1733 		rdp->core_needs_qs = need_gp;
1734 		zero_cpu_stall_ticks(rdp);
1735 	}
1736 	rdp->gp_seq = rnp->gp_seq;  /* Remember new grace-period state. */
1737 	if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap)
1738 		rdp->gp_seq_needed = rnp->gp_seq_needed;
1739 	WRITE_ONCE(rdp->gpwrap, false);
1740 	rcu_gpnum_ovf(rnp, rdp);
1741 	return ret;
1742 }
1743 
1744 static void note_gp_changes(struct rcu_data *rdp)
1745 {
1746 	unsigned long flags;
1747 	bool needwake;
1748 	struct rcu_node *rnp;
1749 
1750 	local_irq_save(flags);
1751 	rnp = rdp->mynode;
1752 	if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) &&
1753 	     !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1754 	    !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1755 		local_irq_restore(flags);
1756 		return;
1757 	}
1758 	needwake = __note_gp_changes(rnp, rdp);
1759 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1760 	if (needwake)
1761 		rcu_gp_kthread_wake();
1762 }
1763 
1764 static void rcu_gp_slow(int delay)
1765 {
1766 	if (delay > 0 &&
1767 	    !(rcu_seq_ctr(rcu_state.gp_seq) %
1768 	      (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1769 		schedule_timeout_uninterruptible(delay);
1770 }
1771 
1772 /*
1773  * Initialize a new grace period.  Return false if no grace period required.
1774  */
1775 static bool rcu_gp_init(void)
1776 {
1777 	unsigned long flags;
1778 	unsigned long oldmask;
1779 	unsigned long mask;
1780 	struct rcu_data *rdp;
1781 	struct rcu_node *rnp = rcu_get_root();
1782 
1783 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1784 	raw_spin_lock_irq_rcu_node(rnp);
1785 	if (!READ_ONCE(rcu_state.gp_flags)) {
1786 		/* Spurious wakeup, tell caller to go back to sleep.  */
1787 		raw_spin_unlock_irq_rcu_node(rnp);
1788 		return false;
1789 	}
1790 	WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */
1791 
1792 	if (WARN_ON_ONCE(rcu_gp_in_progress())) {
1793 		/*
1794 		 * Grace period already in progress, don't start another.
1795 		 * Not supposed to be able to happen.
1796 		 */
1797 		raw_spin_unlock_irq_rcu_node(rnp);
1798 		return false;
1799 	}
1800 
1801 	/* Advance to a new grace period and initialize state. */
1802 	record_gp_stall_check_time();
1803 	/* Record GP times before starting GP, hence rcu_seq_start(). */
1804 	rcu_seq_start(&rcu_state.gp_seq);
1805 	trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start"));
1806 	raw_spin_unlock_irq_rcu_node(rnp);
1807 
1808 	/*
1809 	 * Apply per-leaf buffered online and offline operations to the
1810 	 * rcu_node tree.  Note that this new grace period need not wait
1811 	 * for subsequent online CPUs, and that quiescent-state forcing
1812 	 * will handle subsequent offline CPUs.
1813 	 */
1814 	rcu_state.gp_state = RCU_GP_ONOFF;
1815 	rcu_for_each_leaf_node(rnp) {
1816 		raw_spin_lock(&rcu_state.ofl_lock);
1817 		raw_spin_lock_irq_rcu_node(rnp);
1818 		if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1819 		    !rnp->wait_blkd_tasks) {
1820 			/* Nothing to do on this leaf rcu_node structure. */
1821 			raw_spin_unlock_irq_rcu_node(rnp);
1822 			raw_spin_unlock(&rcu_state.ofl_lock);
1823 			continue;
1824 		}
1825 
1826 		/* Record old state, apply changes to ->qsmaskinit field. */
1827 		oldmask = rnp->qsmaskinit;
1828 		rnp->qsmaskinit = rnp->qsmaskinitnext;
1829 
1830 		/* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1831 		if (!oldmask != !rnp->qsmaskinit) {
1832 			if (!oldmask) { /* First online CPU for rcu_node. */
1833 				if (!rnp->wait_blkd_tasks) /* Ever offline? */
1834 					rcu_init_new_rnp(rnp);
1835 			} else if (rcu_preempt_has_tasks(rnp)) {
1836 				rnp->wait_blkd_tasks = true; /* blocked tasks */
1837 			} else { /* Last offline CPU and can propagate. */
1838 				rcu_cleanup_dead_rnp(rnp);
1839 			}
1840 		}
1841 
1842 		/*
1843 		 * If all waited-on tasks from prior grace period are
1844 		 * done, and if all this rcu_node structure's CPUs are
1845 		 * still offline, propagate up the rcu_node tree and
1846 		 * clear ->wait_blkd_tasks.  Otherwise, if one of this
1847 		 * rcu_node structure's CPUs has since come back online,
1848 		 * simply clear ->wait_blkd_tasks.
1849 		 */
1850 		if (rnp->wait_blkd_tasks &&
1851 		    (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) {
1852 			rnp->wait_blkd_tasks = false;
1853 			if (!rnp->qsmaskinit)
1854 				rcu_cleanup_dead_rnp(rnp);
1855 		}
1856 
1857 		raw_spin_unlock_irq_rcu_node(rnp);
1858 		raw_spin_unlock(&rcu_state.ofl_lock);
1859 	}
1860 	rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */
1861 
1862 	/*
1863 	 * Set the quiescent-state-needed bits in all the rcu_node
1864 	 * structures for all currently online CPUs in breadth-first
1865 	 * order, starting from the root rcu_node structure, relying on the
1866 	 * layout of the tree within the rcu_state.node[] array.  Note that
1867 	 * other CPUs will access only the leaves of the hierarchy, thus
1868 	 * seeing that no grace period is in progress, at least until the
1869 	 * corresponding leaf node has been initialized.
1870 	 *
1871 	 * The grace period cannot complete until the initialization
1872 	 * process finishes, because this kthread handles both.
1873 	 */
1874 	rcu_state.gp_state = RCU_GP_INIT;
1875 	rcu_for_each_node_breadth_first(rnp) {
1876 		rcu_gp_slow(gp_init_delay);
1877 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1878 		rdp = this_cpu_ptr(&rcu_data);
1879 		rcu_preempt_check_blocked_tasks(rnp);
1880 		rnp->qsmask = rnp->qsmaskinit;
1881 		WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq);
1882 		if (rnp == rdp->mynode)
1883 			(void)__note_gp_changes(rnp, rdp);
1884 		rcu_preempt_boost_start_gp(rnp);
1885 		trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq,
1886 					    rnp->level, rnp->grplo,
1887 					    rnp->grphi, rnp->qsmask);
1888 		/* Quiescent states for tasks on any now-offline CPUs. */
1889 		mask = rnp->qsmask & ~rnp->qsmaskinitnext;
1890 		rnp->rcu_gp_init_mask = mask;
1891 		if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp))
1892 			rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
1893 		else
1894 			raw_spin_unlock_irq_rcu_node(rnp);
1895 		cond_resched_tasks_rcu_qs();
1896 		WRITE_ONCE(rcu_state.gp_activity, jiffies);
1897 	}
1898 
1899 	return true;
1900 }
1901 
1902 /*
1903  * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state
1904  * time.
1905  */
1906 static bool rcu_gp_fqs_check_wake(int *gfp)
1907 {
1908 	struct rcu_node *rnp = rcu_get_root();
1909 
1910 	/* Someone like call_rcu() requested a force-quiescent-state scan. */
1911 	*gfp = READ_ONCE(rcu_state.gp_flags);
1912 	if (*gfp & RCU_GP_FLAG_FQS)
1913 		return true;
1914 
1915 	/* The current grace period has completed. */
1916 	if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
1917 		return true;
1918 
1919 	return false;
1920 }
1921 
1922 /*
1923  * Do one round of quiescent-state forcing.
1924  */
1925 static void rcu_gp_fqs(bool first_time)
1926 {
1927 	struct rcu_node *rnp = rcu_get_root();
1928 
1929 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1930 	rcu_state.n_force_qs++;
1931 	if (first_time) {
1932 		/* Collect dyntick-idle snapshots. */
1933 		force_qs_rnp(dyntick_save_progress_counter);
1934 	} else {
1935 		/* Handle dyntick-idle and offline CPUs. */
1936 		force_qs_rnp(rcu_implicit_dynticks_qs);
1937 	}
1938 	/* Clear flag to prevent immediate re-entry. */
1939 	if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
1940 		raw_spin_lock_irq_rcu_node(rnp);
1941 		WRITE_ONCE(rcu_state.gp_flags,
1942 			   READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS);
1943 		raw_spin_unlock_irq_rcu_node(rnp);
1944 	}
1945 }
1946 
1947 /*
1948  * Loop doing repeated quiescent-state forcing until the grace period ends.
1949  */
1950 static void rcu_gp_fqs_loop(void)
1951 {
1952 	bool first_gp_fqs;
1953 	int gf;
1954 	unsigned long j;
1955 	int ret;
1956 	struct rcu_node *rnp = rcu_get_root();
1957 
1958 	first_gp_fqs = true;
1959 	j = READ_ONCE(jiffies_till_first_fqs);
1960 	ret = 0;
1961 	for (;;) {
1962 		if (!ret) {
1963 			rcu_state.jiffies_force_qs = jiffies + j;
1964 			WRITE_ONCE(rcu_state.jiffies_kick_kthreads,
1965 				   jiffies + (j ? 3 * j : 2));
1966 		}
1967 		trace_rcu_grace_period(rcu_state.name,
1968 				       READ_ONCE(rcu_state.gp_seq),
1969 				       TPS("fqswait"));
1970 		rcu_state.gp_state = RCU_GP_WAIT_FQS;
1971 		ret = swait_event_idle_timeout_exclusive(
1972 				rcu_state.gp_wq, rcu_gp_fqs_check_wake(&gf), j);
1973 		rcu_state.gp_state = RCU_GP_DOING_FQS;
1974 		/* Locking provides needed memory barriers. */
1975 		/* If grace period done, leave loop. */
1976 		if (!READ_ONCE(rnp->qsmask) &&
1977 		    !rcu_preempt_blocked_readers_cgp(rnp))
1978 			break;
1979 		/* If time for quiescent-state forcing, do it. */
1980 		if (ULONG_CMP_GE(jiffies, rcu_state.jiffies_force_qs) ||
1981 		    (gf & RCU_GP_FLAG_FQS)) {
1982 			trace_rcu_grace_period(rcu_state.name,
1983 					       READ_ONCE(rcu_state.gp_seq),
1984 					       TPS("fqsstart"));
1985 			rcu_gp_fqs(first_gp_fqs);
1986 			first_gp_fqs = false;
1987 			trace_rcu_grace_period(rcu_state.name,
1988 					       READ_ONCE(rcu_state.gp_seq),
1989 					       TPS("fqsend"));
1990 			cond_resched_tasks_rcu_qs();
1991 			WRITE_ONCE(rcu_state.gp_activity, jiffies);
1992 			ret = 0; /* Force full wait till next FQS. */
1993 			j = READ_ONCE(jiffies_till_next_fqs);
1994 		} else {
1995 			/* Deal with stray signal. */
1996 			cond_resched_tasks_rcu_qs();
1997 			WRITE_ONCE(rcu_state.gp_activity, jiffies);
1998 			WARN_ON(signal_pending(current));
1999 			trace_rcu_grace_period(rcu_state.name,
2000 					       READ_ONCE(rcu_state.gp_seq),
2001 					       TPS("fqswaitsig"));
2002 			ret = 1; /* Keep old FQS timing. */
2003 			j = jiffies;
2004 			if (time_after(jiffies, rcu_state.jiffies_force_qs))
2005 				j = 1;
2006 			else
2007 				j = rcu_state.jiffies_force_qs - j;
2008 		}
2009 	}
2010 }
2011 
2012 /*
2013  * Clean up after the old grace period.
2014  */
2015 static void rcu_gp_cleanup(void)
2016 {
2017 	unsigned long gp_duration;
2018 	bool needgp = false;
2019 	unsigned long new_gp_seq;
2020 	struct rcu_data *rdp;
2021 	struct rcu_node *rnp = rcu_get_root();
2022 	struct swait_queue_head *sq;
2023 
2024 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
2025 	raw_spin_lock_irq_rcu_node(rnp);
2026 	rcu_state.gp_end = jiffies;
2027 	gp_duration = rcu_state.gp_end - rcu_state.gp_start;
2028 	if (gp_duration > rcu_state.gp_max)
2029 		rcu_state.gp_max = gp_duration;
2030 
2031 	/*
2032 	 * We know the grace period is complete, but to everyone else
2033 	 * it appears to still be ongoing.  But it is also the case
2034 	 * that to everyone else it looks like there is nothing that
2035 	 * they can do to advance the grace period.  It is therefore
2036 	 * safe for us to drop the lock in order to mark the grace
2037 	 * period as completed in all of the rcu_node structures.
2038 	 */
2039 	raw_spin_unlock_irq_rcu_node(rnp);
2040 
2041 	/*
2042 	 * Propagate new ->gp_seq value to rcu_node structures so that
2043 	 * other CPUs don't have to wait until the start of the next grace
2044 	 * period to process their callbacks.  This also avoids some nasty
2045 	 * RCU grace-period initialization races by forcing the end of
2046 	 * the current grace period to be completely recorded in all of
2047 	 * the rcu_node structures before the beginning of the next grace
2048 	 * period is recorded in any of the rcu_node structures.
2049 	 */
2050 	new_gp_seq = rcu_state.gp_seq;
2051 	rcu_seq_end(&new_gp_seq);
2052 	rcu_for_each_node_breadth_first(rnp) {
2053 		raw_spin_lock_irq_rcu_node(rnp);
2054 		if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
2055 			dump_blkd_tasks(rnp, 10);
2056 		WARN_ON_ONCE(rnp->qsmask);
2057 		WRITE_ONCE(rnp->gp_seq, new_gp_seq);
2058 		rdp = this_cpu_ptr(&rcu_data);
2059 		if (rnp == rdp->mynode)
2060 			needgp = __note_gp_changes(rnp, rdp) || needgp;
2061 		/* smp_mb() provided by prior unlock-lock pair. */
2062 		needgp = rcu_future_gp_cleanup(rnp) || needgp;
2063 		sq = rcu_nocb_gp_get(rnp);
2064 		raw_spin_unlock_irq_rcu_node(rnp);
2065 		rcu_nocb_gp_cleanup(sq);
2066 		cond_resched_tasks_rcu_qs();
2067 		WRITE_ONCE(rcu_state.gp_activity, jiffies);
2068 		rcu_gp_slow(gp_cleanup_delay);
2069 	}
2070 	rnp = rcu_get_root();
2071 	raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */
2072 
2073 	/* Declare grace period done, trace first to use old GP number. */
2074 	trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end"));
2075 	rcu_seq_end(&rcu_state.gp_seq);
2076 	rcu_state.gp_state = RCU_GP_IDLE;
2077 	/* Check for GP requests since above loop. */
2078 	rdp = this_cpu_ptr(&rcu_data);
2079 	if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) {
2080 		trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed,
2081 				  TPS("CleanupMore"));
2082 		needgp = true;
2083 	}
2084 	/* Advance CBs to reduce false positives below. */
2085 	if (!rcu_accelerate_cbs(rnp, rdp) && needgp) {
2086 		WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT);
2087 		rcu_state.gp_req_activity = jiffies;
2088 		trace_rcu_grace_period(rcu_state.name,
2089 				       READ_ONCE(rcu_state.gp_seq),
2090 				       TPS("newreq"));
2091 	} else {
2092 		WRITE_ONCE(rcu_state.gp_flags,
2093 			   rcu_state.gp_flags & RCU_GP_FLAG_INIT);
2094 	}
2095 	raw_spin_unlock_irq_rcu_node(rnp);
2096 }
2097 
2098 /*
2099  * Body of kthread that handles grace periods.
2100  */
2101 static int __noreturn rcu_gp_kthread(void *unused)
2102 {
2103 	rcu_bind_gp_kthread();
2104 	for (;;) {
2105 
2106 		/* Handle grace-period start. */
2107 		for (;;) {
2108 			trace_rcu_grace_period(rcu_state.name,
2109 					       READ_ONCE(rcu_state.gp_seq),
2110 					       TPS("reqwait"));
2111 			rcu_state.gp_state = RCU_GP_WAIT_GPS;
2112 			swait_event_idle_exclusive(rcu_state.gp_wq,
2113 					 READ_ONCE(rcu_state.gp_flags) &
2114 					 RCU_GP_FLAG_INIT);
2115 			rcu_state.gp_state = RCU_GP_DONE_GPS;
2116 			/* Locking provides needed memory barrier. */
2117 			if (rcu_gp_init())
2118 				break;
2119 			cond_resched_tasks_rcu_qs();
2120 			WRITE_ONCE(rcu_state.gp_activity, jiffies);
2121 			WARN_ON(signal_pending(current));
2122 			trace_rcu_grace_period(rcu_state.name,
2123 					       READ_ONCE(rcu_state.gp_seq),
2124 					       TPS("reqwaitsig"));
2125 		}
2126 
2127 		/* Handle quiescent-state forcing. */
2128 		rcu_gp_fqs_loop();
2129 
2130 		/* Handle grace-period end. */
2131 		rcu_state.gp_state = RCU_GP_CLEANUP;
2132 		rcu_gp_cleanup();
2133 		rcu_state.gp_state = RCU_GP_CLEANED;
2134 	}
2135 }
2136 
2137 /*
2138  * Report a full set of quiescent states to the rcu_state data structure.
2139  * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if
2140  * another grace period is required.  Whether we wake the grace-period
2141  * kthread or it awakens itself for the next round of quiescent-state
2142  * forcing, that kthread will clean up after the just-completed grace
2143  * period.  Note that the caller must hold rnp->lock, which is released
2144  * before return.
2145  */
2146 static void rcu_report_qs_rsp(unsigned long flags)
2147 	__releases(rcu_get_root()->lock)
2148 {
2149 	raw_lockdep_assert_held_rcu_node(rcu_get_root());
2150 	WARN_ON_ONCE(!rcu_gp_in_progress());
2151 	WRITE_ONCE(rcu_state.gp_flags,
2152 		   READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
2153 	raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags);
2154 	rcu_gp_kthread_wake();
2155 }
2156 
2157 /*
2158  * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2159  * Allows quiescent states for a group of CPUs to be reported at one go
2160  * to the specified rcu_node structure, though all the CPUs in the group
2161  * must be represented by the same rcu_node structure (which need not be a
2162  * leaf rcu_node structure, though it often will be).  The gps parameter
2163  * is the grace-period snapshot, which means that the quiescent states
2164  * are valid only if rnp->gp_seq is equal to gps.  That structure's lock
2165  * must be held upon entry, and it is released before return.
2166  *
2167  * As a special case, if mask is zero, the bit-already-cleared check is
2168  * disabled.  This allows propagating quiescent state due to resumed tasks
2169  * during grace-period initialization.
2170  */
2171 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
2172 			      unsigned long gps, unsigned long flags)
2173 	__releases(rnp->lock)
2174 {
2175 	unsigned long oldmask = 0;
2176 	struct rcu_node *rnp_c;
2177 
2178 	raw_lockdep_assert_held_rcu_node(rnp);
2179 
2180 	/* Walk up the rcu_node hierarchy. */
2181 	for (;;) {
2182 		if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) {
2183 
2184 			/*
2185 			 * Our bit has already been cleared, or the
2186 			 * relevant grace period is already over, so done.
2187 			 */
2188 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2189 			return;
2190 		}
2191 		WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2192 		WARN_ON_ONCE(!rcu_is_leaf_node(rnp) &&
2193 			     rcu_preempt_blocked_readers_cgp(rnp));
2194 		rnp->qsmask &= ~mask;
2195 		trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq,
2196 						 mask, rnp->qsmask, rnp->level,
2197 						 rnp->grplo, rnp->grphi,
2198 						 !!rnp->gp_tasks);
2199 		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2200 
2201 			/* Other bits still set at this level, so done. */
2202 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2203 			return;
2204 		}
2205 		rnp->completedqs = rnp->gp_seq;
2206 		mask = rnp->grpmask;
2207 		if (rnp->parent == NULL) {
2208 
2209 			/* No more levels.  Exit loop holding root lock. */
2210 
2211 			break;
2212 		}
2213 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2214 		rnp_c = rnp;
2215 		rnp = rnp->parent;
2216 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2217 		oldmask = rnp_c->qsmask;
2218 	}
2219 
2220 	/*
2221 	 * Get here if we are the last CPU to pass through a quiescent
2222 	 * state for this grace period.  Invoke rcu_report_qs_rsp()
2223 	 * to clean up and start the next grace period if one is needed.
2224 	 */
2225 	rcu_report_qs_rsp(flags); /* releases rnp->lock. */
2226 }
2227 
2228 /*
2229  * Record a quiescent state for all tasks that were previously queued
2230  * on the specified rcu_node structure and that were blocking the current
2231  * RCU grace period.  The caller must hold the corresponding rnp->lock with
2232  * irqs disabled, and this lock is released upon return, but irqs remain
2233  * disabled.
2234  */
2235 static void __maybe_unused
2236 rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
2237 	__releases(rnp->lock)
2238 {
2239 	unsigned long gps;
2240 	unsigned long mask;
2241 	struct rcu_node *rnp_p;
2242 
2243 	raw_lockdep_assert_held_rcu_node(rnp);
2244 	if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT)) ||
2245 	    WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) ||
2246 	    rnp->qsmask != 0) {
2247 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2248 		return;  /* Still need more quiescent states! */
2249 	}
2250 
2251 	rnp->completedqs = rnp->gp_seq;
2252 	rnp_p = rnp->parent;
2253 	if (rnp_p == NULL) {
2254 		/*
2255 		 * Only one rcu_node structure in the tree, so don't
2256 		 * try to report up to its nonexistent parent!
2257 		 */
2258 		rcu_report_qs_rsp(flags);
2259 		return;
2260 	}
2261 
2262 	/* Report up the rest of the hierarchy, tracking current ->gp_seq. */
2263 	gps = rnp->gp_seq;
2264 	mask = rnp->grpmask;
2265 	raw_spin_unlock_rcu_node(rnp);	/* irqs remain disabled. */
2266 	raw_spin_lock_rcu_node(rnp_p);	/* irqs already disabled. */
2267 	rcu_report_qs_rnp(mask, rnp_p, gps, flags);
2268 }
2269 
2270 /*
2271  * Record a quiescent state for the specified CPU to that CPU's rcu_data
2272  * structure.  This must be called from the specified CPU.
2273  */
2274 static void
2275 rcu_report_qs_rdp(int cpu, struct rcu_data *rdp)
2276 {
2277 	unsigned long flags;
2278 	unsigned long mask;
2279 	bool needwake;
2280 	struct rcu_node *rnp;
2281 
2282 	rnp = rdp->mynode;
2283 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
2284 	if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq ||
2285 	    rdp->gpwrap) {
2286 
2287 		/*
2288 		 * The grace period in which this quiescent state was
2289 		 * recorded has ended, so don't report it upwards.
2290 		 * We will instead need a new quiescent state that lies
2291 		 * within the current grace period.
2292 		 */
2293 		rdp->cpu_no_qs.b.norm = true;	/* need qs for new gp. */
2294 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2295 		return;
2296 	}
2297 	mask = rdp->grpmask;
2298 	if ((rnp->qsmask & mask) == 0) {
2299 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2300 	} else {
2301 		rdp->core_needs_qs = false;
2302 
2303 		/*
2304 		 * This GP can't end until cpu checks in, so all of our
2305 		 * callbacks can be processed during the next GP.
2306 		 */
2307 		needwake = rcu_accelerate_cbs(rnp, rdp);
2308 
2309 		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2310 		/* ^^^ Released rnp->lock */
2311 		if (needwake)
2312 			rcu_gp_kthread_wake();
2313 	}
2314 }
2315 
2316 /*
2317  * Check to see if there is a new grace period of which this CPU
2318  * is not yet aware, and if so, set up local rcu_data state for it.
2319  * Otherwise, see if this CPU has just passed through its first
2320  * quiescent state for this grace period, and record that fact if so.
2321  */
2322 static void
2323 rcu_check_quiescent_state(struct rcu_data *rdp)
2324 {
2325 	/* Check for grace-period ends and beginnings. */
2326 	note_gp_changes(rdp);
2327 
2328 	/*
2329 	 * Does this CPU still need to do its part for current grace period?
2330 	 * If no, return and let the other CPUs do their part as well.
2331 	 */
2332 	if (!rdp->core_needs_qs)
2333 		return;
2334 
2335 	/*
2336 	 * Was there a quiescent state since the beginning of the grace
2337 	 * period? If no, then exit and wait for the next call.
2338 	 */
2339 	if (rdp->cpu_no_qs.b.norm)
2340 		return;
2341 
2342 	/*
2343 	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2344 	 * judge of that).
2345 	 */
2346 	rcu_report_qs_rdp(rdp->cpu, rdp);
2347 }
2348 
2349 /*
2350  * Near the end of the offline process.  Trace the fact that this CPU
2351  * is going offline.
2352  */
2353 int rcutree_dying_cpu(unsigned int cpu)
2354 {
2355 	RCU_TRACE(bool blkd;)
2356 	RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(&rcu_data);)
2357 	RCU_TRACE(struct rcu_node *rnp = rdp->mynode;)
2358 
2359 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2360 		return 0;
2361 
2362 	RCU_TRACE(blkd = !!(rnp->qsmask & rdp->grpmask);)
2363 	trace_rcu_grace_period(rcu_state.name, rnp->gp_seq,
2364 			       blkd ? TPS("cpuofl") : TPS("cpuofl-bgp"));
2365 	return 0;
2366 }
2367 
2368 /*
2369  * All CPUs for the specified rcu_node structure have gone offline,
2370  * and all tasks that were preempted within an RCU read-side critical
2371  * section while running on one of those CPUs have since exited their RCU
2372  * read-side critical section.  Some other CPU is reporting this fact with
2373  * the specified rcu_node structure's ->lock held and interrupts disabled.
2374  * This function therefore goes up the tree of rcu_node structures,
2375  * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
2376  * the leaf rcu_node structure's ->qsmaskinit field has already been
2377  * updated.
2378  *
2379  * This function does check that the specified rcu_node structure has
2380  * all CPUs offline and no blocked tasks, so it is OK to invoke it
2381  * prematurely.  That said, invoking it after the fact will cost you
2382  * a needless lock acquisition.  So once it has done its work, don't
2383  * invoke it again.
2384  */
2385 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2386 {
2387 	long mask;
2388 	struct rcu_node *rnp = rnp_leaf;
2389 
2390 	raw_lockdep_assert_held_rcu_node(rnp_leaf);
2391 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2392 	    WARN_ON_ONCE(rnp_leaf->qsmaskinit) ||
2393 	    WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf)))
2394 		return;
2395 	for (;;) {
2396 		mask = rnp->grpmask;
2397 		rnp = rnp->parent;
2398 		if (!rnp)
2399 			break;
2400 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2401 		rnp->qsmaskinit &= ~mask;
2402 		/* Between grace periods, so better already be zero! */
2403 		WARN_ON_ONCE(rnp->qsmask);
2404 		if (rnp->qsmaskinit) {
2405 			raw_spin_unlock_rcu_node(rnp);
2406 			/* irqs remain disabled. */
2407 			return;
2408 		}
2409 		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2410 	}
2411 }
2412 
2413 /*
2414  * The CPU has been completely removed, and some other CPU is reporting
2415  * this fact from process context.  Do the remainder of the cleanup.
2416  * There can only be one CPU hotplug operation at a time, so no need for
2417  * explicit locking.
2418  */
2419 int rcutree_dead_cpu(unsigned int cpu)
2420 {
2421 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2422 	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2423 
2424 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2425 		return 0;
2426 
2427 	/* Adjust any no-longer-needed kthreads. */
2428 	rcu_boost_kthread_setaffinity(rnp, -1);
2429 	/* Do any needed no-CB deferred wakeups from this CPU. */
2430 	do_nocb_deferred_wakeup(per_cpu_ptr(&rcu_data, cpu));
2431 	return 0;
2432 }
2433 
2434 /*
2435  * Invoke any RCU callbacks that have made it to the end of their grace
2436  * period.  Thottle as specified by rdp->blimit.
2437  */
2438 static void rcu_do_batch(struct rcu_data *rdp)
2439 {
2440 	unsigned long flags;
2441 	struct rcu_head *rhp;
2442 	struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2443 	long bl, count;
2444 
2445 	/* If no callbacks are ready, just return. */
2446 	if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2447 		trace_rcu_batch_start(rcu_state.name,
2448 				      rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2449 				      rcu_segcblist_n_cbs(&rdp->cblist), 0);
2450 		trace_rcu_batch_end(rcu_state.name, 0,
2451 				    !rcu_segcblist_empty(&rdp->cblist),
2452 				    need_resched(), is_idle_task(current),
2453 				    rcu_is_callbacks_kthread());
2454 		return;
2455 	}
2456 
2457 	/*
2458 	 * Extract the list of ready callbacks, disabling to prevent
2459 	 * races with call_rcu() from interrupt handlers.  Leave the
2460 	 * callback counts, as rcu_barrier() needs to be conservative.
2461 	 */
2462 	local_irq_save(flags);
2463 	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2464 	bl = rdp->blimit;
2465 	trace_rcu_batch_start(rcu_state.name,
2466 			      rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2467 			      rcu_segcblist_n_cbs(&rdp->cblist), bl);
2468 	rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
2469 	local_irq_restore(flags);
2470 
2471 	/* Invoke callbacks. */
2472 	rhp = rcu_cblist_dequeue(&rcl);
2473 	for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2474 		debug_rcu_head_unqueue(rhp);
2475 		if (__rcu_reclaim(rcu_state.name, rhp))
2476 			rcu_cblist_dequeued_lazy(&rcl);
2477 		/*
2478 		 * Stop only if limit reached and CPU has something to do.
2479 		 * Note: The rcl structure counts down from zero.
2480 		 */
2481 		if (-rcl.len >= bl &&
2482 		    (need_resched() ||
2483 		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2484 			break;
2485 	}
2486 
2487 	local_irq_save(flags);
2488 	count = -rcl.len;
2489 	trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(),
2490 			    is_idle_task(current), rcu_is_callbacks_kthread());
2491 
2492 	/* Update counts and requeue any remaining callbacks. */
2493 	rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
2494 	smp_mb(); /* List handling before counting for rcu_barrier(). */
2495 	rcu_segcblist_insert_count(&rdp->cblist, &rcl);
2496 
2497 	/* Reinstate batch limit if we have worked down the excess. */
2498 	count = rcu_segcblist_n_cbs(&rdp->cblist);
2499 	if (rdp->blimit == LONG_MAX && count <= qlowmark)
2500 		rdp->blimit = blimit;
2501 
2502 	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2503 	if (count == 0 && rdp->qlen_last_fqs_check != 0) {
2504 		rdp->qlen_last_fqs_check = 0;
2505 		rdp->n_force_qs_snap = rcu_state.n_force_qs;
2506 	} else if (count < rdp->qlen_last_fqs_check - qhimark)
2507 		rdp->qlen_last_fqs_check = count;
2508 
2509 	/*
2510 	 * The following usually indicates a double call_rcu().  To track
2511 	 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
2512 	 */
2513 	WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) != (count == 0));
2514 
2515 	local_irq_restore(flags);
2516 
2517 	/* Re-invoke RCU core processing if there are callbacks remaining. */
2518 	if (rcu_segcblist_ready_cbs(&rdp->cblist))
2519 		invoke_rcu_core();
2520 }
2521 
2522 /*
2523  * This function is invoked from each scheduling-clock interrupt,
2524  * and checks to see if this CPU is in a non-context-switch quiescent
2525  * state, for example, user mode or idle loop.  It also schedules RCU
2526  * core processing.  If the current grace period has gone on too long,
2527  * it will ask the scheduler to manufacture a context switch for the sole
2528  * purpose of providing a providing the needed quiescent state.
2529  */
2530 void rcu_sched_clock_irq(int user)
2531 {
2532 	trace_rcu_utilization(TPS("Start scheduler-tick"));
2533 	raw_cpu_inc(rcu_data.ticks_this_gp);
2534 	/* The load-acquire pairs with the store-release setting to true. */
2535 	if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
2536 		/* Idle and userspace execution already are quiescent states. */
2537 		if (!rcu_is_cpu_rrupt_from_idle() && !user) {
2538 			set_tsk_need_resched(current);
2539 			set_preempt_need_resched();
2540 		}
2541 		__this_cpu_write(rcu_data.rcu_urgent_qs, false);
2542 	}
2543 	rcu_flavor_sched_clock_irq(user);
2544 	if (rcu_pending())
2545 		invoke_rcu_core();
2546 
2547 	trace_rcu_utilization(TPS("End scheduler-tick"));
2548 }
2549 
2550 /*
2551  * Scan the leaf rcu_node structures, processing dyntick state for any that
2552  * have not yet encountered a quiescent state, using the function specified.
2553  * Also initiate boosting for any threads blocked on the root rcu_node.
2554  *
2555  * The caller must have suppressed start of new grace periods.
2556  */
2557 static void force_qs_rnp(int (*f)(struct rcu_data *rdp))
2558 {
2559 	int cpu;
2560 	unsigned long flags;
2561 	unsigned long mask;
2562 	struct rcu_node *rnp;
2563 
2564 	rcu_for_each_leaf_node(rnp) {
2565 		cond_resched_tasks_rcu_qs();
2566 		mask = 0;
2567 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2568 		if (rnp->qsmask == 0) {
2569 			if (!IS_ENABLED(CONFIG_PREEMPT) ||
2570 			    rcu_preempt_blocked_readers_cgp(rnp)) {
2571 				/*
2572 				 * No point in scanning bits because they
2573 				 * are all zero.  But we might need to
2574 				 * priority-boost blocked readers.
2575 				 */
2576 				rcu_initiate_boost(rnp, flags);
2577 				/* rcu_initiate_boost() releases rnp->lock */
2578 				continue;
2579 			}
2580 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2581 			continue;
2582 		}
2583 		for_each_leaf_node_possible_cpu(rnp, cpu) {
2584 			unsigned long bit = leaf_node_cpu_bit(rnp, cpu);
2585 			if ((rnp->qsmask & bit) != 0) {
2586 				if (f(per_cpu_ptr(&rcu_data, cpu)))
2587 					mask |= bit;
2588 			}
2589 		}
2590 		if (mask != 0) {
2591 			/* Idle/offline CPUs, report (releases rnp->lock). */
2592 			rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2593 		} else {
2594 			/* Nothing to do here, so just drop the lock. */
2595 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2596 		}
2597 	}
2598 }
2599 
2600 /*
2601  * Force quiescent states on reluctant CPUs, and also detect which
2602  * CPUs are in dyntick-idle mode.
2603  */
2604 void rcu_force_quiescent_state(void)
2605 {
2606 	unsigned long flags;
2607 	bool ret;
2608 	struct rcu_node *rnp;
2609 	struct rcu_node *rnp_old = NULL;
2610 
2611 	/* Funnel through hierarchy to reduce memory contention. */
2612 	rnp = __this_cpu_read(rcu_data.mynode);
2613 	for (; rnp != NULL; rnp = rnp->parent) {
2614 		ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) ||
2615 		      !raw_spin_trylock(&rnp->fqslock);
2616 		if (rnp_old != NULL)
2617 			raw_spin_unlock(&rnp_old->fqslock);
2618 		if (ret)
2619 			return;
2620 		rnp_old = rnp;
2621 	}
2622 	/* rnp_old == rcu_get_root(), rnp == NULL. */
2623 
2624 	/* Reached the root of the rcu_node tree, acquire lock. */
2625 	raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2626 	raw_spin_unlock(&rnp_old->fqslock);
2627 	if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
2628 		raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2629 		return;  /* Someone beat us to it. */
2630 	}
2631 	WRITE_ONCE(rcu_state.gp_flags,
2632 		   READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
2633 	raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2634 	rcu_gp_kthread_wake();
2635 }
2636 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
2637 
2638 /*
2639  * This function checks for grace-period requests that fail to motivate
2640  * RCU to come out of its idle mode.
2641  */
2642 void
2643 rcu_check_gp_start_stall(struct rcu_node *rnp, struct rcu_data *rdp,
2644 			 const unsigned long gpssdelay)
2645 {
2646 	unsigned long flags;
2647 	unsigned long j;
2648 	struct rcu_node *rnp_root = rcu_get_root();
2649 	static atomic_t warned = ATOMIC_INIT(0);
2650 
2651 	if (!IS_ENABLED(CONFIG_PROVE_RCU) || rcu_gp_in_progress() ||
2652 	    ULONG_CMP_GE(rnp_root->gp_seq, rnp_root->gp_seq_needed))
2653 		return;
2654 	j = jiffies; /* Expensive access, and in common case don't get here. */
2655 	if (time_before(j, READ_ONCE(rcu_state.gp_req_activity) + gpssdelay) ||
2656 	    time_before(j, READ_ONCE(rcu_state.gp_activity) + gpssdelay) ||
2657 	    atomic_read(&warned))
2658 		return;
2659 
2660 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
2661 	j = jiffies;
2662 	if (rcu_gp_in_progress() ||
2663 	    ULONG_CMP_GE(rnp_root->gp_seq, rnp_root->gp_seq_needed) ||
2664 	    time_before(j, READ_ONCE(rcu_state.gp_req_activity) + gpssdelay) ||
2665 	    time_before(j, READ_ONCE(rcu_state.gp_activity) + gpssdelay) ||
2666 	    atomic_read(&warned)) {
2667 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2668 		return;
2669 	}
2670 	/* Hold onto the leaf lock to make others see warned==1. */
2671 
2672 	if (rnp_root != rnp)
2673 		raw_spin_lock_rcu_node(rnp_root); /* irqs already disabled. */
2674 	j = jiffies;
2675 	if (rcu_gp_in_progress() ||
2676 	    ULONG_CMP_GE(rnp_root->gp_seq, rnp_root->gp_seq_needed) ||
2677 	    time_before(j, rcu_state.gp_req_activity + gpssdelay) ||
2678 	    time_before(j, rcu_state.gp_activity + gpssdelay) ||
2679 	    atomic_xchg(&warned, 1)) {
2680 		raw_spin_unlock_rcu_node(rnp_root); /* irqs remain disabled. */
2681 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2682 		return;
2683 	}
2684 	WARN_ON(1);
2685 	if (rnp_root != rnp)
2686 		raw_spin_unlock_rcu_node(rnp_root);
2687 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2688 	show_rcu_gp_kthreads();
2689 }
2690 
2691 /*
2692  * Do a forward-progress check for rcutorture.  This is normally invoked
2693  * due to an OOM event.  The argument "j" gives the time period during
2694  * which rcutorture would like progress to have been made.
2695  */
2696 void rcu_fwd_progress_check(unsigned long j)
2697 {
2698 	unsigned long cbs;
2699 	int cpu;
2700 	unsigned long max_cbs = 0;
2701 	int max_cpu = -1;
2702 	struct rcu_data *rdp;
2703 
2704 	if (rcu_gp_in_progress()) {
2705 		pr_info("%s: GP age %lu jiffies\n",
2706 			__func__, jiffies - rcu_state.gp_start);
2707 		show_rcu_gp_kthreads();
2708 	} else {
2709 		pr_info("%s: Last GP end %lu jiffies ago\n",
2710 			__func__, jiffies - rcu_state.gp_end);
2711 		preempt_disable();
2712 		rdp = this_cpu_ptr(&rcu_data);
2713 		rcu_check_gp_start_stall(rdp->mynode, rdp, j);
2714 		preempt_enable();
2715 	}
2716 	for_each_possible_cpu(cpu) {
2717 		cbs = rcu_get_n_cbs_cpu(cpu);
2718 		if (!cbs)
2719 			continue;
2720 		if (max_cpu < 0)
2721 			pr_info("%s: callbacks", __func__);
2722 		pr_cont(" %d: %lu", cpu, cbs);
2723 		if (cbs <= max_cbs)
2724 			continue;
2725 		max_cbs = cbs;
2726 		max_cpu = cpu;
2727 	}
2728 	if (max_cpu >= 0)
2729 		pr_cont("\n");
2730 }
2731 EXPORT_SYMBOL_GPL(rcu_fwd_progress_check);
2732 
2733 /* Perform RCU core processing work for the current CPU.  */
2734 static __latent_entropy void rcu_core(struct softirq_action *unused)
2735 {
2736 	unsigned long flags;
2737 	struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
2738 	struct rcu_node *rnp = rdp->mynode;
2739 
2740 	if (cpu_is_offline(smp_processor_id()))
2741 		return;
2742 	trace_rcu_utilization(TPS("Start RCU core"));
2743 	WARN_ON_ONCE(!rdp->beenonline);
2744 
2745 	/* Report any deferred quiescent states if preemption enabled. */
2746 	if (!(preempt_count() & PREEMPT_MASK)) {
2747 		rcu_preempt_deferred_qs(current);
2748 	} else if (rcu_preempt_need_deferred_qs(current)) {
2749 		set_tsk_need_resched(current);
2750 		set_preempt_need_resched();
2751 	}
2752 
2753 	/* Update RCU state based on any recent quiescent states. */
2754 	rcu_check_quiescent_state(rdp);
2755 
2756 	/* No grace period and unregistered callbacks? */
2757 	if (!rcu_gp_in_progress() &&
2758 	    rcu_segcblist_is_enabled(&rdp->cblist)) {
2759 		local_irq_save(flags);
2760 		if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
2761 			rcu_accelerate_cbs_unlocked(rnp, rdp);
2762 		local_irq_restore(flags);
2763 	}
2764 
2765 	rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check());
2766 
2767 	/* If there are callbacks ready, invoke them. */
2768 	if (rcu_segcblist_ready_cbs(&rdp->cblist))
2769 		invoke_rcu_callbacks(rdp);
2770 
2771 	/* Do any needed deferred wakeups of rcuo kthreads. */
2772 	do_nocb_deferred_wakeup(rdp);
2773 	trace_rcu_utilization(TPS("End RCU core"));
2774 }
2775 
2776 /*
2777  * Schedule RCU callback invocation.  If the running implementation of RCU
2778  * does not support RCU priority boosting, just do a direct call, otherwise
2779  * wake up the per-CPU kernel kthread.  Note that because we are running
2780  * on the current CPU with softirqs disabled, the rcu_cpu_kthread_task
2781  * cannot disappear out from under us.
2782  */
2783 static void invoke_rcu_callbacks(struct rcu_data *rdp)
2784 {
2785 	if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
2786 		return;
2787 	if (likely(!rcu_state.boost)) {
2788 		rcu_do_batch(rdp);
2789 		return;
2790 	}
2791 	invoke_rcu_callbacks_kthread();
2792 }
2793 
2794 static void invoke_rcu_core(void)
2795 {
2796 	if (cpu_online(smp_processor_id()))
2797 		raise_softirq(RCU_SOFTIRQ);
2798 }
2799 
2800 /*
2801  * Handle any core-RCU processing required by a call_rcu() invocation.
2802  */
2803 static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head,
2804 			    unsigned long flags)
2805 {
2806 	/*
2807 	 * If called from an extended quiescent state, invoke the RCU
2808 	 * core in order to force a re-evaluation of RCU's idleness.
2809 	 */
2810 	if (!rcu_is_watching())
2811 		invoke_rcu_core();
2812 
2813 	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2814 	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2815 		return;
2816 
2817 	/*
2818 	 * Force the grace period if too many callbacks or too long waiting.
2819 	 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state()
2820 	 * if some other CPU has recently done so.  Also, don't bother
2821 	 * invoking rcu_force_quiescent_state() if the newly enqueued callback
2822 	 * is the only one waiting for a grace period to complete.
2823 	 */
2824 	if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2825 		     rdp->qlen_last_fqs_check + qhimark)) {
2826 
2827 		/* Are we ignoring a completed grace period? */
2828 		note_gp_changes(rdp);
2829 
2830 		/* Start a new grace period if one not already started. */
2831 		if (!rcu_gp_in_progress()) {
2832 			rcu_accelerate_cbs_unlocked(rdp->mynode, rdp);
2833 		} else {
2834 			/* Give the grace period a kick. */
2835 			rdp->blimit = LONG_MAX;
2836 			if (rcu_state.n_force_qs == rdp->n_force_qs_snap &&
2837 			    rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
2838 				rcu_force_quiescent_state();
2839 			rdp->n_force_qs_snap = rcu_state.n_force_qs;
2840 			rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2841 		}
2842 	}
2843 }
2844 
2845 /*
2846  * RCU callback function to leak a callback.
2847  */
2848 static void rcu_leak_callback(struct rcu_head *rhp)
2849 {
2850 }
2851 
2852 /*
2853  * Helper function for call_rcu() and friends.  The cpu argument will
2854  * normally be -1, indicating "currently running CPU".  It may specify
2855  * a CPU only if that CPU is a no-CBs CPU.  Currently, only rcu_barrier()
2856  * is expected to specify a CPU.
2857  */
2858 static void
2859 __call_rcu(struct rcu_head *head, rcu_callback_t func, int cpu, bool lazy)
2860 {
2861 	unsigned long flags;
2862 	struct rcu_data *rdp;
2863 
2864 	/* Misaligned rcu_head! */
2865 	WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
2866 
2867 	if (debug_rcu_head_queue(head)) {
2868 		/*
2869 		 * Probable double call_rcu(), so leak the callback.
2870 		 * Use rcu:rcu_callback trace event to find the previous
2871 		 * time callback was passed to __call_rcu().
2872 		 */
2873 		WARN_ONCE(1, "__call_rcu(): Double-freed CB %p->%pF()!!!\n",
2874 			  head, head->func);
2875 		WRITE_ONCE(head->func, rcu_leak_callback);
2876 		return;
2877 	}
2878 	head->func = func;
2879 	head->next = NULL;
2880 	local_irq_save(flags);
2881 	rdp = this_cpu_ptr(&rcu_data);
2882 
2883 	/* Add the callback to our list. */
2884 	if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist)) || cpu != -1) {
2885 		int offline;
2886 
2887 		if (cpu != -1)
2888 			rdp = per_cpu_ptr(&rcu_data, cpu);
2889 		if (likely(rdp->mynode)) {
2890 			/* Post-boot, so this should be for a no-CBs CPU. */
2891 			offline = !__call_rcu_nocb(rdp, head, lazy, flags);
2892 			WARN_ON_ONCE(offline);
2893 			/* Offline CPU, _call_rcu() illegal, leak callback.  */
2894 			local_irq_restore(flags);
2895 			return;
2896 		}
2897 		/*
2898 		 * Very early boot, before rcu_init().  Initialize if needed
2899 		 * and then drop through to queue the callback.
2900 		 */
2901 		WARN_ON_ONCE(cpu != -1);
2902 		WARN_ON_ONCE(!rcu_is_watching());
2903 		if (rcu_segcblist_empty(&rdp->cblist))
2904 			rcu_segcblist_init(&rdp->cblist);
2905 	}
2906 	rcu_segcblist_enqueue(&rdp->cblist, head, lazy);
2907 	if (__is_kfree_rcu_offset((unsigned long)func))
2908 		trace_rcu_kfree_callback(rcu_state.name, head,
2909 					 (unsigned long)func,
2910 					 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2911 					 rcu_segcblist_n_cbs(&rdp->cblist));
2912 	else
2913 		trace_rcu_callback(rcu_state.name, head,
2914 				   rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2915 				   rcu_segcblist_n_cbs(&rdp->cblist));
2916 
2917 	/* Go handle any RCU core processing required. */
2918 	__call_rcu_core(rdp, head, flags);
2919 	local_irq_restore(flags);
2920 }
2921 
2922 /**
2923  * call_rcu() - Queue an RCU callback for invocation after a grace period.
2924  * @head: structure to be used for queueing the RCU updates.
2925  * @func: actual callback function to be invoked after the grace period
2926  *
2927  * The callback function will be invoked some time after a full grace
2928  * period elapses, in other words after all pre-existing RCU read-side
2929  * critical sections have completed.  However, the callback function
2930  * might well execute concurrently with RCU read-side critical sections
2931  * that started after call_rcu() was invoked.  RCU read-side critical
2932  * sections are delimited by rcu_read_lock() and rcu_read_unlock(), and
2933  * may be nested.  In addition, regions of code across which interrupts,
2934  * preemption, or softirqs have been disabled also serve as RCU read-side
2935  * critical sections.  This includes hardware interrupt handlers, softirq
2936  * handlers, and NMI handlers.
2937  *
2938  * Note that all CPUs must agree that the grace period extended beyond
2939  * all pre-existing RCU read-side critical section.  On systems with more
2940  * than one CPU, this means that when "func()" is invoked, each CPU is
2941  * guaranteed to have executed a full memory barrier since the end of its
2942  * last RCU read-side critical section whose beginning preceded the call
2943  * to call_rcu().  It also means that each CPU executing an RCU read-side
2944  * critical section that continues beyond the start of "func()" must have
2945  * executed a memory barrier after the call_rcu() but before the beginning
2946  * of that RCU read-side critical section.  Note that these guarantees
2947  * include CPUs that are offline, idle, or executing in user mode, as
2948  * well as CPUs that are executing in the kernel.
2949  *
2950  * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
2951  * resulting RCU callback function "func()", then both CPU A and CPU B are
2952  * guaranteed to execute a full memory barrier during the time interval
2953  * between the call to call_rcu() and the invocation of "func()" -- even
2954  * if CPU A and CPU B are the same CPU (but again only if the system has
2955  * more than one CPU).
2956  */
2957 void call_rcu(struct rcu_head *head, rcu_callback_t func)
2958 {
2959 	__call_rcu(head, func, -1, 0);
2960 }
2961 EXPORT_SYMBOL_GPL(call_rcu);
2962 
2963 /*
2964  * Queue an RCU callback for lazy invocation after a grace period.
2965  * This will likely be later named something like "call_rcu_lazy()",
2966  * but this change will require some way of tagging the lazy RCU
2967  * callbacks in the list of pending callbacks. Until then, this
2968  * function may only be called from __kfree_rcu().
2969  */
2970 void kfree_call_rcu(struct rcu_head *head, rcu_callback_t func)
2971 {
2972 	__call_rcu(head, func, -1, 1);
2973 }
2974 EXPORT_SYMBOL_GPL(kfree_call_rcu);
2975 
2976 /*
2977  * During early boot, any blocking grace-period wait automatically
2978  * implies a grace period.  Later on, this is never the case for PREEMPT.
2979  *
2980  * Howevr, because a context switch is a grace period for !PREEMPT, any
2981  * blocking grace-period wait automatically implies a grace period if
2982  * there is only one CPU online at any point time during execution of
2983  * either synchronize_rcu() or synchronize_rcu_expedited().  It is OK to
2984  * occasionally incorrectly indicate that there are multiple CPUs online
2985  * when there was in fact only one the whole time, as this just adds some
2986  * overhead: RCU still operates correctly.
2987  */
2988 static int rcu_blocking_is_gp(void)
2989 {
2990 	int ret;
2991 
2992 	if (IS_ENABLED(CONFIG_PREEMPT))
2993 		return rcu_scheduler_active == RCU_SCHEDULER_INACTIVE;
2994 	might_sleep();  /* Check for RCU read-side critical section. */
2995 	preempt_disable();
2996 	ret = num_online_cpus() <= 1;
2997 	preempt_enable();
2998 	return ret;
2999 }
3000 
3001 /**
3002  * synchronize_rcu - wait until a grace period has elapsed.
3003  *
3004  * Control will return to the caller some time after a full grace
3005  * period has elapsed, in other words after all currently executing RCU
3006  * read-side critical sections have completed.  Note, however, that
3007  * upon return from synchronize_rcu(), the caller might well be executing
3008  * concurrently with new RCU read-side critical sections that began while
3009  * synchronize_rcu() was waiting.  RCU read-side critical sections are
3010  * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
3011  * In addition, regions of code across which interrupts, preemption, or
3012  * softirqs have been disabled also serve as RCU read-side critical
3013  * sections.  This includes hardware interrupt handlers, softirq handlers,
3014  * and NMI handlers.
3015  *
3016  * Note that this guarantee implies further memory-ordering guarantees.
3017  * On systems with more than one CPU, when synchronize_rcu() returns,
3018  * each CPU is guaranteed to have executed a full memory barrier since
3019  * the end of its last RCU read-side critical section whose beginning
3020  * preceded the call to synchronize_rcu().  In addition, each CPU having
3021  * an RCU read-side critical section that extends beyond the return from
3022  * synchronize_rcu() is guaranteed to have executed a full memory barrier
3023  * after the beginning of synchronize_rcu() and before the beginning of
3024  * that RCU read-side critical section.  Note that these guarantees include
3025  * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3026  * that are executing in the kernel.
3027  *
3028  * Furthermore, if CPU A invoked synchronize_rcu(), which returned
3029  * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3030  * to have executed a full memory barrier during the execution of
3031  * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but
3032  * again only if the system has more than one CPU).
3033  */
3034 void synchronize_rcu(void)
3035 {
3036 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3037 			 lock_is_held(&rcu_lock_map) ||
3038 			 lock_is_held(&rcu_sched_lock_map),
3039 			 "Illegal synchronize_rcu() in RCU read-side critical section");
3040 	if (rcu_blocking_is_gp())
3041 		return;
3042 	if (rcu_gp_is_expedited())
3043 		synchronize_rcu_expedited();
3044 	else
3045 		wait_rcu_gp(call_rcu);
3046 }
3047 EXPORT_SYMBOL_GPL(synchronize_rcu);
3048 
3049 /**
3050  * get_state_synchronize_rcu - Snapshot current RCU state
3051  *
3052  * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3053  * to determine whether or not a full grace period has elapsed in the
3054  * meantime.
3055  */
3056 unsigned long get_state_synchronize_rcu(void)
3057 {
3058 	/*
3059 	 * Any prior manipulation of RCU-protected data must happen
3060 	 * before the load from ->gp_seq.
3061 	 */
3062 	smp_mb();  /* ^^^ */
3063 	return rcu_seq_snap(&rcu_state.gp_seq);
3064 }
3065 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3066 
3067 /**
3068  * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3069  *
3070  * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3071  *
3072  * If a full RCU grace period has elapsed since the earlier call to
3073  * get_state_synchronize_rcu(), just return.  Otherwise, invoke
3074  * synchronize_rcu() to wait for a full grace period.
3075  *
3076  * Yes, this function does not take counter wrap into account.  But
3077  * counter wrap is harmless.  If the counter wraps, we have waited for
3078  * more than 2 billion grace periods (and way more on a 64-bit system!),
3079  * so waiting for one additional grace period should be just fine.
3080  */
3081 void cond_synchronize_rcu(unsigned long oldstate)
3082 {
3083 	if (!rcu_seq_done(&rcu_state.gp_seq, oldstate))
3084 		synchronize_rcu();
3085 	else
3086 		smp_mb(); /* Ensure GP ends before subsequent accesses. */
3087 }
3088 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3089 
3090 /*
3091  * Check to see if there is any immediate RCU-related work to be done by
3092  * the current CPU, returning 1 if so and zero otherwise.  The checks are
3093  * in order of increasing expense: checks that can be carried out against
3094  * CPU-local state are performed first.  However, we must check for CPU
3095  * stalls first, else we might not get a chance.
3096  */
3097 static int rcu_pending(void)
3098 {
3099 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
3100 	struct rcu_node *rnp = rdp->mynode;
3101 
3102 	/* Check for CPU stalls, if enabled. */
3103 	check_cpu_stall(rdp);
3104 
3105 	/* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3106 	if (rcu_nohz_full_cpu())
3107 		return 0;
3108 
3109 	/* Is the RCU core waiting for a quiescent state from this CPU? */
3110 	if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm)
3111 		return 1;
3112 
3113 	/* Does this CPU have callbacks ready to invoke? */
3114 	if (rcu_segcblist_ready_cbs(&rdp->cblist))
3115 		return 1;
3116 
3117 	/* Has RCU gone idle with this CPU needing another grace period? */
3118 	if (!rcu_gp_in_progress() &&
3119 	    rcu_segcblist_is_enabled(&rdp->cblist) &&
3120 	    !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
3121 		return 1;
3122 
3123 	/* Have RCU grace period completed or started?  */
3124 	if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq ||
3125 	    unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */
3126 		return 1;
3127 
3128 	/* Does this CPU need a deferred NOCB wakeup? */
3129 	if (rcu_nocb_need_deferred_wakeup(rdp))
3130 		return 1;
3131 
3132 	/* nothing to do */
3133 	return 0;
3134 }
3135 
3136 /*
3137  * Helper function for rcu_barrier() tracing.  If tracing is disabled,
3138  * the compiler is expected to optimize this away.
3139  */
3140 static void rcu_barrier_trace(const char *s, int cpu, unsigned long done)
3141 {
3142 	trace_rcu_barrier(rcu_state.name, s, cpu,
3143 			  atomic_read(&rcu_state.barrier_cpu_count), done);
3144 }
3145 
3146 /*
3147  * RCU callback function for rcu_barrier().  If we are last, wake
3148  * up the task executing rcu_barrier().
3149  */
3150 static void rcu_barrier_callback(struct rcu_head *rhp)
3151 {
3152 	if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) {
3153 		rcu_barrier_trace(TPS("LastCB"), -1,
3154 				   rcu_state.barrier_sequence);
3155 		complete(&rcu_state.barrier_completion);
3156 	} else {
3157 		rcu_barrier_trace(TPS("CB"), -1, rcu_state.barrier_sequence);
3158 	}
3159 }
3160 
3161 /*
3162  * Called with preemption disabled, and from cross-cpu IRQ context.
3163  */
3164 static void rcu_barrier_func(void *unused)
3165 {
3166 	struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
3167 
3168 	rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence);
3169 	rdp->barrier_head.func = rcu_barrier_callback;
3170 	debug_rcu_head_queue(&rdp->barrier_head);
3171 	if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head, 0)) {
3172 		atomic_inc(&rcu_state.barrier_cpu_count);
3173 	} else {
3174 		debug_rcu_head_unqueue(&rdp->barrier_head);
3175 		rcu_barrier_trace(TPS("IRQNQ"), -1,
3176 				   rcu_state.barrier_sequence);
3177 	}
3178 }
3179 
3180 /**
3181  * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
3182  *
3183  * Note that this primitive does not necessarily wait for an RCU grace period
3184  * to complete.  For example, if there are no RCU callbacks queued anywhere
3185  * in the system, then rcu_barrier() is within its rights to return
3186  * immediately, without waiting for anything, much less an RCU grace period.
3187  */
3188 void rcu_barrier(void)
3189 {
3190 	int cpu;
3191 	struct rcu_data *rdp;
3192 	unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence);
3193 
3194 	rcu_barrier_trace(TPS("Begin"), -1, s);
3195 
3196 	/* Take mutex to serialize concurrent rcu_barrier() requests. */
3197 	mutex_lock(&rcu_state.barrier_mutex);
3198 
3199 	/* Did someone else do our work for us? */
3200 	if (rcu_seq_done(&rcu_state.barrier_sequence, s)) {
3201 		rcu_barrier_trace(TPS("EarlyExit"), -1,
3202 				   rcu_state.barrier_sequence);
3203 		smp_mb(); /* caller's subsequent code after above check. */
3204 		mutex_unlock(&rcu_state.barrier_mutex);
3205 		return;
3206 	}
3207 
3208 	/* Mark the start of the barrier operation. */
3209 	rcu_seq_start(&rcu_state.barrier_sequence);
3210 	rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence);
3211 
3212 	/*
3213 	 * Initialize the count to one rather than to zero in order to
3214 	 * avoid a too-soon return to zero in case of a short grace period
3215 	 * (or preemption of this task).  Exclude CPU-hotplug operations
3216 	 * to ensure that no offline CPU has callbacks queued.
3217 	 */
3218 	init_completion(&rcu_state.barrier_completion);
3219 	atomic_set(&rcu_state.barrier_cpu_count, 1);
3220 	get_online_cpus();
3221 
3222 	/*
3223 	 * Force each CPU with callbacks to register a new callback.
3224 	 * When that callback is invoked, we will know that all of the
3225 	 * corresponding CPU's preceding callbacks have been invoked.
3226 	 */
3227 	for_each_possible_cpu(cpu) {
3228 		if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3229 			continue;
3230 		rdp = per_cpu_ptr(&rcu_data, cpu);
3231 		if (rcu_is_nocb_cpu(cpu)) {
3232 			if (!rcu_nocb_cpu_needs_barrier(cpu)) {
3233 				rcu_barrier_trace(TPS("OfflineNoCB"), cpu,
3234 						   rcu_state.barrier_sequence);
3235 			} else {
3236 				rcu_barrier_trace(TPS("OnlineNoCB"), cpu,
3237 						   rcu_state.barrier_sequence);
3238 				smp_mb__before_atomic();
3239 				atomic_inc(&rcu_state.barrier_cpu_count);
3240 				__call_rcu(&rdp->barrier_head,
3241 					   rcu_barrier_callback, cpu, 0);
3242 			}
3243 		} else if (rcu_segcblist_n_cbs(&rdp->cblist)) {
3244 			rcu_barrier_trace(TPS("OnlineQ"), cpu,
3245 					   rcu_state.barrier_sequence);
3246 			smp_call_function_single(cpu, rcu_barrier_func, NULL, 1);
3247 		} else {
3248 			rcu_barrier_trace(TPS("OnlineNQ"), cpu,
3249 					   rcu_state.barrier_sequence);
3250 		}
3251 	}
3252 	put_online_cpus();
3253 
3254 	/*
3255 	 * Now that we have an rcu_barrier_callback() callback on each
3256 	 * CPU, and thus each counted, remove the initial count.
3257 	 */
3258 	if (atomic_dec_and_test(&rcu_state.barrier_cpu_count))
3259 		complete(&rcu_state.barrier_completion);
3260 
3261 	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3262 	wait_for_completion(&rcu_state.barrier_completion);
3263 
3264 	/* Mark the end of the barrier operation. */
3265 	rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence);
3266 	rcu_seq_end(&rcu_state.barrier_sequence);
3267 
3268 	/* Other rcu_barrier() invocations can now safely proceed. */
3269 	mutex_unlock(&rcu_state.barrier_mutex);
3270 }
3271 EXPORT_SYMBOL_GPL(rcu_barrier);
3272 
3273 /*
3274  * Propagate ->qsinitmask bits up the rcu_node tree to account for the
3275  * first CPU in a given leaf rcu_node structure coming online.  The caller
3276  * must hold the corresponding leaf rcu_node ->lock with interrrupts
3277  * disabled.
3278  */
3279 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
3280 {
3281 	long mask;
3282 	long oldmask;
3283 	struct rcu_node *rnp = rnp_leaf;
3284 
3285 	raw_lockdep_assert_held_rcu_node(rnp_leaf);
3286 	WARN_ON_ONCE(rnp->wait_blkd_tasks);
3287 	for (;;) {
3288 		mask = rnp->grpmask;
3289 		rnp = rnp->parent;
3290 		if (rnp == NULL)
3291 			return;
3292 		raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
3293 		oldmask = rnp->qsmaskinit;
3294 		rnp->qsmaskinit |= mask;
3295 		raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
3296 		if (oldmask)
3297 			return;
3298 	}
3299 }
3300 
3301 /*
3302  * Do boot-time initialization of a CPU's per-CPU RCU data.
3303  */
3304 static void __init
3305 rcu_boot_init_percpu_data(int cpu)
3306 {
3307 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3308 
3309 	/* Set up local state, ensuring consistent view of global state. */
3310 	rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
3311 	WARN_ON_ONCE(rdp->dynticks_nesting != 1);
3312 	WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp)));
3313 	rdp->rcu_ofl_gp_seq = rcu_state.gp_seq;
3314 	rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED;
3315 	rdp->rcu_onl_gp_seq = rcu_state.gp_seq;
3316 	rdp->rcu_onl_gp_flags = RCU_GP_CLEANED;
3317 	rdp->cpu = cpu;
3318 	rcu_boot_init_nocb_percpu_data(rdp);
3319 }
3320 
3321 /*
3322  * Invoked early in the CPU-online process, when pretty much all services
3323  * are available.  The incoming CPU is not present.
3324  *
3325  * Initializes a CPU's per-CPU RCU data.  Note that only one online or
3326  * offline event can be happening at a given time.  Note also that we can
3327  * accept some slop in the rsp->gp_seq access due to the fact that this
3328  * CPU cannot possibly have any RCU callbacks in flight yet.
3329  */
3330 int rcutree_prepare_cpu(unsigned int cpu)
3331 {
3332 	unsigned long flags;
3333 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3334 	struct rcu_node *rnp = rcu_get_root();
3335 
3336 	/* Set up local state, ensuring consistent view of global state. */
3337 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3338 	rdp->qlen_last_fqs_check = 0;
3339 	rdp->n_force_qs_snap = rcu_state.n_force_qs;
3340 	rdp->blimit = blimit;
3341 	if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */
3342 	    !init_nocb_callback_list(rdp))
3343 		rcu_segcblist_init(&rdp->cblist);  /* Re-enable callbacks. */
3344 	rdp->dynticks_nesting = 1;	/* CPU not up, no tearing. */
3345 	rcu_dynticks_eqs_online();
3346 	raw_spin_unlock_rcu_node(rnp);		/* irqs remain disabled. */
3347 
3348 	/*
3349 	 * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
3350 	 * propagation up the rcu_node tree will happen at the beginning
3351 	 * of the next grace period.
3352 	 */
3353 	rnp = rdp->mynode;
3354 	raw_spin_lock_rcu_node(rnp);		/* irqs already disabled. */
3355 	rdp->beenonline = true;	 /* We have now been online. */
3356 	rdp->gp_seq = rnp->gp_seq;
3357 	rdp->gp_seq_needed = rnp->gp_seq;
3358 	rdp->cpu_no_qs.b.norm = true;
3359 	rdp->core_needs_qs = false;
3360 	rdp->rcu_iw_pending = false;
3361 	rdp->rcu_iw_gp_seq = rnp->gp_seq - 1;
3362 	trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl"));
3363 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3364 	rcu_prepare_kthreads(cpu);
3365 	rcu_spawn_cpu_nocb_kthread(cpu);
3366 
3367 	return 0;
3368 }
3369 
3370 /*
3371  * Update RCU priority boot kthread affinity for CPU-hotplug changes.
3372  */
3373 static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
3374 {
3375 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3376 
3377 	rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
3378 }
3379 
3380 /*
3381  * Near the end of the CPU-online process.  Pretty much all services
3382  * enabled, and the CPU is now very much alive.
3383  */
3384 int rcutree_online_cpu(unsigned int cpu)
3385 {
3386 	unsigned long flags;
3387 	struct rcu_data *rdp;
3388 	struct rcu_node *rnp;
3389 
3390 	rdp = per_cpu_ptr(&rcu_data, cpu);
3391 	rnp = rdp->mynode;
3392 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3393 	rnp->ffmask |= rdp->grpmask;
3394 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3395 	if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
3396 		return 0; /* Too early in boot for scheduler work. */
3397 	sync_sched_exp_online_cleanup(cpu);
3398 	rcutree_affinity_setting(cpu, -1);
3399 	return 0;
3400 }
3401 
3402 /*
3403  * Near the beginning of the process.  The CPU is still very much alive
3404  * with pretty much all services enabled.
3405  */
3406 int rcutree_offline_cpu(unsigned int cpu)
3407 {
3408 	unsigned long flags;
3409 	struct rcu_data *rdp;
3410 	struct rcu_node *rnp;
3411 
3412 	rdp = per_cpu_ptr(&rcu_data, cpu);
3413 	rnp = rdp->mynode;
3414 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3415 	rnp->ffmask &= ~rdp->grpmask;
3416 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3417 
3418 	rcutree_affinity_setting(cpu, cpu);
3419 	return 0;
3420 }
3421 
3422 static DEFINE_PER_CPU(int, rcu_cpu_started);
3423 
3424 /*
3425  * Mark the specified CPU as being online so that subsequent grace periods
3426  * (both expedited and normal) will wait on it.  Note that this means that
3427  * incoming CPUs are not allowed to use RCU read-side critical sections
3428  * until this function is called.  Failing to observe this restriction
3429  * will result in lockdep splats.
3430  *
3431  * Note that this function is special in that it is invoked directly
3432  * from the incoming CPU rather than from the cpuhp_step mechanism.
3433  * This is because this function must be invoked at a precise location.
3434  */
3435 void rcu_cpu_starting(unsigned int cpu)
3436 {
3437 	unsigned long flags;
3438 	unsigned long mask;
3439 	int nbits;
3440 	unsigned long oldmask;
3441 	struct rcu_data *rdp;
3442 	struct rcu_node *rnp;
3443 
3444 	if (per_cpu(rcu_cpu_started, cpu))
3445 		return;
3446 
3447 	per_cpu(rcu_cpu_started, cpu) = 1;
3448 
3449 	rdp = per_cpu_ptr(&rcu_data, cpu);
3450 	rnp = rdp->mynode;
3451 	mask = rdp->grpmask;
3452 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3453 	rnp->qsmaskinitnext |= mask;
3454 	oldmask = rnp->expmaskinitnext;
3455 	rnp->expmaskinitnext |= mask;
3456 	oldmask ^= rnp->expmaskinitnext;
3457 	nbits = bitmap_weight(&oldmask, BITS_PER_LONG);
3458 	/* Allow lockless access for expedited grace periods. */
3459 	smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + nbits); /* ^^^ */
3460 	rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */
3461 	rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq);
3462 	rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags);
3463 	if (rnp->qsmask & mask) { /* RCU waiting on incoming CPU? */
3464 		/* Report QS -after- changing ->qsmaskinitnext! */
3465 		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
3466 	} else {
3467 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3468 	}
3469 	smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
3470 }
3471 
3472 #ifdef CONFIG_HOTPLUG_CPU
3473 /*
3474  * The outgoing function has no further need of RCU, so remove it from
3475  * the rcu_node tree's ->qsmaskinitnext bit masks.
3476  *
3477  * Note that this function is special in that it is invoked directly
3478  * from the outgoing CPU rather than from the cpuhp_step mechanism.
3479  * This is because this function must be invoked at a precise location.
3480  */
3481 void rcu_report_dead(unsigned int cpu)
3482 {
3483 	unsigned long flags;
3484 	unsigned long mask;
3485 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3486 	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
3487 
3488 	/* QS for any half-done expedited grace period. */
3489 	preempt_disable();
3490 	rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
3491 	preempt_enable();
3492 	rcu_preempt_deferred_qs(current);
3493 
3494 	/* Remove outgoing CPU from mask in the leaf rcu_node structure. */
3495 	mask = rdp->grpmask;
3496 	raw_spin_lock(&rcu_state.ofl_lock);
3497 	raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
3498 	rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq);
3499 	rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags);
3500 	if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */
3501 		/* Report quiescent state -before- changing ->qsmaskinitnext! */
3502 		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
3503 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
3504 	}
3505 	rnp->qsmaskinitnext &= ~mask;
3506 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3507 	raw_spin_unlock(&rcu_state.ofl_lock);
3508 
3509 	per_cpu(rcu_cpu_started, cpu) = 0;
3510 }
3511 
3512 /*
3513  * The outgoing CPU has just passed through the dying-idle state, and we
3514  * are being invoked from the CPU that was IPIed to continue the offline
3515  * operation.  Migrate the outgoing CPU's callbacks to the current CPU.
3516  */
3517 void rcutree_migrate_callbacks(int cpu)
3518 {
3519 	unsigned long flags;
3520 	struct rcu_data *my_rdp;
3521 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3522 	struct rcu_node *rnp_root = rcu_get_root();
3523 	bool needwake;
3524 
3525 	if (rcu_is_nocb_cpu(cpu) || rcu_segcblist_empty(&rdp->cblist))
3526 		return;  /* No callbacks to migrate. */
3527 
3528 	local_irq_save(flags);
3529 	my_rdp = this_cpu_ptr(&rcu_data);
3530 	if (rcu_nocb_adopt_orphan_cbs(my_rdp, rdp, flags)) {
3531 		local_irq_restore(flags);
3532 		return;
3533 	}
3534 	raw_spin_lock_rcu_node(rnp_root); /* irqs already disabled. */
3535 	/* Leverage recent GPs and set GP for new callbacks. */
3536 	needwake = rcu_advance_cbs(rnp_root, rdp) ||
3537 		   rcu_advance_cbs(rnp_root, my_rdp);
3538 	rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
3539 	WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) !=
3540 		     !rcu_segcblist_n_cbs(&my_rdp->cblist));
3541 	raw_spin_unlock_irqrestore_rcu_node(rnp_root, flags);
3542 	if (needwake)
3543 		rcu_gp_kthread_wake();
3544 	WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
3545 		  !rcu_segcblist_empty(&rdp->cblist),
3546 		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
3547 		  cpu, rcu_segcblist_n_cbs(&rdp->cblist),
3548 		  rcu_segcblist_first_cb(&rdp->cblist));
3549 }
3550 #endif
3551 
3552 /*
3553  * On non-huge systems, use expedited RCU grace periods to make suspend
3554  * and hibernation run faster.
3555  */
3556 static int rcu_pm_notify(struct notifier_block *self,
3557 			 unsigned long action, void *hcpu)
3558 {
3559 	switch (action) {
3560 	case PM_HIBERNATION_PREPARE:
3561 	case PM_SUSPEND_PREPARE:
3562 		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3563 			rcu_expedite_gp();
3564 		break;
3565 	case PM_POST_HIBERNATION:
3566 	case PM_POST_SUSPEND:
3567 		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3568 			rcu_unexpedite_gp();
3569 		break;
3570 	default:
3571 		break;
3572 	}
3573 	return NOTIFY_OK;
3574 }
3575 
3576 /*
3577  * Spawn the kthreads that handle RCU's grace periods.
3578  */
3579 static int __init rcu_spawn_gp_kthread(void)
3580 {
3581 	unsigned long flags;
3582 	int kthread_prio_in = kthread_prio;
3583 	struct rcu_node *rnp;
3584 	struct sched_param sp;
3585 	struct task_struct *t;
3586 
3587 	/* Force priority into range. */
3588 	if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2
3589 	    && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST))
3590 		kthread_prio = 2;
3591 	else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
3592 		kthread_prio = 1;
3593 	else if (kthread_prio < 0)
3594 		kthread_prio = 0;
3595 	else if (kthread_prio > 99)
3596 		kthread_prio = 99;
3597 
3598 	if (kthread_prio != kthread_prio_in)
3599 		pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
3600 			 kthread_prio, kthread_prio_in);
3601 
3602 	rcu_scheduler_fully_active = 1;
3603 	t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name);
3604 	if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__))
3605 		return 0;
3606 	rnp = rcu_get_root();
3607 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3608 	rcu_state.gp_kthread = t;
3609 	if (kthread_prio) {
3610 		sp.sched_priority = kthread_prio;
3611 		sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
3612 	}
3613 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3614 	wake_up_process(t);
3615 	rcu_spawn_nocb_kthreads();
3616 	rcu_spawn_boost_kthreads();
3617 	return 0;
3618 }
3619 early_initcall(rcu_spawn_gp_kthread);
3620 
3621 /*
3622  * This function is invoked towards the end of the scheduler's
3623  * initialization process.  Before this is called, the idle task might
3624  * contain synchronous grace-period primitives (during which time, this idle
3625  * task is booting the system, and such primitives are no-ops).  After this
3626  * function is called, any synchronous grace-period primitives are run as
3627  * expedited, with the requesting task driving the grace period forward.
3628  * A later core_initcall() rcu_set_runtime_mode() will switch to full
3629  * runtime RCU functionality.
3630  */
3631 void rcu_scheduler_starting(void)
3632 {
3633 	WARN_ON(num_online_cpus() != 1);
3634 	WARN_ON(nr_context_switches() > 0);
3635 	rcu_test_sync_prims();
3636 	rcu_scheduler_active = RCU_SCHEDULER_INIT;
3637 	rcu_test_sync_prims();
3638 }
3639 
3640 /*
3641  * Helper function for rcu_init() that initializes the rcu_state structure.
3642  */
3643 static void __init rcu_init_one(void)
3644 {
3645 	static const char * const buf[] = RCU_NODE_NAME_INIT;
3646 	static const char * const fqs[] = RCU_FQS_NAME_INIT;
3647 	static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
3648 	static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
3649 
3650 	int levelspread[RCU_NUM_LVLS];		/* kids/node in each level. */
3651 	int cpustride = 1;
3652 	int i;
3653 	int j;
3654 	struct rcu_node *rnp;
3655 
3656 	BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
3657 
3658 	/* Silence gcc 4.8 false positive about array index out of range. */
3659 	if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
3660 		panic("rcu_init_one: rcu_num_lvls out of range");
3661 
3662 	/* Initialize the level-tracking arrays. */
3663 
3664 	for (i = 1; i < rcu_num_lvls; i++)
3665 		rcu_state.level[i] =
3666 			rcu_state.level[i - 1] + num_rcu_lvl[i - 1];
3667 	rcu_init_levelspread(levelspread, num_rcu_lvl);
3668 
3669 	/* Initialize the elements themselves, starting from the leaves. */
3670 
3671 	for (i = rcu_num_lvls - 1; i >= 0; i--) {
3672 		cpustride *= levelspread[i];
3673 		rnp = rcu_state.level[i];
3674 		for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
3675 			raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
3676 			lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
3677 						   &rcu_node_class[i], buf[i]);
3678 			raw_spin_lock_init(&rnp->fqslock);
3679 			lockdep_set_class_and_name(&rnp->fqslock,
3680 						   &rcu_fqs_class[i], fqs[i]);
3681 			rnp->gp_seq = rcu_state.gp_seq;
3682 			rnp->gp_seq_needed = rcu_state.gp_seq;
3683 			rnp->completedqs = rcu_state.gp_seq;
3684 			rnp->qsmask = 0;
3685 			rnp->qsmaskinit = 0;
3686 			rnp->grplo = j * cpustride;
3687 			rnp->grphi = (j + 1) * cpustride - 1;
3688 			if (rnp->grphi >= nr_cpu_ids)
3689 				rnp->grphi = nr_cpu_ids - 1;
3690 			if (i == 0) {
3691 				rnp->grpnum = 0;
3692 				rnp->grpmask = 0;
3693 				rnp->parent = NULL;
3694 			} else {
3695 				rnp->grpnum = j % levelspread[i - 1];
3696 				rnp->grpmask = BIT(rnp->grpnum);
3697 				rnp->parent = rcu_state.level[i - 1] +
3698 					      j / levelspread[i - 1];
3699 			}
3700 			rnp->level = i;
3701 			INIT_LIST_HEAD(&rnp->blkd_tasks);
3702 			rcu_init_one_nocb(rnp);
3703 			init_waitqueue_head(&rnp->exp_wq[0]);
3704 			init_waitqueue_head(&rnp->exp_wq[1]);
3705 			init_waitqueue_head(&rnp->exp_wq[2]);
3706 			init_waitqueue_head(&rnp->exp_wq[3]);
3707 			spin_lock_init(&rnp->exp_lock);
3708 		}
3709 	}
3710 
3711 	init_swait_queue_head(&rcu_state.gp_wq);
3712 	init_swait_queue_head(&rcu_state.expedited_wq);
3713 	rnp = rcu_first_leaf_node();
3714 	for_each_possible_cpu(i) {
3715 		while (i > rnp->grphi)
3716 			rnp++;
3717 		per_cpu_ptr(&rcu_data, i)->mynode = rnp;
3718 		rcu_boot_init_percpu_data(i);
3719 	}
3720 }
3721 
3722 /*
3723  * Compute the rcu_node tree geometry from kernel parameters.  This cannot
3724  * replace the definitions in tree.h because those are needed to size
3725  * the ->node array in the rcu_state structure.
3726  */
3727 static void __init rcu_init_geometry(void)
3728 {
3729 	ulong d;
3730 	int i;
3731 	int rcu_capacity[RCU_NUM_LVLS];
3732 
3733 	/*
3734 	 * Initialize any unspecified boot parameters.
3735 	 * The default values of jiffies_till_first_fqs and
3736 	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
3737 	 * value, which is a function of HZ, then adding one for each
3738 	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
3739 	 */
3740 	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
3741 	if (jiffies_till_first_fqs == ULONG_MAX)
3742 		jiffies_till_first_fqs = d;
3743 	if (jiffies_till_next_fqs == ULONG_MAX)
3744 		jiffies_till_next_fqs = d;
3745 	if (jiffies_till_sched_qs == ULONG_MAX)
3746 		adjust_jiffies_till_sched_qs();
3747 
3748 	/* If the compile-time values are accurate, just leave. */
3749 	if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
3750 	    nr_cpu_ids == NR_CPUS)
3751 		return;
3752 	pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
3753 		rcu_fanout_leaf, nr_cpu_ids);
3754 
3755 	/*
3756 	 * The boot-time rcu_fanout_leaf parameter must be at least two
3757 	 * and cannot exceed the number of bits in the rcu_node masks.
3758 	 * Complain and fall back to the compile-time values if this
3759 	 * limit is exceeded.
3760 	 */
3761 	if (rcu_fanout_leaf < 2 ||
3762 	    rcu_fanout_leaf > sizeof(unsigned long) * 8) {
3763 		rcu_fanout_leaf = RCU_FANOUT_LEAF;
3764 		WARN_ON(1);
3765 		return;
3766 	}
3767 
3768 	/*
3769 	 * Compute number of nodes that can be handled an rcu_node tree
3770 	 * with the given number of levels.
3771 	 */
3772 	rcu_capacity[0] = rcu_fanout_leaf;
3773 	for (i = 1; i < RCU_NUM_LVLS; i++)
3774 		rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
3775 
3776 	/*
3777 	 * The tree must be able to accommodate the configured number of CPUs.
3778 	 * If this limit is exceeded, fall back to the compile-time values.
3779 	 */
3780 	if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
3781 		rcu_fanout_leaf = RCU_FANOUT_LEAF;
3782 		WARN_ON(1);
3783 		return;
3784 	}
3785 
3786 	/* Calculate the number of levels in the tree. */
3787 	for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
3788 	}
3789 	rcu_num_lvls = i + 1;
3790 
3791 	/* Calculate the number of rcu_nodes at each level of the tree. */
3792 	for (i = 0; i < rcu_num_lvls; i++) {
3793 		int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
3794 		num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
3795 	}
3796 
3797 	/* Calculate the total number of rcu_node structures. */
3798 	rcu_num_nodes = 0;
3799 	for (i = 0; i < rcu_num_lvls; i++)
3800 		rcu_num_nodes += num_rcu_lvl[i];
3801 }
3802 
3803 /*
3804  * Dump out the structure of the rcu_node combining tree associated
3805  * with the rcu_state structure.
3806  */
3807 static void __init rcu_dump_rcu_node_tree(void)
3808 {
3809 	int level = 0;
3810 	struct rcu_node *rnp;
3811 
3812 	pr_info("rcu_node tree layout dump\n");
3813 	pr_info(" ");
3814 	rcu_for_each_node_breadth_first(rnp) {
3815 		if (rnp->level != level) {
3816 			pr_cont("\n");
3817 			pr_info(" ");
3818 			level = rnp->level;
3819 		}
3820 		pr_cont("%d:%d ^%d  ", rnp->grplo, rnp->grphi, rnp->grpnum);
3821 	}
3822 	pr_cont("\n");
3823 }
3824 
3825 struct workqueue_struct *rcu_gp_wq;
3826 struct workqueue_struct *rcu_par_gp_wq;
3827 
3828 void __init rcu_init(void)
3829 {
3830 	int cpu;
3831 
3832 	rcu_early_boot_tests();
3833 
3834 	rcu_bootup_announce();
3835 	rcu_init_geometry();
3836 	rcu_init_one();
3837 	if (dump_tree)
3838 		rcu_dump_rcu_node_tree();
3839 	open_softirq(RCU_SOFTIRQ, rcu_core);
3840 
3841 	/*
3842 	 * We don't need protection against CPU-hotplug here because
3843 	 * this is called early in boot, before either interrupts
3844 	 * or the scheduler are operational.
3845 	 */
3846 	pm_notifier(rcu_pm_notify, 0);
3847 	for_each_online_cpu(cpu) {
3848 		rcutree_prepare_cpu(cpu);
3849 		rcu_cpu_starting(cpu);
3850 		rcutree_online_cpu(cpu);
3851 	}
3852 
3853 	/* Create workqueue for expedited GPs and for Tree SRCU. */
3854 	rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0);
3855 	WARN_ON(!rcu_gp_wq);
3856 	rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0);
3857 	WARN_ON(!rcu_par_gp_wq);
3858 	srcu_init();
3859 }
3860 
3861 #include "tree_exp.h"
3862 #include "tree_plugin.h"
3863