xref: /linux/kernel/rcu/tree.c (revision 15a1fbdcfb519c2bd291ed01c6c94e0b89537a77)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Read-Copy Update mechanism for mutual exclusion
4  *
5  * Copyright IBM Corporation, 2008
6  *
7  * Authors: Dipankar Sarma <dipankar@in.ibm.com>
8  *	    Manfred Spraul <manfred@colorfullife.com>
9  *	    Paul E. McKenney <paulmck@linux.ibm.com> Hierarchical version
10  *
11  * Based on the original work by Paul McKenney <paulmck@linux.ibm.com>
12  * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
13  *
14  * For detailed explanation of Read-Copy Update mechanism see -
15  *	Documentation/RCU
16  */
17 
18 #define pr_fmt(fmt) "rcu: " fmt
19 
20 #include <linux/types.h>
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/spinlock.h>
24 #include <linux/smp.h>
25 #include <linux/rcupdate_wait.h>
26 #include <linux/interrupt.h>
27 #include <linux/sched.h>
28 #include <linux/sched/debug.h>
29 #include <linux/nmi.h>
30 #include <linux/atomic.h>
31 #include <linux/bitops.h>
32 #include <linux/export.h>
33 #include <linux/completion.h>
34 #include <linux/moduleparam.h>
35 #include <linux/percpu.h>
36 #include <linux/notifier.h>
37 #include <linux/cpu.h>
38 #include <linux/mutex.h>
39 #include <linux/time.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/wait.h>
42 #include <linux/kthread.h>
43 #include <uapi/linux/sched/types.h>
44 #include <linux/prefetch.h>
45 #include <linux/delay.h>
46 #include <linux/random.h>
47 #include <linux/trace_events.h>
48 #include <linux/suspend.h>
49 #include <linux/ftrace.h>
50 #include <linux/tick.h>
51 #include <linux/sysrq.h>
52 #include <linux/kprobes.h>
53 #include <linux/gfp.h>
54 #include <linux/oom.h>
55 #include <linux/smpboot.h>
56 #include <linux/jiffies.h>
57 #include <linux/slab.h>
58 #include <linux/sched/isolation.h>
59 #include <linux/sched/clock.h>
60 #include "../time/tick-internal.h"
61 
62 #include "tree.h"
63 #include "rcu.h"
64 
65 #ifdef MODULE_PARAM_PREFIX
66 #undef MODULE_PARAM_PREFIX
67 #endif
68 #define MODULE_PARAM_PREFIX "rcutree."
69 
70 /* Data structures. */
71 
72 /*
73  * Steal a bit from the bottom of ->dynticks for idle entry/exit
74  * control.  Initially this is for TLB flushing.
75  */
76 #define RCU_DYNTICK_CTRL_MASK 0x1
77 #define RCU_DYNTICK_CTRL_CTR  (RCU_DYNTICK_CTRL_MASK + 1)
78 #ifndef rcu_eqs_special_exit
79 #define rcu_eqs_special_exit() do { } while (0)
80 #endif
81 
82 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = {
83 	.dynticks_nesting = 1,
84 	.dynticks_nmi_nesting = DYNTICK_IRQ_NONIDLE,
85 	.dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR),
86 };
87 static struct rcu_state rcu_state = {
88 	.level = { &rcu_state.node[0] },
89 	.gp_state = RCU_GP_IDLE,
90 	.gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT,
91 	.barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex),
92 	.name = RCU_NAME,
93 	.abbr = RCU_ABBR,
94 	.exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex),
95 	.exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex),
96 	.ofl_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.ofl_lock),
97 };
98 
99 /* Dump rcu_node combining tree at boot to verify correct setup. */
100 static bool dump_tree;
101 module_param(dump_tree, bool, 0444);
102 /* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */
103 static bool use_softirq = 1;
104 module_param(use_softirq, bool, 0444);
105 /* Control rcu_node-tree auto-balancing at boot time. */
106 static bool rcu_fanout_exact;
107 module_param(rcu_fanout_exact, bool, 0444);
108 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
109 static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
110 module_param(rcu_fanout_leaf, int, 0444);
111 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
112 /* Number of rcu_nodes at specified level. */
113 int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
114 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
115 
116 /*
117  * The rcu_scheduler_active variable is initialized to the value
118  * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
119  * first task is spawned.  So when this variable is RCU_SCHEDULER_INACTIVE,
120  * RCU can assume that there is but one task, allowing RCU to (for example)
121  * optimize synchronize_rcu() to a simple barrier().  When this variable
122  * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
123  * to detect real grace periods.  This variable is also used to suppress
124  * boot-time false positives from lockdep-RCU error checking.  Finally, it
125  * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
126  * is fully initialized, including all of its kthreads having been spawned.
127  */
128 int rcu_scheduler_active __read_mostly;
129 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
130 
131 /*
132  * The rcu_scheduler_fully_active variable transitions from zero to one
133  * during the early_initcall() processing, which is after the scheduler
134  * is capable of creating new tasks.  So RCU processing (for example,
135  * creating tasks for RCU priority boosting) must be delayed until after
136  * rcu_scheduler_fully_active transitions from zero to one.  We also
137  * currently delay invocation of any RCU callbacks until after this point.
138  *
139  * It might later prove better for people registering RCU callbacks during
140  * early boot to take responsibility for these callbacks, but one step at
141  * a time.
142  */
143 static int rcu_scheduler_fully_active __read_mostly;
144 
145 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
146 			      unsigned long gps, unsigned long flags);
147 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
148 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
149 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
150 static void invoke_rcu_core(void);
151 static void rcu_report_exp_rdp(struct rcu_data *rdp);
152 static void sync_sched_exp_online_cleanup(int cpu);
153 
154 /* rcuc/rcub kthread realtime priority */
155 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
156 module_param(kthread_prio, int, 0444);
157 
158 /* Delay in jiffies for grace-period initialization delays, debug only. */
159 
160 static int gp_preinit_delay;
161 module_param(gp_preinit_delay, int, 0444);
162 static int gp_init_delay;
163 module_param(gp_init_delay, int, 0444);
164 static int gp_cleanup_delay;
165 module_param(gp_cleanup_delay, int, 0444);
166 
167 /* Retrieve RCU kthreads priority for rcutorture */
168 int rcu_get_gp_kthreads_prio(void)
169 {
170 	return kthread_prio;
171 }
172 EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio);
173 
174 /*
175  * Number of grace periods between delays, normalized by the duration of
176  * the delay.  The longer the delay, the more the grace periods between
177  * each delay.  The reason for this normalization is that it means that,
178  * for non-zero delays, the overall slowdown of grace periods is constant
179  * regardless of the duration of the delay.  This arrangement balances
180  * the need for long delays to increase some race probabilities with the
181  * need for fast grace periods to increase other race probabilities.
182  */
183 #define PER_RCU_NODE_PERIOD 3	/* Number of grace periods between delays. */
184 
185 /*
186  * Compute the mask of online CPUs for the specified rcu_node structure.
187  * This will not be stable unless the rcu_node structure's ->lock is
188  * held, but the bit corresponding to the current CPU will be stable
189  * in most contexts.
190  */
191 static unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
192 {
193 	return READ_ONCE(rnp->qsmaskinitnext);
194 }
195 
196 /*
197  * Return true if an RCU grace period is in progress.  The READ_ONCE()s
198  * permit this function to be invoked without holding the root rcu_node
199  * structure's ->lock, but of course results can be subject to change.
200  */
201 static int rcu_gp_in_progress(void)
202 {
203 	return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq));
204 }
205 
206 /*
207  * Return the number of callbacks queued on the specified CPU.
208  * Handles both the nocbs and normal cases.
209  */
210 static long rcu_get_n_cbs_cpu(int cpu)
211 {
212 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
213 
214 	if (rcu_segcblist_is_enabled(&rdp->cblist))
215 		return rcu_segcblist_n_cbs(&rdp->cblist);
216 	return 0;
217 }
218 
219 void rcu_softirq_qs(void)
220 {
221 	rcu_qs();
222 	rcu_preempt_deferred_qs(current);
223 }
224 
225 /*
226  * Record entry into an extended quiescent state.  This is only to be
227  * called when not already in an extended quiescent state.
228  */
229 static void rcu_dynticks_eqs_enter(void)
230 {
231 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
232 	int seq;
233 
234 	/*
235 	 * CPUs seeing atomic_add_return() must see prior RCU read-side
236 	 * critical sections, and we also must force ordering with the
237 	 * next idle sojourn.
238 	 */
239 	seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
240 	/* Better be in an extended quiescent state! */
241 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
242 		     (seq & RCU_DYNTICK_CTRL_CTR));
243 	/* Better not have special action (TLB flush) pending! */
244 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
245 		     (seq & RCU_DYNTICK_CTRL_MASK));
246 }
247 
248 /*
249  * Record exit from an extended quiescent state.  This is only to be
250  * called from an extended quiescent state.
251  */
252 static void rcu_dynticks_eqs_exit(void)
253 {
254 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
255 	int seq;
256 
257 	/*
258 	 * CPUs seeing atomic_add_return() must see prior idle sojourns,
259 	 * and we also must force ordering with the next RCU read-side
260 	 * critical section.
261 	 */
262 	seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
263 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
264 		     !(seq & RCU_DYNTICK_CTRL_CTR));
265 	if (seq & RCU_DYNTICK_CTRL_MASK) {
266 		atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdp->dynticks);
267 		smp_mb__after_atomic(); /* _exit after clearing mask. */
268 		/* Prefer duplicate flushes to losing a flush. */
269 		rcu_eqs_special_exit();
270 	}
271 }
272 
273 /*
274  * Reset the current CPU's ->dynticks counter to indicate that the
275  * newly onlined CPU is no longer in an extended quiescent state.
276  * This will either leave the counter unchanged, or increment it
277  * to the next non-quiescent value.
278  *
279  * The non-atomic test/increment sequence works because the upper bits
280  * of the ->dynticks counter are manipulated only by the corresponding CPU,
281  * or when the corresponding CPU is offline.
282  */
283 static void rcu_dynticks_eqs_online(void)
284 {
285 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
286 
287 	if (atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR)
288 		return;
289 	atomic_add(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
290 }
291 
292 /*
293  * Is the current CPU in an extended quiescent state?
294  *
295  * No ordering, as we are sampling CPU-local information.
296  */
297 static bool rcu_dynticks_curr_cpu_in_eqs(void)
298 {
299 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
300 
301 	return !(atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR);
302 }
303 
304 /*
305  * Snapshot the ->dynticks counter with full ordering so as to allow
306  * stable comparison of this counter with past and future snapshots.
307  */
308 static int rcu_dynticks_snap(struct rcu_data *rdp)
309 {
310 	int snap = atomic_add_return(0, &rdp->dynticks);
311 
312 	return snap & ~RCU_DYNTICK_CTRL_MASK;
313 }
314 
315 /*
316  * Return true if the snapshot returned from rcu_dynticks_snap()
317  * indicates that RCU is in an extended quiescent state.
318  */
319 static bool rcu_dynticks_in_eqs(int snap)
320 {
321 	return !(snap & RCU_DYNTICK_CTRL_CTR);
322 }
323 
324 /*
325  * Return true if the CPU corresponding to the specified rcu_data
326  * structure has spent some time in an extended quiescent state since
327  * rcu_dynticks_snap() returned the specified snapshot.
328  */
329 static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap)
330 {
331 	return snap != rcu_dynticks_snap(rdp);
332 }
333 
334 /*
335  * Set the special (bottom) bit of the specified CPU so that it
336  * will take special action (such as flushing its TLB) on the
337  * next exit from an extended quiescent state.  Returns true if
338  * the bit was successfully set, or false if the CPU was not in
339  * an extended quiescent state.
340  */
341 bool rcu_eqs_special_set(int cpu)
342 {
343 	int old;
344 	int new;
345 	struct rcu_data *rdp = &per_cpu(rcu_data, cpu);
346 
347 	do {
348 		old = atomic_read(&rdp->dynticks);
349 		if (old & RCU_DYNTICK_CTRL_CTR)
350 			return false;
351 		new = old | RCU_DYNTICK_CTRL_MASK;
352 	} while (atomic_cmpxchg(&rdp->dynticks, old, new) != old);
353 	return true;
354 }
355 
356 /*
357  * Let the RCU core know that this CPU has gone through the scheduler,
358  * which is a quiescent state.  This is called when the need for a
359  * quiescent state is urgent, so we burn an atomic operation and full
360  * memory barriers to let the RCU core know about it, regardless of what
361  * this CPU might (or might not) do in the near future.
362  *
363  * We inform the RCU core by emulating a zero-duration dyntick-idle period.
364  *
365  * The caller must have disabled interrupts and must not be idle.
366  */
367 void rcu_momentary_dyntick_idle(void)
368 {
369 	int special;
370 
371 	raw_cpu_write(rcu_data.rcu_need_heavy_qs, false);
372 	special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR,
373 				    &this_cpu_ptr(&rcu_data)->dynticks);
374 	/* It is illegal to call this from idle state. */
375 	WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR));
376 	rcu_preempt_deferred_qs(current);
377 }
378 EXPORT_SYMBOL_GPL(rcu_momentary_dyntick_idle);
379 
380 /**
381  * rcu_is_cpu_rrupt_from_idle - see if interrupted from idle
382  *
383  * If the current CPU is idle and running at a first-level (not nested)
384  * interrupt from idle, return true.  The caller must have at least
385  * disabled preemption.
386  */
387 static int rcu_is_cpu_rrupt_from_idle(void)
388 {
389 	/* Called only from within the scheduling-clock interrupt */
390 	lockdep_assert_in_irq();
391 
392 	/* Check for counter underflows */
393 	RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) < 0,
394 			 "RCU dynticks_nesting counter underflow!");
395 	RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) <= 0,
396 			 "RCU dynticks_nmi_nesting counter underflow/zero!");
397 
398 	/* Are we at first interrupt nesting level? */
399 	if (__this_cpu_read(rcu_data.dynticks_nmi_nesting) != 1)
400 		return false;
401 
402 	/* Does CPU appear to be idle from an RCU standpoint? */
403 	return __this_cpu_read(rcu_data.dynticks_nesting) == 0;
404 }
405 
406 #define DEFAULT_RCU_BLIMIT 10     /* Maximum callbacks per rcu_do_batch ... */
407 #define DEFAULT_MAX_RCU_BLIMIT 10000 /* ... even during callback flood. */
408 static long blimit = DEFAULT_RCU_BLIMIT;
409 #define DEFAULT_RCU_QHIMARK 10000 /* If this many pending, ignore blimit. */
410 static long qhimark = DEFAULT_RCU_QHIMARK;
411 #define DEFAULT_RCU_QLOMARK 100   /* Once only this many pending, use blimit. */
412 static long qlowmark = DEFAULT_RCU_QLOMARK;
413 
414 module_param(blimit, long, 0444);
415 module_param(qhimark, long, 0444);
416 module_param(qlowmark, long, 0444);
417 
418 static ulong jiffies_till_first_fqs = ULONG_MAX;
419 static ulong jiffies_till_next_fqs = ULONG_MAX;
420 static bool rcu_kick_kthreads;
421 static int rcu_divisor = 7;
422 module_param(rcu_divisor, int, 0644);
423 
424 /* Force an exit from rcu_do_batch() after 3 milliseconds. */
425 static long rcu_resched_ns = 3 * NSEC_PER_MSEC;
426 module_param(rcu_resched_ns, long, 0644);
427 
428 /*
429  * How long the grace period must be before we start recruiting
430  * quiescent-state help from rcu_note_context_switch().
431  */
432 static ulong jiffies_till_sched_qs = ULONG_MAX;
433 module_param(jiffies_till_sched_qs, ulong, 0444);
434 static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */
435 module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */
436 
437 /*
438  * Make sure that we give the grace-period kthread time to detect any
439  * idle CPUs before taking active measures to force quiescent states.
440  * However, don't go below 100 milliseconds, adjusted upwards for really
441  * large systems.
442  */
443 static void adjust_jiffies_till_sched_qs(void)
444 {
445 	unsigned long j;
446 
447 	/* If jiffies_till_sched_qs was specified, respect the request. */
448 	if (jiffies_till_sched_qs != ULONG_MAX) {
449 		WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs);
450 		return;
451 	}
452 	/* Otherwise, set to third fqs scan, but bound below on large system. */
453 	j = READ_ONCE(jiffies_till_first_fqs) +
454 		      2 * READ_ONCE(jiffies_till_next_fqs);
455 	if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV)
456 		j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
457 	pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j);
458 	WRITE_ONCE(jiffies_to_sched_qs, j);
459 }
460 
461 static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp)
462 {
463 	ulong j;
464 	int ret = kstrtoul(val, 0, &j);
465 
466 	if (!ret) {
467 		WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j);
468 		adjust_jiffies_till_sched_qs();
469 	}
470 	return ret;
471 }
472 
473 static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp)
474 {
475 	ulong j;
476 	int ret = kstrtoul(val, 0, &j);
477 
478 	if (!ret) {
479 		WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1));
480 		adjust_jiffies_till_sched_qs();
481 	}
482 	return ret;
483 }
484 
485 static struct kernel_param_ops first_fqs_jiffies_ops = {
486 	.set = param_set_first_fqs_jiffies,
487 	.get = param_get_ulong,
488 };
489 
490 static struct kernel_param_ops next_fqs_jiffies_ops = {
491 	.set = param_set_next_fqs_jiffies,
492 	.get = param_get_ulong,
493 };
494 
495 module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644);
496 module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644);
497 module_param(rcu_kick_kthreads, bool, 0644);
498 
499 static void force_qs_rnp(int (*f)(struct rcu_data *rdp));
500 static int rcu_pending(int user);
501 
502 /*
503  * Return the number of RCU GPs completed thus far for debug & stats.
504  */
505 unsigned long rcu_get_gp_seq(void)
506 {
507 	return READ_ONCE(rcu_state.gp_seq);
508 }
509 EXPORT_SYMBOL_GPL(rcu_get_gp_seq);
510 
511 /*
512  * Return the number of RCU expedited batches completed thus far for
513  * debug & stats.  Odd numbers mean that a batch is in progress, even
514  * numbers mean idle.  The value returned will thus be roughly double
515  * the cumulative batches since boot.
516  */
517 unsigned long rcu_exp_batches_completed(void)
518 {
519 	return rcu_state.expedited_sequence;
520 }
521 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
522 
523 /*
524  * Return the root node of the rcu_state structure.
525  */
526 static struct rcu_node *rcu_get_root(void)
527 {
528 	return &rcu_state.node[0];
529 }
530 
531 /*
532  * Send along grace-period-related data for rcutorture diagnostics.
533  */
534 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
535 			    unsigned long *gp_seq)
536 {
537 	switch (test_type) {
538 	case RCU_FLAVOR:
539 		*flags = READ_ONCE(rcu_state.gp_flags);
540 		*gp_seq = rcu_seq_current(&rcu_state.gp_seq);
541 		break;
542 	default:
543 		break;
544 	}
545 }
546 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
547 
548 /*
549  * Enter an RCU extended quiescent state, which can be either the
550  * idle loop or adaptive-tickless usermode execution.
551  *
552  * We crowbar the ->dynticks_nmi_nesting field to zero to allow for
553  * the possibility of usermode upcalls having messed up our count
554  * of interrupt nesting level during the prior busy period.
555  */
556 static void rcu_eqs_enter(bool user)
557 {
558 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
559 
560 	WARN_ON_ONCE(rdp->dynticks_nmi_nesting != DYNTICK_IRQ_NONIDLE);
561 	WRITE_ONCE(rdp->dynticks_nmi_nesting, 0);
562 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
563 		     rdp->dynticks_nesting == 0);
564 	if (rdp->dynticks_nesting != 1) {
565 		rdp->dynticks_nesting--;
566 		return;
567 	}
568 
569 	lockdep_assert_irqs_disabled();
570 	trace_rcu_dyntick(TPS("Start"), rdp->dynticks_nesting, 0, atomic_read(&rdp->dynticks));
571 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
572 	rdp = this_cpu_ptr(&rcu_data);
573 	do_nocb_deferred_wakeup(rdp);
574 	rcu_prepare_for_idle();
575 	rcu_preempt_deferred_qs(current);
576 	WRITE_ONCE(rdp->dynticks_nesting, 0); /* Avoid irq-access tearing. */
577 	rcu_dynticks_eqs_enter();
578 	rcu_dynticks_task_enter();
579 }
580 
581 /**
582  * rcu_idle_enter - inform RCU that current CPU is entering idle
583  *
584  * Enter idle mode, in other words, -leave- the mode in which RCU
585  * read-side critical sections can occur.  (Though RCU read-side
586  * critical sections can occur in irq handlers in idle, a possibility
587  * handled by irq_enter() and irq_exit().)
588  *
589  * If you add or remove a call to rcu_idle_enter(), be sure to test with
590  * CONFIG_RCU_EQS_DEBUG=y.
591  */
592 void rcu_idle_enter(void)
593 {
594 	lockdep_assert_irqs_disabled();
595 	rcu_eqs_enter(false);
596 }
597 
598 #ifdef CONFIG_NO_HZ_FULL
599 /**
600  * rcu_user_enter - inform RCU that we are resuming userspace.
601  *
602  * Enter RCU idle mode right before resuming userspace.  No use of RCU
603  * is permitted between this call and rcu_user_exit(). This way the
604  * CPU doesn't need to maintain the tick for RCU maintenance purposes
605  * when the CPU runs in userspace.
606  *
607  * If you add or remove a call to rcu_user_enter(), be sure to test with
608  * CONFIG_RCU_EQS_DEBUG=y.
609  */
610 void rcu_user_enter(void)
611 {
612 	lockdep_assert_irqs_disabled();
613 	rcu_eqs_enter(true);
614 }
615 #endif /* CONFIG_NO_HZ_FULL */
616 
617 /*
618  * If we are returning from the outermost NMI handler that interrupted an
619  * RCU-idle period, update rdp->dynticks and rdp->dynticks_nmi_nesting
620  * to let the RCU grace-period handling know that the CPU is back to
621  * being RCU-idle.
622  *
623  * If you add or remove a call to rcu_nmi_exit_common(), be sure to test
624  * with CONFIG_RCU_EQS_DEBUG=y.
625  */
626 static __always_inline void rcu_nmi_exit_common(bool irq)
627 {
628 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
629 
630 	/*
631 	 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
632 	 * (We are exiting an NMI handler, so RCU better be paying attention
633 	 * to us!)
634 	 */
635 	WARN_ON_ONCE(rdp->dynticks_nmi_nesting <= 0);
636 	WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
637 
638 	/*
639 	 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
640 	 * leave it in non-RCU-idle state.
641 	 */
642 	if (rdp->dynticks_nmi_nesting != 1) {
643 		trace_rcu_dyntick(TPS("--="), rdp->dynticks_nmi_nesting, rdp->dynticks_nmi_nesting - 2,
644 				  atomic_read(&rdp->dynticks));
645 		WRITE_ONCE(rdp->dynticks_nmi_nesting, /* No store tearing. */
646 			   rdp->dynticks_nmi_nesting - 2);
647 		return;
648 	}
649 
650 	/* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
651 	trace_rcu_dyntick(TPS("Startirq"), rdp->dynticks_nmi_nesting, 0, atomic_read(&rdp->dynticks));
652 	WRITE_ONCE(rdp->dynticks_nmi_nesting, 0); /* Avoid store tearing. */
653 
654 	if (irq)
655 		rcu_prepare_for_idle();
656 
657 	rcu_dynticks_eqs_enter();
658 
659 	if (irq)
660 		rcu_dynticks_task_enter();
661 }
662 
663 /**
664  * rcu_nmi_exit - inform RCU of exit from NMI context
665  *
666  * If you add or remove a call to rcu_nmi_exit(), be sure to test
667  * with CONFIG_RCU_EQS_DEBUG=y.
668  */
669 void rcu_nmi_exit(void)
670 {
671 	rcu_nmi_exit_common(false);
672 }
673 
674 /**
675  * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
676  *
677  * Exit from an interrupt handler, which might possibly result in entering
678  * idle mode, in other words, leaving the mode in which read-side critical
679  * sections can occur.  The caller must have disabled interrupts.
680  *
681  * This code assumes that the idle loop never does anything that might
682  * result in unbalanced calls to irq_enter() and irq_exit().  If your
683  * architecture's idle loop violates this assumption, RCU will give you what
684  * you deserve, good and hard.  But very infrequently and irreproducibly.
685  *
686  * Use things like work queues to work around this limitation.
687  *
688  * You have been warned.
689  *
690  * If you add or remove a call to rcu_irq_exit(), be sure to test with
691  * CONFIG_RCU_EQS_DEBUG=y.
692  */
693 void rcu_irq_exit(void)
694 {
695 	lockdep_assert_irqs_disabled();
696 	rcu_nmi_exit_common(true);
697 }
698 
699 /*
700  * Wrapper for rcu_irq_exit() where interrupts are enabled.
701  *
702  * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test
703  * with CONFIG_RCU_EQS_DEBUG=y.
704  */
705 void rcu_irq_exit_irqson(void)
706 {
707 	unsigned long flags;
708 
709 	local_irq_save(flags);
710 	rcu_irq_exit();
711 	local_irq_restore(flags);
712 }
713 
714 /*
715  * Exit an RCU extended quiescent state, which can be either the
716  * idle loop or adaptive-tickless usermode execution.
717  *
718  * We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to
719  * allow for the possibility of usermode upcalls messing up our count of
720  * interrupt nesting level during the busy period that is just now starting.
721  */
722 static void rcu_eqs_exit(bool user)
723 {
724 	struct rcu_data *rdp;
725 	long oldval;
726 
727 	lockdep_assert_irqs_disabled();
728 	rdp = this_cpu_ptr(&rcu_data);
729 	oldval = rdp->dynticks_nesting;
730 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
731 	if (oldval) {
732 		rdp->dynticks_nesting++;
733 		return;
734 	}
735 	rcu_dynticks_task_exit();
736 	rcu_dynticks_eqs_exit();
737 	rcu_cleanup_after_idle();
738 	trace_rcu_dyntick(TPS("End"), rdp->dynticks_nesting, 1, atomic_read(&rdp->dynticks));
739 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
740 	WRITE_ONCE(rdp->dynticks_nesting, 1);
741 	WARN_ON_ONCE(rdp->dynticks_nmi_nesting);
742 	WRITE_ONCE(rdp->dynticks_nmi_nesting, DYNTICK_IRQ_NONIDLE);
743 }
744 
745 /**
746  * rcu_idle_exit - inform RCU that current CPU is leaving idle
747  *
748  * Exit idle mode, in other words, -enter- the mode in which RCU
749  * read-side critical sections can occur.
750  *
751  * If you add or remove a call to rcu_idle_exit(), be sure to test with
752  * CONFIG_RCU_EQS_DEBUG=y.
753  */
754 void rcu_idle_exit(void)
755 {
756 	unsigned long flags;
757 
758 	local_irq_save(flags);
759 	rcu_eqs_exit(false);
760 	local_irq_restore(flags);
761 }
762 
763 #ifdef CONFIG_NO_HZ_FULL
764 /**
765  * rcu_user_exit - inform RCU that we are exiting userspace.
766  *
767  * Exit RCU idle mode while entering the kernel because it can
768  * run a RCU read side critical section anytime.
769  *
770  * If you add or remove a call to rcu_user_exit(), be sure to test with
771  * CONFIG_RCU_EQS_DEBUG=y.
772  */
773 void rcu_user_exit(void)
774 {
775 	rcu_eqs_exit(1);
776 }
777 #endif /* CONFIG_NO_HZ_FULL */
778 
779 /**
780  * rcu_nmi_enter_common - inform RCU of entry to NMI context
781  * @irq: Is this call from rcu_irq_enter?
782  *
783  * If the CPU was idle from RCU's viewpoint, update rdp->dynticks and
784  * rdp->dynticks_nmi_nesting to let the RCU grace-period handling know
785  * that the CPU is active.  This implementation permits nested NMIs, as
786  * long as the nesting level does not overflow an int.  (You will probably
787  * run out of stack space first.)
788  *
789  * If you add or remove a call to rcu_nmi_enter_common(), be sure to test
790  * with CONFIG_RCU_EQS_DEBUG=y.
791  */
792 static __always_inline void rcu_nmi_enter_common(bool irq)
793 {
794 	long incby = 2;
795 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
796 
797 	/* Complain about underflow. */
798 	WARN_ON_ONCE(rdp->dynticks_nmi_nesting < 0);
799 
800 	/*
801 	 * If idle from RCU viewpoint, atomically increment ->dynticks
802 	 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
803 	 * Otherwise, increment ->dynticks_nmi_nesting by two.  This means
804 	 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
805 	 * to be in the outermost NMI handler that interrupted an RCU-idle
806 	 * period (observation due to Andy Lutomirski).
807 	 */
808 	if (rcu_dynticks_curr_cpu_in_eqs()) {
809 
810 		if (irq)
811 			rcu_dynticks_task_exit();
812 
813 		rcu_dynticks_eqs_exit();
814 
815 		if (irq)
816 			rcu_cleanup_after_idle();
817 
818 		incby = 1;
819 	} else if (tick_nohz_full_cpu(rdp->cpu) &&
820 		   rdp->dynticks_nmi_nesting == DYNTICK_IRQ_NONIDLE &&
821 		   READ_ONCE(rdp->rcu_urgent_qs) && !rdp->rcu_forced_tick) {
822 		raw_spin_lock_rcu_node(rdp->mynode);
823 		// Recheck under lock.
824 		if (rdp->rcu_urgent_qs && !rdp->rcu_forced_tick) {
825 			rdp->rcu_forced_tick = true;
826 			tick_dep_set_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
827 		}
828 		raw_spin_unlock_rcu_node(rdp->mynode);
829 	}
830 	trace_rcu_dyntick(incby == 1 ? TPS("Endirq") : TPS("++="),
831 			  rdp->dynticks_nmi_nesting,
832 			  rdp->dynticks_nmi_nesting + incby, atomic_read(&rdp->dynticks));
833 	WRITE_ONCE(rdp->dynticks_nmi_nesting, /* Prevent store tearing. */
834 		   rdp->dynticks_nmi_nesting + incby);
835 	barrier();
836 }
837 
838 /**
839  * rcu_nmi_enter - inform RCU of entry to NMI context
840  */
841 void rcu_nmi_enter(void)
842 {
843 	rcu_nmi_enter_common(false);
844 }
845 NOKPROBE_SYMBOL(rcu_nmi_enter);
846 
847 /**
848  * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
849  *
850  * Enter an interrupt handler, which might possibly result in exiting
851  * idle mode, in other words, entering the mode in which read-side critical
852  * sections can occur.  The caller must have disabled interrupts.
853  *
854  * Note that the Linux kernel is fully capable of entering an interrupt
855  * handler that it never exits, for example when doing upcalls to user mode!
856  * This code assumes that the idle loop never does upcalls to user mode.
857  * If your architecture's idle loop does do upcalls to user mode (or does
858  * anything else that results in unbalanced calls to the irq_enter() and
859  * irq_exit() functions), RCU will give you what you deserve, good and hard.
860  * But very infrequently and irreproducibly.
861  *
862  * Use things like work queues to work around this limitation.
863  *
864  * You have been warned.
865  *
866  * If you add or remove a call to rcu_irq_enter(), be sure to test with
867  * CONFIG_RCU_EQS_DEBUG=y.
868  */
869 void rcu_irq_enter(void)
870 {
871 	lockdep_assert_irqs_disabled();
872 	rcu_nmi_enter_common(true);
873 }
874 
875 /*
876  * Wrapper for rcu_irq_enter() where interrupts are enabled.
877  *
878  * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test
879  * with CONFIG_RCU_EQS_DEBUG=y.
880  */
881 void rcu_irq_enter_irqson(void)
882 {
883 	unsigned long flags;
884 
885 	local_irq_save(flags);
886 	rcu_irq_enter();
887 	local_irq_restore(flags);
888 }
889 
890 /*
891  * If any sort of urgency was applied to the current CPU (for example,
892  * the scheduler-clock interrupt was enabled on a nohz_full CPU) in order
893  * to get to a quiescent state, disable it.
894  */
895 static void rcu_disable_urgency_upon_qs(struct rcu_data *rdp)
896 {
897 	raw_lockdep_assert_held_rcu_node(rdp->mynode);
898 	WRITE_ONCE(rdp->rcu_urgent_qs, false);
899 	WRITE_ONCE(rdp->rcu_need_heavy_qs, false);
900 	if (tick_nohz_full_cpu(rdp->cpu) && rdp->rcu_forced_tick) {
901 		tick_dep_clear_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
902 		rdp->rcu_forced_tick = false;
903 	}
904 }
905 
906 /**
907  * rcu_is_watching - see if RCU thinks that the current CPU is not idle
908  *
909  * Return true if RCU is watching the running CPU, which means that this
910  * CPU can safely enter RCU read-side critical sections.  In other words,
911  * if the current CPU is not in its idle loop or is in an interrupt or
912  * NMI handler, return true.
913  */
914 bool notrace rcu_is_watching(void)
915 {
916 	bool ret;
917 
918 	preempt_disable_notrace();
919 	ret = !rcu_dynticks_curr_cpu_in_eqs();
920 	preempt_enable_notrace();
921 	return ret;
922 }
923 EXPORT_SYMBOL_GPL(rcu_is_watching);
924 
925 /*
926  * If a holdout task is actually running, request an urgent quiescent
927  * state from its CPU.  This is unsynchronized, so migrations can cause
928  * the request to go to the wrong CPU.  Which is OK, all that will happen
929  * is that the CPU's next context switch will be a bit slower and next
930  * time around this task will generate another request.
931  */
932 void rcu_request_urgent_qs_task(struct task_struct *t)
933 {
934 	int cpu;
935 
936 	barrier();
937 	cpu = task_cpu(t);
938 	if (!task_curr(t))
939 		return; /* This task is not running on that CPU. */
940 	smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true);
941 }
942 
943 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
944 
945 /*
946  * Is the current CPU online as far as RCU is concerned?
947  *
948  * Disable preemption to avoid false positives that could otherwise
949  * happen due to the current CPU number being sampled, this task being
950  * preempted, its old CPU being taken offline, resuming on some other CPU,
951  * then determining that its old CPU is now offline.
952  *
953  * Disable checking if in an NMI handler because we cannot safely
954  * report errors from NMI handlers anyway.  In addition, it is OK to use
955  * RCU on an offline processor during initial boot, hence the check for
956  * rcu_scheduler_fully_active.
957  */
958 bool rcu_lockdep_current_cpu_online(void)
959 {
960 	struct rcu_data *rdp;
961 	struct rcu_node *rnp;
962 	bool ret = false;
963 
964 	if (in_nmi() || !rcu_scheduler_fully_active)
965 		return true;
966 	preempt_disable();
967 	rdp = this_cpu_ptr(&rcu_data);
968 	rnp = rdp->mynode;
969 	if (rdp->grpmask & rcu_rnp_online_cpus(rnp))
970 		ret = true;
971 	preempt_enable();
972 	return ret;
973 }
974 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
975 
976 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
977 
978 /*
979  * We are reporting a quiescent state on behalf of some other CPU, so
980  * it is our responsibility to check for and handle potential overflow
981  * of the rcu_node ->gp_seq counter with respect to the rcu_data counters.
982  * After all, the CPU might be in deep idle state, and thus executing no
983  * code whatsoever.
984  */
985 static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
986 {
987 	raw_lockdep_assert_held_rcu_node(rnp);
988 	if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4,
989 			 rnp->gp_seq))
990 		WRITE_ONCE(rdp->gpwrap, true);
991 	if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq))
992 		rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4;
993 }
994 
995 /*
996  * Snapshot the specified CPU's dynticks counter so that we can later
997  * credit them with an implicit quiescent state.  Return 1 if this CPU
998  * is in dynticks idle mode, which is an extended quiescent state.
999  */
1000 static int dyntick_save_progress_counter(struct rcu_data *rdp)
1001 {
1002 	rdp->dynticks_snap = rcu_dynticks_snap(rdp);
1003 	if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
1004 		trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
1005 		rcu_gpnum_ovf(rdp->mynode, rdp);
1006 		return 1;
1007 	}
1008 	return 0;
1009 }
1010 
1011 /*
1012  * Return true if the specified CPU has passed through a quiescent
1013  * state by virtue of being in or having passed through an dynticks
1014  * idle state since the last call to dyntick_save_progress_counter()
1015  * for this same CPU, or by virtue of having been offline.
1016  */
1017 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
1018 {
1019 	unsigned long jtsq;
1020 	bool *rnhqp;
1021 	bool *ruqp;
1022 	struct rcu_node *rnp = rdp->mynode;
1023 
1024 	/*
1025 	 * If the CPU passed through or entered a dynticks idle phase with
1026 	 * no active irq/NMI handlers, then we can safely pretend that the CPU
1027 	 * already acknowledged the request to pass through a quiescent
1028 	 * state.  Either way, that CPU cannot possibly be in an RCU
1029 	 * read-side critical section that started before the beginning
1030 	 * of the current RCU grace period.
1031 	 */
1032 	if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) {
1033 		trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
1034 		rcu_gpnum_ovf(rnp, rdp);
1035 		return 1;
1036 	}
1037 
1038 	/* If waiting too long on an offline CPU, complain. */
1039 	if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp)) &&
1040 	    time_after(jiffies, rcu_state.gp_start + HZ)) {
1041 		bool onl;
1042 		struct rcu_node *rnp1;
1043 
1044 		WARN_ON(1);  /* Offline CPUs are supposed to report QS! */
1045 		pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
1046 			__func__, rnp->grplo, rnp->grphi, rnp->level,
1047 			(long)rnp->gp_seq, (long)rnp->completedqs);
1048 		for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
1049 			pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n",
1050 				__func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask);
1051 		onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
1052 		pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n",
1053 			__func__, rdp->cpu, ".o"[onl],
1054 			(long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
1055 			(long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
1056 		return 1; /* Break things loose after complaining. */
1057 	}
1058 
1059 	/*
1060 	 * A CPU running for an extended time within the kernel can
1061 	 * delay RCU grace periods: (1) At age jiffies_to_sched_qs,
1062 	 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set
1063 	 * both .rcu_need_heavy_qs and .rcu_urgent_qs.  Note that the
1064 	 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs
1065 	 * variable are safe because the assignments are repeated if this
1066 	 * CPU failed to pass through a quiescent state.  This code
1067 	 * also checks .jiffies_resched in case jiffies_to_sched_qs
1068 	 * is set way high.
1069 	 */
1070 	jtsq = READ_ONCE(jiffies_to_sched_qs);
1071 	ruqp = per_cpu_ptr(&rcu_data.rcu_urgent_qs, rdp->cpu);
1072 	rnhqp = &per_cpu(rcu_data.rcu_need_heavy_qs, rdp->cpu);
1073 	if (!READ_ONCE(*rnhqp) &&
1074 	    (time_after(jiffies, rcu_state.gp_start + jtsq * 2) ||
1075 	     time_after(jiffies, rcu_state.jiffies_resched))) {
1076 		WRITE_ONCE(*rnhqp, true);
1077 		/* Store rcu_need_heavy_qs before rcu_urgent_qs. */
1078 		smp_store_release(ruqp, true);
1079 	} else if (time_after(jiffies, rcu_state.gp_start + jtsq)) {
1080 		WRITE_ONCE(*ruqp, true);
1081 	}
1082 
1083 	/*
1084 	 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq!
1085 	 * The above code handles this, but only for straight cond_resched().
1086 	 * And some in-kernel loops check need_resched() before calling
1087 	 * cond_resched(), which defeats the above code for CPUs that are
1088 	 * running in-kernel with scheduling-clock interrupts disabled.
1089 	 * So hit them over the head with the resched_cpu() hammer!
1090 	 */
1091 	if (tick_nohz_full_cpu(rdp->cpu) &&
1092 		   time_after(jiffies,
1093 			      READ_ONCE(rdp->last_fqs_resched) + jtsq * 3)) {
1094 		WRITE_ONCE(*ruqp, true);
1095 		resched_cpu(rdp->cpu);
1096 		WRITE_ONCE(rdp->last_fqs_resched, jiffies);
1097 	}
1098 
1099 	/*
1100 	 * If more than halfway to RCU CPU stall-warning time, invoke
1101 	 * resched_cpu() more frequently to try to loosen things up a bit.
1102 	 * Also check to see if the CPU is getting hammered with interrupts,
1103 	 * but only once per grace period, just to keep the IPIs down to
1104 	 * a dull roar.
1105 	 */
1106 	if (time_after(jiffies, rcu_state.jiffies_resched)) {
1107 		if (time_after(jiffies,
1108 			       READ_ONCE(rdp->last_fqs_resched) + jtsq)) {
1109 			resched_cpu(rdp->cpu);
1110 			WRITE_ONCE(rdp->last_fqs_resched, jiffies);
1111 		}
1112 		if (IS_ENABLED(CONFIG_IRQ_WORK) &&
1113 		    !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq &&
1114 		    (rnp->ffmask & rdp->grpmask)) {
1115 			init_irq_work(&rdp->rcu_iw, rcu_iw_handler);
1116 			rdp->rcu_iw_pending = true;
1117 			rdp->rcu_iw_gp_seq = rnp->gp_seq;
1118 			irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
1119 		}
1120 	}
1121 
1122 	return 0;
1123 }
1124 
1125 /* Trace-event wrapper function for trace_rcu_future_grace_period.  */
1126 static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1127 			      unsigned long gp_seq_req, const char *s)
1128 {
1129 	trace_rcu_future_grace_period(rcu_state.name, rnp->gp_seq, gp_seq_req,
1130 				      rnp->level, rnp->grplo, rnp->grphi, s);
1131 }
1132 
1133 /*
1134  * rcu_start_this_gp - Request the start of a particular grace period
1135  * @rnp_start: The leaf node of the CPU from which to start.
1136  * @rdp: The rcu_data corresponding to the CPU from which to start.
1137  * @gp_seq_req: The gp_seq of the grace period to start.
1138  *
1139  * Start the specified grace period, as needed to handle newly arrived
1140  * callbacks.  The required future grace periods are recorded in each
1141  * rcu_node structure's ->gp_seq_needed field.  Returns true if there
1142  * is reason to awaken the grace-period kthread.
1143  *
1144  * The caller must hold the specified rcu_node structure's ->lock, which
1145  * is why the caller is responsible for waking the grace-period kthread.
1146  *
1147  * Returns true if the GP thread needs to be awakened else false.
1148  */
1149 static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp,
1150 			      unsigned long gp_seq_req)
1151 {
1152 	bool ret = false;
1153 	struct rcu_node *rnp;
1154 
1155 	/*
1156 	 * Use funnel locking to either acquire the root rcu_node
1157 	 * structure's lock or bail out if the need for this grace period
1158 	 * has already been recorded -- or if that grace period has in
1159 	 * fact already started.  If there is already a grace period in
1160 	 * progress in a non-leaf node, no recording is needed because the
1161 	 * end of the grace period will scan the leaf rcu_node structures.
1162 	 * Note that rnp_start->lock must not be released.
1163 	 */
1164 	raw_lockdep_assert_held_rcu_node(rnp_start);
1165 	trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf"));
1166 	for (rnp = rnp_start; 1; rnp = rnp->parent) {
1167 		if (rnp != rnp_start)
1168 			raw_spin_lock_rcu_node(rnp);
1169 		if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) ||
1170 		    rcu_seq_started(&rnp->gp_seq, gp_seq_req) ||
1171 		    (rnp != rnp_start &&
1172 		     rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) {
1173 			trace_rcu_this_gp(rnp, rdp, gp_seq_req,
1174 					  TPS("Prestarted"));
1175 			goto unlock_out;
1176 		}
1177 		rnp->gp_seq_needed = gp_seq_req;
1178 		if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) {
1179 			/*
1180 			 * We just marked the leaf or internal node, and a
1181 			 * grace period is in progress, which means that
1182 			 * rcu_gp_cleanup() will see the marking.  Bail to
1183 			 * reduce contention.
1184 			 */
1185 			trace_rcu_this_gp(rnp_start, rdp, gp_seq_req,
1186 					  TPS("Startedleaf"));
1187 			goto unlock_out;
1188 		}
1189 		if (rnp != rnp_start && rnp->parent != NULL)
1190 			raw_spin_unlock_rcu_node(rnp);
1191 		if (!rnp->parent)
1192 			break;  /* At root, and perhaps also leaf. */
1193 	}
1194 
1195 	/* If GP already in progress, just leave, otherwise start one. */
1196 	if (rcu_gp_in_progress()) {
1197 		trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot"));
1198 		goto unlock_out;
1199 	}
1200 	trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot"));
1201 	WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT);
1202 	rcu_state.gp_req_activity = jiffies;
1203 	if (!rcu_state.gp_kthread) {
1204 		trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread"));
1205 		goto unlock_out;
1206 	}
1207 	trace_rcu_grace_period(rcu_state.name, READ_ONCE(rcu_state.gp_seq), TPS("newreq"));
1208 	ret = true;  /* Caller must wake GP kthread. */
1209 unlock_out:
1210 	/* Push furthest requested GP to leaf node and rcu_data structure. */
1211 	if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) {
1212 		rnp_start->gp_seq_needed = rnp->gp_seq_needed;
1213 		rdp->gp_seq_needed = rnp->gp_seq_needed;
1214 	}
1215 	if (rnp != rnp_start)
1216 		raw_spin_unlock_rcu_node(rnp);
1217 	return ret;
1218 }
1219 
1220 /*
1221  * Clean up any old requests for the just-ended grace period.  Also return
1222  * whether any additional grace periods have been requested.
1223  */
1224 static bool rcu_future_gp_cleanup(struct rcu_node *rnp)
1225 {
1226 	bool needmore;
1227 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1228 
1229 	needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed);
1230 	if (!needmore)
1231 		rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */
1232 	trace_rcu_this_gp(rnp, rdp, rnp->gp_seq,
1233 			  needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1234 	return needmore;
1235 }
1236 
1237 /*
1238  * Awaken the grace-period kthread.  Don't do a self-awaken (unless in
1239  * an interrupt or softirq handler), and don't bother awakening when there
1240  * is nothing for the grace-period kthread to do (as in several CPUs raced
1241  * to awaken, and we lost), and finally don't try to awaken a kthread that
1242  * has not yet been created.  If all those checks are passed, track some
1243  * debug information and awaken.
1244  *
1245  * So why do the self-wakeup when in an interrupt or softirq handler
1246  * in the grace-period kthread's context?  Because the kthread might have
1247  * been interrupted just as it was going to sleep, and just after the final
1248  * pre-sleep check of the awaken condition.  In this case, a wakeup really
1249  * is required, and is therefore supplied.
1250  */
1251 static void rcu_gp_kthread_wake(void)
1252 {
1253 	if ((current == rcu_state.gp_kthread &&
1254 	     !in_irq() && !in_serving_softirq()) ||
1255 	    !READ_ONCE(rcu_state.gp_flags) ||
1256 	    !rcu_state.gp_kthread)
1257 		return;
1258 	WRITE_ONCE(rcu_state.gp_wake_time, jiffies);
1259 	WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq));
1260 	swake_up_one(&rcu_state.gp_wq);
1261 }
1262 
1263 /*
1264  * If there is room, assign a ->gp_seq number to any callbacks on this
1265  * CPU that have not already been assigned.  Also accelerate any callbacks
1266  * that were previously assigned a ->gp_seq number that has since proven
1267  * to be too conservative, which can happen if callbacks get assigned a
1268  * ->gp_seq number while RCU is idle, but with reference to a non-root
1269  * rcu_node structure.  This function is idempotent, so it does not hurt
1270  * to call it repeatedly.  Returns an flag saying that we should awaken
1271  * the RCU grace-period kthread.
1272  *
1273  * The caller must hold rnp->lock with interrupts disabled.
1274  */
1275 static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1276 {
1277 	unsigned long gp_seq_req;
1278 	bool ret = false;
1279 
1280 	rcu_lockdep_assert_cblist_protected(rdp);
1281 	raw_lockdep_assert_held_rcu_node(rnp);
1282 
1283 	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1284 	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1285 		return false;
1286 
1287 	/*
1288 	 * Callbacks are often registered with incomplete grace-period
1289 	 * information.  Something about the fact that getting exact
1290 	 * information requires acquiring a global lock...  RCU therefore
1291 	 * makes a conservative estimate of the grace period number at which
1292 	 * a given callback will become ready to invoke.	The following
1293 	 * code checks this estimate and improves it when possible, thus
1294 	 * accelerating callback invocation to an earlier grace-period
1295 	 * number.
1296 	 */
1297 	gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq);
1298 	if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req))
1299 		ret = rcu_start_this_gp(rnp, rdp, gp_seq_req);
1300 
1301 	/* Trace depending on how much we were able to accelerate. */
1302 	if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
1303 		trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("AccWaitCB"));
1304 	else
1305 		trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("AccReadyCB"));
1306 	return ret;
1307 }
1308 
1309 /*
1310  * Similar to rcu_accelerate_cbs(), but does not require that the leaf
1311  * rcu_node structure's ->lock be held.  It consults the cached value
1312  * of ->gp_seq_needed in the rcu_data structure, and if that indicates
1313  * that a new grace-period request be made, invokes rcu_accelerate_cbs()
1314  * while holding the leaf rcu_node structure's ->lock.
1315  */
1316 static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp,
1317 					struct rcu_data *rdp)
1318 {
1319 	unsigned long c;
1320 	bool needwake;
1321 
1322 	rcu_lockdep_assert_cblist_protected(rdp);
1323 	c = rcu_seq_snap(&rcu_state.gp_seq);
1324 	if (!rdp->gpwrap && ULONG_CMP_GE(rdp->gp_seq_needed, c)) {
1325 		/* Old request still live, so mark recent callbacks. */
1326 		(void)rcu_segcblist_accelerate(&rdp->cblist, c);
1327 		return;
1328 	}
1329 	raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1330 	needwake = rcu_accelerate_cbs(rnp, rdp);
1331 	raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1332 	if (needwake)
1333 		rcu_gp_kthread_wake();
1334 }
1335 
1336 /*
1337  * Move any callbacks whose grace period has completed to the
1338  * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1339  * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL
1340  * sublist.  This function is idempotent, so it does not hurt to
1341  * invoke it repeatedly.  As long as it is not invoked -too- often...
1342  * Returns true if the RCU grace-period kthread needs to be awakened.
1343  *
1344  * The caller must hold rnp->lock with interrupts disabled.
1345  */
1346 static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1347 {
1348 	rcu_lockdep_assert_cblist_protected(rdp);
1349 	raw_lockdep_assert_held_rcu_node(rnp);
1350 
1351 	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1352 	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1353 		return false;
1354 
1355 	/*
1356 	 * Find all callbacks whose ->gp_seq numbers indicate that they
1357 	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1358 	 */
1359 	rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq);
1360 
1361 	/* Classify any remaining callbacks. */
1362 	return rcu_accelerate_cbs(rnp, rdp);
1363 }
1364 
1365 /*
1366  * Move and classify callbacks, but only if doing so won't require
1367  * that the RCU grace-period kthread be awakened.
1368  */
1369 static void __maybe_unused rcu_advance_cbs_nowake(struct rcu_node *rnp,
1370 						  struct rcu_data *rdp)
1371 {
1372 	rcu_lockdep_assert_cblist_protected(rdp);
1373 	if (!rcu_seq_state(rcu_seq_current(&rnp->gp_seq)) ||
1374 	    !raw_spin_trylock_rcu_node(rnp))
1375 		return;
1376 	WARN_ON_ONCE(rcu_advance_cbs(rnp, rdp));
1377 	raw_spin_unlock_rcu_node(rnp);
1378 }
1379 
1380 /*
1381  * Update CPU-local rcu_data state to record the beginnings and ends of
1382  * grace periods.  The caller must hold the ->lock of the leaf rcu_node
1383  * structure corresponding to the current CPU, and must have irqs disabled.
1384  * Returns true if the grace-period kthread needs to be awakened.
1385  */
1386 static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp)
1387 {
1388 	bool ret = false;
1389 	bool need_gp;
1390 	const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
1391 			       rcu_segcblist_is_offloaded(&rdp->cblist);
1392 
1393 	raw_lockdep_assert_held_rcu_node(rnp);
1394 
1395 	if (rdp->gp_seq == rnp->gp_seq)
1396 		return false; /* Nothing to do. */
1397 
1398 	/* Handle the ends of any preceding grace periods first. */
1399 	if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) ||
1400 	    unlikely(READ_ONCE(rdp->gpwrap))) {
1401 		if (!offloaded)
1402 			ret = rcu_advance_cbs(rnp, rdp); /* Advance CBs. */
1403 		trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend"));
1404 	} else {
1405 		if (!offloaded)
1406 			ret = rcu_accelerate_cbs(rnp, rdp); /* Recent CBs. */
1407 	}
1408 
1409 	/* Now handle the beginnings of any new-to-this-CPU grace periods. */
1410 	if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) ||
1411 	    unlikely(READ_ONCE(rdp->gpwrap))) {
1412 		/*
1413 		 * If the current grace period is waiting for this CPU,
1414 		 * set up to detect a quiescent state, otherwise don't
1415 		 * go looking for one.
1416 		 */
1417 		trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart"));
1418 		need_gp = !!(rnp->qsmask & rdp->grpmask);
1419 		rdp->cpu_no_qs.b.norm = need_gp;
1420 		rdp->core_needs_qs = need_gp;
1421 		zero_cpu_stall_ticks(rdp);
1422 	}
1423 	rdp->gp_seq = rnp->gp_seq;  /* Remember new grace-period state. */
1424 	if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap)
1425 		rdp->gp_seq_needed = rnp->gp_seq_needed;
1426 	WRITE_ONCE(rdp->gpwrap, false);
1427 	rcu_gpnum_ovf(rnp, rdp);
1428 	return ret;
1429 }
1430 
1431 static void note_gp_changes(struct rcu_data *rdp)
1432 {
1433 	unsigned long flags;
1434 	bool needwake;
1435 	struct rcu_node *rnp;
1436 
1437 	local_irq_save(flags);
1438 	rnp = rdp->mynode;
1439 	if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) &&
1440 	     !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1441 	    !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1442 		local_irq_restore(flags);
1443 		return;
1444 	}
1445 	needwake = __note_gp_changes(rnp, rdp);
1446 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1447 	if (needwake)
1448 		rcu_gp_kthread_wake();
1449 }
1450 
1451 static void rcu_gp_slow(int delay)
1452 {
1453 	if (delay > 0 &&
1454 	    !(rcu_seq_ctr(rcu_state.gp_seq) %
1455 	      (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1456 		schedule_timeout_uninterruptible(delay);
1457 }
1458 
1459 /*
1460  * Initialize a new grace period.  Return false if no grace period required.
1461  */
1462 static bool rcu_gp_init(void)
1463 {
1464 	unsigned long flags;
1465 	unsigned long oldmask;
1466 	unsigned long mask;
1467 	struct rcu_data *rdp;
1468 	struct rcu_node *rnp = rcu_get_root();
1469 
1470 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1471 	raw_spin_lock_irq_rcu_node(rnp);
1472 	if (!READ_ONCE(rcu_state.gp_flags)) {
1473 		/* Spurious wakeup, tell caller to go back to sleep.  */
1474 		raw_spin_unlock_irq_rcu_node(rnp);
1475 		return false;
1476 	}
1477 	WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */
1478 
1479 	if (WARN_ON_ONCE(rcu_gp_in_progress())) {
1480 		/*
1481 		 * Grace period already in progress, don't start another.
1482 		 * Not supposed to be able to happen.
1483 		 */
1484 		raw_spin_unlock_irq_rcu_node(rnp);
1485 		return false;
1486 	}
1487 
1488 	/* Advance to a new grace period and initialize state. */
1489 	record_gp_stall_check_time();
1490 	/* Record GP times before starting GP, hence rcu_seq_start(). */
1491 	rcu_seq_start(&rcu_state.gp_seq);
1492 	trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start"));
1493 	raw_spin_unlock_irq_rcu_node(rnp);
1494 
1495 	/*
1496 	 * Apply per-leaf buffered online and offline operations to the
1497 	 * rcu_node tree.  Note that this new grace period need not wait
1498 	 * for subsequent online CPUs, and that quiescent-state forcing
1499 	 * will handle subsequent offline CPUs.
1500 	 */
1501 	rcu_state.gp_state = RCU_GP_ONOFF;
1502 	rcu_for_each_leaf_node(rnp) {
1503 		raw_spin_lock(&rcu_state.ofl_lock);
1504 		raw_spin_lock_irq_rcu_node(rnp);
1505 		if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1506 		    !rnp->wait_blkd_tasks) {
1507 			/* Nothing to do on this leaf rcu_node structure. */
1508 			raw_spin_unlock_irq_rcu_node(rnp);
1509 			raw_spin_unlock(&rcu_state.ofl_lock);
1510 			continue;
1511 		}
1512 
1513 		/* Record old state, apply changes to ->qsmaskinit field. */
1514 		oldmask = rnp->qsmaskinit;
1515 		rnp->qsmaskinit = rnp->qsmaskinitnext;
1516 
1517 		/* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1518 		if (!oldmask != !rnp->qsmaskinit) {
1519 			if (!oldmask) { /* First online CPU for rcu_node. */
1520 				if (!rnp->wait_blkd_tasks) /* Ever offline? */
1521 					rcu_init_new_rnp(rnp);
1522 			} else if (rcu_preempt_has_tasks(rnp)) {
1523 				rnp->wait_blkd_tasks = true; /* blocked tasks */
1524 			} else { /* Last offline CPU and can propagate. */
1525 				rcu_cleanup_dead_rnp(rnp);
1526 			}
1527 		}
1528 
1529 		/*
1530 		 * If all waited-on tasks from prior grace period are
1531 		 * done, and if all this rcu_node structure's CPUs are
1532 		 * still offline, propagate up the rcu_node tree and
1533 		 * clear ->wait_blkd_tasks.  Otherwise, if one of this
1534 		 * rcu_node structure's CPUs has since come back online,
1535 		 * simply clear ->wait_blkd_tasks.
1536 		 */
1537 		if (rnp->wait_blkd_tasks &&
1538 		    (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) {
1539 			rnp->wait_blkd_tasks = false;
1540 			if (!rnp->qsmaskinit)
1541 				rcu_cleanup_dead_rnp(rnp);
1542 		}
1543 
1544 		raw_spin_unlock_irq_rcu_node(rnp);
1545 		raw_spin_unlock(&rcu_state.ofl_lock);
1546 	}
1547 	rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */
1548 
1549 	/*
1550 	 * Set the quiescent-state-needed bits in all the rcu_node
1551 	 * structures for all currently online CPUs in breadth-first
1552 	 * order, starting from the root rcu_node structure, relying on the
1553 	 * layout of the tree within the rcu_state.node[] array.  Note that
1554 	 * other CPUs will access only the leaves of the hierarchy, thus
1555 	 * seeing that no grace period is in progress, at least until the
1556 	 * corresponding leaf node has been initialized.
1557 	 *
1558 	 * The grace period cannot complete until the initialization
1559 	 * process finishes, because this kthread handles both.
1560 	 */
1561 	rcu_state.gp_state = RCU_GP_INIT;
1562 	rcu_for_each_node_breadth_first(rnp) {
1563 		rcu_gp_slow(gp_init_delay);
1564 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1565 		rdp = this_cpu_ptr(&rcu_data);
1566 		rcu_preempt_check_blocked_tasks(rnp);
1567 		rnp->qsmask = rnp->qsmaskinit;
1568 		WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq);
1569 		if (rnp == rdp->mynode)
1570 			(void)__note_gp_changes(rnp, rdp);
1571 		rcu_preempt_boost_start_gp(rnp);
1572 		trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq,
1573 					    rnp->level, rnp->grplo,
1574 					    rnp->grphi, rnp->qsmask);
1575 		/* Quiescent states for tasks on any now-offline CPUs. */
1576 		mask = rnp->qsmask & ~rnp->qsmaskinitnext;
1577 		rnp->rcu_gp_init_mask = mask;
1578 		if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp))
1579 			rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
1580 		else
1581 			raw_spin_unlock_irq_rcu_node(rnp);
1582 		cond_resched_tasks_rcu_qs();
1583 		WRITE_ONCE(rcu_state.gp_activity, jiffies);
1584 	}
1585 
1586 	return true;
1587 }
1588 
1589 /*
1590  * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state
1591  * time.
1592  */
1593 static bool rcu_gp_fqs_check_wake(int *gfp)
1594 {
1595 	struct rcu_node *rnp = rcu_get_root();
1596 
1597 	/* Someone like call_rcu() requested a force-quiescent-state scan. */
1598 	*gfp = READ_ONCE(rcu_state.gp_flags);
1599 	if (*gfp & RCU_GP_FLAG_FQS)
1600 		return true;
1601 
1602 	/* The current grace period has completed. */
1603 	if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
1604 		return true;
1605 
1606 	return false;
1607 }
1608 
1609 /*
1610  * Do one round of quiescent-state forcing.
1611  */
1612 static void rcu_gp_fqs(bool first_time)
1613 {
1614 	struct rcu_node *rnp = rcu_get_root();
1615 
1616 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1617 	rcu_state.n_force_qs++;
1618 	if (first_time) {
1619 		/* Collect dyntick-idle snapshots. */
1620 		force_qs_rnp(dyntick_save_progress_counter);
1621 	} else {
1622 		/* Handle dyntick-idle and offline CPUs. */
1623 		force_qs_rnp(rcu_implicit_dynticks_qs);
1624 	}
1625 	/* Clear flag to prevent immediate re-entry. */
1626 	if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
1627 		raw_spin_lock_irq_rcu_node(rnp);
1628 		WRITE_ONCE(rcu_state.gp_flags,
1629 			   READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS);
1630 		raw_spin_unlock_irq_rcu_node(rnp);
1631 	}
1632 }
1633 
1634 /*
1635  * Loop doing repeated quiescent-state forcing until the grace period ends.
1636  */
1637 static void rcu_gp_fqs_loop(void)
1638 {
1639 	bool first_gp_fqs;
1640 	int gf;
1641 	unsigned long j;
1642 	int ret;
1643 	struct rcu_node *rnp = rcu_get_root();
1644 
1645 	first_gp_fqs = true;
1646 	j = READ_ONCE(jiffies_till_first_fqs);
1647 	ret = 0;
1648 	for (;;) {
1649 		if (!ret) {
1650 			rcu_state.jiffies_force_qs = jiffies + j;
1651 			WRITE_ONCE(rcu_state.jiffies_kick_kthreads,
1652 				   jiffies + (j ? 3 * j : 2));
1653 		}
1654 		trace_rcu_grace_period(rcu_state.name,
1655 				       READ_ONCE(rcu_state.gp_seq),
1656 				       TPS("fqswait"));
1657 		rcu_state.gp_state = RCU_GP_WAIT_FQS;
1658 		ret = swait_event_idle_timeout_exclusive(
1659 				rcu_state.gp_wq, rcu_gp_fqs_check_wake(&gf), j);
1660 		rcu_state.gp_state = RCU_GP_DOING_FQS;
1661 		/* Locking provides needed memory barriers. */
1662 		/* If grace period done, leave loop. */
1663 		if (!READ_ONCE(rnp->qsmask) &&
1664 		    !rcu_preempt_blocked_readers_cgp(rnp))
1665 			break;
1666 		/* If time for quiescent-state forcing, do it. */
1667 		if (ULONG_CMP_GE(jiffies, rcu_state.jiffies_force_qs) ||
1668 		    (gf & RCU_GP_FLAG_FQS)) {
1669 			trace_rcu_grace_period(rcu_state.name,
1670 					       READ_ONCE(rcu_state.gp_seq),
1671 					       TPS("fqsstart"));
1672 			rcu_gp_fqs(first_gp_fqs);
1673 			first_gp_fqs = false;
1674 			trace_rcu_grace_period(rcu_state.name,
1675 					       READ_ONCE(rcu_state.gp_seq),
1676 					       TPS("fqsend"));
1677 			cond_resched_tasks_rcu_qs();
1678 			WRITE_ONCE(rcu_state.gp_activity, jiffies);
1679 			ret = 0; /* Force full wait till next FQS. */
1680 			j = READ_ONCE(jiffies_till_next_fqs);
1681 		} else {
1682 			/* Deal with stray signal. */
1683 			cond_resched_tasks_rcu_qs();
1684 			WRITE_ONCE(rcu_state.gp_activity, jiffies);
1685 			WARN_ON(signal_pending(current));
1686 			trace_rcu_grace_period(rcu_state.name,
1687 					       READ_ONCE(rcu_state.gp_seq),
1688 					       TPS("fqswaitsig"));
1689 			ret = 1; /* Keep old FQS timing. */
1690 			j = jiffies;
1691 			if (time_after(jiffies, rcu_state.jiffies_force_qs))
1692 				j = 1;
1693 			else
1694 				j = rcu_state.jiffies_force_qs - j;
1695 		}
1696 	}
1697 }
1698 
1699 /*
1700  * Clean up after the old grace period.
1701  */
1702 static void rcu_gp_cleanup(void)
1703 {
1704 	unsigned long gp_duration;
1705 	bool needgp = false;
1706 	unsigned long new_gp_seq;
1707 	bool offloaded;
1708 	struct rcu_data *rdp;
1709 	struct rcu_node *rnp = rcu_get_root();
1710 	struct swait_queue_head *sq;
1711 
1712 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1713 	raw_spin_lock_irq_rcu_node(rnp);
1714 	rcu_state.gp_end = jiffies;
1715 	gp_duration = rcu_state.gp_end - rcu_state.gp_start;
1716 	if (gp_duration > rcu_state.gp_max)
1717 		rcu_state.gp_max = gp_duration;
1718 
1719 	/*
1720 	 * We know the grace period is complete, but to everyone else
1721 	 * it appears to still be ongoing.  But it is also the case
1722 	 * that to everyone else it looks like there is nothing that
1723 	 * they can do to advance the grace period.  It is therefore
1724 	 * safe for us to drop the lock in order to mark the grace
1725 	 * period as completed in all of the rcu_node structures.
1726 	 */
1727 	raw_spin_unlock_irq_rcu_node(rnp);
1728 
1729 	/*
1730 	 * Propagate new ->gp_seq value to rcu_node structures so that
1731 	 * other CPUs don't have to wait until the start of the next grace
1732 	 * period to process their callbacks.  This also avoids some nasty
1733 	 * RCU grace-period initialization races by forcing the end of
1734 	 * the current grace period to be completely recorded in all of
1735 	 * the rcu_node structures before the beginning of the next grace
1736 	 * period is recorded in any of the rcu_node structures.
1737 	 */
1738 	new_gp_seq = rcu_state.gp_seq;
1739 	rcu_seq_end(&new_gp_seq);
1740 	rcu_for_each_node_breadth_first(rnp) {
1741 		raw_spin_lock_irq_rcu_node(rnp);
1742 		if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
1743 			dump_blkd_tasks(rnp, 10);
1744 		WARN_ON_ONCE(rnp->qsmask);
1745 		WRITE_ONCE(rnp->gp_seq, new_gp_seq);
1746 		rdp = this_cpu_ptr(&rcu_data);
1747 		if (rnp == rdp->mynode)
1748 			needgp = __note_gp_changes(rnp, rdp) || needgp;
1749 		/* smp_mb() provided by prior unlock-lock pair. */
1750 		needgp = rcu_future_gp_cleanup(rnp) || needgp;
1751 		sq = rcu_nocb_gp_get(rnp);
1752 		raw_spin_unlock_irq_rcu_node(rnp);
1753 		rcu_nocb_gp_cleanup(sq);
1754 		cond_resched_tasks_rcu_qs();
1755 		WRITE_ONCE(rcu_state.gp_activity, jiffies);
1756 		rcu_gp_slow(gp_cleanup_delay);
1757 	}
1758 	rnp = rcu_get_root();
1759 	raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */
1760 
1761 	/* Declare grace period done, trace first to use old GP number. */
1762 	trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end"));
1763 	rcu_seq_end(&rcu_state.gp_seq);
1764 	rcu_state.gp_state = RCU_GP_IDLE;
1765 	/* Check for GP requests since above loop. */
1766 	rdp = this_cpu_ptr(&rcu_data);
1767 	if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) {
1768 		trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed,
1769 				  TPS("CleanupMore"));
1770 		needgp = true;
1771 	}
1772 	/* Advance CBs to reduce false positives below. */
1773 	offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
1774 		    rcu_segcblist_is_offloaded(&rdp->cblist);
1775 	if ((offloaded || !rcu_accelerate_cbs(rnp, rdp)) && needgp) {
1776 		WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT);
1777 		rcu_state.gp_req_activity = jiffies;
1778 		trace_rcu_grace_period(rcu_state.name,
1779 				       READ_ONCE(rcu_state.gp_seq),
1780 				       TPS("newreq"));
1781 	} else {
1782 		WRITE_ONCE(rcu_state.gp_flags,
1783 			   rcu_state.gp_flags & RCU_GP_FLAG_INIT);
1784 	}
1785 	raw_spin_unlock_irq_rcu_node(rnp);
1786 }
1787 
1788 /*
1789  * Body of kthread that handles grace periods.
1790  */
1791 static int __noreturn rcu_gp_kthread(void *unused)
1792 {
1793 	rcu_bind_gp_kthread();
1794 	for (;;) {
1795 
1796 		/* Handle grace-period start. */
1797 		for (;;) {
1798 			trace_rcu_grace_period(rcu_state.name,
1799 					       READ_ONCE(rcu_state.gp_seq),
1800 					       TPS("reqwait"));
1801 			rcu_state.gp_state = RCU_GP_WAIT_GPS;
1802 			swait_event_idle_exclusive(rcu_state.gp_wq,
1803 					 READ_ONCE(rcu_state.gp_flags) &
1804 					 RCU_GP_FLAG_INIT);
1805 			rcu_state.gp_state = RCU_GP_DONE_GPS;
1806 			/* Locking provides needed memory barrier. */
1807 			if (rcu_gp_init())
1808 				break;
1809 			cond_resched_tasks_rcu_qs();
1810 			WRITE_ONCE(rcu_state.gp_activity, jiffies);
1811 			WARN_ON(signal_pending(current));
1812 			trace_rcu_grace_period(rcu_state.name,
1813 					       READ_ONCE(rcu_state.gp_seq),
1814 					       TPS("reqwaitsig"));
1815 		}
1816 
1817 		/* Handle quiescent-state forcing. */
1818 		rcu_gp_fqs_loop();
1819 
1820 		/* Handle grace-period end. */
1821 		rcu_state.gp_state = RCU_GP_CLEANUP;
1822 		rcu_gp_cleanup();
1823 		rcu_state.gp_state = RCU_GP_CLEANED;
1824 	}
1825 }
1826 
1827 /*
1828  * Report a full set of quiescent states to the rcu_state data structure.
1829  * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if
1830  * another grace period is required.  Whether we wake the grace-period
1831  * kthread or it awakens itself for the next round of quiescent-state
1832  * forcing, that kthread will clean up after the just-completed grace
1833  * period.  Note that the caller must hold rnp->lock, which is released
1834  * before return.
1835  */
1836 static void rcu_report_qs_rsp(unsigned long flags)
1837 	__releases(rcu_get_root()->lock)
1838 {
1839 	raw_lockdep_assert_held_rcu_node(rcu_get_root());
1840 	WARN_ON_ONCE(!rcu_gp_in_progress());
1841 	WRITE_ONCE(rcu_state.gp_flags,
1842 		   READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
1843 	raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags);
1844 	rcu_gp_kthread_wake();
1845 }
1846 
1847 /*
1848  * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1849  * Allows quiescent states for a group of CPUs to be reported at one go
1850  * to the specified rcu_node structure, though all the CPUs in the group
1851  * must be represented by the same rcu_node structure (which need not be a
1852  * leaf rcu_node structure, though it often will be).  The gps parameter
1853  * is the grace-period snapshot, which means that the quiescent states
1854  * are valid only if rnp->gp_seq is equal to gps.  That structure's lock
1855  * must be held upon entry, and it is released before return.
1856  *
1857  * As a special case, if mask is zero, the bit-already-cleared check is
1858  * disabled.  This allows propagating quiescent state due to resumed tasks
1859  * during grace-period initialization.
1860  */
1861 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
1862 			      unsigned long gps, unsigned long flags)
1863 	__releases(rnp->lock)
1864 {
1865 	unsigned long oldmask = 0;
1866 	struct rcu_node *rnp_c;
1867 
1868 	raw_lockdep_assert_held_rcu_node(rnp);
1869 
1870 	/* Walk up the rcu_node hierarchy. */
1871 	for (;;) {
1872 		if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) {
1873 
1874 			/*
1875 			 * Our bit has already been cleared, or the
1876 			 * relevant grace period is already over, so done.
1877 			 */
1878 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1879 			return;
1880 		}
1881 		WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
1882 		WARN_ON_ONCE(!rcu_is_leaf_node(rnp) &&
1883 			     rcu_preempt_blocked_readers_cgp(rnp));
1884 		rnp->qsmask &= ~mask;
1885 		trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq,
1886 						 mask, rnp->qsmask, rnp->level,
1887 						 rnp->grplo, rnp->grphi,
1888 						 !!rnp->gp_tasks);
1889 		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1890 
1891 			/* Other bits still set at this level, so done. */
1892 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1893 			return;
1894 		}
1895 		rnp->completedqs = rnp->gp_seq;
1896 		mask = rnp->grpmask;
1897 		if (rnp->parent == NULL) {
1898 
1899 			/* No more levels.  Exit loop holding root lock. */
1900 
1901 			break;
1902 		}
1903 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1904 		rnp_c = rnp;
1905 		rnp = rnp->parent;
1906 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1907 		oldmask = rnp_c->qsmask;
1908 	}
1909 
1910 	/*
1911 	 * Get here if we are the last CPU to pass through a quiescent
1912 	 * state for this grace period.  Invoke rcu_report_qs_rsp()
1913 	 * to clean up and start the next grace period if one is needed.
1914 	 */
1915 	rcu_report_qs_rsp(flags); /* releases rnp->lock. */
1916 }
1917 
1918 /*
1919  * Record a quiescent state for all tasks that were previously queued
1920  * on the specified rcu_node structure and that were blocking the current
1921  * RCU grace period.  The caller must hold the corresponding rnp->lock with
1922  * irqs disabled, and this lock is released upon return, but irqs remain
1923  * disabled.
1924  */
1925 static void __maybe_unused
1926 rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
1927 	__releases(rnp->lock)
1928 {
1929 	unsigned long gps;
1930 	unsigned long mask;
1931 	struct rcu_node *rnp_p;
1932 
1933 	raw_lockdep_assert_held_rcu_node(rnp);
1934 	if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT_RCU)) ||
1935 	    WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) ||
1936 	    rnp->qsmask != 0) {
1937 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1938 		return;  /* Still need more quiescent states! */
1939 	}
1940 
1941 	rnp->completedqs = rnp->gp_seq;
1942 	rnp_p = rnp->parent;
1943 	if (rnp_p == NULL) {
1944 		/*
1945 		 * Only one rcu_node structure in the tree, so don't
1946 		 * try to report up to its nonexistent parent!
1947 		 */
1948 		rcu_report_qs_rsp(flags);
1949 		return;
1950 	}
1951 
1952 	/* Report up the rest of the hierarchy, tracking current ->gp_seq. */
1953 	gps = rnp->gp_seq;
1954 	mask = rnp->grpmask;
1955 	raw_spin_unlock_rcu_node(rnp);	/* irqs remain disabled. */
1956 	raw_spin_lock_rcu_node(rnp_p);	/* irqs already disabled. */
1957 	rcu_report_qs_rnp(mask, rnp_p, gps, flags);
1958 }
1959 
1960 /*
1961  * Record a quiescent state for the specified CPU to that CPU's rcu_data
1962  * structure.  This must be called from the specified CPU.
1963  */
1964 static void
1965 rcu_report_qs_rdp(int cpu, struct rcu_data *rdp)
1966 {
1967 	unsigned long flags;
1968 	unsigned long mask;
1969 	bool needwake = false;
1970 	const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
1971 			       rcu_segcblist_is_offloaded(&rdp->cblist);
1972 	struct rcu_node *rnp;
1973 
1974 	rnp = rdp->mynode;
1975 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1976 	if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq ||
1977 	    rdp->gpwrap) {
1978 
1979 		/*
1980 		 * The grace period in which this quiescent state was
1981 		 * recorded has ended, so don't report it upwards.
1982 		 * We will instead need a new quiescent state that lies
1983 		 * within the current grace period.
1984 		 */
1985 		rdp->cpu_no_qs.b.norm = true;	/* need qs for new gp. */
1986 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1987 		return;
1988 	}
1989 	mask = rdp->grpmask;
1990 	if ((rnp->qsmask & mask) == 0) {
1991 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1992 	} else {
1993 		/*
1994 		 * This GP can't end until cpu checks in, so all of our
1995 		 * callbacks can be processed during the next GP.
1996 		 */
1997 		if (!offloaded)
1998 			needwake = rcu_accelerate_cbs(rnp, rdp);
1999 
2000 		rcu_disable_urgency_upon_qs(rdp);
2001 		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2002 		/* ^^^ Released rnp->lock */
2003 		if (needwake)
2004 			rcu_gp_kthread_wake();
2005 	}
2006 }
2007 
2008 /*
2009  * Check to see if there is a new grace period of which this CPU
2010  * is not yet aware, and if so, set up local rcu_data state for it.
2011  * Otherwise, see if this CPU has just passed through its first
2012  * quiescent state for this grace period, and record that fact if so.
2013  */
2014 static void
2015 rcu_check_quiescent_state(struct rcu_data *rdp)
2016 {
2017 	/* Check for grace-period ends and beginnings. */
2018 	note_gp_changes(rdp);
2019 
2020 	/*
2021 	 * Does this CPU still need to do its part for current grace period?
2022 	 * If no, return and let the other CPUs do their part as well.
2023 	 */
2024 	if (!rdp->core_needs_qs)
2025 		return;
2026 
2027 	/*
2028 	 * Was there a quiescent state since the beginning of the grace
2029 	 * period? If no, then exit and wait for the next call.
2030 	 */
2031 	if (rdp->cpu_no_qs.b.norm)
2032 		return;
2033 
2034 	/*
2035 	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2036 	 * judge of that).
2037 	 */
2038 	rcu_report_qs_rdp(rdp->cpu, rdp);
2039 }
2040 
2041 /*
2042  * Near the end of the offline process.  Trace the fact that this CPU
2043  * is going offline.
2044  */
2045 int rcutree_dying_cpu(unsigned int cpu)
2046 {
2047 	bool blkd;
2048 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
2049 	struct rcu_node *rnp = rdp->mynode;
2050 
2051 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2052 		return 0;
2053 
2054 	blkd = !!(rnp->qsmask & rdp->grpmask);
2055 	trace_rcu_grace_period(rcu_state.name, rnp->gp_seq,
2056 			       blkd ? TPS("cpuofl") : TPS("cpuofl-bgp"));
2057 	return 0;
2058 }
2059 
2060 /*
2061  * All CPUs for the specified rcu_node structure have gone offline,
2062  * and all tasks that were preempted within an RCU read-side critical
2063  * section while running on one of those CPUs have since exited their RCU
2064  * read-side critical section.  Some other CPU is reporting this fact with
2065  * the specified rcu_node structure's ->lock held and interrupts disabled.
2066  * This function therefore goes up the tree of rcu_node structures,
2067  * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
2068  * the leaf rcu_node structure's ->qsmaskinit field has already been
2069  * updated.
2070  *
2071  * This function does check that the specified rcu_node structure has
2072  * all CPUs offline and no blocked tasks, so it is OK to invoke it
2073  * prematurely.  That said, invoking it after the fact will cost you
2074  * a needless lock acquisition.  So once it has done its work, don't
2075  * invoke it again.
2076  */
2077 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2078 {
2079 	long mask;
2080 	struct rcu_node *rnp = rnp_leaf;
2081 
2082 	raw_lockdep_assert_held_rcu_node(rnp_leaf);
2083 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2084 	    WARN_ON_ONCE(rnp_leaf->qsmaskinit) ||
2085 	    WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf)))
2086 		return;
2087 	for (;;) {
2088 		mask = rnp->grpmask;
2089 		rnp = rnp->parent;
2090 		if (!rnp)
2091 			break;
2092 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2093 		rnp->qsmaskinit &= ~mask;
2094 		/* Between grace periods, so better already be zero! */
2095 		WARN_ON_ONCE(rnp->qsmask);
2096 		if (rnp->qsmaskinit) {
2097 			raw_spin_unlock_rcu_node(rnp);
2098 			/* irqs remain disabled. */
2099 			return;
2100 		}
2101 		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2102 	}
2103 }
2104 
2105 /*
2106  * The CPU has been completely removed, and some other CPU is reporting
2107  * this fact from process context.  Do the remainder of the cleanup.
2108  * There can only be one CPU hotplug operation at a time, so no need for
2109  * explicit locking.
2110  */
2111 int rcutree_dead_cpu(unsigned int cpu)
2112 {
2113 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2114 	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2115 
2116 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2117 		return 0;
2118 
2119 	/* Adjust any no-longer-needed kthreads. */
2120 	rcu_boost_kthread_setaffinity(rnp, -1);
2121 	/* Do any needed no-CB deferred wakeups from this CPU. */
2122 	do_nocb_deferred_wakeup(per_cpu_ptr(&rcu_data, cpu));
2123 
2124 	// Stop-machine done, so allow nohz_full to disable tick.
2125 	tick_dep_clear(TICK_DEP_BIT_RCU);
2126 	return 0;
2127 }
2128 
2129 /*
2130  * Invoke any RCU callbacks that have made it to the end of their grace
2131  * period.  Thottle as specified by rdp->blimit.
2132  */
2133 static void rcu_do_batch(struct rcu_data *rdp)
2134 {
2135 	unsigned long flags;
2136 	const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2137 			       rcu_segcblist_is_offloaded(&rdp->cblist);
2138 	struct rcu_head *rhp;
2139 	struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2140 	long bl, count;
2141 	long pending, tlimit = 0;
2142 
2143 	/* If no callbacks are ready, just return. */
2144 	if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2145 		trace_rcu_batch_start(rcu_state.name,
2146 				      rcu_segcblist_n_cbs(&rdp->cblist), 0);
2147 		trace_rcu_batch_end(rcu_state.name, 0,
2148 				    !rcu_segcblist_empty(&rdp->cblist),
2149 				    need_resched(), is_idle_task(current),
2150 				    rcu_is_callbacks_kthread());
2151 		return;
2152 	}
2153 
2154 	/*
2155 	 * Extract the list of ready callbacks, disabling to prevent
2156 	 * races with call_rcu() from interrupt handlers.  Leave the
2157 	 * callback counts, as rcu_barrier() needs to be conservative.
2158 	 */
2159 	local_irq_save(flags);
2160 	rcu_nocb_lock(rdp);
2161 	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2162 	pending = rcu_segcblist_n_cbs(&rdp->cblist);
2163 	bl = max(rdp->blimit, pending >> rcu_divisor);
2164 	if (unlikely(bl > 100))
2165 		tlimit = local_clock() + rcu_resched_ns;
2166 	trace_rcu_batch_start(rcu_state.name,
2167 			      rcu_segcblist_n_cbs(&rdp->cblist), bl);
2168 	rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
2169 	if (offloaded)
2170 		rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2171 	rcu_nocb_unlock_irqrestore(rdp, flags);
2172 
2173 	/* Invoke callbacks. */
2174 	tick_dep_set_task(current, TICK_DEP_BIT_RCU);
2175 	rhp = rcu_cblist_dequeue(&rcl);
2176 	for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2177 		rcu_callback_t f;
2178 
2179 		debug_rcu_head_unqueue(rhp);
2180 
2181 		rcu_lock_acquire(&rcu_callback_map);
2182 		trace_rcu_invoke_callback(rcu_state.name, rhp);
2183 
2184 		f = rhp->func;
2185 		WRITE_ONCE(rhp->func, (rcu_callback_t)0L);
2186 		f(rhp);
2187 
2188 		rcu_lock_release(&rcu_callback_map);
2189 
2190 		/*
2191 		 * Stop only if limit reached and CPU has something to do.
2192 		 * Note: The rcl structure counts down from zero.
2193 		 */
2194 		if (-rcl.len >= bl && !offloaded &&
2195 		    (need_resched() ||
2196 		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2197 			break;
2198 		if (unlikely(tlimit)) {
2199 			/* only call local_clock() every 32 callbacks */
2200 			if (likely((-rcl.len & 31) || local_clock() < tlimit))
2201 				continue;
2202 			/* Exceeded the time limit, so leave. */
2203 			break;
2204 		}
2205 		if (offloaded) {
2206 			WARN_ON_ONCE(in_serving_softirq());
2207 			local_bh_enable();
2208 			lockdep_assert_irqs_enabled();
2209 			cond_resched_tasks_rcu_qs();
2210 			lockdep_assert_irqs_enabled();
2211 			local_bh_disable();
2212 		}
2213 	}
2214 
2215 	local_irq_save(flags);
2216 	rcu_nocb_lock(rdp);
2217 	count = -rcl.len;
2218 	trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(),
2219 			    is_idle_task(current), rcu_is_callbacks_kthread());
2220 
2221 	/* Update counts and requeue any remaining callbacks. */
2222 	rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
2223 	smp_mb(); /* List handling before counting for rcu_barrier(). */
2224 	rcu_segcblist_insert_count(&rdp->cblist, &rcl);
2225 
2226 	/* Reinstate batch limit if we have worked down the excess. */
2227 	count = rcu_segcblist_n_cbs(&rdp->cblist);
2228 	if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark)
2229 		rdp->blimit = blimit;
2230 
2231 	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2232 	if (count == 0 && rdp->qlen_last_fqs_check != 0) {
2233 		rdp->qlen_last_fqs_check = 0;
2234 		rdp->n_force_qs_snap = rcu_state.n_force_qs;
2235 	} else if (count < rdp->qlen_last_fqs_check - qhimark)
2236 		rdp->qlen_last_fqs_check = count;
2237 
2238 	/*
2239 	 * The following usually indicates a double call_rcu().  To track
2240 	 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
2241 	 */
2242 	WARN_ON_ONCE(count == 0 && !rcu_segcblist_empty(&rdp->cblist));
2243 	WARN_ON_ONCE(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2244 		     count != 0 && rcu_segcblist_empty(&rdp->cblist));
2245 
2246 	rcu_nocb_unlock_irqrestore(rdp, flags);
2247 
2248 	/* Re-invoke RCU core processing if there are callbacks remaining. */
2249 	if (!offloaded && rcu_segcblist_ready_cbs(&rdp->cblist))
2250 		invoke_rcu_core();
2251 	tick_dep_clear_task(current, TICK_DEP_BIT_RCU);
2252 }
2253 
2254 /*
2255  * This function is invoked from each scheduling-clock interrupt,
2256  * and checks to see if this CPU is in a non-context-switch quiescent
2257  * state, for example, user mode or idle loop.  It also schedules RCU
2258  * core processing.  If the current grace period has gone on too long,
2259  * it will ask the scheduler to manufacture a context switch for the sole
2260  * purpose of providing a providing the needed quiescent state.
2261  */
2262 void rcu_sched_clock_irq(int user)
2263 {
2264 	trace_rcu_utilization(TPS("Start scheduler-tick"));
2265 	raw_cpu_inc(rcu_data.ticks_this_gp);
2266 	/* The load-acquire pairs with the store-release setting to true. */
2267 	if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
2268 		/* Idle and userspace execution already are quiescent states. */
2269 		if (!rcu_is_cpu_rrupt_from_idle() && !user) {
2270 			set_tsk_need_resched(current);
2271 			set_preempt_need_resched();
2272 		}
2273 		__this_cpu_write(rcu_data.rcu_urgent_qs, false);
2274 	}
2275 	rcu_flavor_sched_clock_irq(user);
2276 	if (rcu_pending(user))
2277 		invoke_rcu_core();
2278 
2279 	trace_rcu_utilization(TPS("End scheduler-tick"));
2280 }
2281 
2282 /*
2283  * Scan the leaf rcu_node structures.  For each structure on which all
2284  * CPUs have reported a quiescent state and on which there are tasks
2285  * blocking the current grace period, initiate RCU priority boosting.
2286  * Otherwise, invoke the specified function to check dyntick state for
2287  * each CPU that has not yet reported a quiescent state.
2288  */
2289 static void force_qs_rnp(int (*f)(struct rcu_data *rdp))
2290 {
2291 	int cpu;
2292 	unsigned long flags;
2293 	unsigned long mask;
2294 	struct rcu_data *rdp;
2295 	struct rcu_node *rnp;
2296 
2297 	rcu_for_each_leaf_node(rnp) {
2298 		cond_resched_tasks_rcu_qs();
2299 		mask = 0;
2300 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2301 		if (rnp->qsmask == 0) {
2302 			if (!IS_ENABLED(CONFIG_PREEMPT_RCU) ||
2303 			    rcu_preempt_blocked_readers_cgp(rnp)) {
2304 				/*
2305 				 * No point in scanning bits because they
2306 				 * are all zero.  But we might need to
2307 				 * priority-boost blocked readers.
2308 				 */
2309 				rcu_initiate_boost(rnp, flags);
2310 				/* rcu_initiate_boost() releases rnp->lock */
2311 				continue;
2312 			}
2313 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2314 			continue;
2315 		}
2316 		for_each_leaf_node_cpu_mask(rnp, cpu, rnp->qsmask) {
2317 			rdp = per_cpu_ptr(&rcu_data, cpu);
2318 			if (f(rdp)) {
2319 				mask |= rdp->grpmask;
2320 				rcu_disable_urgency_upon_qs(rdp);
2321 			}
2322 		}
2323 		if (mask != 0) {
2324 			/* Idle/offline CPUs, report (releases rnp->lock). */
2325 			rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2326 		} else {
2327 			/* Nothing to do here, so just drop the lock. */
2328 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2329 		}
2330 	}
2331 }
2332 
2333 /*
2334  * Force quiescent states on reluctant CPUs, and also detect which
2335  * CPUs are in dyntick-idle mode.
2336  */
2337 void rcu_force_quiescent_state(void)
2338 {
2339 	unsigned long flags;
2340 	bool ret;
2341 	struct rcu_node *rnp;
2342 	struct rcu_node *rnp_old = NULL;
2343 
2344 	/* Funnel through hierarchy to reduce memory contention. */
2345 	rnp = __this_cpu_read(rcu_data.mynode);
2346 	for (; rnp != NULL; rnp = rnp->parent) {
2347 		ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) ||
2348 		       !raw_spin_trylock(&rnp->fqslock);
2349 		if (rnp_old != NULL)
2350 			raw_spin_unlock(&rnp_old->fqslock);
2351 		if (ret)
2352 			return;
2353 		rnp_old = rnp;
2354 	}
2355 	/* rnp_old == rcu_get_root(), rnp == NULL. */
2356 
2357 	/* Reached the root of the rcu_node tree, acquire lock. */
2358 	raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2359 	raw_spin_unlock(&rnp_old->fqslock);
2360 	if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
2361 		raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2362 		return;  /* Someone beat us to it. */
2363 	}
2364 	WRITE_ONCE(rcu_state.gp_flags,
2365 		   READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
2366 	raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2367 	rcu_gp_kthread_wake();
2368 }
2369 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
2370 
2371 /* Perform RCU core processing work for the current CPU.  */
2372 static __latent_entropy void rcu_core(void)
2373 {
2374 	unsigned long flags;
2375 	struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
2376 	struct rcu_node *rnp = rdp->mynode;
2377 	const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2378 			       rcu_segcblist_is_offloaded(&rdp->cblist);
2379 
2380 	if (cpu_is_offline(smp_processor_id()))
2381 		return;
2382 	trace_rcu_utilization(TPS("Start RCU core"));
2383 	WARN_ON_ONCE(!rdp->beenonline);
2384 
2385 	/* Report any deferred quiescent states if preemption enabled. */
2386 	if (!(preempt_count() & PREEMPT_MASK)) {
2387 		rcu_preempt_deferred_qs(current);
2388 	} else if (rcu_preempt_need_deferred_qs(current)) {
2389 		set_tsk_need_resched(current);
2390 		set_preempt_need_resched();
2391 	}
2392 
2393 	/* Update RCU state based on any recent quiescent states. */
2394 	rcu_check_quiescent_state(rdp);
2395 
2396 	/* No grace period and unregistered callbacks? */
2397 	if (!rcu_gp_in_progress() &&
2398 	    rcu_segcblist_is_enabled(&rdp->cblist) && !offloaded) {
2399 		local_irq_save(flags);
2400 		if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
2401 			rcu_accelerate_cbs_unlocked(rnp, rdp);
2402 		local_irq_restore(flags);
2403 	}
2404 
2405 	rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check());
2406 
2407 	/* If there are callbacks ready, invoke them. */
2408 	if (!offloaded && rcu_segcblist_ready_cbs(&rdp->cblist) &&
2409 	    likely(READ_ONCE(rcu_scheduler_fully_active)))
2410 		rcu_do_batch(rdp);
2411 
2412 	/* Do any needed deferred wakeups of rcuo kthreads. */
2413 	do_nocb_deferred_wakeup(rdp);
2414 	trace_rcu_utilization(TPS("End RCU core"));
2415 }
2416 
2417 static void rcu_core_si(struct softirq_action *h)
2418 {
2419 	rcu_core();
2420 }
2421 
2422 static void rcu_wake_cond(struct task_struct *t, int status)
2423 {
2424 	/*
2425 	 * If the thread is yielding, only wake it when this
2426 	 * is invoked from idle
2427 	 */
2428 	if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current)))
2429 		wake_up_process(t);
2430 }
2431 
2432 static void invoke_rcu_core_kthread(void)
2433 {
2434 	struct task_struct *t;
2435 	unsigned long flags;
2436 
2437 	local_irq_save(flags);
2438 	__this_cpu_write(rcu_data.rcu_cpu_has_work, 1);
2439 	t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task);
2440 	if (t != NULL && t != current)
2441 		rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status));
2442 	local_irq_restore(flags);
2443 }
2444 
2445 /*
2446  * Wake up this CPU's rcuc kthread to do RCU core processing.
2447  */
2448 static void invoke_rcu_core(void)
2449 {
2450 	if (!cpu_online(smp_processor_id()))
2451 		return;
2452 	if (use_softirq)
2453 		raise_softirq(RCU_SOFTIRQ);
2454 	else
2455 		invoke_rcu_core_kthread();
2456 }
2457 
2458 static void rcu_cpu_kthread_park(unsigned int cpu)
2459 {
2460 	per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
2461 }
2462 
2463 static int rcu_cpu_kthread_should_run(unsigned int cpu)
2464 {
2465 	return __this_cpu_read(rcu_data.rcu_cpu_has_work);
2466 }
2467 
2468 /*
2469  * Per-CPU kernel thread that invokes RCU callbacks.  This replaces
2470  * the RCU softirq used in configurations of RCU that do not support RCU
2471  * priority boosting.
2472  */
2473 static void rcu_cpu_kthread(unsigned int cpu)
2474 {
2475 	unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status);
2476 	char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work);
2477 	int spincnt;
2478 
2479 	trace_rcu_utilization(TPS("Start CPU kthread@rcu_run"));
2480 	for (spincnt = 0; spincnt < 10; spincnt++) {
2481 		local_bh_disable();
2482 		*statusp = RCU_KTHREAD_RUNNING;
2483 		local_irq_disable();
2484 		work = *workp;
2485 		*workp = 0;
2486 		local_irq_enable();
2487 		if (work)
2488 			rcu_core();
2489 		local_bh_enable();
2490 		if (*workp == 0) {
2491 			trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
2492 			*statusp = RCU_KTHREAD_WAITING;
2493 			return;
2494 		}
2495 	}
2496 	*statusp = RCU_KTHREAD_YIELDING;
2497 	trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
2498 	schedule_timeout_interruptible(2);
2499 	trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
2500 	*statusp = RCU_KTHREAD_WAITING;
2501 }
2502 
2503 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
2504 	.store			= &rcu_data.rcu_cpu_kthread_task,
2505 	.thread_should_run	= rcu_cpu_kthread_should_run,
2506 	.thread_fn		= rcu_cpu_kthread,
2507 	.thread_comm		= "rcuc/%u",
2508 	.setup			= rcu_cpu_kthread_setup,
2509 	.park			= rcu_cpu_kthread_park,
2510 };
2511 
2512 /*
2513  * Spawn per-CPU RCU core processing kthreads.
2514  */
2515 static int __init rcu_spawn_core_kthreads(void)
2516 {
2517 	int cpu;
2518 
2519 	for_each_possible_cpu(cpu)
2520 		per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0;
2521 	if (!IS_ENABLED(CONFIG_RCU_BOOST) && use_softirq)
2522 		return 0;
2523 	WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec),
2524 		  "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__);
2525 	return 0;
2526 }
2527 early_initcall(rcu_spawn_core_kthreads);
2528 
2529 /*
2530  * Handle any core-RCU processing required by a call_rcu() invocation.
2531  */
2532 static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head,
2533 			    unsigned long flags)
2534 {
2535 	/*
2536 	 * If called from an extended quiescent state, invoke the RCU
2537 	 * core in order to force a re-evaluation of RCU's idleness.
2538 	 */
2539 	if (!rcu_is_watching())
2540 		invoke_rcu_core();
2541 
2542 	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2543 	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2544 		return;
2545 
2546 	/*
2547 	 * Force the grace period if too many callbacks or too long waiting.
2548 	 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state()
2549 	 * if some other CPU has recently done so.  Also, don't bother
2550 	 * invoking rcu_force_quiescent_state() if the newly enqueued callback
2551 	 * is the only one waiting for a grace period to complete.
2552 	 */
2553 	if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2554 		     rdp->qlen_last_fqs_check + qhimark)) {
2555 
2556 		/* Are we ignoring a completed grace period? */
2557 		note_gp_changes(rdp);
2558 
2559 		/* Start a new grace period if one not already started. */
2560 		if (!rcu_gp_in_progress()) {
2561 			rcu_accelerate_cbs_unlocked(rdp->mynode, rdp);
2562 		} else {
2563 			/* Give the grace period a kick. */
2564 			rdp->blimit = DEFAULT_MAX_RCU_BLIMIT;
2565 			if (rcu_state.n_force_qs == rdp->n_force_qs_snap &&
2566 			    rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
2567 				rcu_force_quiescent_state();
2568 			rdp->n_force_qs_snap = rcu_state.n_force_qs;
2569 			rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2570 		}
2571 	}
2572 }
2573 
2574 /*
2575  * RCU callback function to leak a callback.
2576  */
2577 static void rcu_leak_callback(struct rcu_head *rhp)
2578 {
2579 }
2580 
2581 /*
2582  * Helper function for call_rcu() and friends.  The cpu argument will
2583  * normally be -1, indicating "currently running CPU".  It may specify
2584  * a CPU only if that CPU is a no-CBs CPU.  Currently, only rcu_barrier()
2585  * is expected to specify a CPU.
2586  */
2587 static void
2588 __call_rcu(struct rcu_head *head, rcu_callback_t func)
2589 {
2590 	unsigned long flags;
2591 	struct rcu_data *rdp;
2592 	bool was_alldone;
2593 
2594 	/* Misaligned rcu_head! */
2595 	WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
2596 
2597 	if (debug_rcu_head_queue(head)) {
2598 		/*
2599 		 * Probable double call_rcu(), so leak the callback.
2600 		 * Use rcu:rcu_callback trace event to find the previous
2601 		 * time callback was passed to __call_rcu().
2602 		 */
2603 		WARN_ONCE(1, "__call_rcu(): Double-freed CB %p->%pS()!!!\n",
2604 			  head, head->func);
2605 		WRITE_ONCE(head->func, rcu_leak_callback);
2606 		return;
2607 	}
2608 	head->func = func;
2609 	head->next = NULL;
2610 	local_irq_save(flags);
2611 	rdp = this_cpu_ptr(&rcu_data);
2612 
2613 	/* Add the callback to our list. */
2614 	if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist))) {
2615 		// This can trigger due to call_rcu() from offline CPU:
2616 		WARN_ON_ONCE(rcu_scheduler_active != RCU_SCHEDULER_INACTIVE);
2617 		WARN_ON_ONCE(!rcu_is_watching());
2618 		// Very early boot, before rcu_init().  Initialize if needed
2619 		// and then drop through to queue the callback.
2620 		if (rcu_segcblist_empty(&rdp->cblist))
2621 			rcu_segcblist_init(&rdp->cblist);
2622 	}
2623 
2624 	if (rcu_nocb_try_bypass(rdp, head, &was_alldone, flags))
2625 		return; // Enqueued onto ->nocb_bypass, so just leave.
2626 	/* If we get here, rcu_nocb_try_bypass() acquired ->nocb_lock. */
2627 	rcu_segcblist_enqueue(&rdp->cblist, head);
2628 	if (__is_kfree_rcu_offset((unsigned long)func))
2629 		trace_rcu_kfree_callback(rcu_state.name, head,
2630 					 (unsigned long)func,
2631 					 rcu_segcblist_n_cbs(&rdp->cblist));
2632 	else
2633 		trace_rcu_callback(rcu_state.name, head,
2634 				   rcu_segcblist_n_cbs(&rdp->cblist));
2635 
2636 	/* Go handle any RCU core processing required. */
2637 	if (IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2638 	    unlikely(rcu_segcblist_is_offloaded(&rdp->cblist))) {
2639 		__call_rcu_nocb_wake(rdp, was_alldone, flags); /* unlocks */
2640 	} else {
2641 		__call_rcu_core(rdp, head, flags);
2642 		local_irq_restore(flags);
2643 	}
2644 }
2645 
2646 /**
2647  * call_rcu() - Queue an RCU callback for invocation after a grace period.
2648  * @head: structure to be used for queueing the RCU updates.
2649  * @func: actual callback function to be invoked after the grace period
2650  *
2651  * The callback function will be invoked some time after a full grace
2652  * period elapses, in other words after all pre-existing RCU read-side
2653  * critical sections have completed.  However, the callback function
2654  * might well execute concurrently with RCU read-side critical sections
2655  * that started after call_rcu() was invoked.  RCU read-side critical
2656  * sections are delimited by rcu_read_lock() and rcu_read_unlock(), and
2657  * may be nested.  In addition, regions of code across which interrupts,
2658  * preemption, or softirqs have been disabled also serve as RCU read-side
2659  * critical sections.  This includes hardware interrupt handlers, softirq
2660  * handlers, and NMI handlers.
2661  *
2662  * Note that all CPUs must agree that the grace period extended beyond
2663  * all pre-existing RCU read-side critical section.  On systems with more
2664  * than one CPU, this means that when "func()" is invoked, each CPU is
2665  * guaranteed to have executed a full memory barrier since the end of its
2666  * last RCU read-side critical section whose beginning preceded the call
2667  * to call_rcu().  It also means that each CPU executing an RCU read-side
2668  * critical section that continues beyond the start of "func()" must have
2669  * executed a memory barrier after the call_rcu() but before the beginning
2670  * of that RCU read-side critical section.  Note that these guarantees
2671  * include CPUs that are offline, idle, or executing in user mode, as
2672  * well as CPUs that are executing in the kernel.
2673  *
2674  * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
2675  * resulting RCU callback function "func()", then both CPU A and CPU B are
2676  * guaranteed to execute a full memory barrier during the time interval
2677  * between the call to call_rcu() and the invocation of "func()" -- even
2678  * if CPU A and CPU B are the same CPU (but again only if the system has
2679  * more than one CPU).
2680  */
2681 void call_rcu(struct rcu_head *head, rcu_callback_t func)
2682 {
2683 	__call_rcu(head, func);
2684 }
2685 EXPORT_SYMBOL_GPL(call_rcu);
2686 
2687 
2688 /* Maximum number of jiffies to wait before draining a batch. */
2689 #define KFREE_DRAIN_JIFFIES (HZ / 50)
2690 #define KFREE_N_BATCHES 2
2691 
2692 /**
2693  * struct kfree_rcu_cpu_work - single batch of kfree_rcu() requests
2694  * @rcu_work: Let queue_rcu_work() invoke workqueue handler after grace period
2695  * @head_free: List of kfree_rcu() objects waiting for a grace period
2696  * @krcp: Pointer to @kfree_rcu_cpu structure
2697  */
2698 
2699 struct kfree_rcu_cpu_work {
2700 	struct rcu_work rcu_work;
2701 	struct rcu_head *head_free;
2702 	struct kfree_rcu_cpu *krcp;
2703 };
2704 
2705 /**
2706  * struct kfree_rcu_cpu - batch up kfree_rcu() requests for RCU grace period
2707  * @head: List of kfree_rcu() objects not yet waiting for a grace period
2708  * @krw_arr: Array of batches of kfree_rcu() objects waiting for a grace period
2709  * @lock: Synchronize access to this structure
2710  * @monitor_work: Promote @head to @head_free after KFREE_DRAIN_JIFFIES
2711  * @monitor_todo: Tracks whether a @monitor_work delayed work is pending
2712  * @initialized: The @lock and @rcu_work fields have been initialized
2713  *
2714  * This is a per-CPU structure.  The reason that it is not included in
2715  * the rcu_data structure is to permit this code to be extracted from
2716  * the RCU files.  Such extraction could allow further optimization of
2717  * the interactions with the slab allocators.
2718  */
2719 struct kfree_rcu_cpu {
2720 	struct rcu_head *head;
2721 	struct kfree_rcu_cpu_work krw_arr[KFREE_N_BATCHES];
2722 	spinlock_t lock;
2723 	struct delayed_work monitor_work;
2724 	bool monitor_todo;
2725 	bool initialized;
2726 };
2727 
2728 static DEFINE_PER_CPU(struct kfree_rcu_cpu, krc);
2729 
2730 /*
2731  * This function is invoked in workqueue context after a grace period.
2732  * It frees all the objects queued on ->head_free.
2733  */
2734 static void kfree_rcu_work(struct work_struct *work)
2735 {
2736 	unsigned long flags;
2737 	struct rcu_head *head, *next;
2738 	struct kfree_rcu_cpu *krcp;
2739 	struct kfree_rcu_cpu_work *krwp;
2740 
2741 	krwp = container_of(to_rcu_work(work),
2742 			    struct kfree_rcu_cpu_work, rcu_work);
2743 	krcp = krwp->krcp;
2744 	spin_lock_irqsave(&krcp->lock, flags);
2745 	head = krwp->head_free;
2746 	krwp->head_free = NULL;
2747 	spin_unlock_irqrestore(&krcp->lock, flags);
2748 
2749 	// List "head" is now private, so traverse locklessly.
2750 	for (; head; head = next) {
2751 		unsigned long offset = (unsigned long)head->func;
2752 
2753 		next = head->next;
2754 		// Potentially optimize with kfree_bulk in future.
2755 		debug_rcu_head_unqueue(head);
2756 		rcu_lock_acquire(&rcu_callback_map);
2757 		trace_rcu_invoke_kfree_callback(rcu_state.name, head, offset);
2758 
2759 		if (!WARN_ON_ONCE(!__is_kfree_rcu_offset(offset))) {
2760 			/* Could be optimized with kfree_bulk() in future. */
2761 			kfree((void *)head - offset);
2762 		}
2763 
2764 		rcu_lock_release(&rcu_callback_map);
2765 		cond_resched_tasks_rcu_qs();
2766 	}
2767 }
2768 
2769 /*
2770  * Schedule the kfree batch RCU work to run in workqueue context after a GP.
2771  *
2772  * This function is invoked by kfree_rcu_monitor() when the KFREE_DRAIN_JIFFIES
2773  * timeout has been reached.
2774  */
2775 static inline bool queue_kfree_rcu_work(struct kfree_rcu_cpu *krcp)
2776 {
2777 	int i;
2778 	struct kfree_rcu_cpu_work *krwp = NULL;
2779 
2780 	lockdep_assert_held(&krcp->lock);
2781 	for (i = 0; i < KFREE_N_BATCHES; i++)
2782 		if (!krcp->krw_arr[i].head_free) {
2783 			krwp = &(krcp->krw_arr[i]);
2784 			break;
2785 		}
2786 
2787 	// If a previous RCU batch is in progress, we cannot immediately
2788 	// queue another one, so return false to tell caller to retry.
2789 	if (!krwp)
2790 		return false;
2791 
2792 	krwp->head_free = krcp->head;
2793 	krcp->head = NULL;
2794 	INIT_RCU_WORK(&krwp->rcu_work, kfree_rcu_work);
2795 	queue_rcu_work(system_wq, &krwp->rcu_work);
2796 	return true;
2797 }
2798 
2799 static inline void kfree_rcu_drain_unlock(struct kfree_rcu_cpu *krcp,
2800 					  unsigned long flags)
2801 {
2802 	// Attempt to start a new batch.
2803 	krcp->monitor_todo = false;
2804 	if (queue_kfree_rcu_work(krcp)) {
2805 		// Success! Our job is done here.
2806 		spin_unlock_irqrestore(&krcp->lock, flags);
2807 		return;
2808 	}
2809 
2810 	// Previous RCU batch still in progress, try again later.
2811 	krcp->monitor_todo = true;
2812 	schedule_delayed_work(&krcp->monitor_work, KFREE_DRAIN_JIFFIES);
2813 	spin_unlock_irqrestore(&krcp->lock, flags);
2814 }
2815 
2816 /*
2817  * This function is invoked after the KFREE_DRAIN_JIFFIES timeout.
2818  * It invokes kfree_rcu_drain_unlock() to attempt to start another batch.
2819  */
2820 static void kfree_rcu_monitor(struct work_struct *work)
2821 {
2822 	unsigned long flags;
2823 	struct kfree_rcu_cpu *krcp = container_of(work, struct kfree_rcu_cpu,
2824 						 monitor_work.work);
2825 
2826 	spin_lock_irqsave(&krcp->lock, flags);
2827 	if (krcp->monitor_todo)
2828 		kfree_rcu_drain_unlock(krcp, flags);
2829 	else
2830 		spin_unlock_irqrestore(&krcp->lock, flags);
2831 }
2832 
2833 /*
2834  * Queue a request for lazy invocation of kfree() after a grace period.
2835  *
2836  * Each kfree_call_rcu() request is added to a batch. The batch will be drained
2837  * every KFREE_DRAIN_JIFFIES number of jiffies. All the objects in the batch
2838  * will be kfree'd in workqueue context. This allows us to:
2839  *
2840  * 1.	Batch requests together to reduce the number of grace periods during
2841  *	heavy kfree_rcu() load.
2842  *
2843  * 2.	It makes it possible to use kfree_bulk() on a large number of
2844  *	kfree_rcu() requests thus reducing cache misses and the per-object
2845  *	overhead of kfree().
2846  */
2847 void kfree_call_rcu(struct rcu_head *head, rcu_callback_t func)
2848 {
2849 	unsigned long flags;
2850 	struct kfree_rcu_cpu *krcp;
2851 
2852 	local_irq_save(flags);	// For safely calling this_cpu_ptr().
2853 	krcp = this_cpu_ptr(&krc);
2854 	if (krcp->initialized)
2855 		spin_lock(&krcp->lock);
2856 
2857 	// Queue the object but don't yet schedule the batch.
2858 	if (debug_rcu_head_queue(head)) {
2859 		// Probable double kfree_rcu(), just leak.
2860 		WARN_ONCE(1, "%s(): Double-freed call. rcu_head %p\n",
2861 			  __func__, head);
2862 		goto unlock_return;
2863 	}
2864 	head->func = func;
2865 	head->next = krcp->head;
2866 	krcp->head = head;
2867 
2868 	// Set timer to drain after KFREE_DRAIN_JIFFIES.
2869 	if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING &&
2870 	    !krcp->monitor_todo) {
2871 		krcp->monitor_todo = true;
2872 		schedule_delayed_work(&krcp->monitor_work, KFREE_DRAIN_JIFFIES);
2873 	}
2874 
2875 unlock_return:
2876 	if (krcp->initialized)
2877 		spin_unlock(&krcp->lock);
2878 	local_irq_restore(flags);
2879 }
2880 EXPORT_SYMBOL_GPL(kfree_call_rcu);
2881 
2882 void __init kfree_rcu_scheduler_running(void)
2883 {
2884 	int cpu;
2885 	unsigned long flags;
2886 
2887 	for_each_online_cpu(cpu) {
2888 		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
2889 
2890 		spin_lock_irqsave(&krcp->lock, flags);
2891 		if (!krcp->head || krcp->monitor_todo) {
2892 			spin_unlock_irqrestore(&krcp->lock, flags);
2893 			continue;
2894 		}
2895 		krcp->monitor_todo = true;
2896 		schedule_delayed_work_on(cpu, &krcp->monitor_work,
2897 					 KFREE_DRAIN_JIFFIES);
2898 		spin_unlock_irqrestore(&krcp->lock, flags);
2899 	}
2900 }
2901 
2902 /*
2903  * During early boot, any blocking grace-period wait automatically
2904  * implies a grace period.  Later on, this is never the case for PREEMPTION.
2905  *
2906  * Howevr, because a context switch is a grace period for !PREEMPTION, any
2907  * blocking grace-period wait automatically implies a grace period if
2908  * there is only one CPU online at any point time during execution of
2909  * either synchronize_rcu() or synchronize_rcu_expedited().  It is OK to
2910  * occasionally incorrectly indicate that there are multiple CPUs online
2911  * when there was in fact only one the whole time, as this just adds some
2912  * overhead: RCU still operates correctly.
2913  */
2914 static int rcu_blocking_is_gp(void)
2915 {
2916 	int ret;
2917 
2918 	if (IS_ENABLED(CONFIG_PREEMPTION))
2919 		return rcu_scheduler_active == RCU_SCHEDULER_INACTIVE;
2920 	might_sleep();  /* Check for RCU read-side critical section. */
2921 	preempt_disable();
2922 	ret = num_online_cpus() <= 1;
2923 	preempt_enable();
2924 	return ret;
2925 }
2926 
2927 /**
2928  * synchronize_rcu - wait until a grace period has elapsed.
2929  *
2930  * Control will return to the caller some time after a full grace
2931  * period has elapsed, in other words after all currently executing RCU
2932  * read-side critical sections have completed.  Note, however, that
2933  * upon return from synchronize_rcu(), the caller might well be executing
2934  * concurrently with new RCU read-side critical sections that began while
2935  * synchronize_rcu() was waiting.  RCU read-side critical sections are
2936  * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
2937  * In addition, regions of code across which interrupts, preemption, or
2938  * softirqs have been disabled also serve as RCU read-side critical
2939  * sections.  This includes hardware interrupt handlers, softirq handlers,
2940  * and NMI handlers.
2941  *
2942  * Note that this guarantee implies further memory-ordering guarantees.
2943  * On systems with more than one CPU, when synchronize_rcu() returns,
2944  * each CPU is guaranteed to have executed a full memory barrier since
2945  * the end of its last RCU read-side critical section whose beginning
2946  * preceded the call to synchronize_rcu().  In addition, each CPU having
2947  * an RCU read-side critical section that extends beyond the return from
2948  * synchronize_rcu() is guaranteed to have executed a full memory barrier
2949  * after the beginning of synchronize_rcu() and before the beginning of
2950  * that RCU read-side critical section.  Note that these guarantees include
2951  * CPUs that are offline, idle, or executing in user mode, as well as CPUs
2952  * that are executing in the kernel.
2953  *
2954  * Furthermore, if CPU A invoked synchronize_rcu(), which returned
2955  * to its caller on CPU B, then both CPU A and CPU B are guaranteed
2956  * to have executed a full memory barrier during the execution of
2957  * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but
2958  * again only if the system has more than one CPU).
2959  */
2960 void synchronize_rcu(void)
2961 {
2962 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
2963 			 lock_is_held(&rcu_lock_map) ||
2964 			 lock_is_held(&rcu_sched_lock_map),
2965 			 "Illegal synchronize_rcu() in RCU read-side critical section");
2966 	if (rcu_blocking_is_gp())
2967 		return;
2968 	if (rcu_gp_is_expedited())
2969 		synchronize_rcu_expedited();
2970 	else
2971 		wait_rcu_gp(call_rcu);
2972 }
2973 EXPORT_SYMBOL_GPL(synchronize_rcu);
2974 
2975 /**
2976  * get_state_synchronize_rcu - Snapshot current RCU state
2977  *
2978  * Returns a cookie that is used by a later call to cond_synchronize_rcu()
2979  * to determine whether or not a full grace period has elapsed in the
2980  * meantime.
2981  */
2982 unsigned long get_state_synchronize_rcu(void)
2983 {
2984 	/*
2985 	 * Any prior manipulation of RCU-protected data must happen
2986 	 * before the load from ->gp_seq.
2987 	 */
2988 	smp_mb();  /* ^^^ */
2989 	return rcu_seq_snap(&rcu_state.gp_seq);
2990 }
2991 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
2992 
2993 /**
2994  * cond_synchronize_rcu - Conditionally wait for an RCU grace period
2995  *
2996  * @oldstate: return value from earlier call to get_state_synchronize_rcu()
2997  *
2998  * If a full RCU grace period has elapsed since the earlier call to
2999  * get_state_synchronize_rcu(), just return.  Otherwise, invoke
3000  * synchronize_rcu() to wait for a full grace period.
3001  *
3002  * Yes, this function does not take counter wrap into account.  But
3003  * counter wrap is harmless.  If the counter wraps, we have waited for
3004  * more than 2 billion grace periods (and way more on a 64-bit system!),
3005  * so waiting for one additional grace period should be just fine.
3006  */
3007 void cond_synchronize_rcu(unsigned long oldstate)
3008 {
3009 	if (!rcu_seq_done(&rcu_state.gp_seq, oldstate))
3010 		synchronize_rcu();
3011 	else
3012 		smp_mb(); /* Ensure GP ends before subsequent accesses. */
3013 }
3014 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3015 
3016 /*
3017  * Check to see if there is any immediate RCU-related work to be done by
3018  * the current CPU, returning 1 if so and zero otherwise.  The checks are
3019  * in order of increasing expense: checks that can be carried out against
3020  * CPU-local state are performed first.  However, we must check for CPU
3021  * stalls first, else we might not get a chance.
3022  */
3023 static int rcu_pending(int user)
3024 {
3025 	bool gp_in_progress;
3026 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
3027 	struct rcu_node *rnp = rdp->mynode;
3028 
3029 	/* Check for CPU stalls, if enabled. */
3030 	check_cpu_stall(rdp);
3031 
3032 	/* Does this CPU need a deferred NOCB wakeup? */
3033 	if (rcu_nocb_need_deferred_wakeup(rdp))
3034 		return 1;
3035 
3036 	/* Is this a nohz_full CPU in userspace or idle?  (Ignore RCU if so.) */
3037 	if ((user || rcu_is_cpu_rrupt_from_idle()) && rcu_nohz_full_cpu())
3038 		return 0;
3039 
3040 	/* Is the RCU core waiting for a quiescent state from this CPU? */
3041 	gp_in_progress = rcu_gp_in_progress();
3042 	if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm && gp_in_progress)
3043 		return 1;
3044 
3045 	/* Does this CPU have callbacks ready to invoke? */
3046 	if (rcu_segcblist_ready_cbs(&rdp->cblist))
3047 		return 1;
3048 
3049 	/* Has RCU gone idle with this CPU needing another grace period? */
3050 	if (!gp_in_progress && rcu_segcblist_is_enabled(&rdp->cblist) &&
3051 	    (!IS_ENABLED(CONFIG_RCU_NOCB_CPU) ||
3052 	     !rcu_segcblist_is_offloaded(&rdp->cblist)) &&
3053 	    !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
3054 		return 1;
3055 
3056 	/* Have RCU grace period completed or started?  */
3057 	if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq ||
3058 	    unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */
3059 		return 1;
3060 
3061 	/* nothing to do */
3062 	return 0;
3063 }
3064 
3065 /*
3066  * Helper function for rcu_barrier() tracing.  If tracing is disabled,
3067  * the compiler is expected to optimize this away.
3068  */
3069 static void rcu_barrier_trace(const char *s, int cpu, unsigned long done)
3070 {
3071 	trace_rcu_barrier(rcu_state.name, s, cpu,
3072 			  atomic_read(&rcu_state.barrier_cpu_count), done);
3073 }
3074 
3075 /*
3076  * RCU callback function for rcu_barrier().  If we are last, wake
3077  * up the task executing rcu_barrier().
3078  */
3079 static void rcu_barrier_callback(struct rcu_head *rhp)
3080 {
3081 	if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) {
3082 		rcu_barrier_trace(TPS("LastCB"), -1,
3083 				  rcu_state.barrier_sequence);
3084 		complete(&rcu_state.barrier_completion);
3085 	} else {
3086 		rcu_barrier_trace(TPS("CB"), -1, rcu_state.barrier_sequence);
3087 	}
3088 }
3089 
3090 /*
3091  * Called with preemption disabled, and from cross-cpu IRQ context.
3092  */
3093 static void rcu_barrier_func(void *unused)
3094 {
3095 	struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
3096 
3097 	rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence);
3098 	rdp->barrier_head.func = rcu_barrier_callback;
3099 	debug_rcu_head_queue(&rdp->barrier_head);
3100 	rcu_nocb_lock(rdp);
3101 	WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies));
3102 	if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head)) {
3103 		atomic_inc(&rcu_state.barrier_cpu_count);
3104 	} else {
3105 		debug_rcu_head_unqueue(&rdp->barrier_head);
3106 		rcu_barrier_trace(TPS("IRQNQ"), -1,
3107 				  rcu_state.barrier_sequence);
3108 	}
3109 	rcu_nocb_unlock(rdp);
3110 }
3111 
3112 /**
3113  * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
3114  *
3115  * Note that this primitive does not necessarily wait for an RCU grace period
3116  * to complete.  For example, if there are no RCU callbacks queued anywhere
3117  * in the system, then rcu_barrier() is within its rights to return
3118  * immediately, without waiting for anything, much less an RCU grace period.
3119  */
3120 void rcu_barrier(void)
3121 {
3122 	int cpu;
3123 	struct rcu_data *rdp;
3124 	unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence);
3125 
3126 	rcu_barrier_trace(TPS("Begin"), -1, s);
3127 
3128 	/* Take mutex to serialize concurrent rcu_barrier() requests. */
3129 	mutex_lock(&rcu_state.barrier_mutex);
3130 
3131 	/* Did someone else do our work for us? */
3132 	if (rcu_seq_done(&rcu_state.barrier_sequence, s)) {
3133 		rcu_barrier_trace(TPS("EarlyExit"), -1,
3134 				  rcu_state.barrier_sequence);
3135 		smp_mb(); /* caller's subsequent code after above check. */
3136 		mutex_unlock(&rcu_state.barrier_mutex);
3137 		return;
3138 	}
3139 
3140 	/* Mark the start of the barrier operation. */
3141 	rcu_seq_start(&rcu_state.barrier_sequence);
3142 	rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence);
3143 
3144 	/*
3145 	 * Initialize the count to one rather than to zero in order to
3146 	 * avoid a too-soon return to zero in case of a short grace period
3147 	 * (or preemption of this task).  Exclude CPU-hotplug operations
3148 	 * to ensure that no offline CPU has callbacks queued.
3149 	 */
3150 	init_completion(&rcu_state.barrier_completion);
3151 	atomic_set(&rcu_state.barrier_cpu_count, 1);
3152 	get_online_cpus();
3153 
3154 	/*
3155 	 * Force each CPU with callbacks to register a new callback.
3156 	 * When that callback is invoked, we will know that all of the
3157 	 * corresponding CPU's preceding callbacks have been invoked.
3158 	 */
3159 	for_each_possible_cpu(cpu) {
3160 		rdp = per_cpu_ptr(&rcu_data, cpu);
3161 		if (!cpu_online(cpu) &&
3162 		    !rcu_segcblist_is_offloaded(&rdp->cblist))
3163 			continue;
3164 		if (rcu_segcblist_n_cbs(&rdp->cblist)) {
3165 			rcu_barrier_trace(TPS("OnlineQ"), cpu,
3166 					  rcu_state.barrier_sequence);
3167 			smp_call_function_single(cpu, rcu_barrier_func, NULL, 1);
3168 		} else {
3169 			rcu_barrier_trace(TPS("OnlineNQ"), cpu,
3170 					  rcu_state.barrier_sequence);
3171 		}
3172 	}
3173 	put_online_cpus();
3174 
3175 	/*
3176 	 * Now that we have an rcu_barrier_callback() callback on each
3177 	 * CPU, and thus each counted, remove the initial count.
3178 	 */
3179 	if (atomic_dec_and_test(&rcu_state.barrier_cpu_count))
3180 		complete(&rcu_state.barrier_completion);
3181 
3182 	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3183 	wait_for_completion(&rcu_state.barrier_completion);
3184 
3185 	/* Mark the end of the barrier operation. */
3186 	rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence);
3187 	rcu_seq_end(&rcu_state.barrier_sequence);
3188 
3189 	/* Other rcu_barrier() invocations can now safely proceed. */
3190 	mutex_unlock(&rcu_state.barrier_mutex);
3191 }
3192 EXPORT_SYMBOL_GPL(rcu_barrier);
3193 
3194 /*
3195  * Propagate ->qsinitmask bits up the rcu_node tree to account for the
3196  * first CPU in a given leaf rcu_node structure coming online.  The caller
3197  * must hold the corresponding leaf rcu_node ->lock with interrrupts
3198  * disabled.
3199  */
3200 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
3201 {
3202 	long mask;
3203 	long oldmask;
3204 	struct rcu_node *rnp = rnp_leaf;
3205 
3206 	raw_lockdep_assert_held_rcu_node(rnp_leaf);
3207 	WARN_ON_ONCE(rnp->wait_blkd_tasks);
3208 	for (;;) {
3209 		mask = rnp->grpmask;
3210 		rnp = rnp->parent;
3211 		if (rnp == NULL)
3212 			return;
3213 		raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
3214 		oldmask = rnp->qsmaskinit;
3215 		rnp->qsmaskinit |= mask;
3216 		raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
3217 		if (oldmask)
3218 			return;
3219 	}
3220 }
3221 
3222 /*
3223  * Do boot-time initialization of a CPU's per-CPU RCU data.
3224  */
3225 static void __init
3226 rcu_boot_init_percpu_data(int cpu)
3227 {
3228 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3229 
3230 	/* Set up local state, ensuring consistent view of global state. */
3231 	rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
3232 	WARN_ON_ONCE(rdp->dynticks_nesting != 1);
3233 	WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp)));
3234 	rdp->rcu_ofl_gp_seq = rcu_state.gp_seq;
3235 	rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED;
3236 	rdp->rcu_onl_gp_seq = rcu_state.gp_seq;
3237 	rdp->rcu_onl_gp_flags = RCU_GP_CLEANED;
3238 	rdp->cpu = cpu;
3239 	rcu_boot_init_nocb_percpu_data(rdp);
3240 }
3241 
3242 /*
3243  * Invoked early in the CPU-online process, when pretty much all services
3244  * are available.  The incoming CPU is not present.
3245  *
3246  * Initializes a CPU's per-CPU RCU data.  Note that only one online or
3247  * offline event can be happening at a given time.  Note also that we can
3248  * accept some slop in the rsp->gp_seq access due to the fact that this
3249  * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet.
3250  * And any offloaded callbacks are being numbered elsewhere.
3251  */
3252 int rcutree_prepare_cpu(unsigned int cpu)
3253 {
3254 	unsigned long flags;
3255 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3256 	struct rcu_node *rnp = rcu_get_root();
3257 
3258 	/* Set up local state, ensuring consistent view of global state. */
3259 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3260 	rdp->qlen_last_fqs_check = 0;
3261 	rdp->n_force_qs_snap = rcu_state.n_force_qs;
3262 	rdp->blimit = blimit;
3263 	if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */
3264 	    !rcu_segcblist_is_offloaded(&rdp->cblist))
3265 		rcu_segcblist_init(&rdp->cblist);  /* Re-enable callbacks. */
3266 	rdp->dynticks_nesting = 1;	/* CPU not up, no tearing. */
3267 	rcu_dynticks_eqs_online();
3268 	raw_spin_unlock_rcu_node(rnp);		/* irqs remain disabled. */
3269 
3270 	/*
3271 	 * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
3272 	 * propagation up the rcu_node tree will happen at the beginning
3273 	 * of the next grace period.
3274 	 */
3275 	rnp = rdp->mynode;
3276 	raw_spin_lock_rcu_node(rnp);		/* irqs already disabled. */
3277 	rdp->beenonline = true;	 /* We have now been online. */
3278 	rdp->gp_seq = rnp->gp_seq;
3279 	rdp->gp_seq_needed = rnp->gp_seq;
3280 	rdp->cpu_no_qs.b.norm = true;
3281 	rdp->core_needs_qs = false;
3282 	rdp->rcu_iw_pending = false;
3283 	rdp->rcu_iw_gp_seq = rnp->gp_seq - 1;
3284 	trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl"));
3285 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3286 	rcu_prepare_kthreads(cpu);
3287 	rcu_spawn_cpu_nocb_kthread(cpu);
3288 
3289 	return 0;
3290 }
3291 
3292 /*
3293  * Update RCU priority boot kthread affinity for CPU-hotplug changes.
3294  */
3295 static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
3296 {
3297 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3298 
3299 	rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
3300 }
3301 
3302 /*
3303  * Near the end of the CPU-online process.  Pretty much all services
3304  * enabled, and the CPU is now very much alive.
3305  */
3306 int rcutree_online_cpu(unsigned int cpu)
3307 {
3308 	unsigned long flags;
3309 	struct rcu_data *rdp;
3310 	struct rcu_node *rnp;
3311 
3312 	rdp = per_cpu_ptr(&rcu_data, cpu);
3313 	rnp = rdp->mynode;
3314 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3315 	rnp->ffmask |= rdp->grpmask;
3316 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3317 	if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
3318 		return 0; /* Too early in boot for scheduler work. */
3319 	sync_sched_exp_online_cleanup(cpu);
3320 	rcutree_affinity_setting(cpu, -1);
3321 
3322 	// Stop-machine done, so allow nohz_full to disable tick.
3323 	tick_dep_clear(TICK_DEP_BIT_RCU);
3324 	return 0;
3325 }
3326 
3327 /*
3328  * Near the beginning of the process.  The CPU is still very much alive
3329  * with pretty much all services enabled.
3330  */
3331 int rcutree_offline_cpu(unsigned int cpu)
3332 {
3333 	unsigned long flags;
3334 	struct rcu_data *rdp;
3335 	struct rcu_node *rnp;
3336 
3337 	rdp = per_cpu_ptr(&rcu_data, cpu);
3338 	rnp = rdp->mynode;
3339 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3340 	rnp->ffmask &= ~rdp->grpmask;
3341 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3342 
3343 	rcutree_affinity_setting(cpu, cpu);
3344 
3345 	// nohz_full CPUs need the tick for stop-machine to work quickly
3346 	tick_dep_set(TICK_DEP_BIT_RCU);
3347 	return 0;
3348 }
3349 
3350 static DEFINE_PER_CPU(int, rcu_cpu_started);
3351 
3352 /*
3353  * Mark the specified CPU as being online so that subsequent grace periods
3354  * (both expedited and normal) will wait on it.  Note that this means that
3355  * incoming CPUs are not allowed to use RCU read-side critical sections
3356  * until this function is called.  Failing to observe this restriction
3357  * will result in lockdep splats.
3358  *
3359  * Note that this function is special in that it is invoked directly
3360  * from the incoming CPU rather than from the cpuhp_step mechanism.
3361  * This is because this function must be invoked at a precise location.
3362  */
3363 void rcu_cpu_starting(unsigned int cpu)
3364 {
3365 	unsigned long flags;
3366 	unsigned long mask;
3367 	int nbits;
3368 	unsigned long oldmask;
3369 	struct rcu_data *rdp;
3370 	struct rcu_node *rnp;
3371 
3372 	if (per_cpu(rcu_cpu_started, cpu))
3373 		return;
3374 
3375 	per_cpu(rcu_cpu_started, cpu) = 1;
3376 
3377 	rdp = per_cpu_ptr(&rcu_data, cpu);
3378 	rnp = rdp->mynode;
3379 	mask = rdp->grpmask;
3380 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3381 	rnp->qsmaskinitnext |= mask;
3382 	oldmask = rnp->expmaskinitnext;
3383 	rnp->expmaskinitnext |= mask;
3384 	oldmask ^= rnp->expmaskinitnext;
3385 	nbits = bitmap_weight(&oldmask, BITS_PER_LONG);
3386 	/* Allow lockless access for expedited grace periods. */
3387 	smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + nbits); /* ^^^ */
3388 	rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */
3389 	rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq);
3390 	rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags);
3391 	if (rnp->qsmask & mask) { /* RCU waiting on incoming CPU? */
3392 		rcu_disable_urgency_upon_qs(rdp);
3393 		/* Report QS -after- changing ->qsmaskinitnext! */
3394 		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
3395 	} else {
3396 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3397 	}
3398 	smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
3399 }
3400 
3401 #ifdef CONFIG_HOTPLUG_CPU
3402 /*
3403  * The outgoing function has no further need of RCU, so remove it from
3404  * the rcu_node tree's ->qsmaskinitnext bit masks.
3405  *
3406  * Note that this function is special in that it is invoked directly
3407  * from the outgoing CPU rather than from the cpuhp_step mechanism.
3408  * This is because this function must be invoked at a precise location.
3409  */
3410 void rcu_report_dead(unsigned int cpu)
3411 {
3412 	unsigned long flags;
3413 	unsigned long mask;
3414 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3415 	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
3416 
3417 	/* QS for any half-done expedited grace period. */
3418 	preempt_disable();
3419 	rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
3420 	preempt_enable();
3421 	rcu_preempt_deferred_qs(current);
3422 
3423 	/* Remove outgoing CPU from mask in the leaf rcu_node structure. */
3424 	mask = rdp->grpmask;
3425 	raw_spin_lock(&rcu_state.ofl_lock);
3426 	raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
3427 	rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq);
3428 	rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags);
3429 	if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */
3430 		/* Report quiescent state -before- changing ->qsmaskinitnext! */
3431 		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
3432 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
3433 	}
3434 	rnp->qsmaskinitnext &= ~mask;
3435 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3436 	raw_spin_unlock(&rcu_state.ofl_lock);
3437 
3438 	per_cpu(rcu_cpu_started, cpu) = 0;
3439 }
3440 
3441 /*
3442  * The outgoing CPU has just passed through the dying-idle state, and we
3443  * are being invoked from the CPU that was IPIed to continue the offline
3444  * operation.  Migrate the outgoing CPU's callbacks to the current CPU.
3445  */
3446 void rcutree_migrate_callbacks(int cpu)
3447 {
3448 	unsigned long flags;
3449 	struct rcu_data *my_rdp;
3450 	struct rcu_node *my_rnp;
3451 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3452 	bool needwake;
3453 
3454 	if (rcu_segcblist_is_offloaded(&rdp->cblist) ||
3455 	    rcu_segcblist_empty(&rdp->cblist))
3456 		return;  /* No callbacks to migrate. */
3457 
3458 	local_irq_save(flags);
3459 	my_rdp = this_cpu_ptr(&rcu_data);
3460 	my_rnp = my_rdp->mynode;
3461 	rcu_nocb_lock(my_rdp); /* irqs already disabled. */
3462 	WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies));
3463 	raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */
3464 	/* Leverage recent GPs and set GP for new callbacks. */
3465 	needwake = rcu_advance_cbs(my_rnp, rdp) ||
3466 		   rcu_advance_cbs(my_rnp, my_rdp);
3467 	rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
3468 	needwake = needwake || rcu_advance_cbs(my_rnp, my_rdp);
3469 	rcu_segcblist_disable(&rdp->cblist);
3470 	WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) !=
3471 		     !rcu_segcblist_n_cbs(&my_rdp->cblist));
3472 	if (rcu_segcblist_is_offloaded(&my_rdp->cblist)) {
3473 		raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */
3474 		__call_rcu_nocb_wake(my_rdp, true, flags);
3475 	} else {
3476 		rcu_nocb_unlock(my_rdp); /* irqs remain disabled. */
3477 		raw_spin_unlock_irqrestore_rcu_node(my_rnp, flags);
3478 	}
3479 	if (needwake)
3480 		rcu_gp_kthread_wake();
3481 	lockdep_assert_irqs_enabled();
3482 	WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
3483 		  !rcu_segcblist_empty(&rdp->cblist),
3484 		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
3485 		  cpu, rcu_segcblist_n_cbs(&rdp->cblist),
3486 		  rcu_segcblist_first_cb(&rdp->cblist));
3487 }
3488 #endif
3489 
3490 /*
3491  * On non-huge systems, use expedited RCU grace periods to make suspend
3492  * and hibernation run faster.
3493  */
3494 static int rcu_pm_notify(struct notifier_block *self,
3495 			 unsigned long action, void *hcpu)
3496 {
3497 	switch (action) {
3498 	case PM_HIBERNATION_PREPARE:
3499 	case PM_SUSPEND_PREPARE:
3500 		rcu_expedite_gp();
3501 		break;
3502 	case PM_POST_HIBERNATION:
3503 	case PM_POST_SUSPEND:
3504 		rcu_unexpedite_gp();
3505 		break;
3506 	default:
3507 		break;
3508 	}
3509 	return NOTIFY_OK;
3510 }
3511 
3512 /*
3513  * Spawn the kthreads that handle RCU's grace periods.
3514  */
3515 static int __init rcu_spawn_gp_kthread(void)
3516 {
3517 	unsigned long flags;
3518 	int kthread_prio_in = kthread_prio;
3519 	struct rcu_node *rnp;
3520 	struct sched_param sp;
3521 	struct task_struct *t;
3522 
3523 	/* Force priority into range. */
3524 	if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2
3525 	    && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST))
3526 		kthread_prio = 2;
3527 	else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
3528 		kthread_prio = 1;
3529 	else if (kthread_prio < 0)
3530 		kthread_prio = 0;
3531 	else if (kthread_prio > 99)
3532 		kthread_prio = 99;
3533 
3534 	if (kthread_prio != kthread_prio_in)
3535 		pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
3536 			 kthread_prio, kthread_prio_in);
3537 
3538 	rcu_scheduler_fully_active = 1;
3539 	t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name);
3540 	if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__))
3541 		return 0;
3542 	if (kthread_prio) {
3543 		sp.sched_priority = kthread_prio;
3544 		sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
3545 	}
3546 	rnp = rcu_get_root();
3547 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3548 	rcu_state.gp_kthread = t;
3549 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3550 	wake_up_process(t);
3551 	rcu_spawn_nocb_kthreads();
3552 	rcu_spawn_boost_kthreads();
3553 	return 0;
3554 }
3555 early_initcall(rcu_spawn_gp_kthread);
3556 
3557 /*
3558  * This function is invoked towards the end of the scheduler's
3559  * initialization process.  Before this is called, the idle task might
3560  * contain synchronous grace-period primitives (during which time, this idle
3561  * task is booting the system, and such primitives are no-ops).  After this
3562  * function is called, any synchronous grace-period primitives are run as
3563  * expedited, with the requesting task driving the grace period forward.
3564  * A later core_initcall() rcu_set_runtime_mode() will switch to full
3565  * runtime RCU functionality.
3566  */
3567 void rcu_scheduler_starting(void)
3568 {
3569 	WARN_ON(num_online_cpus() != 1);
3570 	WARN_ON(nr_context_switches() > 0);
3571 	rcu_test_sync_prims();
3572 	rcu_scheduler_active = RCU_SCHEDULER_INIT;
3573 	rcu_test_sync_prims();
3574 }
3575 
3576 /*
3577  * Helper function for rcu_init() that initializes the rcu_state structure.
3578  */
3579 static void __init rcu_init_one(void)
3580 {
3581 	static const char * const buf[] = RCU_NODE_NAME_INIT;
3582 	static const char * const fqs[] = RCU_FQS_NAME_INIT;
3583 	static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
3584 	static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
3585 
3586 	int levelspread[RCU_NUM_LVLS];		/* kids/node in each level. */
3587 	int cpustride = 1;
3588 	int i;
3589 	int j;
3590 	struct rcu_node *rnp;
3591 
3592 	BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
3593 
3594 	/* Silence gcc 4.8 false positive about array index out of range. */
3595 	if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
3596 		panic("rcu_init_one: rcu_num_lvls out of range");
3597 
3598 	/* Initialize the level-tracking arrays. */
3599 
3600 	for (i = 1; i < rcu_num_lvls; i++)
3601 		rcu_state.level[i] =
3602 			rcu_state.level[i - 1] + num_rcu_lvl[i - 1];
3603 	rcu_init_levelspread(levelspread, num_rcu_lvl);
3604 
3605 	/* Initialize the elements themselves, starting from the leaves. */
3606 
3607 	for (i = rcu_num_lvls - 1; i >= 0; i--) {
3608 		cpustride *= levelspread[i];
3609 		rnp = rcu_state.level[i];
3610 		for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
3611 			raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
3612 			lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
3613 						   &rcu_node_class[i], buf[i]);
3614 			raw_spin_lock_init(&rnp->fqslock);
3615 			lockdep_set_class_and_name(&rnp->fqslock,
3616 						   &rcu_fqs_class[i], fqs[i]);
3617 			rnp->gp_seq = rcu_state.gp_seq;
3618 			rnp->gp_seq_needed = rcu_state.gp_seq;
3619 			rnp->completedqs = rcu_state.gp_seq;
3620 			rnp->qsmask = 0;
3621 			rnp->qsmaskinit = 0;
3622 			rnp->grplo = j * cpustride;
3623 			rnp->grphi = (j + 1) * cpustride - 1;
3624 			if (rnp->grphi >= nr_cpu_ids)
3625 				rnp->grphi = nr_cpu_ids - 1;
3626 			if (i == 0) {
3627 				rnp->grpnum = 0;
3628 				rnp->grpmask = 0;
3629 				rnp->parent = NULL;
3630 			} else {
3631 				rnp->grpnum = j % levelspread[i - 1];
3632 				rnp->grpmask = BIT(rnp->grpnum);
3633 				rnp->parent = rcu_state.level[i - 1] +
3634 					      j / levelspread[i - 1];
3635 			}
3636 			rnp->level = i;
3637 			INIT_LIST_HEAD(&rnp->blkd_tasks);
3638 			rcu_init_one_nocb(rnp);
3639 			init_waitqueue_head(&rnp->exp_wq[0]);
3640 			init_waitqueue_head(&rnp->exp_wq[1]);
3641 			init_waitqueue_head(&rnp->exp_wq[2]);
3642 			init_waitqueue_head(&rnp->exp_wq[3]);
3643 			spin_lock_init(&rnp->exp_lock);
3644 		}
3645 	}
3646 
3647 	init_swait_queue_head(&rcu_state.gp_wq);
3648 	init_swait_queue_head(&rcu_state.expedited_wq);
3649 	rnp = rcu_first_leaf_node();
3650 	for_each_possible_cpu(i) {
3651 		while (i > rnp->grphi)
3652 			rnp++;
3653 		per_cpu_ptr(&rcu_data, i)->mynode = rnp;
3654 		rcu_boot_init_percpu_data(i);
3655 	}
3656 }
3657 
3658 /*
3659  * Compute the rcu_node tree geometry from kernel parameters.  This cannot
3660  * replace the definitions in tree.h because those are needed to size
3661  * the ->node array in the rcu_state structure.
3662  */
3663 static void __init rcu_init_geometry(void)
3664 {
3665 	ulong d;
3666 	int i;
3667 	int rcu_capacity[RCU_NUM_LVLS];
3668 
3669 	/*
3670 	 * Initialize any unspecified boot parameters.
3671 	 * The default values of jiffies_till_first_fqs and
3672 	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
3673 	 * value, which is a function of HZ, then adding one for each
3674 	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
3675 	 */
3676 	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
3677 	if (jiffies_till_first_fqs == ULONG_MAX)
3678 		jiffies_till_first_fqs = d;
3679 	if (jiffies_till_next_fqs == ULONG_MAX)
3680 		jiffies_till_next_fqs = d;
3681 	adjust_jiffies_till_sched_qs();
3682 
3683 	/* If the compile-time values are accurate, just leave. */
3684 	if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
3685 	    nr_cpu_ids == NR_CPUS)
3686 		return;
3687 	pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
3688 		rcu_fanout_leaf, nr_cpu_ids);
3689 
3690 	/*
3691 	 * The boot-time rcu_fanout_leaf parameter must be at least two
3692 	 * and cannot exceed the number of bits in the rcu_node masks.
3693 	 * Complain and fall back to the compile-time values if this
3694 	 * limit is exceeded.
3695 	 */
3696 	if (rcu_fanout_leaf < 2 ||
3697 	    rcu_fanout_leaf > sizeof(unsigned long) * 8) {
3698 		rcu_fanout_leaf = RCU_FANOUT_LEAF;
3699 		WARN_ON(1);
3700 		return;
3701 	}
3702 
3703 	/*
3704 	 * Compute number of nodes that can be handled an rcu_node tree
3705 	 * with the given number of levels.
3706 	 */
3707 	rcu_capacity[0] = rcu_fanout_leaf;
3708 	for (i = 1; i < RCU_NUM_LVLS; i++)
3709 		rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
3710 
3711 	/*
3712 	 * The tree must be able to accommodate the configured number of CPUs.
3713 	 * If this limit is exceeded, fall back to the compile-time values.
3714 	 */
3715 	if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
3716 		rcu_fanout_leaf = RCU_FANOUT_LEAF;
3717 		WARN_ON(1);
3718 		return;
3719 	}
3720 
3721 	/* Calculate the number of levels in the tree. */
3722 	for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
3723 	}
3724 	rcu_num_lvls = i + 1;
3725 
3726 	/* Calculate the number of rcu_nodes at each level of the tree. */
3727 	for (i = 0; i < rcu_num_lvls; i++) {
3728 		int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
3729 		num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
3730 	}
3731 
3732 	/* Calculate the total number of rcu_node structures. */
3733 	rcu_num_nodes = 0;
3734 	for (i = 0; i < rcu_num_lvls; i++)
3735 		rcu_num_nodes += num_rcu_lvl[i];
3736 }
3737 
3738 /*
3739  * Dump out the structure of the rcu_node combining tree associated
3740  * with the rcu_state structure.
3741  */
3742 static void __init rcu_dump_rcu_node_tree(void)
3743 {
3744 	int level = 0;
3745 	struct rcu_node *rnp;
3746 
3747 	pr_info("rcu_node tree layout dump\n");
3748 	pr_info(" ");
3749 	rcu_for_each_node_breadth_first(rnp) {
3750 		if (rnp->level != level) {
3751 			pr_cont("\n");
3752 			pr_info(" ");
3753 			level = rnp->level;
3754 		}
3755 		pr_cont("%d:%d ^%d  ", rnp->grplo, rnp->grphi, rnp->grpnum);
3756 	}
3757 	pr_cont("\n");
3758 }
3759 
3760 struct workqueue_struct *rcu_gp_wq;
3761 struct workqueue_struct *rcu_par_gp_wq;
3762 
3763 static void __init kfree_rcu_batch_init(void)
3764 {
3765 	int cpu;
3766 	int i;
3767 
3768 	for_each_possible_cpu(cpu) {
3769 		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3770 
3771 		spin_lock_init(&krcp->lock);
3772 		for (i = 0; i < KFREE_N_BATCHES; i++)
3773 			krcp->krw_arr[i].krcp = krcp;
3774 		INIT_DELAYED_WORK(&krcp->monitor_work, kfree_rcu_monitor);
3775 		krcp->initialized = true;
3776 	}
3777 }
3778 
3779 void __init rcu_init(void)
3780 {
3781 	int cpu;
3782 
3783 	rcu_early_boot_tests();
3784 
3785 	kfree_rcu_batch_init();
3786 	rcu_bootup_announce();
3787 	rcu_init_geometry();
3788 	rcu_init_one();
3789 	if (dump_tree)
3790 		rcu_dump_rcu_node_tree();
3791 	if (use_softirq)
3792 		open_softirq(RCU_SOFTIRQ, rcu_core_si);
3793 
3794 	/*
3795 	 * We don't need protection against CPU-hotplug here because
3796 	 * this is called early in boot, before either interrupts
3797 	 * or the scheduler are operational.
3798 	 */
3799 	pm_notifier(rcu_pm_notify, 0);
3800 	for_each_online_cpu(cpu) {
3801 		rcutree_prepare_cpu(cpu);
3802 		rcu_cpu_starting(cpu);
3803 		rcutree_online_cpu(cpu);
3804 	}
3805 
3806 	/* Create workqueue for expedited GPs and for Tree SRCU. */
3807 	rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0);
3808 	WARN_ON(!rcu_gp_wq);
3809 	rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0);
3810 	WARN_ON(!rcu_par_gp_wq);
3811 	srcu_init();
3812 }
3813 
3814 #include "tree_stall.h"
3815 #include "tree_exp.h"
3816 #include "tree_plugin.h"
3817