1 /* 2 * Read-Copy Update mechanism for mutual exclusion 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, you can access it online at 16 * http://www.gnu.org/licenses/gpl-2.0.html. 17 * 18 * Copyright IBM Corporation, 2008 19 * 20 * Authors: Dipankar Sarma <dipankar@in.ibm.com> 21 * Manfred Spraul <manfred@colorfullife.com> 22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version 23 * 24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com> 25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 26 * 27 * For detailed explanation of Read-Copy Update mechanism see - 28 * Documentation/RCU 29 */ 30 31 #define pr_fmt(fmt) "rcu: " fmt 32 33 #include <linux/types.h> 34 #include <linux/kernel.h> 35 #include <linux/init.h> 36 #include <linux/spinlock.h> 37 #include <linux/smp.h> 38 #include <linux/rcupdate_wait.h> 39 #include <linux/interrupt.h> 40 #include <linux/sched.h> 41 #include <linux/sched/debug.h> 42 #include <linux/nmi.h> 43 #include <linux/atomic.h> 44 #include <linux/bitops.h> 45 #include <linux/export.h> 46 #include <linux/completion.h> 47 #include <linux/moduleparam.h> 48 #include <linux/percpu.h> 49 #include <linux/notifier.h> 50 #include <linux/cpu.h> 51 #include <linux/mutex.h> 52 #include <linux/time.h> 53 #include <linux/kernel_stat.h> 54 #include <linux/wait.h> 55 #include <linux/kthread.h> 56 #include <uapi/linux/sched/types.h> 57 #include <linux/prefetch.h> 58 #include <linux/delay.h> 59 #include <linux/stop_machine.h> 60 #include <linux/random.h> 61 #include <linux/trace_events.h> 62 #include <linux/suspend.h> 63 #include <linux/ftrace.h> 64 #include <linux/tick.h> 65 66 #include "tree.h" 67 #include "rcu.h" 68 69 #ifdef MODULE_PARAM_PREFIX 70 #undef MODULE_PARAM_PREFIX 71 #endif 72 #define MODULE_PARAM_PREFIX "rcutree." 73 74 /* Data structures. */ 75 76 /* 77 * Steal a bit from the bottom of ->dynticks for idle entry/exit 78 * control. Initially this is for TLB flushing. 79 */ 80 #define RCU_DYNTICK_CTRL_MASK 0x1 81 #define RCU_DYNTICK_CTRL_CTR (RCU_DYNTICK_CTRL_MASK + 1) 82 #ifndef rcu_eqs_special_exit 83 #define rcu_eqs_special_exit() do { } while (0) 84 #endif 85 86 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = { 87 .dynticks_nesting = 1, 88 .dynticks_nmi_nesting = DYNTICK_IRQ_NONIDLE, 89 .dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR), 90 }; 91 struct rcu_state rcu_state = { 92 .level = { &rcu_state.node[0] }, 93 .gp_state = RCU_GP_IDLE, 94 .gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT, 95 .barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex), 96 .name = RCU_NAME, 97 .abbr = RCU_ABBR, 98 .exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex), 99 .exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex), 100 .ofl_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.ofl_lock), 101 }; 102 103 /* Dump rcu_node combining tree at boot to verify correct setup. */ 104 static bool dump_tree; 105 module_param(dump_tree, bool, 0444); 106 /* Control rcu_node-tree auto-balancing at boot time. */ 107 static bool rcu_fanout_exact; 108 module_param(rcu_fanout_exact, bool, 0444); 109 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */ 110 static int rcu_fanout_leaf = RCU_FANOUT_LEAF; 111 module_param(rcu_fanout_leaf, int, 0444); 112 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS; 113 /* Number of rcu_nodes at specified level. */ 114 int num_rcu_lvl[] = NUM_RCU_LVL_INIT; 115 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */ 116 /* panic() on RCU Stall sysctl. */ 117 int sysctl_panic_on_rcu_stall __read_mostly; 118 119 /* 120 * The rcu_scheduler_active variable is initialized to the value 121 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the 122 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE, 123 * RCU can assume that there is but one task, allowing RCU to (for example) 124 * optimize synchronize_rcu() to a simple barrier(). When this variable 125 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required 126 * to detect real grace periods. This variable is also used to suppress 127 * boot-time false positives from lockdep-RCU error checking. Finally, it 128 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU 129 * is fully initialized, including all of its kthreads having been spawned. 130 */ 131 int rcu_scheduler_active __read_mostly; 132 EXPORT_SYMBOL_GPL(rcu_scheduler_active); 133 134 /* 135 * The rcu_scheduler_fully_active variable transitions from zero to one 136 * during the early_initcall() processing, which is after the scheduler 137 * is capable of creating new tasks. So RCU processing (for example, 138 * creating tasks for RCU priority boosting) must be delayed until after 139 * rcu_scheduler_fully_active transitions from zero to one. We also 140 * currently delay invocation of any RCU callbacks until after this point. 141 * 142 * It might later prove better for people registering RCU callbacks during 143 * early boot to take responsibility for these callbacks, but one step at 144 * a time. 145 */ 146 static int rcu_scheduler_fully_active __read_mostly; 147 148 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp, 149 unsigned long gps, unsigned long flags); 150 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf); 151 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf); 152 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu); 153 static void invoke_rcu_core(void); 154 static void invoke_rcu_callbacks(struct rcu_data *rdp); 155 static void rcu_report_exp_rdp(struct rcu_data *rdp); 156 static void sync_sched_exp_online_cleanup(int cpu); 157 158 /* rcuc/rcub kthread realtime priority */ 159 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0; 160 module_param(kthread_prio, int, 0644); 161 162 /* Delay in jiffies for grace-period initialization delays, debug only. */ 163 164 static int gp_preinit_delay; 165 module_param(gp_preinit_delay, int, 0444); 166 static int gp_init_delay; 167 module_param(gp_init_delay, int, 0444); 168 static int gp_cleanup_delay; 169 module_param(gp_cleanup_delay, int, 0444); 170 171 /* Retrieve RCU kthreads priority for rcutorture */ 172 int rcu_get_gp_kthreads_prio(void) 173 { 174 return kthread_prio; 175 } 176 EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio); 177 178 /* 179 * Number of grace periods between delays, normalized by the duration of 180 * the delay. The longer the delay, the more the grace periods between 181 * each delay. The reason for this normalization is that it means that, 182 * for non-zero delays, the overall slowdown of grace periods is constant 183 * regardless of the duration of the delay. This arrangement balances 184 * the need for long delays to increase some race probabilities with the 185 * need for fast grace periods to increase other race probabilities. 186 */ 187 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */ 188 189 /* 190 * Compute the mask of online CPUs for the specified rcu_node structure. 191 * This will not be stable unless the rcu_node structure's ->lock is 192 * held, but the bit corresponding to the current CPU will be stable 193 * in most contexts. 194 */ 195 unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp) 196 { 197 return READ_ONCE(rnp->qsmaskinitnext); 198 } 199 200 /* 201 * Return true if an RCU grace period is in progress. The READ_ONCE()s 202 * permit this function to be invoked without holding the root rcu_node 203 * structure's ->lock, but of course results can be subject to change. 204 */ 205 static int rcu_gp_in_progress(void) 206 { 207 return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq)); 208 } 209 210 /* 211 * Return the number of callbacks queued on the specified CPU. 212 * Handles both the nocbs and normal cases. 213 */ 214 static long rcu_get_n_cbs_cpu(int cpu) 215 { 216 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 217 218 if (rcu_segcblist_is_enabled(&rdp->cblist)) /* Online normal CPU? */ 219 return rcu_segcblist_n_cbs(&rdp->cblist); 220 return rcu_get_n_cbs_nocb_cpu(rdp); /* Works for offline, too. */ 221 } 222 223 void rcu_softirq_qs(void) 224 { 225 rcu_qs(); 226 rcu_preempt_deferred_qs(current); 227 } 228 229 /* 230 * Record entry into an extended quiescent state. This is only to be 231 * called when not already in an extended quiescent state. 232 */ 233 static void rcu_dynticks_eqs_enter(void) 234 { 235 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 236 int seq; 237 238 /* 239 * CPUs seeing atomic_add_return() must see prior RCU read-side 240 * critical sections, and we also must force ordering with the 241 * next idle sojourn. 242 */ 243 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks); 244 /* Better be in an extended quiescent state! */ 245 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 246 (seq & RCU_DYNTICK_CTRL_CTR)); 247 /* Better not have special action (TLB flush) pending! */ 248 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 249 (seq & RCU_DYNTICK_CTRL_MASK)); 250 } 251 252 /* 253 * Record exit from an extended quiescent state. This is only to be 254 * called from an extended quiescent state. 255 */ 256 static void rcu_dynticks_eqs_exit(void) 257 { 258 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 259 int seq; 260 261 /* 262 * CPUs seeing atomic_add_return() must see prior idle sojourns, 263 * and we also must force ordering with the next RCU read-side 264 * critical section. 265 */ 266 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks); 267 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 268 !(seq & RCU_DYNTICK_CTRL_CTR)); 269 if (seq & RCU_DYNTICK_CTRL_MASK) { 270 atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdp->dynticks); 271 smp_mb__after_atomic(); /* _exit after clearing mask. */ 272 /* Prefer duplicate flushes to losing a flush. */ 273 rcu_eqs_special_exit(); 274 } 275 } 276 277 /* 278 * Reset the current CPU's ->dynticks counter to indicate that the 279 * newly onlined CPU is no longer in an extended quiescent state. 280 * This will either leave the counter unchanged, or increment it 281 * to the next non-quiescent value. 282 * 283 * The non-atomic test/increment sequence works because the upper bits 284 * of the ->dynticks counter are manipulated only by the corresponding CPU, 285 * or when the corresponding CPU is offline. 286 */ 287 static void rcu_dynticks_eqs_online(void) 288 { 289 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 290 291 if (atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR) 292 return; 293 atomic_add(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks); 294 } 295 296 /* 297 * Is the current CPU in an extended quiescent state? 298 * 299 * No ordering, as we are sampling CPU-local information. 300 */ 301 bool rcu_dynticks_curr_cpu_in_eqs(void) 302 { 303 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 304 305 return !(atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR); 306 } 307 308 /* 309 * Snapshot the ->dynticks counter with full ordering so as to allow 310 * stable comparison of this counter with past and future snapshots. 311 */ 312 int rcu_dynticks_snap(struct rcu_data *rdp) 313 { 314 int snap = atomic_add_return(0, &rdp->dynticks); 315 316 return snap & ~RCU_DYNTICK_CTRL_MASK; 317 } 318 319 /* 320 * Return true if the snapshot returned from rcu_dynticks_snap() 321 * indicates that RCU is in an extended quiescent state. 322 */ 323 static bool rcu_dynticks_in_eqs(int snap) 324 { 325 return !(snap & RCU_DYNTICK_CTRL_CTR); 326 } 327 328 /* 329 * Return true if the CPU corresponding to the specified rcu_data 330 * structure has spent some time in an extended quiescent state since 331 * rcu_dynticks_snap() returned the specified snapshot. 332 */ 333 static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap) 334 { 335 return snap != rcu_dynticks_snap(rdp); 336 } 337 338 /* 339 * Set the special (bottom) bit of the specified CPU so that it 340 * will take special action (such as flushing its TLB) on the 341 * next exit from an extended quiescent state. Returns true if 342 * the bit was successfully set, or false if the CPU was not in 343 * an extended quiescent state. 344 */ 345 bool rcu_eqs_special_set(int cpu) 346 { 347 int old; 348 int new; 349 struct rcu_data *rdp = &per_cpu(rcu_data, cpu); 350 351 do { 352 old = atomic_read(&rdp->dynticks); 353 if (old & RCU_DYNTICK_CTRL_CTR) 354 return false; 355 new = old | RCU_DYNTICK_CTRL_MASK; 356 } while (atomic_cmpxchg(&rdp->dynticks, old, new) != old); 357 return true; 358 } 359 360 /* 361 * Let the RCU core know that this CPU has gone through the scheduler, 362 * which is a quiescent state. This is called when the need for a 363 * quiescent state is urgent, so we burn an atomic operation and full 364 * memory barriers to let the RCU core know about it, regardless of what 365 * this CPU might (or might not) do in the near future. 366 * 367 * We inform the RCU core by emulating a zero-duration dyntick-idle period. 368 * 369 * The caller must have disabled interrupts and must not be idle. 370 */ 371 static void __maybe_unused rcu_momentary_dyntick_idle(void) 372 { 373 int special; 374 375 raw_cpu_write(rcu_data.rcu_need_heavy_qs, false); 376 special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR, 377 &this_cpu_ptr(&rcu_data)->dynticks); 378 /* It is illegal to call this from idle state. */ 379 WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR)); 380 rcu_preempt_deferred_qs(current); 381 } 382 383 /** 384 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle 385 * 386 * If the current CPU is idle or running at a first-level (not nested) 387 * interrupt from idle, return true. The caller must have at least 388 * disabled preemption. 389 */ 390 static int rcu_is_cpu_rrupt_from_idle(void) 391 { 392 return __this_cpu_read(rcu_data.dynticks_nesting) <= 0 && 393 __this_cpu_read(rcu_data.dynticks_nmi_nesting) <= 1; 394 } 395 396 #define DEFAULT_RCU_BLIMIT 10 /* Maximum callbacks per rcu_do_batch. */ 397 static long blimit = DEFAULT_RCU_BLIMIT; 398 #define DEFAULT_RCU_QHIMARK 10000 /* If this many pending, ignore blimit. */ 399 static long qhimark = DEFAULT_RCU_QHIMARK; 400 #define DEFAULT_RCU_QLOMARK 100 /* Once only this many pending, use blimit. */ 401 static long qlowmark = DEFAULT_RCU_QLOMARK; 402 403 module_param(blimit, long, 0444); 404 module_param(qhimark, long, 0444); 405 module_param(qlowmark, long, 0444); 406 407 static ulong jiffies_till_first_fqs = ULONG_MAX; 408 static ulong jiffies_till_next_fqs = ULONG_MAX; 409 static bool rcu_kick_kthreads; 410 411 /* 412 * How long the grace period must be before we start recruiting 413 * quiescent-state help from rcu_note_context_switch(). 414 */ 415 static ulong jiffies_till_sched_qs = ULONG_MAX; 416 module_param(jiffies_till_sched_qs, ulong, 0444); 417 static ulong jiffies_to_sched_qs; /* Adjusted version of above if not default */ 418 module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */ 419 420 /* 421 * Make sure that we give the grace-period kthread time to detect any 422 * idle CPUs before taking active measures to force quiescent states. 423 * However, don't go below 100 milliseconds, adjusted upwards for really 424 * large systems. 425 */ 426 static void adjust_jiffies_till_sched_qs(void) 427 { 428 unsigned long j; 429 430 /* If jiffies_till_sched_qs was specified, respect the request. */ 431 if (jiffies_till_sched_qs != ULONG_MAX) { 432 WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs); 433 return; 434 } 435 j = READ_ONCE(jiffies_till_first_fqs) + 436 2 * READ_ONCE(jiffies_till_next_fqs); 437 if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV) 438 j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; 439 pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j); 440 WRITE_ONCE(jiffies_to_sched_qs, j); 441 } 442 443 static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp) 444 { 445 ulong j; 446 int ret = kstrtoul(val, 0, &j); 447 448 if (!ret) { 449 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j); 450 adjust_jiffies_till_sched_qs(); 451 } 452 return ret; 453 } 454 455 static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp) 456 { 457 ulong j; 458 int ret = kstrtoul(val, 0, &j); 459 460 if (!ret) { 461 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1)); 462 adjust_jiffies_till_sched_qs(); 463 } 464 return ret; 465 } 466 467 static struct kernel_param_ops first_fqs_jiffies_ops = { 468 .set = param_set_first_fqs_jiffies, 469 .get = param_get_ulong, 470 }; 471 472 static struct kernel_param_ops next_fqs_jiffies_ops = { 473 .set = param_set_next_fqs_jiffies, 474 .get = param_get_ulong, 475 }; 476 477 module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644); 478 module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644); 479 module_param(rcu_kick_kthreads, bool, 0644); 480 481 static void force_qs_rnp(int (*f)(struct rcu_data *rdp)); 482 static int rcu_pending(void); 483 484 /* 485 * Return the number of RCU GPs completed thus far for debug & stats. 486 */ 487 unsigned long rcu_get_gp_seq(void) 488 { 489 return READ_ONCE(rcu_state.gp_seq); 490 } 491 EXPORT_SYMBOL_GPL(rcu_get_gp_seq); 492 493 /* 494 * Return the number of RCU expedited batches completed thus far for 495 * debug & stats. Odd numbers mean that a batch is in progress, even 496 * numbers mean idle. The value returned will thus be roughly double 497 * the cumulative batches since boot. 498 */ 499 unsigned long rcu_exp_batches_completed(void) 500 { 501 return rcu_state.expedited_sequence; 502 } 503 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed); 504 505 /* 506 * Convert a ->gp_state value to a character string. 507 */ 508 static const char *gp_state_getname(short gs) 509 { 510 if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names)) 511 return "???"; 512 return gp_state_names[gs]; 513 } 514 515 /* 516 * Show the state of the grace-period kthreads. 517 */ 518 void show_rcu_gp_kthreads(void) 519 { 520 int cpu; 521 unsigned long j; 522 struct rcu_data *rdp; 523 struct rcu_node *rnp; 524 525 j = jiffies - READ_ONCE(rcu_state.gp_activity); 526 pr_info("%s: wait state: %s(%d) ->state: %#lx delta ->gp_activity %ld\n", 527 rcu_state.name, gp_state_getname(rcu_state.gp_state), 528 rcu_state.gp_state, rcu_state.gp_kthread->state, j); 529 rcu_for_each_node_breadth_first(rnp) { 530 if (ULONG_CMP_GE(rcu_state.gp_seq, rnp->gp_seq_needed)) 531 continue; 532 pr_info("\trcu_node %d:%d ->gp_seq %lu ->gp_seq_needed %lu\n", 533 rnp->grplo, rnp->grphi, rnp->gp_seq, 534 rnp->gp_seq_needed); 535 if (!rcu_is_leaf_node(rnp)) 536 continue; 537 for_each_leaf_node_possible_cpu(rnp, cpu) { 538 rdp = per_cpu_ptr(&rcu_data, cpu); 539 if (rdp->gpwrap || 540 ULONG_CMP_GE(rcu_state.gp_seq, 541 rdp->gp_seq_needed)) 542 continue; 543 pr_info("\tcpu %d ->gp_seq_needed %lu\n", 544 cpu, rdp->gp_seq_needed); 545 } 546 } 547 /* sched_show_task(rcu_state.gp_kthread); */ 548 } 549 EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads); 550 551 /* 552 * Send along grace-period-related data for rcutorture diagnostics. 553 */ 554 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags, 555 unsigned long *gp_seq) 556 { 557 switch (test_type) { 558 case RCU_FLAVOR: 559 *flags = READ_ONCE(rcu_state.gp_flags); 560 *gp_seq = rcu_seq_current(&rcu_state.gp_seq); 561 break; 562 default: 563 break; 564 } 565 } 566 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data); 567 568 /* 569 * Return the root node of the rcu_state structure. 570 */ 571 static struct rcu_node *rcu_get_root(void) 572 { 573 return &rcu_state.node[0]; 574 } 575 576 /* 577 * Enter an RCU extended quiescent state, which can be either the 578 * idle loop or adaptive-tickless usermode execution. 579 * 580 * We crowbar the ->dynticks_nmi_nesting field to zero to allow for 581 * the possibility of usermode upcalls having messed up our count 582 * of interrupt nesting level during the prior busy period. 583 */ 584 static void rcu_eqs_enter(bool user) 585 { 586 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 587 588 WARN_ON_ONCE(rdp->dynticks_nmi_nesting != DYNTICK_IRQ_NONIDLE); 589 WRITE_ONCE(rdp->dynticks_nmi_nesting, 0); 590 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 591 rdp->dynticks_nesting == 0); 592 if (rdp->dynticks_nesting != 1) { 593 rdp->dynticks_nesting--; 594 return; 595 } 596 597 lockdep_assert_irqs_disabled(); 598 trace_rcu_dyntick(TPS("Start"), rdp->dynticks_nesting, 0, rdp->dynticks); 599 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current)); 600 rdp = this_cpu_ptr(&rcu_data); 601 do_nocb_deferred_wakeup(rdp); 602 rcu_prepare_for_idle(); 603 rcu_preempt_deferred_qs(current); 604 WRITE_ONCE(rdp->dynticks_nesting, 0); /* Avoid irq-access tearing. */ 605 rcu_dynticks_eqs_enter(); 606 rcu_dynticks_task_enter(); 607 } 608 609 /** 610 * rcu_idle_enter - inform RCU that current CPU is entering idle 611 * 612 * Enter idle mode, in other words, -leave- the mode in which RCU 613 * read-side critical sections can occur. (Though RCU read-side 614 * critical sections can occur in irq handlers in idle, a possibility 615 * handled by irq_enter() and irq_exit().) 616 * 617 * If you add or remove a call to rcu_idle_enter(), be sure to test with 618 * CONFIG_RCU_EQS_DEBUG=y. 619 */ 620 void rcu_idle_enter(void) 621 { 622 lockdep_assert_irqs_disabled(); 623 rcu_eqs_enter(false); 624 } 625 626 #ifdef CONFIG_NO_HZ_FULL 627 /** 628 * rcu_user_enter - inform RCU that we are resuming userspace. 629 * 630 * Enter RCU idle mode right before resuming userspace. No use of RCU 631 * is permitted between this call and rcu_user_exit(). This way the 632 * CPU doesn't need to maintain the tick for RCU maintenance purposes 633 * when the CPU runs in userspace. 634 * 635 * If you add or remove a call to rcu_user_enter(), be sure to test with 636 * CONFIG_RCU_EQS_DEBUG=y. 637 */ 638 void rcu_user_enter(void) 639 { 640 lockdep_assert_irqs_disabled(); 641 rcu_eqs_enter(true); 642 } 643 #endif /* CONFIG_NO_HZ_FULL */ 644 645 /* 646 * If we are returning from the outermost NMI handler that interrupted an 647 * RCU-idle period, update rdp->dynticks and rdp->dynticks_nmi_nesting 648 * to let the RCU grace-period handling know that the CPU is back to 649 * being RCU-idle. 650 * 651 * If you add or remove a call to rcu_nmi_exit_common(), be sure to test 652 * with CONFIG_RCU_EQS_DEBUG=y. 653 */ 654 static __always_inline void rcu_nmi_exit_common(bool irq) 655 { 656 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 657 658 /* 659 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks. 660 * (We are exiting an NMI handler, so RCU better be paying attention 661 * to us!) 662 */ 663 WARN_ON_ONCE(rdp->dynticks_nmi_nesting <= 0); 664 WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs()); 665 666 /* 667 * If the nesting level is not 1, the CPU wasn't RCU-idle, so 668 * leave it in non-RCU-idle state. 669 */ 670 if (rdp->dynticks_nmi_nesting != 1) { 671 trace_rcu_dyntick(TPS("--="), rdp->dynticks_nmi_nesting, rdp->dynticks_nmi_nesting - 2, rdp->dynticks); 672 WRITE_ONCE(rdp->dynticks_nmi_nesting, /* No store tearing. */ 673 rdp->dynticks_nmi_nesting - 2); 674 return; 675 } 676 677 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */ 678 trace_rcu_dyntick(TPS("Startirq"), rdp->dynticks_nmi_nesting, 0, rdp->dynticks); 679 WRITE_ONCE(rdp->dynticks_nmi_nesting, 0); /* Avoid store tearing. */ 680 681 if (irq) 682 rcu_prepare_for_idle(); 683 684 rcu_dynticks_eqs_enter(); 685 686 if (irq) 687 rcu_dynticks_task_enter(); 688 } 689 690 /** 691 * rcu_nmi_exit - inform RCU of exit from NMI context 692 * @irq: Is this call from rcu_irq_exit? 693 * 694 * If you add or remove a call to rcu_nmi_exit(), be sure to test 695 * with CONFIG_RCU_EQS_DEBUG=y. 696 */ 697 void rcu_nmi_exit(void) 698 { 699 rcu_nmi_exit_common(false); 700 } 701 702 /** 703 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle 704 * 705 * Exit from an interrupt handler, which might possibly result in entering 706 * idle mode, in other words, leaving the mode in which read-side critical 707 * sections can occur. The caller must have disabled interrupts. 708 * 709 * This code assumes that the idle loop never does anything that might 710 * result in unbalanced calls to irq_enter() and irq_exit(). If your 711 * architecture's idle loop violates this assumption, RCU will give you what 712 * you deserve, good and hard. But very infrequently and irreproducibly. 713 * 714 * Use things like work queues to work around this limitation. 715 * 716 * You have been warned. 717 * 718 * If you add or remove a call to rcu_irq_exit(), be sure to test with 719 * CONFIG_RCU_EQS_DEBUG=y. 720 */ 721 void rcu_irq_exit(void) 722 { 723 lockdep_assert_irqs_disabled(); 724 rcu_nmi_exit_common(true); 725 } 726 727 /* 728 * Wrapper for rcu_irq_exit() where interrupts are enabled. 729 * 730 * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test 731 * with CONFIG_RCU_EQS_DEBUG=y. 732 */ 733 void rcu_irq_exit_irqson(void) 734 { 735 unsigned long flags; 736 737 local_irq_save(flags); 738 rcu_irq_exit(); 739 local_irq_restore(flags); 740 } 741 742 /* 743 * Exit an RCU extended quiescent state, which can be either the 744 * idle loop or adaptive-tickless usermode execution. 745 * 746 * We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to 747 * allow for the possibility of usermode upcalls messing up our count of 748 * interrupt nesting level during the busy period that is just now starting. 749 */ 750 static void rcu_eqs_exit(bool user) 751 { 752 struct rcu_data *rdp; 753 long oldval; 754 755 lockdep_assert_irqs_disabled(); 756 rdp = this_cpu_ptr(&rcu_data); 757 oldval = rdp->dynticks_nesting; 758 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0); 759 if (oldval) { 760 rdp->dynticks_nesting++; 761 return; 762 } 763 rcu_dynticks_task_exit(); 764 rcu_dynticks_eqs_exit(); 765 rcu_cleanup_after_idle(); 766 trace_rcu_dyntick(TPS("End"), rdp->dynticks_nesting, 1, rdp->dynticks); 767 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current)); 768 WRITE_ONCE(rdp->dynticks_nesting, 1); 769 WARN_ON_ONCE(rdp->dynticks_nmi_nesting); 770 WRITE_ONCE(rdp->dynticks_nmi_nesting, DYNTICK_IRQ_NONIDLE); 771 } 772 773 /** 774 * rcu_idle_exit - inform RCU that current CPU is leaving idle 775 * 776 * Exit idle mode, in other words, -enter- the mode in which RCU 777 * read-side critical sections can occur. 778 * 779 * If you add or remove a call to rcu_idle_exit(), be sure to test with 780 * CONFIG_RCU_EQS_DEBUG=y. 781 */ 782 void rcu_idle_exit(void) 783 { 784 unsigned long flags; 785 786 local_irq_save(flags); 787 rcu_eqs_exit(false); 788 local_irq_restore(flags); 789 } 790 791 #ifdef CONFIG_NO_HZ_FULL 792 /** 793 * rcu_user_exit - inform RCU that we are exiting userspace. 794 * 795 * Exit RCU idle mode while entering the kernel because it can 796 * run a RCU read side critical section anytime. 797 * 798 * If you add or remove a call to rcu_user_exit(), be sure to test with 799 * CONFIG_RCU_EQS_DEBUG=y. 800 */ 801 void rcu_user_exit(void) 802 { 803 rcu_eqs_exit(1); 804 } 805 #endif /* CONFIG_NO_HZ_FULL */ 806 807 /** 808 * rcu_nmi_enter_common - inform RCU of entry to NMI context 809 * @irq: Is this call from rcu_irq_enter? 810 * 811 * If the CPU was idle from RCU's viewpoint, update rdp->dynticks and 812 * rdp->dynticks_nmi_nesting to let the RCU grace-period handling know 813 * that the CPU is active. This implementation permits nested NMIs, as 814 * long as the nesting level does not overflow an int. (You will probably 815 * run out of stack space first.) 816 * 817 * If you add or remove a call to rcu_nmi_enter_common(), be sure to test 818 * with CONFIG_RCU_EQS_DEBUG=y. 819 */ 820 static __always_inline void rcu_nmi_enter_common(bool irq) 821 { 822 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 823 long incby = 2; 824 825 /* Complain about underflow. */ 826 WARN_ON_ONCE(rdp->dynticks_nmi_nesting < 0); 827 828 /* 829 * If idle from RCU viewpoint, atomically increment ->dynticks 830 * to mark non-idle and increment ->dynticks_nmi_nesting by one. 831 * Otherwise, increment ->dynticks_nmi_nesting by two. This means 832 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed 833 * to be in the outermost NMI handler that interrupted an RCU-idle 834 * period (observation due to Andy Lutomirski). 835 */ 836 if (rcu_dynticks_curr_cpu_in_eqs()) { 837 838 if (irq) 839 rcu_dynticks_task_exit(); 840 841 rcu_dynticks_eqs_exit(); 842 843 if (irq) 844 rcu_cleanup_after_idle(); 845 846 incby = 1; 847 } 848 trace_rcu_dyntick(incby == 1 ? TPS("Endirq") : TPS("++="), 849 rdp->dynticks_nmi_nesting, 850 rdp->dynticks_nmi_nesting + incby, rdp->dynticks); 851 WRITE_ONCE(rdp->dynticks_nmi_nesting, /* Prevent store tearing. */ 852 rdp->dynticks_nmi_nesting + incby); 853 barrier(); 854 } 855 856 /** 857 * rcu_nmi_enter - inform RCU of entry to NMI context 858 */ 859 void rcu_nmi_enter(void) 860 { 861 rcu_nmi_enter_common(false); 862 } 863 864 /** 865 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle 866 * 867 * Enter an interrupt handler, which might possibly result in exiting 868 * idle mode, in other words, entering the mode in which read-side critical 869 * sections can occur. The caller must have disabled interrupts. 870 * 871 * Note that the Linux kernel is fully capable of entering an interrupt 872 * handler that it never exits, for example when doing upcalls to user mode! 873 * This code assumes that the idle loop never does upcalls to user mode. 874 * If your architecture's idle loop does do upcalls to user mode (or does 875 * anything else that results in unbalanced calls to the irq_enter() and 876 * irq_exit() functions), RCU will give you what you deserve, good and hard. 877 * But very infrequently and irreproducibly. 878 * 879 * Use things like work queues to work around this limitation. 880 * 881 * You have been warned. 882 * 883 * If you add or remove a call to rcu_irq_enter(), be sure to test with 884 * CONFIG_RCU_EQS_DEBUG=y. 885 */ 886 void rcu_irq_enter(void) 887 { 888 lockdep_assert_irqs_disabled(); 889 rcu_nmi_enter_common(true); 890 } 891 892 /* 893 * Wrapper for rcu_irq_enter() where interrupts are enabled. 894 * 895 * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test 896 * with CONFIG_RCU_EQS_DEBUG=y. 897 */ 898 void rcu_irq_enter_irqson(void) 899 { 900 unsigned long flags; 901 902 local_irq_save(flags); 903 rcu_irq_enter(); 904 local_irq_restore(flags); 905 } 906 907 /** 908 * rcu_is_watching - see if RCU thinks that the current CPU is not idle 909 * 910 * Return true if RCU is watching the running CPU, which means that this 911 * CPU can safely enter RCU read-side critical sections. In other words, 912 * if the current CPU is not in its idle loop or is in an interrupt or 913 * NMI handler, return true. 914 */ 915 bool notrace rcu_is_watching(void) 916 { 917 bool ret; 918 919 preempt_disable_notrace(); 920 ret = !rcu_dynticks_curr_cpu_in_eqs(); 921 preempt_enable_notrace(); 922 return ret; 923 } 924 EXPORT_SYMBOL_GPL(rcu_is_watching); 925 926 /* 927 * If a holdout task is actually running, request an urgent quiescent 928 * state from its CPU. This is unsynchronized, so migrations can cause 929 * the request to go to the wrong CPU. Which is OK, all that will happen 930 * is that the CPU's next context switch will be a bit slower and next 931 * time around this task will generate another request. 932 */ 933 void rcu_request_urgent_qs_task(struct task_struct *t) 934 { 935 int cpu; 936 937 barrier(); 938 cpu = task_cpu(t); 939 if (!task_curr(t)) 940 return; /* This task is not running on that CPU. */ 941 smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true); 942 } 943 944 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) 945 946 /* 947 * Is the current CPU online as far as RCU is concerned? 948 * 949 * Disable preemption to avoid false positives that could otherwise 950 * happen due to the current CPU number being sampled, this task being 951 * preempted, its old CPU being taken offline, resuming on some other CPU, 952 * then determining that its old CPU is now offline. 953 * 954 * Disable checking if in an NMI handler because we cannot safely 955 * report errors from NMI handlers anyway. In addition, it is OK to use 956 * RCU on an offline processor during initial boot, hence the check for 957 * rcu_scheduler_fully_active. 958 */ 959 bool rcu_lockdep_current_cpu_online(void) 960 { 961 struct rcu_data *rdp; 962 struct rcu_node *rnp; 963 bool ret = false; 964 965 if (in_nmi() || !rcu_scheduler_fully_active) 966 return true; 967 preempt_disable(); 968 rdp = this_cpu_ptr(&rcu_data); 969 rnp = rdp->mynode; 970 if (rdp->grpmask & rcu_rnp_online_cpus(rnp)) 971 ret = true; 972 preempt_enable(); 973 return ret; 974 } 975 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online); 976 977 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */ 978 979 /* 980 * We are reporting a quiescent state on behalf of some other CPU, so 981 * it is our responsibility to check for and handle potential overflow 982 * of the rcu_node ->gp_seq counter with respect to the rcu_data counters. 983 * After all, the CPU might be in deep idle state, and thus executing no 984 * code whatsoever. 985 */ 986 static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp) 987 { 988 raw_lockdep_assert_held_rcu_node(rnp); 989 if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4, 990 rnp->gp_seq)) 991 WRITE_ONCE(rdp->gpwrap, true); 992 if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq)) 993 rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4; 994 } 995 996 /* 997 * Snapshot the specified CPU's dynticks counter so that we can later 998 * credit them with an implicit quiescent state. Return 1 if this CPU 999 * is in dynticks idle mode, which is an extended quiescent state. 1000 */ 1001 static int dyntick_save_progress_counter(struct rcu_data *rdp) 1002 { 1003 rdp->dynticks_snap = rcu_dynticks_snap(rdp); 1004 if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) { 1005 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti")); 1006 rcu_gpnum_ovf(rdp->mynode, rdp); 1007 return 1; 1008 } 1009 return 0; 1010 } 1011 1012 /* 1013 * Handler for the irq_work request posted when a grace period has 1014 * gone on for too long, but not yet long enough for an RCU CPU 1015 * stall warning. Set state appropriately, but just complain if 1016 * there is unexpected state on entry. 1017 */ 1018 static void rcu_iw_handler(struct irq_work *iwp) 1019 { 1020 struct rcu_data *rdp; 1021 struct rcu_node *rnp; 1022 1023 rdp = container_of(iwp, struct rcu_data, rcu_iw); 1024 rnp = rdp->mynode; 1025 raw_spin_lock_rcu_node(rnp); 1026 if (!WARN_ON_ONCE(!rdp->rcu_iw_pending)) { 1027 rdp->rcu_iw_gp_seq = rnp->gp_seq; 1028 rdp->rcu_iw_pending = false; 1029 } 1030 raw_spin_unlock_rcu_node(rnp); 1031 } 1032 1033 /* 1034 * Return true if the specified CPU has passed through a quiescent 1035 * state by virtue of being in or having passed through an dynticks 1036 * idle state since the last call to dyntick_save_progress_counter() 1037 * for this same CPU, or by virtue of having been offline. 1038 */ 1039 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp) 1040 { 1041 unsigned long jtsq; 1042 bool *rnhqp; 1043 bool *ruqp; 1044 struct rcu_node *rnp = rdp->mynode; 1045 1046 /* 1047 * If the CPU passed through or entered a dynticks idle phase with 1048 * no active irq/NMI handlers, then we can safely pretend that the CPU 1049 * already acknowledged the request to pass through a quiescent 1050 * state. Either way, that CPU cannot possibly be in an RCU 1051 * read-side critical section that started before the beginning 1052 * of the current RCU grace period. 1053 */ 1054 if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) { 1055 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti")); 1056 rcu_gpnum_ovf(rnp, rdp); 1057 return 1; 1058 } 1059 1060 /* If waiting too long on an offline CPU, complain. */ 1061 if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp)) && 1062 time_after(jiffies, rcu_state.gp_start + HZ)) { 1063 bool onl; 1064 struct rcu_node *rnp1; 1065 1066 WARN_ON(1); /* Offline CPUs are supposed to report QS! */ 1067 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n", 1068 __func__, rnp->grplo, rnp->grphi, rnp->level, 1069 (long)rnp->gp_seq, (long)rnp->completedqs); 1070 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent) 1071 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n", 1072 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask); 1073 onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp)); 1074 pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n", 1075 __func__, rdp->cpu, ".o"[onl], 1076 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags, 1077 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags); 1078 return 1; /* Break things loose after complaining. */ 1079 } 1080 1081 /* 1082 * A CPU running for an extended time within the kernel can 1083 * delay RCU grace periods: (1) At age jiffies_to_sched_qs, 1084 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set 1085 * both .rcu_need_heavy_qs and .rcu_urgent_qs. Note that the 1086 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs 1087 * variable are safe because the assignments are repeated if this 1088 * CPU failed to pass through a quiescent state. This code 1089 * also checks .jiffies_resched in case jiffies_to_sched_qs 1090 * is set way high. 1091 */ 1092 jtsq = READ_ONCE(jiffies_to_sched_qs); 1093 ruqp = per_cpu_ptr(&rcu_data.rcu_urgent_qs, rdp->cpu); 1094 rnhqp = &per_cpu(rcu_data.rcu_need_heavy_qs, rdp->cpu); 1095 if (!READ_ONCE(*rnhqp) && 1096 (time_after(jiffies, rcu_state.gp_start + jtsq * 2) || 1097 time_after(jiffies, rcu_state.jiffies_resched))) { 1098 WRITE_ONCE(*rnhqp, true); 1099 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */ 1100 smp_store_release(ruqp, true); 1101 } else if (time_after(jiffies, rcu_state.gp_start + jtsq)) { 1102 WRITE_ONCE(*ruqp, true); 1103 } 1104 1105 /* 1106 * NO_HZ_FULL CPUs can run in-kernel without rcu_check_callbacks! 1107 * The above code handles this, but only for straight cond_resched(). 1108 * And some in-kernel loops check need_resched() before calling 1109 * cond_resched(), which defeats the above code for CPUs that are 1110 * running in-kernel with scheduling-clock interrupts disabled. 1111 * So hit them over the head with the resched_cpu() hammer! 1112 */ 1113 if (tick_nohz_full_cpu(rdp->cpu) && 1114 time_after(jiffies, 1115 READ_ONCE(rdp->last_fqs_resched) + jtsq * 3)) { 1116 resched_cpu(rdp->cpu); 1117 WRITE_ONCE(rdp->last_fqs_resched, jiffies); 1118 } 1119 1120 /* 1121 * If more than halfway to RCU CPU stall-warning time, invoke 1122 * resched_cpu() more frequently to try to loosen things up a bit. 1123 * Also check to see if the CPU is getting hammered with interrupts, 1124 * but only once per grace period, just to keep the IPIs down to 1125 * a dull roar. 1126 */ 1127 if (time_after(jiffies, rcu_state.jiffies_resched)) { 1128 if (time_after(jiffies, 1129 READ_ONCE(rdp->last_fqs_resched) + jtsq)) { 1130 resched_cpu(rdp->cpu); 1131 WRITE_ONCE(rdp->last_fqs_resched, jiffies); 1132 } 1133 if (IS_ENABLED(CONFIG_IRQ_WORK) && 1134 !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq && 1135 (rnp->ffmask & rdp->grpmask)) { 1136 init_irq_work(&rdp->rcu_iw, rcu_iw_handler); 1137 rdp->rcu_iw_pending = true; 1138 rdp->rcu_iw_gp_seq = rnp->gp_seq; 1139 irq_work_queue_on(&rdp->rcu_iw, rdp->cpu); 1140 } 1141 } 1142 1143 return 0; 1144 } 1145 1146 static void record_gp_stall_check_time(void) 1147 { 1148 unsigned long j = jiffies; 1149 unsigned long j1; 1150 1151 rcu_state.gp_start = j; 1152 j1 = rcu_jiffies_till_stall_check(); 1153 /* Record ->gp_start before ->jiffies_stall. */ 1154 smp_store_release(&rcu_state.jiffies_stall, j + j1); /* ^^^ */ 1155 rcu_state.jiffies_resched = j + j1 / 2; 1156 rcu_state.n_force_qs_gpstart = READ_ONCE(rcu_state.n_force_qs); 1157 } 1158 1159 /* 1160 * Complain about starvation of grace-period kthread. 1161 */ 1162 static void rcu_check_gp_kthread_starvation(void) 1163 { 1164 struct task_struct *gpk = rcu_state.gp_kthread; 1165 unsigned long j; 1166 1167 j = jiffies - READ_ONCE(rcu_state.gp_activity); 1168 if (j > 2 * HZ) { 1169 pr_err("%s kthread starved for %ld jiffies! g%ld f%#x %s(%d) ->state=%#lx ->cpu=%d\n", 1170 rcu_state.name, j, 1171 (long)rcu_seq_current(&rcu_state.gp_seq), 1172 rcu_state.gp_flags, 1173 gp_state_getname(rcu_state.gp_state), rcu_state.gp_state, 1174 gpk ? gpk->state : ~0, gpk ? task_cpu(gpk) : -1); 1175 if (gpk) { 1176 pr_err("RCU grace-period kthread stack dump:\n"); 1177 sched_show_task(gpk); 1178 wake_up_process(gpk); 1179 } 1180 } 1181 } 1182 1183 /* 1184 * Dump stacks of all tasks running on stalled CPUs. First try using 1185 * NMIs, but fall back to manual remote stack tracing on architectures 1186 * that don't support NMI-based stack dumps. The NMI-triggered stack 1187 * traces are more accurate because they are printed by the target CPU. 1188 */ 1189 static void rcu_dump_cpu_stacks(void) 1190 { 1191 int cpu; 1192 unsigned long flags; 1193 struct rcu_node *rnp; 1194 1195 rcu_for_each_leaf_node(rnp) { 1196 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1197 for_each_leaf_node_possible_cpu(rnp, cpu) 1198 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) 1199 if (!trigger_single_cpu_backtrace(cpu)) 1200 dump_cpu_task(cpu); 1201 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1202 } 1203 } 1204 1205 /* 1206 * If too much time has passed in the current grace period, and if 1207 * so configured, go kick the relevant kthreads. 1208 */ 1209 static void rcu_stall_kick_kthreads(void) 1210 { 1211 unsigned long j; 1212 1213 if (!rcu_kick_kthreads) 1214 return; 1215 j = READ_ONCE(rcu_state.jiffies_kick_kthreads); 1216 if (time_after(jiffies, j) && rcu_state.gp_kthread && 1217 (rcu_gp_in_progress() || READ_ONCE(rcu_state.gp_flags))) { 1218 WARN_ONCE(1, "Kicking %s grace-period kthread\n", 1219 rcu_state.name); 1220 rcu_ftrace_dump(DUMP_ALL); 1221 wake_up_process(rcu_state.gp_kthread); 1222 WRITE_ONCE(rcu_state.jiffies_kick_kthreads, j + HZ); 1223 } 1224 } 1225 1226 static void panic_on_rcu_stall(void) 1227 { 1228 if (sysctl_panic_on_rcu_stall) 1229 panic("RCU Stall\n"); 1230 } 1231 1232 static void print_other_cpu_stall(unsigned long gp_seq) 1233 { 1234 int cpu; 1235 unsigned long flags; 1236 unsigned long gpa; 1237 unsigned long j; 1238 int ndetected = 0; 1239 struct rcu_node *rnp = rcu_get_root(); 1240 long totqlen = 0; 1241 1242 /* Kick and suppress, if so configured. */ 1243 rcu_stall_kick_kthreads(); 1244 if (rcu_cpu_stall_suppress) 1245 return; 1246 1247 /* 1248 * OK, time to rat on our buddy... 1249 * See Documentation/RCU/stallwarn.txt for info on how to debug 1250 * RCU CPU stall warnings. 1251 */ 1252 pr_err("INFO: %s detected stalls on CPUs/tasks:", rcu_state.name); 1253 print_cpu_stall_info_begin(); 1254 rcu_for_each_leaf_node(rnp) { 1255 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1256 ndetected += rcu_print_task_stall(rnp); 1257 if (rnp->qsmask != 0) { 1258 for_each_leaf_node_possible_cpu(rnp, cpu) 1259 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) { 1260 print_cpu_stall_info(cpu); 1261 ndetected++; 1262 } 1263 } 1264 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1265 } 1266 1267 print_cpu_stall_info_end(); 1268 for_each_possible_cpu(cpu) 1269 totqlen += rcu_get_n_cbs_cpu(cpu); 1270 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, q=%lu)\n", 1271 smp_processor_id(), (long)(jiffies - rcu_state.gp_start), 1272 (long)rcu_seq_current(&rcu_state.gp_seq), totqlen); 1273 if (ndetected) { 1274 rcu_dump_cpu_stacks(); 1275 1276 /* Complain about tasks blocking the grace period. */ 1277 rcu_print_detail_task_stall(); 1278 } else { 1279 if (rcu_seq_current(&rcu_state.gp_seq) != gp_seq) { 1280 pr_err("INFO: Stall ended before state dump start\n"); 1281 } else { 1282 j = jiffies; 1283 gpa = READ_ONCE(rcu_state.gp_activity); 1284 pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n", 1285 rcu_state.name, j - gpa, j, gpa, 1286 READ_ONCE(jiffies_till_next_fqs), 1287 rcu_get_root()->qsmask); 1288 /* In this case, the current CPU might be at fault. */ 1289 sched_show_task(current); 1290 } 1291 } 1292 /* Rewrite if needed in case of slow consoles. */ 1293 if (ULONG_CMP_GE(jiffies, READ_ONCE(rcu_state.jiffies_stall))) 1294 WRITE_ONCE(rcu_state.jiffies_stall, 1295 jiffies + 3 * rcu_jiffies_till_stall_check() + 3); 1296 1297 rcu_check_gp_kthread_starvation(); 1298 1299 panic_on_rcu_stall(); 1300 1301 rcu_force_quiescent_state(); /* Kick them all. */ 1302 } 1303 1304 static void print_cpu_stall(void) 1305 { 1306 int cpu; 1307 unsigned long flags; 1308 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 1309 struct rcu_node *rnp = rcu_get_root(); 1310 long totqlen = 0; 1311 1312 /* Kick and suppress, if so configured. */ 1313 rcu_stall_kick_kthreads(); 1314 if (rcu_cpu_stall_suppress) 1315 return; 1316 1317 /* 1318 * OK, time to rat on ourselves... 1319 * See Documentation/RCU/stallwarn.txt for info on how to debug 1320 * RCU CPU stall warnings. 1321 */ 1322 pr_err("INFO: %s self-detected stall on CPU", rcu_state.name); 1323 print_cpu_stall_info_begin(); 1324 raw_spin_lock_irqsave_rcu_node(rdp->mynode, flags); 1325 print_cpu_stall_info(smp_processor_id()); 1326 raw_spin_unlock_irqrestore_rcu_node(rdp->mynode, flags); 1327 print_cpu_stall_info_end(); 1328 for_each_possible_cpu(cpu) 1329 totqlen += rcu_get_n_cbs_cpu(cpu); 1330 pr_cont(" (t=%lu jiffies g=%ld q=%lu)\n", 1331 jiffies - rcu_state.gp_start, 1332 (long)rcu_seq_current(&rcu_state.gp_seq), totqlen); 1333 1334 rcu_check_gp_kthread_starvation(); 1335 1336 rcu_dump_cpu_stacks(); 1337 1338 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1339 /* Rewrite if needed in case of slow consoles. */ 1340 if (ULONG_CMP_GE(jiffies, READ_ONCE(rcu_state.jiffies_stall))) 1341 WRITE_ONCE(rcu_state.jiffies_stall, 1342 jiffies + 3 * rcu_jiffies_till_stall_check() + 3); 1343 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1344 1345 panic_on_rcu_stall(); 1346 1347 /* 1348 * Attempt to revive the RCU machinery by forcing a context switch. 1349 * 1350 * A context switch would normally allow the RCU state machine to make 1351 * progress and it could be we're stuck in kernel space without context 1352 * switches for an entirely unreasonable amount of time. 1353 */ 1354 set_tsk_need_resched(current); 1355 set_preempt_need_resched(); 1356 } 1357 1358 static void check_cpu_stall(struct rcu_data *rdp) 1359 { 1360 unsigned long gs1; 1361 unsigned long gs2; 1362 unsigned long gps; 1363 unsigned long j; 1364 unsigned long jn; 1365 unsigned long js; 1366 struct rcu_node *rnp; 1367 1368 if ((rcu_cpu_stall_suppress && !rcu_kick_kthreads) || 1369 !rcu_gp_in_progress()) 1370 return; 1371 rcu_stall_kick_kthreads(); 1372 j = jiffies; 1373 1374 /* 1375 * Lots of memory barriers to reject false positives. 1376 * 1377 * The idea is to pick up rcu_state.gp_seq, then 1378 * rcu_state.jiffies_stall, then rcu_state.gp_start, and finally 1379 * another copy of rcu_state.gp_seq. These values are updated in 1380 * the opposite order with memory barriers (or equivalent) during 1381 * grace-period initialization and cleanup. Now, a false positive 1382 * can occur if we get an new value of rcu_state.gp_start and a old 1383 * value of rcu_state.jiffies_stall. But given the memory barriers, 1384 * the only way that this can happen is if one grace period ends 1385 * and another starts between these two fetches. This is detected 1386 * by comparing the second fetch of rcu_state.gp_seq with the 1387 * previous fetch from rcu_state.gp_seq. 1388 * 1389 * Given this check, comparisons of jiffies, rcu_state.jiffies_stall, 1390 * and rcu_state.gp_start suffice to forestall false positives. 1391 */ 1392 gs1 = READ_ONCE(rcu_state.gp_seq); 1393 smp_rmb(); /* Pick up ->gp_seq first... */ 1394 js = READ_ONCE(rcu_state.jiffies_stall); 1395 smp_rmb(); /* ...then ->jiffies_stall before the rest... */ 1396 gps = READ_ONCE(rcu_state.gp_start); 1397 smp_rmb(); /* ...and finally ->gp_start before ->gp_seq again. */ 1398 gs2 = READ_ONCE(rcu_state.gp_seq); 1399 if (gs1 != gs2 || 1400 ULONG_CMP_LT(j, js) || 1401 ULONG_CMP_GE(gps, js)) 1402 return; /* No stall or GP completed since entering function. */ 1403 rnp = rdp->mynode; 1404 jn = jiffies + 3 * rcu_jiffies_till_stall_check() + 3; 1405 if (rcu_gp_in_progress() && 1406 (READ_ONCE(rnp->qsmask) & rdp->grpmask) && 1407 cmpxchg(&rcu_state.jiffies_stall, js, jn) == js) { 1408 1409 /* We haven't checked in, so go dump stack. */ 1410 print_cpu_stall(); 1411 1412 } else if (rcu_gp_in_progress() && 1413 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY) && 1414 cmpxchg(&rcu_state.jiffies_stall, js, jn) == js) { 1415 1416 /* They had a few time units to dump stack, so complain. */ 1417 print_other_cpu_stall(gs2); 1418 } 1419 } 1420 1421 /** 1422 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period 1423 * 1424 * Set the stall-warning timeout way off into the future, thus preventing 1425 * any RCU CPU stall-warning messages from appearing in the current set of 1426 * RCU grace periods. 1427 * 1428 * The caller must disable hard irqs. 1429 */ 1430 void rcu_cpu_stall_reset(void) 1431 { 1432 WRITE_ONCE(rcu_state.jiffies_stall, jiffies + ULONG_MAX / 2); 1433 } 1434 1435 /* Trace-event wrapper function for trace_rcu_future_grace_period. */ 1436 static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp, 1437 unsigned long gp_seq_req, const char *s) 1438 { 1439 trace_rcu_future_grace_period(rcu_state.name, rnp->gp_seq, gp_seq_req, 1440 rnp->level, rnp->grplo, rnp->grphi, s); 1441 } 1442 1443 /* 1444 * rcu_start_this_gp - Request the start of a particular grace period 1445 * @rnp_start: The leaf node of the CPU from which to start. 1446 * @rdp: The rcu_data corresponding to the CPU from which to start. 1447 * @gp_seq_req: The gp_seq of the grace period to start. 1448 * 1449 * Start the specified grace period, as needed to handle newly arrived 1450 * callbacks. The required future grace periods are recorded in each 1451 * rcu_node structure's ->gp_seq_needed field. Returns true if there 1452 * is reason to awaken the grace-period kthread. 1453 * 1454 * The caller must hold the specified rcu_node structure's ->lock, which 1455 * is why the caller is responsible for waking the grace-period kthread. 1456 * 1457 * Returns true if the GP thread needs to be awakened else false. 1458 */ 1459 static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp, 1460 unsigned long gp_seq_req) 1461 { 1462 bool ret = false; 1463 struct rcu_node *rnp; 1464 1465 /* 1466 * Use funnel locking to either acquire the root rcu_node 1467 * structure's lock or bail out if the need for this grace period 1468 * has already been recorded -- or if that grace period has in 1469 * fact already started. If there is already a grace period in 1470 * progress in a non-leaf node, no recording is needed because the 1471 * end of the grace period will scan the leaf rcu_node structures. 1472 * Note that rnp_start->lock must not be released. 1473 */ 1474 raw_lockdep_assert_held_rcu_node(rnp_start); 1475 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf")); 1476 for (rnp = rnp_start; 1; rnp = rnp->parent) { 1477 if (rnp != rnp_start) 1478 raw_spin_lock_rcu_node(rnp); 1479 if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) || 1480 rcu_seq_started(&rnp->gp_seq, gp_seq_req) || 1481 (rnp != rnp_start && 1482 rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) { 1483 trace_rcu_this_gp(rnp, rdp, gp_seq_req, 1484 TPS("Prestarted")); 1485 goto unlock_out; 1486 } 1487 rnp->gp_seq_needed = gp_seq_req; 1488 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) { 1489 /* 1490 * We just marked the leaf or internal node, and a 1491 * grace period is in progress, which means that 1492 * rcu_gp_cleanup() will see the marking. Bail to 1493 * reduce contention. 1494 */ 1495 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, 1496 TPS("Startedleaf")); 1497 goto unlock_out; 1498 } 1499 if (rnp != rnp_start && rnp->parent != NULL) 1500 raw_spin_unlock_rcu_node(rnp); 1501 if (!rnp->parent) 1502 break; /* At root, and perhaps also leaf. */ 1503 } 1504 1505 /* If GP already in progress, just leave, otherwise start one. */ 1506 if (rcu_gp_in_progress()) { 1507 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot")); 1508 goto unlock_out; 1509 } 1510 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot")); 1511 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT); 1512 rcu_state.gp_req_activity = jiffies; 1513 if (!rcu_state.gp_kthread) { 1514 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread")); 1515 goto unlock_out; 1516 } 1517 trace_rcu_grace_period(rcu_state.name, READ_ONCE(rcu_state.gp_seq), TPS("newreq")); 1518 ret = true; /* Caller must wake GP kthread. */ 1519 unlock_out: 1520 /* Push furthest requested GP to leaf node and rcu_data structure. */ 1521 if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) { 1522 rnp_start->gp_seq_needed = rnp->gp_seq_needed; 1523 rdp->gp_seq_needed = rnp->gp_seq_needed; 1524 } 1525 if (rnp != rnp_start) 1526 raw_spin_unlock_rcu_node(rnp); 1527 return ret; 1528 } 1529 1530 /* 1531 * Clean up any old requests for the just-ended grace period. Also return 1532 * whether any additional grace periods have been requested. 1533 */ 1534 static bool rcu_future_gp_cleanup(struct rcu_node *rnp) 1535 { 1536 bool needmore; 1537 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 1538 1539 needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed); 1540 if (!needmore) 1541 rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */ 1542 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq, 1543 needmore ? TPS("CleanupMore") : TPS("Cleanup")); 1544 return needmore; 1545 } 1546 1547 /* 1548 * Awaken the grace-period kthread. Don't do a self-awaken, and don't 1549 * bother awakening when there is nothing for the grace-period kthread 1550 * to do (as in several CPUs raced to awaken, and we lost), and finally 1551 * don't try to awaken a kthread that has not yet been created. 1552 */ 1553 static void rcu_gp_kthread_wake(void) 1554 { 1555 if (current == rcu_state.gp_kthread || 1556 !READ_ONCE(rcu_state.gp_flags) || 1557 !rcu_state.gp_kthread) 1558 return; 1559 swake_up_one(&rcu_state.gp_wq); 1560 } 1561 1562 /* 1563 * If there is room, assign a ->gp_seq number to any callbacks on this 1564 * CPU that have not already been assigned. Also accelerate any callbacks 1565 * that were previously assigned a ->gp_seq number that has since proven 1566 * to be too conservative, which can happen if callbacks get assigned a 1567 * ->gp_seq number while RCU is idle, but with reference to a non-root 1568 * rcu_node structure. This function is idempotent, so it does not hurt 1569 * to call it repeatedly. Returns an flag saying that we should awaken 1570 * the RCU grace-period kthread. 1571 * 1572 * The caller must hold rnp->lock with interrupts disabled. 1573 */ 1574 static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp) 1575 { 1576 unsigned long gp_seq_req; 1577 bool ret = false; 1578 1579 raw_lockdep_assert_held_rcu_node(rnp); 1580 1581 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */ 1582 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) 1583 return false; 1584 1585 /* 1586 * Callbacks are often registered with incomplete grace-period 1587 * information. Something about the fact that getting exact 1588 * information requires acquiring a global lock... RCU therefore 1589 * makes a conservative estimate of the grace period number at which 1590 * a given callback will become ready to invoke. The following 1591 * code checks this estimate and improves it when possible, thus 1592 * accelerating callback invocation to an earlier grace-period 1593 * number. 1594 */ 1595 gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq); 1596 if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req)) 1597 ret = rcu_start_this_gp(rnp, rdp, gp_seq_req); 1598 1599 /* Trace depending on how much we were able to accelerate. */ 1600 if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL)) 1601 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("AccWaitCB")); 1602 else 1603 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("AccReadyCB")); 1604 return ret; 1605 } 1606 1607 /* 1608 * Similar to rcu_accelerate_cbs(), but does not require that the leaf 1609 * rcu_node structure's ->lock be held. It consults the cached value 1610 * of ->gp_seq_needed in the rcu_data structure, and if that indicates 1611 * that a new grace-period request be made, invokes rcu_accelerate_cbs() 1612 * while holding the leaf rcu_node structure's ->lock. 1613 */ 1614 static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp, 1615 struct rcu_data *rdp) 1616 { 1617 unsigned long c; 1618 bool needwake; 1619 1620 lockdep_assert_irqs_disabled(); 1621 c = rcu_seq_snap(&rcu_state.gp_seq); 1622 if (!rdp->gpwrap && ULONG_CMP_GE(rdp->gp_seq_needed, c)) { 1623 /* Old request still live, so mark recent callbacks. */ 1624 (void)rcu_segcblist_accelerate(&rdp->cblist, c); 1625 return; 1626 } 1627 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 1628 needwake = rcu_accelerate_cbs(rnp, rdp); 1629 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 1630 if (needwake) 1631 rcu_gp_kthread_wake(); 1632 } 1633 1634 /* 1635 * Move any callbacks whose grace period has completed to the 1636 * RCU_DONE_TAIL sublist, then compact the remaining sublists and 1637 * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL 1638 * sublist. This function is idempotent, so it does not hurt to 1639 * invoke it repeatedly. As long as it is not invoked -too- often... 1640 * Returns true if the RCU grace-period kthread needs to be awakened. 1641 * 1642 * The caller must hold rnp->lock with interrupts disabled. 1643 */ 1644 static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp) 1645 { 1646 raw_lockdep_assert_held_rcu_node(rnp); 1647 1648 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */ 1649 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) 1650 return false; 1651 1652 /* 1653 * Find all callbacks whose ->gp_seq numbers indicate that they 1654 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist. 1655 */ 1656 rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq); 1657 1658 /* Classify any remaining callbacks. */ 1659 return rcu_accelerate_cbs(rnp, rdp); 1660 } 1661 1662 /* 1663 * Update CPU-local rcu_data state to record the beginnings and ends of 1664 * grace periods. The caller must hold the ->lock of the leaf rcu_node 1665 * structure corresponding to the current CPU, and must have irqs disabled. 1666 * Returns true if the grace-period kthread needs to be awakened. 1667 */ 1668 static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp) 1669 { 1670 bool ret; 1671 bool need_gp; 1672 1673 raw_lockdep_assert_held_rcu_node(rnp); 1674 1675 if (rdp->gp_seq == rnp->gp_seq) 1676 return false; /* Nothing to do. */ 1677 1678 /* Handle the ends of any preceding grace periods first. */ 1679 if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) || 1680 unlikely(READ_ONCE(rdp->gpwrap))) { 1681 ret = rcu_advance_cbs(rnp, rdp); /* Advance callbacks. */ 1682 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend")); 1683 } else { 1684 ret = rcu_accelerate_cbs(rnp, rdp); /* Recent callbacks. */ 1685 } 1686 1687 /* Now handle the beginnings of any new-to-this-CPU grace periods. */ 1688 if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) || 1689 unlikely(READ_ONCE(rdp->gpwrap))) { 1690 /* 1691 * If the current grace period is waiting for this CPU, 1692 * set up to detect a quiescent state, otherwise don't 1693 * go looking for one. 1694 */ 1695 trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart")); 1696 need_gp = !!(rnp->qsmask & rdp->grpmask); 1697 rdp->cpu_no_qs.b.norm = need_gp; 1698 rdp->core_needs_qs = need_gp; 1699 zero_cpu_stall_ticks(rdp); 1700 } 1701 rdp->gp_seq = rnp->gp_seq; /* Remember new grace-period state. */ 1702 if (ULONG_CMP_GE(rnp->gp_seq_needed, rdp->gp_seq_needed) || rdp->gpwrap) 1703 rdp->gp_seq_needed = rnp->gp_seq_needed; 1704 WRITE_ONCE(rdp->gpwrap, false); 1705 rcu_gpnum_ovf(rnp, rdp); 1706 return ret; 1707 } 1708 1709 static void note_gp_changes(struct rcu_data *rdp) 1710 { 1711 unsigned long flags; 1712 bool needwake; 1713 struct rcu_node *rnp; 1714 1715 local_irq_save(flags); 1716 rnp = rdp->mynode; 1717 if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) && 1718 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */ 1719 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */ 1720 local_irq_restore(flags); 1721 return; 1722 } 1723 needwake = __note_gp_changes(rnp, rdp); 1724 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1725 if (needwake) 1726 rcu_gp_kthread_wake(); 1727 } 1728 1729 static void rcu_gp_slow(int delay) 1730 { 1731 if (delay > 0 && 1732 !(rcu_seq_ctr(rcu_state.gp_seq) % 1733 (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay))) 1734 schedule_timeout_uninterruptible(delay); 1735 } 1736 1737 /* 1738 * Initialize a new grace period. Return false if no grace period required. 1739 */ 1740 static bool rcu_gp_init(void) 1741 { 1742 unsigned long flags; 1743 unsigned long oldmask; 1744 unsigned long mask; 1745 struct rcu_data *rdp; 1746 struct rcu_node *rnp = rcu_get_root(); 1747 1748 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1749 raw_spin_lock_irq_rcu_node(rnp); 1750 if (!READ_ONCE(rcu_state.gp_flags)) { 1751 /* Spurious wakeup, tell caller to go back to sleep. */ 1752 raw_spin_unlock_irq_rcu_node(rnp); 1753 return false; 1754 } 1755 WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */ 1756 1757 if (WARN_ON_ONCE(rcu_gp_in_progress())) { 1758 /* 1759 * Grace period already in progress, don't start another. 1760 * Not supposed to be able to happen. 1761 */ 1762 raw_spin_unlock_irq_rcu_node(rnp); 1763 return false; 1764 } 1765 1766 /* Advance to a new grace period and initialize state. */ 1767 record_gp_stall_check_time(); 1768 /* Record GP times before starting GP, hence rcu_seq_start(). */ 1769 rcu_seq_start(&rcu_state.gp_seq); 1770 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start")); 1771 raw_spin_unlock_irq_rcu_node(rnp); 1772 1773 /* 1774 * Apply per-leaf buffered online and offline operations to the 1775 * rcu_node tree. Note that this new grace period need not wait 1776 * for subsequent online CPUs, and that quiescent-state forcing 1777 * will handle subsequent offline CPUs. 1778 */ 1779 rcu_state.gp_state = RCU_GP_ONOFF; 1780 rcu_for_each_leaf_node(rnp) { 1781 raw_spin_lock(&rcu_state.ofl_lock); 1782 raw_spin_lock_irq_rcu_node(rnp); 1783 if (rnp->qsmaskinit == rnp->qsmaskinitnext && 1784 !rnp->wait_blkd_tasks) { 1785 /* Nothing to do on this leaf rcu_node structure. */ 1786 raw_spin_unlock_irq_rcu_node(rnp); 1787 raw_spin_unlock(&rcu_state.ofl_lock); 1788 continue; 1789 } 1790 1791 /* Record old state, apply changes to ->qsmaskinit field. */ 1792 oldmask = rnp->qsmaskinit; 1793 rnp->qsmaskinit = rnp->qsmaskinitnext; 1794 1795 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */ 1796 if (!oldmask != !rnp->qsmaskinit) { 1797 if (!oldmask) { /* First online CPU for rcu_node. */ 1798 if (!rnp->wait_blkd_tasks) /* Ever offline? */ 1799 rcu_init_new_rnp(rnp); 1800 } else if (rcu_preempt_has_tasks(rnp)) { 1801 rnp->wait_blkd_tasks = true; /* blocked tasks */ 1802 } else { /* Last offline CPU and can propagate. */ 1803 rcu_cleanup_dead_rnp(rnp); 1804 } 1805 } 1806 1807 /* 1808 * If all waited-on tasks from prior grace period are 1809 * done, and if all this rcu_node structure's CPUs are 1810 * still offline, propagate up the rcu_node tree and 1811 * clear ->wait_blkd_tasks. Otherwise, if one of this 1812 * rcu_node structure's CPUs has since come back online, 1813 * simply clear ->wait_blkd_tasks. 1814 */ 1815 if (rnp->wait_blkd_tasks && 1816 (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) { 1817 rnp->wait_blkd_tasks = false; 1818 if (!rnp->qsmaskinit) 1819 rcu_cleanup_dead_rnp(rnp); 1820 } 1821 1822 raw_spin_unlock_irq_rcu_node(rnp); 1823 raw_spin_unlock(&rcu_state.ofl_lock); 1824 } 1825 rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */ 1826 1827 /* 1828 * Set the quiescent-state-needed bits in all the rcu_node 1829 * structures for all currently online CPUs in breadth-first 1830 * order, starting from the root rcu_node structure, relying on the 1831 * layout of the tree within the rcu_state.node[] array. Note that 1832 * other CPUs will access only the leaves of the hierarchy, thus 1833 * seeing that no grace period is in progress, at least until the 1834 * corresponding leaf node has been initialized. 1835 * 1836 * The grace period cannot complete until the initialization 1837 * process finishes, because this kthread handles both. 1838 */ 1839 rcu_state.gp_state = RCU_GP_INIT; 1840 rcu_for_each_node_breadth_first(rnp) { 1841 rcu_gp_slow(gp_init_delay); 1842 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1843 rdp = this_cpu_ptr(&rcu_data); 1844 rcu_preempt_check_blocked_tasks(rnp); 1845 rnp->qsmask = rnp->qsmaskinit; 1846 WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq); 1847 if (rnp == rdp->mynode) 1848 (void)__note_gp_changes(rnp, rdp); 1849 rcu_preempt_boost_start_gp(rnp); 1850 trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq, 1851 rnp->level, rnp->grplo, 1852 rnp->grphi, rnp->qsmask); 1853 /* Quiescent states for tasks on any now-offline CPUs. */ 1854 mask = rnp->qsmask & ~rnp->qsmaskinitnext; 1855 rnp->rcu_gp_init_mask = mask; 1856 if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp)) 1857 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 1858 else 1859 raw_spin_unlock_irq_rcu_node(rnp); 1860 cond_resched_tasks_rcu_qs(); 1861 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1862 } 1863 1864 return true; 1865 } 1866 1867 /* 1868 * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state 1869 * time. 1870 */ 1871 static bool rcu_gp_fqs_check_wake(int *gfp) 1872 { 1873 struct rcu_node *rnp = rcu_get_root(); 1874 1875 /* Someone like call_rcu() requested a force-quiescent-state scan. */ 1876 *gfp = READ_ONCE(rcu_state.gp_flags); 1877 if (*gfp & RCU_GP_FLAG_FQS) 1878 return true; 1879 1880 /* The current grace period has completed. */ 1881 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp)) 1882 return true; 1883 1884 return false; 1885 } 1886 1887 /* 1888 * Do one round of quiescent-state forcing. 1889 */ 1890 static void rcu_gp_fqs(bool first_time) 1891 { 1892 struct rcu_node *rnp = rcu_get_root(); 1893 1894 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1895 rcu_state.n_force_qs++; 1896 if (first_time) { 1897 /* Collect dyntick-idle snapshots. */ 1898 force_qs_rnp(dyntick_save_progress_counter); 1899 } else { 1900 /* Handle dyntick-idle and offline CPUs. */ 1901 force_qs_rnp(rcu_implicit_dynticks_qs); 1902 } 1903 /* Clear flag to prevent immediate re-entry. */ 1904 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) { 1905 raw_spin_lock_irq_rcu_node(rnp); 1906 WRITE_ONCE(rcu_state.gp_flags, 1907 READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS); 1908 raw_spin_unlock_irq_rcu_node(rnp); 1909 } 1910 } 1911 1912 /* 1913 * Loop doing repeated quiescent-state forcing until the grace period ends. 1914 */ 1915 static void rcu_gp_fqs_loop(void) 1916 { 1917 bool first_gp_fqs; 1918 int gf; 1919 unsigned long j; 1920 int ret; 1921 struct rcu_node *rnp = rcu_get_root(); 1922 1923 first_gp_fqs = true; 1924 j = READ_ONCE(jiffies_till_first_fqs); 1925 ret = 0; 1926 for (;;) { 1927 if (!ret) { 1928 rcu_state.jiffies_force_qs = jiffies + j; 1929 WRITE_ONCE(rcu_state.jiffies_kick_kthreads, 1930 jiffies + 3 * j); 1931 } 1932 trace_rcu_grace_period(rcu_state.name, 1933 READ_ONCE(rcu_state.gp_seq), 1934 TPS("fqswait")); 1935 rcu_state.gp_state = RCU_GP_WAIT_FQS; 1936 ret = swait_event_idle_timeout_exclusive( 1937 rcu_state.gp_wq, rcu_gp_fqs_check_wake(&gf), j); 1938 rcu_state.gp_state = RCU_GP_DOING_FQS; 1939 /* Locking provides needed memory barriers. */ 1940 /* If grace period done, leave loop. */ 1941 if (!READ_ONCE(rnp->qsmask) && 1942 !rcu_preempt_blocked_readers_cgp(rnp)) 1943 break; 1944 /* If time for quiescent-state forcing, do it. */ 1945 if (ULONG_CMP_GE(jiffies, rcu_state.jiffies_force_qs) || 1946 (gf & RCU_GP_FLAG_FQS)) { 1947 trace_rcu_grace_period(rcu_state.name, 1948 READ_ONCE(rcu_state.gp_seq), 1949 TPS("fqsstart")); 1950 rcu_gp_fqs(first_gp_fqs); 1951 first_gp_fqs = false; 1952 trace_rcu_grace_period(rcu_state.name, 1953 READ_ONCE(rcu_state.gp_seq), 1954 TPS("fqsend")); 1955 cond_resched_tasks_rcu_qs(); 1956 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1957 ret = 0; /* Force full wait till next FQS. */ 1958 j = READ_ONCE(jiffies_till_next_fqs); 1959 } else { 1960 /* Deal with stray signal. */ 1961 cond_resched_tasks_rcu_qs(); 1962 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1963 WARN_ON(signal_pending(current)); 1964 trace_rcu_grace_period(rcu_state.name, 1965 READ_ONCE(rcu_state.gp_seq), 1966 TPS("fqswaitsig")); 1967 ret = 1; /* Keep old FQS timing. */ 1968 j = jiffies; 1969 if (time_after(jiffies, rcu_state.jiffies_force_qs)) 1970 j = 1; 1971 else 1972 j = rcu_state.jiffies_force_qs - j; 1973 } 1974 } 1975 } 1976 1977 /* 1978 * Clean up after the old grace period. 1979 */ 1980 static void rcu_gp_cleanup(void) 1981 { 1982 unsigned long gp_duration; 1983 bool needgp = false; 1984 unsigned long new_gp_seq; 1985 struct rcu_data *rdp; 1986 struct rcu_node *rnp = rcu_get_root(); 1987 struct swait_queue_head *sq; 1988 1989 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1990 raw_spin_lock_irq_rcu_node(rnp); 1991 rcu_state.gp_end = jiffies; 1992 gp_duration = rcu_state.gp_end - rcu_state.gp_start; 1993 if (gp_duration > rcu_state.gp_max) 1994 rcu_state.gp_max = gp_duration; 1995 1996 /* 1997 * We know the grace period is complete, but to everyone else 1998 * it appears to still be ongoing. But it is also the case 1999 * that to everyone else it looks like there is nothing that 2000 * they can do to advance the grace period. It is therefore 2001 * safe for us to drop the lock in order to mark the grace 2002 * period as completed in all of the rcu_node structures. 2003 */ 2004 raw_spin_unlock_irq_rcu_node(rnp); 2005 2006 /* 2007 * Propagate new ->gp_seq value to rcu_node structures so that 2008 * other CPUs don't have to wait until the start of the next grace 2009 * period to process their callbacks. This also avoids some nasty 2010 * RCU grace-period initialization races by forcing the end of 2011 * the current grace period to be completely recorded in all of 2012 * the rcu_node structures before the beginning of the next grace 2013 * period is recorded in any of the rcu_node structures. 2014 */ 2015 new_gp_seq = rcu_state.gp_seq; 2016 rcu_seq_end(&new_gp_seq); 2017 rcu_for_each_node_breadth_first(rnp) { 2018 raw_spin_lock_irq_rcu_node(rnp); 2019 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp))) 2020 dump_blkd_tasks(rnp, 10); 2021 WARN_ON_ONCE(rnp->qsmask); 2022 WRITE_ONCE(rnp->gp_seq, new_gp_seq); 2023 rdp = this_cpu_ptr(&rcu_data); 2024 if (rnp == rdp->mynode) 2025 needgp = __note_gp_changes(rnp, rdp) || needgp; 2026 /* smp_mb() provided by prior unlock-lock pair. */ 2027 needgp = rcu_future_gp_cleanup(rnp) || needgp; 2028 sq = rcu_nocb_gp_get(rnp); 2029 raw_spin_unlock_irq_rcu_node(rnp); 2030 rcu_nocb_gp_cleanup(sq); 2031 cond_resched_tasks_rcu_qs(); 2032 WRITE_ONCE(rcu_state.gp_activity, jiffies); 2033 rcu_gp_slow(gp_cleanup_delay); 2034 } 2035 rnp = rcu_get_root(); 2036 raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */ 2037 2038 /* Declare grace period done, trace first to use old GP number. */ 2039 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end")); 2040 rcu_seq_end(&rcu_state.gp_seq); 2041 rcu_state.gp_state = RCU_GP_IDLE; 2042 /* Check for GP requests since above loop. */ 2043 rdp = this_cpu_ptr(&rcu_data); 2044 if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) { 2045 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed, 2046 TPS("CleanupMore")); 2047 needgp = true; 2048 } 2049 /* Advance CBs to reduce false positives below. */ 2050 if (!rcu_accelerate_cbs(rnp, rdp) && needgp) { 2051 WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT); 2052 rcu_state.gp_req_activity = jiffies; 2053 trace_rcu_grace_period(rcu_state.name, 2054 READ_ONCE(rcu_state.gp_seq), 2055 TPS("newreq")); 2056 } else { 2057 WRITE_ONCE(rcu_state.gp_flags, 2058 rcu_state.gp_flags & RCU_GP_FLAG_INIT); 2059 } 2060 raw_spin_unlock_irq_rcu_node(rnp); 2061 } 2062 2063 /* 2064 * Body of kthread that handles grace periods. 2065 */ 2066 static int __noreturn rcu_gp_kthread(void *unused) 2067 { 2068 rcu_bind_gp_kthread(); 2069 for (;;) { 2070 2071 /* Handle grace-period start. */ 2072 for (;;) { 2073 trace_rcu_grace_period(rcu_state.name, 2074 READ_ONCE(rcu_state.gp_seq), 2075 TPS("reqwait")); 2076 rcu_state.gp_state = RCU_GP_WAIT_GPS; 2077 swait_event_idle_exclusive(rcu_state.gp_wq, 2078 READ_ONCE(rcu_state.gp_flags) & 2079 RCU_GP_FLAG_INIT); 2080 rcu_state.gp_state = RCU_GP_DONE_GPS; 2081 /* Locking provides needed memory barrier. */ 2082 if (rcu_gp_init()) 2083 break; 2084 cond_resched_tasks_rcu_qs(); 2085 WRITE_ONCE(rcu_state.gp_activity, jiffies); 2086 WARN_ON(signal_pending(current)); 2087 trace_rcu_grace_period(rcu_state.name, 2088 READ_ONCE(rcu_state.gp_seq), 2089 TPS("reqwaitsig")); 2090 } 2091 2092 /* Handle quiescent-state forcing. */ 2093 rcu_gp_fqs_loop(); 2094 2095 /* Handle grace-period end. */ 2096 rcu_state.gp_state = RCU_GP_CLEANUP; 2097 rcu_gp_cleanup(); 2098 rcu_state.gp_state = RCU_GP_CLEANED; 2099 } 2100 } 2101 2102 /* 2103 * Report a full set of quiescent states to the rcu_state data structure. 2104 * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if 2105 * another grace period is required. Whether we wake the grace-period 2106 * kthread or it awakens itself for the next round of quiescent-state 2107 * forcing, that kthread will clean up after the just-completed grace 2108 * period. Note that the caller must hold rnp->lock, which is released 2109 * before return. 2110 */ 2111 static void rcu_report_qs_rsp(unsigned long flags) 2112 __releases(rcu_get_root()->lock) 2113 { 2114 raw_lockdep_assert_held_rcu_node(rcu_get_root()); 2115 WARN_ON_ONCE(!rcu_gp_in_progress()); 2116 WRITE_ONCE(rcu_state.gp_flags, 2117 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS); 2118 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags); 2119 rcu_gp_kthread_wake(); 2120 } 2121 2122 /* 2123 * Similar to rcu_report_qs_rdp(), for which it is a helper function. 2124 * Allows quiescent states for a group of CPUs to be reported at one go 2125 * to the specified rcu_node structure, though all the CPUs in the group 2126 * must be represented by the same rcu_node structure (which need not be a 2127 * leaf rcu_node structure, though it often will be). The gps parameter 2128 * is the grace-period snapshot, which means that the quiescent states 2129 * are valid only if rnp->gp_seq is equal to gps. That structure's lock 2130 * must be held upon entry, and it is released before return. 2131 * 2132 * As a special case, if mask is zero, the bit-already-cleared check is 2133 * disabled. This allows propagating quiescent state due to resumed tasks 2134 * during grace-period initialization. 2135 */ 2136 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp, 2137 unsigned long gps, unsigned long flags) 2138 __releases(rnp->lock) 2139 { 2140 unsigned long oldmask = 0; 2141 struct rcu_node *rnp_c; 2142 2143 raw_lockdep_assert_held_rcu_node(rnp); 2144 2145 /* Walk up the rcu_node hierarchy. */ 2146 for (;;) { 2147 if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) { 2148 2149 /* 2150 * Our bit has already been cleared, or the 2151 * relevant grace period is already over, so done. 2152 */ 2153 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2154 return; 2155 } 2156 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */ 2157 WARN_ON_ONCE(!rcu_is_leaf_node(rnp) && 2158 rcu_preempt_blocked_readers_cgp(rnp)); 2159 rnp->qsmask &= ~mask; 2160 trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq, 2161 mask, rnp->qsmask, rnp->level, 2162 rnp->grplo, rnp->grphi, 2163 !!rnp->gp_tasks); 2164 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) { 2165 2166 /* Other bits still set at this level, so done. */ 2167 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2168 return; 2169 } 2170 rnp->completedqs = rnp->gp_seq; 2171 mask = rnp->grpmask; 2172 if (rnp->parent == NULL) { 2173 2174 /* No more levels. Exit loop holding root lock. */ 2175 2176 break; 2177 } 2178 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2179 rnp_c = rnp; 2180 rnp = rnp->parent; 2181 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2182 oldmask = rnp_c->qsmask; 2183 } 2184 2185 /* 2186 * Get here if we are the last CPU to pass through a quiescent 2187 * state for this grace period. Invoke rcu_report_qs_rsp() 2188 * to clean up and start the next grace period if one is needed. 2189 */ 2190 rcu_report_qs_rsp(flags); /* releases rnp->lock. */ 2191 } 2192 2193 /* 2194 * Record a quiescent state for all tasks that were previously queued 2195 * on the specified rcu_node structure and that were blocking the current 2196 * RCU grace period. The caller must hold the corresponding rnp->lock with 2197 * irqs disabled, and this lock is released upon return, but irqs remain 2198 * disabled. 2199 */ 2200 static void __maybe_unused 2201 rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags) 2202 __releases(rnp->lock) 2203 { 2204 unsigned long gps; 2205 unsigned long mask; 2206 struct rcu_node *rnp_p; 2207 2208 raw_lockdep_assert_held_rcu_node(rnp); 2209 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT)) || 2210 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) || 2211 rnp->qsmask != 0) { 2212 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2213 return; /* Still need more quiescent states! */ 2214 } 2215 2216 rnp->completedqs = rnp->gp_seq; 2217 rnp_p = rnp->parent; 2218 if (rnp_p == NULL) { 2219 /* 2220 * Only one rcu_node structure in the tree, so don't 2221 * try to report up to its nonexistent parent! 2222 */ 2223 rcu_report_qs_rsp(flags); 2224 return; 2225 } 2226 2227 /* Report up the rest of the hierarchy, tracking current ->gp_seq. */ 2228 gps = rnp->gp_seq; 2229 mask = rnp->grpmask; 2230 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 2231 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */ 2232 rcu_report_qs_rnp(mask, rnp_p, gps, flags); 2233 } 2234 2235 /* 2236 * Record a quiescent state for the specified CPU to that CPU's rcu_data 2237 * structure. This must be called from the specified CPU. 2238 */ 2239 static void 2240 rcu_report_qs_rdp(int cpu, struct rcu_data *rdp) 2241 { 2242 unsigned long flags; 2243 unsigned long mask; 2244 bool needwake; 2245 struct rcu_node *rnp; 2246 2247 rnp = rdp->mynode; 2248 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2249 if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq || 2250 rdp->gpwrap) { 2251 2252 /* 2253 * The grace period in which this quiescent state was 2254 * recorded has ended, so don't report it upwards. 2255 * We will instead need a new quiescent state that lies 2256 * within the current grace period. 2257 */ 2258 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */ 2259 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2260 return; 2261 } 2262 mask = rdp->grpmask; 2263 if ((rnp->qsmask & mask) == 0) { 2264 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2265 } else { 2266 rdp->core_needs_qs = false; 2267 2268 /* 2269 * This GP can't end until cpu checks in, so all of our 2270 * callbacks can be processed during the next GP. 2271 */ 2272 needwake = rcu_accelerate_cbs(rnp, rdp); 2273 2274 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 2275 /* ^^^ Released rnp->lock */ 2276 if (needwake) 2277 rcu_gp_kthread_wake(); 2278 } 2279 } 2280 2281 /* 2282 * Check to see if there is a new grace period of which this CPU 2283 * is not yet aware, and if so, set up local rcu_data state for it. 2284 * Otherwise, see if this CPU has just passed through its first 2285 * quiescent state for this grace period, and record that fact if so. 2286 */ 2287 static void 2288 rcu_check_quiescent_state(struct rcu_data *rdp) 2289 { 2290 /* Check for grace-period ends and beginnings. */ 2291 note_gp_changes(rdp); 2292 2293 /* 2294 * Does this CPU still need to do its part for current grace period? 2295 * If no, return and let the other CPUs do their part as well. 2296 */ 2297 if (!rdp->core_needs_qs) 2298 return; 2299 2300 /* 2301 * Was there a quiescent state since the beginning of the grace 2302 * period? If no, then exit and wait for the next call. 2303 */ 2304 if (rdp->cpu_no_qs.b.norm) 2305 return; 2306 2307 /* 2308 * Tell RCU we are done (but rcu_report_qs_rdp() will be the 2309 * judge of that). 2310 */ 2311 rcu_report_qs_rdp(rdp->cpu, rdp); 2312 } 2313 2314 /* 2315 * Near the end of the offline process. Trace the fact that this CPU 2316 * is going offline. 2317 */ 2318 int rcutree_dying_cpu(unsigned int cpu) 2319 { 2320 RCU_TRACE(bool blkd;) 2321 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(&rcu_data);) 2322 RCU_TRACE(struct rcu_node *rnp = rdp->mynode;) 2323 2324 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) 2325 return 0; 2326 2327 RCU_TRACE(blkd = !!(rnp->qsmask & rdp->grpmask);) 2328 trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, 2329 blkd ? TPS("cpuofl") : TPS("cpuofl-bgp")); 2330 return 0; 2331 } 2332 2333 /* 2334 * All CPUs for the specified rcu_node structure have gone offline, 2335 * and all tasks that were preempted within an RCU read-side critical 2336 * section while running on one of those CPUs have since exited their RCU 2337 * read-side critical section. Some other CPU is reporting this fact with 2338 * the specified rcu_node structure's ->lock held and interrupts disabled. 2339 * This function therefore goes up the tree of rcu_node structures, 2340 * clearing the corresponding bits in the ->qsmaskinit fields. Note that 2341 * the leaf rcu_node structure's ->qsmaskinit field has already been 2342 * updated. 2343 * 2344 * This function does check that the specified rcu_node structure has 2345 * all CPUs offline and no blocked tasks, so it is OK to invoke it 2346 * prematurely. That said, invoking it after the fact will cost you 2347 * a needless lock acquisition. So once it has done its work, don't 2348 * invoke it again. 2349 */ 2350 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf) 2351 { 2352 long mask; 2353 struct rcu_node *rnp = rnp_leaf; 2354 2355 raw_lockdep_assert_held_rcu_node(rnp_leaf); 2356 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || 2357 WARN_ON_ONCE(rnp_leaf->qsmaskinit) || 2358 WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf))) 2359 return; 2360 for (;;) { 2361 mask = rnp->grpmask; 2362 rnp = rnp->parent; 2363 if (!rnp) 2364 break; 2365 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 2366 rnp->qsmaskinit &= ~mask; 2367 /* Between grace periods, so better already be zero! */ 2368 WARN_ON_ONCE(rnp->qsmask); 2369 if (rnp->qsmaskinit) { 2370 raw_spin_unlock_rcu_node(rnp); 2371 /* irqs remain disabled. */ 2372 return; 2373 } 2374 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 2375 } 2376 } 2377 2378 /* 2379 * The CPU has been completely removed, and some other CPU is reporting 2380 * this fact from process context. Do the remainder of the cleanup. 2381 * There can only be one CPU hotplug operation at a time, so no need for 2382 * explicit locking. 2383 */ 2384 int rcutree_dead_cpu(unsigned int cpu) 2385 { 2386 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 2387 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ 2388 2389 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) 2390 return 0; 2391 2392 /* Adjust any no-longer-needed kthreads. */ 2393 rcu_boost_kthread_setaffinity(rnp, -1); 2394 /* Do any needed no-CB deferred wakeups from this CPU. */ 2395 do_nocb_deferred_wakeup(per_cpu_ptr(&rcu_data, cpu)); 2396 return 0; 2397 } 2398 2399 /* 2400 * Invoke any RCU callbacks that have made it to the end of their grace 2401 * period. Thottle as specified by rdp->blimit. 2402 */ 2403 static void rcu_do_batch(struct rcu_data *rdp) 2404 { 2405 unsigned long flags; 2406 struct rcu_head *rhp; 2407 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl); 2408 long bl, count; 2409 2410 /* If no callbacks are ready, just return. */ 2411 if (!rcu_segcblist_ready_cbs(&rdp->cblist)) { 2412 trace_rcu_batch_start(rcu_state.name, 2413 rcu_segcblist_n_lazy_cbs(&rdp->cblist), 2414 rcu_segcblist_n_cbs(&rdp->cblist), 0); 2415 trace_rcu_batch_end(rcu_state.name, 0, 2416 !rcu_segcblist_empty(&rdp->cblist), 2417 need_resched(), is_idle_task(current), 2418 rcu_is_callbacks_kthread()); 2419 return; 2420 } 2421 2422 /* 2423 * Extract the list of ready callbacks, disabling to prevent 2424 * races with call_rcu() from interrupt handlers. Leave the 2425 * callback counts, as rcu_barrier() needs to be conservative. 2426 */ 2427 local_irq_save(flags); 2428 WARN_ON_ONCE(cpu_is_offline(smp_processor_id())); 2429 bl = rdp->blimit; 2430 trace_rcu_batch_start(rcu_state.name, 2431 rcu_segcblist_n_lazy_cbs(&rdp->cblist), 2432 rcu_segcblist_n_cbs(&rdp->cblist), bl); 2433 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl); 2434 local_irq_restore(flags); 2435 2436 /* Invoke callbacks. */ 2437 rhp = rcu_cblist_dequeue(&rcl); 2438 for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) { 2439 debug_rcu_head_unqueue(rhp); 2440 if (__rcu_reclaim(rcu_state.name, rhp)) 2441 rcu_cblist_dequeued_lazy(&rcl); 2442 /* 2443 * Stop only if limit reached and CPU has something to do. 2444 * Note: The rcl structure counts down from zero. 2445 */ 2446 if (-rcl.len >= bl && 2447 (need_resched() || 2448 (!is_idle_task(current) && !rcu_is_callbacks_kthread()))) 2449 break; 2450 } 2451 2452 local_irq_save(flags); 2453 count = -rcl.len; 2454 trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(), 2455 is_idle_task(current), rcu_is_callbacks_kthread()); 2456 2457 /* Update counts and requeue any remaining callbacks. */ 2458 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl); 2459 smp_mb(); /* List handling before counting for rcu_barrier(). */ 2460 rcu_segcblist_insert_count(&rdp->cblist, &rcl); 2461 2462 /* Reinstate batch limit if we have worked down the excess. */ 2463 count = rcu_segcblist_n_cbs(&rdp->cblist); 2464 if (rdp->blimit == LONG_MAX && count <= qlowmark) 2465 rdp->blimit = blimit; 2466 2467 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */ 2468 if (count == 0 && rdp->qlen_last_fqs_check != 0) { 2469 rdp->qlen_last_fqs_check = 0; 2470 rdp->n_force_qs_snap = rcu_state.n_force_qs; 2471 } else if (count < rdp->qlen_last_fqs_check - qhimark) 2472 rdp->qlen_last_fqs_check = count; 2473 2474 /* 2475 * The following usually indicates a double call_rcu(). To track 2476 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y. 2477 */ 2478 WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) != (count == 0)); 2479 2480 local_irq_restore(flags); 2481 2482 /* Re-invoke RCU core processing if there are callbacks remaining. */ 2483 if (rcu_segcblist_ready_cbs(&rdp->cblist)) 2484 invoke_rcu_core(); 2485 } 2486 2487 /* 2488 * Check to see if this CPU is in a non-context-switch quiescent state 2489 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh). 2490 * Also schedule RCU core processing. 2491 * 2492 * This function must be called from hardirq context. It is normally 2493 * invoked from the scheduling-clock interrupt. 2494 */ 2495 void rcu_check_callbacks(int user) 2496 { 2497 trace_rcu_utilization(TPS("Start scheduler-tick")); 2498 raw_cpu_inc(rcu_data.ticks_this_gp); 2499 /* The load-acquire pairs with the store-release setting to true. */ 2500 if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) { 2501 /* Idle and userspace execution already are quiescent states. */ 2502 if (!rcu_is_cpu_rrupt_from_idle() && !user) { 2503 set_tsk_need_resched(current); 2504 set_preempt_need_resched(); 2505 } 2506 __this_cpu_write(rcu_data.rcu_urgent_qs, false); 2507 } 2508 rcu_flavor_check_callbacks(user); 2509 if (rcu_pending()) 2510 invoke_rcu_core(); 2511 2512 trace_rcu_utilization(TPS("End scheduler-tick")); 2513 } 2514 2515 /* 2516 * Scan the leaf rcu_node structures, processing dyntick state for any that 2517 * have not yet encountered a quiescent state, using the function specified. 2518 * Also initiate boosting for any threads blocked on the root rcu_node. 2519 * 2520 * The caller must have suppressed start of new grace periods. 2521 */ 2522 static void force_qs_rnp(int (*f)(struct rcu_data *rdp)) 2523 { 2524 int cpu; 2525 unsigned long flags; 2526 unsigned long mask; 2527 struct rcu_node *rnp; 2528 2529 rcu_for_each_leaf_node(rnp) { 2530 cond_resched_tasks_rcu_qs(); 2531 mask = 0; 2532 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2533 if (rnp->qsmask == 0) { 2534 if (!IS_ENABLED(CONFIG_PREEMPT) || 2535 rcu_preempt_blocked_readers_cgp(rnp)) { 2536 /* 2537 * No point in scanning bits because they 2538 * are all zero. But we might need to 2539 * priority-boost blocked readers. 2540 */ 2541 rcu_initiate_boost(rnp, flags); 2542 /* rcu_initiate_boost() releases rnp->lock */ 2543 continue; 2544 } 2545 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2546 continue; 2547 } 2548 for_each_leaf_node_possible_cpu(rnp, cpu) { 2549 unsigned long bit = leaf_node_cpu_bit(rnp, cpu); 2550 if ((rnp->qsmask & bit) != 0) { 2551 if (f(per_cpu_ptr(&rcu_data, cpu))) 2552 mask |= bit; 2553 } 2554 } 2555 if (mask != 0) { 2556 /* Idle/offline CPUs, report (releases rnp->lock). */ 2557 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 2558 } else { 2559 /* Nothing to do here, so just drop the lock. */ 2560 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2561 } 2562 } 2563 } 2564 2565 /* 2566 * Force quiescent states on reluctant CPUs, and also detect which 2567 * CPUs are in dyntick-idle mode. 2568 */ 2569 void rcu_force_quiescent_state(void) 2570 { 2571 unsigned long flags; 2572 bool ret; 2573 struct rcu_node *rnp; 2574 struct rcu_node *rnp_old = NULL; 2575 2576 /* Funnel through hierarchy to reduce memory contention. */ 2577 rnp = __this_cpu_read(rcu_data.mynode); 2578 for (; rnp != NULL; rnp = rnp->parent) { 2579 ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) || 2580 !raw_spin_trylock(&rnp->fqslock); 2581 if (rnp_old != NULL) 2582 raw_spin_unlock(&rnp_old->fqslock); 2583 if (ret) 2584 return; 2585 rnp_old = rnp; 2586 } 2587 /* rnp_old == rcu_get_root(), rnp == NULL. */ 2588 2589 /* Reached the root of the rcu_node tree, acquire lock. */ 2590 raw_spin_lock_irqsave_rcu_node(rnp_old, flags); 2591 raw_spin_unlock(&rnp_old->fqslock); 2592 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) { 2593 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); 2594 return; /* Someone beat us to it. */ 2595 } 2596 WRITE_ONCE(rcu_state.gp_flags, 2597 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS); 2598 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); 2599 rcu_gp_kthread_wake(); 2600 } 2601 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state); 2602 2603 /* 2604 * This function checks for grace-period requests that fail to motivate 2605 * RCU to come out of its idle mode. 2606 */ 2607 void 2608 rcu_check_gp_start_stall(struct rcu_node *rnp, struct rcu_data *rdp, 2609 const unsigned long gpssdelay) 2610 { 2611 unsigned long flags; 2612 unsigned long j; 2613 struct rcu_node *rnp_root = rcu_get_root(); 2614 static atomic_t warned = ATOMIC_INIT(0); 2615 2616 if (!IS_ENABLED(CONFIG_PROVE_RCU) || rcu_gp_in_progress() || 2617 ULONG_CMP_GE(rnp_root->gp_seq, rnp_root->gp_seq_needed)) 2618 return; 2619 j = jiffies; /* Expensive access, and in common case don't get here. */ 2620 if (time_before(j, READ_ONCE(rcu_state.gp_req_activity) + gpssdelay) || 2621 time_before(j, READ_ONCE(rcu_state.gp_activity) + gpssdelay) || 2622 atomic_read(&warned)) 2623 return; 2624 2625 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2626 j = jiffies; 2627 if (rcu_gp_in_progress() || 2628 ULONG_CMP_GE(rnp_root->gp_seq, rnp_root->gp_seq_needed) || 2629 time_before(j, READ_ONCE(rcu_state.gp_req_activity) + gpssdelay) || 2630 time_before(j, READ_ONCE(rcu_state.gp_activity) + gpssdelay) || 2631 atomic_read(&warned)) { 2632 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2633 return; 2634 } 2635 /* Hold onto the leaf lock to make others see warned==1. */ 2636 2637 if (rnp_root != rnp) 2638 raw_spin_lock_rcu_node(rnp_root); /* irqs already disabled. */ 2639 j = jiffies; 2640 if (rcu_gp_in_progress() || 2641 ULONG_CMP_GE(rnp_root->gp_seq, rnp_root->gp_seq_needed) || 2642 time_before(j, rcu_state.gp_req_activity + gpssdelay) || 2643 time_before(j, rcu_state.gp_activity + gpssdelay) || 2644 atomic_xchg(&warned, 1)) { 2645 raw_spin_unlock_rcu_node(rnp_root); /* irqs remain disabled. */ 2646 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2647 return; 2648 } 2649 pr_alert("%s: g%ld->%ld gar:%lu ga:%lu f%#x gs:%d %s->state:%#lx\n", 2650 __func__, (long)READ_ONCE(rcu_state.gp_seq), 2651 (long)READ_ONCE(rnp_root->gp_seq_needed), 2652 j - rcu_state.gp_req_activity, j - rcu_state.gp_activity, 2653 rcu_state.gp_flags, rcu_state.gp_state, rcu_state.name, 2654 rcu_state.gp_kthread ? rcu_state.gp_kthread->state : 0x1ffffL); 2655 WARN_ON(1); 2656 if (rnp_root != rnp) 2657 raw_spin_unlock_rcu_node(rnp_root); 2658 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2659 } 2660 2661 /* 2662 * Do a forward-progress check for rcutorture. This is normally invoked 2663 * due to an OOM event. The argument "j" gives the time period during 2664 * which rcutorture would like progress to have been made. 2665 */ 2666 void rcu_fwd_progress_check(unsigned long j) 2667 { 2668 unsigned long cbs; 2669 int cpu; 2670 unsigned long max_cbs = 0; 2671 int max_cpu = -1; 2672 struct rcu_data *rdp; 2673 2674 if (rcu_gp_in_progress()) { 2675 pr_info("%s: GP age %lu jiffies\n", 2676 __func__, jiffies - rcu_state.gp_start); 2677 show_rcu_gp_kthreads(); 2678 } else { 2679 pr_info("%s: Last GP end %lu jiffies ago\n", 2680 __func__, jiffies - rcu_state.gp_end); 2681 preempt_disable(); 2682 rdp = this_cpu_ptr(&rcu_data); 2683 rcu_check_gp_start_stall(rdp->mynode, rdp, j); 2684 preempt_enable(); 2685 } 2686 for_each_possible_cpu(cpu) { 2687 cbs = rcu_get_n_cbs_cpu(cpu); 2688 if (!cbs) 2689 continue; 2690 if (max_cpu < 0) 2691 pr_info("%s: callbacks", __func__); 2692 pr_cont(" %d: %lu", cpu, cbs); 2693 if (cbs <= max_cbs) 2694 continue; 2695 max_cbs = cbs; 2696 max_cpu = cpu; 2697 } 2698 if (max_cpu >= 0) 2699 pr_cont("\n"); 2700 } 2701 EXPORT_SYMBOL_GPL(rcu_fwd_progress_check); 2702 2703 /* 2704 * This does the RCU core processing work for the specified rcu_data 2705 * structures. This may be called only from the CPU to whom the rdp 2706 * belongs. 2707 */ 2708 static __latent_entropy void rcu_process_callbacks(struct softirq_action *unused) 2709 { 2710 unsigned long flags; 2711 struct rcu_data *rdp = raw_cpu_ptr(&rcu_data); 2712 struct rcu_node *rnp = rdp->mynode; 2713 2714 if (cpu_is_offline(smp_processor_id())) 2715 return; 2716 trace_rcu_utilization(TPS("Start RCU core")); 2717 WARN_ON_ONCE(!rdp->beenonline); 2718 2719 /* Report any deferred quiescent states if preemption enabled. */ 2720 if (!(preempt_count() & PREEMPT_MASK)) { 2721 rcu_preempt_deferred_qs(current); 2722 } else if (rcu_preempt_need_deferred_qs(current)) { 2723 set_tsk_need_resched(current); 2724 set_preempt_need_resched(); 2725 } 2726 2727 /* Update RCU state based on any recent quiescent states. */ 2728 rcu_check_quiescent_state(rdp); 2729 2730 /* No grace period and unregistered callbacks? */ 2731 if (!rcu_gp_in_progress() && 2732 rcu_segcblist_is_enabled(&rdp->cblist)) { 2733 local_irq_save(flags); 2734 if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL)) 2735 rcu_accelerate_cbs_unlocked(rnp, rdp); 2736 local_irq_restore(flags); 2737 } 2738 2739 rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check()); 2740 2741 /* If there are callbacks ready, invoke them. */ 2742 if (rcu_segcblist_ready_cbs(&rdp->cblist)) 2743 invoke_rcu_callbacks(rdp); 2744 2745 /* Do any needed deferred wakeups of rcuo kthreads. */ 2746 do_nocb_deferred_wakeup(rdp); 2747 trace_rcu_utilization(TPS("End RCU core")); 2748 } 2749 2750 /* 2751 * Schedule RCU callback invocation. If the running implementation of RCU 2752 * does not support RCU priority boosting, just do a direct call, otherwise 2753 * wake up the per-CPU kernel kthread. Note that because we are running 2754 * on the current CPU with softirqs disabled, the rcu_cpu_kthread_task 2755 * cannot disappear out from under us. 2756 */ 2757 static void invoke_rcu_callbacks(struct rcu_data *rdp) 2758 { 2759 if (unlikely(!READ_ONCE(rcu_scheduler_fully_active))) 2760 return; 2761 if (likely(!rcu_state.boost)) { 2762 rcu_do_batch(rdp); 2763 return; 2764 } 2765 invoke_rcu_callbacks_kthread(); 2766 } 2767 2768 static void invoke_rcu_core(void) 2769 { 2770 if (cpu_online(smp_processor_id())) 2771 raise_softirq(RCU_SOFTIRQ); 2772 } 2773 2774 /* 2775 * Handle any core-RCU processing required by a call_rcu() invocation. 2776 */ 2777 static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head, 2778 unsigned long flags) 2779 { 2780 /* 2781 * If called from an extended quiescent state, invoke the RCU 2782 * core in order to force a re-evaluation of RCU's idleness. 2783 */ 2784 if (!rcu_is_watching()) 2785 invoke_rcu_core(); 2786 2787 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */ 2788 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id())) 2789 return; 2790 2791 /* 2792 * Force the grace period if too many callbacks or too long waiting. 2793 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state() 2794 * if some other CPU has recently done so. Also, don't bother 2795 * invoking rcu_force_quiescent_state() if the newly enqueued callback 2796 * is the only one waiting for a grace period to complete. 2797 */ 2798 if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) > 2799 rdp->qlen_last_fqs_check + qhimark)) { 2800 2801 /* Are we ignoring a completed grace period? */ 2802 note_gp_changes(rdp); 2803 2804 /* Start a new grace period if one not already started. */ 2805 if (!rcu_gp_in_progress()) { 2806 rcu_accelerate_cbs_unlocked(rdp->mynode, rdp); 2807 } else { 2808 /* Give the grace period a kick. */ 2809 rdp->blimit = LONG_MAX; 2810 if (rcu_state.n_force_qs == rdp->n_force_qs_snap && 2811 rcu_segcblist_first_pend_cb(&rdp->cblist) != head) 2812 rcu_force_quiescent_state(); 2813 rdp->n_force_qs_snap = rcu_state.n_force_qs; 2814 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist); 2815 } 2816 } 2817 } 2818 2819 /* 2820 * RCU callback function to leak a callback. 2821 */ 2822 static void rcu_leak_callback(struct rcu_head *rhp) 2823 { 2824 } 2825 2826 /* 2827 * Helper function for call_rcu() and friends. The cpu argument will 2828 * normally be -1, indicating "currently running CPU". It may specify 2829 * a CPU only if that CPU is a no-CBs CPU. Currently, only rcu_barrier() 2830 * is expected to specify a CPU. 2831 */ 2832 static void 2833 __call_rcu(struct rcu_head *head, rcu_callback_t func, int cpu, bool lazy) 2834 { 2835 unsigned long flags; 2836 struct rcu_data *rdp; 2837 2838 /* Misaligned rcu_head! */ 2839 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1)); 2840 2841 if (debug_rcu_head_queue(head)) { 2842 /* 2843 * Probable double call_rcu(), so leak the callback. 2844 * Use rcu:rcu_callback trace event to find the previous 2845 * time callback was passed to __call_rcu(). 2846 */ 2847 WARN_ONCE(1, "__call_rcu(): Double-freed CB %p->%pF()!!!\n", 2848 head, head->func); 2849 WRITE_ONCE(head->func, rcu_leak_callback); 2850 return; 2851 } 2852 head->func = func; 2853 head->next = NULL; 2854 local_irq_save(flags); 2855 rdp = this_cpu_ptr(&rcu_data); 2856 2857 /* Add the callback to our list. */ 2858 if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist)) || cpu != -1) { 2859 int offline; 2860 2861 if (cpu != -1) 2862 rdp = per_cpu_ptr(&rcu_data, cpu); 2863 if (likely(rdp->mynode)) { 2864 /* Post-boot, so this should be for a no-CBs CPU. */ 2865 offline = !__call_rcu_nocb(rdp, head, lazy, flags); 2866 WARN_ON_ONCE(offline); 2867 /* Offline CPU, _call_rcu() illegal, leak callback. */ 2868 local_irq_restore(flags); 2869 return; 2870 } 2871 /* 2872 * Very early boot, before rcu_init(). Initialize if needed 2873 * and then drop through to queue the callback. 2874 */ 2875 WARN_ON_ONCE(cpu != -1); 2876 WARN_ON_ONCE(!rcu_is_watching()); 2877 if (rcu_segcblist_empty(&rdp->cblist)) 2878 rcu_segcblist_init(&rdp->cblist); 2879 } 2880 rcu_segcblist_enqueue(&rdp->cblist, head, lazy); 2881 if (!lazy) 2882 rcu_idle_count_callbacks_posted(); 2883 2884 if (__is_kfree_rcu_offset((unsigned long)func)) 2885 trace_rcu_kfree_callback(rcu_state.name, head, 2886 (unsigned long)func, 2887 rcu_segcblist_n_lazy_cbs(&rdp->cblist), 2888 rcu_segcblist_n_cbs(&rdp->cblist)); 2889 else 2890 trace_rcu_callback(rcu_state.name, head, 2891 rcu_segcblist_n_lazy_cbs(&rdp->cblist), 2892 rcu_segcblist_n_cbs(&rdp->cblist)); 2893 2894 /* Go handle any RCU core processing required. */ 2895 __call_rcu_core(rdp, head, flags); 2896 local_irq_restore(flags); 2897 } 2898 2899 /** 2900 * call_rcu() - Queue an RCU callback for invocation after a grace period. 2901 * @head: structure to be used for queueing the RCU updates. 2902 * @func: actual callback function to be invoked after the grace period 2903 * 2904 * The callback function will be invoked some time after a full grace 2905 * period elapses, in other words after all pre-existing RCU read-side 2906 * critical sections have completed. However, the callback function 2907 * might well execute concurrently with RCU read-side critical sections 2908 * that started after call_rcu() was invoked. RCU read-side critical 2909 * sections are delimited by rcu_read_lock() and rcu_read_unlock(), and 2910 * may be nested. In addition, regions of code across which interrupts, 2911 * preemption, or softirqs have been disabled also serve as RCU read-side 2912 * critical sections. This includes hardware interrupt handlers, softirq 2913 * handlers, and NMI handlers. 2914 * 2915 * Note that all CPUs must agree that the grace period extended beyond 2916 * all pre-existing RCU read-side critical section. On systems with more 2917 * than one CPU, this means that when "func()" is invoked, each CPU is 2918 * guaranteed to have executed a full memory barrier since the end of its 2919 * last RCU read-side critical section whose beginning preceded the call 2920 * to call_rcu(). It also means that each CPU executing an RCU read-side 2921 * critical section that continues beyond the start of "func()" must have 2922 * executed a memory barrier after the call_rcu() but before the beginning 2923 * of that RCU read-side critical section. Note that these guarantees 2924 * include CPUs that are offline, idle, or executing in user mode, as 2925 * well as CPUs that are executing in the kernel. 2926 * 2927 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the 2928 * resulting RCU callback function "func()", then both CPU A and CPU B are 2929 * guaranteed to execute a full memory barrier during the time interval 2930 * between the call to call_rcu() and the invocation of "func()" -- even 2931 * if CPU A and CPU B are the same CPU (but again only if the system has 2932 * more than one CPU). 2933 */ 2934 void call_rcu(struct rcu_head *head, rcu_callback_t func) 2935 { 2936 __call_rcu(head, func, -1, 0); 2937 } 2938 EXPORT_SYMBOL_GPL(call_rcu); 2939 2940 /* 2941 * Queue an RCU callback for lazy invocation after a grace period. 2942 * This will likely be later named something like "call_rcu_lazy()", 2943 * but this change will require some way of tagging the lazy RCU 2944 * callbacks in the list of pending callbacks. Until then, this 2945 * function may only be called from __kfree_rcu(). 2946 */ 2947 void kfree_call_rcu(struct rcu_head *head, rcu_callback_t func) 2948 { 2949 __call_rcu(head, func, -1, 1); 2950 } 2951 EXPORT_SYMBOL_GPL(kfree_call_rcu); 2952 2953 /** 2954 * get_state_synchronize_rcu - Snapshot current RCU state 2955 * 2956 * Returns a cookie that is used by a later call to cond_synchronize_rcu() 2957 * to determine whether or not a full grace period has elapsed in the 2958 * meantime. 2959 */ 2960 unsigned long get_state_synchronize_rcu(void) 2961 { 2962 /* 2963 * Any prior manipulation of RCU-protected data must happen 2964 * before the load from ->gp_seq. 2965 */ 2966 smp_mb(); /* ^^^ */ 2967 return rcu_seq_snap(&rcu_state.gp_seq); 2968 } 2969 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu); 2970 2971 /** 2972 * cond_synchronize_rcu - Conditionally wait for an RCU grace period 2973 * 2974 * @oldstate: return value from earlier call to get_state_synchronize_rcu() 2975 * 2976 * If a full RCU grace period has elapsed since the earlier call to 2977 * get_state_synchronize_rcu(), just return. Otherwise, invoke 2978 * synchronize_rcu() to wait for a full grace period. 2979 * 2980 * Yes, this function does not take counter wrap into account. But 2981 * counter wrap is harmless. If the counter wraps, we have waited for 2982 * more than 2 billion grace periods (and way more on a 64-bit system!), 2983 * so waiting for one additional grace period should be just fine. 2984 */ 2985 void cond_synchronize_rcu(unsigned long oldstate) 2986 { 2987 if (!rcu_seq_done(&rcu_state.gp_seq, oldstate)) 2988 synchronize_rcu(); 2989 else 2990 smp_mb(); /* Ensure GP ends before subsequent accesses. */ 2991 } 2992 EXPORT_SYMBOL_GPL(cond_synchronize_rcu); 2993 2994 /* 2995 * Check to see if there is any immediate RCU-related work to be done by 2996 * the current CPU, returning 1 if so and zero otherwise. The checks are 2997 * in order of increasing expense: checks that can be carried out against 2998 * CPU-local state are performed first. However, we must check for CPU 2999 * stalls first, else we might not get a chance. 3000 */ 3001 static int rcu_pending(void) 3002 { 3003 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 3004 struct rcu_node *rnp = rdp->mynode; 3005 3006 /* Check for CPU stalls, if enabled. */ 3007 check_cpu_stall(rdp); 3008 3009 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */ 3010 if (rcu_nohz_full_cpu()) 3011 return 0; 3012 3013 /* Is the RCU core waiting for a quiescent state from this CPU? */ 3014 if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm) 3015 return 1; 3016 3017 /* Does this CPU have callbacks ready to invoke? */ 3018 if (rcu_segcblist_ready_cbs(&rdp->cblist)) 3019 return 1; 3020 3021 /* Has RCU gone idle with this CPU needing another grace period? */ 3022 if (!rcu_gp_in_progress() && 3023 rcu_segcblist_is_enabled(&rdp->cblist) && 3024 !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL)) 3025 return 1; 3026 3027 /* Have RCU grace period completed or started? */ 3028 if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq || 3029 unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */ 3030 return 1; 3031 3032 /* Does this CPU need a deferred NOCB wakeup? */ 3033 if (rcu_nocb_need_deferred_wakeup(rdp)) 3034 return 1; 3035 3036 /* nothing to do */ 3037 return 0; 3038 } 3039 3040 /* 3041 * Return true if the specified CPU has any callback. If all_lazy is 3042 * non-NULL, store an indication of whether all callbacks are lazy. 3043 * (If there are no callbacks, all of them are deemed to be lazy.) 3044 */ 3045 static bool rcu_cpu_has_callbacks(bool *all_lazy) 3046 { 3047 bool al = true; 3048 bool hc = false; 3049 struct rcu_data *rdp; 3050 3051 rdp = this_cpu_ptr(&rcu_data); 3052 if (!rcu_segcblist_empty(&rdp->cblist)) { 3053 hc = true; 3054 if (rcu_segcblist_n_nonlazy_cbs(&rdp->cblist)) 3055 al = false; 3056 } 3057 if (all_lazy) 3058 *all_lazy = al; 3059 return hc; 3060 } 3061 3062 /* 3063 * Helper function for rcu_barrier() tracing. If tracing is disabled, 3064 * the compiler is expected to optimize this away. 3065 */ 3066 static void rcu_barrier_trace(const char *s, int cpu, unsigned long done) 3067 { 3068 trace_rcu_barrier(rcu_state.name, s, cpu, 3069 atomic_read(&rcu_state.barrier_cpu_count), done); 3070 } 3071 3072 /* 3073 * RCU callback function for rcu_barrier(). If we are last, wake 3074 * up the task executing rcu_barrier(). 3075 */ 3076 static void rcu_barrier_callback(struct rcu_head *rhp) 3077 { 3078 if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) { 3079 rcu_barrier_trace(TPS("LastCB"), -1, 3080 rcu_state.barrier_sequence); 3081 complete(&rcu_state.barrier_completion); 3082 } else { 3083 rcu_barrier_trace(TPS("CB"), -1, rcu_state.barrier_sequence); 3084 } 3085 } 3086 3087 /* 3088 * Called with preemption disabled, and from cross-cpu IRQ context. 3089 */ 3090 static void rcu_barrier_func(void *unused) 3091 { 3092 struct rcu_data *rdp = raw_cpu_ptr(&rcu_data); 3093 3094 rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence); 3095 rdp->barrier_head.func = rcu_barrier_callback; 3096 debug_rcu_head_queue(&rdp->barrier_head); 3097 if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head, 0)) { 3098 atomic_inc(&rcu_state.barrier_cpu_count); 3099 } else { 3100 debug_rcu_head_unqueue(&rdp->barrier_head); 3101 rcu_barrier_trace(TPS("IRQNQ"), -1, 3102 rcu_state.barrier_sequence); 3103 } 3104 } 3105 3106 /** 3107 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete. 3108 * 3109 * Note that this primitive does not necessarily wait for an RCU grace period 3110 * to complete. For example, if there are no RCU callbacks queued anywhere 3111 * in the system, then rcu_barrier() is within its rights to return 3112 * immediately, without waiting for anything, much less an RCU grace period. 3113 */ 3114 void rcu_barrier(void) 3115 { 3116 int cpu; 3117 struct rcu_data *rdp; 3118 unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence); 3119 3120 rcu_barrier_trace(TPS("Begin"), -1, s); 3121 3122 /* Take mutex to serialize concurrent rcu_barrier() requests. */ 3123 mutex_lock(&rcu_state.barrier_mutex); 3124 3125 /* Did someone else do our work for us? */ 3126 if (rcu_seq_done(&rcu_state.barrier_sequence, s)) { 3127 rcu_barrier_trace(TPS("EarlyExit"), -1, 3128 rcu_state.barrier_sequence); 3129 smp_mb(); /* caller's subsequent code after above check. */ 3130 mutex_unlock(&rcu_state.barrier_mutex); 3131 return; 3132 } 3133 3134 /* Mark the start of the barrier operation. */ 3135 rcu_seq_start(&rcu_state.barrier_sequence); 3136 rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence); 3137 3138 /* 3139 * Initialize the count to one rather than to zero in order to 3140 * avoid a too-soon return to zero in case of a short grace period 3141 * (or preemption of this task). Exclude CPU-hotplug operations 3142 * to ensure that no offline CPU has callbacks queued. 3143 */ 3144 init_completion(&rcu_state.barrier_completion); 3145 atomic_set(&rcu_state.barrier_cpu_count, 1); 3146 get_online_cpus(); 3147 3148 /* 3149 * Force each CPU with callbacks to register a new callback. 3150 * When that callback is invoked, we will know that all of the 3151 * corresponding CPU's preceding callbacks have been invoked. 3152 */ 3153 for_each_possible_cpu(cpu) { 3154 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu)) 3155 continue; 3156 rdp = per_cpu_ptr(&rcu_data, cpu); 3157 if (rcu_is_nocb_cpu(cpu)) { 3158 if (!rcu_nocb_cpu_needs_barrier(cpu)) { 3159 rcu_barrier_trace(TPS("OfflineNoCB"), cpu, 3160 rcu_state.barrier_sequence); 3161 } else { 3162 rcu_barrier_trace(TPS("OnlineNoCB"), cpu, 3163 rcu_state.barrier_sequence); 3164 smp_mb__before_atomic(); 3165 atomic_inc(&rcu_state.barrier_cpu_count); 3166 __call_rcu(&rdp->barrier_head, 3167 rcu_barrier_callback, cpu, 0); 3168 } 3169 } else if (rcu_segcblist_n_cbs(&rdp->cblist)) { 3170 rcu_barrier_trace(TPS("OnlineQ"), cpu, 3171 rcu_state.barrier_sequence); 3172 smp_call_function_single(cpu, rcu_barrier_func, NULL, 1); 3173 } else { 3174 rcu_barrier_trace(TPS("OnlineNQ"), cpu, 3175 rcu_state.barrier_sequence); 3176 } 3177 } 3178 put_online_cpus(); 3179 3180 /* 3181 * Now that we have an rcu_barrier_callback() callback on each 3182 * CPU, and thus each counted, remove the initial count. 3183 */ 3184 if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) 3185 complete(&rcu_state.barrier_completion); 3186 3187 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */ 3188 wait_for_completion(&rcu_state.barrier_completion); 3189 3190 /* Mark the end of the barrier operation. */ 3191 rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence); 3192 rcu_seq_end(&rcu_state.barrier_sequence); 3193 3194 /* Other rcu_barrier() invocations can now safely proceed. */ 3195 mutex_unlock(&rcu_state.barrier_mutex); 3196 } 3197 EXPORT_SYMBOL_GPL(rcu_barrier); 3198 3199 /* 3200 * Propagate ->qsinitmask bits up the rcu_node tree to account for the 3201 * first CPU in a given leaf rcu_node structure coming online. The caller 3202 * must hold the corresponding leaf rcu_node ->lock with interrrupts 3203 * disabled. 3204 */ 3205 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf) 3206 { 3207 long mask; 3208 long oldmask; 3209 struct rcu_node *rnp = rnp_leaf; 3210 3211 raw_lockdep_assert_held_rcu_node(rnp_leaf); 3212 WARN_ON_ONCE(rnp->wait_blkd_tasks); 3213 for (;;) { 3214 mask = rnp->grpmask; 3215 rnp = rnp->parent; 3216 if (rnp == NULL) 3217 return; 3218 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */ 3219 oldmask = rnp->qsmaskinit; 3220 rnp->qsmaskinit |= mask; 3221 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */ 3222 if (oldmask) 3223 return; 3224 } 3225 } 3226 3227 /* 3228 * Do boot-time initialization of a CPU's per-CPU RCU data. 3229 */ 3230 static void __init 3231 rcu_boot_init_percpu_data(int cpu) 3232 { 3233 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 3234 3235 /* Set up local state, ensuring consistent view of global state. */ 3236 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu); 3237 WARN_ON_ONCE(rdp->dynticks_nesting != 1); 3238 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp))); 3239 rdp->rcu_ofl_gp_seq = rcu_state.gp_seq; 3240 rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED; 3241 rdp->rcu_onl_gp_seq = rcu_state.gp_seq; 3242 rdp->rcu_onl_gp_flags = RCU_GP_CLEANED; 3243 rdp->cpu = cpu; 3244 rcu_boot_init_nocb_percpu_data(rdp); 3245 } 3246 3247 /* 3248 * Invoked early in the CPU-online process, when pretty much all services 3249 * are available. The incoming CPU is not present. 3250 * 3251 * Initializes a CPU's per-CPU RCU data. Note that only one online or 3252 * offline event can be happening at a given time. Note also that we can 3253 * accept some slop in the rsp->gp_seq access due to the fact that this 3254 * CPU cannot possibly have any RCU callbacks in flight yet. 3255 */ 3256 int rcutree_prepare_cpu(unsigned int cpu) 3257 { 3258 unsigned long flags; 3259 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 3260 struct rcu_node *rnp = rcu_get_root(); 3261 3262 /* Set up local state, ensuring consistent view of global state. */ 3263 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3264 rdp->qlen_last_fqs_check = 0; 3265 rdp->n_force_qs_snap = rcu_state.n_force_qs; 3266 rdp->blimit = blimit; 3267 if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */ 3268 !init_nocb_callback_list(rdp)) 3269 rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */ 3270 rdp->dynticks_nesting = 1; /* CPU not up, no tearing. */ 3271 rcu_dynticks_eqs_online(); 3272 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 3273 3274 /* 3275 * Add CPU to leaf rcu_node pending-online bitmask. Any needed 3276 * propagation up the rcu_node tree will happen at the beginning 3277 * of the next grace period. 3278 */ 3279 rnp = rdp->mynode; 3280 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 3281 rdp->beenonline = true; /* We have now been online. */ 3282 rdp->gp_seq = rnp->gp_seq; 3283 rdp->gp_seq_needed = rnp->gp_seq; 3284 rdp->cpu_no_qs.b.norm = true; 3285 rdp->core_needs_qs = false; 3286 rdp->rcu_iw_pending = false; 3287 rdp->rcu_iw_gp_seq = rnp->gp_seq - 1; 3288 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl")); 3289 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3290 rcu_prepare_kthreads(cpu); 3291 rcu_spawn_cpu_nocb_kthread(cpu); 3292 3293 return 0; 3294 } 3295 3296 /* 3297 * Update RCU priority boot kthread affinity for CPU-hotplug changes. 3298 */ 3299 static void rcutree_affinity_setting(unsigned int cpu, int outgoing) 3300 { 3301 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 3302 3303 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing); 3304 } 3305 3306 /* 3307 * Near the end of the CPU-online process. Pretty much all services 3308 * enabled, and the CPU is now very much alive. 3309 */ 3310 int rcutree_online_cpu(unsigned int cpu) 3311 { 3312 unsigned long flags; 3313 struct rcu_data *rdp; 3314 struct rcu_node *rnp; 3315 3316 rdp = per_cpu_ptr(&rcu_data, cpu); 3317 rnp = rdp->mynode; 3318 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3319 rnp->ffmask |= rdp->grpmask; 3320 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3321 if (IS_ENABLED(CONFIG_TREE_SRCU)) 3322 srcu_online_cpu(cpu); 3323 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE) 3324 return 0; /* Too early in boot for scheduler work. */ 3325 sync_sched_exp_online_cleanup(cpu); 3326 rcutree_affinity_setting(cpu, -1); 3327 return 0; 3328 } 3329 3330 /* 3331 * Near the beginning of the process. The CPU is still very much alive 3332 * with pretty much all services enabled. 3333 */ 3334 int rcutree_offline_cpu(unsigned int cpu) 3335 { 3336 unsigned long flags; 3337 struct rcu_data *rdp; 3338 struct rcu_node *rnp; 3339 3340 rdp = per_cpu_ptr(&rcu_data, cpu); 3341 rnp = rdp->mynode; 3342 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3343 rnp->ffmask &= ~rdp->grpmask; 3344 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3345 3346 rcutree_affinity_setting(cpu, cpu); 3347 if (IS_ENABLED(CONFIG_TREE_SRCU)) 3348 srcu_offline_cpu(cpu); 3349 return 0; 3350 } 3351 3352 static DEFINE_PER_CPU(int, rcu_cpu_started); 3353 3354 /* 3355 * Mark the specified CPU as being online so that subsequent grace periods 3356 * (both expedited and normal) will wait on it. Note that this means that 3357 * incoming CPUs are not allowed to use RCU read-side critical sections 3358 * until this function is called. Failing to observe this restriction 3359 * will result in lockdep splats. 3360 * 3361 * Note that this function is special in that it is invoked directly 3362 * from the incoming CPU rather than from the cpuhp_step mechanism. 3363 * This is because this function must be invoked at a precise location. 3364 */ 3365 void rcu_cpu_starting(unsigned int cpu) 3366 { 3367 unsigned long flags; 3368 unsigned long mask; 3369 int nbits; 3370 unsigned long oldmask; 3371 struct rcu_data *rdp; 3372 struct rcu_node *rnp; 3373 3374 if (per_cpu(rcu_cpu_started, cpu)) 3375 return; 3376 3377 per_cpu(rcu_cpu_started, cpu) = 1; 3378 3379 rdp = per_cpu_ptr(&rcu_data, cpu); 3380 rnp = rdp->mynode; 3381 mask = rdp->grpmask; 3382 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3383 rnp->qsmaskinitnext |= mask; 3384 oldmask = rnp->expmaskinitnext; 3385 rnp->expmaskinitnext |= mask; 3386 oldmask ^= rnp->expmaskinitnext; 3387 nbits = bitmap_weight(&oldmask, BITS_PER_LONG); 3388 /* Allow lockless access for expedited grace periods. */ 3389 smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + nbits); /* ^^^ */ 3390 rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */ 3391 rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq); 3392 rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags); 3393 if (rnp->qsmask & mask) { /* RCU waiting on incoming CPU? */ 3394 /* Report QS -after- changing ->qsmaskinitnext! */ 3395 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 3396 } else { 3397 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3398 } 3399 smp_mb(); /* Ensure RCU read-side usage follows above initialization. */ 3400 } 3401 3402 #ifdef CONFIG_HOTPLUG_CPU 3403 /* 3404 * The outgoing function has no further need of RCU, so remove it from 3405 * the rcu_node tree's ->qsmaskinitnext bit masks. 3406 * 3407 * Note that this function is special in that it is invoked directly 3408 * from the outgoing CPU rather than from the cpuhp_step mechanism. 3409 * This is because this function must be invoked at a precise location. 3410 */ 3411 void rcu_report_dead(unsigned int cpu) 3412 { 3413 unsigned long flags; 3414 unsigned long mask; 3415 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 3416 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ 3417 3418 /* QS for any half-done expedited grace period. */ 3419 preempt_disable(); 3420 rcu_report_exp_rdp(this_cpu_ptr(&rcu_data)); 3421 preempt_enable(); 3422 rcu_preempt_deferred_qs(current); 3423 3424 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */ 3425 mask = rdp->grpmask; 3426 raw_spin_lock(&rcu_state.ofl_lock); 3427 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */ 3428 rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq); 3429 rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags); 3430 if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */ 3431 /* Report quiescent state -before- changing ->qsmaskinitnext! */ 3432 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 3433 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3434 } 3435 rnp->qsmaskinitnext &= ~mask; 3436 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3437 raw_spin_unlock(&rcu_state.ofl_lock); 3438 3439 per_cpu(rcu_cpu_started, cpu) = 0; 3440 } 3441 3442 /* 3443 * The outgoing CPU has just passed through the dying-idle state, and we 3444 * are being invoked from the CPU that was IPIed to continue the offline 3445 * operation. Migrate the outgoing CPU's callbacks to the current CPU. 3446 */ 3447 void rcutree_migrate_callbacks(int cpu) 3448 { 3449 unsigned long flags; 3450 struct rcu_data *my_rdp; 3451 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 3452 struct rcu_node *rnp_root = rcu_get_root(); 3453 bool needwake; 3454 3455 if (rcu_is_nocb_cpu(cpu) || rcu_segcblist_empty(&rdp->cblist)) 3456 return; /* No callbacks to migrate. */ 3457 3458 local_irq_save(flags); 3459 my_rdp = this_cpu_ptr(&rcu_data); 3460 if (rcu_nocb_adopt_orphan_cbs(my_rdp, rdp, flags)) { 3461 local_irq_restore(flags); 3462 return; 3463 } 3464 raw_spin_lock_rcu_node(rnp_root); /* irqs already disabled. */ 3465 /* Leverage recent GPs and set GP for new callbacks. */ 3466 needwake = rcu_advance_cbs(rnp_root, rdp) || 3467 rcu_advance_cbs(rnp_root, my_rdp); 3468 rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist); 3469 WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) != 3470 !rcu_segcblist_n_cbs(&my_rdp->cblist)); 3471 raw_spin_unlock_irqrestore_rcu_node(rnp_root, flags); 3472 if (needwake) 3473 rcu_gp_kthread_wake(); 3474 WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 || 3475 !rcu_segcblist_empty(&rdp->cblist), 3476 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n", 3477 cpu, rcu_segcblist_n_cbs(&rdp->cblist), 3478 rcu_segcblist_first_cb(&rdp->cblist)); 3479 } 3480 #endif 3481 3482 /* 3483 * On non-huge systems, use expedited RCU grace periods to make suspend 3484 * and hibernation run faster. 3485 */ 3486 static int rcu_pm_notify(struct notifier_block *self, 3487 unsigned long action, void *hcpu) 3488 { 3489 switch (action) { 3490 case PM_HIBERNATION_PREPARE: 3491 case PM_SUSPEND_PREPARE: 3492 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */ 3493 rcu_expedite_gp(); 3494 break; 3495 case PM_POST_HIBERNATION: 3496 case PM_POST_SUSPEND: 3497 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */ 3498 rcu_unexpedite_gp(); 3499 break; 3500 default: 3501 break; 3502 } 3503 return NOTIFY_OK; 3504 } 3505 3506 /* 3507 * Spawn the kthreads that handle RCU's grace periods. 3508 */ 3509 static int __init rcu_spawn_gp_kthread(void) 3510 { 3511 unsigned long flags; 3512 int kthread_prio_in = kthread_prio; 3513 struct rcu_node *rnp; 3514 struct sched_param sp; 3515 struct task_struct *t; 3516 3517 /* Force priority into range. */ 3518 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2 3519 && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST)) 3520 kthread_prio = 2; 3521 else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1) 3522 kthread_prio = 1; 3523 else if (kthread_prio < 0) 3524 kthread_prio = 0; 3525 else if (kthread_prio > 99) 3526 kthread_prio = 99; 3527 3528 if (kthread_prio != kthread_prio_in) 3529 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n", 3530 kthread_prio, kthread_prio_in); 3531 3532 rcu_scheduler_fully_active = 1; 3533 t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name); 3534 if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__)) 3535 return 0; 3536 rnp = rcu_get_root(); 3537 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3538 rcu_state.gp_kthread = t; 3539 if (kthread_prio) { 3540 sp.sched_priority = kthread_prio; 3541 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 3542 } 3543 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3544 wake_up_process(t); 3545 rcu_spawn_nocb_kthreads(); 3546 rcu_spawn_boost_kthreads(); 3547 return 0; 3548 } 3549 early_initcall(rcu_spawn_gp_kthread); 3550 3551 /* 3552 * This function is invoked towards the end of the scheduler's 3553 * initialization process. Before this is called, the idle task might 3554 * contain synchronous grace-period primitives (during which time, this idle 3555 * task is booting the system, and such primitives are no-ops). After this 3556 * function is called, any synchronous grace-period primitives are run as 3557 * expedited, with the requesting task driving the grace period forward. 3558 * A later core_initcall() rcu_set_runtime_mode() will switch to full 3559 * runtime RCU functionality. 3560 */ 3561 void rcu_scheduler_starting(void) 3562 { 3563 WARN_ON(num_online_cpus() != 1); 3564 WARN_ON(nr_context_switches() > 0); 3565 rcu_test_sync_prims(); 3566 rcu_scheduler_active = RCU_SCHEDULER_INIT; 3567 rcu_test_sync_prims(); 3568 } 3569 3570 /* 3571 * Helper function for rcu_init() that initializes the rcu_state structure. 3572 */ 3573 static void __init rcu_init_one(void) 3574 { 3575 static const char * const buf[] = RCU_NODE_NAME_INIT; 3576 static const char * const fqs[] = RCU_FQS_NAME_INIT; 3577 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS]; 3578 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS]; 3579 3580 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */ 3581 int cpustride = 1; 3582 int i; 3583 int j; 3584 struct rcu_node *rnp; 3585 3586 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */ 3587 3588 /* Silence gcc 4.8 false positive about array index out of range. */ 3589 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS) 3590 panic("rcu_init_one: rcu_num_lvls out of range"); 3591 3592 /* Initialize the level-tracking arrays. */ 3593 3594 for (i = 1; i < rcu_num_lvls; i++) 3595 rcu_state.level[i] = 3596 rcu_state.level[i - 1] + num_rcu_lvl[i - 1]; 3597 rcu_init_levelspread(levelspread, num_rcu_lvl); 3598 3599 /* Initialize the elements themselves, starting from the leaves. */ 3600 3601 for (i = rcu_num_lvls - 1; i >= 0; i--) { 3602 cpustride *= levelspread[i]; 3603 rnp = rcu_state.level[i]; 3604 for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) { 3605 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock)); 3606 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock), 3607 &rcu_node_class[i], buf[i]); 3608 raw_spin_lock_init(&rnp->fqslock); 3609 lockdep_set_class_and_name(&rnp->fqslock, 3610 &rcu_fqs_class[i], fqs[i]); 3611 rnp->gp_seq = rcu_state.gp_seq; 3612 rnp->gp_seq_needed = rcu_state.gp_seq; 3613 rnp->completedqs = rcu_state.gp_seq; 3614 rnp->qsmask = 0; 3615 rnp->qsmaskinit = 0; 3616 rnp->grplo = j * cpustride; 3617 rnp->grphi = (j + 1) * cpustride - 1; 3618 if (rnp->grphi >= nr_cpu_ids) 3619 rnp->grphi = nr_cpu_ids - 1; 3620 if (i == 0) { 3621 rnp->grpnum = 0; 3622 rnp->grpmask = 0; 3623 rnp->parent = NULL; 3624 } else { 3625 rnp->grpnum = j % levelspread[i - 1]; 3626 rnp->grpmask = BIT(rnp->grpnum); 3627 rnp->parent = rcu_state.level[i - 1] + 3628 j / levelspread[i - 1]; 3629 } 3630 rnp->level = i; 3631 INIT_LIST_HEAD(&rnp->blkd_tasks); 3632 rcu_init_one_nocb(rnp); 3633 init_waitqueue_head(&rnp->exp_wq[0]); 3634 init_waitqueue_head(&rnp->exp_wq[1]); 3635 init_waitqueue_head(&rnp->exp_wq[2]); 3636 init_waitqueue_head(&rnp->exp_wq[3]); 3637 spin_lock_init(&rnp->exp_lock); 3638 } 3639 } 3640 3641 init_swait_queue_head(&rcu_state.gp_wq); 3642 init_swait_queue_head(&rcu_state.expedited_wq); 3643 rnp = rcu_first_leaf_node(); 3644 for_each_possible_cpu(i) { 3645 while (i > rnp->grphi) 3646 rnp++; 3647 per_cpu_ptr(&rcu_data, i)->mynode = rnp; 3648 rcu_boot_init_percpu_data(i); 3649 } 3650 } 3651 3652 /* 3653 * Compute the rcu_node tree geometry from kernel parameters. This cannot 3654 * replace the definitions in tree.h because those are needed to size 3655 * the ->node array in the rcu_state structure. 3656 */ 3657 static void __init rcu_init_geometry(void) 3658 { 3659 ulong d; 3660 int i; 3661 int rcu_capacity[RCU_NUM_LVLS]; 3662 3663 /* 3664 * Initialize any unspecified boot parameters. 3665 * The default values of jiffies_till_first_fqs and 3666 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS 3667 * value, which is a function of HZ, then adding one for each 3668 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system. 3669 */ 3670 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; 3671 if (jiffies_till_first_fqs == ULONG_MAX) 3672 jiffies_till_first_fqs = d; 3673 if (jiffies_till_next_fqs == ULONG_MAX) 3674 jiffies_till_next_fqs = d; 3675 if (jiffies_till_sched_qs == ULONG_MAX) 3676 adjust_jiffies_till_sched_qs(); 3677 3678 /* If the compile-time values are accurate, just leave. */ 3679 if (rcu_fanout_leaf == RCU_FANOUT_LEAF && 3680 nr_cpu_ids == NR_CPUS) 3681 return; 3682 pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n", 3683 rcu_fanout_leaf, nr_cpu_ids); 3684 3685 /* 3686 * The boot-time rcu_fanout_leaf parameter must be at least two 3687 * and cannot exceed the number of bits in the rcu_node masks. 3688 * Complain and fall back to the compile-time values if this 3689 * limit is exceeded. 3690 */ 3691 if (rcu_fanout_leaf < 2 || 3692 rcu_fanout_leaf > sizeof(unsigned long) * 8) { 3693 rcu_fanout_leaf = RCU_FANOUT_LEAF; 3694 WARN_ON(1); 3695 return; 3696 } 3697 3698 /* 3699 * Compute number of nodes that can be handled an rcu_node tree 3700 * with the given number of levels. 3701 */ 3702 rcu_capacity[0] = rcu_fanout_leaf; 3703 for (i = 1; i < RCU_NUM_LVLS; i++) 3704 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT; 3705 3706 /* 3707 * The tree must be able to accommodate the configured number of CPUs. 3708 * If this limit is exceeded, fall back to the compile-time values. 3709 */ 3710 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) { 3711 rcu_fanout_leaf = RCU_FANOUT_LEAF; 3712 WARN_ON(1); 3713 return; 3714 } 3715 3716 /* Calculate the number of levels in the tree. */ 3717 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) { 3718 } 3719 rcu_num_lvls = i + 1; 3720 3721 /* Calculate the number of rcu_nodes at each level of the tree. */ 3722 for (i = 0; i < rcu_num_lvls; i++) { 3723 int cap = rcu_capacity[(rcu_num_lvls - 1) - i]; 3724 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap); 3725 } 3726 3727 /* Calculate the total number of rcu_node structures. */ 3728 rcu_num_nodes = 0; 3729 for (i = 0; i < rcu_num_lvls; i++) 3730 rcu_num_nodes += num_rcu_lvl[i]; 3731 } 3732 3733 /* 3734 * Dump out the structure of the rcu_node combining tree associated 3735 * with the rcu_state structure. 3736 */ 3737 static void __init rcu_dump_rcu_node_tree(void) 3738 { 3739 int level = 0; 3740 struct rcu_node *rnp; 3741 3742 pr_info("rcu_node tree layout dump\n"); 3743 pr_info(" "); 3744 rcu_for_each_node_breadth_first(rnp) { 3745 if (rnp->level != level) { 3746 pr_cont("\n"); 3747 pr_info(" "); 3748 level = rnp->level; 3749 } 3750 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum); 3751 } 3752 pr_cont("\n"); 3753 } 3754 3755 struct workqueue_struct *rcu_gp_wq; 3756 struct workqueue_struct *rcu_par_gp_wq; 3757 3758 void __init rcu_init(void) 3759 { 3760 int cpu; 3761 3762 rcu_early_boot_tests(); 3763 3764 rcu_bootup_announce(); 3765 rcu_init_geometry(); 3766 rcu_init_one(); 3767 if (dump_tree) 3768 rcu_dump_rcu_node_tree(); 3769 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks); 3770 3771 /* 3772 * We don't need protection against CPU-hotplug here because 3773 * this is called early in boot, before either interrupts 3774 * or the scheduler are operational. 3775 */ 3776 pm_notifier(rcu_pm_notify, 0); 3777 for_each_online_cpu(cpu) { 3778 rcutree_prepare_cpu(cpu); 3779 rcu_cpu_starting(cpu); 3780 rcutree_online_cpu(cpu); 3781 } 3782 3783 /* Create workqueue for expedited GPs and for Tree SRCU. */ 3784 rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0); 3785 WARN_ON(!rcu_gp_wq); 3786 rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0); 3787 WARN_ON(!rcu_par_gp_wq); 3788 srcu_init(); 3789 } 3790 3791 #include "tree_exp.h" 3792 #include "tree_plugin.h" 3793