xref: /linux/kernel/rcu/tree.c (revision 110e6f26af80dfd90b6e5c645b1aed7228aa580d)
1 /*
2  * Read-Copy Update mechanism for mutual exclusion
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, you can access it online at
16  * http://www.gnu.org/licenses/gpl-2.0.html.
17  *
18  * Copyright IBM Corporation, 2008
19  *
20  * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21  *	    Manfred Spraul <manfred@colorfullife.com>
22  *	    Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23  *
24  * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25  * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26  *
27  * For detailed explanation of Read-Copy Update mechanism see -
28  *	Documentation/RCU
29  */
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <linux/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/export.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/module.h>
45 #include <linux/percpu.h>
46 #include <linux/notifier.h>
47 #include <linux/cpu.h>
48 #include <linux/mutex.h>
49 #include <linux/time.h>
50 #include <linux/kernel_stat.h>
51 #include <linux/wait.h>
52 #include <linux/kthread.h>
53 #include <linux/prefetch.h>
54 #include <linux/delay.h>
55 #include <linux/stop_machine.h>
56 #include <linux/random.h>
57 #include <linux/trace_events.h>
58 #include <linux/suspend.h>
59 
60 #include "tree.h"
61 #include "rcu.h"
62 
63 MODULE_ALIAS("rcutree");
64 #ifdef MODULE_PARAM_PREFIX
65 #undef MODULE_PARAM_PREFIX
66 #endif
67 #define MODULE_PARAM_PREFIX "rcutree."
68 
69 /* Data structures. */
70 
71 /*
72  * In order to export the rcu_state name to the tracing tools, it
73  * needs to be added in the __tracepoint_string section.
74  * This requires defining a separate variable tp_<sname>_varname
75  * that points to the string being used, and this will allow
76  * the tracing userspace tools to be able to decipher the string
77  * address to the matching string.
78  */
79 #ifdef CONFIG_TRACING
80 # define DEFINE_RCU_TPS(sname) \
81 static char sname##_varname[] = #sname; \
82 static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
83 # define RCU_STATE_NAME(sname) sname##_varname
84 #else
85 # define DEFINE_RCU_TPS(sname)
86 # define RCU_STATE_NAME(sname) __stringify(sname)
87 #endif
88 
89 #define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
90 DEFINE_RCU_TPS(sname) \
91 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
92 struct rcu_state sname##_state = { \
93 	.level = { &sname##_state.node[0] }, \
94 	.rda = &sname##_data, \
95 	.call = cr, \
96 	.gp_state = RCU_GP_IDLE, \
97 	.gpnum = 0UL - 300UL, \
98 	.completed = 0UL - 300UL, \
99 	.orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
100 	.orphan_nxttail = &sname##_state.orphan_nxtlist, \
101 	.orphan_donetail = &sname##_state.orphan_donelist, \
102 	.barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
103 	.name = RCU_STATE_NAME(sname), \
104 	.abbr = sabbr, \
105 }
106 
107 RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
108 RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
109 
110 static struct rcu_state *const rcu_state_p;
111 LIST_HEAD(rcu_struct_flavors);
112 
113 /* Dump rcu_node combining tree at boot to verify correct setup. */
114 static bool dump_tree;
115 module_param(dump_tree, bool, 0444);
116 /* Control rcu_node-tree auto-balancing at boot time. */
117 static bool rcu_fanout_exact;
118 module_param(rcu_fanout_exact, bool, 0444);
119 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
120 static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
121 module_param(rcu_fanout_leaf, int, 0444);
122 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
123 /* Number of rcu_nodes at specified level. */
124 static int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
125 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
126 
127 /*
128  * The rcu_scheduler_active variable transitions from zero to one just
129  * before the first task is spawned.  So when this variable is zero, RCU
130  * can assume that there is but one task, allowing RCU to (for example)
131  * optimize synchronize_sched() to a simple barrier().  When this variable
132  * is one, RCU must actually do all the hard work required to detect real
133  * grace periods.  This variable is also used to suppress boot-time false
134  * positives from lockdep-RCU error checking.
135  */
136 int rcu_scheduler_active __read_mostly;
137 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
138 
139 /*
140  * The rcu_scheduler_fully_active variable transitions from zero to one
141  * during the early_initcall() processing, which is after the scheduler
142  * is capable of creating new tasks.  So RCU processing (for example,
143  * creating tasks for RCU priority boosting) must be delayed until after
144  * rcu_scheduler_fully_active transitions from zero to one.  We also
145  * currently delay invocation of any RCU callbacks until after this point.
146  *
147  * It might later prove better for people registering RCU callbacks during
148  * early boot to take responsibility for these callbacks, but one step at
149  * a time.
150  */
151 static int rcu_scheduler_fully_active __read_mostly;
152 
153 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
154 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
155 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
156 static void invoke_rcu_core(void);
157 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
158 static void rcu_report_exp_rdp(struct rcu_state *rsp,
159 			       struct rcu_data *rdp, bool wake);
160 
161 /* rcuc/rcub kthread realtime priority */
162 #ifdef CONFIG_RCU_KTHREAD_PRIO
163 static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO;
164 #else /* #ifdef CONFIG_RCU_KTHREAD_PRIO */
165 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
166 #endif /* #else #ifdef CONFIG_RCU_KTHREAD_PRIO */
167 module_param(kthread_prio, int, 0644);
168 
169 /* Delay in jiffies for grace-period initialization delays, debug only. */
170 
171 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT
172 static int gp_preinit_delay = CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT_DELAY;
173 module_param(gp_preinit_delay, int, 0644);
174 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
175 static const int gp_preinit_delay;
176 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
177 
178 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT
179 static int gp_init_delay = CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY;
180 module_param(gp_init_delay, int, 0644);
181 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
182 static const int gp_init_delay;
183 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
184 
185 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP
186 static int gp_cleanup_delay = CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP_DELAY;
187 module_param(gp_cleanup_delay, int, 0644);
188 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
189 static const int gp_cleanup_delay;
190 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
191 
192 /*
193  * Number of grace periods between delays, normalized by the duration of
194  * the delay.  The longer the the delay, the more the grace periods between
195  * each delay.  The reason for this normalization is that it means that,
196  * for non-zero delays, the overall slowdown of grace periods is constant
197  * regardless of the duration of the delay.  This arrangement balances
198  * the need for long delays to increase some race probabilities with the
199  * need for fast grace periods to increase other race probabilities.
200  */
201 #define PER_RCU_NODE_PERIOD 3	/* Number of grace periods between delays. */
202 
203 /*
204  * Track the rcutorture test sequence number and the update version
205  * number within a given test.  The rcutorture_testseq is incremented
206  * on every rcutorture module load and unload, so has an odd value
207  * when a test is running.  The rcutorture_vernum is set to zero
208  * when rcutorture starts and is incremented on each rcutorture update.
209  * These variables enable correlating rcutorture output with the
210  * RCU tracing information.
211  */
212 unsigned long rcutorture_testseq;
213 unsigned long rcutorture_vernum;
214 
215 /*
216  * Compute the mask of online CPUs for the specified rcu_node structure.
217  * This will not be stable unless the rcu_node structure's ->lock is
218  * held, but the bit corresponding to the current CPU will be stable
219  * in most contexts.
220  */
221 unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
222 {
223 	return READ_ONCE(rnp->qsmaskinitnext);
224 }
225 
226 /*
227  * Return true if an RCU grace period is in progress.  The READ_ONCE()s
228  * permit this function to be invoked without holding the root rcu_node
229  * structure's ->lock, but of course results can be subject to change.
230  */
231 static int rcu_gp_in_progress(struct rcu_state *rsp)
232 {
233 	return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
234 }
235 
236 /*
237  * Note a quiescent state.  Because we do not need to know
238  * how many quiescent states passed, just if there was at least
239  * one since the start of the grace period, this just sets a flag.
240  * The caller must have disabled preemption.
241  */
242 void rcu_sched_qs(void)
243 {
244 	if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.s))
245 		return;
246 	trace_rcu_grace_period(TPS("rcu_sched"),
247 			       __this_cpu_read(rcu_sched_data.gpnum),
248 			       TPS("cpuqs"));
249 	__this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false);
250 	if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
251 		return;
252 	__this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false);
253 	rcu_report_exp_rdp(&rcu_sched_state,
254 			   this_cpu_ptr(&rcu_sched_data), true);
255 }
256 
257 void rcu_bh_qs(void)
258 {
259 	if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) {
260 		trace_rcu_grace_period(TPS("rcu_bh"),
261 				       __this_cpu_read(rcu_bh_data.gpnum),
262 				       TPS("cpuqs"));
263 		__this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false);
264 	}
265 }
266 
267 static DEFINE_PER_CPU(int, rcu_sched_qs_mask);
268 
269 static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
270 	.dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
271 	.dynticks = ATOMIC_INIT(1),
272 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
273 	.dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
274 	.dynticks_idle = ATOMIC_INIT(1),
275 #endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
276 };
277 
278 DEFINE_PER_CPU_SHARED_ALIGNED(unsigned long, rcu_qs_ctr);
279 EXPORT_PER_CPU_SYMBOL_GPL(rcu_qs_ctr);
280 
281 /*
282  * Let the RCU core know that this CPU has gone through the scheduler,
283  * which is a quiescent state.  This is called when the need for a
284  * quiescent state is urgent, so we burn an atomic operation and full
285  * memory barriers to let the RCU core know about it, regardless of what
286  * this CPU might (or might not) do in the near future.
287  *
288  * We inform the RCU core by emulating a zero-duration dyntick-idle
289  * period, which we in turn do by incrementing the ->dynticks counter
290  * by two.
291  *
292  * The caller must have disabled interrupts.
293  */
294 static void rcu_momentary_dyntick_idle(void)
295 {
296 	struct rcu_data *rdp;
297 	struct rcu_dynticks *rdtp;
298 	int resched_mask;
299 	struct rcu_state *rsp;
300 
301 	/*
302 	 * Yes, we can lose flag-setting operations.  This is OK, because
303 	 * the flag will be set again after some delay.
304 	 */
305 	resched_mask = raw_cpu_read(rcu_sched_qs_mask);
306 	raw_cpu_write(rcu_sched_qs_mask, 0);
307 
308 	/* Find the flavor that needs a quiescent state. */
309 	for_each_rcu_flavor(rsp) {
310 		rdp = raw_cpu_ptr(rsp->rda);
311 		if (!(resched_mask & rsp->flavor_mask))
312 			continue;
313 		smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */
314 		if (READ_ONCE(rdp->mynode->completed) !=
315 		    READ_ONCE(rdp->cond_resched_completed))
316 			continue;
317 
318 		/*
319 		 * Pretend to be momentarily idle for the quiescent state.
320 		 * This allows the grace-period kthread to record the
321 		 * quiescent state, with no need for this CPU to do anything
322 		 * further.
323 		 */
324 		rdtp = this_cpu_ptr(&rcu_dynticks);
325 		smp_mb__before_atomic(); /* Earlier stuff before QS. */
326 		atomic_add(2, &rdtp->dynticks);  /* QS. */
327 		smp_mb__after_atomic(); /* Later stuff after QS. */
328 		break;
329 	}
330 }
331 
332 /*
333  * Note a context switch.  This is a quiescent state for RCU-sched,
334  * and requires special handling for preemptible RCU.
335  * The caller must have disabled interrupts.
336  */
337 void rcu_note_context_switch(void)
338 {
339 	barrier(); /* Avoid RCU read-side critical sections leaking down. */
340 	trace_rcu_utilization(TPS("Start context switch"));
341 	rcu_sched_qs();
342 	rcu_preempt_note_context_switch();
343 	if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
344 		rcu_momentary_dyntick_idle();
345 	trace_rcu_utilization(TPS("End context switch"));
346 	barrier(); /* Avoid RCU read-side critical sections leaking up. */
347 }
348 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
349 
350 /*
351  * Register a quiescent state for all RCU flavors.  If there is an
352  * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
353  * dyntick-idle quiescent state visible to other CPUs (but only for those
354  * RCU flavors in desperate need of a quiescent state, which will normally
355  * be none of them).  Either way, do a lightweight quiescent state for
356  * all RCU flavors.
357  *
358  * The barrier() calls are redundant in the common case when this is
359  * called externally, but just in case this is called from within this
360  * file.
361  *
362  */
363 void rcu_all_qs(void)
364 {
365 	unsigned long flags;
366 
367 	barrier(); /* Avoid RCU read-side critical sections leaking down. */
368 	if (unlikely(raw_cpu_read(rcu_sched_qs_mask))) {
369 		local_irq_save(flags);
370 		rcu_momentary_dyntick_idle();
371 		local_irq_restore(flags);
372 	}
373 	this_cpu_inc(rcu_qs_ctr);
374 	barrier(); /* Avoid RCU read-side critical sections leaking up. */
375 }
376 EXPORT_SYMBOL_GPL(rcu_all_qs);
377 
378 static long blimit = 10;	/* Maximum callbacks per rcu_do_batch. */
379 static long qhimark = 10000;	/* If this many pending, ignore blimit. */
380 static long qlowmark = 100;	/* Once only this many pending, use blimit. */
381 
382 module_param(blimit, long, 0444);
383 module_param(qhimark, long, 0444);
384 module_param(qlowmark, long, 0444);
385 
386 static ulong jiffies_till_first_fqs = ULONG_MAX;
387 static ulong jiffies_till_next_fqs = ULONG_MAX;
388 
389 module_param(jiffies_till_first_fqs, ulong, 0644);
390 module_param(jiffies_till_next_fqs, ulong, 0644);
391 
392 /*
393  * How long the grace period must be before we start recruiting
394  * quiescent-state help from rcu_note_context_switch().
395  */
396 static ulong jiffies_till_sched_qs = HZ / 20;
397 module_param(jiffies_till_sched_qs, ulong, 0644);
398 
399 static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
400 				  struct rcu_data *rdp);
401 static void force_qs_rnp(struct rcu_state *rsp,
402 			 int (*f)(struct rcu_data *rsp, bool *isidle,
403 				  unsigned long *maxj),
404 			 bool *isidle, unsigned long *maxj);
405 static void force_quiescent_state(struct rcu_state *rsp);
406 static int rcu_pending(void);
407 
408 /*
409  * Return the number of RCU batches started thus far for debug & stats.
410  */
411 unsigned long rcu_batches_started(void)
412 {
413 	return rcu_state_p->gpnum;
414 }
415 EXPORT_SYMBOL_GPL(rcu_batches_started);
416 
417 /*
418  * Return the number of RCU-sched batches started thus far for debug & stats.
419  */
420 unsigned long rcu_batches_started_sched(void)
421 {
422 	return rcu_sched_state.gpnum;
423 }
424 EXPORT_SYMBOL_GPL(rcu_batches_started_sched);
425 
426 /*
427  * Return the number of RCU BH batches started thus far for debug & stats.
428  */
429 unsigned long rcu_batches_started_bh(void)
430 {
431 	return rcu_bh_state.gpnum;
432 }
433 EXPORT_SYMBOL_GPL(rcu_batches_started_bh);
434 
435 /*
436  * Return the number of RCU batches completed thus far for debug & stats.
437  */
438 unsigned long rcu_batches_completed(void)
439 {
440 	return rcu_state_p->completed;
441 }
442 EXPORT_SYMBOL_GPL(rcu_batches_completed);
443 
444 /*
445  * Return the number of RCU-sched batches completed thus far for debug & stats.
446  */
447 unsigned long rcu_batches_completed_sched(void)
448 {
449 	return rcu_sched_state.completed;
450 }
451 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
452 
453 /*
454  * Return the number of RCU BH batches completed thus far for debug & stats.
455  */
456 unsigned long rcu_batches_completed_bh(void)
457 {
458 	return rcu_bh_state.completed;
459 }
460 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
461 
462 /*
463  * Force a quiescent state.
464  */
465 void rcu_force_quiescent_state(void)
466 {
467 	force_quiescent_state(rcu_state_p);
468 }
469 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
470 
471 /*
472  * Force a quiescent state for RCU BH.
473  */
474 void rcu_bh_force_quiescent_state(void)
475 {
476 	force_quiescent_state(&rcu_bh_state);
477 }
478 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
479 
480 /*
481  * Force a quiescent state for RCU-sched.
482  */
483 void rcu_sched_force_quiescent_state(void)
484 {
485 	force_quiescent_state(&rcu_sched_state);
486 }
487 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
488 
489 /*
490  * Show the state of the grace-period kthreads.
491  */
492 void show_rcu_gp_kthreads(void)
493 {
494 	struct rcu_state *rsp;
495 
496 	for_each_rcu_flavor(rsp) {
497 		pr_info("%s: wait state: %d ->state: %#lx\n",
498 			rsp->name, rsp->gp_state, rsp->gp_kthread->state);
499 		/* sched_show_task(rsp->gp_kthread); */
500 	}
501 }
502 EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
503 
504 /*
505  * Record the number of times rcutorture tests have been initiated and
506  * terminated.  This information allows the debugfs tracing stats to be
507  * correlated to the rcutorture messages, even when the rcutorture module
508  * is being repeatedly loaded and unloaded.  In other words, we cannot
509  * store this state in rcutorture itself.
510  */
511 void rcutorture_record_test_transition(void)
512 {
513 	rcutorture_testseq++;
514 	rcutorture_vernum = 0;
515 }
516 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
517 
518 /*
519  * Send along grace-period-related data for rcutorture diagnostics.
520  */
521 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
522 			    unsigned long *gpnum, unsigned long *completed)
523 {
524 	struct rcu_state *rsp = NULL;
525 
526 	switch (test_type) {
527 	case RCU_FLAVOR:
528 		rsp = rcu_state_p;
529 		break;
530 	case RCU_BH_FLAVOR:
531 		rsp = &rcu_bh_state;
532 		break;
533 	case RCU_SCHED_FLAVOR:
534 		rsp = &rcu_sched_state;
535 		break;
536 	default:
537 		break;
538 	}
539 	if (rsp != NULL) {
540 		*flags = READ_ONCE(rsp->gp_flags);
541 		*gpnum = READ_ONCE(rsp->gpnum);
542 		*completed = READ_ONCE(rsp->completed);
543 		return;
544 	}
545 	*flags = 0;
546 	*gpnum = 0;
547 	*completed = 0;
548 }
549 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
550 
551 /*
552  * Record the number of writer passes through the current rcutorture test.
553  * This is also used to correlate debugfs tracing stats with the rcutorture
554  * messages.
555  */
556 void rcutorture_record_progress(unsigned long vernum)
557 {
558 	rcutorture_vernum++;
559 }
560 EXPORT_SYMBOL_GPL(rcutorture_record_progress);
561 
562 /*
563  * Does the CPU have callbacks ready to be invoked?
564  */
565 static int
566 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
567 {
568 	return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
569 	       rdp->nxttail[RCU_DONE_TAIL] != NULL;
570 }
571 
572 /*
573  * Return the root node of the specified rcu_state structure.
574  */
575 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
576 {
577 	return &rsp->node[0];
578 }
579 
580 /*
581  * Is there any need for future grace periods?
582  * Interrupts must be disabled.  If the caller does not hold the root
583  * rnp_node structure's ->lock, the results are advisory only.
584  */
585 static int rcu_future_needs_gp(struct rcu_state *rsp)
586 {
587 	struct rcu_node *rnp = rcu_get_root(rsp);
588 	int idx = (READ_ONCE(rnp->completed) + 1) & 0x1;
589 	int *fp = &rnp->need_future_gp[idx];
590 
591 	return READ_ONCE(*fp);
592 }
593 
594 /*
595  * Does the current CPU require a not-yet-started grace period?
596  * The caller must have disabled interrupts to prevent races with
597  * normal callback registry.
598  */
599 static bool
600 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
601 {
602 	int i;
603 
604 	if (rcu_gp_in_progress(rsp))
605 		return false;  /* No, a grace period is already in progress. */
606 	if (rcu_future_needs_gp(rsp))
607 		return true;  /* Yes, a no-CBs CPU needs one. */
608 	if (!rdp->nxttail[RCU_NEXT_TAIL])
609 		return false;  /* No, this is a no-CBs (or offline) CPU. */
610 	if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
611 		return true;  /* Yes, CPU has newly registered callbacks. */
612 	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
613 		if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
614 		    ULONG_CMP_LT(READ_ONCE(rsp->completed),
615 				 rdp->nxtcompleted[i]))
616 			return true;  /* Yes, CBs for future grace period. */
617 	return false; /* No grace period needed. */
618 }
619 
620 /*
621  * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
622  *
623  * If the new value of the ->dynticks_nesting counter now is zero,
624  * we really have entered idle, and must do the appropriate accounting.
625  * The caller must have disabled interrupts.
626  */
627 static void rcu_eqs_enter_common(long long oldval, bool user)
628 {
629 	struct rcu_state *rsp;
630 	struct rcu_data *rdp;
631 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
632 
633 	trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
634 	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
635 	    !user && !is_idle_task(current)) {
636 		struct task_struct *idle __maybe_unused =
637 			idle_task(smp_processor_id());
638 
639 		trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
640 		ftrace_dump(DUMP_ORIG);
641 		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
642 			  current->pid, current->comm,
643 			  idle->pid, idle->comm); /* must be idle task! */
644 	}
645 	for_each_rcu_flavor(rsp) {
646 		rdp = this_cpu_ptr(rsp->rda);
647 		do_nocb_deferred_wakeup(rdp);
648 	}
649 	rcu_prepare_for_idle();
650 	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
651 	smp_mb__before_atomic();  /* See above. */
652 	atomic_inc(&rdtp->dynticks);
653 	smp_mb__after_atomic();  /* Force ordering with next sojourn. */
654 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
655 		     atomic_read(&rdtp->dynticks) & 0x1);
656 	rcu_dynticks_task_enter();
657 
658 	/*
659 	 * It is illegal to enter an extended quiescent state while
660 	 * in an RCU read-side critical section.
661 	 */
662 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
663 			 "Illegal idle entry in RCU read-side critical section.");
664 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),
665 			 "Illegal idle entry in RCU-bh read-side critical section.");
666 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),
667 			 "Illegal idle entry in RCU-sched read-side critical section.");
668 }
669 
670 /*
671  * Enter an RCU extended quiescent state, which can be either the
672  * idle loop or adaptive-tickless usermode execution.
673  */
674 static void rcu_eqs_enter(bool user)
675 {
676 	long long oldval;
677 	struct rcu_dynticks *rdtp;
678 
679 	rdtp = this_cpu_ptr(&rcu_dynticks);
680 	oldval = rdtp->dynticks_nesting;
681 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
682 		     (oldval & DYNTICK_TASK_NEST_MASK) == 0);
683 	if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
684 		rdtp->dynticks_nesting = 0;
685 		rcu_eqs_enter_common(oldval, user);
686 	} else {
687 		rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
688 	}
689 }
690 
691 /**
692  * rcu_idle_enter - inform RCU that current CPU is entering idle
693  *
694  * Enter idle mode, in other words, -leave- the mode in which RCU
695  * read-side critical sections can occur.  (Though RCU read-side
696  * critical sections can occur in irq handlers in idle, a possibility
697  * handled by irq_enter() and irq_exit().)
698  *
699  * We crowbar the ->dynticks_nesting field to zero to allow for
700  * the possibility of usermode upcalls having messed up our count
701  * of interrupt nesting level during the prior busy period.
702  */
703 void rcu_idle_enter(void)
704 {
705 	unsigned long flags;
706 
707 	local_irq_save(flags);
708 	rcu_eqs_enter(false);
709 	rcu_sysidle_enter(0);
710 	local_irq_restore(flags);
711 }
712 EXPORT_SYMBOL_GPL(rcu_idle_enter);
713 
714 #ifdef CONFIG_NO_HZ_FULL
715 /**
716  * rcu_user_enter - inform RCU that we are resuming userspace.
717  *
718  * Enter RCU idle mode right before resuming userspace.  No use of RCU
719  * is permitted between this call and rcu_user_exit(). This way the
720  * CPU doesn't need to maintain the tick for RCU maintenance purposes
721  * when the CPU runs in userspace.
722  */
723 void rcu_user_enter(void)
724 {
725 	rcu_eqs_enter(1);
726 }
727 #endif /* CONFIG_NO_HZ_FULL */
728 
729 /**
730  * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
731  *
732  * Exit from an interrupt handler, which might possibly result in entering
733  * idle mode, in other words, leaving the mode in which read-side critical
734  * sections can occur.  The caller must have disabled interrupts.
735  *
736  * This code assumes that the idle loop never does anything that might
737  * result in unbalanced calls to irq_enter() and irq_exit().  If your
738  * architecture violates this assumption, RCU will give you what you
739  * deserve, good and hard.  But very infrequently and irreproducibly.
740  *
741  * Use things like work queues to work around this limitation.
742  *
743  * You have been warned.
744  */
745 void rcu_irq_exit(void)
746 {
747 	long long oldval;
748 	struct rcu_dynticks *rdtp;
749 
750 	RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_exit() invoked with irqs enabled!!!");
751 	rdtp = this_cpu_ptr(&rcu_dynticks);
752 	oldval = rdtp->dynticks_nesting;
753 	rdtp->dynticks_nesting--;
754 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
755 		     rdtp->dynticks_nesting < 0);
756 	if (rdtp->dynticks_nesting)
757 		trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
758 	else
759 		rcu_eqs_enter_common(oldval, true);
760 	rcu_sysidle_enter(1);
761 }
762 
763 /*
764  * Wrapper for rcu_irq_exit() where interrupts are enabled.
765  */
766 void rcu_irq_exit_irqson(void)
767 {
768 	unsigned long flags;
769 
770 	local_irq_save(flags);
771 	rcu_irq_exit();
772 	local_irq_restore(flags);
773 }
774 
775 /*
776  * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
777  *
778  * If the new value of the ->dynticks_nesting counter was previously zero,
779  * we really have exited idle, and must do the appropriate accounting.
780  * The caller must have disabled interrupts.
781  */
782 static void rcu_eqs_exit_common(long long oldval, int user)
783 {
784 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
785 
786 	rcu_dynticks_task_exit();
787 	smp_mb__before_atomic();  /* Force ordering w/previous sojourn. */
788 	atomic_inc(&rdtp->dynticks);
789 	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
790 	smp_mb__after_atomic();  /* See above. */
791 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
792 		     !(atomic_read(&rdtp->dynticks) & 0x1));
793 	rcu_cleanup_after_idle();
794 	trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
795 	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
796 	    !user && !is_idle_task(current)) {
797 		struct task_struct *idle __maybe_unused =
798 			idle_task(smp_processor_id());
799 
800 		trace_rcu_dyntick(TPS("Error on exit: not idle task"),
801 				  oldval, rdtp->dynticks_nesting);
802 		ftrace_dump(DUMP_ORIG);
803 		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
804 			  current->pid, current->comm,
805 			  idle->pid, idle->comm); /* must be idle task! */
806 	}
807 }
808 
809 /*
810  * Exit an RCU extended quiescent state, which can be either the
811  * idle loop or adaptive-tickless usermode execution.
812  */
813 static void rcu_eqs_exit(bool user)
814 {
815 	struct rcu_dynticks *rdtp;
816 	long long oldval;
817 
818 	rdtp = this_cpu_ptr(&rcu_dynticks);
819 	oldval = rdtp->dynticks_nesting;
820 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
821 	if (oldval & DYNTICK_TASK_NEST_MASK) {
822 		rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
823 	} else {
824 		rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
825 		rcu_eqs_exit_common(oldval, user);
826 	}
827 }
828 
829 /**
830  * rcu_idle_exit - inform RCU that current CPU is leaving idle
831  *
832  * Exit idle mode, in other words, -enter- the mode in which RCU
833  * read-side critical sections can occur.
834  *
835  * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
836  * allow for the possibility of usermode upcalls messing up our count
837  * of interrupt nesting level during the busy period that is just
838  * now starting.
839  */
840 void rcu_idle_exit(void)
841 {
842 	unsigned long flags;
843 
844 	local_irq_save(flags);
845 	rcu_eqs_exit(false);
846 	rcu_sysidle_exit(0);
847 	local_irq_restore(flags);
848 }
849 EXPORT_SYMBOL_GPL(rcu_idle_exit);
850 
851 #ifdef CONFIG_NO_HZ_FULL
852 /**
853  * rcu_user_exit - inform RCU that we are exiting userspace.
854  *
855  * Exit RCU idle mode while entering the kernel because it can
856  * run a RCU read side critical section anytime.
857  */
858 void rcu_user_exit(void)
859 {
860 	rcu_eqs_exit(1);
861 }
862 #endif /* CONFIG_NO_HZ_FULL */
863 
864 /**
865  * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
866  *
867  * Enter an interrupt handler, which might possibly result in exiting
868  * idle mode, in other words, entering the mode in which read-side critical
869  * sections can occur.  The caller must have disabled interrupts.
870  *
871  * Note that the Linux kernel is fully capable of entering an interrupt
872  * handler that it never exits, for example when doing upcalls to
873  * user mode!  This code assumes that the idle loop never does upcalls to
874  * user mode.  If your architecture does do upcalls from the idle loop (or
875  * does anything else that results in unbalanced calls to the irq_enter()
876  * and irq_exit() functions), RCU will give you what you deserve, good
877  * and hard.  But very infrequently and irreproducibly.
878  *
879  * Use things like work queues to work around this limitation.
880  *
881  * You have been warned.
882  */
883 void rcu_irq_enter(void)
884 {
885 	struct rcu_dynticks *rdtp;
886 	long long oldval;
887 
888 	RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_enter() invoked with irqs enabled!!!");
889 	rdtp = this_cpu_ptr(&rcu_dynticks);
890 	oldval = rdtp->dynticks_nesting;
891 	rdtp->dynticks_nesting++;
892 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
893 		     rdtp->dynticks_nesting == 0);
894 	if (oldval)
895 		trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
896 	else
897 		rcu_eqs_exit_common(oldval, true);
898 	rcu_sysidle_exit(1);
899 }
900 
901 /*
902  * Wrapper for rcu_irq_enter() where interrupts are enabled.
903  */
904 void rcu_irq_enter_irqson(void)
905 {
906 	unsigned long flags;
907 
908 	local_irq_save(flags);
909 	rcu_irq_enter();
910 	local_irq_restore(flags);
911 }
912 
913 /**
914  * rcu_nmi_enter - inform RCU of entry to NMI context
915  *
916  * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
917  * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
918  * that the CPU is active.  This implementation permits nested NMIs, as
919  * long as the nesting level does not overflow an int.  (You will probably
920  * run out of stack space first.)
921  */
922 void rcu_nmi_enter(void)
923 {
924 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
925 	int incby = 2;
926 
927 	/* Complain about underflow. */
928 	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);
929 
930 	/*
931 	 * If idle from RCU viewpoint, atomically increment ->dynticks
932 	 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
933 	 * Otherwise, increment ->dynticks_nmi_nesting by two.  This means
934 	 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
935 	 * to be in the outermost NMI handler that interrupted an RCU-idle
936 	 * period (observation due to Andy Lutomirski).
937 	 */
938 	if (!(atomic_read(&rdtp->dynticks) & 0x1)) {
939 		smp_mb__before_atomic();  /* Force delay from prior write. */
940 		atomic_inc(&rdtp->dynticks);
941 		/* atomic_inc() before later RCU read-side crit sects */
942 		smp_mb__after_atomic();  /* See above. */
943 		WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
944 		incby = 1;
945 	}
946 	rdtp->dynticks_nmi_nesting += incby;
947 	barrier();
948 }
949 
950 /**
951  * rcu_nmi_exit - inform RCU of exit from NMI context
952  *
953  * If we are returning from the outermost NMI handler that interrupted an
954  * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
955  * to let the RCU grace-period handling know that the CPU is back to
956  * being RCU-idle.
957  */
958 void rcu_nmi_exit(void)
959 {
960 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
961 
962 	/*
963 	 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
964 	 * (We are exiting an NMI handler, so RCU better be paying attention
965 	 * to us!)
966 	 */
967 	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
968 	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
969 
970 	/*
971 	 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
972 	 * leave it in non-RCU-idle state.
973 	 */
974 	if (rdtp->dynticks_nmi_nesting != 1) {
975 		rdtp->dynticks_nmi_nesting -= 2;
976 		return;
977 	}
978 
979 	/* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
980 	rdtp->dynticks_nmi_nesting = 0;
981 	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
982 	smp_mb__before_atomic();  /* See above. */
983 	atomic_inc(&rdtp->dynticks);
984 	smp_mb__after_atomic();  /* Force delay to next write. */
985 	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
986 }
987 
988 /**
989  * __rcu_is_watching - are RCU read-side critical sections safe?
990  *
991  * Return true if RCU is watching the running CPU, which means that
992  * this CPU can safely enter RCU read-side critical sections.  Unlike
993  * rcu_is_watching(), the caller of __rcu_is_watching() must have at
994  * least disabled preemption.
995  */
996 bool notrace __rcu_is_watching(void)
997 {
998 	return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
999 }
1000 
1001 /**
1002  * rcu_is_watching - see if RCU thinks that the current CPU is idle
1003  *
1004  * If the current CPU is in its idle loop and is neither in an interrupt
1005  * or NMI handler, return true.
1006  */
1007 bool notrace rcu_is_watching(void)
1008 {
1009 	bool ret;
1010 
1011 	preempt_disable_notrace();
1012 	ret = __rcu_is_watching();
1013 	preempt_enable_notrace();
1014 	return ret;
1015 }
1016 EXPORT_SYMBOL_GPL(rcu_is_watching);
1017 
1018 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
1019 
1020 /*
1021  * Is the current CPU online?  Disable preemption to avoid false positives
1022  * that could otherwise happen due to the current CPU number being sampled,
1023  * this task being preempted, its old CPU being taken offline, resuming
1024  * on some other CPU, then determining that its old CPU is now offline.
1025  * It is OK to use RCU on an offline processor during initial boot, hence
1026  * the check for rcu_scheduler_fully_active.  Note also that it is OK
1027  * for a CPU coming online to use RCU for one jiffy prior to marking itself
1028  * online in the cpu_online_mask.  Similarly, it is OK for a CPU going
1029  * offline to continue to use RCU for one jiffy after marking itself
1030  * offline in the cpu_online_mask.  This leniency is necessary given the
1031  * non-atomic nature of the online and offline processing, for example,
1032  * the fact that a CPU enters the scheduler after completing the CPU_DYING
1033  * notifiers.
1034  *
1035  * This is also why RCU internally marks CPUs online during the
1036  * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
1037  *
1038  * Disable checking if in an NMI handler because we cannot safely report
1039  * errors from NMI handlers anyway.
1040  */
1041 bool rcu_lockdep_current_cpu_online(void)
1042 {
1043 	struct rcu_data *rdp;
1044 	struct rcu_node *rnp;
1045 	bool ret;
1046 
1047 	if (in_nmi())
1048 		return true;
1049 	preempt_disable();
1050 	rdp = this_cpu_ptr(&rcu_sched_data);
1051 	rnp = rdp->mynode;
1052 	ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
1053 	      !rcu_scheduler_fully_active;
1054 	preempt_enable();
1055 	return ret;
1056 }
1057 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
1058 
1059 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1060 
1061 /**
1062  * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
1063  *
1064  * If the current CPU is idle or running at a first-level (not nested)
1065  * interrupt from idle, return true.  The caller must have at least
1066  * disabled preemption.
1067  */
1068 static int rcu_is_cpu_rrupt_from_idle(void)
1069 {
1070 	return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
1071 }
1072 
1073 /*
1074  * Snapshot the specified CPU's dynticks counter so that we can later
1075  * credit them with an implicit quiescent state.  Return 1 if this CPU
1076  * is in dynticks idle mode, which is an extended quiescent state.
1077  */
1078 static int dyntick_save_progress_counter(struct rcu_data *rdp,
1079 					 bool *isidle, unsigned long *maxj)
1080 {
1081 	rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
1082 	rcu_sysidle_check_cpu(rdp, isidle, maxj);
1083 	if ((rdp->dynticks_snap & 0x1) == 0) {
1084 		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1085 		if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4,
1086 				 rdp->mynode->gpnum))
1087 			WRITE_ONCE(rdp->gpwrap, true);
1088 		return 1;
1089 	}
1090 	return 0;
1091 }
1092 
1093 /*
1094  * Return true if the specified CPU has passed through a quiescent
1095  * state by virtue of being in or having passed through an dynticks
1096  * idle state since the last call to dyntick_save_progress_counter()
1097  * for this same CPU, or by virtue of having been offline.
1098  */
1099 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
1100 				    bool *isidle, unsigned long *maxj)
1101 {
1102 	unsigned int curr;
1103 	int *rcrmp;
1104 	unsigned int snap;
1105 
1106 	curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
1107 	snap = (unsigned int)rdp->dynticks_snap;
1108 
1109 	/*
1110 	 * If the CPU passed through or entered a dynticks idle phase with
1111 	 * no active irq/NMI handlers, then we can safely pretend that the CPU
1112 	 * already acknowledged the request to pass through a quiescent
1113 	 * state.  Either way, that CPU cannot possibly be in an RCU
1114 	 * read-side critical section that started before the beginning
1115 	 * of the current RCU grace period.
1116 	 */
1117 	if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
1118 		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1119 		rdp->dynticks_fqs++;
1120 		return 1;
1121 	}
1122 
1123 	/*
1124 	 * Check for the CPU being offline, but only if the grace period
1125 	 * is old enough.  We don't need to worry about the CPU changing
1126 	 * state: If we see it offline even once, it has been through a
1127 	 * quiescent state.
1128 	 *
1129 	 * The reason for insisting that the grace period be at least
1130 	 * one jiffy old is that CPUs that are not quite online and that
1131 	 * have just gone offline can still execute RCU read-side critical
1132 	 * sections.
1133 	 */
1134 	if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
1135 		return 0;  /* Grace period is not old enough. */
1136 	barrier();
1137 	if (cpu_is_offline(rdp->cpu)) {
1138 		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
1139 		rdp->offline_fqs++;
1140 		return 1;
1141 	}
1142 
1143 	/*
1144 	 * A CPU running for an extended time within the kernel can
1145 	 * delay RCU grace periods.  When the CPU is in NO_HZ_FULL mode,
1146 	 * even context-switching back and forth between a pair of
1147 	 * in-kernel CPU-bound tasks cannot advance grace periods.
1148 	 * So if the grace period is old enough, make the CPU pay attention.
1149 	 * Note that the unsynchronized assignments to the per-CPU
1150 	 * rcu_sched_qs_mask variable are safe.  Yes, setting of
1151 	 * bits can be lost, but they will be set again on the next
1152 	 * force-quiescent-state pass.  So lost bit sets do not result
1153 	 * in incorrect behavior, merely in a grace period lasting
1154 	 * a few jiffies longer than it might otherwise.  Because
1155 	 * there are at most four threads involved, and because the
1156 	 * updates are only once every few jiffies, the probability of
1157 	 * lossage (and thus of slight grace-period extension) is
1158 	 * quite low.
1159 	 *
1160 	 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
1161 	 * is set too high, we override with half of the RCU CPU stall
1162 	 * warning delay.
1163 	 */
1164 	rcrmp = &per_cpu(rcu_sched_qs_mask, rdp->cpu);
1165 	if (ULONG_CMP_GE(jiffies,
1166 			 rdp->rsp->gp_start + jiffies_till_sched_qs) ||
1167 	    ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
1168 		if (!(READ_ONCE(*rcrmp) & rdp->rsp->flavor_mask)) {
1169 			WRITE_ONCE(rdp->cond_resched_completed,
1170 				   READ_ONCE(rdp->mynode->completed));
1171 			smp_mb(); /* ->cond_resched_completed before *rcrmp. */
1172 			WRITE_ONCE(*rcrmp,
1173 				   READ_ONCE(*rcrmp) + rdp->rsp->flavor_mask);
1174 		}
1175 		rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
1176 	}
1177 
1178 	/* And if it has been a really long time, kick the CPU as well. */
1179 	if (ULONG_CMP_GE(jiffies,
1180 			 rdp->rsp->gp_start + 2 * jiffies_till_sched_qs) ||
1181 	    ULONG_CMP_GE(jiffies, rdp->rsp->gp_start + jiffies_till_sched_qs))
1182 		resched_cpu(rdp->cpu);  /* Force CPU into scheduler. */
1183 
1184 	return 0;
1185 }
1186 
1187 static void record_gp_stall_check_time(struct rcu_state *rsp)
1188 {
1189 	unsigned long j = jiffies;
1190 	unsigned long j1;
1191 
1192 	rsp->gp_start = j;
1193 	smp_wmb(); /* Record start time before stall time. */
1194 	j1 = rcu_jiffies_till_stall_check();
1195 	WRITE_ONCE(rsp->jiffies_stall, j + j1);
1196 	rsp->jiffies_resched = j + j1 / 2;
1197 	rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
1198 }
1199 
1200 /*
1201  * Convert a ->gp_state value to a character string.
1202  */
1203 static const char *gp_state_getname(short gs)
1204 {
1205 	if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
1206 		return "???";
1207 	return gp_state_names[gs];
1208 }
1209 
1210 /*
1211  * Complain about starvation of grace-period kthread.
1212  */
1213 static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
1214 {
1215 	unsigned long gpa;
1216 	unsigned long j;
1217 
1218 	j = jiffies;
1219 	gpa = READ_ONCE(rsp->gp_activity);
1220 	if (j - gpa > 2 * HZ) {
1221 		pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x %s(%d) ->state=%#lx\n",
1222 		       rsp->name, j - gpa,
1223 		       rsp->gpnum, rsp->completed,
1224 		       rsp->gp_flags,
1225 		       gp_state_getname(rsp->gp_state), rsp->gp_state,
1226 		       rsp->gp_kthread ? rsp->gp_kthread->state : ~0);
1227 		if (rsp->gp_kthread)
1228 			sched_show_task(rsp->gp_kthread);
1229 	}
1230 }
1231 
1232 /*
1233  * Dump stacks of all tasks running on stalled CPUs.
1234  */
1235 static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
1236 {
1237 	int cpu;
1238 	unsigned long flags;
1239 	struct rcu_node *rnp;
1240 
1241 	rcu_for_each_leaf_node(rsp, rnp) {
1242 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1243 		if (rnp->qsmask != 0) {
1244 			for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
1245 				if (rnp->qsmask & (1UL << cpu))
1246 					dump_cpu_task(rnp->grplo + cpu);
1247 		}
1248 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1249 	}
1250 }
1251 
1252 static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
1253 {
1254 	int cpu;
1255 	long delta;
1256 	unsigned long flags;
1257 	unsigned long gpa;
1258 	unsigned long j;
1259 	int ndetected = 0;
1260 	struct rcu_node *rnp = rcu_get_root(rsp);
1261 	long totqlen = 0;
1262 
1263 	/* Only let one CPU complain about others per time interval. */
1264 
1265 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1266 	delta = jiffies - READ_ONCE(rsp->jiffies_stall);
1267 	if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1268 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1269 		return;
1270 	}
1271 	WRITE_ONCE(rsp->jiffies_stall,
1272 		   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1273 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1274 
1275 	/*
1276 	 * OK, time to rat on our buddy...
1277 	 * See Documentation/RCU/stallwarn.txt for info on how to debug
1278 	 * RCU CPU stall warnings.
1279 	 */
1280 	pr_err("INFO: %s detected stalls on CPUs/tasks:",
1281 	       rsp->name);
1282 	print_cpu_stall_info_begin();
1283 	rcu_for_each_leaf_node(rsp, rnp) {
1284 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1285 		ndetected += rcu_print_task_stall(rnp);
1286 		if (rnp->qsmask != 0) {
1287 			for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
1288 				if (rnp->qsmask & (1UL << cpu)) {
1289 					print_cpu_stall_info(rsp,
1290 							     rnp->grplo + cpu);
1291 					ndetected++;
1292 				}
1293 		}
1294 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1295 	}
1296 
1297 	print_cpu_stall_info_end();
1298 	for_each_possible_cpu(cpu)
1299 		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1300 	pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
1301 	       smp_processor_id(), (long)(jiffies - rsp->gp_start),
1302 	       (long)rsp->gpnum, (long)rsp->completed, totqlen);
1303 	if (ndetected) {
1304 		rcu_dump_cpu_stacks(rsp);
1305 	} else {
1306 		if (READ_ONCE(rsp->gpnum) != gpnum ||
1307 		    READ_ONCE(rsp->completed) == gpnum) {
1308 			pr_err("INFO: Stall ended before state dump start\n");
1309 		} else {
1310 			j = jiffies;
1311 			gpa = READ_ONCE(rsp->gp_activity);
1312 			pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
1313 			       rsp->name, j - gpa, j, gpa,
1314 			       jiffies_till_next_fqs,
1315 			       rcu_get_root(rsp)->qsmask);
1316 			/* In this case, the current CPU might be at fault. */
1317 			sched_show_task(current);
1318 		}
1319 	}
1320 
1321 	/* Complain about tasks blocking the grace period. */
1322 	rcu_print_detail_task_stall(rsp);
1323 
1324 	rcu_check_gp_kthread_starvation(rsp);
1325 
1326 	force_quiescent_state(rsp);  /* Kick them all. */
1327 }
1328 
1329 static void print_cpu_stall(struct rcu_state *rsp)
1330 {
1331 	int cpu;
1332 	unsigned long flags;
1333 	struct rcu_node *rnp = rcu_get_root(rsp);
1334 	long totqlen = 0;
1335 
1336 	/*
1337 	 * OK, time to rat on ourselves...
1338 	 * See Documentation/RCU/stallwarn.txt for info on how to debug
1339 	 * RCU CPU stall warnings.
1340 	 */
1341 	pr_err("INFO: %s self-detected stall on CPU", rsp->name);
1342 	print_cpu_stall_info_begin();
1343 	print_cpu_stall_info(rsp, smp_processor_id());
1344 	print_cpu_stall_info_end();
1345 	for_each_possible_cpu(cpu)
1346 		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1347 	pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
1348 		jiffies - rsp->gp_start,
1349 		(long)rsp->gpnum, (long)rsp->completed, totqlen);
1350 
1351 	rcu_check_gp_kthread_starvation(rsp);
1352 
1353 	rcu_dump_cpu_stacks(rsp);
1354 
1355 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1356 	if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
1357 		WRITE_ONCE(rsp->jiffies_stall,
1358 			   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1359 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1360 
1361 	/*
1362 	 * Attempt to revive the RCU machinery by forcing a context switch.
1363 	 *
1364 	 * A context switch would normally allow the RCU state machine to make
1365 	 * progress and it could be we're stuck in kernel space without context
1366 	 * switches for an entirely unreasonable amount of time.
1367 	 */
1368 	resched_cpu(smp_processor_id());
1369 }
1370 
1371 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
1372 {
1373 	unsigned long completed;
1374 	unsigned long gpnum;
1375 	unsigned long gps;
1376 	unsigned long j;
1377 	unsigned long js;
1378 	struct rcu_node *rnp;
1379 
1380 	if (rcu_cpu_stall_suppress || !rcu_gp_in_progress(rsp))
1381 		return;
1382 	j = jiffies;
1383 
1384 	/*
1385 	 * Lots of memory barriers to reject false positives.
1386 	 *
1387 	 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1388 	 * then rsp->gp_start, and finally rsp->completed.  These values
1389 	 * are updated in the opposite order with memory barriers (or
1390 	 * equivalent) during grace-period initialization and cleanup.
1391 	 * Now, a false positive can occur if we get an new value of
1392 	 * rsp->gp_start and a old value of rsp->jiffies_stall.  But given
1393 	 * the memory barriers, the only way that this can happen is if one
1394 	 * grace period ends and another starts between these two fetches.
1395 	 * Detect this by comparing rsp->completed with the previous fetch
1396 	 * from rsp->gpnum.
1397 	 *
1398 	 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1399 	 * and rsp->gp_start suffice to forestall false positives.
1400 	 */
1401 	gpnum = READ_ONCE(rsp->gpnum);
1402 	smp_rmb(); /* Pick up ->gpnum first... */
1403 	js = READ_ONCE(rsp->jiffies_stall);
1404 	smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1405 	gps = READ_ONCE(rsp->gp_start);
1406 	smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1407 	completed = READ_ONCE(rsp->completed);
1408 	if (ULONG_CMP_GE(completed, gpnum) ||
1409 	    ULONG_CMP_LT(j, js) ||
1410 	    ULONG_CMP_GE(gps, js))
1411 		return; /* No stall or GP completed since entering function. */
1412 	rnp = rdp->mynode;
1413 	if (rcu_gp_in_progress(rsp) &&
1414 	    (READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
1415 
1416 		/* We haven't checked in, so go dump stack. */
1417 		print_cpu_stall(rsp);
1418 
1419 	} else if (rcu_gp_in_progress(rsp) &&
1420 		   ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1421 
1422 		/* They had a few time units to dump stack, so complain. */
1423 		print_other_cpu_stall(rsp, gpnum);
1424 	}
1425 }
1426 
1427 /**
1428  * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1429  *
1430  * Set the stall-warning timeout way off into the future, thus preventing
1431  * any RCU CPU stall-warning messages from appearing in the current set of
1432  * RCU grace periods.
1433  *
1434  * The caller must disable hard irqs.
1435  */
1436 void rcu_cpu_stall_reset(void)
1437 {
1438 	struct rcu_state *rsp;
1439 
1440 	for_each_rcu_flavor(rsp)
1441 		WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
1442 }
1443 
1444 /*
1445  * Initialize the specified rcu_data structure's default callback list
1446  * to empty.  The default callback list is the one that is not used by
1447  * no-callbacks CPUs.
1448  */
1449 static void init_default_callback_list(struct rcu_data *rdp)
1450 {
1451 	int i;
1452 
1453 	rdp->nxtlist = NULL;
1454 	for (i = 0; i < RCU_NEXT_SIZE; i++)
1455 		rdp->nxttail[i] = &rdp->nxtlist;
1456 }
1457 
1458 /*
1459  * Initialize the specified rcu_data structure's callback list to empty.
1460  */
1461 static void init_callback_list(struct rcu_data *rdp)
1462 {
1463 	if (init_nocb_callback_list(rdp))
1464 		return;
1465 	init_default_callback_list(rdp);
1466 }
1467 
1468 /*
1469  * Determine the value that ->completed will have at the end of the
1470  * next subsequent grace period.  This is used to tag callbacks so that
1471  * a CPU can invoke callbacks in a timely fashion even if that CPU has
1472  * been dyntick-idle for an extended period with callbacks under the
1473  * influence of RCU_FAST_NO_HZ.
1474  *
1475  * The caller must hold rnp->lock with interrupts disabled.
1476  */
1477 static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1478 				       struct rcu_node *rnp)
1479 {
1480 	/*
1481 	 * If RCU is idle, we just wait for the next grace period.
1482 	 * But we can only be sure that RCU is idle if we are looking
1483 	 * at the root rcu_node structure -- otherwise, a new grace
1484 	 * period might have started, but just not yet gotten around
1485 	 * to initializing the current non-root rcu_node structure.
1486 	 */
1487 	if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1488 		return rnp->completed + 1;
1489 
1490 	/*
1491 	 * Otherwise, wait for a possible partial grace period and
1492 	 * then the subsequent full grace period.
1493 	 */
1494 	return rnp->completed + 2;
1495 }
1496 
1497 /*
1498  * Trace-event helper function for rcu_start_future_gp() and
1499  * rcu_nocb_wait_gp().
1500  */
1501 static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1502 				unsigned long c, const char *s)
1503 {
1504 	trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1505 				      rnp->completed, c, rnp->level,
1506 				      rnp->grplo, rnp->grphi, s);
1507 }
1508 
1509 /*
1510  * Start some future grace period, as needed to handle newly arrived
1511  * callbacks.  The required future grace periods are recorded in each
1512  * rcu_node structure's ->need_future_gp field.  Returns true if there
1513  * is reason to awaken the grace-period kthread.
1514  *
1515  * The caller must hold the specified rcu_node structure's ->lock.
1516  */
1517 static bool __maybe_unused
1518 rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1519 		    unsigned long *c_out)
1520 {
1521 	unsigned long c;
1522 	int i;
1523 	bool ret = false;
1524 	struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1525 
1526 	/*
1527 	 * Pick up grace-period number for new callbacks.  If this
1528 	 * grace period is already marked as needed, return to the caller.
1529 	 */
1530 	c = rcu_cbs_completed(rdp->rsp, rnp);
1531 	trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1532 	if (rnp->need_future_gp[c & 0x1]) {
1533 		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1534 		goto out;
1535 	}
1536 
1537 	/*
1538 	 * If either this rcu_node structure or the root rcu_node structure
1539 	 * believe that a grace period is in progress, then we must wait
1540 	 * for the one following, which is in "c".  Because our request
1541 	 * will be noticed at the end of the current grace period, we don't
1542 	 * need to explicitly start one.  We only do the lockless check
1543 	 * of rnp_root's fields if the current rcu_node structure thinks
1544 	 * there is no grace period in flight, and because we hold rnp->lock,
1545 	 * the only possible change is when rnp_root's two fields are
1546 	 * equal, in which case rnp_root->gpnum might be concurrently
1547 	 * incremented.  But that is OK, as it will just result in our
1548 	 * doing some extra useless work.
1549 	 */
1550 	if (rnp->gpnum != rnp->completed ||
1551 	    READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) {
1552 		rnp->need_future_gp[c & 0x1]++;
1553 		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1554 		goto out;
1555 	}
1556 
1557 	/*
1558 	 * There might be no grace period in progress.  If we don't already
1559 	 * hold it, acquire the root rcu_node structure's lock in order to
1560 	 * start one (if needed).
1561 	 */
1562 	if (rnp != rnp_root)
1563 		raw_spin_lock_rcu_node(rnp_root);
1564 
1565 	/*
1566 	 * Get a new grace-period number.  If there really is no grace
1567 	 * period in progress, it will be smaller than the one we obtained
1568 	 * earlier.  Adjust callbacks as needed.  Note that even no-CBs
1569 	 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
1570 	 */
1571 	c = rcu_cbs_completed(rdp->rsp, rnp_root);
1572 	for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
1573 		if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
1574 			rdp->nxtcompleted[i] = c;
1575 
1576 	/*
1577 	 * If the needed for the required grace period is already
1578 	 * recorded, trace and leave.
1579 	 */
1580 	if (rnp_root->need_future_gp[c & 0x1]) {
1581 		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1582 		goto unlock_out;
1583 	}
1584 
1585 	/* Record the need for the future grace period. */
1586 	rnp_root->need_future_gp[c & 0x1]++;
1587 
1588 	/* If a grace period is not already in progress, start one. */
1589 	if (rnp_root->gpnum != rnp_root->completed) {
1590 		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1591 	} else {
1592 		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1593 		ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1594 	}
1595 unlock_out:
1596 	if (rnp != rnp_root)
1597 		raw_spin_unlock_rcu_node(rnp_root);
1598 out:
1599 	if (c_out != NULL)
1600 		*c_out = c;
1601 	return ret;
1602 }
1603 
1604 /*
1605  * Clean up any old requests for the just-ended grace period.  Also return
1606  * whether any additional grace periods have been requested.  Also invoke
1607  * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1608  * waiting for this grace period to complete.
1609  */
1610 static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1611 {
1612 	int c = rnp->completed;
1613 	int needmore;
1614 	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1615 
1616 	rnp->need_future_gp[c & 0x1] = 0;
1617 	needmore = rnp->need_future_gp[(c + 1) & 0x1];
1618 	trace_rcu_future_gp(rnp, rdp, c,
1619 			    needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1620 	return needmore;
1621 }
1622 
1623 /*
1624  * Awaken the grace-period kthread for the specified flavor of RCU.
1625  * Don't do a self-awaken, and don't bother awakening when there is
1626  * nothing for the grace-period kthread to do (as in several CPUs
1627  * raced to awaken, and we lost), and finally don't try to awaken
1628  * a kthread that has not yet been created.
1629  */
1630 static void rcu_gp_kthread_wake(struct rcu_state *rsp)
1631 {
1632 	if (current == rsp->gp_kthread ||
1633 	    !READ_ONCE(rsp->gp_flags) ||
1634 	    !rsp->gp_kthread)
1635 		return;
1636 	swake_up(&rsp->gp_wq);
1637 }
1638 
1639 /*
1640  * If there is room, assign a ->completed number to any callbacks on
1641  * this CPU that have not already been assigned.  Also accelerate any
1642  * callbacks that were previously assigned a ->completed number that has
1643  * since proven to be too conservative, which can happen if callbacks get
1644  * assigned a ->completed number while RCU is idle, but with reference to
1645  * a non-root rcu_node structure.  This function is idempotent, so it does
1646  * not hurt to call it repeatedly.  Returns an flag saying that we should
1647  * awaken the RCU grace-period kthread.
1648  *
1649  * The caller must hold rnp->lock with interrupts disabled.
1650  */
1651 static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1652 			       struct rcu_data *rdp)
1653 {
1654 	unsigned long c;
1655 	int i;
1656 	bool ret;
1657 
1658 	/* If the CPU has no callbacks, nothing to do. */
1659 	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1660 		return false;
1661 
1662 	/*
1663 	 * Starting from the sublist containing the callbacks most
1664 	 * recently assigned a ->completed number and working down, find the
1665 	 * first sublist that is not assignable to an upcoming grace period.
1666 	 * Such a sublist has something in it (first two tests) and has
1667 	 * a ->completed number assigned that will complete sooner than
1668 	 * the ->completed number for newly arrived callbacks (last test).
1669 	 *
1670 	 * The key point is that any later sublist can be assigned the
1671 	 * same ->completed number as the newly arrived callbacks, which
1672 	 * means that the callbacks in any of these later sublist can be
1673 	 * grouped into a single sublist, whether or not they have already
1674 	 * been assigned a ->completed number.
1675 	 */
1676 	c = rcu_cbs_completed(rsp, rnp);
1677 	for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
1678 		if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
1679 		    !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
1680 			break;
1681 
1682 	/*
1683 	 * If there are no sublist for unassigned callbacks, leave.
1684 	 * At the same time, advance "i" one sublist, so that "i" will
1685 	 * index into the sublist where all the remaining callbacks should
1686 	 * be grouped into.
1687 	 */
1688 	if (++i >= RCU_NEXT_TAIL)
1689 		return false;
1690 
1691 	/*
1692 	 * Assign all subsequent callbacks' ->completed number to the next
1693 	 * full grace period and group them all in the sublist initially
1694 	 * indexed by "i".
1695 	 */
1696 	for (; i <= RCU_NEXT_TAIL; i++) {
1697 		rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
1698 		rdp->nxtcompleted[i] = c;
1699 	}
1700 	/* Record any needed additional grace periods. */
1701 	ret = rcu_start_future_gp(rnp, rdp, NULL);
1702 
1703 	/* Trace depending on how much we were able to accelerate. */
1704 	if (!*rdp->nxttail[RCU_WAIT_TAIL])
1705 		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1706 	else
1707 		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
1708 	return ret;
1709 }
1710 
1711 /*
1712  * Move any callbacks whose grace period has completed to the
1713  * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1714  * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1715  * sublist.  This function is idempotent, so it does not hurt to
1716  * invoke it repeatedly.  As long as it is not invoked -too- often...
1717  * Returns true if the RCU grace-period kthread needs to be awakened.
1718  *
1719  * The caller must hold rnp->lock with interrupts disabled.
1720  */
1721 static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1722 			    struct rcu_data *rdp)
1723 {
1724 	int i, j;
1725 
1726 	/* If the CPU has no callbacks, nothing to do. */
1727 	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1728 		return false;
1729 
1730 	/*
1731 	 * Find all callbacks whose ->completed numbers indicate that they
1732 	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1733 	 */
1734 	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
1735 		if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
1736 			break;
1737 		rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
1738 	}
1739 	/* Clean up any sublist tail pointers that were misordered above. */
1740 	for (j = RCU_WAIT_TAIL; j < i; j++)
1741 		rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
1742 
1743 	/* Copy down callbacks to fill in empty sublists. */
1744 	for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
1745 		if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
1746 			break;
1747 		rdp->nxttail[j] = rdp->nxttail[i];
1748 		rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
1749 	}
1750 
1751 	/* Classify any remaining callbacks. */
1752 	return rcu_accelerate_cbs(rsp, rnp, rdp);
1753 }
1754 
1755 /*
1756  * Update CPU-local rcu_data state to record the beginnings and ends of
1757  * grace periods.  The caller must hold the ->lock of the leaf rcu_node
1758  * structure corresponding to the current CPU, and must have irqs disabled.
1759  * Returns true if the grace-period kthread needs to be awakened.
1760  */
1761 static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
1762 			      struct rcu_data *rdp)
1763 {
1764 	bool ret;
1765 
1766 	/* Handle the ends of any preceding grace periods first. */
1767 	if (rdp->completed == rnp->completed &&
1768 	    !unlikely(READ_ONCE(rdp->gpwrap))) {
1769 
1770 		/* No grace period end, so just accelerate recent callbacks. */
1771 		ret = rcu_accelerate_cbs(rsp, rnp, rdp);
1772 
1773 	} else {
1774 
1775 		/* Advance callbacks. */
1776 		ret = rcu_advance_cbs(rsp, rnp, rdp);
1777 
1778 		/* Remember that we saw this grace-period completion. */
1779 		rdp->completed = rnp->completed;
1780 		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1781 	}
1782 
1783 	if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
1784 		/*
1785 		 * If the current grace period is waiting for this CPU,
1786 		 * set up to detect a quiescent state, otherwise don't
1787 		 * go looking for one.
1788 		 */
1789 		rdp->gpnum = rnp->gpnum;
1790 		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1791 		rdp->cpu_no_qs.b.norm = true;
1792 		rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
1793 		rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask);
1794 		zero_cpu_stall_ticks(rdp);
1795 		WRITE_ONCE(rdp->gpwrap, false);
1796 	}
1797 	return ret;
1798 }
1799 
1800 static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1801 {
1802 	unsigned long flags;
1803 	bool needwake;
1804 	struct rcu_node *rnp;
1805 
1806 	local_irq_save(flags);
1807 	rnp = rdp->mynode;
1808 	if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
1809 	     rdp->completed == READ_ONCE(rnp->completed) &&
1810 	     !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1811 	    !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1812 		local_irq_restore(flags);
1813 		return;
1814 	}
1815 	needwake = __note_gp_changes(rsp, rnp, rdp);
1816 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1817 	if (needwake)
1818 		rcu_gp_kthread_wake(rsp);
1819 }
1820 
1821 static void rcu_gp_slow(struct rcu_state *rsp, int delay)
1822 {
1823 	if (delay > 0 &&
1824 	    !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1825 		schedule_timeout_uninterruptible(delay);
1826 }
1827 
1828 /*
1829  * Initialize a new grace period.  Return false if no grace period required.
1830  */
1831 static bool rcu_gp_init(struct rcu_state *rsp)
1832 {
1833 	unsigned long oldmask;
1834 	struct rcu_data *rdp;
1835 	struct rcu_node *rnp = rcu_get_root(rsp);
1836 
1837 	WRITE_ONCE(rsp->gp_activity, jiffies);
1838 	raw_spin_lock_irq_rcu_node(rnp);
1839 	if (!READ_ONCE(rsp->gp_flags)) {
1840 		/* Spurious wakeup, tell caller to go back to sleep.  */
1841 		raw_spin_unlock_irq_rcu_node(rnp);
1842 		return false;
1843 	}
1844 	WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
1845 
1846 	if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1847 		/*
1848 		 * Grace period already in progress, don't start another.
1849 		 * Not supposed to be able to happen.
1850 		 */
1851 		raw_spin_unlock_irq_rcu_node(rnp);
1852 		return false;
1853 	}
1854 
1855 	/* Advance to a new grace period and initialize state. */
1856 	record_gp_stall_check_time(rsp);
1857 	/* Record GP times before starting GP, hence smp_store_release(). */
1858 	smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
1859 	trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
1860 	raw_spin_unlock_irq_rcu_node(rnp);
1861 
1862 	/*
1863 	 * Apply per-leaf buffered online and offline operations to the
1864 	 * rcu_node tree.  Note that this new grace period need not wait
1865 	 * for subsequent online CPUs, and that quiescent-state forcing
1866 	 * will handle subsequent offline CPUs.
1867 	 */
1868 	rcu_for_each_leaf_node(rsp, rnp) {
1869 		rcu_gp_slow(rsp, gp_preinit_delay);
1870 		raw_spin_lock_irq_rcu_node(rnp);
1871 		if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1872 		    !rnp->wait_blkd_tasks) {
1873 			/* Nothing to do on this leaf rcu_node structure. */
1874 			raw_spin_unlock_irq_rcu_node(rnp);
1875 			continue;
1876 		}
1877 
1878 		/* Record old state, apply changes to ->qsmaskinit field. */
1879 		oldmask = rnp->qsmaskinit;
1880 		rnp->qsmaskinit = rnp->qsmaskinitnext;
1881 
1882 		/* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1883 		if (!oldmask != !rnp->qsmaskinit) {
1884 			if (!oldmask) /* First online CPU for this rcu_node. */
1885 				rcu_init_new_rnp(rnp);
1886 			else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
1887 				rnp->wait_blkd_tasks = true;
1888 			else /* Last offline CPU and can propagate. */
1889 				rcu_cleanup_dead_rnp(rnp);
1890 		}
1891 
1892 		/*
1893 		 * If all waited-on tasks from prior grace period are
1894 		 * done, and if all this rcu_node structure's CPUs are
1895 		 * still offline, propagate up the rcu_node tree and
1896 		 * clear ->wait_blkd_tasks.  Otherwise, if one of this
1897 		 * rcu_node structure's CPUs has since come back online,
1898 		 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
1899 		 * checks for this, so just call it unconditionally).
1900 		 */
1901 		if (rnp->wait_blkd_tasks &&
1902 		    (!rcu_preempt_has_tasks(rnp) ||
1903 		     rnp->qsmaskinit)) {
1904 			rnp->wait_blkd_tasks = false;
1905 			rcu_cleanup_dead_rnp(rnp);
1906 		}
1907 
1908 		raw_spin_unlock_irq_rcu_node(rnp);
1909 	}
1910 
1911 	/*
1912 	 * Set the quiescent-state-needed bits in all the rcu_node
1913 	 * structures for all currently online CPUs in breadth-first order,
1914 	 * starting from the root rcu_node structure, relying on the layout
1915 	 * of the tree within the rsp->node[] array.  Note that other CPUs
1916 	 * will access only the leaves of the hierarchy, thus seeing that no
1917 	 * grace period is in progress, at least until the corresponding
1918 	 * leaf node has been initialized.  In addition, we have excluded
1919 	 * CPU-hotplug operations.
1920 	 *
1921 	 * The grace period cannot complete until the initialization
1922 	 * process finishes, because this kthread handles both.
1923 	 */
1924 	rcu_for_each_node_breadth_first(rsp, rnp) {
1925 		rcu_gp_slow(rsp, gp_init_delay);
1926 		raw_spin_lock_irq_rcu_node(rnp);
1927 		rdp = this_cpu_ptr(rsp->rda);
1928 		rcu_preempt_check_blocked_tasks(rnp);
1929 		rnp->qsmask = rnp->qsmaskinit;
1930 		WRITE_ONCE(rnp->gpnum, rsp->gpnum);
1931 		if (WARN_ON_ONCE(rnp->completed != rsp->completed))
1932 			WRITE_ONCE(rnp->completed, rsp->completed);
1933 		if (rnp == rdp->mynode)
1934 			(void)__note_gp_changes(rsp, rnp, rdp);
1935 		rcu_preempt_boost_start_gp(rnp);
1936 		trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1937 					    rnp->level, rnp->grplo,
1938 					    rnp->grphi, rnp->qsmask);
1939 		raw_spin_unlock_irq_rcu_node(rnp);
1940 		cond_resched_rcu_qs();
1941 		WRITE_ONCE(rsp->gp_activity, jiffies);
1942 	}
1943 
1944 	return true;
1945 }
1946 
1947 /*
1948  * Helper function for wait_event_interruptible_timeout() wakeup
1949  * at force-quiescent-state time.
1950  */
1951 static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp)
1952 {
1953 	struct rcu_node *rnp = rcu_get_root(rsp);
1954 
1955 	/* Someone like call_rcu() requested a force-quiescent-state scan. */
1956 	*gfp = READ_ONCE(rsp->gp_flags);
1957 	if (*gfp & RCU_GP_FLAG_FQS)
1958 		return true;
1959 
1960 	/* The current grace period has completed. */
1961 	if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
1962 		return true;
1963 
1964 	return false;
1965 }
1966 
1967 /*
1968  * Do one round of quiescent-state forcing.
1969  */
1970 static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time)
1971 {
1972 	bool isidle = false;
1973 	unsigned long maxj;
1974 	struct rcu_node *rnp = rcu_get_root(rsp);
1975 
1976 	WRITE_ONCE(rsp->gp_activity, jiffies);
1977 	rsp->n_force_qs++;
1978 	if (first_time) {
1979 		/* Collect dyntick-idle snapshots. */
1980 		if (is_sysidle_rcu_state(rsp)) {
1981 			isidle = true;
1982 			maxj = jiffies - ULONG_MAX / 4;
1983 		}
1984 		force_qs_rnp(rsp, dyntick_save_progress_counter,
1985 			     &isidle, &maxj);
1986 		rcu_sysidle_report_gp(rsp, isidle, maxj);
1987 	} else {
1988 		/* Handle dyntick-idle and offline CPUs. */
1989 		isidle = true;
1990 		force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
1991 	}
1992 	/* Clear flag to prevent immediate re-entry. */
1993 	if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
1994 		raw_spin_lock_irq_rcu_node(rnp);
1995 		WRITE_ONCE(rsp->gp_flags,
1996 			   READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
1997 		raw_spin_unlock_irq_rcu_node(rnp);
1998 	}
1999 }
2000 
2001 /*
2002  * Clean up after the old grace period.
2003  */
2004 static void rcu_gp_cleanup(struct rcu_state *rsp)
2005 {
2006 	unsigned long gp_duration;
2007 	bool needgp = false;
2008 	int nocb = 0;
2009 	struct rcu_data *rdp;
2010 	struct rcu_node *rnp = rcu_get_root(rsp);
2011 	struct swait_queue_head *sq;
2012 
2013 	WRITE_ONCE(rsp->gp_activity, jiffies);
2014 	raw_spin_lock_irq_rcu_node(rnp);
2015 	gp_duration = jiffies - rsp->gp_start;
2016 	if (gp_duration > rsp->gp_max)
2017 		rsp->gp_max = gp_duration;
2018 
2019 	/*
2020 	 * We know the grace period is complete, but to everyone else
2021 	 * it appears to still be ongoing.  But it is also the case
2022 	 * that to everyone else it looks like there is nothing that
2023 	 * they can do to advance the grace period.  It is therefore
2024 	 * safe for us to drop the lock in order to mark the grace
2025 	 * period as completed in all of the rcu_node structures.
2026 	 */
2027 	raw_spin_unlock_irq_rcu_node(rnp);
2028 
2029 	/*
2030 	 * Propagate new ->completed value to rcu_node structures so
2031 	 * that other CPUs don't have to wait until the start of the next
2032 	 * grace period to process their callbacks.  This also avoids
2033 	 * some nasty RCU grace-period initialization races by forcing
2034 	 * the end of the current grace period to be completely recorded in
2035 	 * all of the rcu_node structures before the beginning of the next
2036 	 * grace period is recorded in any of the rcu_node structures.
2037 	 */
2038 	rcu_for_each_node_breadth_first(rsp, rnp) {
2039 		raw_spin_lock_irq_rcu_node(rnp);
2040 		WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
2041 		WARN_ON_ONCE(rnp->qsmask);
2042 		WRITE_ONCE(rnp->completed, rsp->gpnum);
2043 		rdp = this_cpu_ptr(rsp->rda);
2044 		if (rnp == rdp->mynode)
2045 			needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
2046 		/* smp_mb() provided by prior unlock-lock pair. */
2047 		nocb += rcu_future_gp_cleanup(rsp, rnp);
2048 		sq = rcu_nocb_gp_get(rnp);
2049 		raw_spin_unlock_irq_rcu_node(rnp);
2050 		rcu_nocb_gp_cleanup(sq);
2051 		cond_resched_rcu_qs();
2052 		WRITE_ONCE(rsp->gp_activity, jiffies);
2053 		rcu_gp_slow(rsp, gp_cleanup_delay);
2054 	}
2055 	rnp = rcu_get_root(rsp);
2056 	raw_spin_lock_irq_rcu_node(rnp); /* Order GP before ->completed update. */
2057 	rcu_nocb_gp_set(rnp, nocb);
2058 
2059 	/* Declare grace period done. */
2060 	WRITE_ONCE(rsp->completed, rsp->gpnum);
2061 	trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
2062 	rsp->gp_state = RCU_GP_IDLE;
2063 	rdp = this_cpu_ptr(rsp->rda);
2064 	/* Advance CBs to reduce false positives below. */
2065 	needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
2066 	if (needgp || cpu_needs_another_gp(rsp, rdp)) {
2067 		WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2068 		trace_rcu_grace_period(rsp->name,
2069 				       READ_ONCE(rsp->gpnum),
2070 				       TPS("newreq"));
2071 	}
2072 	raw_spin_unlock_irq_rcu_node(rnp);
2073 }
2074 
2075 /*
2076  * Body of kthread that handles grace periods.
2077  */
2078 static int __noreturn rcu_gp_kthread(void *arg)
2079 {
2080 	bool first_gp_fqs;
2081 	int gf;
2082 	unsigned long j;
2083 	int ret;
2084 	struct rcu_state *rsp = arg;
2085 	struct rcu_node *rnp = rcu_get_root(rsp);
2086 
2087 	rcu_bind_gp_kthread();
2088 	for (;;) {
2089 
2090 		/* Handle grace-period start. */
2091 		for (;;) {
2092 			trace_rcu_grace_period(rsp->name,
2093 					       READ_ONCE(rsp->gpnum),
2094 					       TPS("reqwait"));
2095 			rsp->gp_state = RCU_GP_WAIT_GPS;
2096 			swait_event_interruptible(rsp->gp_wq,
2097 						 READ_ONCE(rsp->gp_flags) &
2098 						 RCU_GP_FLAG_INIT);
2099 			rsp->gp_state = RCU_GP_DONE_GPS;
2100 			/* Locking provides needed memory barrier. */
2101 			if (rcu_gp_init(rsp))
2102 				break;
2103 			cond_resched_rcu_qs();
2104 			WRITE_ONCE(rsp->gp_activity, jiffies);
2105 			WARN_ON(signal_pending(current));
2106 			trace_rcu_grace_period(rsp->name,
2107 					       READ_ONCE(rsp->gpnum),
2108 					       TPS("reqwaitsig"));
2109 		}
2110 
2111 		/* Handle quiescent-state forcing. */
2112 		first_gp_fqs = true;
2113 		j = jiffies_till_first_fqs;
2114 		if (j > HZ) {
2115 			j = HZ;
2116 			jiffies_till_first_fqs = HZ;
2117 		}
2118 		ret = 0;
2119 		for (;;) {
2120 			if (!ret)
2121 				rsp->jiffies_force_qs = jiffies + j;
2122 			trace_rcu_grace_period(rsp->name,
2123 					       READ_ONCE(rsp->gpnum),
2124 					       TPS("fqswait"));
2125 			rsp->gp_state = RCU_GP_WAIT_FQS;
2126 			ret = swait_event_interruptible_timeout(rsp->gp_wq,
2127 					rcu_gp_fqs_check_wake(rsp, &gf), j);
2128 			rsp->gp_state = RCU_GP_DOING_FQS;
2129 			/* Locking provides needed memory barriers. */
2130 			/* If grace period done, leave loop. */
2131 			if (!READ_ONCE(rnp->qsmask) &&
2132 			    !rcu_preempt_blocked_readers_cgp(rnp))
2133 				break;
2134 			/* If time for quiescent-state forcing, do it. */
2135 			if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
2136 			    (gf & RCU_GP_FLAG_FQS)) {
2137 				trace_rcu_grace_period(rsp->name,
2138 						       READ_ONCE(rsp->gpnum),
2139 						       TPS("fqsstart"));
2140 				rcu_gp_fqs(rsp, first_gp_fqs);
2141 				first_gp_fqs = false;
2142 				trace_rcu_grace_period(rsp->name,
2143 						       READ_ONCE(rsp->gpnum),
2144 						       TPS("fqsend"));
2145 				cond_resched_rcu_qs();
2146 				WRITE_ONCE(rsp->gp_activity, jiffies);
2147 			} else {
2148 				/* Deal with stray signal. */
2149 				cond_resched_rcu_qs();
2150 				WRITE_ONCE(rsp->gp_activity, jiffies);
2151 				WARN_ON(signal_pending(current));
2152 				trace_rcu_grace_period(rsp->name,
2153 						       READ_ONCE(rsp->gpnum),
2154 						       TPS("fqswaitsig"));
2155 			}
2156 			j = jiffies_till_next_fqs;
2157 			if (j > HZ) {
2158 				j = HZ;
2159 				jiffies_till_next_fqs = HZ;
2160 			} else if (j < 1) {
2161 				j = 1;
2162 				jiffies_till_next_fqs = 1;
2163 			}
2164 		}
2165 
2166 		/* Handle grace-period end. */
2167 		rsp->gp_state = RCU_GP_CLEANUP;
2168 		rcu_gp_cleanup(rsp);
2169 		rsp->gp_state = RCU_GP_CLEANED;
2170 	}
2171 }
2172 
2173 /*
2174  * Start a new RCU grace period if warranted, re-initializing the hierarchy
2175  * in preparation for detecting the next grace period.  The caller must hold
2176  * the root node's ->lock and hard irqs must be disabled.
2177  *
2178  * Note that it is legal for a dying CPU (which is marked as offline) to
2179  * invoke this function.  This can happen when the dying CPU reports its
2180  * quiescent state.
2181  *
2182  * Returns true if the grace-period kthread must be awakened.
2183  */
2184 static bool
2185 rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
2186 		      struct rcu_data *rdp)
2187 {
2188 	if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
2189 		/*
2190 		 * Either we have not yet spawned the grace-period
2191 		 * task, this CPU does not need another grace period,
2192 		 * or a grace period is already in progress.
2193 		 * Either way, don't start a new grace period.
2194 		 */
2195 		return false;
2196 	}
2197 	WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2198 	trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
2199 			       TPS("newreq"));
2200 
2201 	/*
2202 	 * We can't do wakeups while holding the rnp->lock, as that
2203 	 * could cause possible deadlocks with the rq->lock. Defer
2204 	 * the wakeup to our caller.
2205 	 */
2206 	return true;
2207 }
2208 
2209 /*
2210  * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
2211  * callbacks.  Note that rcu_start_gp_advanced() cannot do this because it
2212  * is invoked indirectly from rcu_advance_cbs(), which would result in
2213  * endless recursion -- or would do so if it wasn't for the self-deadlock
2214  * that is encountered beforehand.
2215  *
2216  * Returns true if the grace-period kthread needs to be awakened.
2217  */
2218 static bool rcu_start_gp(struct rcu_state *rsp)
2219 {
2220 	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
2221 	struct rcu_node *rnp = rcu_get_root(rsp);
2222 	bool ret = false;
2223 
2224 	/*
2225 	 * If there is no grace period in progress right now, any
2226 	 * callbacks we have up to this point will be satisfied by the
2227 	 * next grace period.  Also, advancing the callbacks reduces the
2228 	 * probability of false positives from cpu_needs_another_gp()
2229 	 * resulting in pointless grace periods.  So, advance callbacks
2230 	 * then start the grace period!
2231 	 */
2232 	ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
2233 	ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
2234 	return ret;
2235 }
2236 
2237 /*
2238  * Report a full set of quiescent states to the specified rcu_state data
2239  * structure.  Invoke rcu_gp_kthread_wake() to awaken the grace-period
2240  * kthread if another grace period is required.  Whether we wake
2241  * the grace-period kthread or it awakens itself for the next round
2242  * of quiescent-state forcing, that kthread will clean up after the
2243  * just-completed grace period.  Note that the caller must hold rnp->lock,
2244  * which is released before return.
2245  */
2246 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
2247 	__releases(rcu_get_root(rsp)->lock)
2248 {
2249 	WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
2250 	WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2251 	raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
2252 	swake_up(&rsp->gp_wq);  /* Memory barrier implied by swake_up() path. */
2253 }
2254 
2255 /*
2256  * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2257  * Allows quiescent states for a group of CPUs to be reported at one go
2258  * to the specified rcu_node structure, though all the CPUs in the group
2259  * must be represented by the same rcu_node structure (which need not be a
2260  * leaf rcu_node structure, though it often will be).  The gps parameter
2261  * is the grace-period snapshot, which means that the quiescent states
2262  * are valid only if rnp->gpnum is equal to gps.  That structure's lock
2263  * must be held upon entry, and it is released before return.
2264  */
2265 static void
2266 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
2267 		  struct rcu_node *rnp, unsigned long gps, unsigned long flags)
2268 	__releases(rnp->lock)
2269 {
2270 	unsigned long oldmask = 0;
2271 	struct rcu_node *rnp_c;
2272 
2273 	/* Walk up the rcu_node hierarchy. */
2274 	for (;;) {
2275 		if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
2276 
2277 			/*
2278 			 * Our bit has already been cleared, or the
2279 			 * relevant grace period is already over, so done.
2280 			 */
2281 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2282 			return;
2283 		}
2284 		WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2285 		rnp->qsmask &= ~mask;
2286 		trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
2287 						 mask, rnp->qsmask, rnp->level,
2288 						 rnp->grplo, rnp->grphi,
2289 						 !!rnp->gp_tasks);
2290 		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2291 
2292 			/* Other bits still set at this level, so done. */
2293 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2294 			return;
2295 		}
2296 		mask = rnp->grpmask;
2297 		if (rnp->parent == NULL) {
2298 
2299 			/* No more levels.  Exit loop holding root lock. */
2300 
2301 			break;
2302 		}
2303 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2304 		rnp_c = rnp;
2305 		rnp = rnp->parent;
2306 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2307 		oldmask = rnp_c->qsmask;
2308 	}
2309 
2310 	/*
2311 	 * Get here if we are the last CPU to pass through a quiescent
2312 	 * state for this grace period.  Invoke rcu_report_qs_rsp()
2313 	 * to clean up and start the next grace period if one is needed.
2314 	 */
2315 	rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
2316 }
2317 
2318 /*
2319  * Record a quiescent state for all tasks that were previously queued
2320  * on the specified rcu_node structure and that were blocking the current
2321  * RCU grace period.  The caller must hold the specified rnp->lock with
2322  * irqs disabled, and this lock is released upon return, but irqs remain
2323  * disabled.
2324  */
2325 static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
2326 				      struct rcu_node *rnp, unsigned long flags)
2327 	__releases(rnp->lock)
2328 {
2329 	unsigned long gps;
2330 	unsigned long mask;
2331 	struct rcu_node *rnp_p;
2332 
2333 	if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
2334 	    rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2335 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2336 		return;  /* Still need more quiescent states! */
2337 	}
2338 
2339 	rnp_p = rnp->parent;
2340 	if (rnp_p == NULL) {
2341 		/*
2342 		 * Only one rcu_node structure in the tree, so don't
2343 		 * try to report up to its nonexistent parent!
2344 		 */
2345 		rcu_report_qs_rsp(rsp, flags);
2346 		return;
2347 	}
2348 
2349 	/* Report up the rest of the hierarchy, tracking current ->gpnum. */
2350 	gps = rnp->gpnum;
2351 	mask = rnp->grpmask;
2352 	raw_spin_unlock_rcu_node(rnp);	/* irqs remain disabled. */
2353 	raw_spin_lock_rcu_node(rnp_p);	/* irqs already disabled. */
2354 	rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
2355 }
2356 
2357 /*
2358  * Record a quiescent state for the specified CPU to that CPU's rcu_data
2359  * structure.  This must be called from the specified CPU.
2360  */
2361 static void
2362 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
2363 {
2364 	unsigned long flags;
2365 	unsigned long mask;
2366 	bool needwake;
2367 	struct rcu_node *rnp;
2368 
2369 	rnp = rdp->mynode;
2370 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
2371 	if ((rdp->cpu_no_qs.b.norm &&
2372 	     rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) ||
2373 	    rdp->gpnum != rnp->gpnum || rnp->completed == rnp->gpnum ||
2374 	    rdp->gpwrap) {
2375 
2376 		/*
2377 		 * The grace period in which this quiescent state was
2378 		 * recorded has ended, so don't report it upwards.
2379 		 * We will instead need a new quiescent state that lies
2380 		 * within the current grace period.
2381 		 */
2382 		rdp->cpu_no_qs.b.norm = true;	/* need qs for new gp. */
2383 		rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
2384 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2385 		return;
2386 	}
2387 	mask = rdp->grpmask;
2388 	if ((rnp->qsmask & mask) == 0) {
2389 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2390 	} else {
2391 		rdp->core_needs_qs = false;
2392 
2393 		/*
2394 		 * This GP can't end until cpu checks in, so all of our
2395 		 * callbacks can be processed during the next GP.
2396 		 */
2397 		needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
2398 
2399 		rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2400 		/* ^^^ Released rnp->lock */
2401 		if (needwake)
2402 			rcu_gp_kthread_wake(rsp);
2403 	}
2404 }
2405 
2406 /*
2407  * Check to see if there is a new grace period of which this CPU
2408  * is not yet aware, and if so, set up local rcu_data state for it.
2409  * Otherwise, see if this CPU has just passed through its first
2410  * quiescent state for this grace period, and record that fact if so.
2411  */
2412 static void
2413 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
2414 {
2415 	/* Check for grace-period ends and beginnings. */
2416 	note_gp_changes(rsp, rdp);
2417 
2418 	/*
2419 	 * Does this CPU still need to do its part for current grace period?
2420 	 * If no, return and let the other CPUs do their part as well.
2421 	 */
2422 	if (!rdp->core_needs_qs)
2423 		return;
2424 
2425 	/*
2426 	 * Was there a quiescent state since the beginning of the grace
2427 	 * period? If no, then exit and wait for the next call.
2428 	 */
2429 	if (rdp->cpu_no_qs.b.norm &&
2430 	    rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr))
2431 		return;
2432 
2433 	/*
2434 	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2435 	 * judge of that).
2436 	 */
2437 	rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
2438 }
2439 
2440 /*
2441  * Send the specified CPU's RCU callbacks to the orphanage.  The
2442  * specified CPU must be offline, and the caller must hold the
2443  * ->orphan_lock.
2444  */
2445 static void
2446 rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
2447 			  struct rcu_node *rnp, struct rcu_data *rdp)
2448 {
2449 	/* No-CBs CPUs do not have orphanable callbacks. */
2450 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || rcu_is_nocb_cpu(rdp->cpu))
2451 		return;
2452 
2453 	/*
2454 	 * Orphan the callbacks.  First adjust the counts.  This is safe
2455 	 * because _rcu_barrier() excludes CPU-hotplug operations, so it
2456 	 * cannot be running now.  Thus no memory barrier is required.
2457 	 */
2458 	if (rdp->nxtlist != NULL) {
2459 		rsp->qlen_lazy += rdp->qlen_lazy;
2460 		rsp->qlen += rdp->qlen;
2461 		rdp->n_cbs_orphaned += rdp->qlen;
2462 		rdp->qlen_lazy = 0;
2463 		WRITE_ONCE(rdp->qlen, 0);
2464 	}
2465 
2466 	/*
2467 	 * Next, move those callbacks still needing a grace period to
2468 	 * the orphanage, where some other CPU will pick them up.
2469 	 * Some of the callbacks might have gone partway through a grace
2470 	 * period, but that is too bad.  They get to start over because we
2471 	 * cannot assume that grace periods are synchronized across CPUs.
2472 	 * We don't bother updating the ->nxttail[] array yet, instead
2473 	 * we just reset the whole thing later on.
2474 	 */
2475 	if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
2476 		*rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
2477 		rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
2478 		*rdp->nxttail[RCU_DONE_TAIL] = NULL;
2479 	}
2480 
2481 	/*
2482 	 * Then move the ready-to-invoke callbacks to the orphanage,
2483 	 * where some other CPU will pick them up.  These will not be
2484 	 * required to pass though another grace period: They are done.
2485 	 */
2486 	if (rdp->nxtlist != NULL) {
2487 		*rsp->orphan_donetail = rdp->nxtlist;
2488 		rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
2489 	}
2490 
2491 	/*
2492 	 * Finally, initialize the rcu_data structure's list to empty and
2493 	 * disallow further callbacks on this CPU.
2494 	 */
2495 	init_callback_list(rdp);
2496 	rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2497 }
2498 
2499 /*
2500  * Adopt the RCU callbacks from the specified rcu_state structure's
2501  * orphanage.  The caller must hold the ->orphan_lock.
2502  */
2503 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
2504 {
2505 	int i;
2506 	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2507 
2508 	/* No-CBs CPUs are handled specially. */
2509 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2510 	    rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
2511 		return;
2512 
2513 	/* Do the accounting first. */
2514 	rdp->qlen_lazy += rsp->qlen_lazy;
2515 	rdp->qlen += rsp->qlen;
2516 	rdp->n_cbs_adopted += rsp->qlen;
2517 	if (rsp->qlen_lazy != rsp->qlen)
2518 		rcu_idle_count_callbacks_posted();
2519 	rsp->qlen_lazy = 0;
2520 	rsp->qlen = 0;
2521 
2522 	/*
2523 	 * We do not need a memory barrier here because the only way we
2524 	 * can get here if there is an rcu_barrier() in flight is if
2525 	 * we are the task doing the rcu_barrier().
2526 	 */
2527 
2528 	/* First adopt the ready-to-invoke callbacks. */
2529 	if (rsp->orphan_donelist != NULL) {
2530 		*rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
2531 		*rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
2532 		for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
2533 			if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2534 				rdp->nxttail[i] = rsp->orphan_donetail;
2535 		rsp->orphan_donelist = NULL;
2536 		rsp->orphan_donetail = &rsp->orphan_donelist;
2537 	}
2538 
2539 	/* And then adopt the callbacks that still need a grace period. */
2540 	if (rsp->orphan_nxtlist != NULL) {
2541 		*rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
2542 		rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
2543 		rsp->orphan_nxtlist = NULL;
2544 		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2545 	}
2546 }
2547 
2548 /*
2549  * Trace the fact that this CPU is going offline.
2550  */
2551 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2552 {
2553 	RCU_TRACE(unsigned long mask);
2554 	RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
2555 	RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
2556 
2557 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2558 		return;
2559 
2560 	RCU_TRACE(mask = rdp->grpmask);
2561 	trace_rcu_grace_period(rsp->name,
2562 			       rnp->gpnum + 1 - !!(rnp->qsmask & mask),
2563 			       TPS("cpuofl"));
2564 }
2565 
2566 /*
2567  * All CPUs for the specified rcu_node structure have gone offline,
2568  * and all tasks that were preempted within an RCU read-side critical
2569  * section while running on one of those CPUs have since exited their RCU
2570  * read-side critical section.  Some other CPU is reporting this fact with
2571  * the specified rcu_node structure's ->lock held and interrupts disabled.
2572  * This function therefore goes up the tree of rcu_node structures,
2573  * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
2574  * the leaf rcu_node structure's ->qsmaskinit field has already been
2575  * updated
2576  *
2577  * This function does check that the specified rcu_node structure has
2578  * all CPUs offline and no blocked tasks, so it is OK to invoke it
2579  * prematurely.  That said, invoking it after the fact will cost you
2580  * a needless lock acquisition.  So once it has done its work, don't
2581  * invoke it again.
2582  */
2583 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2584 {
2585 	long mask;
2586 	struct rcu_node *rnp = rnp_leaf;
2587 
2588 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2589 	    rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
2590 		return;
2591 	for (;;) {
2592 		mask = rnp->grpmask;
2593 		rnp = rnp->parent;
2594 		if (!rnp)
2595 			break;
2596 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2597 		rnp->qsmaskinit &= ~mask;
2598 		rnp->qsmask &= ~mask;
2599 		if (rnp->qsmaskinit) {
2600 			raw_spin_unlock_rcu_node(rnp);
2601 			/* irqs remain disabled. */
2602 			return;
2603 		}
2604 		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2605 	}
2606 }
2607 
2608 /*
2609  * The CPU has been completely removed, and some other CPU is reporting
2610  * this fact from process context.  Do the remainder of the cleanup,
2611  * including orphaning the outgoing CPU's RCU callbacks, and also
2612  * adopting them.  There can only be one CPU hotplug operation at a time,
2613  * so no other CPU can be attempting to update rcu_cpu_kthread_task.
2614  */
2615 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2616 {
2617 	unsigned long flags;
2618 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2619 	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2620 
2621 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2622 		return;
2623 
2624 	/* Adjust any no-longer-needed kthreads. */
2625 	rcu_boost_kthread_setaffinity(rnp, -1);
2626 
2627 	/* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
2628 	raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2629 	rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
2630 	rcu_adopt_orphan_cbs(rsp, flags);
2631 	raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags);
2632 
2633 	WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
2634 		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
2635 		  cpu, rdp->qlen, rdp->nxtlist);
2636 }
2637 
2638 /*
2639  * Invoke any RCU callbacks that have made it to the end of their grace
2640  * period.  Thottle as specified by rdp->blimit.
2641  */
2642 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2643 {
2644 	unsigned long flags;
2645 	struct rcu_head *next, *list, **tail;
2646 	long bl, count, count_lazy;
2647 	int i;
2648 
2649 	/* If no callbacks are ready, just return. */
2650 	if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
2651 		trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
2652 		trace_rcu_batch_end(rsp->name, 0, !!READ_ONCE(rdp->nxtlist),
2653 				    need_resched(), is_idle_task(current),
2654 				    rcu_is_callbacks_kthread());
2655 		return;
2656 	}
2657 
2658 	/*
2659 	 * Extract the list of ready callbacks, disabling to prevent
2660 	 * races with call_rcu() from interrupt handlers.
2661 	 */
2662 	local_irq_save(flags);
2663 	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2664 	bl = rdp->blimit;
2665 	trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
2666 	list = rdp->nxtlist;
2667 	rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
2668 	*rdp->nxttail[RCU_DONE_TAIL] = NULL;
2669 	tail = rdp->nxttail[RCU_DONE_TAIL];
2670 	for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
2671 		if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2672 			rdp->nxttail[i] = &rdp->nxtlist;
2673 	local_irq_restore(flags);
2674 
2675 	/* Invoke callbacks. */
2676 	count = count_lazy = 0;
2677 	while (list) {
2678 		next = list->next;
2679 		prefetch(next);
2680 		debug_rcu_head_unqueue(list);
2681 		if (__rcu_reclaim(rsp->name, list))
2682 			count_lazy++;
2683 		list = next;
2684 		/* Stop only if limit reached and CPU has something to do. */
2685 		if (++count >= bl &&
2686 		    (need_resched() ||
2687 		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2688 			break;
2689 	}
2690 
2691 	local_irq_save(flags);
2692 	trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
2693 			    is_idle_task(current),
2694 			    rcu_is_callbacks_kthread());
2695 
2696 	/* Update count, and requeue any remaining callbacks. */
2697 	if (list != NULL) {
2698 		*tail = rdp->nxtlist;
2699 		rdp->nxtlist = list;
2700 		for (i = 0; i < RCU_NEXT_SIZE; i++)
2701 			if (&rdp->nxtlist == rdp->nxttail[i])
2702 				rdp->nxttail[i] = tail;
2703 			else
2704 				break;
2705 	}
2706 	smp_mb(); /* List handling before counting for rcu_barrier(). */
2707 	rdp->qlen_lazy -= count_lazy;
2708 	WRITE_ONCE(rdp->qlen, rdp->qlen - count);
2709 	rdp->n_cbs_invoked += count;
2710 
2711 	/* Reinstate batch limit if we have worked down the excess. */
2712 	if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
2713 		rdp->blimit = blimit;
2714 
2715 	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2716 	if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
2717 		rdp->qlen_last_fqs_check = 0;
2718 		rdp->n_force_qs_snap = rsp->n_force_qs;
2719 	} else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
2720 		rdp->qlen_last_fqs_check = rdp->qlen;
2721 	WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
2722 
2723 	local_irq_restore(flags);
2724 
2725 	/* Re-invoke RCU core processing if there are callbacks remaining. */
2726 	if (cpu_has_callbacks_ready_to_invoke(rdp))
2727 		invoke_rcu_core();
2728 }
2729 
2730 /*
2731  * Check to see if this CPU is in a non-context-switch quiescent state
2732  * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2733  * Also schedule RCU core processing.
2734  *
2735  * This function must be called from hardirq context.  It is normally
2736  * invoked from the scheduling-clock interrupt.  If rcu_pending returns
2737  * false, there is no point in invoking rcu_check_callbacks().
2738  */
2739 void rcu_check_callbacks(int user)
2740 {
2741 	trace_rcu_utilization(TPS("Start scheduler-tick"));
2742 	increment_cpu_stall_ticks();
2743 	if (user || rcu_is_cpu_rrupt_from_idle()) {
2744 
2745 		/*
2746 		 * Get here if this CPU took its interrupt from user
2747 		 * mode or from the idle loop, and if this is not a
2748 		 * nested interrupt.  In this case, the CPU is in
2749 		 * a quiescent state, so note it.
2750 		 *
2751 		 * No memory barrier is required here because both
2752 		 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2753 		 * variables that other CPUs neither access nor modify,
2754 		 * at least not while the corresponding CPU is online.
2755 		 */
2756 
2757 		rcu_sched_qs();
2758 		rcu_bh_qs();
2759 
2760 	} else if (!in_softirq()) {
2761 
2762 		/*
2763 		 * Get here if this CPU did not take its interrupt from
2764 		 * softirq, in other words, if it is not interrupting
2765 		 * a rcu_bh read-side critical section.  This is an _bh
2766 		 * critical section, so note it.
2767 		 */
2768 
2769 		rcu_bh_qs();
2770 	}
2771 	rcu_preempt_check_callbacks();
2772 	if (rcu_pending())
2773 		invoke_rcu_core();
2774 	if (user)
2775 		rcu_note_voluntary_context_switch(current);
2776 	trace_rcu_utilization(TPS("End scheduler-tick"));
2777 }
2778 
2779 /*
2780  * Scan the leaf rcu_node structures, processing dyntick state for any that
2781  * have not yet encountered a quiescent state, using the function specified.
2782  * Also initiate boosting for any threads blocked on the root rcu_node.
2783  *
2784  * The caller must have suppressed start of new grace periods.
2785  */
2786 static void force_qs_rnp(struct rcu_state *rsp,
2787 			 int (*f)(struct rcu_data *rsp, bool *isidle,
2788 				  unsigned long *maxj),
2789 			 bool *isidle, unsigned long *maxj)
2790 {
2791 	unsigned long bit;
2792 	int cpu;
2793 	unsigned long flags;
2794 	unsigned long mask;
2795 	struct rcu_node *rnp;
2796 
2797 	rcu_for_each_leaf_node(rsp, rnp) {
2798 		cond_resched_rcu_qs();
2799 		mask = 0;
2800 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2801 		if (rnp->qsmask == 0) {
2802 			if (rcu_state_p == &rcu_sched_state ||
2803 			    rsp != rcu_state_p ||
2804 			    rcu_preempt_blocked_readers_cgp(rnp)) {
2805 				/*
2806 				 * No point in scanning bits because they
2807 				 * are all zero.  But we might need to
2808 				 * priority-boost blocked readers.
2809 				 */
2810 				rcu_initiate_boost(rnp, flags);
2811 				/* rcu_initiate_boost() releases rnp->lock */
2812 				continue;
2813 			}
2814 			if (rnp->parent &&
2815 			    (rnp->parent->qsmask & rnp->grpmask)) {
2816 				/*
2817 				 * Race between grace-period
2818 				 * initialization and task exiting RCU
2819 				 * read-side critical section: Report.
2820 				 */
2821 				rcu_report_unblock_qs_rnp(rsp, rnp, flags);
2822 				/* rcu_report_unblock_qs_rnp() rlses ->lock */
2823 				continue;
2824 			}
2825 		}
2826 		cpu = rnp->grplo;
2827 		bit = 1;
2828 		for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
2829 			if ((rnp->qsmask & bit) != 0) {
2830 				if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
2831 					mask |= bit;
2832 			}
2833 		}
2834 		if (mask != 0) {
2835 			/* Idle/offline CPUs, report (releases rnp->lock. */
2836 			rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2837 		} else {
2838 			/* Nothing to do here, so just drop the lock. */
2839 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2840 		}
2841 	}
2842 }
2843 
2844 /*
2845  * Force quiescent states on reluctant CPUs, and also detect which
2846  * CPUs are in dyntick-idle mode.
2847  */
2848 static void force_quiescent_state(struct rcu_state *rsp)
2849 {
2850 	unsigned long flags;
2851 	bool ret;
2852 	struct rcu_node *rnp;
2853 	struct rcu_node *rnp_old = NULL;
2854 
2855 	/* Funnel through hierarchy to reduce memory contention. */
2856 	rnp = __this_cpu_read(rsp->rda->mynode);
2857 	for (; rnp != NULL; rnp = rnp->parent) {
2858 		ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2859 		      !raw_spin_trylock(&rnp->fqslock);
2860 		if (rnp_old != NULL)
2861 			raw_spin_unlock(&rnp_old->fqslock);
2862 		if (ret) {
2863 			rsp->n_force_qs_lh++;
2864 			return;
2865 		}
2866 		rnp_old = rnp;
2867 	}
2868 	/* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2869 
2870 	/* Reached the root of the rcu_node tree, acquire lock. */
2871 	raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2872 	raw_spin_unlock(&rnp_old->fqslock);
2873 	if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2874 		rsp->n_force_qs_lh++;
2875 		raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2876 		return;  /* Someone beat us to it. */
2877 	}
2878 	WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2879 	raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2880 	swake_up(&rsp->gp_wq); /* Memory barrier implied by swake_up() path. */
2881 }
2882 
2883 /*
2884  * This does the RCU core processing work for the specified rcu_state
2885  * and rcu_data structures.  This may be called only from the CPU to
2886  * whom the rdp belongs.
2887  */
2888 static void
2889 __rcu_process_callbacks(struct rcu_state *rsp)
2890 {
2891 	unsigned long flags;
2892 	bool needwake;
2893 	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2894 
2895 	WARN_ON_ONCE(rdp->beenonline == 0);
2896 
2897 	/* Update RCU state based on any recent quiescent states. */
2898 	rcu_check_quiescent_state(rsp, rdp);
2899 
2900 	/* Does this CPU require a not-yet-started grace period? */
2901 	local_irq_save(flags);
2902 	if (cpu_needs_another_gp(rsp, rdp)) {
2903 		raw_spin_lock_rcu_node(rcu_get_root(rsp)); /* irqs disabled. */
2904 		needwake = rcu_start_gp(rsp);
2905 		raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
2906 		if (needwake)
2907 			rcu_gp_kthread_wake(rsp);
2908 	} else {
2909 		local_irq_restore(flags);
2910 	}
2911 
2912 	/* If there are callbacks ready, invoke them. */
2913 	if (cpu_has_callbacks_ready_to_invoke(rdp))
2914 		invoke_rcu_callbacks(rsp, rdp);
2915 
2916 	/* Do any needed deferred wakeups of rcuo kthreads. */
2917 	do_nocb_deferred_wakeup(rdp);
2918 }
2919 
2920 /*
2921  * Do RCU core processing for the current CPU.
2922  */
2923 static void rcu_process_callbacks(struct softirq_action *unused)
2924 {
2925 	struct rcu_state *rsp;
2926 
2927 	if (cpu_is_offline(smp_processor_id()))
2928 		return;
2929 	trace_rcu_utilization(TPS("Start RCU core"));
2930 	for_each_rcu_flavor(rsp)
2931 		__rcu_process_callbacks(rsp);
2932 	trace_rcu_utilization(TPS("End RCU core"));
2933 }
2934 
2935 /*
2936  * Schedule RCU callback invocation.  If the specified type of RCU
2937  * does not support RCU priority boosting, just do a direct call,
2938  * otherwise wake up the per-CPU kernel kthread.  Note that because we
2939  * are running on the current CPU with softirqs disabled, the
2940  * rcu_cpu_kthread_task cannot disappear out from under us.
2941  */
2942 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
2943 {
2944 	if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
2945 		return;
2946 	if (likely(!rsp->boost)) {
2947 		rcu_do_batch(rsp, rdp);
2948 		return;
2949 	}
2950 	invoke_rcu_callbacks_kthread();
2951 }
2952 
2953 static void invoke_rcu_core(void)
2954 {
2955 	if (cpu_online(smp_processor_id()))
2956 		raise_softirq(RCU_SOFTIRQ);
2957 }
2958 
2959 /*
2960  * Handle any core-RCU processing required by a call_rcu() invocation.
2961  */
2962 static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2963 			    struct rcu_head *head, unsigned long flags)
2964 {
2965 	bool needwake;
2966 
2967 	/*
2968 	 * If called from an extended quiescent state, invoke the RCU
2969 	 * core in order to force a re-evaluation of RCU's idleness.
2970 	 */
2971 	if (!rcu_is_watching())
2972 		invoke_rcu_core();
2973 
2974 	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2975 	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2976 		return;
2977 
2978 	/*
2979 	 * Force the grace period if too many callbacks or too long waiting.
2980 	 * Enforce hysteresis, and don't invoke force_quiescent_state()
2981 	 * if some other CPU has recently done so.  Also, don't bother
2982 	 * invoking force_quiescent_state() if the newly enqueued callback
2983 	 * is the only one waiting for a grace period to complete.
2984 	 */
2985 	if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
2986 
2987 		/* Are we ignoring a completed grace period? */
2988 		note_gp_changes(rsp, rdp);
2989 
2990 		/* Start a new grace period if one not already started. */
2991 		if (!rcu_gp_in_progress(rsp)) {
2992 			struct rcu_node *rnp_root = rcu_get_root(rsp);
2993 
2994 			raw_spin_lock_rcu_node(rnp_root);
2995 			needwake = rcu_start_gp(rsp);
2996 			raw_spin_unlock_rcu_node(rnp_root);
2997 			if (needwake)
2998 				rcu_gp_kthread_wake(rsp);
2999 		} else {
3000 			/* Give the grace period a kick. */
3001 			rdp->blimit = LONG_MAX;
3002 			if (rsp->n_force_qs == rdp->n_force_qs_snap &&
3003 			    *rdp->nxttail[RCU_DONE_TAIL] != head)
3004 				force_quiescent_state(rsp);
3005 			rdp->n_force_qs_snap = rsp->n_force_qs;
3006 			rdp->qlen_last_fqs_check = rdp->qlen;
3007 		}
3008 	}
3009 }
3010 
3011 /*
3012  * RCU callback function to leak a callback.
3013  */
3014 static void rcu_leak_callback(struct rcu_head *rhp)
3015 {
3016 }
3017 
3018 /*
3019  * Helper function for call_rcu() and friends.  The cpu argument will
3020  * normally be -1, indicating "currently running CPU".  It may specify
3021  * a CPU only if that CPU is a no-CBs CPU.  Currently, only _rcu_barrier()
3022  * is expected to specify a CPU.
3023  */
3024 static void
3025 __call_rcu(struct rcu_head *head, rcu_callback_t func,
3026 	   struct rcu_state *rsp, int cpu, bool lazy)
3027 {
3028 	unsigned long flags;
3029 	struct rcu_data *rdp;
3030 
3031 	WARN_ON_ONCE((unsigned long)head & 0x1); /* Misaligned rcu_head! */
3032 	if (debug_rcu_head_queue(head)) {
3033 		/* Probable double call_rcu(), so leak the callback. */
3034 		WRITE_ONCE(head->func, rcu_leak_callback);
3035 		WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
3036 		return;
3037 	}
3038 	head->func = func;
3039 	head->next = NULL;
3040 
3041 	/*
3042 	 * Opportunistically note grace-period endings and beginnings.
3043 	 * Note that we might see a beginning right after we see an
3044 	 * end, but never vice versa, since this CPU has to pass through
3045 	 * a quiescent state betweentimes.
3046 	 */
3047 	local_irq_save(flags);
3048 	rdp = this_cpu_ptr(rsp->rda);
3049 
3050 	/* Add the callback to our list. */
3051 	if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
3052 		int offline;
3053 
3054 		if (cpu != -1)
3055 			rdp = per_cpu_ptr(rsp->rda, cpu);
3056 		if (likely(rdp->mynode)) {
3057 			/* Post-boot, so this should be for a no-CBs CPU. */
3058 			offline = !__call_rcu_nocb(rdp, head, lazy, flags);
3059 			WARN_ON_ONCE(offline);
3060 			/* Offline CPU, _call_rcu() illegal, leak callback.  */
3061 			local_irq_restore(flags);
3062 			return;
3063 		}
3064 		/*
3065 		 * Very early boot, before rcu_init().  Initialize if needed
3066 		 * and then drop through to queue the callback.
3067 		 */
3068 		BUG_ON(cpu != -1);
3069 		WARN_ON_ONCE(!rcu_is_watching());
3070 		if (!likely(rdp->nxtlist))
3071 			init_default_callback_list(rdp);
3072 	}
3073 	WRITE_ONCE(rdp->qlen, rdp->qlen + 1);
3074 	if (lazy)
3075 		rdp->qlen_lazy++;
3076 	else
3077 		rcu_idle_count_callbacks_posted();
3078 	smp_mb();  /* Count before adding callback for rcu_barrier(). */
3079 	*rdp->nxttail[RCU_NEXT_TAIL] = head;
3080 	rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
3081 
3082 	if (__is_kfree_rcu_offset((unsigned long)func))
3083 		trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
3084 					 rdp->qlen_lazy, rdp->qlen);
3085 	else
3086 		trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
3087 
3088 	/* Go handle any RCU core processing required. */
3089 	__call_rcu_core(rsp, rdp, head, flags);
3090 	local_irq_restore(flags);
3091 }
3092 
3093 /*
3094  * Queue an RCU-sched callback for invocation after a grace period.
3095  */
3096 void call_rcu_sched(struct rcu_head *head, rcu_callback_t func)
3097 {
3098 	__call_rcu(head, func, &rcu_sched_state, -1, 0);
3099 }
3100 EXPORT_SYMBOL_GPL(call_rcu_sched);
3101 
3102 /*
3103  * Queue an RCU callback for invocation after a quicker grace period.
3104  */
3105 void call_rcu_bh(struct rcu_head *head, rcu_callback_t func)
3106 {
3107 	__call_rcu(head, func, &rcu_bh_state, -1, 0);
3108 }
3109 EXPORT_SYMBOL_GPL(call_rcu_bh);
3110 
3111 /*
3112  * Queue an RCU callback for lazy invocation after a grace period.
3113  * This will likely be later named something like "call_rcu_lazy()",
3114  * but this change will require some way of tagging the lazy RCU
3115  * callbacks in the list of pending callbacks. Until then, this
3116  * function may only be called from __kfree_rcu().
3117  */
3118 void kfree_call_rcu(struct rcu_head *head,
3119 		    rcu_callback_t func)
3120 {
3121 	__call_rcu(head, func, rcu_state_p, -1, 1);
3122 }
3123 EXPORT_SYMBOL_GPL(kfree_call_rcu);
3124 
3125 /*
3126  * Because a context switch is a grace period for RCU-sched and RCU-bh,
3127  * any blocking grace-period wait automatically implies a grace period
3128  * if there is only one CPU online at any point time during execution
3129  * of either synchronize_sched() or synchronize_rcu_bh().  It is OK to
3130  * occasionally incorrectly indicate that there are multiple CPUs online
3131  * when there was in fact only one the whole time, as this just adds
3132  * some overhead: RCU still operates correctly.
3133  */
3134 static inline int rcu_blocking_is_gp(void)
3135 {
3136 	int ret;
3137 
3138 	might_sleep();  /* Check for RCU read-side critical section. */
3139 	preempt_disable();
3140 	ret = num_online_cpus() <= 1;
3141 	preempt_enable();
3142 	return ret;
3143 }
3144 
3145 /**
3146  * synchronize_sched - wait until an rcu-sched grace period has elapsed.
3147  *
3148  * Control will return to the caller some time after a full rcu-sched
3149  * grace period has elapsed, in other words after all currently executing
3150  * rcu-sched read-side critical sections have completed.   These read-side
3151  * critical sections are delimited by rcu_read_lock_sched() and
3152  * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(),
3153  * local_irq_disable(), and so on may be used in place of
3154  * rcu_read_lock_sched().
3155  *
3156  * This means that all preempt_disable code sequences, including NMI and
3157  * non-threaded hardware-interrupt handlers, in progress on entry will
3158  * have completed before this primitive returns.  However, this does not
3159  * guarantee that softirq handlers will have completed, since in some
3160  * kernels, these handlers can run in process context, and can block.
3161  *
3162  * Note that this guarantee implies further memory-ordering guarantees.
3163  * On systems with more than one CPU, when synchronize_sched() returns,
3164  * each CPU is guaranteed to have executed a full memory barrier since the
3165  * end of its last RCU-sched read-side critical section whose beginning
3166  * preceded the call to synchronize_sched().  In addition, each CPU having
3167  * an RCU read-side critical section that extends beyond the return from
3168  * synchronize_sched() is guaranteed to have executed a full memory barrier
3169  * after the beginning of synchronize_sched() and before the beginning of
3170  * that RCU read-side critical section.  Note that these guarantees include
3171  * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3172  * that are executing in the kernel.
3173  *
3174  * Furthermore, if CPU A invoked synchronize_sched(), which returned
3175  * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3176  * to have executed a full memory barrier during the execution of
3177  * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
3178  * again only if the system has more than one CPU).
3179  *
3180  * This primitive provides the guarantees made by the (now removed)
3181  * synchronize_kernel() API.  In contrast, synchronize_rcu() only
3182  * guarantees that rcu_read_lock() sections will have completed.
3183  * In "classic RCU", these two guarantees happen to be one and
3184  * the same, but can differ in realtime RCU implementations.
3185  */
3186 void synchronize_sched(void)
3187 {
3188 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3189 			 lock_is_held(&rcu_lock_map) ||
3190 			 lock_is_held(&rcu_sched_lock_map),
3191 			 "Illegal synchronize_sched() in RCU-sched read-side critical section");
3192 	if (rcu_blocking_is_gp())
3193 		return;
3194 	if (rcu_gp_is_expedited())
3195 		synchronize_sched_expedited();
3196 	else
3197 		wait_rcu_gp(call_rcu_sched);
3198 }
3199 EXPORT_SYMBOL_GPL(synchronize_sched);
3200 
3201 /**
3202  * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
3203  *
3204  * Control will return to the caller some time after a full rcu_bh grace
3205  * period has elapsed, in other words after all currently executing rcu_bh
3206  * read-side critical sections have completed.  RCU read-side critical
3207  * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
3208  * and may be nested.
3209  *
3210  * See the description of synchronize_sched() for more detailed information
3211  * on memory ordering guarantees.
3212  */
3213 void synchronize_rcu_bh(void)
3214 {
3215 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3216 			 lock_is_held(&rcu_lock_map) ||
3217 			 lock_is_held(&rcu_sched_lock_map),
3218 			 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
3219 	if (rcu_blocking_is_gp())
3220 		return;
3221 	if (rcu_gp_is_expedited())
3222 		synchronize_rcu_bh_expedited();
3223 	else
3224 		wait_rcu_gp(call_rcu_bh);
3225 }
3226 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
3227 
3228 /**
3229  * get_state_synchronize_rcu - Snapshot current RCU state
3230  *
3231  * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3232  * to determine whether or not a full grace period has elapsed in the
3233  * meantime.
3234  */
3235 unsigned long get_state_synchronize_rcu(void)
3236 {
3237 	/*
3238 	 * Any prior manipulation of RCU-protected data must happen
3239 	 * before the load from ->gpnum.
3240 	 */
3241 	smp_mb();  /* ^^^ */
3242 
3243 	/*
3244 	 * Make sure this load happens before the purportedly
3245 	 * time-consuming work between get_state_synchronize_rcu()
3246 	 * and cond_synchronize_rcu().
3247 	 */
3248 	return smp_load_acquire(&rcu_state_p->gpnum);
3249 }
3250 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3251 
3252 /**
3253  * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3254  *
3255  * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3256  *
3257  * If a full RCU grace period has elapsed since the earlier call to
3258  * get_state_synchronize_rcu(), just return.  Otherwise, invoke
3259  * synchronize_rcu() to wait for a full grace period.
3260  *
3261  * Yes, this function does not take counter wrap into account.  But
3262  * counter wrap is harmless.  If the counter wraps, we have waited for
3263  * more than 2 billion grace periods (and way more on a 64-bit system!),
3264  * so waiting for one additional grace period should be just fine.
3265  */
3266 void cond_synchronize_rcu(unsigned long oldstate)
3267 {
3268 	unsigned long newstate;
3269 
3270 	/*
3271 	 * Ensure that this load happens before any RCU-destructive
3272 	 * actions the caller might carry out after we return.
3273 	 */
3274 	newstate = smp_load_acquire(&rcu_state_p->completed);
3275 	if (ULONG_CMP_GE(oldstate, newstate))
3276 		synchronize_rcu();
3277 }
3278 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3279 
3280 /**
3281  * get_state_synchronize_sched - Snapshot current RCU-sched state
3282  *
3283  * Returns a cookie that is used by a later call to cond_synchronize_sched()
3284  * to determine whether or not a full grace period has elapsed in the
3285  * meantime.
3286  */
3287 unsigned long get_state_synchronize_sched(void)
3288 {
3289 	/*
3290 	 * Any prior manipulation of RCU-protected data must happen
3291 	 * before the load from ->gpnum.
3292 	 */
3293 	smp_mb();  /* ^^^ */
3294 
3295 	/*
3296 	 * Make sure this load happens before the purportedly
3297 	 * time-consuming work between get_state_synchronize_sched()
3298 	 * and cond_synchronize_sched().
3299 	 */
3300 	return smp_load_acquire(&rcu_sched_state.gpnum);
3301 }
3302 EXPORT_SYMBOL_GPL(get_state_synchronize_sched);
3303 
3304 /**
3305  * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
3306  *
3307  * @oldstate: return value from earlier call to get_state_synchronize_sched()
3308  *
3309  * If a full RCU-sched grace period has elapsed since the earlier call to
3310  * get_state_synchronize_sched(), just return.  Otherwise, invoke
3311  * synchronize_sched() to wait for a full grace period.
3312  *
3313  * Yes, this function does not take counter wrap into account.  But
3314  * counter wrap is harmless.  If the counter wraps, we have waited for
3315  * more than 2 billion grace periods (and way more on a 64-bit system!),
3316  * so waiting for one additional grace period should be just fine.
3317  */
3318 void cond_synchronize_sched(unsigned long oldstate)
3319 {
3320 	unsigned long newstate;
3321 
3322 	/*
3323 	 * Ensure that this load happens before any RCU-destructive
3324 	 * actions the caller might carry out after we return.
3325 	 */
3326 	newstate = smp_load_acquire(&rcu_sched_state.completed);
3327 	if (ULONG_CMP_GE(oldstate, newstate))
3328 		synchronize_sched();
3329 }
3330 EXPORT_SYMBOL_GPL(cond_synchronize_sched);
3331 
3332 /* Adjust sequence number for start of update-side operation. */
3333 static void rcu_seq_start(unsigned long *sp)
3334 {
3335 	WRITE_ONCE(*sp, *sp + 1);
3336 	smp_mb(); /* Ensure update-side operation after counter increment. */
3337 	WARN_ON_ONCE(!(*sp & 0x1));
3338 }
3339 
3340 /* Adjust sequence number for end of update-side operation. */
3341 static void rcu_seq_end(unsigned long *sp)
3342 {
3343 	smp_mb(); /* Ensure update-side operation before counter increment. */
3344 	WRITE_ONCE(*sp, *sp + 1);
3345 	WARN_ON_ONCE(*sp & 0x1);
3346 }
3347 
3348 /* Take a snapshot of the update side's sequence number. */
3349 static unsigned long rcu_seq_snap(unsigned long *sp)
3350 {
3351 	unsigned long s;
3352 
3353 	s = (READ_ONCE(*sp) + 3) & ~0x1;
3354 	smp_mb(); /* Above access must not bleed into critical section. */
3355 	return s;
3356 }
3357 
3358 /*
3359  * Given a snapshot from rcu_seq_snap(), determine whether or not a
3360  * full update-side operation has occurred.
3361  */
3362 static bool rcu_seq_done(unsigned long *sp, unsigned long s)
3363 {
3364 	return ULONG_CMP_GE(READ_ONCE(*sp), s);
3365 }
3366 
3367 /* Wrapper functions for expedited grace periods.  */
3368 static void rcu_exp_gp_seq_start(struct rcu_state *rsp)
3369 {
3370 	rcu_seq_start(&rsp->expedited_sequence);
3371 }
3372 static void rcu_exp_gp_seq_end(struct rcu_state *rsp)
3373 {
3374 	rcu_seq_end(&rsp->expedited_sequence);
3375 	smp_mb(); /* Ensure that consecutive grace periods serialize. */
3376 }
3377 static unsigned long rcu_exp_gp_seq_snap(struct rcu_state *rsp)
3378 {
3379 	smp_mb(); /* Caller's modifications seen first by other CPUs. */
3380 	return rcu_seq_snap(&rsp->expedited_sequence);
3381 }
3382 static bool rcu_exp_gp_seq_done(struct rcu_state *rsp, unsigned long s)
3383 {
3384 	return rcu_seq_done(&rsp->expedited_sequence, s);
3385 }
3386 
3387 /*
3388  * Reset the ->expmaskinit values in the rcu_node tree to reflect any
3389  * recent CPU-online activity.  Note that these masks are not cleared
3390  * when CPUs go offline, so they reflect the union of all CPUs that have
3391  * ever been online.  This means that this function normally takes its
3392  * no-work-to-do fastpath.
3393  */
3394 static void sync_exp_reset_tree_hotplug(struct rcu_state *rsp)
3395 {
3396 	bool done;
3397 	unsigned long flags;
3398 	unsigned long mask;
3399 	unsigned long oldmask;
3400 	int ncpus = READ_ONCE(rsp->ncpus);
3401 	struct rcu_node *rnp;
3402 	struct rcu_node *rnp_up;
3403 
3404 	/* If no new CPUs onlined since last time, nothing to do. */
3405 	if (likely(ncpus == rsp->ncpus_snap))
3406 		return;
3407 	rsp->ncpus_snap = ncpus;
3408 
3409 	/*
3410 	 * Each pass through the following loop propagates newly onlined
3411 	 * CPUs for the current rcu_node structure up the rcu_node tree.
3412 	 */
3413 	rcu_for_each_leaf_node(rsp, rnp) {
3414 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
3415 		if (rnp->expmaskinit == rnp->expmaskinitnext) {
3416 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3417 			continue;  /* No new CPUs, nothing to do. */
3418 		}
3419 
3420 		/* Update this node's mask, track old value for propagation. */
3421 		oldmask = rnp->expmaskinit;
3422 		rnp->expmaskinit = rnp->expmaskinitnext;
3423 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3424 
3425 		/* If was already nonzero, nothing to propagate. */
3426 		if (oldmask)
3427 			continue;
3428 
3429 		/* Propagate the new CPU up the tree. */
3430 		mask = rnp->grpmask;
3431 		rnp_up = rnp->parent;
3432 		done = false;
3433 		while (rnp_up) {
3434 			raw_spin_lock_irqsave_rcu_node(rnp_up, flags);
3435 			if (rnp_up->expmaskinit)
3436 				done = true;
3437 			rnp_up->expmaskinit |= mask;
3438 			raw_spin_unlock_irqrestore_rcu_node(rnp_up, flags);
3439 			if (done)
3440 				break;
3441 			mask = rnp_up->grpmask;
3442 			rnp_up = rnp_up->parent;
3443 		}
3444 	}
3445 }
3446 
3447 /*
3448  * Reset the ->expmask values in the rcu_node tree in preparation for
3449  * a new expedited grace period.
3450  */
3451 static void __maybe_unused sync_exp_reset_tree(struct rcu_state *rsp)
3452 {
3453 	unsigned long flags;
3454 	struct rcu_node *rnp;
3455 
3456 	sync_exp_reset_tree_hotplug(rsp);
3457 	rcu_for_each_node_breadth_first(rsp, rnp) {
3458 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
3459 		WARN_ON_ONCE(rnp->expmask);
3460 		rnp->expmask = rnp->expmaskinit;
3461 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3462 	}
3463 }
3464 
3465 /*
3466  * Return non-zero if there is no RCU expedited grace period in progress
3467  * for the specified rcu_node structure, in other words, if all CPUs and
3468  * tasks covered by the specified rcu_node structure have done their bit
3469  * for the current expedited grace period.  Works only for preemptible
3470  * RCU -- other RCU implementation use other means.
3471  *
3472  * Caller must hold the root rcu_node's exp_funnel_mutex.
3473  */
3474 static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
3475 {
3476 	return rnp->exp_tasks == NULL &&
3477 	       READ_ONCE(rnp->expmask) == 0;
3478 }
3479 
3480 /*
3481  * Report the exit from RCU read-side critical section for the last task
3482  * that queued itself during or before the current expedited preemptible-RCU
3483  * grace period.  This event is reported either to the rcu_node structure on
3484  * which the task was queued or to one of that rcu_node structure's ancestors,
3485  * recursively up the tree.  (Calm down, calm down, we do the recursion
3486  * iteratively!)
3487  *
3488  * Caller must hold the root rcu_node's exp_funnel_mutex and the
3489  * specified rcu_node structure's ->lock.
3490  */
3491 static void __rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
3492 				 bool wake, unsigned long flags)
3493 	__releases(rnp->lock)
3494 {
3495 	unsigned long mask;
3496 
3497 	for (;;) {
3498 		if (!sync_rcu_preempt_exp_done(rnp)) {
3499 			if (!rnp->expmask)
3500 				rcu_initiate_boost(rnp, flags);
3501 			else
3502 				raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3503 			break;
3504 		}
3505 		if (rnp->parent == NULL) {
3506 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3507 			if (wake) {
3508 				smp_mb(); /* EGP done before wake_up(). */
3509 				swake_up(&rsp->expedited_wq);
3510 			}
3511 			break;
3512 		}
3513 		mask = rnp->grpmask;
3514 		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled */
3515 		rnp = rnp->parent;
3516 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled */
3517 		WARN_ON_ONCE(!(rnp->expmask & mask));
3518 		rnp->expmask &= ~mask;
3519 	}
3520 }
3521 
3522 /*
3523  * Report expedited quiescent state for specified node.  This is a
3524  * lock-acquisition wrapper function for __rcu_report_exp_rnp().
3525  *
3526  * Caller must hold the root rcu_node's exp_funnel_mutex.
3527  */
3528 static void __maybe_unused rcu_report_exp_rnp(struct rcu_state *rsp,
3529 					      struct rcu_node *rnp, bool wake)
3530 {
3531 	unsigned long flags;
3532 
3533 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3534 	__rcu_report_exp_rnp(rsp, rnp, wake, flags);
3535 }
3536 
3537 /*
3538  * Report expedited quiescent state for multiple CPUs, all covered by the
3539  * specified leaf rcu_node structure.  Caller must hold the root
3540  * rcu_node's exp_funnel_mutex.
3541  */
3542 static void rcu_report_exp_cpu_mult(struct rcu_state *rsp, struct rcu_node *rnp,
3543 				    unsigned long mask, bool wake)
3544 {
3545 	unsigned long flags;
3546 
3547 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3548 	if (!(rnp->expmask & mask)) {
3549 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3550 		return;
3551 	}
3552 	rnp->expmask &= ~mask;
3553 	__rcu_report_exp_rnp(rsp, rnp, wake, flags); /* Releases rnp->lock. */
3554 }
3555 
3556 /*
3557  * Report expedited quiescent state for specified rcu_data (CPU).
3558  * Caller must hold the root rcu_node's exp_funnel_mutex.
3559  */
3560 static void rcu_report_exp_rdp(struct rcu_state *rsp, struct rcu_data *rdp,
3561 			       bool wake)
3562 {
3563 	rcu_report_exp_cpu_mult(rsp, rdp->mynode, rdp->grpmask, wake);
3564 }
3565 
3566 /* Common code for synchronize_{rcu,sched}_expedited() work-done checking. */
3567 static bool sync_exp_work_done(struct rcu_state *rsp, struct rcu_node *rnp,
3568 			       struct rcu_data *rdp,
3569 			       atomic_long_t *stat, unsigned long s)
3570 {
3571 	if (rcu_exp_gp_seq_done(rsp, s)) {
3572 		if (rnp)
3573 			mutex_unlock(&rnp->exp_funnel_mutex);
3574 		else if (rdp)
3575 			mutex_unlock(&rdp->exp_funnel_mutex);
3576 		/* Ensure test happens before caller kfree(). */
3577 		smp_mb__before_atomic(); /* ^^^ */
3578 		atomic_long_inc(stat);
3579 		return true;
3580 	}
3581 	return false;
3582 }
3583 
3584 /*
3585  * Funnel-lock acquisition for expedited grace periods.  Returns a
3586  * pointer to the root rcu_node structure, or NULL if some other
3587  * task did the expedited grace period for us.
3588  */
3589 static struct rcu_node *exp_funnel_lock(struct rcu_state *rsp, unsigned long s)
3590 {
3591 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, raw_smp_processor_id());
3592 	struct rcu_node *rnp0;
3593 	struct rcu_node *rnp1 = NULL;
3594 
3595 	/*
3596 	 * First try directly acquiring the root lock in order to reduce
3597 	 * latency in the common case where expedited grace periods are
3598 	 * rare.  We check mutex_is_locked() to avoid pathological levels of
3599 	 * memory contention on ->exp_funnel_mutex in the heavy-load case.
3600 	 */
3601 	rnp0 = rcu_get_root(rsp);
3602 	if (!mutex_is_locked(&rnp0->exp_funnel_mutex)) {
3603 		if (mutex_trylock(&rnp0->exp_funnel_mutex)) {
3604 			if (sync_exp_work_done(rsp, rnp0, NULL,
3605 					       &rdp->expedited_workdone0, s))
3606 				return NULL;
3607 			return rnp0;
3608 		}
3609 	}
3610 
3611 	/*
3612 	 * Each pass through the following loop works its way
3613 	 * up the rcu_node tree, returning if others have done the
3614 	 * work or otherwise falls through holding the root rnp's
3615 	 * ->exp_funnel_mutex.  The mapping from CPU to rcu_node structure
3616 	 * can be inexact, as it is just promoting locality and is not
3617 	 * strictly needed for correctness.
3618 	 */
3619 	if (sync_exp_work_done(rsp, NULL, NULL, &rdp->expedited_workdone1, s))
3620 		return NULL;
3621 	mutex_lock(&rdp->exp_funnel_mutex);
3622 	rnp0 = rdp->mynode;
3623 	for (; rnp0 != NULL; rnp0 = rnp0->parent) {
3624 		if (sync_exp_work_done(rsp, rnp1, rdp,
3625 				       &rdp->expedited_workdone2, s))
3626 			return NULL;
3627 		mutex_lock(&rnp0->exp_funnel_mutex);
3628 		if (rnp1)
3629 			mutex_unlock(&rnp1->exp_funnel_mutex);
3630 		else
3631 			mutex_unlock(&rdp->exp_funnel_mutex);
3632 		rnp1 = rnp0;
3633 	}
3634 	if (sync_exp_work_done(rsp, rnp1, rdp,
3635 			       &rdp->expedited_workdone3, s))
3636 		return NULL;
3637 	return rnp1;
3638 }
3639 
3640 /* Invoked on each online non-idle CPU for expedited quiescent state. */
3641 static void sync_sched_exp_handler(void *data)
3642 {
3643 	struct rcu_data *rdp;
3644 	struct rcu_node *rnp;
3645 	struct rcu_state *rsp = data;
3646 
3647 	rdp = this_cpu_ptr(rsp->rda);
3648 	rnp = rdp->mynode;
3649 	if (!(READ_ONCE(rnp->expmask) & rdp->grpmask) ||
3650 	    __this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
3651 		return;
3652 	__this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, true);
3653 	resched_cpu(smp_processor_id());
3654 }
3655 
3656 /* Send IPI for expedited cleanup if needed at end of CPU-hotplug operation. */
3657 static void sync_sched_exp_online_cleanup(int cpu)
3658 {
3659 	struct rcu_data *rdp;
3660 	int ret;
3661 	struct rcu_node *rnp;
3662 	struct rcu_state *rsp = &rcu_sched_state;
3663 
3664 	rdp = per_cpu_ptr(rsp->rda, cpu);
3665 	rnp = rdp->mynode;
3666 	if (!(READ_ONCE(rnp->expmask) & rdp->grpmask))
3667 		return;
3668 	ret = smp_call_function_single(cpu, sync_sched_exp_handler, rsp, 0);
3669 	WARN_ON_ONCE(ret);
3670 }
3671 
3672 /*
3673  * Select the nodes that the upcoming expedited grace period needs
3674  * to wait for.
3675  */
3676 static void sync_rcu_exp_select_cpus(struct rcu_state *rsp,
3677 				     smp_call_func_t func)
3678 {
3679 	int cpu;
3680 	unsigned long flags;
3681 	unsigned long mask;
3682 	unsigned long mask_ofl_test;
3683 	unsigned long mask_ofl_ipi;
3684 	int ret;
3685 	struct rcu_node *rnp;
3686 
3687 	sync_exp_reset_tree(rsp);
3688 	rcu_for_each_leaf_node(rsp, rnp) {
3689 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
3690 
3691 		/* Each pass checks a CPU for identity, offline, and idle. */
3692 		mask_ofl_test = 0;
3693 		for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) {
3694 			struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3695 			struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
3696 
3697 			if (raw_smp_processor_id() == cpu ||
3698 			    !(atomic_add_return(0, &rdtp->dynticks) & 0x1))
3699 				mask_ofl_test |= rdp->grpmask;
3700 		}
3701 		mask_ofl_ipi = rnp->expmask & ~mask_ofl_test;
3702 
3703 		/*
3704 		 * Need to wait for any blocked tasks as well.  Note that
3705 		 * additional blocking tasks will also block the expedited
3706 		 * GP until such time as the ->expmask bits are cleared.
3707 		 */
3708 		if (rcu_preempt_has_tasks(rnp))
3709 			rnp->exp_tasks = rnp->blkd_tasks.next;
3710 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3711 
3712 		/* IPI the remaining CPUs for expedited quiescent state. */
3713 		mask = 1;
3714 		for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask <<= 1) {
3715 			if (!(mask_ofl_ipi & mask))
3716 				continue;
3717 retry_ipi:
3718 			ret = smp_call_function_single(cpu, func, rsp, 0);
3719 			if (!ret) {
3720 				mask_ofl_ipi &= ~mask;
3721 				continue;
3722 			}
3723 			/* Failed, raced with offline. */
3724 			raw_spin_lock_irqsave_rcu_node(rnp, flags);
3725 			if (cpu_online(cpu) &&
3726 			    (rnp->expmask & mask)) {
3727 				raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3728 				schedule_timeout_uninterruptible(1);
3729 				if (cpu_online(cpu) &&
3730 				    (rnp->expmask & mask))
3731 					goto retry_ipi;
3732 				raw_spin_lock_irqsave_rcu_node(rnp, flags);
3733 			}
3734 			if (!(rnp->expmask & mask))
3735 				mask_ofl_ipi &= ~mask;
3736 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3737 		}
3738 		/* Report quiescent states for those that went offline. */
3739 		mask_ofl_test |= mask_ofl_ipi;
3740 		if (mask_ofl_test)
3741 			rcu_report_exp_cpu_mult(rsp, rnp, mask_ofl_test, false);
3742 	}
3743 }
3744 
3745 static void synchronize_sched_expedited_wait(struct rcu_state *rsp)
3746 {
3747 	int cpu;
3748 	unsigned long jiffies_stall;
3749 	unsigned long jiffies_start;
3750 	unsigned long mask;
3751 	int ndetected;
3752 	struct rcu_node *rnp;
3753 	struct rcu_node *rnp_root = rcu_get_root(rsp);
3754 	int ret;
3755 
3756 	jiffies_stall = rcu_jiffies_till_stall_check();
3757 	jiffies_start = jiffies;
3758 
3759 	for (;;) {
3760 		ret = swait_event_timeout(
3761 				rsp->expedited_wq,
3762 				sync_rcu_preempt_exp_done(rnp_root),
3763 				jiffies_stall);
3764 		if (ret > 0 || sync_rcu_preempt_exp_done(rnp_root))
3765 			return;
3766 		if (ret < 0) {
3767 			/* Hit a signal, disable CPU stall warnings. */
3768 			swait_event(rsp->expedited_wq,
3769 				   sync_rcu_preempt_exp_done(rnp_root));
3770 			return;
3771 		}
3772 		pr_err("INFO: %s detected expedited stalls on CPUs/tasks: {",
3773 		       rsp->name);
3774 		ndetected = 0;
3775 		rcu_for_each_leaf_node(rsp, rnp) {
3776 			ndetected = rcu_print_task_exp_stall(rnp);
3777 			mask = 1;
3778 			for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask <<= 1) {
3779 				struct rcu_data *rdp;
3780 
3781 				if (!(rnp->expmask & mask))
3782 					continue;
3783 				ndetected++;
3784 				rdp = per_cpu_ptr(rsp->rda, cpu);
3785 				pr_cont(" %d-%c%c%c", cpu,
3786 					"O."[cpu_online(cpu)],
3787 					"o."[!!(rdp->grpmask & rnp->expmaskinit)],
3788 					"N."[!!(rdp->grpmask & rnp->expmaskinitnext)]);
3789 			}
3790 			mask <<= 1;
3791 		}
3792 		pr_cont(" } %lu jiffies s: %lu root: %#lx/%c\n",
3793 			jiffies - jiffies_start, rsp->expedited_sequence,
3794 			rnp_root->expmask, ".T"[!!rnp_root->exp_tasks]);
3795 		if (!ndetected) {
3796 			pr_err("blocking rcu_node structures:");
3797 			rcu_for_each_node_breadth_first(rsp, rnp) {
3798 				if (rnp == rnp_root)
3799 					continue; /* printed unconditionally */
3800 				if (sync_rcu_preempt_exp_done(rnp))
3801 					continue;
3802 				pr_cont(" l=%u:%d-%d:%#lx/%c",
3803 					rnp->level, rnp->grplo, rnp->grphi,
3804 					rnp->expmask,
3805 					".T"[!!rnp->exp_tasks]);
3806 			}
3807 			pr_cont("\n");
3808 		}
3809 		rcu_for_each_leaf_node(rsp, rnp) {
3810 			mask = 1;
3811 			for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask <<= 1) {
3812 				if (!(rnp->expmask & mask))
3813 					continue;
3814 				dump_cpu_task(cpu);
3815 			}
3816 		}
3817 		jiffies_stall = 3 * rcu_jiffies_till_stall_check() + 3;
3818 	}
3819 }
3820 
3821 /**
3822  * synchronize_sched_expedited - Brute-force RCU-sched grace period
3823  *
3824  * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
3825  * approach to force the grace period to end quickly.  This consumes
3826  * significant time on all CPUs and is unfriendly to real-time workloads,
3827  * so is thus not recommended for any sort of common-case code.  In fact,
3828  * if you are using synchronize_sched_expedited() in a loop, please
3829  * restructure your code to batch your updates, and then use a single
3830  * synchronize_sched() instead.
3831  *
3832  * This implementation can be thought of as an application of sequence
3833  * locking to expedited grace periods, but using the sequence counter to
3834  * determine when someone else has already done the work instead of for
3835  * retrying readers.
3836  */
3837 void synchronize_sched_expedited(void)
3838 {
3839 	unsigned long s;
3840 	struct rcu_node *rnp;
3841 	struct rcu_state *rsp = &rcu_sched_state;
3842 
3843 	/* If only one CPU, this is automatically a grace period. */
3844 	if (rcu_blocking_is_gp())
3845 		return;
3846 
3847 	/* If expedited grace periods are prohibited, fall back to normal. */
3848 	if (rcu_gp_is_normal()) {
3849 		wait_rcu_gp(call_rcu_sched);
3850 		return;
3851 	}
3852 
3853 	/* Take a snapshot of the sequence number.  */
3854 	s = rcu_exp_gp_seq_snap(rsp);
3855 
3856 	rnp = exp_funnel_lock(rsp, s);
3857 	if (rnp == NULL)
3858 		return;  /* Someone else did our work for us. */
3859 
3860 	rcu_exp_gp_seq_start(rsp);
3861 	sync_rcu_exp_select_cpus(rsp, sync_sched_exp_handler);
3862 	synchronize_sched_expedited_wait(rsp);
3863 
3864 	rcu_exp_gp_seq_end(rsp);
3865 	mutex_unlock(&rnp->exp_funnel_mutex);
3866 }
3867 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
3868 
3869 /*
3870  * Check to see if there is any immediate RCU-related work to be done
3871  * by the current CPU, for the specified type of RCU, returning 1 if so.
3872  * The checks are in order of increasing expense: checks that can be
3873  * carried out against CPU-local state are performed first.  However,
3874  * we must check for CPU stalls first, else we might not get a chance.
3875  */
3876 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
3877 {
3878 	struct rcu_node *rnp = rdp->mynode;
3879 
3880 	rdp->n_rcu_pending++;
3881 
3882 	/* Check for CPU stalls, if enabled. */
3883 	check_cpu_stall(rsp, rdp);
3884 
3885 	/* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3886 	if (rcu_nohz_full_cpu(rsp))
3887 		return 0;
3888 
3889 	/* Is the RCU core waiting for a quiescent state from this CPU? */
3890 	if (rcu_scheduler_fully_active &&
3891 	    rdp->core_needs_qs && rdp->cpu_no_qs.b.norm &&
3892 	    rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) {
3893 		rdp->n_rp_core_needs_qs++;
3894 	} else if (rdp->core_needs_qs &&
3895 		   (!rdp->cpu_no_qs.b.norm ||
3896 		    rdp->rcu_qs_ctr_snap != __this_cpu_read(rcu_qs_ctr))) {
3897 		rdp->n_rp_report_qs++;
3898 		return 1;
3899 	}
3900 
3901 	/* Does this CPU have callbacks ready to invoke? */
3902 	if (cpu_has_callbacks_ready_to_invoke(rdp)) {
3903 		rdp->n_rp_cb_ready++;
3904 		return 1;
3905 	}
3906 
3907 	/* Has RCU gone idle with this CPU needing another grace period? */
3908 	if (cpu_needs_another_gp(rsp, rdp)) {
3909 		rdp->n_rp_cpu_needs_gp++;
3910 		return 1;
3911 	}
3912 
3913 	/* Has another RCU grace period completed?  */
3914 	if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
3915 		rdp->n_rp_gp_completed++;
3916 		return 1;
3917 	}
3918 
3919 	/* Has a new RCU grace period started? */
3920 	if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
3921 	    unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */
3922 		rdp->n_rp_gp_started++;
3923 		return 1;
3924 	}
3925 
3926 	/* Does this CPU need a deferred NOCB wakeup? */
3927 	if (rcu_nocb_need_deferred_wakeup(rdp)) {
3928 		rdp->n_rp_nocb_defer_wakeup++;
3929 		return 1;
3930 	}
3931 
3932 	/* nothing to do */
3933 	rdp->n_rp_need_nothing++;
3934 	return 0;
3935 }
3936 
3937 /*
3938  * Check to see if there is any immediate RCU-related work to be done
3939  * by the current CPU, returning 1 if so.  This function is part of the
3940  * RCU implementation; it is -not- an exported member of the RCU API.
3941  */
3942 static int rcu_pending(void)
3943 {
3944 	struct rcu_state *rsp;
3945 
3946 	for_each_rcu_flavor(rsp)
3947 		if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
3948 			return 1;
3949 	return 0;
3950 }
3951 
3952 /*
3953  * Return true if the specified CPU has any callback.  If all_lazy is
3954  * non-NULL, store an indication of whether all callbacks are lazy.
3955  * (If there are no callbacks, all of them are deemed to be lazy.)
3956  */
3957 static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
3958 {
3959 	bool al = true;
3960 	bool hc = false;
3961 	struct rcu_data *rdp;
3962 	struct rcu_state *rsp;
3963 
3964 	for_each_rcu_flavor(rsp) {
3965 		rdp = this_cpu_ptr(rsp->rda);
3966 		if (!rdp->nxtlist)
3967 			continue;
3968 		hc = true;
3969 		if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
3970 			al = false;
3971 			break;
3972 		}
3973 	}
3974 	if (all_lazy)
3975 		*all_lazy = al;
3976 	return hc;
3977 }
3978 
3979 /*
3980  * Helper function for _rcu_barrier() tracing.  If tracing is disabled,
3981  * the compiler is expected to optimize this away.
3982  */
3983 static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
3984 			       int cpu, unsigned long done)
3985 {
3986 	trace_rcu_barrier(rsp->name, s, cpu,
3987 			  atomic_read(&rsp->barrier_cpu_count), done);
3988 }
3989 
3990 /*
3991  * RCU callback function for _rcu_barrier().  If we are last, wake
3992  * up the task executing _rcu_barrier().
3993  */
3994 static void rcu_barrier_callback(struct rcu_head *rhp)
3995 {
3996 	struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
3997 	struct rcu_state *rsp = rdp->rsp;
3998 
3999 	if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
4000 		_rcu_barrier_trace(rsp, "LastCB", -1, rsp->barrier_sequence);
4001 		complete(&rsp->barrier_completion);
4002 	} else {
4003 		_rcu_barrier_trace(rsp, "CB", -1, rsp->barrier_sequence);
4004 	}
4005 }
4006 
4007 /*
4008  * Called with preemption disabled, and from cross-cpu IRQ context.
4009  */
4010 static void rcu_barrier_func(void *type)
4011 {
4012 	struct rcu_state *rsp = type;
4013 	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
4014 
4015 	_rcu_barrier_trace(rsp, "IRQ", -1, rsp->barrier_sequence);
4016 	atomic_inc(&rsp->barrier_cpu_count);
4017 	rsp->call(&rdp->barrier_head, rcu_barrier_callback);
4018 }
4019 
4020 /*
4021  * Orchestrate the specified type of RCU barrier, waiting for all
4022  * RCU callbacks of the specified type to complete.
4023  */
4024 static void _rcu_barrier(struct rcu_state *rsp)
4025 {
4026 	int cpu;
4027 	struct rcu_data *rdp;
4028 	unsigned long s = rcu_seq_snap(&rsp->barrier_sequence);
4029 
4030 	_rcu_barrier_trace(rsp, "Begin", -1, s);
4031 
4032 	/* Take mutex to serialize concurrent rcu_barrier() requests. */
4033 	mutex_lock(&rsp->barrier_mutex);
4034 
4035 	/* Did someone else do our work for us? */
4036 	if (rcu_seq_done(&rsp->barrier_sequence, s)) {
4037 		_rcu_barrier_trace(rsp, "EarlyExit", -1, rsp->barrier_sequence);
4038 		smp_mb(); /* caller's subsequent code after above check. */
4039 		mutex_unlock(&rsp->barrier_mutex);
4040 		return;
4041 	}
4042 
4043 	/* Mark the start of the barrier operation. */
4044 	rcu_seq_start(&rsp->barrier_sequence);
4045 	_rcu_barrier_trace(rsp, "Inc1", -1, rsp->barrier_sequence);
4046 
4047 	/*
4048 	 * Initialize the count to one rather than to zero in order to
4049 	 * avoid a too-soon return to zero in case of a short grace period
4050 	 * (or preemption of this task).  Exclude CPU-hotplug operations
4051 	 * to ensure that no offline CPU has callbacks queued.
4052 	 */
4053 	init_completion(&rsp->barrier_completion);
4054 	atomic_set(&rsp->barrier_cpu_count, 1);
4055 	get_online_cpus();
4056 
4057 	/*
4058 	 * Force each CPU with callbacks to register a new callback.
4059 	 * When that callback is invoked, we will know that all of the
4060 	 * corresponding CPU's preceding callbacks have been invoked.
4061 	 */
4062 	for_each_possible_cpu(cpu) {
4063 		if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
4064 			continue;
4065 		rdp = per_cpu_ptr(rsp->rda, cpu);
4066 		if (rcu_is_nocb_cpu(cpu)) {
4067 			if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
4068 				_rcu_barrier_trace(rsp, "OfflineNoCB", cpu,
4069 						   rsp->barrier_sequence);
4070 			} else {
4071 				_rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
4072 						   rsp->barrier_sequence);
4073 				smp_mb__before_atomic();
4074 				atomic_inc(&rsp->barrier_cpu_count);
4075 				__call_rcu(&rdp->barrier_head,
4076 					   rcu_barrier_callback, rsp, cpu, 0);
4077 			}
4078 		} else if (READ_ONCE(rdp->qlen)) {
4079 			_rcu_barrier_trace(rsp, "OnlineQ", cpu,
4080 					   rsp->barrier_sequence);
4081 			smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
4082 		} else {
4083 			_rcu_barrier_trace(rsp, "OnlineNQ", cpu,
4084 					   rsp->barrier_sequence);
4085 		}
4086 	}
4087 	put_online_cpus();
4088 
4089 	/*
4090 	 * Now that we have an rcu_barrier_callback() callback on each
4091 	 * CPU, and thus each counted, remove the initial count.
4092 	 */
4093 	if (atomic_dec_and_test(&rsp->barrier_cpu_count))
4094 		complete(&rsp->barrier_completion);
4095 
4096 	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
4097 	wait_for_completion(&rsp->barrier_completion);
4098 
4099 	/* Mark the end of the barrier operation. */
4100 	_rcu_barrier_trace(rsp, "Inc2", -1, rsp->barrier_sequence);
4101 	rcu_seq_end(&rsp->barrier_sequence);
4102 
4103 	/* Other rcu_barrier() invocations can now safely proceed. */
4104 	mutex_unlock(&rsp->barrier_mutex);
4105 }
4106 
4107 /**
4108  * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
4109  */
4110 void rcu_barrier_bh(void)
4111 {
4112 	_rcu_barrier(&rcu_bh_state);
4113 }
4114 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
4115 
4116 /**
4117  * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
4118  */
4119 void rcu_barrier_sched(void)
4120 {
4121 	_rcu_barrier(&rcu_sched_state);
4122 }
4123 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
4124 
4125 /*
4126  * Propagate ->qsinitmask bits up the rcu_node tree to account for the
4127  * first CPU in a given leaf rcu_node structure coming online.  The caller
4128  * must hold the corresponding leaf rcu_node ->lock with interrrupts
4129  * disabled.
4130  */
4131 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
4132 {
4133 	long mask;
4134 	struct rcu_node *rnp = rnp_leaf;
4135 
4136 	for (;;) {
4137 		mask = rnp->grpmask;
4138 		rnp = rnp->parent;
4139 		if (rnp == NULL)
4140 			return;
4141 		raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
4142 		rnp->qsmaskinit |= mask;
4143 		raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
4144 	}
4145 }
4146 
4147 /*
4148  * Do boot-time initialization of a CPU's per-CPU RCU data.
4149  */
4150 static void __init
4151 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
4152 {
4153 	unsigned long flags;
4154 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
4155 	struct rcu_node *rnp = rcu_get_root(rsp);
4156 
4157 	/* Set up local state, ensuring consistent view of global state. */
4158 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4159 	rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
4160 	rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
4161 	WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
4162 	WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
4163 	rdp->cpu = cpu;
4164 	rdp->rsp = rsp;
4165 	mutex_init(&rdp->exp_funnel_mutex);
4166 	rcu_boot_init_nocb_percpu_data(rdp);
4167 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4168 }
4169 
4170 /*
4171  * Initialize a CPU's per-CPU RCU data.  Note that only one online or
4172  * offline event can be happening at a given time.  Note also that we
4173  * can accept some slop in the rsp->completed access due to the fact
4174  * that this CPU cannot possibly have any RCU callbacks in flight yet.
4175  */
4176 static void
4177 rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
4178 {
4179 	unsigned long flags;
4180 	unsigned long mask;
4181 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
4182 	struct rcu_node *rnp = rcu_get_root(rsp);
4183 
4184 	/* Set up local state, ensuring consistent view of global state. */
4185 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4186 	rdp->qlen_last_fqs_check = 0;
4187 	rdp->n_force_qs_snap = rsp->n_force_qs;
4188 	rdp->blimit = blimit;
4189 	if (!rdp->nxtlist)
4190 		init_callback_list(rdp);  /* Re-enable callbacks on this CPU. */
4191 	rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
4192 	rcu_sysidle_init_percpu_data(rdp->dynticks);
4193 	atomic_set(&rdp->dynticks->dynticks,
4194 		   (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
4195 	raw_spin_unlock_rcu_node(rnp);		/* irqs remain disabled. */
4196 
4197 	/*
4198 	 * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
4199 	 * propagation up the rcu_node tree will happen at the beginning
4200 	 * of the next grace period.
4201 	 */
4202 	rnp = rdp->mynode;
4203 	mask = rdp->grpmask;
4204 	raw_spin_lock_rcu_node(rnp);		/* irqs already disabled. */
4205 	rnp->qsmaskinitnext |= mask;
4206 	rnp->expmaskinitnext |= mask;
4207 	if (!rdp->beenonline)
4208 		WRITE_ONCE(rsp->ncpus, READ_ONCE(rsp->ncpus) + 1);
4209 	rdp->beenonline = true;	 /* We have now been online. */
4210 	rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
4211 	rdp->completed = rnp->completed;
4212 	rdp->cpu_no_qs.b.norm = true;
4213 	rdp->rcu_qs_ctr_snap = per_cpu(rcu_qs_ctr, cpu);
4214 	rdp->core_needs_qs = false;
4215 	trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
4216 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4217 }
4218 
4219 static void rcu_prepare_cpu(int cpu)
4220 {
4221 	struct rcu_state *rsp;
4222 
4223 	for_each_rcu_flavor(rsp)
4224 		rcu_init_percpu_data(cpu, rsp);
4225 }
4226 
4227 #ifdef CONFIG_HOTPLUG_CPU
4228 /*
4229  * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
4230  * function.  We now remove it from the rcu_node tree's ->qsmaskinit
4231  * bit masks.
4232  * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
4233  * function.  We now remove it from the rcu_node tree's ->qsmaskinit
4234  * bit masks.
4235  */
4236 static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
4237 {
4238 	unsigned long flags;
4239 	unsigned long mask;
4240 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
4241 	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
4242 
4243 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
4244 		return;
4245 
4246 	/* Remove outgoing CPU from mask in the leaf rcu_node structure. */
4247 	mask = rdp->grpmask;
4248 	raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
4249 	rnp->qsmaskinitnext &= ~mask;
4250 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4251 }
4252 
4253 void rcu_report_dead(unsigned int cpu)
4254 {
4255 	struct rcu_state *rsp;
4256 
4257 	/* QS for any half-done expedited RCU-sched GP. */
4258 	preempt_disable();
4259 	rcu_report_exp_rdp(&rcu_sched_state,
4260 			   this_cpu_ptr(rcu_sched_state.rda), true);
4261 	preempt_enable();
4262 	for_each_rcu_flavor(rsp)
4263 		rcu_cleanup_dying_idle_cpu(cpu, rsp);
4264 }
4265 #endif
4266 
4267 /*
4268  * Handle CPU online/offline notification events.
4269  */
4270 int rcu_cpu_notify(struct notifier_block *self,
4271 		   unsigned long action, void *hcpu)
4272 {
4273 	long cpu = (long)hcpu;
4274 	struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
4275 	struct rcu_node *rnp = rdp->mynode;
4276 	struct rcu_state *rsp;
4277 
4278 	switch (action) {
4279 	case CPU_UP_PREPARE:
4280 	case CPU_UP_PREPARE_FROZEN:
4281 		rcu_prepare_cpu(cpu);
4282 		rcu_prepare_kthreads(cpu);
4283 		rcu_spawn_all_nocb_kthreads(cpu);
4284 		break;
4285 	case CPU_ONLINE:
4286 	case CPU_DOWN_FAILED:
4287 		sync_sched_exp_online_cleanup(cpu);
4288 		rcu_boost_kthread_setaffinity(rnp, -1);
4289 		break;
4290 	case CPU_DOWN_PREPARE:
4291 		rcu_boost_kthread_setaffinity(rnp, cpu);
4292 		break;
4293 	case CPU_DYING:
4294 	case CPU_DYING_FROZEN:
4295 		for_each_rcu_flavor(rsp)
4296 			rcu_cleanup_dying_cpu(rsp);
4297 		break;
4298 	case CPU_DEAD:
4299 	case CPU_DEAD_FROZEN:
4300 	case CPU_UP_CANCELED:
4301 	case CPU_UP_CANCELED_FROZEN:
4302 		for_each_rcu_flavor(rsp) {
4303 			rcu_cleanup_dead_cpu(cpu, rsp);
4304 			do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
4305 		}
4306 		break;
4307 	default:
4308 		break;
4309 	}
4310 	return NOTIFY_OK;
4311 }
4312 
4313 static int rcu_pm_notify(struct notifier_block *self,
4314 			 unsigned long action, void *hcpu)
4315 {
4316 	switch (action) {
4317 	case PM_HIBERNATION_PREPARE:
4318 	case PM_SUSPEND_PREPARE:
4319 		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
4320 			rcu_expedite_gp();
4321 		break;
4322 	case PM_POST_HIBERNATION:
4323 	case PM_POST_SUSPEND:
4324 		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
4325 			rcu_unexpedite_gp();
4326 		break;
4327 	default:
4328 		break;
4329 	}
4330 	return NOTIFY_OK;
4331 }
4332 
4333 /*
4334  * Spawn the kthreads that handle each RCU flavor's grace periods.
4335  */
4336 static int __init rcu_spawn_gp_kthread(void)
4337 {
4338 	unsigned long flags;
4339 	int kthread_prio_in = kthread_prio;
4340 	struct rcu_node *rnp;
4341 	struct rcu_state *rsp;
4342 	struct sched_param sp;
4343 	struct task_struct *t;
4344 
4345 	/* Force priority into range. */
4346 	if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
4347 		kthread_prio = 1;
4348 	else if (kthread_prio < 0)
4349 		kthread_prio = 0;
4350 	else if (kthread_prio > 99)
4351 		kthread_prio = 99;
4352 	if (kthread_prio != kthread_prio_in)
4353 		pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
4354 			 kthread_prio, kthread_prio_in);
4355 
4356 	rcu_scheduler_fully_active = 1;
4357 	for_each_rcu_flavor(rsp) {
4358 		t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
4359 		BUG_ON(IS_ERR(t));
4360 		rnp = rcu_get_root(rsp);
4361 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
4362 		rsp->gp_kthread = t;
4363 		if (kthread_prio) {
4364 			sp.sched_priority = kthread_prio;
4365 			sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
4366 		}
4367 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4368 		wake_up_process(t);
4369 	}
4370 	rcu_spawn_nocb_kthreads();
4371 	rcu_spawn_boost_kthreads();
4372 	return 0;
4373 }
4374 early_initcall(rcu_spawn_gp_kthread);
4375 
4376 /*
4377  * This function is invoked towards the end of the scheduler's initialization
4378  * process.  Before this is called, the idle task might contain
4379  * RCU read-side critical sections (during which time, this idle
4380  * task is booting the system).  After this function is called, the
4381  * idle tasks are prohibited from containing RCU read-side critical
4382  * sections.  This function also enables RCU lockdep checking.
4383  */
4384 void rcu_scheduler_starting(void)
4385 {
4386 	WARN_ON(num_online_cpus() != 1);
4387 	WARN_ON(nr_context_switches() > 0);
4388 	rcu_scheduler_active = 1;
4389 }
4390 
4391 /*
4392  * Compute the per-level fanout, either using the exact fanout specified
4393  * or balancing the tree, depending on the rcu_fanout_exact boot parameter.
4394  */
4395 static void __init rcu_init_levelspread(int *levelspread, const int *levelcnt)
4396 {
4397 	int i;
4398 
4399 	if (rcu_fanout_exact) {
4400 		levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
4401 		for (i = rcu_num_lvls - 2; i >= 0; i--)
4402 			levelspread[i] = RCU_FANOUT;
4403 	} else {
4404 		int ccur;
4405 		int cprv;
4406 
4407 		cprv = nr_cpu_ids;
4408 		for (i = rcu_num_lvls - 1; i >= 0; i--) {
4409 			ccur = levelcnt[i];
4410 			levelspread[i] = (cprv + ccur - 1) / ccur;
4411 			cprv = ccur;
4412 		}
4413 	}
4414 }
4415 
4416 /*
4417  * Helper function for rcu_init() that initializes one rcu_state structure.
4418  */
4419 static void __init rcu_init_one(struct rcu_state *rsp)
4420 {
4421 	static const char * const buf[] = RCU_NODE_NAME_INIT;
4422 	static const char * const fqs[] = RCU_FQS_NAME_INIT;
4423 	static const char * const exp[] = RCU_EXP_NAME_INIT;
4424 	static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
4425 	static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
4426 	static struct lock_class_key rcu_exp_class[RCU_NUM_LVLS];
4427 	static u8 fl_mask = 0x1;
4428 
4429 	int levelcnt[RCU_NUM_LVLS];		/* # nodes in each level. */
4430 	int levelspread[RCU_NUM_LVLS];		/* kids/node in each level. */
4431 	int cpustride = 1;
4432 	int i;
4433 	int j;
4434 	struct rcu_node *rnp;
4435 
4436 	BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
4437 
4438 	/* Silence gcc 4.8 false positive about array index out of range. */
4439 	if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4440 		panic("rcu_init_one: rcu_num_lvls out of range");
4441 
4442 	/* Initialize the level-tracking arrays. */
4443 
4444 	for (i = 0; i < rcu_num_lvls; i++)
4445 		levelcnt[i] = num_rcu_lvl[i];
4446 	for (i = 1; i < rcu_num_lvls; i++)
4447 		rsp->level[i] = rsp->level[i - 1] + levelcnt[i - 1];
4448 	rcu_init_levelspread(levelspread, levelcnt);
4449 	rsp->flavor_mask = fl_mask;
4450 	fl_mask <<= 1;
4451 
4452 	/* Initialize the elements themselves, starting from the leaves. */
4453 
4454 	for (i = rcu_num_lvls - 1; i >= 0; i--) {
4455 		cpustride *= levelspread[i];
4456 		rnp = rsp->level[i];
4457 		for (j = 0; j < levelcnt[i]; j++, rnp++) {
4458 			raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4459 			lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
4460 						   &rcu_node_class[i], buf[i]);
4461 			raw_spin_lock_init(&rnp->fqslock);
4462 			lockdep_set_class_and_name(&rnp->fqslock,
4463 						   &rcu_fqs_class[i], fqs[i]);
4464 			rnp->gpnum = rsp->gpnum;
4465 			rnp->completed = rsp->completed;
4466 			rnp->qsmask = 0;
4467 			rnp->qsmaskinit = 0;
4468 			rnp->grplo = j * cpustride;
4469 			rnp->grphi = (j + 1) * cpustride - 1;
4470 			if (rnp->grphi >= nr_cpu_ids)
4471 				rnp->grphi = nr_cpu_ids - 1;
4472 			if (i == 0) {
4473 				rnp->grpnum = 0;
4474 				rnp->grpmask = 0;
4475 				rnp->parent = NULL;
4476 			} else {
4477 				rnp->grpnum = j % levelspread[i - 1];
4478 				rnp->grpmask = 1UL << rnp->grpnum;
4479 				rnp->parent = rsp->level[i - 1] +
4480 					      j / levelspread[i - 1];
4481 			}
4482 			rnp->level = i;
4483 			INIT_LIST_HEAD(&rnp->blkd_tasks);
4484 			rcu_init_one_nocb(rnp);
4485 			mutex_init(&rnp->exp_funnel_mutex);
4486 			lockdep_set_class_and_name(&rnp->exp_funnel_mutex,
4487 						   &rcu_exp_class[i], exp[i]);
4488 		}
4489 	}
4490 
4491 	init_swait_queue_head(&rsp->gp_wq);
4492 	init_swait_queue_head(&rsp->expedited_wq);
4493 	rnp = rsp->level[rcu_num_lvls - 1];
4494 	for_each_possible_cpu(i) {
4495 		while (i > rnp->grphi)
4496 			rnp++;
4497 		per_cpu_ptr(rsp->rda, i)->mynode = rnp;
4498 		rcu_boot_init_percpu_data(i, rsp);
4499 	}
4500 	list_add(&rsp->flavors, &rcu_struct_flavors);
4501 }
4502 
4503 /*
4504  * Compute the rcu_node tree geometry from kernel parameters.  This cannot
4505  * replace the definitions in tree.h because those are needed to size
4506  * the ->node array in the rcu_state structure.
4507  */
4508 static void __init rcu_init_geometry(void)
4509 {
4510 	ulong d;
4511 	int i;
4512 	int rcu_capacity[RCU_NUM_LVLS];
4513 
4514 	/*
4515 	 * Initialize any unspecified boot parameters.
4516 	 * The default values of jiffies_till_first_fqs and
4517 	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4518 	 * value, which is a function of HZ, then adding one for each
4519 	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4520 	 */
4521 	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4522 	if (jiffies_till_first_fqs == ULONG_MAX)
4523 		jiffies_till_first_fqs = d;
4524 	if (jiffies_till_next_fqs == ULONG_MAX)
4525 		jiffies_till_next_fqs = d;
4526 
4527 	/* If the compile-time values are accurate, just leave. */
4528 	if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4529 	    nr_cpu_ids == NR_CPUS)
4530 		return;
4531 	pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
4532 		rcu_fanout_leaf, nr_cpu_ids);
4533 
4534 	/*
4535 	 * The boot-time rcu_fanout_leaf parameter must be at least two
4536 	 * and cannot exceed the number of bits in the rcu_node masks.
4537 	 * Complain and fall back to the compile-time values if this
4538 	 * limit is exceeded.
4539 	 */
4540 	if (rcu_fanout_leaf < 2 ||
4541 	    rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4542 		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4543 		WARN_ON(1);
4544 		return;
4545 	}
4546 
4547 	/*
4548 	 * Compute number of nodes that can be handled an rcu_node tree
4549 	 * with the given number of levels.
4550 	 */
4551 	rcu_capacity[0] = rcu_fanout_leaf;
4552 	for (i = 1; i < RCU_NUM_LVLS; i++)
4553 		rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4554 
4555 	/*
4556 	 * The tree must be able to accommodate the configured number of CPUs.
4557 	 * If this limit is exceeded, fall back to the compile-time values.
4558 	 */
4559 	if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4560 		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4561 		WARN_ON(1);
4562 		return;
4563 	}
4564 
4565 	/* Calculate the number of levels in the tree. */
4566 	for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4567 	}
4568 	rcu_num_lvls = i + 1;
4569 
4570 	/* Calculate the number of rcu_nodes at each level of the tree. */
4571 	for (i = 0; i < rcu_num_lvls; i++) {
4572 		int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4573 		num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4574 	}
4575 
4576 	/* Calculate the total number of rcu_node structures. */
4577 	rcu_num_nodes = 0;
4578 	for (i = 0; i < rcu_num_lvls; i++)
4579 		rcu_num_nodes += num_rcu_lvl[i];
4580 }
4581 
4582 /*
4583  * Dump out the structure of the rcu_node combining tree associated
4584  * with the rcu_state structure referenced by rsp.
4585  */
4586 static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
4587 {
4588 	int level = 0;
4589 	struct rcu_node *rnp;
4590 
4591 	pr_info("rcu_node tree layout dump\n");
4592 	pr_info(" ");
4593 	rcu_for_each_node_breadth_first(rsp, rnp) {
4594 		if (rnp->level != level) {
4595 			pr_cont("\n");
4596 			pr_info(" ");
4597 			level = rnp->level;
4598 		}
4599 		pr_cont("%d:%d ^%d  ", rnp->grplo, rnp->grphi, rnp->grpnum);
4600 	}
4601 	pr_cont("\n");
4602 }
4603 
4604 void __init rcu_init(void)
4605 {
4606 	int cpu;
4607 
4608 	rcu_early_boot_tests();
4609 
4610 	rcu_bootup_announce();
4611 	rcu_init_geometry();
4612 	rcu_init_one(&rcu_bh_state);
4613 	rcu_init_one(&rcu_sched_state);
4614 	if (dump_tree)
4615 		rcu_dump_rcu_node_tree(&rcu_sched_state);
4616 	__rcu_init_preempt();
4617 	open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
4618 
4619 	/*
4620 	 * We don't need protection against CPU-hotplug here because
4621 	 * this is called early in boot, before either interrupts
4622 	 * or the scheduler are operational.
4623 	 */
4624 	cpu_notifier(rcu_cpu_notify, 0);
4625 	pm_notifier(rcu_pm_notify, 0);
4626 	for_each_online_cpu(cpu)
4627 		rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
4628 }
4629 
4630 #include "tree_plugin.h"
4631