xref: /linux/kernel/rcu/tree.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * Read-Copy Update mechanism for mutual exclusion
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, you can access it online at
16  * http://www.gnu.org/licenses/gpl-2.0.html.
17  *
18  * Copyright IBM Corporation, 2008
19  *
20  * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21  *	    Manfred Spraul <manfred@colorfullife.com>
22  *	    Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23  *
24  * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25  * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26  *
27  * For detailed explanation of Read-Copy Update mechanism see -
28  *	Documentation/RCU
29  */
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <linux/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/export.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/module.h>
45 #include <linux/percpu.h>
46 #include <linux/notifier.h>
47 #include <linux/cpu.h>
48 #include <linux/mutex.h>
49 #include <linux/time.h>
50 #include <linux/kernel_stat.h>
51 #include <linux/wait.h>
52 #include <linux/kthread.h>
53 #include <linux/prefetch.h>
54 #include <linux/delay.h>
55 #include <linux/stop_machine.h>
56 #include <linux/random.h>
57 #include <linux/trace_events.h>
58 #include <linux/suspend.h>
59 
60 #include "tree.h"
61 #include "rcu.h"
62 
63 MODULE_ALIAS("rcutree");
64 #ifdef MODULE_PARAM_PREFIX
65 #undef MODULE_PARAM_PREFIX
66 #endif
67 #define MODULE_PARAM_PREFIX "rcutree."
68 
69 /* Data structures. */
70 
71 /*
72  * In order to export the rcu_state name to the tracing tools, it
73  * needs to be added in the __tracepoint_string section.
74  * This requires defining a separate variable tp_<sname>_varname
75  * that points to the string being used, and this will allow
76  * the tracing userspace tools to be able to decipher the string
77  * address to the matching string.
78  */
79 #ifdef CONFIG_TRACING
80 # define DEFINE_RCU_TPS(sname) \
81 static char sname##_varname[] = #sname; \
82 static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
83 # define RCU_STATE_NAME(sname) sname##_varname
84 #else
85 # define DEFINE_RCU_TPS(sname)
86 # define RCU_STATE_NAME(sname) __stringify(sname)
87 #endif
88 
89 #define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
90 DEFINE_RCU_TPS(sname) \
91 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
92 struct rcu_state sname##_state = { \
93 	.level = { &sname##_state.node[0] }, \
94 	.rda = &sname##_data, \
95 	.call = cr, \
96 	.gp_state = RCU_GP_IDLE, \
97 	.gpnum = 0UL - 300UL, \
98 	.completed = 0UL - 300UL, \
99 	.orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
100 	.orphan_nxttail = &sname##_state.orphan_nxtlist, \
101 	.orphan_donetail = &sname##_state.orphan_donelist, \
102 	.barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
103 	.name = RCU_STATE_NAME(sname), \
104 	.abbr = sabbr, \
105 	.exp_mutex = __MUTEX_INITIALIZER(sname##_state.exp_mutex), \
106 	.exp_wake_mutex = __MUTEX_INITIALIZER(sname##_state.exp_wake_mutex), \
107 }
108 
109 RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
110 RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
111 
112 static struct rcu_state *const rcu_state_p;
113 LIST_HEAD(rcu_struct_flavors);
114 
115 /* Dump rcu_node combining tree at boot to verify correct setup. */
116 static bool dump_tree;
117 module_param(dump_tree, bool, 0444);
118 /* Control rcu_node-tree auto-balancing at boot time. */
119 static bool rcu_fanout_exact;
120 module_param(rcu_fanout_exact, bool, 0444);
121 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
122 static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
123 module_param(rcu_fanout_leaf, int, 0444);
124 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
125 /* Number of rcu_nodes at specified level. */
126 static int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
127 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
128 
129 /*
130  * The rcu_scheduler_active variable transitions from zero to one just
131  * before the first task is spawned.  So when this variable is zero, RCU
132  * can assume that there is but one task, allowing RCU to (for example)
133  * optimize synchronize_sched() to a simple barrier().  When this variable
134  * is one, RCU must actually do all the hard work required to detect real
135  * grace periods.  This variable is also used to suppress boot-time false
136  * positives from lockdep-RCU error checking.
137  */
138 int rcu_scheduler_active __read_mostly;
139 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
140 
141 /*
142  * The rcu_scheduler_fully_active variable transitions from zero to one
143  * during the early_initcall() processing, which is after the scheduler
144  * is capable of creating new tasks.  So RCU processing (for example,
145  * creating tasks for RCU priority boosting) must be delayed until after
146  * rcu_scheduler_fully_active transitions from zero to one.  We also
147  * currently delay invocation of any RCU callbacks until after this point.
148  *
149  * It might later prove better for people registering RCU callbacks during
150  * early boot to take responsibility for these callbacks, but one step at
151  * a time.
152  */
153 static int rcu_scheduler_fully_active __read_mostly;
154 
155 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
156 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
157 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
158 static void invoke_rcu_core(void);
159 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
160 static void rcu_report_exp_rdp(struct rcu_state *rsp,
161 			       struct rcu_data *rdp, bool wake);
162 
163 /* rcuc/rcub kthread realtime priority */
164 #ifdef CONFIG_RCU_KTHREAD_PRIO
165 static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO;
166 #else /* #ifdef CONFIG_RCU_KTHREAD_PRIO */
167 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
168 #endif /* #else #ifdef CONFIG_RCU_KTHREAD_PRIO */
169 module_param(kthread_prio, int, 0644);
170 
171 /* Delay in jiffies for grace-period initialization delays, debug only. */
172 
173 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT
174 static int gp_preinit_delay = CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT_DELAY;
175 module_param(gp_preinit_delay, int, 0644);
176 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
177 static const int gp_preinit_delay;
178 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
179 
180 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT
181 static int gp_init_delay = CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY;
182 module_param(gp_init_delay, int, 0644);
183 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
184 static const int gp_init_delay;
185 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
186 
187 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP
188 static int gp_cleanup_delay = CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP_DELAY;
189 module_param(gp_cleanup_delay, int, 0644);
190 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
191 static const int gp_cleanup_delay;
192 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
193 
194 /*
195  * Number of grace periods between delays, normalized by the duration of
196  * the delay.  The longer the the delay, the more the grace periods between
197  * each delay.  The reason for this normalization is that it means that,
198  * for non-zero delays, the overall slowdown of grace periods is constant
199  * regardless of the duration of the delay.  This arrangement balances
200  * the need for long delays to increase some race probabilities with the
201  * need for fast grace periods to increase other race probabilities.
202  */
203 #define PER_RCU_NODE_PERIOD 3	/* Number of grace periods between delays. */
204 
205 /*
206  * Track the rcutorture test sequence number and the update version
207  * number within a given test.  The rcutorture_testseq is incremented
208  * on every rcutorture module load and unload, so has an odd value
209  * when a test is running.  The rcutorture_vernum is set to zero
210  * when rcutorture starts and is incremented on each rcutorture update.
211  * These variables enable correlating rcutorture output with the
212  * RCU tracing information.
213  */
214 unsigned long rcutorture_testseq;
215 unsigned long rcutorture_vernum;
216 
217 /*
218  * Compute the mask of online CPUs for the specified rcu_node structure.
219  * This will not be stable unless the rcu_node structure's ->lock is
220  * held, but the bit corresponding to the current CPU will be stable
221  * in most contexts.
222  */
223 unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
224 {
225 	return READ_ONCE(rnp->qsmaskinitnext);
226 }
227 
228 /*
229  * Return true if an RCU grace period is in progress.  The READ_ONCE()s
230  * permit this function to be invoked without holding the root rcu_node
231  * structure's ->lock, but of course results can be subject to change.
232  */
233 static int rcu_gp_in_progress(struct rcu_state *rsp)
234 {
235 	return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
236 }
237 
238 /*
239  * Note a quiescent state.  Because we do not need to know
240  * how many quiescent states passed, just if there was at least
241  * one since the start of the grace period, this just sets a flag.
242  * The caller must have disabled preemption.
243  */
244 void rcu_sched_qs(void)
245 {
246 	if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.s))
247 		return;
248 	trace_rcu_grace_period(TPS("rcu_sched"),
249 			       __this_cpu_read(rcu_sched_data.gpnum),
250 			       TPS("cpuqs"));
251 	__this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false);
252 	if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
253 		return;
254 	__this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false);
255 	rcu_report_exp_rdp(&rcu_sched_state,
256 			   this_cpu_ptr(&rcu_sched_data), true);
257 }
258 
259 void rcu_bh_qs(void)
260 {
261 	if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) {
262 		trace_rcu_grace_period(TPS("rcu_bh"),
263 				       __this_cpu_read(rcu_bh_data.gpnum),
264 				       TPS("cpuqs"));
265 		__this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false);
266 	}
267 }
268 
269 static DEFINE_PER_CPU(int, rcu_sched_qs_mask);
270 
271 static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
272 	.dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
273 	.dynticks = ATOMIC_INIT(1),
274 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
275 	.dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
276 	.dynticks_idle = ATOMIC_INIT(1),
277 #endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
278 };
279 
280 DEFINE_PER_CPU_SHARED_ALIGNED(unsigned long, rcu_qs_ctr);
281 EXPORT_PER_CPU_SYMBOL_GPL(rcu_qs_ctr);
282 
283 /*
284  * Let the RCU core know that this CPU has gone through the scheduler,
285  * which is a quiescent state.  This is called when the need for a
286  * quiescent state is urgent, so we burn an atomic operation and full
287  * memory barriers to let the RCU core know about it, regardless of what
288  * this CPU might (or might not) do in the near future.
289  *
290  * We inform the RCU core by emulating a zero-duration dyntick-idle
291  * period, which we in turn do by incrementing the ->dynticks counter
292  * by two.
293  *
294  * The caller must have disabled interrupts.
295  */
296 static void rcu_momentary_dyntick_idle(void)
297 {
298 	struct rcu_data *rdp;
299 	struct rcu_dynticks *rdtp;
300 	int resched_mask;
301 	struct rcu_state *rsp;
302 
303 	/*
304 	 * Yes, we can lose flag-setting operations.  This is OK, because
305 	 * the flag will be set again after some delay.
306 	 */
307 	resched_mask = raw_cpu_read(rcu_sched_qs_mask);
308 	raw_cpu_write(rcu_sched_qs_mask, 0);
309 
310 	/* Find the flavor that needs a quiescent state. */
311 	for_each_rcu_flavor(rsp) {
312 		rdp = raw_cpu_ptr(rsp->rda);
313 		if (!(resched_mask & rsp->flavor_mask))
314 			continue;
315 		smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */
316 		if (READ_ONCE(rdp->mynode->completed) !=
317 		    READ_ONCE(rdp->cond_resched_completed))
318 			continue;
319 
320 		/*
321 		 * Pretend to be momentarily idle for the quiescent state.
322 		 * This allows the grace-period kthread to record the
323 		 * quiescent state, with no need for this CPU to do anything
324 		 * further.
325 		 */
326 		rdtp = this_cpu_ptr(&rcu_dynticks);
327 		smp_mb__before_atomic(); /* Earlier stuff before QS. */
328 		atomic_add(2, &rdtp->dynticks);  /* QS. */
329 		smp_mb__after_atomic(); /* Later stuff after QS. */
330 		break;
331 	}
332 }
333 
334 /*
335  * Note a context switch.  This is a quiescent state for RCU-sched,
336  * and requires special handling for preemptible RCU.
337  * The caller must have disabled interrupts.
338  */
339 void rcu_note_context_switch(void)
340 {
341 	barrier(); /* Avoid RCU read-side critical sections leaking down. */
342 	trace_rcu_utilization(TPS("Start context switch"));
343 	rcu_sched_qs();
344 	rcu_preempt_note_context_switch();
345 	if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
346 		rcu_momentary_dyntick_idle();
347 	trace_rcu_utilization(TPS("End context switch"));
348 	barrier(); /* Avoid RCU read-side critical sections leaking up. */
349 }
350 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
351 
352 /*
353  * Register a quiescent state for all RCU flavors.  If there is an
354  * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
355  * dyntick-idle quiescent state visible to other CPUs (but only for those
356  * RCU flavors in desperate need of a quiescent state, which will normally
357  * be none of them).  Either way, do a lightweight quiescent state for
358  * all RCU flavors.
359  *
360  * The barrier() calls are redundant in the common case when this is
361  * called externally, but just in case this is called from within this
362  * file.
363  *
364  */
365 void rcu_all_qs(void)
366 {
367 	unsigned long flags;
368 
369 	barrier(); /* Avoid RCU read-side critical sections leaking down. */
370 	if (unlikely(raw_cpu_read(rcu_sched_qs_mask))) {
371 		local_irq_save(flags);
372 		rcu_momentary_dyntick_idle();
373 		local_irq_restore(flags);
374 	}
375 	if (unlikely(raw_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))) {
376 		/*
377 		 * Yes, we just checked a per-CPU variable with preemption
378 		 * enabled, so we might be migrated to some other CPU at
379 		 * this point.  That is OK because in that case, the
380 		 * migration will supply the needed quiescent state.
381 		 * We might end up needlessly disabling preemption and
382 		 * invoking rcu_sched_qs() on the destination CPU, but
383 		 * the probability and cost are both quite low, so this
384 		 * should not be a problem in practice.
385 		 */
386 		preempt_disable();
387 		rcu_sched_qs();
388 		preempt_enable();
389 	}
390 	this_cpu_inc(rcu_qs_ctr);
391 	barrier(); /* Avoid RCU read-side critical sections leaking up. */
392 }
393 EXPORT_SYMBOL_GPL(rcu_all_qs);
394 
395 static long blimit = 10;	/* Maximum callbacks per rcu_do_batch. */
396 static long qhimark = 10000;	/* If this many pending, ignore blimit. */
397 static long qlowmark = 100;	/* Once only this many pending, use blimit. */
398 
399 module_param(blimit, long, 0444);
400 module_param(qhimark, long, 0444);
401 module_param(qlowmark, long, 0444);
402 
403 static ulong jiffies_till_first_fqs = ULONG_MAX;
404 static ulong jiffies_till_next_fqs = ULONG_MAX;
405 static bool rcu_kick_kthreads;
406 
407 module_param(jiffies_till_first_fqs, ulong, 0644);
408 module_param(jiffies_till_next_fqs, ulong, 0644);
409 module_param(rcu_kick_kthreads, bool, 0644);
410 
411 /*
412  * How long the grace period must be before we start recruiting
413  * quiescent-state help from rcu_note_context_switch().
414  */
415 static ulong jiffies_till_sched_qs = HZ / 20;
416 module_param(jiffies_till_sched_qs, ulong, 0644);
417 
418 static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
419 				  struct rcu_data *rdp);
420 static void force_qs_rnp(struct rcu_state *rsp,
421 			 int (*f)(struct rcu_data *rsp, bool *isidle,
422 				  unsigned long *maxj),
423 			 bool *isidle, unsigned long *maxj);
424 static void force_quiescent_state(struct rcu_state *rsp);
425 static int rcu_pending(void);
426 
427 /*
428  * Return the number of RCU batches started thus far for debug & stats.
429  */
430 unsigned long rcu_batches_started(void)
431 {
432 	return rcu_state_p->gpnum;
433 }
434 EXPORT_SYMBOL_GPL(rcu_batches_started);
435 
436 /*
437  * Return the number of RCU-sched batches started thus far for debug & stats.
438  */
439 unsigned long rcu_batches_started_sched(void)
440 {
441 	return rcu_sched_state.gpnum;
442 }
443 EXPORT_SYMBOL_GPL(rcu_batches_started_sched);
444 
445 /*
446  * Return the number of RCU BH batches started thus far for debug & stats.
447  */
448 unsigned long rcu_batches_started_bh(void)
449 {
450 	return rcu_bh_state.gpnum;
451 }
452 EXPORT_SYMBOL_GPL(rcu_batches_started_bh);
453 
454 /*
455  * Return the number of RCU batches completed thus far for debug & stats.
456  */
457 unsigned long rcu_batches_completed(void)
458 {
459 	return rcu_state_p->completed;
460 }
461 EXPORT_SYMBOL_GPL(rcu_batches_completed);
462 
463 /*
464  * Return the number of RCU-sched batches completed thus far for debug & stats.
465  */
466 unsigned long rcu_batches_completed_sched(void)
467 {
468 	return rcu_sched_state.completed;
469 }
470 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
471 
472 /*
473  * Return the number of RCU BH batches completed thus far for debug & stats.
474  */
475 unsigned long rcu_batches_completed_bh(void)
476 {
477 	return rcu_bh_state.completed;
478 }
479 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
480 
481 /*
482  * Return the number of RCU expedited batches completed thus far for
483  * debug & stats.  Odd numbers mean that a batch is in progress, even
484  * numbers mean idle.  The value returned will thus be roughly double
485  * the cumulative batches since boot.
486  */
487 unsigned long rcu_exp_batches_completed(void)
488 {
489 	return rcu_state_p->expedited_sequence;
490 }
491 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
492 
493 /*
494  * Return the number of RCU-sched expedited batches completed thus far
495  * for debug & stats.  Similar to rcu_exp_batches_completed().
496  */
497 unsigned long rcu_exp_batches_completed_sched(void)
498 {
499 	return rcu_sched_state.expedited_sequence;
500 }
501 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed_sched);
502 
503 /*
504  * Force a quiescent state.
505  */
506 void rcu_force_quiescent_state(void)
507 {
508 	force_quiescent_state(rcu_state_p);
509 }
510 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
511 
512 /*
513  * Force a quiescent state for RCU BH.
514  */
515 void rcu_bh_force_quiescent_state(void)
516 {
517 	force_quiescent_state(&rcu_bh_state);
518 }
519 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
520 
521 /*
522  * Force a quiescent state for RCU-sched.
523  */
524 void rcu_sched_force_quiescent_state(void)
525 {
526 	force_quiescent_state(&rcu_sched_state);
527 }
528 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
529 
530 /*
531  * Show the state of the grace-period kthreads.
532  */
533 void show_rcu_gp_kthreads(void)
534 {
535 	struct rcu_state *rsp;
536 
537 	for_each_rcu_flavor(rsp) {
538 		pr_info("%s: wait state: %d ->state: %#lx\n",
539 			rsp->name, rsp->gp_state, rsp->gp_kthread->state);
540 		/* sched_show_task(rsp->gp_kthread); */
541 	}
542 }
543 EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
544 
545 /*
546  * Record the number of times rcutorture tests have been initiated and
547  * terminated.  This information allows the debugfs tracing stats to be
548  * correlated to the rcutorture messages, even when the rcutorture module
549  * is being repeatedly loaded and unloaded.  In other words, we cannot
550  * store this state in rcutorture itself.
551  */
552 void rcutorture_record_test_transition(void)
553 {
554 	rcutorture_testseq++;
555 	rcutorture_vernum = 0;
556 }
557 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
558 
559 /*
560  * Send along grace-period-related data for rcutorture diagnostics.
561  */
562 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
563 			    unsigned long *gpnum, unsigned long *completed)
564 {
565 	struct rcu_state *rsp = NULL;
566 
567 	switch (test_type) {
568 	case RCU_FLAVOR:
569 		rsp = rcu_state_p;
570 		break;
571 	case RCU_BH_FLAVOR:
572 		rsp = &rcu_bh_state;
573 		break;
574 	case RCU_SCHED_FLAVOR:
575 		rsp = &rcu_sched_state;
576 		break;
577 	default:
578 		break;
579 	}
580 	if (rsp != NULL) {
581 		*flags = READ_ONCE(rsp->gp_flags);
582 		*gpnum = READ_ONCE(rsp->gpnum);
583 		*completed = READ_ONCE(rsp->completed);
584 		return;
585 	}
586 	*flags = 0;
587 	*gpnum = 0;
588 	*completed = 0;
589 }
590 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
591 
592 /*
593  * Record the number of writer passes through the current rcutorture test.
594  * This is also used to correlate debugfs tracing stats with the rcutorture
595  * messages.
596  */
597 void rcutorture_record_progress(unsigned long vernum)
598 {
599 	rcutorture_vernum++;
600 }
601 EXPORT_SYMBOL_GPL(rcutorture_record_progress);
602 
603 /*
604  * Does the CPU have callbacks ready to be invoked?
605  */
606 static int
607 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
608 {
609 	return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
610 	       rdp->nxttail[RCU_DONE_TAIL] != NULL;
611 }
612 
613 /*
614  * Return the root node of the specified rcu_state structure.
615  */
616 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
617 {
618 	return &rsp->node[0];
619 }
620 
621 /*
622  * Is there any need for future grace periods?
623  * Interrupts must be disabled.  If the caller does not hold the root
624  * rnp_node structure's ->lock, the results are advisory only.
625  */
626 static int rcu_future_needs_gp(struct rcu_state *rsp)
627 {
628 	struct rcu_node *rnp = rcu_get_root(rsp);
629 	int idx = (READ_ONCE(rnp->completed) + 1) & 0x1;
630 	int *fp = &rnp->need_future_gp[idx];
631 
632 	return READ_ONCE(*fp);
633 }
634 
635 /*
636  * Does the current CPU require a not-yet-started grace period?
637  * The caller must have disabled interrupts to prevent races with
638  * normal callback registry.
639  */
640 static bool
641 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
642 {
643 	int i;
644 
645 	if (rcu_gp_in_progress(rsp))
646 		return false;  /* No, a grace period is already in progress. */
647 	if (rcu_future_needs_gp(rsp))
648 		return true;  /* Yes, a no-CBs CPU needs one. */
649 	if (!rdp->nxttail[RCU_NEXT_TAIL])
650 		return false;  /* No, this is a no-CBs (or offline) CPU. */
651 	if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
652 		return true;  /* Yes, CPU has newly registered callbacks. */
653 	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
654 		if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
655 		    ULONG_CMP_LT(READ_ONCE(rsp->completed),
656 				 rdp->nxtcompleted[i]))
657 			return true;  /* Yes, CBs for future grace period. */
658 	return false; /* No grace period needed. */
659 }
660 
661 /*
662  * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
663  *
664  * If the new value of the ->dynticks_nesting counter now is zero,
665  * we really have entered idle, and must do the appropriate accounting.
666  * The caller must have disabled interrupts.
667  */
668 static void rcu_eqs_enter_common(long long oldval, bool user)
669 {
670 	struct rcu_state *rsp;
671 	struct rcu_data *rdp;
672 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
673 
674 	trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
675 	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
676 	    !user && !is_idle_task(current)) {
677 		struct task_struct *idle __maybe_unused =
678 			idle_task(smp_processor_id());
679 
680 		trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
681 		rcu_ftrace_dump(DUMP_ORIG);
682 		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
683 			  current->pid, current->comm,
684 			  idle->pid, idle->comm); /* must be idle task! */
685 	}
686 	for_each_rcu_flavor(rsp) {
687 		rdp = this_cpu_ptr(rsp->rda);
688 		do_nocb_deferred_wakeup(rdp);
689 	}
690 	rcu_prepare_for_idle();
691 	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
692 	smp_mb__before_atomic();  /* See above. */
693 	atomic_inc(&rdtp->dynticks);
694 	smp_mb__after_atomic();  /* Force ordering with next sojourn. */
695 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
696 		     atomic_read(&rdtp->dynticks) & 0x1);
697 	rcu_dynticks_task_enter();
698 
699 	/*
700 	 * It is illegal to enter an extended quiescent state while
701 	 * in an RCU read-side critical section.
702 	 */
703 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
704 			 "Illegal idle entry in RCU read-side critical section.");
705 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),
706 			 "Illegal idle entry in RCU-bh read-side critical section.");
707 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),
708 			 "Illegal idle entry in RCU-sched read-side critical section.");
709 }
710 
711 /*
712  * Enter an RCU extended quiescent state, which can be either the
713  * idle loop or adaptive-tickless usermode execution.
714  */
715 static void rcu_eqs_enter(bool user)
716 {
717 	long long oldval;
718 	struct rcu_dynticks *rdtp;
719 
720 	rdtp = this_cpu_ptr(&rcu_dynticks);
721 	oldval = rdtp->dynticks_nesting;
722 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
723 		     (oldval & DYNTICK_TASK_NEST_MASK) == 0);
724 	if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
725 		rdtp->dynticks_nesting = 0;
726 		rcu_eqs_enter_common(oldval, user);
727 	} else {
728 		rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
729 	}
730 }
731 
732 /**
733  * rcu_idle_enter - inform RCU that current CPU is entering idle
734  *
735  * Enter idle mode, in other words, -leave- the mode in which RCU
736  * read-side critical sections can occur.  (Though RCU read-side
737  * critical sections can occur in irq handlers in idle, a possibility
738  * handled by irq_enter() and irq_exit().)
739  *
740  * We crowbar the ->dynticks_nesting field to zero to allow for
741  * the possibility of usermode upcalls having messed up our count
742  * of interrupt nesting level during the prior busy period.
743  */
744 void rcu_idle_enter(void)
745 {
746 	unsigned long flags;
747 
748 	local_irq_save(flags);
749 	rcu_eqs_enter(false);
750 	rcu_sysidle_enter(0);
751 	local_irq_restore(flags);
752 }
753 EXPORT_SYMBOL_GPL(rcu_idle_enter);
754 
755 #ifdef CONFIG_NO_HZ_FULL
756 /**
757  * rcu_user_enter - inform RCU that we are resuming userspace.
758  *
759  * Enter RCU idle mode right before resuming userspace.  No use of RCU
760  * is permitted between this call and rcu_user_exit(). This way the
761  * CPU doesn't need to maintain the tick for RCU maintenance purposes
762  * when the CPU runs in userspace.
763  */
764 void rcu_user_enter(void)
765 {
766 	rcu_eqs_enter(1);
767 }
768 #endif /* CONFIG_NO_HZ_FULL */
769 
770 /**
771  * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
772  *
773  * Exit from an interrupt handler, which might possibly result in entering
774  * idle mode, in other words, leaving the mode in which read-side critical
775  * sections can occur.  The caller must have disabled interrupts.
776  *
777  * This code assumes that the idle loop never does anything that might
778  * result in unbalanced calls to irq_enter() and irq_exit().  If your
779  * architecture violates this assumption, RCU will give you what you
780  * deserve, good and hard.  But very infrequently and irreproducibly.
781  *
782  * Use things like work queues to work around this limitation.
783  *
784  * You have been warned.
785  */
786 void rcu_irq_exit(void)
787 {
788 	long long oldval;
789 	struct rcu_dynticks *rdtp;
790 
791 	RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_exit() invoked with irqs enabled!!!");
792 	rdtp = this_cpu_ptr(&rcu_dynticks);
793 	oldval = rdtp->dynticks_nesting;
794 	rdtp->dynticks_nesting--;
795 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
796 		     rdtp->dynticks_nesting < 0);
797 	if (rdtp->dynticks_nesting)
798 		trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
799 	else
800 		rcu_eqs_enter_common(oldval, true);
801 	rcu_sysidle_enter(1);
802 }
803 
804 /*
805  * Wrapper for rcu_irq_exit() where interrupts are enabled.
806  */
807 void rcu_irq_exit_irqson(void)
808 {
809 	unsigned long flags;
810 
811 	local_irq_save(flags);
812 	rcu_irq_exit();
813 	local_irq_restore(flags);
814 }
815 
816 /*
817  * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
818  *
819  * If the new value of the ->dynticks_nesting counter was previously zero,
820  * we really have exited idle, and must do the appropriate accounting.
821  * The caller must have disabled interrupts.
822  */
823 static void rcu_eqs_exit_common(long long oldval, int user)
824 {
825 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
826 
827 	rcu_dynticks_task_exit();
828 	smp_mb__before_atomic();  /* Force ordering w/previous sojourn. */
829 	atomic_inc(&rdtp->dynticks);
830 	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
831 	smp_mb__after_atomic();  /* See above. */
832 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
833 		     !(atomic_read(&rdtp->dynticks) & 0x1));
834 	rcu_cleanup_after_idle();
835 	trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
836 	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
837 	    !user && !is_idle_task(current)) {
838 		struct task_struct *idle __maybe_unused =
839 			idle_task(smp_processor_id());
840 
841 		trace_rcu_dyntick(TPS("Error on exit: not idle task"),
842 				  oldval, rdtp->dynticks_nesting);
843 		rcu_ftrace_dump(DUMP_ORIG);
844 		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
845 			  current->pid, current->comm,
846 			  idle->pid, idle->comm); /* must be idle task! */
847 	}
848 }
849 
850 /*
851  * Exit an RCU extended quiescent state, which can be either the
852  * idle loop or adaptive-tickless usermode execution.
853  */
854 static void rcu_eqs_exit(bool user)
855 {
856 	struct rcu_dynticks *rdtp;
857 	long long oldval;
858 
859 	rdtp = this_cpu_ptr(&rcu_dynticks);
860 	oldval = rdtp->dynticks_nesting;
861 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
862 	if (oldval & DYNTICK_TASK_NEST_MASK) {
863 		rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
864 	} else {
865 		rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
866 		rcu_eqs_exit_common(oldval, user);
867 	}
868 }
869 
870 /**
871  * rcu_idle_exit - inform RCU that current CPU is leaving idle
872  *
873  * Exit idle mode, in other words, -enter- the mode in which RCU
874  * read-side critical sections can occur.
875  *
876  * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
877  * allow for the possibility of usermode upcalls messing up our count
878  * of interrupt nesting level during the busy period that is just
879  * now starting.
880  */
881 void rcu_idle_exit(void)
882 {
883 	unsigned long flags;
884 
885 	local_irq_save(flags);
886 	rcu_eqs_exit(false);
887 	rcu_sysidle_exit(0);
888 	local_irq_restore(flags);
889 }
890 EXPORT_SYMBOL_GPL(rcu_idle_exit);
891 
892 #ifdef CONFIG_NO_HZ_FULL
893 /**
894  * rcu_user_exit - inform RCU that we are exiting userspace.
895  *
896  * Exit RCU idle mode while entering the kernel because it can
897  * run a RCU read side critical section anytime.
898  */
899 void rcu_user_exit(void)
900 {
901 	rcu_eqs_exit(1);
902 }
903 #endif /* CONFIG_NO_HZ_FULL */
904 
905 /**
906  * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
907  *
908  * Enter an interrupt handler, which might possibly result in exiting
909  * idle mode, in other words, entering the mode in which read-side critical
910  * sections can occur.  The caller must have disabled interrupts.
911  *
912  * Note that the Linux kernel is fully capable of entering an interrupt
913  * handler that it never exits, for example when doing upcalls to
914  * user mode!  This code assumes that the idle loop never does upcalls to
915  * user mode.  If your architecture does do upcalls from the idle loop (or
916  * does anything else that results in unbalanced calls to the irq_enter()
917  * and irq_exit() functions), RCU will give you what you deserve, good
918  * and hard.  But very infrequently and irreproducibly.
919  *
920  * Use things like work queues to work around this limitation.
921  *
922  * You have been warned.
923  */
924 void rcu_irq_enter(void)
925 {
926 	struct rcu_dynticks *rdtp;
927 	long long oldval;
928 
929 	RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_enter() invoked with irqs enabled!!!");
930 	rdtp = this_cpu_ptr(&rcu_dynticks);
931 	oldval = rdtp->dynticks_nesting;
932 	rdtp->dynticks_nesting++;
933 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
934 		     rdtp->dynticks_nesting == 0);
935 	if (oldval)
936 		trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
937 	else
938 		rcu_eqs_exit_common(oldval, true);
939 	rcu_sysidle_exit(1);
940 }
941 
942 /*
943  * Wrapper for rcu_irq_enter() where interrupts are enabled.
944  */
945 void rcu_irq_enter_irqson(void)
946 {
947 	unsigned long flags;
948 
949 	local_irq_save(flags);
950 	rcu_irq_enter();
951 	local_irq_restore(flags);
952 }
953 
954 /**
955  * rcu_nmi_enter - inform RCU of entry to NMI context
956  *
957  * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
958  * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
959  * that the CPU is active.  This implementation permits nested NMIs, as
960  * long as the nesting level does not overflow an int.  (You will probably
961  * run out of stack space first.)
962  */
963 void rcu_nmi_enter(void)
964 {
965 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
966 	int incby = 2;
967 
968 	/* Complain about underflow. */
969 	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);
970 
971 	/*
972 	 * If idle from RCU viewpoint, atomically increment ->dynticks
973 	 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
974 	 * Otherwise, increment ->dynticks_nmi_nesting by two.  This means
975 	 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
976 	 * to be in the outermost NMI handler that interrupted an RCU-idle
977 	 * period (observation due to Andy Lutomirski).
978 	 */
979 	if (!(atomic_read(&rdtp->dynticks) & 0x1)) {
980 		smp_mb__before_atomic();  /* Force delay from prior write. */
981 		atomic_inc(&rdtp->dynticks);
982 		/* atomic_inc() before later RCU read-side crit sects */
983 		smp_mb__after_atomic();  /* See above. */
984 		WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
985 		incby = 1;
986 	}
987 	rdtp->dynticks_nmi_nesting += incby;
988 	barrier();
989 }
990 
991 /**
992  * rcu_nmi_exit - inform RCU of exit from NMI context
993  *
994  * If we are returning from the outermost NMI handler that interrupted an
995  * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
996  * to let the RCU grace-period handling know that the CPU is back to
997  * being RCU-idle.
998  */
999 void rcu_nmi_exit(void)
1000 {
1001 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1002 
1003 	/*
1004 	 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
1005 	 * (We are exiting an NMI handler, so RCU better be paying attention
1006 	 * to us!)
1007 	 */
1008 	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
1009 	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
1010 
1011 	/*
1012 	 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
1013 	 * leave it in non-RCU-idle state.
1014 	 */
1015 	if (rdtp->dynticks_nmi_nesting != 1) {
1016 		rdtp->dynticks_nmi_nesting -= 2;
1017 		return;
1018 	}
1019 
1020 	/* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
1021 	rdtp->dynticks_nmi_nesting = 0;
1022 	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
1023 	smp_mb__before_atomic();  /* See above. */
1024 	atomic_inc(&rdtp->dynticks);
1025 	smp_mb__after_atomic();  /* Force delay to next write. */
1026 	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
1027 }
1028 
1029 /**
1030  * __rcu_is_watching - are RCU read-side critical sections safe?
1031  *
1032  * Return true if RCU is watching the running CPU, which means that
1033  * this CPU can safely enter RCU read-side critical sections.  Unlike
1034  * rcu_is_watching(), the caller of __rcu_is_watching() must have at
1035  * least disabled preemption.
1036  */
1037 bool notrace __rcu_is_watching(void)
1038 {
1039 	return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
1040 }
1041 
1042 /**
1043  * rcu_is_watching - see if RCU thinks that the current CPU is idle
1044  *
1045  * If the current CPU is in its idle loop and is neither in an interrupt
1046  * or NMI handler, return true.
1047  */
1048 bool notrace rcu_is_watching(void)
1049 {
1050 	bool ret;
1051 
1052 	preempt_disable_notrace();
1053 	ret = __rcu_is_watching();
1054 	preempt_enable_notrace();
1055 	return ret;
1056 }
1057 EXPORT_SYMBOL_GPL(rcu_is_watching);
1058 
1059 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
1060 
1061 /*
1062  * Is the current CPU online?  Disable preemption to avoid false positives
1063  * that could otherwise happen due to the current CPU number being sampled,
1064  * this task being preempted, its old CPU being taken offline, resuming
1065  * on some other CPU, then determining that its old CPU is now offline.
1066  * It is OK to use RCU on an offline processor during initial boot, hence
1067  * the check for rcu_scheduler_fully_active.  Note also that it is OK
1068  * for a CPU coming online to use RCU for one jiffy prior to marking itself
1069  * online in the cpu_online_mask.  Similarly, it is OK for a CPU going
1070  * offline to continue to use RCU for one jiffy after marking itself
1071  * offline in the cpu_online_mask.  This leniency is necessary given the
1072  * non-atomic nature of the online and offline processing, for example,
1073  * the fact that a CPU enters the scheduler after completing the CPU_DYING
1074  * notifiers.
1075  *
1076  * This is also why RCU internally marks CPUs online during the
1077  * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
1078  *
1079  * Disable checking if in an NMI handler because we cannot safely report
1080  * errors from NMI handlers anyway.
1081  */
1082 bool rcu_lockdep_current_cpu_online(void)
1083 {
1084 	struct rcu_data *rdp;
1085 	struct rcu_node *rnp;
1086 	bool ret;
1087 
1088 	if (in_nmi())
1089 		return true;
1090 	preempt_disable();
1091 	rdp = this_cpu_ptr(&rcu_sched_data);
1092 	rnp = rdp->mynode;
1093 	ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
1094 	      !rcu_scheduler_fully_active;
1095 	preempt_enable();
1096 	return ret;
1097 }
1098 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
1099 
1100 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1101 
1102 /**
1103  * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
1104  *
1105  * If the current CPU is idle or running at a first-level (not nested)
1106  * interrupt from idle, return true.  The caller must have at least
1107  * disabled preemption.
1108  */
1109 static int rcu_is_cpu_rrupt_from_idle(void)
1110 {
1111 	return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
1112 }
1113 
1114 /*
1115  * Snapshot the specified CPU's dynticks counter so that we can later
1116  * credit them with an implicit quiescent state.  Return 1 if this CPU
1117  * is in dynticks idle mode, which is an extended quiescent state.
1118  */
1119 static int dyntick_save_progress_counter(struct rcu_data *rdp,
1120 					 bool *isidle, unsigned long *maxj)
1121 {
1122 	rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
1123 	rcu_sysidle_check_cpu(rdp, isidle, maxj);
1124 	if ((rdp->dynticks_snap & 0x1) == 0) {
1125 		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1126 		if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4,
1127 				 rdp->mynode->gpnum))
1128 			WRITE_ONCE(rdp->gpwrap, true);
1129 		return 1;
1130 	}
1131 	return 0;
1132 }
1133 
1134 /*
1135  * Return true if the specified CPU has passed through a quiescent
1136  * state by virtue of being in or having passed through an dynticks
1137  * idle state since the last call to dyntick_save_progress_counter()
1138  * for this same CPU, or by virtue of having been offline.
1139  */
1140 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
1141 				    bool *isidle, unsigned long *maxj)
1142 {
1143 	unsigned int curr;
1144 	int *rcrmp;
1145 	unsigned int snap;
1146 
1147 	curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
1148 	snap = (unsigned int)rdp->dynticks_snap;
1149 
1150 	/*
1151 	 * If the CPU passed through or entered a dynticks idle phase with
1152 	 * no active irq/NMI handlers, then we can safely pretend that the CPU
1153 	 * already acknowledged the request to pass through a quiescent
1154 	 * state.  Either way, that CPU cannot possibly be in an RCU
1155 	 * read-side critical section that started before the beginning
1156 	 * of the current RCU grace period.
1157 	 */
1158 	if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
1159 		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1160 		rdp->dynticks_fqs++;
1161 		return 1;
1162 	}
1163 
1164 	/*
1165 	 * Check for the CPU being offline, but only if the grace period
1166 	 * is old enough.  We don't need to worry about the CPU changing
1167 	 * state: If we see it offline even once, it has been through a
1168 	 * quiescent state.
1169 	 *
1170 	 * The reason for insisting that the grace period be at least
1171 	 * one jiffy old is that CPUs that are not quite online and that
1172 	 * have just gone offline can still execute RCU read-side critical
1173 	 * sections.
1174 	 */
1175 	if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
1176 		return 0;  /* Grace period is not old enough. */
1177 	barrier();
1178 	if (cpu_is_offline(rdp->cpu)) {
1179 		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
1180 		rdp->offline_fqs++;
1181 		return 1;
1182 	}
1183 
1184 	/*
1185 	 * A CPU running for an extended time within the kernel can
1186 	 * delay RCU grace periods.  When the CPU is in NO_HZ_FULL mode,
1187 	 * even context-switching back and forth between a pair of
1188 	 * in-kernel CPU-bound tasks cannot advance grace periods.
1189 	 * So if the grace period is old enough, make the CPU pay attention.
1190 	 * Note that the unsynchronized assignments to the per-CPU
1191 	 * rcu_sched_qs_mask variable are safe.  Yes, setting of
1192 	 * bits can be lost, but they will be set again on the next
1193 	 * force-quiescent-state pass.  So lost bit sets do not result
1194 	 * in incorrect behavior, merely in a grace period lasting
1195 	 * a few jiffies longer than it might otherwise.  Because
1196 	 * there are at most four threads involved, and because the
1197 	 * updates are only once every few jiffies, the probability of
1198 	 * lossage (and thus of slight grace-period extension) is
1199 	 * quite low.
1200 	 *
1201 	 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
1202 	 * is set too high, we override with half of the RCU CPU stall
1203 	 * warning delay.
1204 	 */
1205 	rcrmp = &per_cpu(rcu_sched_qs_mask, rdp->cpu);
1206 	if (ULONG_CMP_GE(jiffies,
1207 			 rdp->rsp->gp_start + jiffies_till_sched_qs) ||
1208 	    ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
1209 		if (!(READ_ONCE(*rcrmp) & rdp->rsp->flavor_mask)) {
1210 			WRITE_ONCE(rdp->cond_resched_completed,
1211 				   READ_ONCE(rdp->mynode->completed));
1212 			smp_mb(); /* ->cond_resched_completed before *rcrmp. */
1213 			WRITE_ONCE(*rcrmp,
1214 				   READ_ONCE(*rcrmp) + rdp->rsp->flavor_mask);
1215 		}
1216 		rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
1217 	}
1218 
1219 	/* And if it has been a really long time, kick the CPU as well. */
1220 	if (ULONG_CMP_GE(jiffies,
1221 			 rdp->rsp->gp_start + 2 * jiffies_till_sched_qs) ||
1222 	    ULONG_CMP_GE(jiffies, rdp->rsp->gp_start + jiffies_till_sched_qs))
1223 		resched_cpu(rdp->cpu);  /* Force CPU into scheduler. */
1224 
1225 	return 0;
1226 }
1227 
1228 static void record_gp_stall_check_time(struct rcu_state *rsp)
1229 {
1230 	unsigned long j = jiffies;
1231 	unsigned long j1;
1232 
1233 	rsp->gp_start = j;
1234 	smp_wmb(); /* Record start time before stall time. */
1235 	j1 = rcu_jiffies_till_stall_check();
1236 	WRITE_ONCE(rsp->jiffies_stall, j + j1);
1237 	rsp->jiffies_resched = j + j1 / 2;
1238 	rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
1239 }
1240 
1241 /*
1242  * Convert a ->gp_state value to a character string.
1243  */
1244 static const char *gp_state_getname(short gs)
1245 {
1246 	if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
1247 		return "???";
1248 	return gp_state_names[gs];
1249 }
1250 
1251 /*
1252  * Complain about starvation of grace-period kthread.
1253  */
1254 static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
1255 {
1256 	unsigned long gpa;
1257 	unsigned long j;
1258 
1259 	j = jiffies;
1260 	gpa = READ_ONCE(rsp->gp_activity);
1261 	if (j - gpa > 2 * HZ) {
1262 		pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x %s(%d) ->state=%#lx\n",
1263 		       rsp->name, j - gpa,
1264 		       rsp->gpnum, rsp->completed,
1265 		       rsp->gp_flags,
1266 		       gp_state_getname(rsp->gp_state), rsp->gp_state,
1267 		       rsp->gp_kthread ? rsp->gp_kthread->state : ~0);
1268 		if (rsp->gp_kthread) {
1269 			sched_show_task(rsp->gp_kthread);
1270 			wake_up_process(rsp->gp_kthread);
1271 		}
1272 	}
1273 }
1274 
1275 /*
1276  * Dump stacks of all tasks running on stalled CPUs.
1277  */
1278 static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
1279 {
1280 	int cpu;
1281 	unsigned long flags;
1282 	struct rcu_node *rnp;
1283 
1284 	rcu_for_each_leaf_node(rsp, rnp) {
1285 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1286 		if (rnp->qsmask != 0) {
1287 			for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
1288 				if (rnp->qsmask & (1UL << cpu))
1289 					dump_cpu_task(rnp->grplo + cpu);
1290 		}
1291 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1292 	}
1293 }
1294 
1295 /*
1296  * If too much time has passed in the current grace period, and if
1297  * so configured, go kick the relevant kthreads.
1298  */
1299 static void rcu_stall_kick_kthreads(struct rcu_state *rsp)
1300 {
1301 	unsigned long j;
1302 
1303 	if (!rcu_kick_kthreads)
1304 		return;
1305 	j = READ_ONCE(rsp->jiffies_kick_kthreads);
1306 	if (time_after(jiffies, j) && rsp->gp_kthread) {
1307 		WARN_ONCE(1, "Kicking %s grace-period kthread\n", rsp->name);
1308 		rcu_ftrace_dump(DUMP_ALL);
1309 		wake_up_process(rsp->gp_kthread);
1310 		WRITE_ONCE(rsp->jiffies_kick_kthreads, j + HZ);
1311 	}
1312 }
1313 
1314 static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
1315 {
1316 	int cpu;
1317 	long delta;
1318 	unsigned long flags;
1319 	unsigned long gpa;
1320 	unsigned long j;
1321 	int ndetected = 0;
1322 	struct rcu_node *rnp = rcu_get_root(rsp);
1323 	long totqlen = 0;
1324 
1325 	/* Kick and suppress, if so configured. */
1326 	rcu_stall_kick_kthreads(rsp);
1327 	if (rcu_cpu_stall_suppress)
1328 		return;
1329 
1330 	/* Only let one CPU complain about others per time interval. */
1331 
1332 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1333 	delta = jiffies - READ_ONCE(rsp->jiffies_stall);
1334 	if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1335 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1336 		return;
1337 	}
1338 	WRITE_ONCE(rsp->jiffies_stall,
1339 		   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1340 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1341 
1342 	/*
1343 	 * OK, time to rat on our buddy...
1344 	 * See Documentation/RCU/stallwarn.txt for info on how to debug
1345 	 * RCU CPU stall warnings.
1346 	 */
1347 	pr_err("INFO: %s detected stalls on CPUs/tasks:",
1348 	       rsp->name);
1349 	print_cpu_stall_info_begin();
1350 	rcu_for_each_leaf_node(rsp, rnp) {
1351 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1352 		ndetected += rcu_print_task_stall(rnp);
1353 		if (rnp->qsmask != 0) {
1354 			for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
1355 				if (rnp->qsmask & (1UL << cpu)) {
1356 					print_cpu_stall_info(rsp,
1357 							     rnp->grplo + cpu);
1358 					ndetected++;
1359 				}
1360 		}
1361 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1362 	}
1363 
1364 	print_cpu_stall_info_end();
1365 	for_each_possible_cpu(cpu)
1366 		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1367 	pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
1368 	       smp_processor_id(), (long)(jiffies - rsp->gp_start),
1369 	       (long)rsp->gpnum, (long)rsp->completed, totqlen);
1370 	if (ndetected) {
1371 		rcu_dump_cpu_stacks(rsp);
1372 	} else {
1373 		if (READ_ONCE(rsp->gpnum) != gpnum ||
1374 		    READ_ONCE(rsp->completed) == gpnum) {
1375 			pr_err("INFO: Stall ended before state dump start\n");
1376 		} else {
1377 			j = jiffies;
1378 			gpa = READ_ONCE(rsp->gp_activity);
1379 			pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
1380 			       rsp->name, j - gpa, j, gpa,
1381 			       jiffies_till_next_fqs,
1382 			       rcu_get_root(rsp)->qsmask);
1383 			/* In this case, the current CPU might be at fault. */
1384 			sched_show_task(current);
1385 		}
1386 	}
1387 
1388 	/* Complain about tasks blocking the grace period. */
1389 	rcu_print_detail_task_stall(rsp);
1390 
1391 	rcu_check_gp_kthread_starvation(rsp);
1392 
1393 	force_quiescent_state(rsp);  /* Kick them all. */
1394 }
1395 
1396 static void print_cpu_stall(struct rcu_state *rsp)
1397 {
1398 	int cpu;
1399 	unsigned long flags;
1400 	struct rcu_node *rnp = rcu_get_root(rsp);
1401 	long totqlen = 0;
1402 
1403 	/* Kick and suppress, if so configured. */
1404 	rcu_stall_kick_kthreads(rsp);
1405 	if (rcu_cpu_stall_suppress)
1406 		return;
1407 
1408 	/*
1409 	 * OK, time to rat on ourselves...
1410 	 * See Documentation/RCU/stallwarn.txt for info on how to debug
1411 	 * RCU CPU stall warnings.
1412 	 */
1413 	pr_err("INFO: %s self-detected stall on CPU", rsp->name);
1414 	print_cpu_stall_info_begin();
1415 	print_cpu_stall_info(rsp, smp_processor_id());
1416 	print_cpu_stall_info_end();
1417 	for_each_possible_cpu(cpu)
1418 		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1419 	pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
1420 		jiffies - rsp->gp_start,
1421 		(long)rsp->gpnum, (long)rsp->completed, totqlen);
1422 
1423 	rcu_check_gp_kthread_starvation(rsp);
1424 
1425 	rcu_dump_cpu_stacks(rsp);
1426 
1427 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1428 	if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
1429 		WRITE_ONCE(rsp->jiffies_stall,
1430 			   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1431 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1432 
1433 	/*
1434 	 * Attempt to revive the RCU machinery by forcing a context switch.
1435 	 *
1436 	 * A context switch would normally allow the RCU state machine to make
1437 	 * progress and it could be we're stuck in kernel space without context
1438 	 * switches for an entirely unreasonable amount of time.
1439 	 */
1440 	resched_cpu(smp_processor_id());
1441 }
1442 
1443 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
1444 {
1445 	unsigned long completed;
1446 	unsigned long gpnum;
1447 	unsigned long gps;
1448 	unsigned long j;
1449 	unsigned long js;
1450 	struct rcu_node *rnp;
1451 
1452 	if ((rcu_cpu_stall_suppress && !rcu_kick_kthreads) ||
1453 	    !rcu_gp_in_progress(rsp))
1454 		return;
1455 	rcu_stall_kick_kthreads(rsp);
1456 	j = jiffies;
1457 
1458 	/*
1459 	 * Lots of memory barriers to reject false positives.
1460 	 *
1461 	 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1462 	 * then rsp->gp_start, and finally rsp->completed.  These values
1463 	 * are updated in the opposite order with memory barriers (or
1464 	 * equivalent) during grace-period initialization and cleanup.
1465 	 * Now, a false positive can occur if we get an new value of
1466 	 * rsp->gp_start and a old value of rsp->jiffies_stall.  But given
1467 	 * the memory barriers, the only way that this can happen is if one
1468 	 * grace period ends and another starts between these two fetches.
1469 	 * Detect this by comparing rsp->completed with the previous fetch
1470 	 * from rsp->gpnum.
1471 	 *
1472 	 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1473 	 * and rsp->gp_start suffice to forestall false positives.
1474 	 */
1475 	gpnum = READ_ONCE(rsp->gpnum);
1476 	smp_rmb(); /* Pick up ->gpnum first... */
1477 	js = READ_ONCE(rsp->jiffies_stall);
1478 	smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1479 	gps = READ_ONCE(rsp->gp_start);
1480 	smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1481 	completed = READ_ONCE(rsp->completed);
1482 	if (ULONG_CMP_GE(completed, gpnum) ||
1483 	    ULONG_CMP_LT(j, js) ||
1484 	    ULONG_CMP_GE(gps, js))
1485 		return; /* No stall or GP completed since entering function. */
1486 	rnp = rdp->mynode;
1487 	if (rcu_gp_in_progress(rsp) &&
1488 	    (READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
1489 
1490 		/* We haven't checked in, so go dump stack. */
1491 		print_cpu_stall(rsp);
1492 
1493 	} else if (rcu_gp_in_progress(rsp) &&
1494 		   ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1495 
1496 		/* They had a few time units to dump stack, so complain. */
1497 		print_other_cpu_stall(rsp, gpnum);
1498 	}
1499 }
1500 
1501 /**
1502  * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1503  *
1504  * Set the stall-warning timeout way off into the future, thus preventing
1505  * any RCU CPU stall-warning messages from appearing in the current set of
1506  * RCU grace periods.
1507  *
1508  * The caller must disable hard irqs.
1509  */
1510 void rcu_cpu_stall_reset(void)
1511 {
1512 	struct rcu_state *rsp;
1513 
1514 	for_each_rcu_flavor(rsp)
1515 		WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
1516 }
1517 
1518 /*
1519  * Initialize the specified rcu_data structure's default callback list
1520  * to empty.  The default callback list is the one that is not used by
1521  * no-callbacks CPUs.
1522  */
1523 static void init_default_callback_list(struct rcu_data *rdp)
1524 {
1525 	int i;
1526 
1527 	rdp->nxtlist = NULL;
1528 	for (i = 0; i < RCU_NEXT_SIZE; i++)
1529 		rdp->nxttail[i] = &rdp->nxtlist;
1530 }
1531 
1532 /*
1533  * Initialize the specified rcu_data structure's callback list to empty.
1534  */
1535 static void init_callback_list(struct rcu_data *rdp)
1536 {
1537 	if (init_nocb_callback_list(rdp))
1538 		return;
1539 	init_default_callback_list(rdp);
1540 }
1541 
1542 /*
1543  * Determine the value that ->completed will have at the end of the
1544  * next subsequent grace period.  This is used to tag callbacks so that
1545  * a CPU can invoke callbacks in a timely fashion even if that CPU has
1546  * been dyntick-idle for an extended period with callbacks under the
1547  * influence of RCU_FAST_NO_HZ.
1548  *
1549  * The caller must hold rnp->lock with interrupts disabled.
1550  */
1551 static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1552 				       struct rcu_node *rnp)
1553 {
1554 	/*
1555 	 * If RCU is idle, we just wait for the next grace period.
1556 	 * But we can only be sure that RCU is idle if we are looking
1557 	 * at the root rcu_node structure -- otherwise, a new grace
1558 	 * period might have started, but just not yet gotten around
1559 	 * to initializing the current non-root rcu_node structure.
1560 	 */
1561 	if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1562 		return rnp->completed + 1;
1563 
1564 	/*
1565 	 * Otherwise, wait for a possible partial grace period and
1566 	 * then the subsequent full grace period.
1567 	 */
1568 	return rnp->completed + 2;
1569 }
1570 
1571 /*
1572  * Trace-event helper function for rcu_start_future_gp() and
1573  * rcu_nocb_wait_gp().
1574  */
1575 static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1576 				unsigned long c, const char *s)
1577 {
1578 	trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1579 				      rnp->completed, c, rnp->level,
1580 				      rnp->grplo, rnp->grphi, s);
1581 }
1582 
1583 /*
1584  * Start some future grace period, as needed to handle newly arrived
1585  * callbacks.  The required future grace periods are recorded in each
1586  * rcu_node structure's ->need_future_gp field.  Returns true if there
1587  * is reason to awaken the grace-period kthread.
1588  *
1589  * The caller must hold the specified rcu_node structure's ->lock.
1590  */
1591 static bool __maybe_unused
1592 rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1593 		    unsigned long *c_out)
1594 {
1595 	unsigned long c;
1596 	int i;
1597 	bool ret = false;
1598 	struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1599 
1600 	/*
1601 	 * Pick up grace-period number for new callbacks.  If this
1602 	 * grace period is already marked as needed, return to the caller.
1603 	 */
1604 	c = rcu_cbs_completed(rdp->rsp, rnp);
1605 	trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1606 	if (rnp->need_future_gp[c & 0x1]) {
1607 		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1608 		goto out;
1609 	}
1610 
1611 	/*
1612 	 * If either this rcu_node structure or the root rcu_node structure
1613 	 * believe that a grace period is in progress, then we must wait
1614 	 * for the one following, which is in "c".  Because our request
1615 	 * will be noticed at the end of the current grace period, we don't
1616 	 * need to explicitly start one.  We only do the lockless check
1617 	 * of rnp_root's fields if the current rcu_node structure thinks
1618 	 * there is no grace period in flight, and because we hold rnp->lock,
1619 	 * the only possible change is when rnp_root's two fields are
1620 	 * equal, in which case rnp_root->gpnum might be concurrently
1621 	 * incremented.  But that is OK, as it will just result in our
1622 	 * doing some extra useless work.
1623 	 */
1624 	if (rnp->gpnum != rnp->completed ||
1625 	    READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) {
1626 		rnp->need_future_gp[c & 0x1]++;
1627 		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1628 		goto out;
1629 	}
1630 
1631 	/*
1632 	 * There might be no grace period in progress.  If we don't already
1633 	 * hold it, acquire the root rcu_node structure's lock in order to
1634 	 * start one (if needed).
1635 	 */
1636 	if (rnp != rnp_root)
1637 		raw_spin_lock_rcu_node(rnp_root);
1638 
1639 	/*
1640 	 * Get a new grace-period number.  If there really is no grace
1641 	 * period in progress, it will be smaller than the one we obtained
1642 	 * earlier.  Adjust callbacks as needed.  Note that even no-CBs
1643 	 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
1644 	 */
1645 	c = rcu_cbs_completed(rdp->rsp, rnp_root);
1646 	for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
1647 		if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
1648 			rdp->nxtcompleted[i] = c;
1649 
1650 	/*
1651 	 * If the needed for the required grace period is already
1652 	 * recorded, trace and leave.
1653 	 */
1654 	if (rnp_root->need_future_gp[c & 0x1]) {
1655 		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1656 		goto unlock_out;
1657 	}
1658 
1659 	/* Record the need for the future grace period. */
1660 	rnp_root->need_future_gp[c & 0x1]++;
1661 
1662 	/* If a grace period is not already in progress, start one. */
1663 	if (rnp_root->gpnum != rnp_root->completed) {
1664 		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1665 	} else {
1666 		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1667 		ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1668 	}
1669 unlock_out:
1670 	if (rnp != rnp_root)
1671 		raw_spin_unlock_rcu_node(rnp_root);
1672 out:
1673 	if (c_out != NULL)
1674 		*c_out = c;
1675 	return ret;
1676 }
1677 
1678 /*
1679  * Clean up any old requests for the just-ended grace period.  Also return
1680  * whether any additional grace periods have been requested.  Also invoke
1681  * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1682  * waiting for this grace period to complete.
1683  */
1684 static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1685 {
1686 	int c = rnp->completed;
1687 	int needmore;
1688 	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1689 
1690 	rnp->need_future_gp[c & 0x1] = 0;
1691 	needmore = rnp->need_future_gp[(c + 1) & 0x1];
1692 	trace_rcu_future_gp(rnp, rdp, c,
1693 			    needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1694 	return needmore;
1695 }
1696 
1697 /*
1698  * Awaken the grace-period kthread for the specified flavor of RCU.
1699  * Don't do a self-awaken, and don't bother awakening when there is
1700  * nothing for the grace-period kthread to do (as in several CPUs
1701  * raced to awaken, and we lost), and finally don't try to awaken
1702  * a kthread that has not yet been created.
1703  */
1704 static void rcu_gp_kthread_wake(struct rcu_state *rsp)
1705 {
1706 	if (current == rsp->gp_kthread ||
1707 	    !READ_ONCE(rsp->gp_flags) ||
1708 	    !rsp->gp_kthread)
1709 		return;
1710 	swake_up(&rsp->gp_wq);
1711 }
1712 
1713 /*
1714  * If there is room, assign a ->completed number to any callbacks on
1715  * this CPU that have not already been assigned.  Also accelerate any
1716  * callbacks that were previously assigned a ->completed number that has
1717  * since proven to be too conservative, which can happen if callbacks get
1718  * assigned a ->completed number while RCU is idle, but with reference to
1719  * a non-root rcu_node structure.  This function is idempotent, so it does
1720  * not hurt to call it repeatedly.  Returns an flag saying that we should
1721  * awaken the RCU grace-period kthread.
1722  *
1723  * The caller must hold rnp->lock with interrupts disabled.
1724  */
1725 static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1726 			       struct rcu_data *rdp)
1727 {
1728 	unsigned long c;
1729 	int i;
1730 	bool ret;
1731 
1732 	/* If the CPU has no callbacks, nothing to do. */
1733 	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1734 		return false;
1735 
1736 	/*
1737 	 * Starting from the sublist containing the callbacks most
1738 	 * recently assigned a ->completed number and working down, find the
1739 	 * first sublist that is not assignable to an upcoming grace period.
1740 	 * Such a sublist has something in it (first two tests) and has
1741 	 * a ->completed number assigned that will complete sooner than
1742 	 * the ->completed number for newly arrived callbacks (last test).
1743 	 *
1744 	 * The key point is that any later sublist can be assigned the
1745 	 * same ->completed number as the newly arrived callbacks, which
1746 	 * means that the callbacks in any of these later sublist can be
1747 	 * grouped into a single sublist, whether or not they have already
1748 	 * been assigned a ->completed number.
1749 	 */
1750 	c = rcu_cbs_completed(rsp, rnp);
1751 	for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
1752 		if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
1753 		    !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
1754 			break;
1755 
1756 	/*
1757 	 * If there are no sublist for unassigned callbacks, leave.
1758 	 * At the same time, advance "i" one sublist, so that "i" will
1759 	 * index into the sublist where all the remaining callbacks should
1760 	 * be grouped into.
1761 	 */
1762 	if (++i >= RCU_NEXT_TAIL)
1763 		return false;
1764 
1765 	/*
1766 	 * Assign all subsequent callbacks' ->completed number to the next
1767 	 * full grace period and group them all in the sublist initially
1768 	 * indexed by "i".
1769 	 */
1770 	for (; i <= RCU_NEXT_TAIL; i++) {
1771 		rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
1772 		rdp->nxtcompleted[i] = c;
1773 	}
1774 	/* Record any needed additional grace periods. */
1775 	ret = rcu_start_future_gp(rnp, rdp, NULL);
1776 
1777 	/* Trace depending on how much we were able to accelerate. */
1778 	if (!*rdp->nxttail[RCU_WAIT_TAIL])
1779 		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1780 	else
1781 		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
1782 	return ret;
1783 }
1784 
1785 /*
1786  * Move any callbacks whose grace period has completed to the
1787  * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1788  * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1789  * sublist.  This function is idempotent, so it does not hurt to
1790  * invoke it repeatedly.  As long as it is not invoked -too- often...
1791  * Returns true if the RCU grace-period kthread needs to be awakened.
1792  *
1793  * The caller must hold rnp->lock with interrupts disabled.
1794  */
1795 static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1796 			    struct rcu_data *rdp)
1797 {
1798 	int i, j;
1799 
1800 	/* If the CPU has no callbacks, nothing to do. */
1801 	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1802 		return false;
1803 
1804 	/*
1805 	 * Find all callbacks whose ->completed numbers indicate that they
1806 	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1807 	 */
1808 	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
1809 		if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
1810 			break;
1811 		rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
1812 	}
1813 	/* Clean up any sublist tail pointers that were misordered above. */
1814 	for (j = RCU_WAIT_TAIL; j < i; j++)
1815 		rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
1816 
1817 	/* Copy down callbacks to fill in empty sublists. */
1818 	for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
1819 		if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
1820 			break;
1821 		rdp->nxttail[j] = rdp->nxttail[i];
1822 		rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
1823 	}
1824 
1825 	/* Classify any remaining callbacks. */
1826 	return rcu_accelerate_cbs(rsp, rnp, rdp);
1827 }
1828 
1829 /*
1830  * Update CPU-local rcu_data state to record the beginnings and ends of
1831  * grace periods.  The caller must hold the ->lock of the leaf rcu_node
1832  * structure corresponding to the current CPU, and must have irqs disabled.
1833  * Returns true if the grace-period kthread needs to be awakened.
1834  */
1835 static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
1836 			      struct rcu_data *rdp)
1837 {
1838 	bool ret;
1839 
1840 	/* Handle the ends of any preceding grace periods first. */
1841 	if (rdp->completed == rnp->completed &&
1842 	    !unlikely(READ_ONCE(rdp->gpwrap))) {
1843 
1844 		/* No grace period end, so just accelerate recent callbacks. */
1845 		ret = rcu_accelerate_cbs(rsp, rnp, rdp);
1846 
1847 	} else {
1848 
1849 		/* Advance callbacks. */
1850 		ret = rcu_advance_cbs(rsp, rnp, rdp);
1851 
1852 		/* Remember that we saw this grace-period completion. */
1853 		rdp->completed = rnp->completed;
1854 		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1855 	}
1856 
1857 	if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
1858 		/*
1859 		 * If the current grace period is waiting for this CPU,
1860 		 * set up to detect a quiescent state, otherwise don't
1861 		 * go looking for one.
1862 		 */
1863 		rdp->gpnum = rnp->gpnum;
1864 		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1865 		rdp->cpu_no_qs.b.norm = true;
1866 		rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
1867 		rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask);
1868 		zero_cpu_stall_ticks(rdp);
1869 		WRITE_ONCE(rdp->gpwrap, false);
1870 	}
1871 	return ret;
1872 }
1873 
1874 static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1875 {
1876 	unsigned long flags;
1877 	bool needwake;
1878 	struct rcu_node *rnp;
1879 
1880 	local_irq_save(flags);
1881 	rnp = rdp->mynode;
1882 	if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
1883 	     rdp->completed == READ_ONCE(rnp->completed) &&
1884 	     !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1885 	    !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1886 		local_irq_restore(flags);
1887 		return;
1888 	}
1889 	needwake = __note_gp_changes(rsp, rnp, rdp);
1890 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1891 	if (needwake)
1892 		rcu_gp_kthread_wake(rsp);
1893 }
1894 
1895 static void rcu_gp_slow(struct rcu_state *rsp, int delay)
1896 {
1897 	if (delay > 0 &&
1898 	    !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1899 		schedule_timeout_uninterruptible(delay);
1900 }
1901 
1902 /*
1903  * Initialize a new grace period.  Return false if no grace period required.
1904  */
1905 static bool rcu_gp_init(struct rcu_state *rsp)
1906 {
1907 	unsigned long oldmask;
1908 	struct rcu_data *rdp;
1909 	struct rcu_node *rnp = rcu_get_root(rsp);
1910 
1911 	WRITE_ONCE(rsp->gp_activity, jiffies);
1912 	raw_spin_lock_irq_rcu_node(rnp);
1913 	if (!READ_ONCE(rsp->gp_flags)) {
1914 		/* Spurious wakeup, tell caller to go back to sleep.  */
1915 		raw_spin_unlock_irq_rcu_node(rnp);
1916 		return false;
1917 	}
1918 	WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
1919 
1920 	if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1921 		/*
1922 		 * Grace period already in progress, don't start another.
1923 		 * Not supposed to be able to happen.
1924 		 */
1925 		raw_spin_unlock_irq_rcu_node(rnp);
1926 		return false;
1927 	}
1928 
1929 	/* Advance to a new grace period and initialize state. */
1930 	record_gp_stall_check_time(rsp);
1931 	/* Record GP times before starting GP, hence smp_store_release(). */
1932 	smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
1933 	trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
1934 	raw_spin_unlock_irq_rcu_node(rnp);
1935 
1936 	/*
1937 	 * Apply per-leaf buffered online and offline operations to the
1938 	 * rcu_node tree.  Note that this new grace period need not wait
1939 	 * for subsequent online CPUs, and that quiescent-state forcing
1940 	 * will handle subsequent offline CPUs.
1941 	 */
1942 	rcu_for_each_leaf_node(rsp, rnp) {
1943 		rcu_gp_slow(rsp, gp_preinit_delay);
1944 		raw_spin_lock_irq_rcu_node(rnp);
1945 		if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1946 		    !rnp->wait_blkd_tasks) {
1947 			/* Nothing to do on this leaf rcu_node structure. */
1948 			raw_spin_unlock_irq_rcu_node(rnp);
1949 			continue;
1950 		}
1951 
1952 		/* Record old state, apply changes to ->qsmaskinit field. */
1953 		oldmask = rnp->qsmaskinit;
1954 		rnp->qsmaskinit = rnp->qsmaskinitnext;
1955 
1956 		/* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1957 		if (!oldmask != !rnp->qsmaskinit) {
1958 			if (!oldmask) /* First online CPU for this rcu_node. */
1959 				rcu_init_new_rnp(rnp);
1960 			else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
1961 				rnp->wait_blkd_tasks = true;
1962 			else /* Last offline CPU and can propagate. */
1963 				rcu_cleanup_dead_rnp(rnp);
1964 		}
1965 
1966 		/*
1967 		 * If all waited-on tasks from prior grace period are
1968 		 * done, and if all this rcu_node structure's CPUs are
1969 		 * still offline, propagate up the rcu_node tree and
1970 		 * clear ->wait_blkd_tasks.  Otherwise, if one of this
1971 		 * rcu_node structure's CPUs has since come back online,
1972 		 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
1973 		 * checks for this, so just call it unconditionally).
1974 		 */
1975 		if (rnp->wait_blkd_tasks &&
1976 		    (!rcu_preempt_has_tasks(rnp) ||
1977 		     rnp->qsmaskinit)) {
1978 			rnp->wait_blkd_tasks = false;
1979 			rcu_cleanup_dead_rnp(rnp);
1980 		}
1981 
1982 		raw_spin_unlock_irq_rcu_node(rnp);
1983 	}
1984 
1985 	/*
1986 	 * Set the quiescent-state-needed bits in all the rcu_node
1987 	 * structures for all currently online CPUs in breadth-first order,
1988 	 * starting from the root rcu_node structure, relying on the layout
1989 	 * of the tree within the rsp->node[] array.  Note that other CPUs
1990 	 * will access only the leaves of the hierarchy, thus seeing that no
1991 	 * grace period is in progress, at least until the corresponding
1992 	 * leaf node has been initialized.  In addition, we have excluded
1993 	 * CPU-hotplug operations.
1994 	 *
1995 	 * The grace period cannot complete until the initialization
1996 	 * process finishes, because this kthread handles both.
1997 	 */
1998 	rcu_for_each_node_breadth_first(rsp, rnp) {
1999 		rcu_gp_slow(rsp, gp_init_delay);
2000 		raw_spin_lock_irq_rcu_node(rnp);
2001 		rdp = this_cpu_ptr(rsp->rda);
2002 		rcu_preempt_check_blocked_tasks(rnp);
2003 		rnp->qsmask = rnp->qsmaskinit;
2004 		WRITE_ONCE(rnp->gpnum, rsp->gpnum);
2005 		if (WARN_ON_ONCE(rnp->completed != rsp->completed))
2006 			WRITE_ONCE(rnp->completed, rsp->completed);
2007 		if (rnp == rdp->mynode)
2008 			(void)__note_gp_changes(rsp, rnp, rdp);
2009 		rcu_preempt_boost_start_gp(rnp);
2010 		trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
2011 					    rnp->level, rnp->grplo,
2012 					    rnp->grphi, rnp->qsmask);
2013 		raw_spin_unlock_irq_rcu_node(rnp);
2014 		cond_resched_rcu_qs();
2015 		WRITE_ONCE(rsp->gp_activity, jiffies);
2016 	}
2017 
2018 	return true;
2019 }
2020 
2021 /*
2022  * Helper function for wait_event_interruptible_timeout() wakeup
2023  * at force-quiescent-state time.
2024  */
2025 static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp)
2026 {
2027 	struct rcu_node *rnp = rcu_get_root(rsp);
2028 
2029 	/* Someone like call_rcu() requested a force-quiescent-state scan. */
2030 	*gfp = READ_ONCE(rsp->gp_flags);
2031 	if (*gfp & RCU_GP_FLAG_FQS)
2032 		return true;
2033 
2034 	/* The current grace period has completed. */
2035 	if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
2036 		return true;
2037 
2038 	return false;
2039 }
2040 
2041 /*
2042  * Do one round of quiescent-state forcing.
2043  */
2044 static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time)
2045 {
2046 	bool isidle = false;
2047 	unsigned long maxj;
2048 	struct rcu_node *rnp = rcu_get_root(rsp);
2049 
2050 	WRITE_ONCE(rsp->gp_activity, jiffies);
2051 	rsp->n_force_qs++;
2052 	if (first_time) {
2053 		/* Collect dyntick-idle snapshots. */
2054 		if (is_sysidle_rcu_state(rsp)) {
2055 			isidle = true;
2056 			maxj = jiffies - ULONG_MAX / 4;
2057 		}
2058 		force_qs_rnp(rsp, dyntick_save_progress_counter,
2059 			     &isidle, &maxj);
2060 		rcu_sysidle_report_gp(rsp, isidle, maxj);
2061 	} else {
2062 		/* Handle dyntick-idle and offline CPUs. */
2063 		isidle = true;
2064 		force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
2065 	}
2066 	/* Clear flag to prevent immediate re-entry. */
2067 	if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2068 		raw_spin_lock_irq_rcu_node(rnp);
2069 		WRITE_ONCE(rsp->gp_flags,
2070 			   READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
2071 		raw_spin_unlock_irq_rcu_node(rnp);
2072 	}
2073 }
2074 
2075 /*
2076  * Clean up after the old grace period.
2077  */
2078 static void rcu_gp_cleanup(struct rcu_state *rsp)
2079 {
2080 	unsigned long gp_duration;
2081 	bool needgp = false;
2082 	int nocb = 0;
2083 	struct rcu_data *rdp;
2084 	struct rcu_node *rnp = rcu_get_root(rsp);
2085 	struct swait_queue_head *sq;
2086 
2087 	WRITE_ONCE(rsp->gp_activity, jiffies);
2088 	raw_spin_lock_irq_rcu_node(rnp);
2089 	gp_duration = jiffies - rsp->gp_start;
2090 	if (gp_duration > rsp->gp_max)
2091 		rsp->gp_max = gp_duration;
2092 
2093 	/*
2094 	 * We know the grace period is complete, but to everyone else
2095 	 * it appears to still be ongoing.  But it is also the case
2096 	 * that to everyone else it looks like there is nothing that
2097 	 * they can do to advance the grace period.  It is therefore
2098 	 * safe for us to drop the lock in order to mark the grace
2099 	 * period as completed in all of the rcu_node structures.
2100 	 */
2101 	raw_spin_unlock_irq_rcu_node(rnp);
2102 
2103 	/*
2104 	 * Propagate new ->completed value to rcu_node structures so
2105 	 * that other CPUs don't have to wait until the start of the next
2106 	 * grace period to process their callbacks.  This also avoids
2107 	 * some nasty RCU grace-period initialization races by forcing
2108 	 * the end of the current grace period to be completely recorded in
2109 	 * all of the rcu_node structures before the beginning of the next
2110 	 * grace period is recorded in any of the rcu_node structures.
2111 	 */
2112 	rcu_for_each_node_breadth_first(rsp, rnp) {
2113 		raw_spin_lock_irq_rcu_node(rnp);
2114 		WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
2115 		WARN_ON_ONCE(rnp->qsmask);
2116 		WRITE_ONCE(rnp->completed, rsp->gpnum);
2117 		rdp = this_cpu_ptr(rsp->rda);
2118 		if (rnp == rdp->mynode)
2119 			needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
2120 		/* smp_mb() provided by prior unlock-lock pair. */
2121 		nocb += rcu_future_gp_cleanup(rsp, rnp);
2122 		sq = rcu_nocb_gp_get(rnp);
2123 		raw_spin_unlock_irq_rcu_node(rnp);
2124 		rcu_nocb_gp_cleanup(sq);
2125 		cond_resched_rcu_qs();
2126 		WRITE_ONCE(rsp->gp_activity, jiffies);
2127 		rcu_gp_slow(rsp, gp_cleanup_delay);
2128 	}
2129 	rnp = rcu_get_root(rsp);
2130 	raw_spin_lock_irq_rcu_node(rnp); /* Order GP before ->completed update. */
2131 	rcu_nocb_gp_set(rnp, nocb);
2132 
2133 	/* Declare grace period done. */
2134 	WRITE_ONCE(rsp->completed, rsp->gpnum);
2135 	trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
2136 	rsp->gp_state = RCU_GP_IDLE;
2137 	rdp = this_cpu_ptr(rsp->rda);
2138 	/* Advance CBs to reduce false positives below. */
2139 	needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
2140 	if (needgp || cpu_needs_another_gp(rsp, rdp)) {
2141 		WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2142 		trace_rcu_grace_period(rsp->name,
2143 				       READ_ONCE(rsp->gpnum),
2144 				       TPS("newreq"));
2145 	}
2146 	raw_spin_unlock_irq_rcu_node(rnp);
2147 }
2148 
2149 /*
2150  * Body of kthread that handles grace periods.
2151  */
2152 static int __noreturn rcu_gp_kthread(void *arg)
2153 {
2154 	bool first_gp_fqs;
2155 	int gf;
2156 	unsigned long j;
2157 	int ret;
2158 	struct rcu_state *rsp = arg;
2159 	struct rcu_node *rnp = rcu_get_root(rsp);
2160 
2161 	rcu_bind_gp_kthread();
2162 	for (;;) {
2163 
2164 		/* Handle grace-period start. */
2165 		for (;;) {
2166 			trace_rcu_grace_period(rsp->name,
2167 					       READ_ONCE(rsp->gpnum),
2168 					       TPS("reqwait"));
2169 			rsp->gp_state = RCU_GP_WAIT_GPS;
2170 			swait_event_interruptible(rsp->gp_wq,
2171 						 READ_ONCE(rsp->gp_flags) &
2172 						 RCU_GP_FLAG_INIT);
2173 			rsp->gp_state = RCU_GP_DONE_GPS;
2174 			/* Locking provides needed memory barrier. */
2175 			if (rcu_gp_init(rsp))
2176 				break;
2177 			cond_resched_rcu_qs();
2178 			WRITE_ONCE(rsp->gp_activity, jiffies);
2179 			WARN_ON(signal_pending(current));
2180 			trace_rcu_grace_period(rsp->name,
2181 					       READ_ONCE(rsp->gpnum),
2182 					       TPS("reqwaitsig"));
2183 		}
2184 
2185 		/* Handle quiescent-state forcing. */
2186 		first_gp_fqs = true;
2187 		j = jiffies_till_first_fqs;
2188 		if (j > HZ) {
2189 			j = HZ;
2190 			jiffies_till_first_fqs = HZ;
2191 		}
2192 		ret = 0;
2193 		for (;;) {
2194 			if (!ret) {
2195 				rsp->jiffies_force_qs = jiffies + j;
2196 				WRITE_ONCE(rsp->jiffies_kick_kthreads,
2197 					   jiffies + 3 * j);
2198 			}
2199 			trace_rcu_grace_period(rsp->name,
2200 					       READ_ONCE(rsp->gpnum),
2201 					       TPS("fqswait"));
2202 			rsp->gp_state = RCU_GP_WAIT_FQS;
2203 			ret = swait_event_interruptible_timeout(rsp->gp_wq,
2204 					rcu_gp_fqs_check_wake(rsp, &gf), j);
2205 			rsp->gp_state = RCU_GP_DOING_FQS;
2206 			/* Locking provides needed memory barriers. */
2207 			/* If grace period done, leave loop. */
2208 			if (!READ_ONCE(rnp->qsmask) &&
2209 			    !rcu_preempt_blocked_readers_cgp(rnp))
2210 				break;
2211 			/* If time for quiescent-state forcing, do it. */
2212 			if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
2213 			    (gf & RCU_GP_FLAG_FQS)) {
2214 				trace_rcu_grace_period(rsp->name,
2215 						       READ_ONCE(rsp->gpnum),
2216 						       TPS("fqsstart"));
2217 				rcu_gp_fqs(rsp, first_gp_fqs);
2218 				first_gp_fqs = false;
2219 				trace_rcu_grace_period(rsp->name,
2220 						       READ_ONCE(rsp->gpnum),
2221 						       TPS("fqsend"));
2222 				cond_resched_rcu_qs();
2223 				WRITE_ONCE(rsp->gp_activity, jiffies);
2224 				ret = 0; /* Force full wait till next FQS. */
2225 				j = jiffies_till_next_fqs;
2226 				if (j > HZ) {
2227 					j = HZ;
2228 					jiffies_till_next_fqs = HZ;
2229 				} else if (j < 1) {
2230 					j = 1;
2231 					jiffies_till_next_fqs = 1;
2232 				}
2233 			} else {
2234 				/* Deal with stray signal. */
2235 				cond_resched_rcu_qs();
2236 				WRITE_ONCE(rsp->gp_activity, jiffies);
2237 				WARN_ON(signal_pending(current));
2238 				trace_rcu_grace_period(rsp->name,
2239 						       READ_ONCE(rsp->gpnum),
2240 						       TPS("fqswaitsig"));
2241 				ret = 1; /* Keep old FQS timing. */
2242 				j = jiffies;
2243 				if (time_after(jiffies, rsp->jiffies_force_qs))
2244 					j = 1;
2245 				else
2246 					j = rsp->jiffies_force_qs - j;
2247 			}
2248 		}
2249 
2250 		/* Handle grace-period end. */
2251 		rsp->gp_state = RCU_GP_CLEANUP;
2252 		rcu_gp_cleanup(rsp);
2253 		rsp->gp_state = RCU_GP_CLEANED;
2254 	}
2255 }
2256 
2257 /*
2258  * Start a new RCU grace period if warranted, re-initializing the hierarchy
2259  * in preparation for detecting the next grace period.  The caller must hold
2260  * the root node's ->lock and hard irqs must be disabled.
2261  *
2262  * Note that it is legal for a dying CPU (which is marked as offline) to
2263  * invoke this function.  This can happen when the dying CPU reports its
2264  * quiescent state.
2265  *
2266  * Returns true if the grace-period kthread must be awakened.
2267  */
2268 static bool
2269 rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
2270 		      struct rcu_data *rdp)
2271 {
2272 	if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
2273 		/*
2274 		 * Either we have not yet spawned the grace-period
2275 		 * task, this CPU does not need another grace period,
2276 		 * or a grace period is already in progress.
2277 		 * Either way, don't start a new grace period.
2278 		 */
2279 		return false;
2280 	}
2281 	WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2282 	trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
2283 			       TPS("newreq"));
2284 
2285 	/*
2286 	 * We can't do wakeups while holding the rnp->lock, as that
2287 	 * could cause possible deadlocks with the rq->lock. Defer
2288 	 * the wakeup to our caller.
2289 	 */
2290 	return true;
2291 }
2292 
2293 /*
2294  * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
2295  * callbacks.  Note that rcu_start_gp_advanced() cannot do this because it
2296  * is invoked indirectly from rcu_advance_cbs(), which would result in
2297  * endless recursion -- or would do so if it wasn't for the self-deadlock
2298  * that is encountered beforehand.
2299  *
2300  * Returns true if the grace-period kthread needs to be awakened.
2301  */
2302 static bool rcu_start_gp(struct rcu_state *rsp)
2303 {
2304 	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
2305 	struct rcu_node *rnp = rcu_get_root(rsp);
2306 	bool ret = false;
2307 
2308 	/*
2309 	 * If there is no grace period in progress right now, any
2310 	 * callbacks we have up to this point will be satisfied by the
2311 	 * next grace period.  Also, advancing the callbacks reduces the
2312 	 * probability of false positives from cpu_needs_another_gp()
2313 	 * resulting in pointless grace periods.  So, advance callbacks
2314 	 * then start the grace period!
2315 	 */
2316 	ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
2317 	ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
2318 	return ret;
2319 }
2320 
2321 /*
2322  * Report a full set of quiescent states to the specified rcu_state data
2323  * structure.  Invoke rcu_gp_kthread_wake() to awaken the grace-period
2324  * kthread if another grace period is required.  Whether we wake
2325  * the grace-period kthread or it awakens itself for the next round
2326  * of quiescent-state forcing, that kthread will clean up after the
2327  * just-completed grace period.  Note that the caller must hold rnp->lock,
2328  * which is released before return.
2329  */
2330 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
2331 	__releases(rcu_get_root(rsp)->lock)
2332 {
2333 	WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
2334 	WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2335 	raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
2336 	swake_up(&rsp->gp_wq);  /* Memory barrier implied by swake_up() path. */
2337 }
2338 
2339 /*
2340  * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2341  * Allows quiescent states for a group of CPUs to be reported at one go
2342  * to the specified rcu_node structure, though all the CPUs in the group
2343  * must be represented by the same rcu_node structure (which need not be a
2344  * leaf rcu_node structure, though it often will be).  The gps parameter
2345  * is the grace-period snapshot, which means that the quiescent states
2346  * are valid only if rnp->gpnum is equal to gps.  That structure's lock
2347  * must be held upon entry, and it is released before return.
2348  */
2349 static void
2350 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
2351 		  struct rcu_node *rnp, unsigned long gps, unsigned long flags)
2352 	__releases(rnp->lock)
2353 {
2354 	unsigned long oldmask = 0;
2355 	struct rcu_node *rnp_c;
2356 
2357 	/* Walk up the rcu_node hierarchy. */
2358 	for (;;) {
2359 		if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
2360 
2361 			/*
2362 			 * Our bit has already been cleared, or the
2363 			 * relevant grace period is already over, so done.
2364 			 */
2365 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2366 			return;
2367 		}
2368 		WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2369 		rnp->qsmask &= ~mask;
2370 		trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
2371 						 mask, rnp->qsmask, rnp->level,
2372 						 rnp->grplo, rnp->grphi,
2373 						 !!rnp->gp_tasks);
2374 		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2375 
2376 			/* Other bits still set at this level, so done. */
2377 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2378 			return;
2379 		}
2380 		mask = rnp->grpmask;
2381 		if (rnp->parent == NULL) {
2382 
2383 			/* No more levels.  Exit loop holding root lock. */
2384 
2385 			break;
2386 		}
2387 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2388 		rnp_c = rnp;
2389 		rnp = rnp->parent;
2390 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2391 		oldmask = rnp_c->qsmask;
2392 	}
2393 
2394 	/*
2395 	 * Get here if we are the last CPU to pass through a quiescent
2396 	 * state for this grace period.  Invoke rcu_report_qs_rsp()
2397 	 * to clean up and start the next grace period if one is needed.
2398 	 */
2399 	rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
2400 }
2401 
2402 /*
2403  * Record a quiescent state for all tasks that were previously queued
2404  * on the specified rcu_node structure and that were blocking the current
2405  * RCU grace period.  The caller must hold the specified rnp->lock with
2406  * irqs disabled, and this lock is released upon return, but irqs remain
2407  * disabled.
2408  */
2409 static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
2410 				      struct rcu_node *rnp, unsigned long flags)
2411 	__releases(rnp->lock)
2412 {
2413 	unsigned long gps;
2414 	unsigned long mask;
2415 	struct rcu_node *rnp_p;
2416 
2417 	if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
2418 	    rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2419 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2420 		return;  /* Still need more quiescent states! */
2421 	}
2422 
2423 	rnp_p = rnp->parent;
2424 	if (rnp_p == NULL) {
2425 		/*
2426 		 * Only one rcu_node structure in the tree, so don't
2427 		 * try to report up to its nonexistent parent!
2428 		 */
2429 		rcu_report_qs_rsp(rsp, flags);
2430 		return;
2431 	}
2432 
2433 	/* Report up the rest of the hierarchy, tracking current ->gpnum. */
2434 	gps = rnp->gpnum;
2435 	mask = rnp->grpmask;
2436 	raw_spin_unlock_rcu_node(rnp);	/* irqs remain disabled. */
2437 	raw_spin_lock_rcu_node(rnp_p);	/* irqs already disabled. */
2438 	rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
2439 }
2440 
2441 /*
2442  * Record a quiescent state for the specified CPU to that CPU's rcu_data
2443  * structure.  This must be called from the specified CPU.
2444  */
2445 static void
2446 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
2447 {
2448 	unsigned long flags;
2449 	unsigned long mask;
2450 	bool needwake;
2451 	struct rcu_node *rnp;
2452 
2453 	rnp = rdp->mynode;
2454 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
2455 	if ((rdp->cpu_no_qs.b.norm &&
2456 	     rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) ||
2457 	    rdp->gpnum != rnp->gpnum || rnp->completed == rnp->gpnum ||
2458 	    rdp->gpwrap) {
2459 
2460 		/*
2461 		 * The grace period in which this quiescent state was
2462 		 * recorded has ended, so don't report it upwards.
2463 		 * We will instead need a new quiescent state that lies
2464 		 * within the current grace period.
2465 		 */
2466 		rdp->cpu_no_qs.b.norm = true;	/* need qs for new gp. */
2467 		rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
2468 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2469 		return;
2470 	}
2471 	mask = rdp->grpmask;
2472 	if ((rnp->qsmask & mask) == 0) {
2473 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2474 	} else {
2475 		rdp->core_needs_qs = false;
2476 
2477 		/*
2478 		 * This GP can't end until cpu checks in, so all of our
2479 		 * callbacks can be processed during the next GP.
2480 		 */
2481 		needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
2482 
2483 		rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2484 		/* ^^^ Released rnp->lock */
2485 		if (needwake)
2486 			rcu_gp_kthread_wake(rsp);
2487 	}
2488 }
2489 
2490 /*
2491  * Check to see if there is a new grace period of which this CPU
2492  * is not yet aware, and if so, set up local rcu_data state for it.
2493  * Otherwise, see if this CPU has just passed through its first
2494  * quiescent state for this grace period, and record that fact if so.
2495  */
2496 static void
2497 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
2498 {
2499 	/* Check for grace-period ends and beginnings. */
2500 	note_gp_changes(rsp, rdp);
2501 
2502 	/*
2503 	 * Does this CPU still need to do its part for current grace period?
2504 	 * If no, return and let the other CPUs do their part as well.
2505 	 */
2506 	if (!rdp->core_needs_qs)
2507 		return;
2508 
2509 	/*
2510 	 * Was there a quiescent state since the beginning of the grace
2511 	 * period? If no, then exit and wait for the next call.
2512 	 */
2513 	if (rdp->cpu_no_qs.b.norm &&
2514 	    rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr))
2515 		return;
2516 
2517 	/*
2518 	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2519 	 * judge of that).
2520 	 */
2521 	rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
2522 }
2523 
2524 /*
2525  * Send the specified CPU's RCU callbacks to the orphanage.  The
2526  * specified CPU must be offline, and the caller must hold the
2527  * ->orphan_lock.
2528  */
2529 static void
2530 rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
2531 			  struct rcu_node *rnp, struct rcu_data *rdp)
2532 {
2533 	/* No-CBs CPUs do not have orphanable callbacks. */
2534 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || rcu_is_nocb_cpu(rdp->cpu))
2535 		return;
2536 
2537 	/*
2538 	 * Orphan the callbacks.  First adjust the counts.  This is safe
2539 	 * because _rcu_barrier() excludes CPU-hotplug operations, so it
2540 	 * cannot be running now.  Thus no memory barrier is required.
2541 	 */
2542 	if (rdp->nxtlist != NULL) {
2543 		rsp->qlen_lazy += rdp->qlen_lazy;
2544 		rsp->qlen += rdp->qlen;
2545 		rdp->n_cbs_orphaned += rdp->qlen;
2546 		rdp->qlen_lazy = 0;
2547 		WRITE_ONCE(rdp->qlen, 0);
2548 	}
2549 
2550 	/*
2551 	 * Next, move those callbacks still needing a grace period to
2552 	 * the orphanage, where some other CPU will pick them up.
2553 	 * Some of the callbacks might have gone partway through a grace
2554 	 * period, but that is too bad.  They get to start over because we
2555 	 * cannot assume that grace periods are synchronized across CPUs.
2556 	 * We don't bother updating the ->nxttail[] array yet, instead
2557 	 * we just reset the whole thing later on.
2558 	 */
2559 	if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
2560 		*rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
2561 		rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
2562 		*rdp->nxttail[RCU_DONE_TAIL] = NULL;
2563 	}
2564 
2565 	/*
2566 	 * Then move the ready-to-invoke callbacks to the orphanage,
2567 	 * where some other CPU will pick them up.  These will not be
2568 	 * required to pass though another grace period: They are done.
2569 	 */
2570 	if (rdp->nxtlist != NULL) {
2571 		*rsp->orphan_donetail = rdp->nxtlist;
2572 		rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
2573 	}
2574 
2575 	/*
2576 	 * Finally, initialize the rcu_data structure's list to empty and
2577 	 * disallow further callbacks on this CPU.
2578 	 */
2579 	init_callback_list(rdp);
2580 	rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2581 }
2582 
2583 /*
2584  * Adopt the RCU callbacks from the specified rcu_state structure's
2585  * orphanage.  The caller must hold the ->orphan_lock.
2586  */
2587 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
2588 {
2589 	int i;
2590 	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2591 
2592 	/* No-CBs CPUs are handled specially. */
2593 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2594 	    rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
2595 		return;
2596 
2597 	/* Do the accounting first. */
2598 	rdp->qlen_lazy += rsp->qlen_lazy;
2599 	rdp->qlen += rsp->qlen;
2600 	rdp->n_cbs_adopted += rsp->qlen;
2601 	if (rsp->qlen_lazy != rsp->qlen)
2602 		rcu_idle_count_callbacks_posted();
2603 	rsp->qlen_lazy = 0;
2604 	rsp->qlen = 0;
2605 
2606 	/*
2607 	 * We do not need a memory barrier here because the only way we
2608 	 * can get here if there is an rcu_barrier() in flight is if
2609 	 * we are the task doing the rcu_barrier().
2610 	 */
2611 
2612 	/* First adopt the ready-to-invoke callbacks. */
2613 	if (rsp->orphan_donelist != NULL) {
2614 		*rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
2615 		*rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
2616 		for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
2617 			if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2618 				rdp->nxttail[i] = rsp->orphan_donetail;
2619 		rsp->orphan_donelist = NULL;
2620 		rsp->orphan_donetail = &rsp->orphan_donelist;
2621 	}
2622 
2623 	/* And then adopt the callbacks that still need a grace period. */
2624 	if (rsp->orphan_nxtlist != NULL) {
2625 		*rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
2626 		rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
2627 		rsp->orphan_nxtlist = NULL;
2628 		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2629 	}
2630 }
2631 
2632 /*
2633  * Trace the fact that this CPU is going offline.
2634  */
2635 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2636 {
2637 	RCU_TRACE(unsigned long mask);
2638 	RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
2639 	RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
2640 
2641 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2642 		return;
2643 
2644 	RCU_TRACE(mask = rdp->grpmask);
2645 	trace_rcu_grace_period(rsp->name,
2646 			       rnp->gpnum + 1 - !!(rnp->qsmask & mask),
2647 			       TPS("cpuofl"));
2648 }
2649 
2650 /*
2651  * All CPUs for the specified rcu_node structure have gone offline,
2652  * and all tasks that were preempted within an RCU read-side critical
2653  * section while running on one of those CPUs have since exited their RCU
2654  * read-side critical section.  Some other CPU is reporting this fact with
2655  * the specified rcu_node structure's ->lock held and interrupts disabled.
2656  * This function therefore goes up the tree of rcu_node structures,
2657  * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
2658  * the leaf rcu_node structure's ->qsmaskinit field has already been
2659  * updated
2660  *
2661  * This function does check that the specified rcu_node structure has
2662  * all CPUs offline and no blocked tasks, so it is OK to invoke it
2663  * prematurely.  That said, invoking it after the fact will cost you
2664  * a needless lock acquisition.  So once it has done its work, don't
2665  * invoke it again.
2666  */
2667 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2668 {
2669 	long mask;
2670 	struct rcu_node *rnp = rnp_leaf;
2671 
2672 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2673 	    rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
2674 		return;
2675 	for (;;) {
2676 		mask = rnp->grpmask;
2677 		rnp = rnp->parent;
2678 		if (!rnp)
2679 			break;
2680 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2681 		rnp->qsmaskinit &= ~mask;
2682 		rnp->qsmask &= ~mask;
2683 		if (rnp->qsmaskinit) {
2684 			raw_spin_unlock_rcu_node(rnp);
2685 			/* irqs remain disabled. */
2686 			return;
2687 		}
2688 		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2689 	}
2690 }
2691 
2692 /*
2693  * The CPU has been completely removed, and some other CPU is reporting
2694  * this fact from process context.  Do the remainder of the cleanup,
2695  * including orphaning the outgoing CPU's RCU callbacks, and also
2696  * adopting them.  There can only be one CPU hotplug operation at a time,
2697  * so no other CPU can be attempting to update rcu_cpu_kthread_task.
2698  */
2699 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2700 {
2701 	unsigned long flags;
2702 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2703 	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2704 
2705 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2706 		return;
2707 
2708 	/* Adjust any no-longer-needed kthreads. */
2709 	rcu_boost_kthread_setaffinity(rnp, -1);
2710 
2711 	/* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
2712 	raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2713 	rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
2714 	rcu_adopt_orphan_cbs(rsp, flags);
2715 	raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags);
2716 
2717 	WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
2718 		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
2719 		  cpu, rdp->qlen, rdp->nxtlist);
2720 }
2721 
2722 /*
2723  * Invoke any RCU callbacks that have made it to the end of their grace
2724  * period.  Thottle as specified by rdp->blimit.
2725  */
2726 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2727 {
2728 	unsigned long flags;
2729 	struct rcu_head *next, *list, **tail;
2730 	long bl, count, count_lazy;
2731 	int i;
2732 
2733 	/* If no callbacks are ready, just return. */
2734 	if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
2735 		trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
2736 		trace_rcu_batch_end(rsp->name, 0, !!READ_ONCE(rdp->nxtlist),
2737 				    need_resched(), is_idle_task(current),
2738 				    rcu_is_callbacks_kthread());
2739 		return;
2740 	}
2741 
2742 	/*
2743 	 * Extract the list of ready callbacks, disabling to prevent
2744 	 * races with call_rcu() from interrupt handlers.
2745 	 */
2746 	local_irq_save(flags);
2747 	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2748 	bl = rdp->blimit;
2749 	trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
2750 	list = rdp->nxtlist;
2751 	rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
2752 	*rdp->nxttail[RCU_DONE_TAIL] = NULL;
2753 	tail = rdp->nxttail[RCU_DONE_TAIL];
2754 	for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
2755 		if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2756 			rdp->nxttail[i] = &rdp->nxtlist;
2757 	local_irq_restore(flags);
2758 
2759 	/* Invoke callbacks. */
2760 	count = count_lazy = 0;
2761 	while (list) {
2762 		next = list->next;
2763 		prefetch(next);
2764 		debug_rcu_head_unqueue(list);
2765 		if (__rcu_reclaim(rsp->name, list))
2766 			count_lazy++;
2767 		list = next;
2768 		/* Stop only if limit reached and CPU has something to do. */
2769 		if (++count >= bl &&
2770 		    (need_resched() ||
2771 		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2772 			break;
2773 	}
2774 
2775 	local_irq_save(flags);
2776 	trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
2777 			    is_idle_task(current),
2778 			    rcu_is_callbacks_kthread());
2779 
2780 	/* Update count, and requeue any remaining callbacks. */
2781 	if (list != NULL) {
2782 		*tail = rdp->nxtlist;
2783 		rdp->nxtlist = list;
2784 		for (i = 0; i < RCU_NEXT_SIZE; i++)
2785 			if (&rdp->nxtlist == rdp->nxttail[i])
2786 				rdp->nxttail[i] = tail;
2787 			else
2788 				break;
2789 	}
2790 	smp_mb(); /* List handling before counting for rcu_barrier(). */
2791 	rdp->qlen_lazy -= count_lazy;
2792 	WRITE_ONCE(rdp->qlen, rdp->qlen - count);
2793 	rdp->n_cbs_invoked += count;
2794 
2795 	/* Reinstate batch limit if we have worked down the excess. */
2796 	if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
2797 		rdp->blimit = blimit;
2798 
2799 	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2800 	if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
2801 		rdp->qlen_last_fqs_check = 0;
2802 		rdp->n_force_qs_snap = rsp->n_force_qs;
2803 	} else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
2804 		rdp->qlen_last_fqs_check = rdp->qlen;
2805 	WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
2806 
2807 	local_irq_restore(flags);
2808 
2809 	/* Re-invoke RCU core processing if there are callbacks remaining. */
2810 	if (cpu_has_callbacks_ready_to_invoke(rdp))
2811 		invoke_rcu_core();
2812 }
2813 
2814 /*
2815  * Check to see if this CPU is in a non-context-switch quiescent state
2816  * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2817  * Also schedule RCU core processing.
2818  *
2819  * This function must be called from hardirq context.  It is normally
2820  * invoked from the scheduling-clock interrupt.  If rcu_pending returns
2821  * false, there is no point in invoking rcu_check_callbacks().
2822  */
2823 void rcu_check_callbacks(int user)
2824 {
2825 	trace_rcu_utilization(TPS("Start scheduler-tick"));
2826 	increment_cpu_stall_ticks();
2827 	if (user || rcu_is_cpu_rrupt_from_idle()) {
2828 
2829 		/*
2830 		 * Get here if this CPU took its interrupt from user
2831 		 * mode or from the idle loop, and if this is not a
2832 		 * nested interrupt.  In this case, the CPU is in
2833 		 * a quiescent state, so note it.
2834 		 *
2835 		 * No memory barrier is required here because both
2836 		 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2837 		 * variables that other CPUs neither access nor modify,
2838 		 * at least not while the corresponding CPU is online.
2839 		 */
2840 
2841 		rcu_sched_qs();
2842 		rcu_bh_qs();
2843 
2844 	} else if (!in_softirq()) {
2845 
2846 		/*
2847 		 * Get here if this CPU did not take its interrupt from
2848 		 * softirq, in other words, if it is not interrupting
2849 		 * a rcu_bh read-side critical section.  This is an _bh
2850 		 * critical section, so note it.
2851 		 */
2852 
2853 		rcu_bh_qs();
2854 	}
2855 	rcu_preempt_check_callbacks();
2856 	if (rcu_pending())
2857 		invoke_rcu_core();
2858 	if (user)
2859 		rcu_note_voluntary_context_switch(current);
2860 	trace_rcu_utilization(TPS("End scheduler-tick"));
2861 }
2862 
2863 /*
2864  * Scan the leaf rcu_node structures, processing dyntick state for any that
2865  * have not yet encountered a quiescent state, using the function specified.
2866  * Also initiate boosting for any threads blocked on the root rcu_node.
2867  *
2868  * The caller must have suppressed start of new grace periods.
2869  */
2870 static void force_qs_rnp(struct rcu_state *rsp,
2871 			 int (*f)(struct rcu_data *rsp, bool *isidle,
2872 				  unsigned long *maxj),
2873 			 bool *isidle, unsigned long *maxj)
2874 {
2875 	unsigned long bit;
2876 	int cpu;
2877 	unsigned long flags;
2878 	unsigned long mask;
2879 	struct rcu_node *rnp;
2880 
2881 	rcu_for_each_leaf_node(rsp, rnp) {
2882 		cond_resched_rcu_qs();
2883 		mask = 0;
2884 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2885 		if (rnp->qsmask == 0) {
2886 			if (rcu_state_p == &rcu_sched_state ||
2887 			    rsp != rcu_state_p ||
2888 			    rcu_preempt_blocked_readers_cgp(rnp)) {
2889 				/*
2890 				 * No point in scanning bits because they
2891 				 * are all zero.  But we might need to
2892 				 * priority-boost blocked readers.
2893 				 */
2894 				rcu_initiate_boost(rnp, flags);
2895 				/* rcu_initiate_boost() releases rnp->lock */
2896 				continue;
2897 			}
2898 			if (rnp->parent &&
2899 			    (rnp->parent->qsmask & rnp->grpmask)) {
2900 				/*
2901 				 * Race between grace-period
2902 				 * initialization and task exiting RCU
2903 				 * read-side critical section: Report.
2904 				 */
2905 				rcu_report_unblock_qs_rnp(rsp, rnp, flags);
2906 				/* rcu_report_unblock_qs_rnp() rlses ->lock */
2907 				continue;
2908 			}
2909 		}
2910 		cpu = rnp->grplo;
2911 		bit = 1;
2912 		for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
2913 			if ((rnp->qsmask & bit) != 0) {
2914 				if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
2915 					mask |= bit;
2916 			}
2917 		}
2918 		if (mask != 0) {
2919 			/* Idle/offline CPUs, report (releases rnp->lock. */
2920 			rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2921 		} else {
2922 			/* Nothing to do here, so just drop the lock. */
2923 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2924 		}
2925 	}
2926 }
2927 
2928 /*
2929  * Force quiescent states on reluctant CPUs, and also detect which
2930  * CPUs are in dyntick-idle mode.
2931  */
2932 static void force_quiescent_state(struct rcu_state *rsp)
2933 {
2934 	unsigned long flags;
2935 	bool ret;
2936 	struct rcu_node *rnp;
2937 	struct rcu_node *rnp_old = NULL;
2938 
2939 	/* Funnel through hierarchy to reduce memory contention. */
2940 	rnp = __this_cpu_read(rsp->rda->mynode);
2941 	for (; rnp != NULL; rnp = rnp->parent) {
2942 		ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2943 		      !raw_spin_trylock(&rnp->fqslock);
2944 		if (rnp_old != NULL)
2945 			raw_spin_unlock(&rnp_old->fqslock);
2946 		if (ret) {
2947 			rsp->n_force_qs_lh++;
2948 			return;
2949 		}
2950 		rnp_old = rnp;
2951 	}
2952 	/* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2953 
2954 	/* Reached the root of the rcu_node tree, acquire lock. */
2955 	raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2956 	raw_spin_unlock(&rnp_old->fqslock);
2957 	if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2958 		rsp->n_force_qs_lh++;
2959 		raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2960 		return;  /* Someone beat us to it. */
2961 	}
2962 	WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2963 	raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2964 	swake_up(&rsp->gp_wq); /* Memory barrier implied by swake_up() path. */
2965 }
2966 
2967 /*
2968  * This does the RCU core processing work for the specified rcu_state
2969  * and rcu_data structures.  This may be called only from the CPU to
2970  * whom the rdp belongs.
2971  */
2972 static void
2973 __rcu_process_callbacks(struct rcu_state *rsp)
2974 {
2975 	unsigned long flags;
2976 	bool needwake;
2977 	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2978 
2979 	WARN_ON_ONCE(rdp->beenonline == 0);
2980 
2981 	/* Update RCU state based on any recent quiescent states. */
2982 	rcu_check_quiescent_state(rsp, rdp);
2983 
2984 	/* Does this CPU require a not-yet-started grace period? */
2985 	local_irq_save(flags);
2986 	if (cpu_needs_another_gp(rsp, rdp)) {
2987 		raw_spin_lock_rcu_node(rcu_get_root(rsp)); /* irqs disabled. */
2988 		needwake = rcu_start_gp(rsp);
2989 		raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
2990 		if (needwake)
2991 			rcu_gp_kthread_wake(rsp);
2992 	} else {
2993 		local_irq_restore(flags);
2994 	}
2995 
2996 	/* If there are callbacks ready, invoke them. */
2997 	if (cpu_has_callbacks_ready_to_invoke(rdp))
2998 		invoke_rcu_callbacks(rsp, rdp);
2999 
3000 	/* Do any needed deferred wakeups of rcuo kthreads. */
3001 	do_nocb_deferred_wakeup(rdp);
3002 }
3003 
3004 /*
3005  * Do RCU core processing for the current CPU.
3006  */
3007 static void rcu_process_callbacks(struct softirq_action *unused)
3008 {
3009 	struct rcu_state *rsp;
3010 
3011 	if (cpu_is_offline(smp_processor_id()))
3012 		return;
3013 	trace_rcu_utilization(TPS("Start RCU core"));
3014 	for_each_rcu_flavor(rsp)
3015 		__rcu_process_callbacks(rsp);
3016 	trace_rcu_utilization(TPS("End RCU core"));
3017 }
3018 
3019 /*
3020  * Schedule RCU callback invocation.  If the specified type of RCU
3021  * does not support RCU priority boosting, just do a direct call,
3022  * otherwise wake up the per-CPU kernel kthread.  Note that because we
3023  * are running on the current CPU with softirqs disabled, the
3024  * rcu_cpu_kthread_task cannot disappear out from under us.
3025  */
3026 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
3027 {
3028 	if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
3029 		return;
3030 	if (likely(!rsp->boost)) {
3031 		rcu_do_batch(rsp, rdp);
3032 		return;
3033 	}
3034 	invoke_rcu_callbacks_kthread();
3035 }
3036 
3037 static void invoke_rcu_core(void)
3038 {
3039 	if (cpu_online(smp_processor_id()))
3040 		raise_softirq(RCU_SOFTIRQ);
3041 }
3042 
3043 /*
3044  * Handle any core-RCU processing required by a call_rcu() invocation.
3045  */
3046 static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
3047 			    struct rcu_head *head, unsigned long flags)
3048 {
3049 	bool needwake;
3050 
3051 	/*
3052 	 * If called from an extended quiescent state, invoke the RCU
3053 	 * core in order to force a re-evaluation of RCU's idleness.
3054 	 */
3055 	if (!rcu_is_watching())
3056 		invoke_rcu_core();
3057 
3058 	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
3059 	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
3060 		return;
3061 
3062 	/*
3063 	 * Force the grace period if too many callbacks or too long waiting.
3064 	 * Enforce hysteresis, and don't invoke force_quiescent_state()
3065 	 * if some other CPU has recently done so.  Also, don't bother
3066 	 * invoking force_quiescent_state() if the newly enqueued callback
3067 	 * is the only one waiting for a grace period to complete.
3068 	 */
3069 	if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
3070 
3071 		/* Are we ignoring a completed grace period? */
3072 		note_gp_changes(rsp, rdp);
3073 
3074 		/* Start a new grace period if one not already started. */
3075 		if (!rcu_gp_in_progress(rsp)) {
3076 			struct rcu_node *rnp_root = rcu_get_root(rsp);
3077 
3078 			raw_spin_lock_rcu_node(rnp_root);
3079 			needwake = rcu_start_gp(rsp);
3080 			raw_spin_unlock_rcu_node(rnp_root);
3081 			if (needwake)
3082 				rcu_gp_kthread_wake(rsp);
3083 		} else {
3084 			/* Give the grace period a kick. */
3085 			rdp->blimit = LONG_MAX;
3086 			if (rsp->n_force_qs == rdp->n_force_qs_snap &&
3087 			    *rdp->nxttail[RCU_DONE_TAIL] != head)
3088 				force_quiescent_state(rsp);
3089 			rdp->n_force_qs_snap = rsp->n_force_qs;
3090 			rdp->qlen_last_fqs_check = rdp->qlen;
3091 		}
3092 	}
3093 }
3094 
3095 /*
3096  * RCU callback function to leak a callback.
3097  */
3098 static void rcu_leak_callback(struct rcu_head *rhp)
3099 {
3100 }
3101 
3102 /*
3103  * Helper function for call_rcu() and friends.  The cpu argument will
3104  * normally be -1, indicating "currently running CPU".  It may specify
3105  * a CPU only if that CPU is a no-CBs CPU.  Currently, only _rcu_barrier()
3106  * is expected to specify a CPU.
3107  */
3108 static void
3109 __call_rcu(struct rcu_head *head, rcu_callback_t func,
3110 	   struct rcu_state *rsp, int cpu, bool lazy)
3111 {
3112 	unsigned long flags;
3113 	struct rcu_data *rdp;
3114 
3115 	WARN_ON_ONCE((unsigned long)head & 0x1); /* Misaligned rcu_head! */
3116 	if (debug_rcu_head_queue(head)) {
3117 		/* Probable double call_rcu(), so leak the callback. */
3118 		WRITE_ONCE(head->func, rcu_leak_callback);
3119 		WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
3120 		return;
3121 	}
3122 	head->func = func;
3123 	head->next = NULL;
3124 
3125 	/*
3126 	 * Opportunistically note grace-period endings and beginnings.
3127 	 * Note that we might see a beginning right after we see an
3128 	 * end, but never vice versa, since this CPU has to pass through
3129 	 * a quiescent state betweentimes.
3130 	 */
3131 	local_irq_save(flags);
3132 	rdp = this_cpu_ptr(rsp->rda);
3133 
3134 	/* Add the callback to our list. */
3135 	if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
3136 		int offline;
3137 
3138 		if (cpu != -1)
3139 			rdp = per_cpu_ptr(rsp->rda, cpu);
3140 		if (likely(rdp->mynode)) {
3141 			/* Post-boot, so this should be for a no-CBs CPU. */
3142 			offline = !__call_rcu_nocb(rdp, head, lazy, flags);
3143 			WARN_ON_ONCE(offline);
3144 			/* Offline CPU, _call_rcu() illegal, leak callback.  */
3145 			local_irq_restore(flags);
3146 			return;
3147 		}
3148 		/*
3149 		 * Very early boot, before rcu_init().  Initialize if needed
3150 		 * and then drop through to queue the callback.
3151 		 */
3152 		BUG_ON(cpu != -1);
3153 		WARN_ON_ONCE(!rcu_is_watching());
3154 		if (!likely(rdp->nxtlist))
3155 			init_default_callback_list(rdp);
3156 	}
3157 	WRITE_ONCE(rdp->qlen, rdp->qlen + 1);
3158 	if (lazy)
3159 		rdp->qlen_lazy++;
3160 	else
3161 		rcu_idle_count_callbacks_posted();
3162 	smp_mb();  /* Count before adding callback for rcu_barrier(). */
3163 	*rdp->nxttail[RCU_NEXT_TAIL] = head;
3164 	rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
3165 
3166 	if (__is_kfree_rcu_offset((unsigned long)func))
3167 		trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
3168 					 rdp->qlen_lazy, rdp->qlen);
3169 	else
3170 		trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
3171 
3172 	/* Go handle any RCU core processing required. */
3173 	__call_rcu_core(rsp, rdp, head, flags);
3174 	local_irq_restore(flags);
3175 }
3176 
3177 /*
3178  * Queue an RCU-sched callback for invocation after a grace period.
3179  */
3180 void call_rcu_sched(struct rcu_head *head, rcu_callback_t func)
3181 {
3182 	__call_rcu(head, func, &rcu_sched_state, -1, 0);
3183 }
3184 EXPORT_SYMBOL_GPL(call_rcu_sched);
3185 
3186 /*
3187  * Queue an RCU callback for invocation after a quicker grace period.
3188  */
3189 void call_rcu_bh(struct rcu_head *head, rcu_callback_t func)
3190 {
3191 	__call_rcu(head, func, &rcu_bh_state, -1, 0);
3192 }
3193 EXPORT_SYMBOL_GPL(call_rcu_bh);
3194 
3195 /*
3196  * Queue an RCU callback for lazy invocation after a grace period.
3197  * This will likely be later named something like "call_rcu_lazy()",
3198  * but this change will require some way of tagging the lazy RCU
3199  * callbacks in the list of pending callbacks. Until then, this
3200  * function may only be called from __kfree_rcu().
3201  */
3202 void kfree_call_rcu(struct rcu_head *head,
3203 		    rcu_callback_t func)
3204 {
3205 	__call_rcu(head, func, rcu_state_p, -1, 1);
3206 }
3207 EXPORT_SYMBOL_GPL(kfree_call_rcu);
3208 
3209 /*
3210  * Because a context switch is a grace period for RCU-sched and RCU-bh,
3211  * any blocking grace-period wait automatically implies a grace period
3212  * if there is only one CPU online at any point time during execution
3213  * of either synchronize_sched() or synchronize_rcu_bh().  It is OK to
3214  * occasionally incorrectly indicate that there are multiple CPUs online
3215  * when there was in fact only one the whole time, as this just adds
3216  * some overhead: RCU still operates correctly.
3217  */
3218 static inline int rcu_blocking_is_gp(void)
3219 {
3220 	int ret;
3221 
3222 	might_sleep();  /* Check for RCU read-side critical section. */
3223 	preempt_disable();
3224 	ret = num_online_cpus() <= 1;
3225 	preempt_enable();
3226 	return ret;
3227 }
3228 
3229 /**
3230  * synchronize_sched - wait until an rcu-sched grace period has elapsed.
3231  *
3232  * Control will return to the caller some time after a full rcu-sched
3233  * grace period has elapsed, in other words after all currently executing
3234  * rcu-sched read-side critical sections have completed.   These read-side
3235  * critical sections are delimited by rcu_read_lock_sched() and
3236  * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(),
3237  * local_irq_disable(), and so on may be used in place of
3238  * rcu_read_lock_sched().
3239  *
3240  * This means that all preempt_disable code sequences, including NMI and
3241  * non-threaded hardware-interrupt handlers, in progress on entry will
3242  * have completed before this primitive returns.  However, this does not
3243  * guarantee that softirq handlers will have completed, since in some
3244  * kernels, these handlers can run in process context, and can block.
3245  *
3246  * Note that this guarantee implies further memory-ordering guarantees.
3247  * On systems with more than one CPU, when synchronize_sched() returns,
3248  * each CPU is guaranteed to have executed a full memory barrier since the
3249  * end of its last RCU-sched read-side critical section whose beginning
3250  * preceded the call to synchronize_sched().  In addition, each CPU having
3251  * an RCU read-side critical section that extends beyond the return from
3252  * synchronize_sched() is guaranteed to have executed a full memory barrier
3253  * after the beginning of synchronize_sched() and before the beginning of
3254  * that RCU read-side critical section.  Note that these guarantees include
3255  * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3256  * that are executing in the kernel.
3257  *
3258  * Furthermore, if CPU A invoked synchronize_sched(), which returned
3259  * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3260  * to have executed a full memory barrier during the execution of
3261  * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
3262  * again only if the system has more than one CPU).
3263  *
3264  * This primitive provides the guarantees made by the (now removed)
3265  * synchronize_kernel() API.  In contrast, synchronize_rcu() only
3266  * guarantees that rcu_read_lock() sections will have completed.
3267  * In "classic RCU", these two guarantees happen to be one and
3268  * the same, but can differ in realtime RCU implementations.
3269  */
3270 void synchronize_sched(void)
3271 {
3272 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3273 			 lock_is_held(&rcu_lock_map) ||
3274 			 lock_is_held(&rcu_sched_lock_map),
3275 			 "Illegal synchronize_sched() in RCU-sched read-side critical section");
3276 	if (rcu_blocking_is_gp())
3277 		return;
3278 	if (rcu_gp_is_expedited())
3279 		synchronize_sched_expedited();
3280 	else
3281 		wait_rcu_gp(call_rcu_sched);
3282 }
3283 EXPORT_SYMBOL_GPL(synchronize_sched);
3284 
3285 /**
3286  * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
3287  *
3288  * Control will return to the caller some time after a full rcu_bh grace
3289  * period has elapsed, in other words after all currently executing rcu_bh
3290  * read-side critical sections have completed.  RCU read-side critical
3291  * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
3292  * and may be nested.
3293  *
3294  * See the description of synchronize_sched() for more detailed information
3295  * on memory ordering guarantees.
3296  */
3297 void synchronize_rcu_bh(void)
3298 {
3299 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3300 			 lock_is_held(&rcu_lock_map) ||
3301 			 lock_is_held(&rcu_sched_lock_map),
3302 			 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
3303 	if (rcu_blocking_is_gp())
3304 		return;
3305 	if (rcu_gp_is_expedited())
3306 		synchronize_rcu_bh_expedited();
3307 	else
3308 		wait_rcu_gp(call_rcu_bh);
3309 }
3310 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
3311 
3312 /**
3313  * get_state_synchronize_rcu - Snapshot current RCU state
3314  *
3315  * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3316  * to determine whether or not a full grace period has elapsed in the
3317  * meantime.
3318  */
3319 unsigned long get_state_synchronize_rcu(void)
3320 {
3321 	/*
3322 	 * Any prior manipulation of RCU-protected data must happen
3323 	 * before the load from ->gpnum.
3324 	 */
3325 	smp_mb();  /* ^^^ */
3326 
3327 	/*
3328 	 * Make sure this load happens before the purportedly
3329 	 * time-consuming work between get_state_synchronize_rcu()
3330 	 * and cond_synchronize_rcu().
3331 	 */
3332 	return smp_load_acquire(&rcu_state_p->gpnum);
3333 }
3334 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3335 
3336 /**
3337  * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3338  *
3339  * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3340  *
3341  * If a full RCU grace period has elapsed since the earlier call to
3342  * get_state_synchronize_rcu(), just return.  Otherwise, invoke
3343  * synchronize_rcu() to wait for a full grace period.
3344  *
3345  * Yes, this function does not take counter wrap into account.  But
3346  * counter wrap is harmless.  If the counter wraps, we have waited for
3347  * more than 2 billion grace periods (and way more on a 64-bit system!),
3348  * so waiting for one additional grace period should be just fine.
3349  */
3350 void cond_synchronize_rcu(unsigned long oldstate)
3351 {
3352 	unsigned long newstate;
3353 
3354 	/*
3355 	 * Ensure that this load happens before any RCU-destructive
3356 	 * actions the caller might carry out after we return.
3357 	 */
3358 	newstate = smp_load_acquire(&rcu_state_p->completed);
3359 	if (ULONG_CMP_GE(oldstate, newstate))
3360 		synchronize_rcu();
3361 }
3362 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3363 
3364 /**
3365  * get_state_synchronize_sched - Snapshot current RCU-sched state
3366  *
3367  * Returns a cookie that is used by a later call to cond_synchronize_sched()
3368  * to determine whether or not a full grace period has elapsed in the
3369  * meantime.
3370  */
3371 unsigned long get_state_synchronize_sched(void)
3372 {
3373 	/*
3374 	 * Any prior manipulation of RCU-protected data must happen
3375 	 * before the load from ->gpnum.
3376 	 */
3377 	smp_mb();  /* ^^^ */
3378 
3379 	/*
3380 	 * Make sure this load happens before the purportedly
3381 	 * time-consuming work between get_state_synchronize_sched()
3382 	 * and cond_synchronize_sched().
3383 	 */
3384 	return smp_load_acquire(&rcu_sched_state.gpnum);
3385 }
3386 EXPORT_SYMBOL_GPL(get_state_synchronize_sched);
3387 
3388 /**
3389  * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
3390  *
3391  * @oldstate: return value from earlier call to get_state_synchronize_sched()
3392  *
3393  * If a full RCU-sched grace period has elapsed since the earlier call to
3394  * get_state_synchronize_sched(), just return.  Otherwise, invoke
3395  * synchronize_sched() to wait for a full grace period.
3396  *
3397  * Yes, this function does not take counter wrap into account.  But
3398  * counter wrap is harmless.  If the counter wraps, we have waited for
3399  * more than 2 billion grace periods (and way more on a 64-bit system!),
3400  * so waiting for one additional grace period should be just fine.
3401  */
3402 void cond_synchronize_sched(unsigned long oldstate)
3403 {
3404 	unsigned long newstate;
3405 
3406 	/*
3407 	 * Ensure that this load happens before any RCU-destructive
3408 	 * actions the caller might carry out after we return.
3409 	 */
3410 	newstate = smp_load_acquire(&rcu_sched_state.completed);
3411 	if (ULONG_CMP_GE(oldstate, newstate))
3412 		synchronize_sched();
3413 }
3414 EXPORT_SYMBOL_GPL(cond_synchronize_sched);
3415 
3416 /* Adjust sequence number for start of update-side operation. */
3417 static void rcu_seq_start(unsigned long *sp)
3418 {
3419 	WRITE_ONCE(*sp, *sp + 1);
3420 	smp_mb(); /* Ensure update-side operation after counter increment. */
3421 	WARN_ON_ONCE(!(*sp & 0x1));
3422 }
3423 
3424 /* Adjust sequence number for end of update-side operation. */
3425 static void rcu_seq_end(unsigned long *sp)
3426 {
3427 	smp_mb(); /* Ensure update-side operation before counter increment. */
3428 	WRITE_ONCE(*sp, *sp + 1);
3429 	WARN_ON_ONCE(*sp & 0x1);
3430 }
3431 
3432 /* Take a snapshot of the update side's sequence number. */
3433 static unsigned long rcu_seq_snap(unsigned long *sp)
3434 {
3435 	unsigned long s;
3436 
3437 	s = (READ_ONCE(*sp) + 3) & ~0x1;
3438 	smp_mb(); /* Above access must not bleed into critical section. */
3439 	return s;
3440 }
3441 
3442 /*
3443  * Given a snapshot from rcu_seq_snap(), determine whether or not a
3444  * full update-side operation has occurred.
3445  */
3446 static bool rcu_seq_done(unsigned long *sp, unsigned long s)
3447 {
3448 	return ULONG_CMP_GE(READ_ONCE(*sp), s);
3449 }
3450 
3451 /* Wrapper functions for expedited grace periods.  */
3452 static void rcu_exp_gp_seq_start(struct rcu_state *rsp)
3453 {
3454 	rcu_seq_start(&rsp->expedited_sequence);
3455 }
3456 static void rcu_exp_gp_seq_end(struct rcu_state *rsp)
3457 {
3458 	rcu_seq_end(&rsp->expedited_sequence);
3459 	smp_mb(); /* Ensure that consecutive grace periods serialize. */
3460 }
3461 static unsigned long rcu_exp_gp_seq_snap(struct rcu_state *rsp)
3462 {
3463 	unsigned long s;
3464 
3465 	smp_mb(); /* Caller's modifications seen first by other CPUs. */
3466 	s = rcu_seq_snap(&rsp->expedited_sequence);
3467 	trace_rcu_exp_grace_period(rsp->name, s, TPS("snap"));
3468 	return s;
3469 }
3470 static bool rcu_exp_gp_seq_done(struct rcu_state *rsp, unsigned long s)
3471 {
3472 	return rcu_seq_done(&rsp->expedited_sequence, s);
3473 }
3474 
3475 /*
3476  * Reset the ->expmaskinit values in the rcu_node tree to reflect any
3477  * recent CPU-online activity.  Note that these masks are not cleared
3478  * when CPUs go offline, so they reflect the union of all CPUs that have
3479  * ever been online.  This means that this function normally takes its
3480  * no-work-to-do fastpath.
3481  */
3482 static void sync_exp_reset_tree_hotplug(struct rcu_state *rsp)
3483 {
3484 	bool done;
3485 	unsigned long flags;
3486 	unsigned long mask;
3487 	unsigned long oldmask;
3488 	int ncpus = READ_ONCE(rsp->ncpus);
3489 	struct rcu_node *rnp;
3490 	struct rcu_node *rnp_up;
3491 
3492 	/* If no new CPUs onlined since last time, nothing to do. */
3493 	if (likely(ncpus == rsp->ncpus_snap))
3494 		return;
3495 	rsp->ncpus_snap = ncpus;
3496 
3497 	/*
3498 	 * Each pass through the following loop propagates newly onlined
3499 	 * CPUs for the current rcu_node structure up the rcu_node tree.
3500 	 */
3501 	rcu_for_each_leaf_node(rsp, rnp) {
3502 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
3503 		if (rnp->expmaskinit == rnp->expmaskinitnext) {
3504 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3505 			continue;  /* No new CPUs, nothing to do. */
3506 		}
3507 
3508 		/* Update this node's mask, track old value for propagation. */
3509 		oldmask = rnp->expmaskinit;
3510 		rnp->expmaskinit = rnp->expmaskinitnext;
3511 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3512 
3513 		/* If was already nonzero, nothing to propagate. */
3514 		if (oldmask)
3515 			continue;
3516 
3517 		/* Propagate the new CPU up the tree. */
3518 		mask = rnp->grpmask;
3519 		rnp_up = rnp->parent;
3520 		done = false;
3521 		while (rnp_up) {
3522 			raw_spin_lock_irqsave_rcu_node(rnp_up, flags);
3523 			if (rnp_up->expmaskinit)
3524 				done = true;
3525 			rnp_up->expmaskinit |= mask;
3526 			raw_spin_unlock_irqrestore_rcu_node(rnp_up, flags);
3527 			if (done)
3528 				break;
3529 			mask = rnp_up->grpmask;
3530 			rnp_up = rnp_up->parent;
3531 		}
3532 	}
3533 }
3534 
3535 /*
3536  * Reset the ->expmask values in the rcu_node tree in preparation for
3537  * a new expedited grace period.
3538  */
3539 static void __maybe_unused sync_exp_reset_tree(struct rcu_state *rsp)
3540 {
3541 	unsigned long flags;
3542 	struct rcu_node *rnp;
3543 
3544 	sync_exp_reset_tree_hotplug(rsp);
3545 	rcu_for_each_node_breadth_first(rsp, rnp) {
3546 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
3547 		WARN_ON_ONCE(rnp->expmask);
3548 		rnp->expmask = rnp->expmaskinit;
3549 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3550 	}
3551 }
3552 
3553 /*
3554  * Return non-zero if there is no RCU expedited grace period in progress
3555  * for the specified rcu_node structure, in other words, if all CPUs and
3556  * tasks covered by the specified rcu_node structure have done their bit
3557  * for the current expedited grace period.  Works only for preemptible
3558  * RCU -- other RCU implementation use other means.
3559  *
3560  * Caller must hold the rcu_state's exp_mutex.
3561  */
3562 static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
3563 {
3564 	return rnp->exp_tasks == NULL &&
3565 	       READ_ONCE(rnp->expmask) == 0;
3566 }
3567 
3568 /*
3569  * Report the exit from RCU read-side critical section for the last task
3570  * that queued itself during or before the current expedited preemptible-RCU
3571  * grace period.  This event is reported either to the rcu_node structure on
3572  * which the task was queued or to one of that rcu_node structure's ancestors,
3573  * recursively up the tree.  (Calm down, calm down, we do the recursion
3574  * iteratively!)
3575  *
3576  * Caller must hold the rcu_state's exp_mutex and the specified rcu_node
3577  * structure's ->lock.
3578  */
3579 static void __rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
3580 				 bool wake, unsigned long flags)
3581 	__releases(rnp->lock)
3582 {
3583 	unsigned long mask;
3584 
3585 	for (;;) {
3586 		if (!sync_rcu_preempt_exp_done(rnp)) {
3587 			if (!rnp->expmask)
3588 				rcu_initiate_boost(rnp, flags);
3589 			else
3590 				raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3591 			break;
3592 		}
3593 		if (rnp->parent == NULL) {
3594 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3595 			if (wake) {
3596 				smp_mb(); /* EGP done before wake_up(). */
3597 				swake_up(&rsp->expedited_wq);
3598 			}
3599 			break;
3600 		}
3601 		mask = rnp->grpmask;
3602 		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled */
3603 		rnp = rnp->parent;
3604 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled */
3605 		WARN_ON_ONCE(!(rnp->expmask & mask));
3606 		rnp->expmask &= ~mask;
3607 	}
3608 }
3609 
3610 /*
3611  * Report expedited quiescent state for specified node.  This is a
3612  * lock-acquisition wrapper function for __rcu_report_exp_rnp().
3613  *
3614  * Caller must hold the rcu_state's exp_mutex.
3615  */
3616 static void __maybe_unused rcu_report_exp_rnp(struct rcu_state *rsp,
3617 					      struct rcu_node *rnp, bool wake)
3618 {
3619 	unsigned long flags;
3620 
3621 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3622 	__rcu_report_exp_rnp(rsp, rnp, wake, flags);
3623 }
3624 
3625 /*
3626  * Report expedited quiescent state for multiple CPUs, all covered by the
3627  * specified leaf rcu_node structure.  Caller must hold the rcu_state's
3628  * exp_mutex.
3629  */
3630 static void rcu_report_exp_cpu_mult(struct rcu_state *rsp, struct rcu_node *rnp,
3631 				    unsigned long mask, bool wake)
3632 {
3633 	unsigned long flags;
3634 
3635 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3636 	if (!(rnp->expmask & mask)) {
3637 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3638 		return;
3639 	}
3640 	rnp->expmask &= ~mask;
3641 	__rcu_report_exp_rnp(rsp, rnp, wake, flags); /* Releases rnp->lock. */
3642 }
3643 
3644 /*
3645  * Report expedited quiescent state for specified rcu_data (CPU).
3646  */
3647 static void rcu_report_exp_rdp(struct rcu_state *rsp, struct rcu_data *rdp,
3648 			       bool wake)
3649 {
3650 	rcu_report_exp_cpu_mult(rsp, rdp->mynode, rdp->grpmask, wake);
3651 }
3652 
3653 /* Common code for synchronize_{rcu,sched}_expedited() work-done checking. */
3654 static bool sync_exp_work_done(struct rcu_state *rsp, atomic_long_t *stat,
3655 			       unsigned long s)
3656 {
3657 	if (rcu_exp_gp_seq_done(rsp, s)) {
3658 		trace_rcu_exp_grace_period(rsp->name, s, TPS("done"));
3659 		/* Ensure test happens before caller kfree(). */
3660 		smp_mb__before_atomic(); /* ^^^ */
3661 		atomic_long_inc(stat);
3662 		return true;
3663 	}
3664 	return false;
3665 }
3666 
3667 /*
3668  * Funnel-lock acquisition for expedited grace periods.  Returns true
3669  * if some other task completed an expedited grace period that this task
3670  * can piggy-back on, and with no mutex held.  Otherwise, returns false
3671  * with the mutex held, indicating that the caller must actually do the
3672  * expedited grace period.
3673  */
3674 static bool exp_funnel_lock(struct rcu_state *rsp, unsigned long s)
3675 {
3676 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, raw_smp_processor_id());
3677 	struct rcu_node *rnp = rdp->mynode;
3678 	struct rcu_node *rnp_root = rcu_get_root(rsp);
3679 
3680 	/* Low-contention fastpath. */
3681 	if (ULONG_CMP_LT(READ_ONCE(rnp->exp_seq_rq), s) &&
3682 	    (rnp == rnp_root ||
3683 	     ULONG_CMP_LT(READ_ONCE(rnp_root->exp_seq_rq), s)) &&
3684 	    !mutex_is_locked(&rsp->exp_mutex) &&
3685 	    mutex_trylock(&rsp->exp_mutex))
3686 		goto fastpath;
3687 
3688 	/*
3689 	 * Each pass through the following loop works its way up
3690 	 * the rcu_node tree, returning if others have done the work or
3691 	 * otherwise falls through to acquire rsp->exp_mutex.  The mapping
3692 	 * from CPU to rcu_node structure can be inexact, as it is just
3693 	 * promoting locality and is not strictly needed for correctness.
3694 	 */
3695 	for (; rnp != NULL; rnp = rnp->parent) {
3696 		if (sync_exp_work_done(rsp, &rdp->exp_workdone1, s))
3697 			return true;
3698 
3699 		/* Work not done, either wait here or go up. */
3700 		spin_lock(&rnp->exp_lock);
3701 		if (ULONG_CMP_GE(rnp->exp_seq_rq, s)) {
3702 
3703 			/* Someone else doing GP, so wait for them. */
3704 			spin_unlock(&rnp->exp_lock);
3705 			trace_rcu_exp_funnel_lock(rsp->name, rnp->level,
3706 						  rnp->grplo, rnp->grphi,
3707 						  TPS("wait"));
3708 			wait_event(rnp->exp_wq[(s >> 1) & 0x3],
3709 				   sync_exp_work_done(rsp,
3710 						      &rdp->exp_workdone2, s));
3711 			return true;
3712 		}
3713 		rnp->exp_seq_rq = s; /* Followers can wait on us. */
3714 		spin_unlock(&rnp->exp_lock);
3715 		trace_rcu_exp_funnel_lock(rsp->name, rnp->level, rnp->grplo,
3716 					  rnp->grphi, TPS("nxtlvl"));
3717 	}
3718 	mutex_lock(&rsp->exp_mutex);
3719 fastpath:
3720 	if (sync_exp_work_done(rsp, &rdp->exp_workdone3, s)) {
3721 		mutex_unlock(&rsp->exp_mutex);
3722 		return true;
3723 	}
3724 	rcu_exp_gp_seq_start(rsp);
3725 	trace_rcu_exp_grace_period(rsp->name, s, TPS("start"));
3726 	return false;
3727 }
3728 
3729 /* Invoked on each online non-idle CPU for expedited quiescent state. */
3730 static void sync_sched_exp_handler(void *data)
3731 {
3732 	struct rcu_data *rdp;
3733 	struct rcu_node *rnp;
3734 	struct rcu_state *rsp = data;
3735 
3736 	rdp = this_cpu_ptr(rsp->rda);
3737 	rnp = rdp->mynode;
3738 	if (!(READ_ONCE(rnp->expmask) & rdp->grpmask) ||
3739 	    __this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
3740 		return;
3741 	if (rcu_is_cpu_rrupt_from_idle()) {
3742 		rcu_report_exp_rdp(&rcu_sched_state,
3743 				   this_cpu_ptr(&rcu_sched_data), true);
3744 		return;
3745 	}
3746 	__this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, true);
3747 	resched_cpu(smp_processor_id());
3748 }
3749 
3750 /* Send IPI for expedited cleanup if needed at end of CPU-hotplug operation. */
3751 static void sync_sched_exp_online_cleanup(int cpu)
3752 {
3753 	struct rcu_data *rdp;
3754 	int ret;
3755 	struct rcu_node *rnp;
3756 	struct rcu_state *rsp = &rcu_sched_state;
3757 
3758 	rdp = per_cpu_ptr(rsp->rda, cpu);
3759 	rnp = rdp->mynode;
3760 	if (!(READ_ONCE(rnp->expmask) & rdp->grpmask))
3761 		return;
3762 	ret = smp_call_function_single(cpu, sync_sched_exp_handler, rsp, 0);
3763 	WARN_ON_ONCE(ret);
3764 }
3765 
3766 /*
3767  * Select the nodes that the upcoming expedited grace period needs
3768  * to wait for.
3769  */
3770 static void sync_rcu_exp_select_cpus(struct rcu_state *rsp,
3771 				     smp_call_func_t func)
3772 {
3773 	int cpu;
3774 	unsigned long flags;
3775 	unsigned long mask;
3776 	unsigned long mask_ofl_test;
3777 	unsigned long mask_ofl_ipi;
3778 	int ret;
3779 	struct rcu_node *rnp;
3780 
3781 	sync_exp_reset_tree(rsp);
3782 	rcu_for_each_leaf_node(rsp, rnp) {
3783 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
3784 
3785 		/* Each pass checks a CPU for identity, offline, and idle. */
3786 		mask_ofl_test = 0;
3787 		for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) {
3788 			struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3789 			struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
3790 
3791 			if (raw_smp_processor_id() == cpu ||
3792 			    !(atomic_add_return(0, &rdtp->dynticks) & 0x1))
3793 				mask_ofl_test |= rdp->grpmask;
3794 		}
3795 		mask_ofl_ipi = rnp->expmask & ~mask_ofl_test;
3796 
3797 		/*
3798 		 * Need to wait for any blocked tasks as well.  Note that
3799 		 * additional blocking tasks will also block the expedited
3800 		 * GP until such time as the ->expmask bits are cleared.
3801 		 */
3802 		if (rcu_preempt_has_tasks(rnp))
3803 			rnp->exp_tasks = rnp->blkd_tasks.next;
3804 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3805 
3806 		/* IPI the remaining CPUs for expedited quiescent state. */
3807 		mask = 1;
3808 		for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask <<= 1) {
3809 			if (!(mask_ofl_ipi & mask))
3810 				continue;
3811 retry_ipi:
3812 			ret = smp_call_function_single(cpu, func, rsp, 0);
3813 			if (!ret) {
3814 				mask_ofl_ipi &= ~mask;
3815 				continue;
3816 			}
3817 			/* Failed, raced with offline. */
3818 			raw_spin_lock_irqsave_rcu_node(rnp, flags);
3819 			if (cpu_online(cpu) &&
3820 			    (rnp->expmask & mask)) {
3821 				raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3822 				schedule_timeout_uninterruptible(1);
3823 				if (cpu_online(cpu) &&
3824 				    (rnp->expmask & mask))
3825 					goto retry_ipi;
3826 				raw_spin_lock_irqsave_rcu_node(rnp, flags);
3827 			}
3828 			if (!(rnp->expmask & mask))
3829 				mask_ofl_ipi &= ~mask;
3830 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3831 		}
3832 		/* Report quiescent states for those that went offline. */
3833 		mask_ofl_test |= mask_ofl_ipi;
3834 		if (mask_ofl_test)
3835 			rcu_report_exp_cpu_mult(rsp, rnp, mask_ofl_test, false);
3836 	}
3837 }
3838 
3839 static void synchronize_sched_expedited_wait(struct rcu_state *rsp)
3840 {
3841 	int cpu;
3842 	unsigned long jiffies_stall;
3843 	unsigned long jiffies_start;
3844 	unsigned long mask;
3845 	int ndetected;
3846 	struct rcu_node *rnp;
3847 	struct rcu_node *rnp_root = rcu_get_root(rsp);
3848 	int ret;
3849 
3850 	jiffies_stall = rcu_jiffies_till_stall_check();
3851 	jiffies_start = jiffies;
3852 
3853 	for (;;) {
3854 		ret = swait_event_timeout(
3855 				rsp->expedited_wq,
3856 				sync_rcu_preempt_exp_done(rnp_root),
3857 				jiffies_stall);
3858 		if (ret > 0 || sync_rcu_preempt_exp_done(rnp_root))
3859 			return;
3860 		if (ret < 0) {
3861 			/* Hit a signal, disable CPU stall warnings. */
3862 			swait_event(rsp->expedited_wq,
3863 				   sync_rcu_preempt_exp_done(rnp_root));
3864 			return;
3865 		}
3866 		pr_err("INFO: %s detected expedited stalls on CPUs/tasks: {",
3867 		       rsp->name);
3868 		ndetected = 0;
3869 		rcu_for_each_leaf_node(rsp, rnp) {
3870 			ndetected += rcu_print_task_exp_stall(rnp);
3871 			mask = 1;
3872 			for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask <<= 1) {
3873 				struct rcu_data *rdp;
3874 
3875 				if (!(rnp->expmask & mask))
3876 					continue;
3877 				ndetected++;
3878 				rdp = per_cpu_ptr(rsp->rda, cpu);
3879 				pr_cont(" %d-%c%c%c", cpu,
3880 					"O."[!!cpu_online(cpu)],
3881 					"o."[!!(rdp->grpmask & rnp->expmaskinit)],
3882 					"N."[!!(rdp->grpmask & rnp->expmaskinitnext)]);
3883 			}
3884 			mask <<= 1;
3885 		}
3886 		pr_cont(" } %lu jiffies s: %lu root: %#lx/%c\n",
3887 			jiffies - jiffies_start, rsp->expedited_sequence,
3888 			rnp_root->expmask, ".T"[!!rnp_root->exp_tasks]);
3889 		if (ndetected) {
3890 			pr_err("blocking rcu_node structures:");
3891 			rcu_for_each_node_breadth_first(rsp, rnp) {
3892 				if (rnp == rnp_root)
3893 					continue; /* printed unconditionally */
3894 				if (sync_rcu_preempt_exp_done(rnp))
3895 					continue;
3896 				pr_cont(" l=%u:%d-%d:%#lx/%c",
3897 					rnp->level, rnp->grplo, rnp->grphi,
3898 					rnp->expmask,
3899 					".T"[!!rnp->exp_tasks]);
3900 			}
3901 			pr_cont("\n");
3902 		}
3903 		rcu_for_each_leaf_node(rsp, rnp) {
3904 			mask = 1;
3905 			for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask <<= 1) {
3906 				if (!(rnp->expmask & mask))
3907 					continue;
3908 				dump_cpu_task(cpu);
3909 			}
3910 		}
3911 		jiffies_stall = 3 * rcu_jiffies_till_stall_check() + 3;
3912 	}
3913 }
3914 
3915 /*
3916  * Wait for the current expedited grace period to complete, and then
3917  * wake up everyone who piggybacked on the just-completed expedited
3918  * grace period.  Also update all the ->exp_seq_rq counters as needed
3919  * in order to avoid counter-wrap problems.
3920  */
3921 static void rcu_exp_wait_wake(struct rcu_state *rsp, unsigned long s)
3922 {
3923 	struct rcu_node *rnp;
3924 
3925 	synchronize_sched_expedited_wait(rsp);
3926 	rcu_exp_gp_seq_end(rsp);
3927 	trace_rcu_exp_grace_period(rsp->name, s, TPS("end"));
3928 
3929 	/*
3930 	 * Switch over to wakeup mode, allowing the next GP, but -only- the
3931 	 * next GP, to proceed.
3932 	 */
3933 	mutex_lock(&rsp->exp_wake_mutex);
3934 	mutex_unlock(&rsp->exp_mutex);
3935 
3936 	rcu_for_each_node_breadth_first(rsp, rnp) {
3937 		if (ULONG_CMP_LT(READ_ONCE(rnp->exp_seq_rq), s)) {
3938 			spin_lock(&rnp->exp_lock);
3939 			/* Recheck, avoid hang in case someone just arrived. */
3940 			if (ULONG_CMP_LT(rnp->exp_seq_rq, s))
3941 				rnp->exp_seq_rq = s;
3942 			spin_unlock(&rnp->exp_lock);
3943 		}
3944 		wake_up_all(&rnp->exp_wq[(rsp->expedited_sequence >> 1) & 0x3]);
3945 	}
3946 	trace_rcu_exp_grace_period(rsp->name, s, TPS("endwake"));
3947 	mutex_unlock(&rsp->exp_wake_mutex);
3948 }
3949 
3950 /**
3951  * synchronize_sched_expedited - Brute-force RCU-sched grace period
3952  *
3953  * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
3954  * approach to force the grace period to end quickly.  This consumes
3955  * significant time on all CPUs and is unfriendly to real-time workloads,
3956  * so is thus not recommended for any sort of common-case code.  In fact,
3957  * if you are using synchronize_sched_expedited() in a loop, please
3958  * restructure your code to batch your updates, and then use a single
3959  * synchronize_sched() instead.
3960  *
3961  * This implementation can be thought of as an application of sequence
3962  * locking to expedited grace periods, but using the sequence counter to
3963  * determine when someone else has already done the work instead of for
3964  * retrying readers.
3965  */
3966 void synchronize_sched_expedited(void)
3967 {
3968 	unsigned long s;
3969 	struct rcu_state *rsp = &rcu_sched_state;
3970 
3971 	/* If only one CPU, this is automatically a grace period. */
3972 	if (rcu_blocking_is_gp())
3973 		return;
3974 
3975 	/* If expedited grace periods are prohibited, fall back to normal. */
3976 	if (rcu_gp_is_normal()) {
3977 		wait_rcu_gp(call_rcu_sched);
3978 		return;
3979 	}
3980 
3981 	/* Take a snapshot of the sequence number.  */
3982 	s = rcu_exp_gp_seq_snap(rsp);
3983 	if (exp_funnel_lock(rsp, s))
3984 		return;  /* Someone else did our work for us. */
3985 
3986 	/* Initialize the rcu_node tree in preparation for the wait. */
3987 	sync_rcu_exp_select_cpus(rsp, sync_sched_exp_handler);
3988 
3989 	/* Wait and clean up, including waking everyone. */
3990 	rcu_exp_wait_wake(rsp, s);
3991 }
3992 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
3993 
3994 /*
3995  * Check to see if there is any immediate RCU-related work to be done
3996  * by the current CPU, for the specified type of RCU, returning 1 if so.
3997  * The checks are in order of increasing expense: checks that can be
3998  * carried out against CPU-local state are performed first.  However,
3999  * we must check for CPU stalls first, else we might not get a chance.
4000  */
4001 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
4002 {
4003 	struct rcu_node *rnp = rdp->mynode;
4004 
4005 	rdp->n_rcu_pending++;
4006 
4007 	/* Check for CPU stalls, if enabled. */
4008 	check_cpu_stall(rsp, rdp);
4009 
4010 	/* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
4011 	if (rcu_nohz_full_cpu(rsp))
4012 		return 0;
4013 
4014 	/* Is the RCU core waiting for a quiescent state from this CPU? */
4015 	if (rcu_scheduler_fully_active &&
4016 	    rdp->core_needs_qs && rdp->cpu_no_qs.b.norm &&
4017 	    rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) {
4018 		rdp->n_rp_core_needs_qs++;
4019 	} else if (rdp->core_needs_qs &&
4020 		   (!rdp->cpu_no_qs.b.norm ||
4021 		    rdp->rcu_qs_ctr_snap != __this_cpu_read(rcu_qs_ctr))) {
4022 		rdp->n_rp_report_qs++;
4023 		return 1;
4024 	}
4025 
4026 	/* Does this CPU have callbacks ready to invoke? */
4027 	if (cpu_has_callbacks_ready_to_invoke(rdp)) {
4028 		rdp->n_rp_cb_ready++;
4029 		return 1;
4030 	}
4031 
4032 	/* Has RCU gone idle with this CPU needing another grace period? */
4033 	if (cpu_needs_another_gp(rsp, rdp)) {
4034 		rdp->n_rp_cpu_needs_gp++;
4035 		return 1;
4036 	}
4037 
4038 	/* Has another RCU grace period completed?  */
4039 	if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
4040 		rdp->n_rp_gp_completed++;
4041 		return 1;
4042 	}
4043 
4044 	/* Has a new RCU grace period started? */
4045 	if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
4046 	    unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */
4047 		rdp->n_rp_gp_started++;
4048 		return 1;
4049 	}
4050 
4051 	/* Does this CPU need a deferred NOCB wakeup? */
4052 	if (rcu_nocb_need_deferred_wakeup(rdp)) {
4053 		rdp->n_rp_nocb_defer_wakeup++;
4054 		return 1;
4055 	}
4056 
4057 	/* nothing to do */
4058 	rdp->n_rp_need_nothing++;
4059 	return 0;
4060 }
4061 
4062 /*
4063  * Check to see if there is any immediate RCU-related work to be done
4064  * by the current CPU, returning 1 if so.  This function is part of the
4065  * RCU implementation; it is -not- an exported member of the RCU API.
4066  */
4067 static int rcu_pending(void)
4068 {
4069 	struct rcu_state *rsp;
4070 
4071 	for_each_rcu_flavor(rsp)
4072 		if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
4073 			return 1;
4074 	return 0;
4075 }
4076 
4077 /*
4078  * Return true if the specified CPU has any callback.  If all_lazy is
4079  * non-NULL, store an indication of whether all callbacks are lazy.
4080  * (If there are no callbacks, all of them are deemed to be lazy.)
4081  */
4082 static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
4083 {
4084 	bool al = true;
4085 	bool hc = false;
4086 	struct rcu_data *rdp;
4087 	struct rcu_state *rsp;
4088 
4089 	for_each_rcu_flavor(rsp) {
4090 		rdp = this_cpu_ptr(rsp->rda);
4091 		if (!rdp->nxtlist)
4092 			continue;
4093 		hc = true;
4094 		if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
4095 			al = false;
4096 			break;
4097 		}
4098 	}
4099 	if (all_lazy)
4100 		*all_lazy = al;
4101 	return hc;
4102 }
4103 
4104 /*
4105  * Helper function for _rcu_barrier() tracing.  If tracing is disabled,
4106  * the compiler is expected to optimize this away.
4107  */
4108 static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
4109 			       int cpu, unsigned long done)
4110 {
4111 	trace_rcu_barrier(rsp->name, s, cpu,
4112 			  atomic_read(&rsp->barrier_cpu_count), done);
4113 }
4114 
4115 /*
4116  * RCU callback function for _rcu_barrier().  If we are last, wake
4117  * up the task executing _rcu_barrier().
4118  */
4119 static void rcu_barrier_callback(struct rcu_head *rhp)
4120 {
4121 	struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
4122 	struct rcu_state *rsp = rdp->rsp;
4123 
4124 	if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
4125 		_rcu_barrier_trace(rsp, "LastCB", -1, rsp->barrier_sequence);
4126 		complete(&rsp->barrier_completion);
4127 	} else {
4128 		_rcu_barrier_trace(rsp, "CB", -1, rsp->barrier_sequence);
4129 	}
4130 }
4131 
4132 /*
4133  * Called with preemption disabled, and from cross-cpu IRQ context.
4134  */
4135 static void rcu_barrier_func(void *type)
4136 {
4137 	struct rcu_state *rsp = type;
4138 	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
4139 
4140 	_rcu_barrier_trace(rsp, "IRQ", -1, rsp->barrier_sequence);
4141 	atomic_inc(&rsp->barrier_cpu_count);
4142 	rsp->call(&rdp->barrier_head, rcu_barrier_callback);
4143 }
4144 
4145 /*
4146  * Orchestrate the specified type of RCU barrier, waiting for all
4147  * RCU callbacks of the specified type to complete.
4148  */
4149 static void _rcu_barrier(struct rcu_state *rsp)
4150 {
4151 	int cpu;
4152 	struct rcu_data *rdp;
4153 	unsigned long s = rcu_seq_snap(&rsp->barrier_sequence);
4154 
4155 	_rcu_barrier_trace(rsp, "Begin", -1, s);
4156 
4157 	/* Take mutex to serialize concurrent rcu_barrier() requests. */
4158 	mutex_lock(&rsp->barrier_mutex);
4159 
4160 	/* Did someone else do our work for us? */
4161 	if (rcu_seq_done(&rsp->barrier_sequence, s)) {
4162 		_rcu_barrier_trace(rsp, "EarlyExit", -1, rsp->barrier_sequence);
4163 		smp_mb(); /* caller's subsequent code after above check. */
4164 		mutex_unlock(&rsp->barrier_mutex);
4165 		return;
4166 	}
4167 
4168 	/* Mark the start of the barrier operation. */
4169 	rcu_seq_start(&rsp->barrier_sequence);
4170 	_rcu_barrier_trace(rsp, "Inc1", -1, rsp->barrier_sequence);
4171 
4172 	/*
4173 	 * Initialize the count to one rather than to zero in order to
4174 	 * avoid a too-soon return to zero in case of a short grace period
4175 	 * (or preemption of this task).  Exclude CPU-hotplug operations
4176 	 * to ensure that no offline CPU has callbacks queued.
4177 	 */
4178 	init_completion(&rsp->barrier_completion);
4179 	atomic_set(&rsp->barrier_cpu_count, 1);
4180 	get_online_cpus();
4181 
4182 	/*
4183 	 * Force each CPU with callbacks to register a new callback.
4184 	 * When that callback is invoked, we will know that all of the
4185 	 * corresponding CPU's preceding callbacks have been invoked.
4186 	 */
4187 	for_each_possible_cpu(cpu) {
4188 		if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
4189 			continue;
4190 		rdp = per_cpu_ptr(rsp->rda, cpu);
4191 		if (rcu_is_nocb_cpu(cpu)) {
4192 			if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
4193 				_rcu_barrier_trace(rsp, "OfflineNoCB", cpu,
4194 						   rsp->barrier_sequence);
4195 			} else {
4196 				_rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
4197 						   rsp->barrier_sequence);
4198 				smp_mb__before_atomic();
4199 				atomic_inc(&rsp->barrier_cpu_count);
4200 				__call_rcu(&rdp->barrier_head,
4201 					   rcu_barrier_callback, rsp, cpu, 0);
4202 			}
4203 		} else if (READ_ONCE(rdp->qlen)) {
4204 			_rcu_barrier_trace(rsp, "OnlineQ", cpu,
4205 					   rsp->barrier_sequence);
4206 			smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
4207 		} else {
4208 			_rcu_barrier_trace(rsp, "OnlineNQ", cpu,
4209 					   rsp->barrier_sequence);
4210 		}
4211 	}
4212 	put_online_cpus();
4213 
4214 	/*
4215 	 * Now that we have an rcu_barrier_callback() callback on each
4216 	 * CPU, and thus each counted, remove the initial count.
4217 	 */
4218 	if (atomic_dec_and_test(&rsp->barrier_cpu_count))
4219 		complete(&rsp->barrier_completion);
4220 
4221 	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
4222 	wait_for_completion(&rsp->barrier_completion);
4223 
4224 	/* Mark the end of the barrier operation. */
4225 	_rcu_barrier_trace(rsp, "Inc2", -1, rsp->barrier_sequence);
4226 	rcu_seq_end(&rsp->barrier_sequence);
4227 
4228 	/* Other rcu_barrier() invocations can now safely proceed. */
4229 	mutex_unlock(&rsp->barrier_mutex);
4230 }
4231 
4232 /**
4233  * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
4234  */
4235 void rcu_barrier_bh(void)
4236 {
4237 	_rcu_barrier(&rcu_bh_state);
4238 }
4239 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
4240 
4241 /**
4242  * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
4243  */
4244 void rcu_barrier_sched(void)
4245 {
4246 	_rcu_barrier(&rcu_sched_state);
4247 }
4248 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
4249 
4250 /*
4251  * Propagate ->qsinitmask bits up the rcu_node tree to account for the
4252  * first CPU in a given leaf rcu_node structure coming online.  The caller
4253  * must hold the corresponding leaf rcu_node ->lock with interrrupts
4254  * disabled.
4255  */
4256 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
4257 {
4258 	long mask;
4259 	struct rcu_node *rnp = rnp_leaf;
4260 
4261 	for (;;) {
4262 		mask = rnp->grpmask;
4263 		rnp = rnp->parent;
4264 		if (rnp == NULL)
4265 			return;
4266 		raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
4267 		rnp->qsmaskinit |= mask;
4268 		raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
4269 	}
4270 }
4271 
4272 /*
4273  * Do boot-time initialization of a CPU's per-CPU RCU data.
4274  */
4275 static void __init
4276 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
4277 {
4278 	unsigned long flags;
4279 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
4280 	struct rcu_node *rnp = rcu_get_root(rsp);
4281 
4282 	/* Set up local state, ensuring consistent view of global state. */
4283 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4284 	rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
4285 	rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
4286 	WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
4287 	WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
4288 	rdp->cpu = cpu;
4289 	rdp->rsp = rsp;
4290 	rcu_boot_init_nocb_percpu_data(rdp);
4291 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4292 }
4293 
4294 /*
4295  * Initialize a CPU's per-CPU RCU data.  Note that only one online or
4296  * offline event can be happening at a given time.  Note also that we
4297  * can accept some slop in the rsp->completed access due to the fact
4298  * that this CPU cannot possibly have any RCU callbacks in flight yet.
4299  */
4300 static void
4301 rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
4302 {
4303 	unsigned long flags;
4304 	unsigned long mask;
4305 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
4306 	struct rcu_node *rnp = rcu_get_root(rsp);
4307 
4308 	/* Set up local state, ensuring consistent view of global state. */
4309 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4310 	rdp->qlen_last_fqs_check = 0;
4311 	rdp->n_force_qs_snap = rsp->n_force_qs;
4312 	rdp->blimit = blimit;
4313 	if (!rdp->nxtlist)
4314 		init_callback_list(rdp);  /* Re-enable callbacks on this CPU. */
4315 	rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
4316 	rcu_sysidle_init_percpu_data(rdp->dynticks);
4317 	atomic_set(&rdp->dynticks->dynticks,
4318 		   (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
4319 	raw_spin_unlock_rcu_node(rnp);		/* irqs remain disabled. */
4320 
4321 	/*
4322 	 * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
4323 	 * propagation up the rcu_node tree will happen at the beginning
4324 	 * of the next grace period.
4325 	 */
4326 	rnp = rdp->mynode;
4327 	mask = rdp->grpmask;
4328 	raw_spin_lock_rcu_node(rnp);		/* irqs already disabled. */
4329 	rnp->qsmaskinitnext |= mask;
4330 	rnp->expmaskinitnext |= mask;
4331 	if (!rdp->beenonline)
4332 		WRITE_ONCE(rsp->ncpus, READ_ONCE(rsp->ncpus) + 1);
4333 	rdp->beenonline = true;	 /* We have now been online. */
4334 	rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
4335 	rdp->completed = rnp->completed;
4336 	rdp->cpu_no_qs.b.norm = true;
4337 	rdp->rcu_qs_ctr_snap = per_cpu(rcu_qs_ctr, cpu);
4338 	rdp->core_needs_qs = false;
4339 	trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
4340 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4341 }
4342 
4343 static void rcu_prepare_cpu(int cpu)
4344 {
4345 	struct rcu_state *rsp;
4346 
4347 	for_each_rcu_flavor(rsp)
4348 		rcu_init_percpu_data(cpu, rsp);
4349 }
4350 
4351 #ifdef CONFIG_HOTPLUG_CPU
4352 /*
4353  * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
4354  * function.  We now remove it from the rcu_node tree's ->qsmaskinit
4355  * bit masks.
4356  * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
4357  * function.  We now remove it from the rcu_node tree's ->qsmaskinit
4358  * bit masks.
4359  */
4360 static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
4361 {
4362 	unsigned long flags;
4363 	unsigned long mask;
4364 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
4365 	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
4366 
4367 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
4368 		return;
4369 
4370 	/* Remove outgoing CPU from mask in the leaf rcu_node structure. */
4371 	mask = rdp->grpmask;
4372 	raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
4373 	rnp->qsmaskinitnext &= ~mask;
4374 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4375 }
4376 
4377 void rcu_report_dead(unsigned int cpu)
4378 {
4379 	struct rcu_state *rsp;
4380 
4381 	/* QS for any half-done expedited RCU-sched GP. */
4382 	preempt_disable();
4383 	rcu_report_exp_rdp(&rcu_sched_state,
4384 			   this_cpu_ptr(rcu_sched_state.rda), true);
4385 	preempt_enable();
4386 	for_each_rcu_flavor(rsp)
4387 		rcu_cleanup_dying_idle_cpu(cpu, rsp);
4388 }
4389 #endif
4390 
4391 /*
4392  * Handle CPU online/offline notification events.
4393  */
4394 int rcu_cpu_notify(struct notifier_block *self,
4395 		   unsigned long action, void *hcpu)
4396 {
4397 	long cpu = (long)hcpu;
4398 	struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
4399 	struct rcu_node *rnp = rdp->mynode;
4400 	struct rcu_state *rsp;
4401 
4402 	switch (action) {
4403 	case CPU_UP_PREPARE:
4404 	case CPU_UP_PREPARE_FROZEN:
4405 		rcu_prepare_cpu(cpu);
4406 		rcu_prepare_kthreads(cpu);
4407 		rcu_spawn_all_nocb_kthreads(cpu);
4408 		break;
4409 	case CPU_ONLINE:
4410 	case CPU_DOWN_FAILED:
4411 		sync_sched_exp_online_cleanup(cpu);
4412 		rcu_boost_kthread_setaffinity(rnp, -1);
4413 		break;
4414 	case CPU_DOWN_PREPARE:
4415 		rcu_boost_kthread_setaffinity(rnp, cpu);
4416 		break;
4417 	case CPU_DYING:
4418 	case CPU_DYING_FROZEN:
4419 		for_each_rcu_flavor(rsp)
4420 			rcu_cleanup_dying_cpu(rsp);
4421 		break;
4422 	case CPU_DEAD:
4423 	case CPU_DEAD_FROZEN:
4424 	case CPU_UP_CANCELED:
4425 	case CPU_UP_CANCELED_FROZEN:
4426 		for_each_rcu_flavor(rsp) {
4427 			rcu_cleanup_dead_cpu(cpu, rsp);
4428 			do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
4429 		}
4430 		break;
4431 	default:
4432 		break;
4433 	}
4434 	return NOTIFY_OK;
4435 }
4436 
4437 static int rcu_pm_notify(struct notifier_block *self,
4438 			 unsigned long action, void *hcpu)
4439 {
4440 	switch (action) {
4441 	case PM_HIBERNATION_PREPARE:
4442 	case PM_SUSPEND_PREPARE:
4443 		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
4444 			rcu_expedite_gp();
4445 		break;
4446 	case PM_POST_HIBERNATION:
4447 	case PM_POST_SUSPEND:
4448 		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
4449 			rcu_unexpedite_gp();
4450 		break;
4451 	default:
4452 		break;
4453 	}
4454 	return NOTIFY_OK;
4455 }
4456 
4457 /*
4458  * Spawn the kthreads that handle each RCU flavor's grace periods.
4459  */
4460 static int __init rcu_spawn_gp_kthread(void)
4461 {
4462 	unsigned long flags;
4463 	int kthread_prio_in = kthread_prio;
4464 	struct rcu_node *rnp;
4465 	struct rcu_state *rsp;
4466 	struct sched_param sp;
4467 	struct task_struct *t;
4468 
4469 	/* Force priority into range. */
4470 	if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
4471 		kthread_prio = 1;
4472 	else if (kthread_prio < 0)
4473 		kthread_prio = 0;
4474 	else if (kthread_prio > 99)
4475 		kthread_prio = 99;
4476 	if (kthread_prio != kthread_prio_in)
4477 		pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
4478 			 kthread_prio, kthread_prio_in);
4479 
4480 	rcu_scheduler_fully_active = 1;
4481 	for_each_rcu_flavor(rsp) {
4482 		t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
4483 		BUG_ON(IS_ERR(t));
4484 		rnp = rcu_get_root(rsp);
4485 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
4486 		rsp->gp_kthread = t;
4487 		if (kthread_prio) {
4488 			sp.sched_priority = kthread_prio;
4489 			sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
4490 		}
4491 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4492 		wake_up_process(t);
4493 	}
4494 	rcu_spawn_nocb_kthreads();
4495 	rcu_spawn_boost_kthreads();
4496 	return 0;
4497 }
4498 early_initcall(rcu_spawn_gp_kthread);
4499 
4500 /*
4501  * This function is invoked towards the end of the scheduler's initialization
4502  * process.  Before this is called, the idle task might contain
4503  * RCU read-side critical sections (during which time, this idle
4504  * task is booting the system).  After this function is called, the
4505  * idle tasks are prohibited from containing RCU read-side critical
4506  * sections.  This function also enables RCU lockdep checking.
4507  */
4508 void rcu_scheduler_starting(void)
4509 {
4510 	WARN_ON(num_online_cpus() != 1);
4511 	WARN_ON(nr_context_switches() > 0);
4512 	rcu_scheduler_active = 1;
4513 }
4514 
4515 /*
4516  * Compute the per-level fanout, either using the exact fanout specified
4517  * or balancing the tree, depending on the rcu_fanout_exact boot parameter.
4518  */
4519 static void __init rcu_init_levelspread(int *levelspread, const int *levelcnt)
4520 {
4521 	int i;
4522 
4523 	if (rcu_fanout_exact) {
4524 		levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
4525 		for (i = rcu_num_lvls - 2; i >= 0; i--)
4526 			levelspread[i] = RCU_FANOUT;
4527 	} else {
4528 		int ccur;
4529 		int cprv;
4530 
4531 		cprv = nr_cpu_ids;
4532 		for (i = rcu_num_lvls - 1; i >= 0; i--) {
4533 			ccur = levelcnt[i];
4534 			levelspread[i] = (cprv + ccur - 1) / ccur;
4535 			cprv = ccur;
4536 		}
4537 	}
4538 }
4539 
4540 /*
4541  * Helper function for rcu_init() that initializes one rcu_state structure.
4542  */
4543 static void __init rcu_init_one(struct rcu_state *rsp)
4544 {
4545 	static const char * const buf[] = RCU_NODE_NAME_INIT;
4546 	static const char * const fqs[] = RCU_FQS_NAME_INIT;
4547 	static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
4548 	static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
4549 	static u8 fl_mask = 0x1;
4550 
4551 	int levelcnt[RCU_NUM_LVLS];		/* # nodes in each level. */
4552 	int levelspread[RCU_NUM_LVLS];		/* kids/node in each level. */
4553 	int cpustride = 1;
4554 	int i;
4555 	int j;
4556 	struct rcu_node *rnp;
4557 
4558 	BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
4559 
4560 	/* Silence gcc 4.8 false positive about array index out of range. */
4561 	if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4562 		panic("rcu_init_one: rcu_num_lvls out of range");
4563 
4564 	/* Initialize the level-tracking arrays. */
4565 
4566 	for (i = 0; i < rcu_num_lvls; i++)
4567 		levelcnt[i] = num_rcu_lvl[i];
4568 	for (i = 1; i < rcu_num_lvls; i++)
4569 		rsp->level[i] = rsp->level[i - 1] + levelcnt[i - 1];
4570 	rcu_init_levelspread(levelspread, levelcnt);
4571 	rsp->flavor_mask = fl_mask;
4572 	fl_mask <<= 1;
4573 
4574 	/* Initialize the elements themselves, starting from the leaves. */
4575 
4576 	for (i = rcu_num_lvls - 1; i >= 0; i--) {
4577 		cpustride *= levelspread[i];
4578 		rnp = rsp->level[i];
4579 		for (j = 0; j < levelcnt[i]; j++, rnp++) {
4580 			raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4581 			lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
4582 						   &rcu_node_class[i], buf[i]);
4583 			raw_spin_lock_init(&rnp->fqslock);
4584 			lockdep_set_class_and_name(&rnp->fqslock,
4585 						   &rcu_fqs_class[i], fqs[i]);
4586 			rnp->gpnum = rsp->gpnum;
4587 			rnp->completed = rsp->completed;
4588 			rnp->qsmask = 0;
4589 			rnp->qsmaskinit = 0;
4590 			rnp->grplo = j * cpustride;
4591 			rnp->grphi = (j + 1) * cpustride - 1;
4592 			if (rnp->grphi >= nr_cpu_ids)
4593 				rnp->grphi = nr_cpu_ids - 1;
4594 			if (i == 0) {
4595 				rnp->grpnum = 0;
4596 				rnp->grpmask = 0;
4597 				rnp->parent = NULL;
4598 			} else {
4599 				rnp->grpnum = j % levelspread[i - 1];
4600 				rnp->grpmask = 1UL << rnp->grpnum;
4601 				rnp->parent = rsp->level[i - 1] +
4602 					      j / levelspread[i - 1];
4603 			}
4604 			rnp->level = i;
4605 			INIT_LIST_HEAD(&rnp->blkd_tasks);
4606 			rcu_init_one_nocb(rnp);
4607 			init_waitqueue_head(&rnp->exp_wq[0]);
4608 			init_waitqueue_head(&rnp->exp_wq[1]);
4609 			init_waitqueue_head(&rnp->exp_wq[2]);
4610 			init_waitqueue_head(&rnp->exp_wq[3]);
4611 			spin_lock_init(&rnp->exp_lock);
4612 		}
4613 	}
4614 
4615 	init_swait_queue_head(&rsp->gp_wq);
4616 	init_swait_queue_head(&rsp->expedited_wq);
4617 	rnp = rsp->level[rcu_num_lvls - 1];
4618 	for_each_possible_cpu(i) {
4619 		while (i > rnp->grphi)
4620 			rnp++;
4621 		per_cpu_ptr(rsp->rda, i)->mynode = rnp;
4622 		rcu_boot_init_percpu_data(i, rsp);
4623 	}
4624 	list_add(&rsp->flavors, &rcu_struct_flavors);
4625 }
4626 
4627 /*
4628  * Compute the rcu_node tree geometry from kernel parameters.  This cannot
4629  * replace the definitions in tree.h because those are needed to size
4630  * the ->node array in the rcu_state structure.
4631  */
4632 static void __init rcu_init_geometry(void)
4633 {
4634 	ulong d;
4635 	int i;
4636 	int rcu_capacity[RCU_NUM_LVLS];
4637 
4638 	/*
4639 	 * Initialize any unspecified boot parameters.
4640 	 * The default values of jiffies_till_first_fqs and
4641 	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4642 	 * value, which is a function of HZ, then adding one for each
4643 	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4644 	 */
4645 	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4646 	if (jiffies_till_first_fqs == ULONG_MAX)
4647 		jiffies_till_first_fqs = d;
4648 	if (jiffies_till_next_fqs == ULONG_MAX)
4649 		jiffies_till_next_fqs = d;
4650 
4651 	/* If the compile-time values are accurate, just leave. */
4652 	if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4653 	    nr_cpu_ids == NR_CPUS)
4654 		return;
4655 	pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
4656 		rcu_fanout_leaf, nr_cpu_ids);
4657 
4658 	/*
4659 	 * The boot-time rcu_fanout_leaf parameter must be at least two
4660 	 * and cannot exceed the number of bits in the rcu_node masks.
4661 	 * Complain and fall back to the compile-time values if this
4662 	 * limit is exceeded.
4663 	 */
4664 	if (rcu_fanout_leaf < 2 ||
4665 	    rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4666 		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4667 		WARN_ON(1);
4668 		return;
4669 	}
4670 
4671 	/*
4672 	 * Compute number of nodes that can be handled an rcu_node tree
4673 	 * with the given number of levels.
4674 	 */
4675 	rcu_capacity[0] = rcu_fanout_leaf;
4676 	for (i = 1; i < RCU_NUM_LVLS; i++)
4677 		rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4678 
4679 	/*
4680 	 * The tree must be able to accommodate the configured number of CPUs.
4681 	 * If this limit is exceeded, fall back to the compile-time values.
4682 	 */
4683 	if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4684 		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4685 		WARN_ON(1);
4686 		return;
4687 	}
4688 
4689 	/* Calculate the number of levels in the tree. */
4690 	for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4691 	}
4692 	rcu_num_lvls = i + 1;
4693 
4694 	/* Calculate the number of rcu_nodes at each level of the tree. */
4695 	for (i = 0; i < rcu_num_lvls; i++) {
4696 		int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4697 		num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4698 	}
4699 
4700 	/* Calculate the total number of rcu_node structures. */
4701 	rcu_num_nodes = 0;
4702 	for (i = 0; i < rcu_num_lvls; i++)
4703 		rcu_num_nodes += num_rcu_lvl[i];
4704 }
4705 
4706 /*
4707  * Dump out the structure of the rcu_node combining tree associated
4708  * with the rcu_state structure referenced by rsp.
4709  */
4710 static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
4711 {
4712 	int level = 0;
4713 	struct rcu_node *rnp;
4714 
4715 	pr_info("rcu_node tree layout dump\n");
4716 	pr_info(" ");
4717 	rcu_for_each_node_breadth_first(rsp, rnp) {
4718 		if (rnp->level != level) {
4719 			pr_cont("\n");
4720 			pr_info(" ");
4721 			level = rnp->level;
4722 		}
4723 		pr_cont("%d:%d ^%d  ", rnp->grplo, rnp->grphi, rnp->grpnum);
4724 	}
4725 	pr_cont("\n");
4726 }
4727 
4728 void __init rcu_init(void)
4729 {
4730 	int cpu;
4731 
4732 	rcu_early_boot_tests();
4733 
4734 	rcu_bootup_announce();
4735 	rcu_init_geometry();
4736 	rcu_init_one(&rcu_bh_state);
4737 	rcu_init_one(&rcu_sched_state);
4738 	if (dump_tree)
4739 		rcu_dump_rcu_node_tree(&rcu_sched_state);
4740 	__rcu_init_preempt();
4741 	open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
4742 
4743 	/*
4744 	 * We don't need protection against CPU-hotplug here because
4745 	 * this is called early in boot, before either interrupts
4746 	 * or the scheduler are operational.
4747 	 */
4748 	cpu_notifier(rcu_cpu_notify, 0);
4749 	pm_notifier(rcu_pm_notify, 0);
4750 	for_each_online_cpu(cpu)
4751 		rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
4752 }
4753 
4754 #include "tree_plugin.h"
4755