1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Read-Copy Update mechanism for mutual exclusion (tree-based version) 4 * 5 * Copyright IBM Corporation, 2008 6 * 7 * Authors: Dipankar Sarma <dipankar@in.ibm.com> 8 * Manfred Spraul <manfred@colorfullife.com> 9 * Paul E. McKenney <paulmck@linux.ibm.com> 10 * 11 * Based on the original work by Paul McKenney <paulmck@linux.ibm.com> 12 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 13 * 14 * For detailed explanation of Read-Copy Update mechanism see - 15 * Documentation/RCU 16 */ 17 18 #define pr_fmt(fmt) "rcu: " fmt 19 20 #include <linux/types.h> 21 #include <linux/kernel.h> 22 #include <linux/init.h> 23 #include <linux/spinlock.h> 24 #include <linux/smp.h> 25 #include <linux/rcupdate_wait.h> 26 #include <linux/interrupt.h> 27 #include <linux/sched.h> 28 #include <linux/sched/debug.h> 29 #include <linux/nmi.h> 30 #include <linux/atomic.h> 31 #include <linux/bitops.h> 32 #include <linux/export.h> 33 #include <linux/completion.h> 34 #include <linux/kmemleak.h> 35 #include <linux/moduleparam.h> 36 #include <linux/panic.h> 37 #include <linux/panic_notifier.h> 38 #include <linux/percpu.h> 39 #include <linux/notifier.h> 40 #include <linux/cpu.h> 41 #include <linux/mutex.h> 42 #include <linux/time.h> 43 #include <linux/kernel_stat.h> 44 #include <linux/wait.h> 45 #include <linux/kthread.h> 46 #include <uapi/linux/sched/types.h> 47 #include <linux/prefetch.h> 48 #include <linux/delay.h> 49 #include <linux/random.h> 50 #include <linux/trace_events.h> 51 #include <linux/suspend.h> 52 #include <linux/ftrace.h> 53 #include <linux/tick.h> 54 #include <linux/sysrq.h> 55 #include <linux/kprobes.h> 56 #include <linux/gfp.h> 57 #include <linux/oom.h> 58 #include <linux/smpboot.h> 59 #include <linux/jiffies.h> 60 #include <linux/slab.h> 61 #include <linux/sched/isolation.h> 62 #include <linux/sched/clock.h> 63 #include <linux/vmalloc.h> 64 #include <linux/mm.h> 65 #include <linux/kasan.h> 66 #include <linux/context_tracking.h> 67 #include "../time/tick-internal.h" 68 69 #include "tree.h" 70 #include "rcu.h" 71 72 #ifdef MODULE_PARAM_PREFIX 73 #undef MODULE_PARAM_PREFIX 74 #endif 75 #define MODULE_PARAM_PREFIX "rcutree." 76 77 /* Data structures. */ 78 79 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = { 80 .gpwrap = true, 81 #ifdef CONFIG_RCU_NOCB_CPU 82 .cblist.flags = SEGCBLIST_RCU_CORE, 83 #endif 84 }; 85 static struct rcu_state rcu_state = { 86 .level = { &rcu_state.node[0] }, 87 .gp_state = RCU_GP_IDLE, 88 .gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT, 89 .barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex), 90 .barrier_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.barrier_lock), 91 .name = RCU_NAME, 92 .abbr = RCU_ABBR, 93 .exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex), 94 .exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex), 95 .ofl_lock = __ARCH_SPIN_LOCK_UNLOCKED, 96 }; 97 98 /* Dump rcu_node combining tree at boot to verify correct setup. */ 99 static bool dump_tree; 100 module_param(dump_tree, bool, 0444); 101 /* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */ 102 static bool use_softirq = !IS_ENABLED(CONFIG_PREEMPT_RT); 103 #ifndef CONFIG_PREEMPT_RT 104 module_param(use_softirq, bool, 0444); 105 #endif 106 /* Control rcu_node-tree auto-balancing at boot time. */ 107 static bool rcu_fanout_exact; 108 module_param(rcu_fanout_exact, bool, 0444); 109 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */ 110 static int rcu_fanout_leaf = RCU_FANOUT_LEAF; 111 module_param(rcu_fanout_leaf, int, 0444); 112 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS; 113 /* Number of rcu_nodes at specified level. */ 114 int num_rcu_lvl[] = NUM_RCU_LVL_INIT; 115 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */ 116 117 /* 118 * The rcu_scheduler_active variable is initialized to the value 119 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the 120 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE, 121 * RCU can assume that there is but one task, allowing RCU to (for example) 122 * optimize synchronize_rcu() to a simple barrier(). When this variable 123 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required 124 * to detect real grace periods. This variable is also used to suppress 125 * boot-time false positives from lockdep-RCU error checking. Finally, it 126 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU 127 * is fully initialized, including all of its kthreads having been spawned. 128 */ 129 int rcu_scheduler_active __read_mostly; 130 EXPORT_SYMBOL_GPL(rcu_scheduler_active); 131 132 /* 133 * The rcu_scheduler_fully_active variable transitions from zero to one 134 * during the early_initcall() processing, which is after the scheduler 135 * is capable of creating new tasks. So RCU processing (for example, 136 * creating tasks for RCU priority boosting) must be delayed until after 137 * rcu_scheduler_fully_active transitions from zero to one. We also 138 * currently delay invocation of any RCU callbacks until after this point. 139 * 140 * It might later prove better for people registering RCU callbacks during 141 * early boot to take responsibility for these callbacks, but one step at 142 * a time. 143 */ 144 static int rcu_scheduler_fully_active __read_mostly; 145 146 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp, 147 unsigned long gps, unsigned long flags); 148 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu); 149 static void invoke_rcu_core(void); 150 static void rcu_report_exp_rdp(struct rcu_data *rdp); 151 static void sync_sched_exp_online_cleanup(int cpu); 152 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp); 153 static bool rcu_rdp_is_offloaded(struct rcu_data *rdp); 154 static bool rcu_rdp_cpu_online(struct rcu_data *rdp); 155 static bool rcu_init_invoked(void); 156 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf); 157 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf); 158 159 /* 160 * rcuc/rcub/rcuop kthread realtime priority. The "rcuop" 161 * real-time priority(enabling/disabling) is controlled by 162 * the extra CONFIG_RCU_NOCB_CPU_CB_BOOST configuration. 163 */ 164 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0; 165 module_param(kthread_prio, int, 0444); 166 167 /* Delay in jiffies for grace-period initialization delays, debug only. */ 168 169 static int gp_preinit_delay; 170 module_param(gp_preinit_delay, int, 0444); 171 static int gp_init_delay; 172 module_param(gp_init_delay, int, 0444); 173 static int gp_cleanup_delay; 174 module_param(gp_cleanup_delay, int, 0444); 175 176 // Add delay to rcu_read_unlock() for strict grace periods. 177 static int rcu_unlock_delay; 178 #ifdef CONFIG_RCU_STRICT_GRACE_PERIOD 179 module_param(rcu_unlock_delay, int, 0444); 180 #endif 181 182 /* 183 * This rcu parameter is runtime-read-only. It reflects 184 * a minimum allowed number of objects which can be cached 185 * per-CPU. Object size is equal to one page. This value 186 * can be changed at boot time. 187 */ 188 static int rcu_min_cached_objs = 5; 189 module_param(rcu_min_cached_objs, int, 0444); 190 191 // A page shrinker can ask for pages to be freed to make them 192 // available for other parts of the system. This usually happens 193 // under low memory conditions, and in that case we should also 194 // defer page-cache filling for a short time period. 195 // 196 // The default value is 5 seconds, which is long enough to reduce 197 // interference with the shrinker while it asks other systems to 198 // drain their caches. 199 static int rcu_delay_page_cache_fill_msec = 5000; 200 module_param(rcu_delay_page_cache_fill_msec, int, 0444); 201 202 /* Retrieve RCU kthreads priority for rcutorture */ 203 int rcu_get_gp_kthreads_prio(void) 204 { 205 return kthread_prio; 206 } 207 EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio); 208 209 /* 210 * Number of grace periods between delays, normalized by the duration of 211 * the delay. The longer the delay, the more the grace periods between 212 * each delay. The reason for this normalization is that it means that, 213 * for non-zero delays, the overall slowdown of grace periods is constant 214 * regardless of the duration of the delay. This arrangement balances 215 * the need for long delays to increase some race probabilities with the 216 * need for fast grace periods to increase other race probabilities. 217 */ 218 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays for debugging. */ 219 220 /* 221 * Return true if an RCU grace period is in progress. The READ_ONCE()s 222 * permit this function to be invoked without holding the root rcu_node 223 * structure's ->lock, but of course results can be subject to change. 224 */ 225 static int rcu_gp_in_progress(void) 226 { 227 return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq)); 228 } 229 230 /* 231 * Return the number of callbacks queued on the specified CPU. 232 * Handles both the nocbs and normal cases. 233 */ 234 static long rcu_get_n_cbs_cpu(int cpu) 235 { 236 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 237 238 if (rcu_segcblist_is_enabled(&rdp->cblist)) 239 return rcu_segcblist_n_cbs(&rdp->cblist); 240 return 0; 241 } 242 243 void rcu_softirq_qs(void) 244 { 245 rcu_qs(); 246 rcu_preempt_deferred_qs(current); 247 rcu_tasks_qs(current, false); 248 } 249 250 /* 251 * Reset the current CPU's ->dynticks counter to indicate that the 252 * newly onlined CPU is no longer in an extended quiescent state. 253 * This will either leave the counter unchanged, or increment it 254 * to the next non-quiescent value. 255 * 256 * The non-atomic test/increment sequence works because the upper bits 257 * of the ->dynticks counter are manipulated only by the corresponding CPU, 258 * or when the corresponding CPU is offline. 259 */ 260 static void rcu_dynticks_eqs_online(void) 261 { 262 if (ct_dynticks() & RCU_DYNTICKS_IDX) 263 return; 264 ct_state_inc(RCU_DYNTICKS_IDX); 265 } 266 267 /* 268 * Snapshot the ->dynticks counter with full ordering so as to allow 269 * stable comparison of this counter with past and future snapshots. 270 */ 271 static int rcu_dynticks_snap(int cpu) 272 { 273 smp_mb(); // Fundamental RCU ordering guarantee. 274 return ct_dynticks_cpu_acquire(cpu); 275 } 276 277 /* 278 * Return true if the snapshot returned from rcu_dynticks_snap() 279 * indicates that RCU is in an extended quiescent state. 280 */ 281 static bool rcu_dynticks_in_eqs(int snap) 282 { 283 return !(snap & RCU_DYNTICKS_IDX); 284 } 285 286 /* 287 * Return true if the CPU corresponding to the specified rcu_data 288 * structure has spent some time in an extended quiescent state since 289 * rcu_dynticks_snap() returned the specified snapshot. 290 */ 291 static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap) 292 { 293 return snap != rcu_dynticks_snap(rdp->cpu); 294 } 295 296 /* 297 * Return true if the referenced integer is zero while the specified 298 * CPU remains within a single extended quiescent state. 299 */ 300 bool rcu_dynticks_zero_in_eqs(int cpu, int *vp) 301 { 302 int snap; 303 304 // If not quiescent, force back to earlier extended quiescent state. 305 snap = ct_dynticks_cpu(cpu) & ~RCU_DYNTICKS_IDX; 306 smp_rmb(); // Order ->dynticks and *vp reads. 307 if (READ_ONCE(*vp)) 308 return false; // Non-zero, so report failure; 309 smp_rmb(); // Order *vp read and ->dynticks re-read. 310 311 // If still in the same extended quiescent state, we are good! 312 return snap == ct_dynticks_cpu(cpu); 313 } 314 315 /* 316 * Let the RCU core know that this CPU has gone through the scheduler, 317 * which is a quiescent state. This is called when the need for a 318 * quiescent state is urgent, so we burn an atomic operation and full 319 * memory barriers to let the RCU core know about it, regardless of what 320 * this CPU might (or might not) do in the near future. 321 * 322 * We inform the RCU core by emulating a zero-duration dyntick-idle period. 323 * 324 * The caller must have disabled interrupts and must not be idle. 325 */ 326 notrace void rcu_momentary_dyntick_idle(void) 327 { 328 int seq; 329 330 raw_cpu_write(rcu_data.rcu_need_heavy_qs, false); 331 seq = ct_state_inc(2 * RCU_DYNTICKS_IDX); 332 /* It is illegal to call this from idle state. */ 333 WARN_ON_ONCE(!(seq & RCU_DYNTICKS_IDX)); 334 rcu_preempt_deferred_qs(current); 335 } 336 EXPORT_SYMBOL_GPL(rcu_momentary_dyntick_idle); 337 338 /** 339 * rcu_is_cpu_rrupt_from_idle - see if 'interrupted' from idle 340 * 341 * If the current CPU is idle and running at a first-level (not nested) 342 * interrupt, or directly, from idle, return true. 343 * 344 * The caller must have at least disabled IRQs. 345 */ 346 static int rcu_is_cpu_rrupt_from_idle(void) 347 { 348 long nesting; 349 350 /* 351 * Usually called from the tick; but also used from smp_function_call() 352 * for expedited grace periods. This latter can result in running from 353 * the idle task, instead of an actual IPI. 354 */ 355 lockdep_assert_irqs_disabled(); 356 357 /* Check for counter underflows */ 358 RCU_LOCKDEP_WARN(ct_dynticks_nesting() < 0, 359 "RCU dynticks_nesting counter underflow!"); 360 RCU_LOCKDEP_WARN(ct_dynticks_nmi_nesting() <= 0, 361 "RCU dynticks_nmi_nesting counter underflow/zero!"); 362 363 /* Are we at first interrupt nesting level? */ 364 nesting = ct_dynticks_nmi_nesting(); 365 if (nesting > 1) 366 return false; 367 368 /* 369 * If we're not in an interrupt, we must be in the idle task! 370 */ 371 WARN_ON_ONCE(!nesting && !is_idle_task(current)); 372 373 /* Does CPU appear to be idle from an RCU standpoint? */ 374 return ct_dynticks_nesting() == 0; 375 } 376 377 #define DEFAULT_RCU_BLIMIT (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 1000 : 10) 378 // Maximum callbacks per rcu_do_batch ... 379 #define DEFAULT_MAX_RCU_BLIMIT 10000 // ... even during callback flood. 380 static long blimit = DEFAULT_RCU_BLIMIT; 381 #define DEFAULT_RCU_QHIMARK 10000 // If this many pending, ignore blimit. 382 static long qhimark = DEFAULT_RCU_QHIMARK; 383 #define DEFAULT_RCU_QLOMARK 100 // Once only this many pending, use blimit. 384 static long qlowmark = DEFAULT_RCU_QLOMARK; 385 #define DEFAULT_RCU_QOVLD_MULT 2 386 #define DEFAULT_RCU_QOVLD (DEFAULT_RCU_QOVLD_MULT * DEFAULT_RCU_QHIMARK) 387 static long qovld = DEFAULT_RCU_QOVLD; // If this many pending, hammer QS. 388 static long qovld_calc = -1; // No pre-initialization lock acquisitions! 389 390 module_param(blimit, long, 0444); 391 module_param(qhimark, long, 0444); 392 module_param(qlowmark, long, 0444); 393 module_param(qovld, long, 0444); 394 395 static ulong jiffies_till_first_fqs = IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 0 : ULONG_MAX; 396 static ulong jiffies_till_next_fqs = ULONG_MAX; 397 static bool rcu_kick_kthreads; 398 static int rcu_divisor = 7; 399 module_param(rcu_divisor, int, 0644); 400 401 /* Force an exit from rcu_do_batch() after 3 milliseconds. */ 402 static long rcu_resched_ns = 3 * NSEC_PER_MSEC; 403 module_param(rcu_resched_ns, long, 0644); 404 405 /* 406 * How long the grace period must be before we start recruiting 407 * quiescent-state help from rcu_note_context_switch(). 408 */ 409 static ulong jiffies_till_sched_qs = ULONG_MAX; 410 module_param(jiffies_till_sched_qs, ulong, 0444); 411 static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */ 412 module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */ 413 414 /* 415 * Make sure that we give the grace-period kthread time to detect any 416 * idle CPUs before taking active measures to force quiescent states. 417 * However, don't go below 100 milliseconds, adjusted upwards for really 418 * large systems. 419 */ 420 static void adjust_jiffies_till_sched_qs(void) 421 { 422 unsigned long j; 423 424 /* If jiffies_till_sched_qs was specified, respect the request. */ 425 if (jiffies_till_sched_qs != ULONG_MAX) { 426 WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs); 427 return; 428 } 429 /* Otherwise, set to third fqs scan, but bound below on large system. */ 430 j = READ_ONCE(jiffies_till_first_fqs) + 431 2 * READ_ONCE(jiffies_till_next_fqs); 432 if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV) 433 j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; 434 pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j); 435 WRITE_ONCE(jiffies_to_sched_qs, j); 436 } 437 438 static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp) 439 { 440 ulong j; 441 int ret = kstrtoul(val, 0, &j); 442 443 if (!ret) { 444 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j); 445 adjust_jiffies_till_sched_qs(); 446 } 447 return ret; 448 } 449 450 static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp) 451 { 452 ulong j; 453 int ret = kstrtoul(val, 0, &j); 454 455 if (!ret) { 456 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1)); 457 adjust_jiffies_till_sched_qs(); 458 } 459 return ret; 460 } 461 462 static const struct kernel_param_ops first_fqs_jiffies_ops = { 463 .set = param_set_first_fqs_jiffies, 464 .get = param_get_ulong, 465 }; 466 467 static const struct kernel_param_ops next_fqs_jiffies_ops = { 468 .set = param_set_next_fqs_jiffies, 469 .get = param_get_ulong, 470 }; 471 472 module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644); 473 module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644); 474 module_param(rcu_kick_kthreads, bool, 0644); 475 476 static void force_qs_rnp(int (*f)(struct rcu_data *rdp)); 477 static int rcu_pending(int user); 478 479 /* 480 * Return the number of RCU GPs completed thus far for debug & stats. 481 */ 482 unsigned long rcu_get_gp_seq(void) 483 { 484 return READ_ONCE(rcu_state.gp_seq); 485 } 486 EXPORT_SYMBOL_GPL(rcu_get_gp_seq); 487 488 /* 489 * Return the number of RCU expedited batches completed thus far for 490 * debug & stats. Odd numbers mean that a batch is in progress, even 491 * numbers mean idle. The value returned will thus be roughly double 492 * the cumulative batches since boot. 493 */ 494 unsigned long rcu_exp_batches_completed(void) 495 { 496 return rcu_state.expedited_sequence; 497 } 498 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed); 499 500 /* 501 * Return the root node of the rcu_state structure. 502 */ 503 static struct rcu_node *rcu_get_root(void) 504 { 505 return &rcu_state.node[0]; 506 } 507 508 /* 509 * Send along grace-period-related data for rcutorture diagnostics. 510 */ 511 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags, 512 unsigned long *gp_seq) 513 { 514 switch (test_type) { 515 case RCU_FLAVOR: 516 *flags = READ_ONCE(rcu_state.gp_flags); 517 *gp_seq = rcu_seq_current(&rcu_state.gp_seq); 518 break; 519 default: 520 break; 521 } 522 } 523 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data); 524 525 #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK)) 526 /* 527 * An empty function that will trigger a reschedule on 528 * IRQ tail once IRQs get re-enabled on userspace/guest resume. 529 */ 530 static void late_wakeup_func(struct irq_work *work) 531 { 532 } 533 534 static DEFINE_PER_CPU(struct irq_work, late_wakeup_work) = 535 IRQ_WORK_INIT(late_wakeup_func); 536 537 /* 538 * If either: 539 * 540 * 1) the task is about to enter in guest mode and $ARCH doesn't support KVM generic work 541 * 2) the task is about to enter in user mode and $ARCH doesn't support generic entry. 542 * 543 * In these cases the late RCU wake ups aren't supported in the resched loops and our 544 * last resort is to fire a local irq_work that will trigger a reschedule once IRQs 545 * get re-enabled again. 546 */ 547 noinstr void rcu_irq_work_resched(void) 548 { 549 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 550 551 if (IS_ENABLED(CONFIG_GENERIC_ENTRY) && !(current->flags & PF_VCPU)) 552 return; 553 554 if (IS_ENABLED(CONFIG_KVM_XFER_TO_GUEST_WORK) && (current->flags & PF_VCPU)) 555 return; 556 557 instrumentation_begin(); 558 if (do_nocb_deferred_wakeup(rdp) && need_resched()) { 559 irq_work_queue(this_cpu_ptr(&late_wakeup_work)); 560 } 561 instrumentation_end(); 562 } 563 #endif /* #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK)) */ 564 565 #ifdef CONFIG_PROVE_RCU 566 /** 567 * rcu_irq_exit_check_preempt - Validate that scheduling is possible 568 */ 569 void rcu_irq_exit_check_preempt(void) 570 { 571 lockdep_assert_irqs_disabled(); 572 573 RCU_LOCKDEP_WARN(ct_dynticks_nesting() <= 0, 574 "RCU dynticks_nesting counter underflow/zero!"); 575 RCU_LOCKDEP_WARN(ct_dynticks_nmi_nesting() != 576 DYNTICK_IRQ_NONIDLE, 577 "Bad RCU dynticks_nmi_nesting counter\n"); 578 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(), 579 "RCU in extended quiescent state!"); 580 } 581 #endif /* #ifdef CONFIG_PROVE_RCU */ 582 583 #ifdef CONFIG_NO_HZ_FULL 584 /** 585 * __rcu_irq_enter_check_tick - Enable scheduler tick on CPU if RCU needs it. 586 * 587 * The scheduler tick is not normally enabled when CPUs enter the kernel 588 * from nohz_full userspace execution. After all, nohz_full userspace 589 * execution is an RCU quiescent state and the time executing in the kernel 590 * is quite short. Except of course when it isn't. And it is not hard to 591 * cause a large system to spend tens of seconds or even minutes looping 592 * in the kernel, which can cause a number of problems, include RCU CPU 593 * stall warnings. 594 * 595 * Therefore, if a nohz_full CPU fails to report a quiescent state 596 * in a timely manner, the RCU grace-period kthread sets that CPU's 597 * ->rcu_urgent_qs flag with the expectation that the next interrupt or 598 * exception will invoke this function, which will turn on the scheduler 599 * tick, which will enable RCU to detect that CPU's quiescent states, 600 * for example, due to cond_resched() calls in CONFIG_PREEMPT=n kernels. 601 * The tick will be disabled once a quiescent state is reported for 602 * this CPU. 603 * 604 * Of course, in carefully tuned systems, there might never be an 605 * interrupt or exception. In that case, the RCU grace-period kthread 606 * will eventually cause one to happen. However, in less carefully 607 * controlled environments, this function allows RCU to get what it 608 * needs without creating otherwise useless interruptions. 609 */ 610 void __rcu_irq_enter_check_tick(void) 611 { 612 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 613 614 // If we're here from NMI there's nothing to do. 615 if (in_nmi()) 616 return; 617 618 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(), 619 "Illegal rcu_irq_enter_check_tick() from extended quiescent state"); 620 621 if (!tick_nohz_full_cpu(rdp->cpu) || 622 !READ_ONCE(rdp->rcu_urgent_qs) || 623 READ_ONCE(rdp->rcu_forced_tick)) { 624 // RCU doesn't need nohz_full help from this CPU, or it is 625 // already getting that help. 626 return; 627 } 628 629 // We get here only when not in an extended quiescent state and 630 // from interrupts (as opposed to NMIs). Therefore, (1) RCU is 631 // already watching and (2) The fact that we are in an interrupt 632 // handler and that the rcu_node lock is an irq-disabled lock 633 // prevents self-deadlock. So we can safely recheck under the lock. 634 // Note that the nohz_full state currently cannot change. 635 raw_spin_lock_rcu_node(rdp->mynode); 636 if (READ_ONCE(rdp->rcu_urgent_qs) && !rdp->rcu_forced_tick) { 637 // A nohz_full CPU is in the kernel and RCU needs a 638 // quiescent state. Turn on the tick! 639 WRITE_ONCE(rdp->rcu_forced_tick, true); 640 tick_dep_set_cpu(rdp->cpu, TICK_DEP_BIT_RCU); 641 } 642 raw_spin_unlock_rcu_node(rdp->mynode); 643 } 644 NOKPROBE_SYMBOL(__rcu_irq_enter_check_tick); 645 #endif /* CONFIG_NO_HZ_FULL */ 646 647 /* 648 * Check to see if any future non-offloaded RCU-related work will need 649 * to be done by the current CPU, even if none need be done immediately, 650 * returning 1 if so. This function is part of the RCU implementation; 651 * it is -not- an exported member of the RCU API. This is used by 652 * the idle-entry code to figure out whether it is safe to disable the 653 * scheduler-clock interrupt. 654 * 655 * Just check whether or not this CPU has non-offloaded RCU callbacks 656 * queued. 657 */ 658 int rcu_needs_cpu(void) 659 { 660 return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) && 661 !rcu_rdp_is_offloaded(this_cpu_ptr(&rcu_data)); 662 } 663 664 /* 665 * If any sort of urgency was applied to the current CPU (for example, 666 * the scheduler-clock interrupt was enabled on a nohz_full CPU) in order 667 * to get to a quiescent state, disable it. 668 */ 669 static void rcu_disable_urgency_upon_qs(struct rcu_data *rdp) 670 { 671 raw_lockdep_assert_held_rcu_node(rdp->mynode); 672 WRITE_ONCE(rdp->rcu_urgent_qs, false); 673 WRITE_ONCE(rdp->rcu_need_heavy_qs, false); 674 if (tick_nohz_full_cpu(rdp->cpu) && rdp->rcu_forced_tick) { 675 tick_dep_clear_cpu(rdp->cpu, TICK_DEP_BIT_RCU); 676 WRITE_ONCE(rdp->rcu_forced_tick, false); 677 } 678 } 679 680 /** 681 * rcu_is_watching - RCU read-side critical sections permitted on current CPU? 682 * 683 * Return @true if RCU is watching the running CPU and @false otherwise. 684 * An @true return means that this CPU can safely enter RCU read-side 685 * critical sections. 686 * 687 * Although calls to rcu_is_watching() from most parts of the kernel 688 * will return @true, there are important exceptions. For example, if the 689 * current CPU is deep within its idle loop, in kernel entry/exit code, 690 * or offline, rcu_is_watching() will return @false. 691 * 692 * Make notrace because it can be called by the internal functions of 693 * ftrace, and making this notrace removes unnecessary recursion calls. 694 */ 695 notrace bool rcu_is_watching(void) 696 { 697 bool ret; 698 699 preempt_disable_notrace(); 700 ret = !rcu_dynticks_curr_cpu_in_eqs(); 701 preempt_enable_notrace(); 702 return ret; 703 } 704 EXPORT_SYMBOL_GPL(rcu_is_watching); 705 706 /* 707 * If a holdout task is actually running, request an urgent quiescent 708 * state from its CPU. This is unsynchronized, so migrations can cause 709 * the request to go to the wrong CPU. Which is OK, all that will happen 710 * is that the CPU's next context switch will be a bit slower and next 711 * time around this task will generate another request. 712 */ 713 void rcu_request_urgent_qs_task(struct task_struct *t) 714 { 715 int cpu; 716 717 barrier(); 718 cpu = task_cpu(t); 719 if (!task_curr(t)) 720 return; /* This task is not running on that CPU. */ 721 smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true); 722 } 723 724 /* 725 * When trying to report a quiescent state on behalf of some other CPU, 726 * it is our responsibility to check for and handle potential overflow 727 * of the rcu_node ->gp_seq counter with respect to the rcu_data counters. 728 * After all, the CPU might be in deep idle state, and thus executing no 729 * code whatsoever. 730 */ 731 static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp) 732 { 733 raw_lockdep_assert_held_rcu_node(rnp); 734 if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4, 735 rnp->gp_seq)) 736 WRITE_ONCE(rdp->gpwrap, true); 737 if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq)) 738 rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4; 739 } 740 741 /* 742 * Snapshot the specified CPU's dynticks counter so that we can later 743 * credit them with an implicit quiescent state. Return 1 if this CPU 744 * is in dynticks idle mode, which is an extended quiescent state. 745 */ 746 static int dyntick_save_progress_counter(struct rcu_data *rdp) 747 { 748 rdp->dynticks_snap = rcu_dynticks_snap(rdp->cpu); 749 if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) { 750 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti")); 751 rcu_gpnum_ovf(rdp->mynode, rdp); 752 return 1; 753 } 754 return 0; 755 } 756 757 /* 758 * Return true if the specified CPU has passed through a quiescent 759 * state by virtue of being in or having passed through an dynticks 760 * idle state since the last call to dyntick_save_progress_counter() 761 * for this same CPU, or by virtue of having been offline. 762 */ 763 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp) 764 { 765 unsigned long jtsq; 766 struct rcu_node *rnp = rdp->mynode; 767 768 /* 769 * If the CPU passed through or entered a dynticks idle phase with 770 * no active irq/NMI handlers, then we can safely pretend that the CPU 771 * already acknowledged the request to pass through a quiescent 772 * state. Either way, that CPU cannot possibly be in an RCU 773 * read-side critical section that started before the beginning 774 * of the current RCU grace period. 775 */ 776 if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) { 777 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti")); 778 rcu_gpnum_ovf(rnp, rdp); 779 return 1; 780 } 781 782 /* 783 * Complain if a CPU that is considered to be offline from RCU's 784 * perspective has not yet reported a quiescent state. After all, 785 * the offline CPU should have reported a quiescent state during 786 * the CPU-offline process, or, failing that, by rcu_gp_init() 787 * if it ran concurrently with either the CPU going offline or the 788 * last task on a leaf rcu_node structure exiting its RCU read-side 789 * critical section while all CPUs corresponding to that structure 790 * are offline. This added warning detects bugs in any of these 791 * code paths. 792 * 793 * The rcu_node structure's ->lock is held here, which excludes 794 * the relevant portions the CPU-hotplug code, the grace-period 795 * initialization code, and the rcu_read_unlock() code paths. 796 * 797 * For more detail, please refer to the "Hotplug CPU" section 798 * of RCU's Requirements documentation. 799 */ 800 if (WARN_ON_ONCE(!rcu_rdp_cpu_online(rdp))) { 801 struct rcu_node *rnp1; 802 803 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n", 804 __func__, rnp->grplo, rnp->grphi, rnp->level, 805 (long)rnp->gp_seq, (long)rnp->completedqs); 806 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent) 807 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n", 808 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask); 809 pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n", 810 __func__, rdp->cpu, ".o"[rcu_rdp_cpu_online(rdp)], 811 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags, 812 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags); 813 return 1; /* Break things loose after complaining. */ 814 } 815 816 /* 817 * A CPU running for an extended time within the kernel can 818 * delay RCU grace periods: (1) At age jiffies_to_sched_qs, 819 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set 820 * both .rcu_need_heavy_qs and .rcu_urgent_qs. Note that the 821 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs 822 * variable are safe because the assignments are repeated if this 823 * CPU failed to pass through a quiescent state. This code 824 * also checks .jiffies_resched in case jiffies_to_sched_qs 825 * is set way high. 826 */ 827 jtsq = READ_ONCE(jiffies_to_sched_qs); 828 if (!READ_ONCE(rdp->rcu_need_heavy_qs) && 829 (time_after(jiffies, rcu_state.gp_start + jtsq * 2) || 830 time_after(jiffies, rcu_state.jiffies_resched) || 831 rcu_state.cbovld)) { 832 WRITE_ONCE(rdp->rcu_need_heavy_qs, true); 833 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */ 834 smp_store_release(&rdp->rcu_urgent_qs, true); 835 } else if (time_after(jiffies, rcu_state.gp_start + jtsq)) { 836 WRITE_ONCE(rdp->rcu_urgent_qs, true); 837 } 838 839 /* 840 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq! 841 * The above code handles this, but only for straight cond_resched(). 842 * And some in-kernel loops check need_resched() before calling 843 * cond_resched(), which defeats the above code for CPUs that are 844 * running in-kernel with scheduling-clock interrupts disabled. 845 * So hit them over the head with the resched_cpu() hammer! 846 */ 847 if (tick_nohz_full_cpu(rdp->cpu) && 848 (time_after(jiffies, READ_ONCE(rdp->last_fqs_resched) + jtsq * 3) || 849 rcu_state.cbovld)) { 850 WRITE_ONCE(rdp->rcu_urgent_qs, true); 851 resched_cpu(rdp->cpu); 852 WRITE_ONCE(rdp->last_fqs_resched, jiffies); 853 } 854 855 /* 856 * If more than halfway to RCU CPU stall-warning time, invoke 857 * resched_cpu() more frequently to try to loosen things up a bit. 858 * Also check to see if the CPU is getting hammered with interrupts, 859 * but only once per grace period, just to keep the IPIs down to 860 * a dull roar. 861 */ 862 if (time_after(jiffies, rcu_state.jiffies_resched)) { 863 if (time_after(jiffies, 864 READ_ONCE(rdp->last_fqs_resched) + jtsq)) { 865 resched_cpu(rdp->cpu); 866 WRITE_ONCE(rdp->last_fqs_resched, jiffies); 867 } 868 if (IS_ENABLED(CONFIG_IRQ_WORK) && 869 !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq && 870 (rnp->ffmask & rdp->grpmask)) { 871 rdp->rcu_iw_pending = true; 872 rdp->rcu_iw_gp_seq = rnp->gp_seq; 873 irq_work_queue_on(&rdp->rcu_iw, rdp->cpu); 874 } 875 876 if (rcu_cpu_stall_cputime && rdp->snap_record.gp_seq != rdp->gp_seq) { 877 int cpu = rdp->cpu; 878 struct rcu_snap_record *rsrp; 879 struct kernel_cpustat *kcsp; 880 881 kcsp = &kcpustat_cpu(cpu); 882 883 rsrp = &rdp->snap_record; 884 rsrp->cputime_irq = kcpustat_field(kcsp, CPUTIME_IRQ, cpu); 885 rsrp->cputime_softirq = kcpustat_field(kcsp, CPUTIME_SOFTIRQ, cpu); 886 rsrp->cputime_system = kcpustat_field(kcsp, CPUTIME_SYSTEM, cpu); 887 rsrp->nr_hardirqs = kstat_cpu_irqs_sum(rdp->cpu); 888 rsrp->nr_softirqs = kstat_cpu_softirqs_sum(rdp->cpu); 889 rsrp->nr_csw = nr_context_switches_cpu(rdp->cpu); 890 rsrp->jiffies = jiffies; 891 rsrp->gp_seq = rdp->gp_seq; 892 } 893 } 894 895 return 0; 896 } 897 898 /* Trace-event wrapper function for trace_rcu_future_grace_period. */ 899 static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp, 900 unsigned long gp_seq_req, const char *s) 901 { 902 trace_rcu_future_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq), 903 gp_seq_req, rnp->level, 904 rnp->grplo, rnp->grphi, s); 905 } 906 907 /* 908 * rcu_start_this_gp - Request the start of a particular grace period 909 * @rnp_start: The leaf node of the CPU from which to start. 910 * @rdp: The rcu_data corresponding to the CPU from which to start. 911 * @gp_seq_req: The gp_seq of the grace period to start. 912 * 913 * Start the specified grace period, as needed to handle newly arrived 914 * callbacks. The required future grace periods are recorded in each 915 * rcu_node structure's ->gp_seq_needed field. Returns true if there 916 * is reason to awaken the grace-period kthread. 917 * 918 * The caller must hold the specified rcu_node structure's ->lock, which 919 * is why the caller is responsible for waking the grace-period kthread. 920 * 921 * Returns true if the GP thread needs to be awakened else false. 922 */ 923 static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp, 924 unsigned long gp_seq_req) 925 { 926 bool ret = false; 927 struct rcu_node *rnp; 928 929 /* 930 * Use funnel locking to either acquire the root rcu_node 931 * structure's lock or bail out if the need for this grace period 932 * has already been recorded -- or if that grace period has in 933 * fact already started. If there is already a grace period in 934 * progress in a non-leaf node, no recording is needed because the 935 * end of the grace period will scan the leaf rcu_node structures. 936 * Note that rnp_start->lock must not be released. 937 */ 938 raw_lockdep_assert_held_rcu_node(rnp_start); 939 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf")); 940 for (rnp = rnp_start; 1; rnp = rnp->parent) { 941 if (rnp != rnp_start) 942 raw_spin_lock_rcu_node(rnp); 943 if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) || 944 rcu_seq_started(&rnp->gp_seq, gp_seq_req) || 945 (rnp != rnp_start && 946 rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) { 947 trace_rcu_this_gp(rnp, rdp, gp_seq_req, 948 TPS("Prestarted")); 949 goto unlock_out; 950 } 951 WRITE_ONCE(rnp->gp_seq_needed, gp_seq_req); 952 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) { 953 /* 954 * We just marked the leaf or internal node, and a 955 * grace period is in progress, which means that 956 * rcu_gp_cleanup() will see the marking. Bail to 957 * reduce contention. 958 */ 959 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, 960 TPS("Startedleaf")); 961 goto unlock_out; 962 } 963 if (rnp != rnp_start && rnp->parent != NULL) 964 raw_spin_unlock_rcu_node(rnp); 965 if (!rnp->parent) 966 break; /* At root, and perhaps also leaf. */ 967 } 968 969 /* If GP already in progress, just leave, otherwise start one. */ 970 if (rcu_gp_in_progress()) { 971 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot")); 972 goto unlock_out; 973 } 974 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot")); 975 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT); 976 WRITE_ONCE(rcu_state.gp_req_activity, jiffies); 977 if (!READ_ONCE(rcu_state.gp_kthread)) { 978 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread")); 979 goto unlock_out; 980 } 981 trace_rcu_grace_period(rcu_state.name, data_race(rcu_state.gp_seq), TPS("newreq")); 982 ret = true; /* Caller must wake GP kthread. */ 983 unlock_out: 984 /* Push furthest requested GP to leaf node and rcu_data structure. */ 985 if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) { 986 WRITE_ONCE(rnp_start->gp_seq_needed, rnp->gp_seq_needed); 987 WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed); 988 } 989 if (rnp != rnp_start) 990 raw_spin_unlock_rcu_node(rnp); 991 return ret; 992 } 993 994 /* 995 * Clean up any old requests for the just-ended grace period. Also return 996 * whether any additional grace periods have been requested. 997 */ 998 static bool rcu_future_gp_cleanup(struct rcu_node *rnp) 999 { 1000 bool needmore; 1001 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 1002 1003 needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed); 1004 if (!needmore) 1005 rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */ 1006 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq, 1007 needmore ? TPS("CleanupMore") : TPS("Cleanup")); 1008 return needmore; 1009 } 1010 1011 /* 1012 * Awaken the grace-period kthread. Don't do a self-awaken (unless in an 1013 * interrupt or softirq handler, in which case we just might immediately 1014 * sleep upon return, resulting in a grace-period hang), and don't bother 1015 * awakening when there is nothing for the grace-period kthread to do 1016 * (as in several CPUs raced to awaken, we lost), and finally don't try 1017 * to awaken a kthread that has not yet been created. If all those checks 1018 * are passed, track some debug information and awaken. 1019 * 1020 * So why do the self-wakeup when in an interrupt or softirq handler 1021 * in the grace-period kthread's context? Because the kthread might have 1022 * been interrupted just as it was going to sleep, and just after the final 1023 * pre-sleep check of the awaken condition. In this case, a wakeup really 1024 * is required, and is therefore supplied. 1025 */ 1026 static void rcu_gp_kthread_wake(void) 1027 { 1028 struct task_struct *t = READ_ONCE(rcu_state.gp_kthread); 1029 1030 if ((current == t && !in_hardirq() && !in_serving_softirq()) || 1031 !READ_ONCE(rcu_state.gp_flags) || !t) 1032 return; 1033 WRITE_ONCE(rcu_state.gp_wake_time, jiffies); 1034 WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq)); 1035 swake_up_one(&rcu_state.gp_wq); 1036 } 1037 1038 /* 1039 * If there is room, assign a ->gp_seq number to any callbacks on this 1040 * CPU that have not already been assigned. Also accelerate any callbacks 1041 * that were previously assigned a ->gp_seq number that has since proven 1042 * to be too conservative, which can happen if callbacks get assigned a 1043 * ->gp_seq number while RCU is idle, but with reference to a non-root 1044 * rcu_node structure. This function is idempotent, so it does not hurt 1045 * to call it repeatedly. Returns an flag saying that we should awaken 1046 * the RCU grace-period kthread. 1047 * 1048 * The caller must hold rnp->lock with interrupts disabled. 1049 */ 1050 static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp) 1051 { 1052 unsigned long gp_seq_req; 1053 bool ret = false; 1054 1055 rcu_lockdep_assert_cblist_protected(rdp); 1056 raw_lockdep_assert_held_rcu_node(rnp); 1057 1058 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */ 1059 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) 1060 return false; 1061 1062 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPreAcc")); 1063 1064 /* 1065 * Callbacks are often registered with incomplete grace-period 1066 * information. Something about the fact that getting exact 1067 * information requires acquiring a global lock... RCU therefore 1068 * makes a conservative estimate of the grace period number at which 1069 * a given callback will become ready to invoke. The following 1070 * code checks this estimate and improves it when possible, thus 1071 * accelerating callback invocation to an earlier grace-period 1072 * number. 1073 */ 1074 gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq); 1075 if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req)) 1076 ret = rcu_start_this_gp(rnp, rdp, gp_seq_req); 1077 1078 /* Trace depending on how much we were able to accelerate. */ 1079 if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL)) 1080 trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccWaitCB")); 1081 else 1082 trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccReadyCB")); 1083 1084 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPostAcc")); 1085 1086 return ret; 1087 } 1088 1089 /* 1090 * Similar to rcu_accelerate_cbs(), but does not require that the leaf 1091 * rcu_node structure's ->lock be held. It consults the cached value 1092 * of ->gp_seq_needed in the rcu_data structure, and if that indicates 1093 * that a new grace-period request be made, invokes rcu_accelerate_cbs() 1094 * while holding the leaf rcu_node structure's ->lock. 1095 */ 1096 static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp, 1097 struct rcu_data *rdp) 1098 { 1099 unsigned long c; 1100 bool needwake; 1101 1102 rcu_lockdep_assert_cblist_protected(rdp); 1103 c = rcu_seq_snap(&rcu_state.gp_seq); 1104 if (!READ_ONCE(rdp->gpwrap) && ULONG_CMP_GE(rdp->gp_seq_needed, c)) { 1105 /* Old request still live, so mark recent callbacks. */ 1106 (void)rcu_segcblist_accelerate(&rdp->cblist, c); 1107 return; 1108 } 1109 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 1110 needwake = rcu_accelerate_cbs(rnp, rdp); 1111 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 1112 if (needwake) 1113 rcu_gp_kthread_wake(); 1114 } 1115 1116 /* 1117 * Move any callbacks whose grace period has completed to the 1118 * RCU_DONE_TAIL sublist, then compact the remaining sublists and 1119 * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL 1120 * sublist. This function is idempotent, so it does not hurt to 1121 * invoke it repeatedly. As long as it is not invoked -too- often... 1122 * Returns true if the RCU grace-period kthread needs to be awakened. 1123 * 1124 * The caller must hold rnp->lock with interrupts disabled. 1125 */ 1126 static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp) 1127 { 1128 rcu_lockdep_assert_cblist_protected(rdp); 1129 raw_lockdep_assert_held_rcu_node(rnp); 1130 1131 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */ 1132 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) 1133 return false; 1134 1135 /* 1136 * Find all callbacks whose ->gp_seq numbers indicate that they 1137 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist. 1138 */ 1139 rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq); 1140 1141 /* Classify any remaining callbacks. */ 1142 return rcu_accelerate_cbs(rnp, rdp); 1143 } 1144 1145 /* 1146 * Move and classify callbacks, but only if doing so won't require 1147 * that the RCU grace-period kthread be awakened. 1148 */ 1149 static void __maybe_unused rcu_advance_cbs_nowake(struct rcu_node *rnp, 1150 struct rcu_data *rdp) 1151 { 1152 rcu_lockdep_assert_cblist_protected(rdp); 1153 if (!rcu_seq_state(rcu_seq_current(&rnp->gp_seq)) || !raw_spin_trylock_rcu_node(rnp)) 1154 return; 1155 // The grace period cannot end while we hold the rcu_node lock. 1156 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) 1157 WARN_ON_ONCE(rcu_advance_cbs(rnp, rdp)); 1158 raw_spin_unlock_rcu_node(rnp); 1159 } 1160 1161 /* 1162 * In CONFIG_RCU_STRICT_GRACE_PERIOD=y kernels, attempt to generate a 1163 * quiescent state. This is intended to be invoked when the CPU notices 1164 * a new grace period. 1165 */ 1166 static void rcu_strict_gp_check_qs(void) 1167 { 1168 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) { 1169 rcu_read_lock(); 1170 rcu_read_unlock(); 1171 } 1172 } 1173 1174 /* 1175 * Update CPU-local rcu_data state to record the beginnings and ends of 1176 * grace periods. The caller must hold the ->lock of the leaf rcu_node 1177 * structure corresponding to the current CPU, and must have irqs disabled. 1178 * Returns true if the grace-period kthread needs to be awakened. 1179 */ 1180 static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp) 1181 { 1182 bool ret = false; 1183 bool need_qs; 1184 const bool offloaded = rcu_rdp_is_offloaded(rdp); 1185 1186 raw_lockdep_assert_held_rcu_node(rnp); 1187 1188 if (rdp->gp_seq == rnp->gp_seq) 1189 return false; /* Nothing to do. */ 1190 1191 /* Handle the ends of any preceding grace periods first. */ 1192 if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) || 1193 unlikely(READ_ONCE(rdp->gpwrap))) { 1194 if (!offloaded) 1195 ret = rcu_advance_cbs(rnp, rdp); /* Advance CBs. */ 1196 rdp->core_needs_qs = false; 1197 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend")); 1198 } else { 1199 if (!offloaded) 1200 ret = rcu_accelerate_cbs(rnp, rdp); /* Recent CBs. */ 1201 if (rdp->core_needs_qs) 1202 rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask); 1203 } 1204 1205 /* Now handle the beginnings of any new-to-this-CPU grace periods. */ 1206 if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) || 1207 unlikely(READ_ONCE(rdp->gpwrap))) { 1208 /* 1209 * If the current grace period is waiting for this CPU, 1210 * set up to detect a quiescent state, otherwise don't 1211 * go looking for one. 1212 */ 1213 trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart")); 1214 need_qs = !!(rnp->qsmask & rdp->grpmask); 1215 rdp->cpu_no_qs.b.norm = need_qs; 1216 rdp->core_needs_qs = need_qs; 1217 zero_cpu_stall_ticks(rdp); 1218 } 1219 rdp->gp_seq = rnp->gp_seq; /* Remember new grace-period state. */ 1220 if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap) 1221 WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed); 1222 if (IS_ENABLED(CONFIG_PROVE_RCU) && READ_ONCE(rdp->gpwrap)) 1223 WRITE_ONCE(rdp->last_sched_clock, jiffies); 1224 WRITE_ONCE(rdp->gpwrap, false); 1225 rcu_gpnum_ovf(rnp, rdp); 1226 return ret; 1227 } 1228 1229 static void note_gp_changes(struct rcu_data *rdp) 1230 { 1231 unsigned long flags; 1232 bool needwake; 1233 struct rcu_node *rnp; 1234 1235 local_irq_save(flags); 1236 rnp = rdp->mynode; 1237 if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) && 1238 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */ 1239 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */ 1240 local_irq_restore(flags); 1241 return; 1242 } 1243 needwake = __note_gp_changes(rnp, rdp); 1244 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1245 rcu_strict_gp_check_qs(); 1246 if (needwake) 1247 rcu_gp_kthread_wake(); 1248 } 1249 1250 static atomic_t *rcu_gp_slow_suppress; 1251 1252 /* Register a counter to suppress debugging grace-period delays. */ 1253 void rcu_gp_slow_register(atomic_t *rgssp) 1254 { 1255 WARN_ON_ONCE(rcu_gp_slow_suppress); 1256 1257 WRITE_ONCE(rcu_gp_slow_suppress, rgssp); 1258 } 1259 EXPORT_SYMBOL_GPL(rcu_gp_slow_register); 1260 1261 /* Unregister a counter, with NULL for not caring which. */ 1262 void rcu_gp_slow_unregister(atomic_t *rgssp) 1263 { 1264 WARN_ON_ONCE(rgssp && rgssp != rcu_gp_slow_suppress && rcu_gp_slow_suppress != NULL); 1265 1266 WRITE_ONCE(rcu_gp_slow_suppress, NULL); 1267 } 1268 EXPORT_SYMBOL_GPL(rcu_gp_slow_unregister); 1269 1270 static bool rcu_gp_slow_is_suppressed(void) 1271 { 1272 atomic_t *rgssp = READ_ONCE(rcu_gp_slow_suppress); 1273 1274 return rgssp && atomic_read(rgssp); 1275 } 1276 1277 static void rcu_gp_slow(int delay) 1278 { 1279 if (!rcu_gp_slow_is_suppressed() && delay > 0 && 1280 !(rcu_seq_ctr(rcu_state.gp_seq) % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay))) 1281 schedule_timeout_idle(delay); 1282 } 1283 1284 static unsigned long sleep_duration; 1285 1286 /* Allow rcutorture to stall the grace-period kthread. */ 1287 void rcu_gp_set_torture_wait(int duration) 1288 { 1289 if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST) && duration > 0) 1290 WRITE_ONCE(sleep_duration, duration); 1291 } 1292 EXPORT_SYMBOL_GPL(rcu_gp_set_torture_wait); 1293 1294 /* Actually implement the aforementioned wait. */ 1295 static void rcu_gp_torture_wait(void) 1296 { 1297 unsigned long duration; 1298 1299 if (!IS_ENABLED(CONFIG_RCU_TORTURE_TEST)) 1300 return; 1301 duration = xchg(&sleep_duration, 0UL); 1302 if (duration > 0) { 1303 pr_alert("%s: Waiting %lu jiffies\n", __func__, duration); 1304 schedule_timeout_idle(duration); 1305 pr_alert("%s: Wait complete\n", __func__); 1306 } 1307 } 1308 1309 /* 1310 * Handler for on_each_cpu() to invoke the target CPU's RCU core 1311 * processing. 1312 */ 1313 static void rcu_strict_gp_boundary(void *unused) 1314 { 1315 invoke_rcu_core(); 1316 } 1317 1318 // Make the polled API aware of the beginning of a grace period. 1319 static void rcu_poll_gp_seq_start(unsigned long *snap) 1320 { 1321 struct rcu_node *rnp = rcu_get_root(); 1322 1323 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) 1324 raw_lockdep_assert_held_rcu_node(rnp); 1325 1326 // If RCU was idle, note beginning of GP. 1327 if (!rcu_seq_state(rcu_state.gp_seq_polled)) 1328 rcu_seq_start(&rcu_state.gp_seq_polled); 1329 1330 // Either way, record current state. 1331 *snap = rcu_state.gp_seq_polled; 1332 } 1333 1334 // Make the polled API aware of the end of a grace period. 1335 static void rcu_poll_gp_seq_end(unsigned long *snap) 1336 { 1337 struct rcu_node *rnp = rcu_get_root(); 1338 1339 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) 1340 raw_lockdep_assert_held_rcu_node(rnp); 1341 1342 // If the previously noted GP is still in effect, record the 1343 // end of that GP. Either way, zero counter to avoid counter-wrap 1344 // problems. 1345 if (*snap && *snap == rcu_state.gp_seq_polled) { 1346 rcu_seq_end(&rcu_state.gp_seq_polled); 1347 rcu_state.gp_seq_polled_snap = 0; 1348 rcu_state.gp_seq_polled_exp_snap = 0; 1349 } else { 1350 *snap = 0; 1351 } 1352 } 1353 1354 // Make the polled API aware of the beginning of a grace period, but 1355 // where caller does not hold the root rcu_node structure's lock. 1356 static void rcu_poll_gp_seq_start_unlocked(unsigned long *snap) 1357 { 1358 unsigned long flags; 1359 struct rcu_node *rnp = rcu_get_root(); 1360 1361 if (rcu_init_invoked()) { 1362 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) 1363 lockdep_assert_irqs_enabled(); 1364 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1365 } 1366 rcu_poll_gp_seq_start(snap); 1367 if (rcu_init_invoked()) 1368 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1369 } 1370 1371 // Make the polled API aware of the end of a grace period, but where 1372 // caller does not hold the root rcu_node structure's lock. 1373 static void rcu_poll_gp_seq_end_unlocked(unsigned long *snap) 1374 { 1375 unsigned long flags; 1376 struct rcu_node *rnp = rcu_get_root(); 1377 1378 if (rcu_init_invoked()) { 1379 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) 1380 lockdep_assert_irqs_enabled(); 1381 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1382 } 1383 rcu_poll_gp_seq_end(snap); 1384 if (rcu_init_invoked()) 1385 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1386 } 1387 1388 /* 1389 * Initialize a new grace period. Return false if no grace period required. 1390 */ 1391 static noinline_for_stack bool rcu_gp_init(void) 1392 { 1393 unsigned long flags; 1394 unsigned long oldmask; 1395 unsigned long mask; 1396 struct rcu_data *rdp; 1397 struct rcu_node *rnp = rcu_get_root(); 1398 1399 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1400 raw_spin_lock_irq_rcu_node(rnp); 1401 if (!READ_ONCE(rcu_state.gp_flags)) { 1402 /* Spurious wakeup, tell caller to go back to sleep. */ 1403 raw_spin_unlock_irq_rcu_node(rnp); 1404 return false; 1405 } 1406 WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */ 1407 1408 if (WARN_ON_ONCE(rcu_gp_in_progress())) { 1409 /* 1410 * Grace period already in progress, don't start another. 1411 * Not supposed to be able to happen. 1412 */ 1413 raw_spin_unlock_irq_rcu_node(rnp); 1414 return false; 1415 } 1416 1417 /* Advance to a new grace period and initialize state. */ 1418 record_gp_stall_check_time(); 1419 /* Record GP times before starting GP, hence rcu_seq_start(). */ 1420 rcu_seq_start(&rcu_state.gp_seq); 1421 ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq); 1422 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start")); 1423 rcu_poll_gp_seq_start(&rcu_state.gp_seq_polled_snap); 1424 raw_spin_unlock_irq_rcu_node(rnp); 1425 1426 /* 1427 * Apply per-leaf buffered online and offline operations to 1428 * the rcu_node tree. Note that this new grace period need not 1429 * wait for subsequent online CPUs, and that RCU hooks in the CPU 1430 * offlining path, when combined with checks in this function, 1431 * will handle CPUs that are currently going offline or that will 1432 * go offline later. Please also refer to "Hotplug CPU" section 1433 * of RCU's Requirements documentation. 1434 */ 1435 WRITE_ONCE(rcu_state.gp_state, RCU_GP_ONOFF); 1436 /* Exclude CPU hotplug operations. */ 1437 rcu_for_each_leaf_node(rnp) { 1438 local_irq_save(flags); 1439 arch_spin_lock(&rcu_state.ofl_lock); 1440 raw_spin_lock_rcu_node(rnp); 1441 if (rnp->qsmaskinit == rnp->qsmaskinitnext && 1442 !rnp->wait_blkd_tasks) { 1443 /* Nothing to do on this leaf rcu_node structure. */ 1444 raw_spin_unlock_rcu_node(rnp); 1445 arch_spin_unlock(&rcu_state.ofl_lock); 1446 local_irq_restore(flags); 1447 continue; 1448 } 1449 1450 /* Record old state, apply changes to ->qsmaskinit field. */ 1451 oldmask = rnp->qsmaskinit; 1452 rnp->qsmaskinit = rnp->qsmaskinitnext; 1453 1454 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */ 1455 if (!oldmask != !rnp->qsmaskinit) { 1456 if (!oldmask) { /* First online CPU for rcu_node. */ 1457 if (!rnp->wait_blkd_tasks) /* Ever offline? */ 1458 rcu_init_new_rnp(rnp); 1459 } else if (rcu_preempt_has_tasks(rnp)) { 1460 rnp->wait_blkd_tasks = true; /* blocked tasks */ 1461 } else { /* Last offline CPU and can propagate. */ 1462 rcu_cleanup_dead_rnp(rnp); 1463 } 1464 } 1465 1466 /* 1467 * If all waited-on tasks from prior grace period are 1468 * done, and if all this rcu_node structure's CPUs are 1469 * still offline, propagate up the rcu_node tree and 1470 * clear ->wait_blkd_tasks. Otherwise, if one of this 1471 * rcu_node structure's CPUs has since come back online, 1472 * simply clear ->wait_blkd_tasks. 1473 */ 1474 if (rnp->wait_blkd_tasks && 1475 (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) { 1476 rnp->wait_blkd_tasks = false; 1477 if (!rnp->qsmaskinit) 1478 rcu_cleanup_dead_rnp(rnp); 1479 } 1480 1481 raw_spin_unlock_rcu_node(rnp); 1482 arch_spin_unlock(&rcu_state.ofl_lock); 1483 local_irq_restore(flags); 1484 } 1485 rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */ 1486 1487 /* 1488 * Set the quiescent-state-needed bits in all the rcu_node 1489 * structures for all currently online CPUs in breadth-first 1490 * order, starting from the root rcu_node structure, relying on the 1491 * layout of the tree within the rcu_state.node[] array. Note that 1492 * other CPUs will access only the leaves of the hierarchy, thus 1493 * seeing that no grace period is in progress, at least until the 1494 * corresponding leaf node has been initialized. 1495 * 1496 * The grace period cannot complete until the initialization 1497 * process finishes, because this kthread handles both. 1498 */ 1499 WRITE_ONCE(rcu_state.gp_state, RCU_GP_INIT); 1500 rcu_for_each_node_breadth_first(rnp) { 1501 rcu_gp_slow(gp_init_delay); 1502 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1503 rdp = this_cpu_ptr(&rcu_data); 1504 rcu_preempt_check_blocked_tasks(rnp); 1505 rnp->qsmask = rnp->qsmaskinit; 1506 WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq); 1507 if (rnp == rdp->mynode) 1508 (void)__note_gp_changes(rnp, rdp); 1509 rcu_preempt_boost_start_gp(rnp); 1510 trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq, 1511 rnp->level, rnp->grplo, 1512 rnp->grphi, rnp->qsmask); 1513 /* Quiescent states for tasks on any now-offline CPUs. */ 1514 mask = rnp->qsmask & ~rnp->qsmaskinitnext; 1515 rnp->rcu_gp_init_mask = mask; 1516 if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp)) 1517 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 1518 else 1519 raw_spin_unlock_irq_rcu_node(rnp); 1520 cond_resched_tasks_rcu_qs(); 1521 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1522 } 1523 1524 // If strict, make all CPUs aware of new grace period. 1525 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) 1526 on_each_cpu(rcu_strict_gp_boundary, NULL, 0); 1527 1528 return true; 1529 } 1530 1531 /* 1532 * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state 1533 * time. 1534 */ 1535 static bool rcu_gp_fqs_check_wake(int *gfp) 1536 { 1537 struct rcu_node *rnp = rcu_get_root(); 1538 1539 // If under overload conditions, force an immediate FQS scan. 1540 if (*gfp & RCU_GP_FLAG_OVLD) 1541 return true; 1542 1543 // Someone like call_rcu() requested a force-quiescent-state scan. 1544 *gfp = READ_ONCE(rcu_state.gp_flags); 1545 if (*gfp & RCU_GP_FLAG_FQS) 1546 return true; 1547 1548 // The current grace period has completed. 1549 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp)) 1550 return true; 1551 1552 return false; 1553 } 1554 1555 /* 1556 * Do one round of quiescent-state forcing. 1557 */ 1558 static void rcu_gp_fqs(bool first_time) 1559 { 1560 int nr_fqs = READ_ONCE(rcu_state.nr_fqs_jiffies_stall); 1561 struct rcu_node *rnp = rcu_get_root(); 1562 1563 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1564 WRITE_ONCE(rcu_state.n_force_qs, rcu_state.n_force_qs + 1); 1565 1566 WARN_ON_ONCE(nr_fqs > 3); 1567 /* Only countdown nr_fqs for stall purposes if jiffies moves. */ 1568 if (nr_fqs) { 1569 if (nr_fqs == 1) { 1570 WRITE_ONCE(rcu_state.jiffies_stall, 1571 jiffies + rcu_jiffies_till_stall_check()); 1572 } 1573 WRITE_ONCE(rcu_state.nr_fqs_jiffies_stall, --nr_fqs); 1574 } 1575 1576 if (first_time) { 1577 /* Collect dyntick-idle snapshots. */ 1578 force_qs_rnp(dyntick_save_progress_counter); 1579 } else { 1580 /* Handle dyntick-idle and offline CPUs. */ 1581 force_qs_rnp(rcu_implicit_dynticks_qs); 1582 } 1583 /* Clear flag to prevent immediate re-entry. */ 1584 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) { 1585 raw_spin_lock_irq_rcu_node(rnp); 1586 WRITE_ONCE(rcu_state.gp_flags, 1587 READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS); 1588 raw_spin_unlock_irq_rcu_node(rnp); 1589 } 1590 } 1591 1592 /* 1593 * Loop doing repeated quiescent-state forcing until the grace period ends. 1594 */ 1595 static noinline_for_stack void rcu_gp_fqs_loop(void) 1596 { 1597 bool first_gp_fqs = true; 1598 int gf = 0; 1599 unsigned long j; 1600 int ret; 1601 struct rcu_node *rnp = rcu_get_root(); 1602 1603 j = READ_ONCE(jiffies_till_first_fqs); 1604 if (rcu_state.cbovld) 1605 gf = RCU_GP_FLAG_OVLD; 1606 ret = 0; 1607 for (;;) { 1608 if (rcu_state.cbovld) { 1609 j = (j + 2) / 3; 1610 if (j <= 0) 1611 j = 1; 1612 } 1613 if (!ret || time_before(jiffies + j, rcu_state.jiffies_force_qs)) { 1614 WRITE_ONCE(rcu_state.jiffies_force_qs, jiffies + j); 1615 /* 1616 * jiffies_force_qs before RCU_GP_WAIT_FQS state 1617 * update; required for stall checks. 1618 */ 1619 smp_wmb(); 1620 WRITE_ONCE(rcu_state.jiffies_kick_kthreads, 1621 jiffies + (j ? 3 * j : 2)); 1622 } 1623 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 1624 TPS("fqswait")); 1625 WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_FQS); 1626 (void)swait_event_idle_timeout_exclusive(rcu_state.gp_wq, 1627 rcu_gp_fqs_check_wake(&gf), j); 1628 rcu_gp_torture_wait(); 1629 WRITE_ONCE(rcu_state.gp_state, RCU_GP_DOING_FQS); 1630 /* Locking provides needed memory barriers. */ 1631 /* 1632 * Exit the loop if the root rcu_node structure indicates that the grace period 1633 * has ended, leave the loop. The rcu_preempt_blocked_readers_cgp(rnp) check 1634 * is required only for single-node rcu_node trees because readers blocking 1635 * the current grace period are queued only on leaf rcu_node structures. 1636 * For multi-node trees, checking the root node's ->qsmask suffices, because a 1637 * given root node's ->qsmask bit is cleared only when all CPUs and tasks from 1638 * the corresponding leaf nodes have passed through their quiescent state. 1639 */ 1640 if (!READ_ONCE(rnp->qsmask) && 1641 !rcu_preempt_blocked_readers_cgp(rnp)) 1642 break; 1643 /* If time for quiescent-state forcing, do it. */ 1644 if (!time_after(rcu_state.jiffies_force_qs, jiffies) || 1645 (gf & (RCU_GP_FLAG_FQS | RCU_GP_FLAG_OVLD))) { 1646 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 1647 TPS("fqsstart")); 1648 rcu_gp_fqs(first_gp_fqs); 1649 gf = 0; 1650 if (first_gp_fqs) { 1651 first_gp_fqs = false; 1652 gf = rcu_state.cbovld ? RCU_GP_FLAG_OVLD : 0; 1653 } 1654 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 1655 TPS("fqsend")); 1656 cond_resched_tasks_rcu_qs(); 1657 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1658 ret = 0; /* Force full wait till next FQS. */ 1659 j = READ_ONCE(jiffies_till_next_fqs); 1660 } else { 1661 /* Deal with stray signal. */ 1662 cond_resched_tasks_rcu_qs(); 1663 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1664 WARN_ON(signal_pending(current)); 1665 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 1666 TPS("fqswaitsig")); 1667 ret = 1; /* Keep old FQS timing. */ 1668 j = jiffies; 1669 if (time_after(jiffies, rcu_state.jiffies_force_qs)) 1670 j = 1; 1671 else 1672 j = rcu_state.jiffies_force_qs - j; 1673 gf = 0; 1674 } 1675 } 1676 } 1677 1678 /* 1679 * Clean up after the old grace period. 1680 */ 1681 static noinline void rcu_gp_cleanup(void) 1682 { 1683 int cpu; 1684 bool needgp = false; 1685 unsigned long gp_duration; 1686 unsigned long new_gp_seq; 1687 bool offloaded; 1688 struct rcu_data *rdp; 1689 struct rcu_node *rnp = rcu_get_root(); 1690 struct swait_queue_head *sq; 1691 1692 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1693 raw_spin_lock_irq_rcu_node(rnp); 1694 rcu_state.gp_end = jiffies; 1695 gp_duration = rcu_state.gp_end - rcu_state.gp_start; 1696 if (gp_duration > rcu_state.gp_max) 1697 rcu_state.gp_max = gp_duration; 1698 1699 /* 1700 * We know the grace period is complete, but to everyone else 1701 * it appears to still be ongoing. But it is also the case 1702 * that to everyone else it looks like there is nothing that 1703 * they can do to advance the grace period. It is therefore 1704 * safe for us to drop the lock in order to mark the grace 1705 * period as completed in all of the rcu_node structures. 1706 */ 1707 rcu_poll_gp_seq_end(&rcu_state.gp_seq_polled_snap); 1708 raw_spin_unlock_irq_rcu_node(rnp); 1709 1710 /* 1711 * Propagate new ->gp_seq value to rcu_node structures so that 1712 * other CPUs don't have to wait until the start of the next grace 1713 * period to process their callbacks. This also avoids some nasty 1714 * RCU grace-period initialization races by forcing the end of 1715 * the current grace period to be completely recorded in all of 1716 * the rcu_node structures before the beginning of the next grace 1717 * period is recorded in any of the rcu_node structures. 1718 */ 1719 new_gp_seq = rcu_state.gp_seq; 1720 rcu_seq_end(&new_gp_seq); 1721 rcu_for_each_node_breadth_first(rnp) { 1722 raw_spin_lock_irq_rcu_node(rnp); 1723 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp))) 1724 dump_blkd_tasks(rnp, 10); 1725 WARN_ON_ONCE(rnp->qsmask); 1726 WRITE_ONCE(rnp->gp_seq, new_gp_seq); 1727 if (!rnp->parent) 1728 smp_mb(); // Order against failing poll_state_synchronize_rcu_full(). 1729 rdp = this_cpu_ptr(&rcu_data); 1730 if (rnp == rdp->mynode) 1731 needgp = __note_gp_changes(rnp, rdp) || needgp; 1732 /* smp_mb() provided by prior unlock-lock pair. */ 1733 needgp = rcu_future_gp_cleanup(rnp) || needgp; 1734 // Reset overload indication for CPUs no longer overloaded 1735 if (rcu_is_leaf_node(rnp)) 1736 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->cbovldmask) { 1737 rdp = per_cpu_ptr(&rcu_data, cpu); 1738 check_cb_ovld_locked(rdp, rnp); 1739 } 1740 sq = rcu_nocb_gp_get(rnp); 1741 raw_spin_unlock_irq_rcu_node(rnp); 1742 rcu_nocb_gp_cleanup(sq); 1743 cond_resched_tasks_rcu_qs(); 1744 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1745 rcu_gp_slow(gp_cleanup_delay); 1746 } 1747 rnp = rcu_get_root(); 1748 raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */ 1749 1750 /* Declare grace period done, trace first to use old GP number. */ 1751 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end")); 1752 rcu_seq_end(&rcu_state.gp_seq); 1753 ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq); 1754 WRITE_ONCE(rcu_state.gp_state, RCU_GP_IDLE); 1755 /* Check for GP requests since above loop. */ 1756 rdp = this_cpu_ptr(&rcu_data); 1757 if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) { 1758 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed, 1759 TPS("CleanupMore")); 1760 needgp = true; 1761 } 1762 /* Advance CBs to reduce false positives below. */ 1763 offloaded = rcu_rdp_is_offloaded(rdp); 1764 if ((offloaded || !rcu_accelerate_cbs(rnp, rdp)) && needgp) { 1765 1766 // We get here if a grace period was needed (“needgp”) 1767 // and the above call to rcu_accelerate_cbs() did not set 1768 // the RCU_GP_FLAG_INIT bit in ->gp_state (which records 1769 // the need for another grace period). The purpose 1770 // of the “offloaded” check is to avoid invoking 1771 // rcu_accelerate_cbs() on an offloaded CPU because we do not 1772 // hold the ->nocb_lock needed to safely access an offloaded 1773 // ->cblist. We do not want to acquire that lock because 1774 // it can be heavily contended during callback floods. 1775 1776 WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT); 1777 WRITE_ONCE(rcu_state.gp_req_activity, jiffies); 1778 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("newreq")); 1779 } else { 1780 1781 // We get here either if there is no need for an 1782 // additional grace period or if rcu_accelerate_cbs() has 1783 // already set the RCU_GP_FLAG_INIT bit in ->gp_flags. 1784 // So all we need to do is to clear all of the other 1785 // ->gp_flags bits. 1786 1787 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags & RCU_GP_FLAG_INIT); 1788 } 1789 raw_spin_unlock_irq_rcu_node(rnp); 1790 1791 // If strict, make all CPUs aware of the end of the old grace period. 1792 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) 1793 on_each_cpu(rcu_strict_gp_boundary, NULL, 0); 1794 } 1795 1796 /* 1797 * Body of kthread that handles grace periods. 1798 */ 1799 static int __noreturn rcu_gp_kthread(void *unused) 1800 { 1801 rcu_bind_gp_kthread(); 1802 for (;;) { 1803 1804 /* Handle grace-period start. */ 1805 for (;;) { 1806 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 1807 TPS("reqwait")); 1808 WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_GPS); 1809 swait_event_idle_exclusive(rcu_state.gp_wq, 1810 READ_ONCE(rcu_state.gp_flags) & 1811 RCU_GP_FLAG_INIT); 1812 rcu_gp_torture_wait(); 1813 WRITE_ONCE(rcu_state.gp_state, RCU_GP_DONE_GPS); 1814 /* Locking provides needed memory barrier. */ 1815 if (rcu_gp_init()) 1816 break; 1817 cond_resched_tasks_rcu_qs(); 1818 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1819 WARN_ON(signal_pending(current)); 1820 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 1821 TPS("reqwaitsig")); 1822 } 1823 1824 /* Handle quiescent-state forcing. */ 1825 rcu_gp_fqs_loop(); 1826 1827 /* Handle grace-period end. */ 1828 WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANUP); 1829 rcu_gp_cleanup(); 1830 WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANED); 1831 } 1832 } 1833 1834 /* 1835 * Report a full set of quiescent states to the rcu_state data structure. 1836 * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if 1837 * another grace period is required. Whether we wake the grace-period 1838 * kthread or it awakens itself for the next round of quiescent-state 1839 * forcing, that kthread will clean up after the just-completed grace 1840 * period. Note that the caller must hold rnp->lock, which is released 1841 * before return. 1842 */ 1843 static void rcu_report_qs_rsp(unsigned long flags) 1844 __releases(rcu_get_root()->lock) 1845 { 1846 raw_lockdep_assert_held_rcu_node(rcu_get_root()); 1847 WARN_ON_ONCE(!rcu_gp_in_progress()); 1848 WRITE_ONCE(rcu_state.gp_flags, 1849 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS); 1850 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags); 1851 rcu_gp_kthread_wake(); 1852 } 1853 1854 /* 1855 * Similar to rcu_report_qs_rdp(), for which it is a helper function. 1856 * Allows quiescent states for a group of CPUs to be reported at one go 1857 * to the specified rcu_node structure, though all the CPUs in the group 1858 * must be represented by the same rcu_node structure (which need not be a 1859 * leaf rcu_node structure, though it often will be). The gps parameter 1860 * is the grace-period snapshot, which means that the quiescent states 1861 * are valid only if rnp->gp_seq is equal to gps. That structure's lock 1862 * must be held upon entry, and it is released before return. 1863 * 1864 * As a special case, if mask is zero, the bit-already-cleared check is 1865 * disabled. This allows propagating quiescent state due to resumed tasks 1866 * during grace-period initialization. 1867 */ 1868 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp, 1869 unsigned long gps, unsigned long flags) 1870 __releases(rnp->lock) 1871 { 1872 unsigned long oldmask = 0; 1873 struct rcu_node *rnp_c; 1874 1875 raw_lockdep_assert_held_rcu_node(rnp); 1876 1877 /* Walk up the rcu_node hierarchy. */ 1878 for (;;) { 1879 if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) { 1880 1881 /* 1882 * Our bit has already been cleared, or the 1883 * relevant grace period is already over, so done. 1884 */ 1885 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1886 return; 1887 } 1888 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */ 1889 WARN_ON_ONCE(!rcu_is_leaf_node(rnp) && 1890 rcu_preempt_blocked_readers_cgp(rnp)); 1891 WRITE_ONCE(rnp->qsmask, rnp->qsmask & ~mask); 1892 trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq, 1893 mask, rnp->qsmask, rnp->level, 1894 rnp->grplo, rnp->grphi, 1895 !!rnp->gp_tasks); 1896 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) { 1897 1898 /* Other bits still set at this level, so done. */ 1899 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1900 return; 1901 } 1902 rnp->completedqs = rnp->gp_seq; 1903 mask = rnp->grpmask; 1904 if (rnp->parent == NULL) { 1905 1906 /* No more levels. Exit loop holding root lock. */ 1907 1908 break; 1909 } 1910 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1911 rnp_c = rnp; 1912 rnp = rnp->parent; 1913 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1914 oldmask = READ_ONCE(rnp_c->qsmask); 1915 } 1916 1917 /* 1918 * Get here if we are the last CPU to pass through a quiescent 1919 * state for this grace period. Invoke rcu_report_qs_rsp() 1920 * to clean up and start the next grace period if one is needed. 1921 */ 1922 rcu_report_qs_rsp(flags); /* releases rnp->lock. */ 1923 } 1924 1925 /* 1926 * Record a quiescent state for all tasks that were previously queued 1927 * on the specified rcu_node structure and that were blocking the current 1928 * RCU grace period. The caller must hold the corresponding rnp->lock with 1929 * irqs disabled, and this lock is released upon return, but irqs remain 1930 * disabled. 1931 */ 1932 static void __maybe_unused 1933 rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags) 1934 __releases(rnp->lock) 1935 { 1936 unsigned long gps; 1937 unsigned long mask; 1938 struct rcu_node *rnp_p; 1939 1940 raw_lockdep_assert_held_rcu_node(rnp); 1941 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT_RCU)) || 1942 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) || 1943 rnp->qsmask != 0) { 1944 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1945 return; /* Still need more quiescent states! */ 1946 } 1947 1948 rnp->completedqs = rnp->gp_seq; 1949 rnp_p = rnp->parent; 1950 if (rnp_p == NULL) { 1951 /* 1952 * Only one rcu_node structure in the tree, so don't 1953 * try to report up to its nonexistent parent! 1954 */ 1955 rcu_report_qs_rsp(flags); 1956 return; 1957 } 1958 1959 /* Report up the rest of the hierarchy, tracking current ->gp_seq. */ 1960 gps = rnp->gp_seq; 1961 mask = rnp->grpmask; 1962 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 1963 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */ 1964 rcu_report_qs_rnp(mask, rnp_p, gps, flags); 1965 } 1966 1967 /* 1968 * Record a quiescent state for the specified CPU to that CPU's rcu_data 1969 * structure. This must be called from the specified CPU. 1970 */ 1971 static void 1972 rcu_report_qs_rdp(struct rcu_data *rdp) 1973 { 1974 unsigned long flags; 1975 unsigned long mask; 1976 bool needacc = false; 1977 struct rcu_node *rnp; 1978 1979 WARN_ON_ONCE(rdp->cpu != smp_processor_id()); 1980 rnp = rdp->mynode; 1981 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1982 if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq || 1983 rdp->gpwrap) { 1984 1985 /* 1986 * The grace period in which this quiescent state was 1987 * recorded has ended, so don't report it upwards. 1988 * We will instead need a new quiescent state that lies 1989 * within the current grace period. 1990 */ 1991 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */ 1992 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1993 return; 1994 } 1995 mask = rdp->grpmask; 1996 rdp->core_needs_qs = false; 1997 if ((rnp->qsmask & mask) == 0) { 1998 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1999 } else { 2000 /* 2001 * This GP can't end until cpu checks in, so all of our 2002 * callbacks can be processed during the next GP. 2003 * 2004 * NOCB kthreads have their own way to deal with that... 2005 */ 2006 if (!rcu_rdp_is_offloaded(rdp)) { 2007 /* 2008 * The current GP has not yet ended, so it 2009 * should not be possible for rcu_accelerate_cbs() 2010 * to return true. So complain, but don't awaken. 2011 */ 2012 WARN_ON_ONCE(rcu_accelerate_cbs(rnp, rdp)); 2013 } else if (!rcu_segcblist_completely_offloaded(&rdp->cblist)) { 2014 /* 2015 * ...but NOCB kthreads may miss or delay callbacks acceleration 2016 * if in the middle of a (de-)offloading process. 2017 */ 2018 needacc = true; 2019 } 2020 2021 rcu_disable_urgency_upon_qs(rdp); 2022 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 2023 /* ^^^ Released rnp->lock */ 2024 2025 if (needacc) { 2026 rcu_nocb_lock_irqsave(rdp, flags); 2027 rcu_accelerate_cbs_unlocked(rnp, rdp); 2028 rcu_nocb_unlock_irqrestore(rdp, flags); 2029 } 2030 } 2031 } 2032 2033 /* 2034 * Check to see if there is a new grace period of which this CPU 2035 * is not yet aware, and if so, set up local rcu_data state for it. 2036 * Otherwise, see if this CPU has just passed through its first 2037 * quiescent state for this grace period, and record that fact if so. 2038 */ 2039 static void 2040 rcu_check_quiescent_state(struct rcu_data *rdp) 2041 { 2042 /* Check for grace-period ends and beginnings. */ 2043 note_gp_changes(rdp); 2044 2045 /* 2046 * Does this CPU still need to do its part for current grace period? 2047 * If no, return and let the other CPUs do their part as well. 2048 */ 2049 if (!rdp->core_needs_qs) 2050 return; 2051 2052 /* 2053 * Was there a quiescent state since the beginning of the grace 2054 * period? If no, then exit and wait for the next call. 2055 */ 2056 if (rdp->cpu_no_qs.b.norm) 2057 return; 2058 2059 /* 2060 * Tell RCU we are done (but rcu_report_qs_rdp() will be the 2061 * judge of that). 2062 */ 2063 rcu_report_qs_rdp(rdp); 2064 } 2065 2066 /* Return true if callback-invocation time limit exceeded. */ 2067 static bool rcu_do_batch_check_time(long count, long tlimit, 2068 bool jlimit_check, unsigned long jlimit) 2069 { 2070 // Invoke local_clock() only once per 32 consecutive callbacks. 2071 return unlikely(tlimit) && 2072 (!likely(count & 31) || 2073 (IS_ENABLED(CONFIG_RCU_DOUBLE_CHECK_CB_TIME) && 2074 jlimit_check && time_after(jiffies, jlimit))) && 2075 local_clock() >= tlimit; 2076 } 2077 2078 /* 2079 * Invoke any RCU callbacks that have made it to the end of their grace 2080 * period. Throttle as specified by rdp->blimit. 2081 */ 2082 static void rcu_do_batch(struct rcu_data *rdp) 2083 { 2084 long bl; 2085 long count = 0; 2086 int div; 2087 bool __maybe_unused empty; 2088 unsigned long flags; 2089 unsigned long jlimit; 2090 bool jlimit_check = false; 2091 long pending; 2092 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl); 2093 struct rcu_head *rhp; 2094 long tlimit = 0; 2095 2096 /* If no callbacks are ready, just return. */ 2097 if (!rcu_segcblist_ready_cbs(&rdp->cblist)) { 2098 trace_rcu_batch_start(rcu_state.name, 2099 rcu_segcblist_n_cbs(&rdp->cblist), 0); 2100 trace_rcu_batch_end(rcu_state.name, 0, 2101 !rcu_segcblist_empty(&rdp->cblist), 2102 need_resched(), is_idle_task(current), 2103 rcu_is_callbacks_kthread(rdp)); 2104 return; 2105 } 2106 2107 /* 2108 * Extract the list of ready callbacks, disabling IRQs to prevent 2109 * races with call_rcu() from interrupt handlers. Leave the 2110 * callback counts, as rcu_barrier() needs to be conservative. 2111 */ 2112 rcu_nocb_lock_irqsave(rdp, flags); 2113 WARN_ON_ONCE(cpu_is_offline(smp_processor_id())); 2114 pending = rcu_segcblist_get_seglen(&rdp->cblist, RCU_DONE_TAIL); 2115 div = READ_ONCE(rcu_divisor); 2116 div = div < 0 ? 7 : div > sizeof(long) * 8 - 2 ? sizeof(long) * 8 - 2 : div; 2117 bl = max(rdp->blimit, pending >> div); 2118 if ((in_serving_softirq() || rdp->rcu_cpu_kthread_status == RCU_KTHREAD_RUNNING) && 2119 (IS_ENABLED(CONFIG_RCU_DOUBLE_CHECK_CB_TIME) || unlikely(bl > 100))) { 2120 const long npj = NSEC_PER_SEC / HZ; 2121 long rrn = READ_ONCE(rcu_resched_ns); 2122 2123 rrn = rrn < NSEC_PER_MSEC ? NSEC_PER_MSEC : rrn > NSEC_PER_SEC ? NSEC_PER_SEC : rrn; 2124 tlimit = local_clock() + rrn; 2125 jlimit = jiffies + (rrn + npj + 1) / npj; 2126 jlimit_check = true; 2127 } 2128 trace_rcu_batch_start(rcu_state.name, 2129 rcu_segcblist_n_cbs(&rdp->cblist), bl); 2130 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl); 2131 if (rcu_rdp_is_offloaded(rdp)) 2132 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist); 2133 2134 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbDequeued")); 2135 rcu_nocb_unlock_irqrestore(rdp, flags); 2136 2137 /* Invoke callbacks. */ 2138 tick_dep_set_task(current, TICK_DEP_BIT_RCU); 2139 rhp = rcu_cblist_dequeue(&rcl); 2140 2141 for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) { 2142 rcu_callback_t f; 2143 2144 count++; 2145 debug_rcu_head_unqueue(rhp); 2146 2147 rcu_lock_acquire(&rcu_callback_map); 2148 trace_rcu_invoke_callback(rcu_state.name, rhp); 2149 2150 f = rhp->func; 2151 debug_rcu_head_callback(rhp); 2152 WRITE_ONCE(rhp->func, (rcu_callback_t)0L); 2153 f(rhp); 2154 2155 rcu_lock_release(&rcu_callback_map); 2156 2157 /* 2158 * Stop only if limit reached and CPU has something to do. 2159 */ 2160 if (in_serving_softirq()) { 2161 if (count >= bl && (need_resched() || !is_idle_task(current))) 2162 break; 2163 /* 2164 * Make sure we don't spend too much time here and deprive other 2165 * softirq vectors of CPU cycles. 2166 */ 2167 if (rcu_do_batch_check_time(count, tlimit, jlimit_check, jlimit)) 2168 break; 2169 } else { 2170 // In rcuc/rcuoc context, so no worries about 2171 // depriving other softirq vectors of CPU cycles. 2172 local_bh_enable(); 2173 lockdep_assert_irqs_enabled(); 2174 cond_resched_tasks_rcu_qs(); 2175 lockdep_assert_irqs_enabled(); 2176 local_bh_disable(); 2177 // But rcuc kthreads can delay quiescent-state 2178 // reporting, so check time limits for them. 2179 if (rdp->rcu_cpu_kthread_status == RCU_KTHREAD_RUNNING && 2180 rcu_do_batch_check_time(count, tlimit, jlimit_check, jlimit)) { 2181 rdp->rcu_cpu_has_work = 1; 2182 break; 2183 } 2184 } 2185 } 2186 2187 rcu_nocb_lock_irqsave(rdp, flags); 2188 rdp->n_cbs_invoked += count; 2189 trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(), 2190 is_idle_task(current), rcu_is_callbacks_kthread(rdp)); 2191 2192 /* Update counts and requeue any remaining callbacks. */ 2193 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl); 2194 rcu_segcblist_add_len(&rdp->cblist, -count); 2195 2196 /* Reinstate batch limit if we have worked down the excess. */ 2197 count = rcu_segcblist_n_cbs(&rdp->cblist); 2198 if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark) 2199 rdp->blimit = blimit; 2200 2201 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */ 2202 if (count == 0 && rdp->qlen_last_fqs_check != 0) { 2203 rdp->qlen_last_fqs_check = 0; 2204 rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs); 2205 } else if (count < rdp->qlen_last_fqs_check - qhimark) 2206 rdp->qlen_last_fqs_check = count; 2207 2208 /* 2209 * The following usually indicates a double call_rcu(). To track 2210 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y. 2211 */ 2212 empty = rcu_segcblist_empty(&rdp->cblist); 2213 WARN_ON_ONCE(count == 0 && !empty); 2214 WARN_ON_ONCE(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) && 2215 count != 0 && empty); 2216 WARN_ON_ONCE(count == 0 && rcu_segcblist_n_segment_cbs(&rdp->cblist) != 0); 2217 WARN_ON_ONCE(!empty && rcu_segcblist_n_segment_cbs(&rdp->cblist) == 0); 2218 2219 rcu_nocb_unlock_irqrestore(rdp, flags); 2220 2221 tick_dep_clear_task(current, TICK_DEP_BIT_RCU); 2222 } 2223 2224 /* 2225 * This function is invoked from each scheduling-clock interrupt, 2226 * and checks to see if this CPU is in a non-context-switch quiescent 2227 * state, for example, user mode or idle loop. It also schedules RCU 2228 * core processing. If the current grace period has gone on too long, 2229 * it will ask the scheduler to manufacture a context switch for the sole 2230 * purpose of providing the needed quiescent state. 2231 */ 2232 void rcu_sched_clock_irq(int user) 2233 { 2234 unsigned long j; 2235 2236 if (IS_ENABLED(CONFIG_PROVE_RCU)) { 2237 j = jiffies; 2238 WARN_ON_ONCE(time_before(j, __this_cpu_read(rcu_data.last_sched_clock))); 2239 __this_cpu_write(rcu_data.last_sched_clock, j); 2240 } 2241 trace_rcu_utilization(TPS("Start scheduler-tick")); 2242 lockdep_assert_irqs_disabled(); 2243 raw_cpu_inc(rcu_data.ticks_this_gp); 2244 /* The load-acquire pairs with the store-release setting to true. */ 2245 if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) { 2246 /* Idle and userspace execution already are quiescent states. */ 2247 if (!rcu_is_cpu_rrupt_from_idle() && !user) { 2248 set_tsk_need_resched(current); 2249 set_preempt_need_resched(); 2250 } 2251 __this_cpu_write(rcu_data.rcu_urgent_qs, false); 2252 } 2253 rcu_flavor_sched_clock_irq(user); 2254 if (rcu_pending(user)) 2255 invoke_rcu_core(); 2256 if (user || rcu_is_cpu_rrupt_from_idle()) 2257 rcu_note_voluntary_context_switch(current); 2258 lockdep_assert_irqs_disabled(); 2259 2260 trace_rcu_utilization(TPS("End scheduler-tick")); 2261 } 2262 2263 /* 2264 * Scan the leaf rcu_node structures. For each structure on which all 2265 * CPUs have reported a quiescent state and on which there are tasks 2266 * blocking the current grace period, initiate RCU priority boosting. 2267 * Otherwise, invoke the specified function to check dyntick state for 2268 * each CPU that has not yet reported a quiescent state. 2269 */ 2270 static void force_qs_rnp(int (*f)(struct rcu_data *rdp)) 2271 { 2272 int cpu; 2273 unsigned long flags; 2274 unsigned long mask; 2275 struct rcu_data *rdp; 2276 struct rcu_node *rnp; 2277 2278 rcu_state.cbovld = rcu_state.cbovldnext; 2279 rcu_state.cbovldnext = false; 2280 rcu_for_each_leaf_node(rnp) { 2281 cond_resched_tasks_rcu_qs(); 2282 mask = 0; 2283 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2284 rcu_state.cbovldnext |= !!rnp->cbovldmask; 2285 if (rnp->qsmask == 0) { 2286 if (rcu_preempt_blocked_readers_cgp(rnp)) { 2287 /* 2288 * No point in scanning bits because they 2289 * are all zero. But we might need to 2290 * priority-boost blocked readers. 2291 */ 2292 rcu_initiate_boost(rnp, flags); 2293 /* rcu_initiate_boost() releases rnp->lock */ 2294 continue; 2295 } 2296 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2297 continue; 2298 } 2299 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->qsmask) { 2300 rdp = per_cpu_ptr(&rcu_data, cpu); 2301 if (f(rdp)) { 2302 mask |= rdp->grpmask; 2303 rcu_disable_urgency_upon_qs(rdp); 2304 } 2305 } 2306 if (mask != 0) { 2307 /* Idle/offline CPUs, report (releases rnp->lock). */ 2308 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 2309 } else { 2310 /* Nothing to do here, so just drop the lock. */ 2311 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2312 } 2313 } 2314 } 2315 2316 /* 2317 * Force quiescent states on reluctant CPUs, and also detect which 2318 * CPUs are in dyntick-idle mode. 2319 */ 2320 void rcu_force_quiescent_state(void) 2321 { 2322 unsigned long flags; 2323 bool ret; 2324 struct rcu_node *rnp; 2325 struct rcu_node *rnp_old = NULL; 2326 2327 /* Funnel through hierarchy to reduce memory contention. */ 2328 rnp = raw_cpu_read(rcu_data.mynode); 2329 for (; rnp != NULL; rnp = rnp->parent) { 2330 ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) || 2331 !raw_spin_trylock(&rnp->fqslock); 2332 if (rnp_old != NULL) 2333 raw_spin_unlock(&rnp_old->fqslock); 2334 if (ret) 2335 return; 2336 rnp_old = rnp; 2337 } 2338 /* rnp_old == rcu_get_root(), rnp == NULL. */ 2339 2340 /* Reached the root of the rcu_node tree, acquire lock. */ 2341 raw_spin_lock_irqsave_rcu_node(rnp_old, flags); 2342 raw_spin_unlock(&rnp_old->fqslock); 2343 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) { 2344 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); 2345 return; /* Someone beat us to it. */ 2346 } 2347 WRITE_ONCE(rcu_state.gp_flags, 2348 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS); 2349 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); 2350 rcu_gp_kthread_wake(); 2351 } 2352 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state); 2353 2354 // Workqueue handler for an RCU reader for kernels enforcing struct RCU 2355 // grace periods. 2356 static void strict_work_handler(struct work_struct *work) 2357 { 2358 rcu_read_lock(); 2359 rcu_read_unlock(); 2360 } 2361 2362 /* Perform RCU core processing work for the current CPU. */ 2363 static __latent_entropy void rcu_core(void) 2364 { 2365 unsigned long flags; 2366 struct rcu_data *rdp = raw_cpu_ptr(&rcu_data); 2367 struct rcu_node *rnp = rdp->mynode; 2368 /* 2369 * On RT rcu_core() can be preempted when IRQs aren't disabled. 2370 * Therefore this function can race with concurrent NOCB (de-)offloading 2371 * on this CPU and the below condition must be considered volatile. 2372 * However if we race with: 2373 * 2374 * _ Offloading: In the worst case we accelerate or process callbacks 2375 * concurrently with NOCB kthreads. We are guaranteed to 2376 * call rcu_nocb_lock() if that happens. 2377 * 2378 * _ Deoffloading: In the worst case we miss callbacks acceleration or 2379 * processing. This is fine because the early stage 2380 * of deoffloading invokes rcu_core() after setting 2381 * SEGCBLIST_RCU_CORE. So we guarantee that we'll process 2382 * what could have been dismissed without the need to wait 2383 * for the next rcu_pending() check in the next jiffy. 2384 */ 2385 const bool do_batch = !rcu_segcblist_completely_offloaded(&rdp->cblist); 2386 2387 if (cpu_is_offline(smp_processor_id())) 2388 return; 2389 trace_rcu_utilization(TPS("Start RCU core")); 2390 WARN_ON_ONCE(!rdp->beenonline); 2391 2392 /* Report any deferred quiescent states if preemption enabled. */ 2393 if (IS_ENABLED(CONFIG_PREEMPT_COUNT) && (!(preempt_count() & PREEMPT_MASK))) { 2394 rcu_preempt_deferred_qs(current); 2395 } else if (rcu_preempt_need_deferred_qs(current)) { 2396 set_tsk_need_resched(current); 2397 set_preempt_need_resched(); 2398 } 2399 2400 /* Update RCU state based on any recent quiescent states. */ 2401 rcu_check_quiescent_state(rdp); 2402 2403 /* No grace period and unregistered callbacks? */ 2404 if (!rcu_gp_in_progress() && 2405 rcu_segcblist_is_enabled(&rdp->cblist) && do_batch) { 2406 rcu_nocb_lock_irqsave(rdp, flags); 2407 if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL)) 2408 rcu_accelerate_cbs_unlocked(rnp, rdp); 2409 rcu_nocb_unlock_irqrestore(rdp, flags); 2410 } 2411 2412 rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check()); 2413 2414 /* If there are callbacks ready, invoke them. */ 2415 if (do_batch && rcu_segcblist_ready_cbs(&rdp->cblist) && 2416 likely(READ_ONCE(rcu_scheduler_fully_active))) { 2417 rcu_do_batch(rdp); 2418 /* Re-invoke RCU core processing if there are callbacks remaining. */ 2419 if (rcu_segcblist_ready_cbs(&rdp->cblist)) 2420 invoke_rcu_core(); 2421 } 2422 2423 /* Do any needed deferred wakeups of rcuo kthreads. */ 2424 do_nocb_deferred_wakeup(rdp); 2425 trace_rcu_utilization(TPS("End RCU core")); 2426 2427 // If strict GPs, schedule an RCU reader in a clean environment. 2428 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) 2429 queue_work_on(rdp->cpu, rcu_gp_wq, &rdp->strict_work); 2430 } 2431 2432 static void rcu_core_si(struct softirq_action *h) 2433 { 2434 rcu_core(); 2435 } 2436 2437 static void rcu_wake_cond(struct task_struct *t, int status) 2438 { 2439 /* 2440 * If the thread is yielding, only wake it when this 2441 * is invoked from idle 2442 */ 2443 if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current))) 2444 wake_up_process(t); 2445 } 2446 2447 static void invoke_rcu_core_kthread(void) 2448 { 2449 struct task_struct *t; 2450 unsigned long flags; 2451 2452 local_irq_save(flags); 2453 __this_cpu_write(rcu_data.rcu_cpu_has_work, 1); 2454 t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task); 2455 if (t != NULL && t != current) 2456 rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status)); 2457 local_irq_restore(flags); 2458 } 2459 2460 /* 2461 * Wake up this CPU's rcuc kthread to do RCU core processing. 2462 */ 2463 static void invoke_rcu_core(void) 2464 { 2465 if (!cpu_online(smp_processor_id())) 2466 return; 2467 if (use_softirq) 2468 raise_softirq(RCU_SOFTIRQ); 2469 else 2470 invoke_rcu_core_kthread(); 2471 } 2472 2473 static void rcu_cpu_kthread_park(unsigned int cpu) 2474 { 2475 per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU; 2476 } 2477 2478 static int rcu_cpu_kthread_should_run(unsigned int cpu) 2479 { 2480 return __this_cpu_read(rcu_data.rcu_cpu_has_work); 2481 } 2482 2483 /* 2484 * Per-CPU kernel thread that invokes RCU callbacks. This replaces 2485 * the RCU softirq used in configurations of RCU that do not support RCU 2486 * priority boosting. 2487 */ 2488 static void rcu_cpu_kthread(unsigned int cpu) 2489 { 2490 unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status); 2491 char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work); 2492 unsigned long *j = this_cpu_ptr(&rcu_data.rcuc_activity); 2493 int spincnt; 2494 2495 trace_rcu_utilization(TPS("Start CPU kthread@rcu_run")); 2496 for (spincnt = 0; spincnt < 10; spincnt++) { 2497 WRITE_ONCE(*j, jiffies); 2498 local_bh_disable(); 2499 *statusp = RCU_KTHREAD_RUNNING; 2500 local_irq_disable(); 2501 work = *workp; 2502 WRITE_ONCE(*workp, 0); 2503 local_irq_enable(); 2504 if (work) 2505 rcu_core(); 2506 local_bh_enable(); 2507 if (!READ_ONCE(*workp)) { 2508 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait")); 2509 *statusp = RCU_KTHREAD_WAITING; 2510 return; 2511 } 2512 } 2513 *statusp = RCU_KTHREAD_YIELDING; 2514 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield")); 2515 schedule_timeout_idle(2); 2516 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield")); 2517 *statusp = RCU_KTHREAD_WAITING; 2518 WRITE_ONCE(*j, jiffies); 2519 } 2520 2521 static struct smp_hotplug_thread rcu_cpu_thread_spec = { 2522 .store = &rcu_data.rcu_cpu_kthread_task, 2523 .thread_should_run = rcu_cpu_kthread_should_run, 2524 .thread_fn = rcu_cpu_kthread, 2525 .thread_comm = "rcuc/%u", 2526 .setup = rcu_cpu_kthread_setup, 2527 .park = rcu_cpu_kthread_park, 2528 }; 2529 2530 /* 2531 * Spawn per-CPU RCU core processing kthreads. 2532 */ 2533 static int __init rcu_spawn_core_kthreads(void) 2534 { 2535 int cpu; 2536 2537 for_each_possible_cpu(cpu) 2538 per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0; 2539 if (use_softirq) 2540 return 0; 2541 WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec), 2542 "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__); 2543 return 0; 2544 } 2545 2546 /* 2547 * Handle any core-RCU processing required by a call_rcu() invocation. 2548 */ 2549 static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head, 2550 unsigned long flags) 2551 { 2552 /* 2553 * If called from an extended quiescent state, invoke the RCU 2554 * core in order to force a re-evaluation of RCU's idleness. 2555 */ 2556 if (!rcu_is_watching()) 2557 invoke_rcu_core(); 2558 2559 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */ 2560 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id())) 2561 return; 2562 2563 /* 2564 * Force the grace period if too many callbacks or too long waiting. 2565 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state() 2566 * if some other CPU has recently done so. Also, don't bother 2567 * invoking rcu_force_quiescent_state() if the newly enqueued callback 2568 * is the only one waiting for a grace period to complete. 2569 */ 2570 if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) > 2571 rdp->qlen_last_fqs_check + qhimark)) { 2572 2573 /* Are we ignoring a completed grace period? */ 2574 note_gp_changes(rdp); 2575 2576 /* Start a new grace period if one not already started. */ 2577 if (!rcu_gp_in_progress()) { 2578 rcu_accelerate_cbs_unlocked(rdp->mynode, rdp); 2579 } else { 2580 /* Give the grace period a kick. */ 2581 rdp->blimit = DEFAULT_MAX_RCU_BLIMIT; 2582 if (READ_ONCE(rcu_state.n_force_qs) == rdp->n_force_qs_snap && 2583 rcu_segcblist_first_pend_cb(&rdp->cblist) != head) 2584 rcu_force_quiescent_state(); 2585 rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs); 2586 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist); 2587 } 2588 } 2589 } 2590 2591 /* 2592 * RCU callback function to leak a callback. 2593 */ 2594 static void rcu_leak_callback(struct rcu_head *rhp) 2595 { 2596 } 2597 2598 /* 2599 * Check and if necessary update the leaf rcu_node structure's 2600 * ->cbovldmask bit corresponding to the current CPU based on that CPU's 2601 * number of queued RCU callbacks. The caller must hold the leaf rcu_node 2602 * structure's ->lock. 2603 */ 2604 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp) 2605 { 2606 raw_lockdep_assert_held_rcu_node(rnp); 2607 if (qovld_calc <= 0) 2608 return; // Early boot and wildcard value set. 2609 if (rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) 2610 WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask | rdp->grpmask); 2611 else 2612 WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask & ~rdp->grpmask); 2613 } 2614 2615 /* 2616 * Check and if necessary update the leaf rcu_node structure's 2617 * ->cbovldmask bit corresponding to the current CPU based on that CPU's 2618 * number of queued RCU callbacks. No locks need be held, but the 2619 * caller must have disabled interrupts. 2620 * 2621 * Note that this function ignores the possibility that there are a lot 2622 * of callbacks all of which have already seen the end of their respective 2623 * grace periods. This omission is due to the need for no-CBs CPUs to 2624 * be holding ->nocb_lock to do this check, which is too heavy for a 2625 * common-case operation. 2626 */ 2627 static void check_cb_ovld(struct rcu_data *rdp) 2628 { 2629 struct rcu_node *const rnp = rdp->mynode; 2630 2631 if (qovld_calc <= 0 || 2632 ((rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) == 2633 !!(READ_ONCE(rnp->cbovldmask) & rdp->grpmask))) 2634 return; // Early boot wildcard value or already set correctly. 2635 raw_spin_lock_rcu_node(rnp); 2636 check_cb_ovld_locked(rdp, rnp); 2637 raw_spin_unlock_rcu_node(rnp); 2638 } 2639 2640 static void 2641 __call_rcu_common(struct rcu_head *head, rcu_callback_t func, bool lazy_in) 2642 { 2643 static atomic_t doublefrees; 2644 unsigned long flags; 2645 bool lazy; 2646 struct rcu_data *rdp; 2647 bool was_alldone; 2648 2649 /* Misaligned rcu_head! */ 2650 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1)); 2651 2652 if (debug_rcu_head_queue(head)) { 2653 /* 2654 * Probable double call_rcu(), so leak the callback. 2655 * Use rcu:rcu_callback trace event to find the previous 2656 * time callback was passed to call_rcu(). 2657 */ 2658 if (atomic_inc_return(&doublefrees) < 4) { 2659 pr_err("%s(): Double-freed CB %p->%pS()!!! ", __func__, head, head->func); 2660 mem_dump_obj(head); 2661 } 2662 WRITE_ONCE(head->func, rcu_leak_callback); 2663 return; 2664 } 2665 head->func = func; 2666 head->next = NULL; 2667 kasan_record_aux_stack_noalloc(head); 2668 local_irq_save(flags); 2669 rdp = this_cpu_ptr(&rcu_data); 2670 lazy = lazy_in && !rcu_async_should_hurry(); 2671 2672 /* Add the callback to our list. */ 2673 if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist))) { 2674 // This can trigger due to call_rcu() from offline CPU: 2675 WARN_ON_ONCE(rcu_scheduler_active != RCU_SCHEDULER_INACTIVE); 2676 WARN_ON_ONCE(!rcu_is_watching()); 2677 // Very early boot, before rcu_init(). Initialize if needed 2678 // and then drop through to queue the callback. 2679 if (rcu_segcblist_empty(&rdp->cblist)) 2680 rcu_segcblist_init(&rdp->cblist); 2681 } 2682 2683 check_cb_ovld(rdp); 2684 if (rcu_nocb_try_bypass(rdp, head, &was_alldone, flags, lazy)) 2685 return; // Enqueued onto ->nocb_bypass, so just leave. 2686 // If no-CBs CPU gets here, rcu_nocb_try_bypass() acquired ->nocb_lock. 2687 rcu_segcblist_enqueue(&rdp->cblist, head); 2688 if (__is_kvfree_rcu_offset((unsigned long)func)) 2689 trace_rcu_kvfree_callback(rcu_state.name, head, 2690 (unsigned long)func, 2691 rcu_segcblist_n_cbs(&rdp->cblist)); 2692 else 2693 trace_rcu_callback(rcu_state.name, head, 2694 rcu_segcblist_n_cbs(&rdp->cblist)); 2695 2696 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCBQueued")); 2697 2698 /* Go handle any RCU core processing required. */ 2699 if (unlikely(rcu_rdp_is_offloaded(rdp))) { 2700 __call_rcu_nocb_wake(rdp, was_alldone, flags); /* unlocks */ 2701 } else { 2702 __call_rcu_core(rdp, head, flags); 2703 local_irq_restore(flags); 2704 } 2705 } 2706 2707 #ifdef CONFIG_RCU_LAZY 2708 /** 2709 * call_rcu_hurry() - Queue RCU callback for invocation after grace period, and 2710 * flush all lazy callbacks (including the new one) to the main ->cblist while 2711 * doing so. 2712 * 2713 * @head: structure to be used for queueing the RCU updates. 2714 * @func: actual callback function to be invoked after the grace period 2715 * 2716 * The callback function will be invoked some time after a full grace 2717 * period elapses, in other words after all pre-existing RCU read-side 2718 * critical sections have completed. 2719 * 2720 * Use this API instead of call_rcu() if you don't want the callback to be 2721 * invoked after very long periods of time, which can happen on systems without 2722 * memory pressure and on systems which are lightly loaded or mostly idle. 2723 * This function will cause callbacks to be invoked sooner than later at the 2724 * expense of extra power. Other than that, this function is identical to, and 2725 * reuses call_rcu()'s logic. Refer to call_rcu() for more details about memory 2726 * ordering and other functionality. 2727 */ 2728 void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func) 2729 { 2730 __call_rcu_common(head, func, false); 2731 } 2732 EXPORT_SYMBOL_GPL(call_rcu_hurry); 2733 #endif 2734 2735 /** 2736 * call_rcu() - Queue an RCU callback for invocation after a grace period. 2737 * By default the callbacks are 'lazy' and are kept hidden from the main 2738 * ->cblist to prevent starting of grace periods too soon. 2739 * If you desire grace periods to start very soon, use call_rcu_hurry(). 2740 * 2741 * @head: structure to be used for queueing the RCU updates. 2742 * @func: actual callback function to be invoked after the grace period 2743 * 2744 * The callback function will be invoked some time after a full grace 2745 * period elapses, in other words after all pre-existing RCU read-side 2746 * critical sections have completed. However, the callback function 2747 * might well execute concurrently with RCU read-side critical sections 2748 * that started after call_rcu() was invoked. 2749 * 2750 * RCU read-side critical sections are delimited by rcu_read_lock() 2751 * and rcu_read_unlock(), and may be nested. In addition, but only in 2752 * v5.0 and later, regions of code across which interrupts, preemption, 2753 * or softirqs have been disabled also serve as RCU read-side critical 2754 * sections. This includes hardware interrupt handlers, softirq handlers, 2755 * and NMI handlers. 2756 * 2757 * Note that all CPUs must agree that the grace period extended beyond 2758 * all pre-existing RCU read-side critical section. On systems with more 2759 * than one CPU, this means that when "func()" is invoked, each CPU is 2760 * guaranteed to have executed a full memory barrier since the end of its 2761 * last RCU read-side critical section whose beginning preceded the call 2762 * to call_rcu(). It also means that each CPU executing an RCU read-side 2763 * critical section that continues beyond the start of "func()" must have 2764 * executed a memory barrier after the call_rcu() but before the beginning 2765 * of that RCU read-side critical section. Note that these guarantees 2766 * include CPUs that are offline, idle, or executing in user mode, as 2767 * well as CPUs that are executing in the kernel. 2768 * 2769 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the 2770 * resulting RCU callback function "func()", then both CPU A and CPU B are 2771 * guaranteed to execute a full memory barrier during the time interval 2772 * between the call to call_rcu() and the invocation of "func()" -- even 2773 * if CPU A and CPU B are the same CPU (but again only if the system has 2774 * more than one CPU). 2775 * 2776 * Implementation of these memory-ordering guarantees is described here: 2777 * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst. 2778 */ 2779 void call_rcu(struct rcu_head *head, rcu_callback_t func) 2780 { 2781 __call_rcu_common(head, func, IS_ENABLED(CONFIG_RCU_LAZY)); 2782 } 2783 EXPORT_SYMBOL_GPL(call_rcu); 2784 2785 /* Maximum number of jiffies to wait before draining a batch. */ 2786 #define KFREE_DRAIN_JIFFIES (5 * HZ) 2787 #define KFREE_N_BATCHES 2 2788 #define FREE_N_CHANNELS 2 2789 2790 /** 2791 * struct kvfree_rcu_bulk_data - single block to store kvfree_rcu() pointers 2792 * @list: List node. All blocks are linked between each other 2793 * @gp_snap: Snapshot of RCU state for objects placed to this bulk 2794 * @nr_records: Number of active pointers in the array 2795 * @records: Array of the kvfree_rcu() pointers 2796 */ 2797 struct kvfree_rcu_bulk_data { 2798 struct list_head list; 2799 struct rcu_gp_oldstate gp_snap; 2800 unsigned long nr_records; 2801 void *records[]; 2802 }; 2803 2804 /* 2805 * This macro defines how many entries the "records" array 2806 * will contain. It is based on the fact that the size of 2807 * kvfree_rcu_bulk_data structure becomes exactly one page. 2808 */ 2809 #define KVFREE_BULK_MAX_ENTR \ 2810 ((PAGE_SIZE - sizeof(struct kvfree_rcu_bulk_data)) / sizeof(void *)) 2811 2812 /** 2813 * struct kfree_rcu_cpu_work - single batch of kfree_rcu() requests 2814 * @rcu_work: Let queue_rcu_work() invoke workqueue handler after grace period 2815 * @head_free: List of kfree_rcu() objects waiting for a grace period 2816 * @head_free_gp_snap: Grace-period snapshot to check for attempted premature frees. 2817 * @bulk_head_free: Bulk-List of kvfree_rcu() objects waiting for a grace period 2818 * @krcp: Pointer to @kfree_rcu_cpu structure 2819 */ 2820 2821 struct kfree_rcu_cpu_work { 2822 struct rcu_work rcu_work; 2823 struct rcu_head *head_free; 2824 struct rcu_gp_oldstate head_free_gp_snap; 2825 struct list_head bulk_head_free[FREE_N_CHANNELS]; 2826 struct kfree_rcu_cpu *krcp; 2827 }; 2828 2829 /** 2830 * struct kfree_rcu_cpu - batch up kfree_rcu() requests for RCU grace period 2831 * @head: List of kfree_rcu() objects not yet waiting for a grace period 2832 * @head_gp_snap: Snapshot of RCU state for objects placed to "@head" 2833 * @bulk_head: Bulk-List of kvfree_rcu() objects not yet waiting for a grace period 2834 * @krw_arr: Array of batches of kfree_rcu() objects waiting for a grace period 2835 * @lock: Synchronize access to this structure 2836 * @monitor_work: Promote @head to @head_free after KFREE_DRAIN_JIFFIES 2837 * @initialized: The @rcu_work fields have been initialized 2838 * @head_count: Number of objects in rcu_head singular list 2839 * @bulk_count: Number of objects in bulk-list 2840 * @bkvcache: 2841 * A simple cache list that contains objects for reuse purpose. 2842 * In order to save some per-cpu space the list is singular. 2843 * Even though it is lockless an access has to be protected by the 2844 * per-cpu lock. 2845 * @page_cache_work: A work to refill the cache when it is empty 2846 * @backoff_page_cache_fill: Delay cache refills 2847 * @work_in_progress: Indicates that page_cache_work is running 2848 * @hrtimer: A hrtimer for scheduling a page_cache_work 2849 * @nr_bkv_objs: number of allocated objects at @bkvcache. 2850 * 2851 * This is a per-CPU structure. The reason that it is not included in 2852 * the rcu_data structure is to permit this code to be extracted from 2853 * the RCU files. Such extraction could allow further optimization of 2854 * the interactions with the slab allocators. 2855 */ 2856 struct kfree_rcu_cpu { 2857 // Objects queued on a linked list 2858 // through their rcu_head structures. 2859 struct rcu_head *head; 2860 unsigned long head_gp_snap; 2861 atomic_t head_count; 2862 2863 // Objects queued on a bulk-list. 2864 struct list_head bulk_head[FREE_N_CHANNELS]; 2865 atomic_t bulk_count[FREE_N_CHANNELS]; 2866 2867 struct kfree_rcu_cpu_work krw_arr[KFREE_N_BATCHES]; 2868 raw_spinlock_t lock; 2869 struct delayed_work monitor_work; 2870 bool initialized; 2871 2872 struct delayed_work page_cache_work; 2873 atomic_t backoff_page_cache_fill; 2874 atomic_t work_in_progress; 2875 struct hrtimer hrtimer; 2876 2877 struct llist_head bkvcache; 2878 int nr_bkv_objs; 2879 }; 2880 2881 static DEFINE_PER_CPU(struct kfree_rcu_cpu, krc) = { 2882 .lock = __RAW_SPIN_LOCK_UNLOCKED(krc.lock), 2883 }; 2884 2885 static __always_inline void 2886 debug_rcu_bhead_unqueue(struct kvfree_rcu_bulk_data *bhead) 2887 { 2888 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD 2889 int i; 2890 2891 for (i = 0; i < bhead->nr_records; i++) 2892 debug_rcu_head_unqueue((struct rcu_head *)(bhead->records[i])); 2893 #endif 2894 } 2895 2896 static inline struct kfree_rcu_cpu * 2897 krc_this_cpu_lock(unsigned long *flags) 2898 { 2899 struct kfree_rcu_cpu *krcp; 2900 2901 local_irq_save(*flags); // For safely calling this_cpu_ptr(). 2902 krcp = this_cpu_ptr(&krc); 2903 raw_spin_lock(&krcp->lock); 2904 2905 return krcp; 2906 } 2907 2908 static inline void 2909 krc_this_cpu_unlock(struct kfree_rcu_cpu *krcp, unsigned long flags) 2910 { 2911 raw_spin_unlock_irqrestore(&krcp->lock, flags); 2912 } 2913 2914 static inline struct kvfree_rcu_bulk_data * 2915 get_cached_bnode(struct kfree_rcu_cpu *krcp) 2916 { 2917 if (!krcp->nr_bkv_objs) 2918 return NULL; 2919 2920 WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs - 1); 2921 return (struct kvfree_rcu_bulk_data *) 2922 llist_del_first(&krcp->bkvcache); 2923 } 2924 2925 static inline bool 2926 put_cached_bnode(struct kfree_rcu_cpu *krcp, 2927 struct kvfree_rcu_bulk_data *bnode) 2928 { 2929 // Check the limit. 2930 if (krcp->nr_bkv_objs >= rcu_min_cached_objs) 2931 return false; 2932 2933 llist_add((struct llist_node *) bnode, &krcp->bkvcache); 2934 WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs + 1); 2935 return true; 2936 } 2937 2938 static int 2939 drain_page_cache(struct kfree_rcu_cpu *krcp) 2940 { 2941 unsigned long flags; 2942 struct llist_node *page_list, *pos, *n; 2943 int freed = 0; 2944 2945 if (!rcu_min_cached_objs) 2946 return 0; 2947 2948 raw_spin_lock_irqsave(&krcp->lock, flags); 2949 page_list = llist_del_all(&krcp->bkvcache); 2950 WRITE_ONCE(krcp->nr_bkv_objs, 0); 2951 raw_spin_unlock_irqrestore(&krcp->lock, flags); 2952 2953 llist_for_each_safe(pos, n, page_list) { 2954 free_page((unsigned long)pos); 2955 freed++; 2956 } 2957 2958 return freed; 2959 } 2960 2961 static void 2962 kvfree_rcu_bulk(struct kfree_rcu_cpu *krcp, 2963 struct kvfree_rcu_bulk_data *bnode, int idx) 2964 { 2965 unsigned long flags; 2966 int i; 2967 2968 if (!WARN_ON_ONCE(!poll_state_synchronize_rcu_full(&bnode->gp_snap))) { 2969 debug_rcu_bhead_unqueue(bnode); 2970 rcu_lock_acquire(&rcu_callback_map); 2971 if (idx == 0) { // kmalloc() / kfree(). 2972 trace_rcu_invoke_kfree_bulk_callback( 2973 rcu_state.name, bnode->nr_records, 2974 bnode->records); 2975 2976 kfree_bulk(bnode->nr_records, bnode->records); 2977 } else { // vmalloc() / vfree(). 2978 for (i = 0; i < bnode->nr_records; i++) { 2979 trace_rcu_invoke_kvfree_callback( 2980 rcu_state.name, bnode->records[i], 0); 2981 2982 vfree(bnode->records[i]); 2983 } 2984 } 2985 rcu_lock_release(&rcu_callback_map); 2986 } 2987 2988 raw_spin_lock_irqsave(&krcp->lock, flags); 2989 if (put_cached_bnode(krcp, bnode)) 2990 bnode = NULL; 2991 raw_spin_unlock_irqrestore(&krcp->lock, flags); 2992 2993 if (bnode) 2994 free_page((unsigned long) bnode); 2995 2996 cond_resched_tasks_rcu_qs(); 2997 } 2998 2999 static void 3000 kvfree_rcu_list(struct rcu_head *head) 3001 { 3002 struct rcu_head *next; 3003 3004 for (; head; head = next) { 3005 void *ptr = (void *) head->func; 3006 unsigned long offset = (void *) head - ptr; 3007 3008 next = head->next; 3009 debug_rcu_head_unqueue((struct rcu_head *)ptr); 3010 rcu_lock_acquire(&rcu_callback_map); 3011 trace_rcu_invoke_kvfree_callback(rcu_state.name, head, offset); 3012 3013 if (!WARN_ON_ONCE(!__is_kvfree_rcu_offset(offset))) 3014 kvfree(ptr); 3015 3016 rcu_lock_release(&rcu_callback_map); 3017 cond_resched_tasks_rcu_qs(); 3018 } 3019 } 3020 3021 /* 3022 * This function is invoked in workqueue context after a grace period. 3023 * It frees all the objects queued on ->bulk_head_free or ->head_free. 3024 */ 3025 static void kfree_rcu_work(struct work_struct *work) 3026 { 3027 unsigned long flags; 3028 struct kvfree_rcu_bulk_data *bnode, *n; 3029 struct list_head bulk_head[FREE_N_CHANNELS]; 3030 struct rcu_head *head; 3031 struct kfree_rcu_cpu *krcp; 3032 struct kfree_rcu_cpu_work *krwp; 3033 struct rcu_gp_oldstate head_gp_snap; 3034 int i; 3035 3036 krwp = container_of(to_rcu_work(work), 3037 struct kfree_rcu_cpu_work, rcu_work); 3038 krcp = krwp->krcp; 3039 3040 raw_spin_lock_irqsave(&krcp->lock, flags); 3041 // Channels 1 and 2. 3042 for (i = 0; i < FREE_N_CHANNELS; i++) 3043 list_replace_init(&krwp->bulk_head_free[i], &bulk_head[i]); 3044 3045 // Channel 3. 3046 head = krwp->head_free; 3047 krwp->head_free = NULL; 3048 head_gp_snap = krwp->head_free_gp_snap; 3049 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3050 3051 // Handle the first two channels. 3052 for (i = 0; i < FREE_N_CHANNELS; i++) { 3053 // Start from the tail page, so a GP is likely passed for it. 3054 list_for_each_entry_safe(bnode, n, &bulk_head[i], list) 3055 kvfree_rcu_bulk(krcp, bnode, i); 3056 } 3057 3058 /* 3059 * This is used when the "bulk" path can not be used for the 3060 * double-argument of kvfree_rcu(). This happens when the 3061 * page-cache is empty, which means that objects are instead 3062 * queued on a linked list through their rcu_head structures. 3063 * This list is named "Channel 3". 3064 */ 3065 if (head && !WARN_ON_ONCE(!poll_state_synchronize_rcu_full(&head_gp_snap))) 3066 kvfree_rcu_list(head); 3067 } 3068 3069 static bool 3070 need_offload_krc(struct kfree_rcu_cpu *krcp) 3071 { 3072 int i; 3073 3074 for (i = 0; i < FREE_N_CHANNELS; i++) 3075 if (!list_empty(&krcp->bulk_head[i])) 3076 return true; 3077 3078 return !!READ_ONCE(krcp->head); 3079 } 3080 3081 static bool 3082 need_wait_for_krwp_work(struct kfree_rcu_cpu_work *krwp) 3083 { 3084 int i; 3085 3086 for (i = 0; i < FREE_N_CHANNELS; i++) 3087 if (!list_empty(&krwp->bulk_head_free[i])) 3088 return true; 3089 3090 return !!krwp->head_free; 3091 } 3092 3093 static int krc_count(struct kfree_rcu_cpu *krcp) 3094 { 3095 int sum = atomic_read(&krcp->head_count); 3096 int i; 3097 3098 for (i = 0; i < FREE_N_CHANNELS; i++) 3099 sum += atomic_read(&krcp->bulk_count[i]); 3100 3101 return sum; 3102 } 3103 3104 static void 3105 schedule_delayed_monitor_work(struct kfree_rcu_cpu *krcp) 3106 { 3107 long delay, delay_left; 3108 3109 delay = krc_count(krcp) >= KVFREE_BULK_MAX_ENTR ? 1:KFREE_DRAIN_JIFFIES; 3110 if (delayed_work_pending(&krcp->monitor_work)) { 3111 delay_left = krcp->monitor_work.timer.expires - jiffies; 3112 if (delay < delay_left) 3113 mod_delayed_work(system_wq, &krcp->monitor_work, delay); 3114 return; 3115 } 3116 queue_delayed_work(system_wq, &krcp->monitor_work, delay); 3117 } 3118 3119 static void 3120 kvfree_rcu_drain_ready(struct kfree_rcu_cpu *krcp) 3121 { 3122 struct list_head bulk_ready[FREE_N_CHANNELS]; 3123 struct kvfree_rcu_bulk_data *bnode, *n; 3124 struct rcu_head *head_ready = NULL; 3125 unsigned long flags; 3126 int i; 3127 3128 raw_spin_lock_irqsave(&krcp->lock, flags); 3129 for (i = 0; i < FREE_N_CHANNELS; i++) { 3130 INIT_LIST_HEAD(&bulk_ready[i]); 3131 3132 list_for_each_entry_safe_reverse(bnode, n, &krcp->bulk_head[i], list) { 3133 if (!poll_state_synchronize_rcu_full(&bnode->gp_snap)) 3134 break; 3135 3136 atomic_sub(bnode->nr_records, &krcp->bulk_count[i]); 3137 list_move(&bnode->list, &bulk_ready[i]); 3138 } 3139 } 3140 3141 if (krcp->head && poll_state_synchronize_rcu(krcp->head_gp_snap)) { 3142 head_ready = krcp->head; 3143 atomic_set(&krcp->head_count, 0); 3144 WRITE_ONCE(krcp->head, NULL); 3145 } 3146 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3147 3148 for (i = 0; i < FREE_N_CHANNELS; i++) { 3149 list_for_each_entry_safe(bnode, n, &bulk_ready[i], list) 3150 kvfree_rcu_bulk(krcp, bnode, i); 3151 } 3152 3153 if (head_ready) 3154 kvfree_rcu_list(head_ready); 3155 } 3156 3157 /* 3158 * This function is invoked after the KFREE_DRAIN_JIFFIES timeout. 3159 */ 3160 static void kfree_rcu_monitor(struct work_struct *work) 3161 { 3162 struct kfree_rcu_cpu *krcp = container_of(work, 3163 struct kfree_rcu_cpu, monitor_work.work); 3164 unsigned long flags; 3165 int i, j; 3166 3167 // Drain ready for reclaim. 3168 kvfree_rcu_drain_ready(krcp); 3169 3170 raw_spin_lock_irqsave(&krcp->lock, flags); 3171 3172 // Attempt to start a new batch. 3173 for (i = 0; i < KFREE_N_BATCHES; i++) { 3174 struct kfree_rcu_cpu_work *krwp = &(krcp->krw_arr[i]); 3175 3176 // Try to detach bulk_head or head and attach it, only when 3177 // all channels are free. Any channel is not free means at krwp 3178 // there is on-going rcu work to handle krwp's free business. 3179 if (need_wait_for_krwp_work(krwp)) 3180 continue; 3181 3182 // kvfree_rcu_drain_ready() might handle this krcp, if so give up. 3183 if (need_offload_krc(krcp)) { 3184 // Channel 1 corresponds to the SLAB-pointer bulk path. 3185 // Channel 2 corresponds to vmalloc-pointer bulk path. 3186 for (j = 0; j < FREE_N_CHANNELS; j++) { 3187 if (list_empty(&krwp->bulk_head_free[j])) { 3188 atomic_set(&krcp->bulk_count[j], 0); 3189 list_replace_init(&krcp->bulk_head[j], 3190 &krwp->bulk_head_free[j]); 3191 } 3192 } 3193 3194 // Channel 3 corresponds to both SLAB and vmalloc 3195 // objects queued on the linked list. 3196 if (!krwp->head_free) { 3197 krwp->head_free = krcp->head; 3198 get_state_synchronize_rcu_full(&krwp->head_free_gp_snap); 3199 atomic_set(&krcp->head_count, 0); 3200 WRITE_ONCE(krcp->head, NULL); 3201 } 3202 3203 // One work is per one batch, so there are three 3204 // "free channels", the batch can handle. It can 3205 // be that the work is in the pending state when 3206 // channels have been detached following by each 3207 // other. 3208 queue_rcu_work(system_wq, &krwp->rcu_work); 3209 } 3210 } 3211 3212 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3213 3214 // If there is nothing to detach, it means that our job is 3215 // successfully done here. In case of having at least one 3216 // of the channels that is still busy we should rearm the 3217 // work to repeat an attempt. Because previous batches are 3218 // still in progress. 3219 if (need_offload_krc(krcp)) 3220 schedule_delayed_monitor_work(krcp); 3221 } 3222 3223 static enum hrtimer_restart 3224 schedule_page_work_fn(struct hrtimer *t) 3225 { 3226 struct kfree_rcu_cpu *krcp = 3227 container_of(t, struct kfree_rcu_cpu, hrtimer); 3228 3229 queue_delayed_work(system_highpri_wq, &krcp->page_cache_work, 0); 3230 return HRTIMER_NORESTART; 3231 } 3232 3233 static void fill_page_cache_func(struct work_struct *work) 3234 { 3235 struct kvfree_rcu_bulk_data *bnode; 3236 struct kfree_rcu_cpu *krcp = 3237 container_of(work, struct kfree_rcu_cpu, 3238 page_cache_work.work); 3239 unsigned long flags; 3240 int nr_pages; 3241 bool pushed; 3242 int i; 3243 3244 nr_pages = atomic_read(&krcp->backoff_page_cache_fill) ? 3245 1 : rcu_min_cached_objs; 3246 3247 for (i = READ_ONCE(krcp->nr_bkv_objs); i < nr_pages; i++) { 3248 bnode = (struct kvfree_rcu_bulk_data *) 3249 __get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); 3250 3251 if (!bnode) 3252 break; 3253 3254 raw_spin_lock_irqsave(&krcp->lock, flags); 3255 pushed = put_cached_bnode(krcp, bnode); 3256 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3257 3258 if (!pushed) { 3259 free_page((unsigned long) bnode); 3260 break; 3261 } 3262 } 3263 3264 atomic_set(&krcp->work_in_progress, 0); 3265 atomic_set(&krcp->backoff_page_cache_fill, 0); 3266 } 3267 3268 static void 3269 run_page_cache_worker(struct kfree_rcu_cpu *krcp) 3270 { 3271 // If cache disabled, bail out. 3272 if (!rcu_min_cached_objs) 3273 return; 3274 3275 if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING && 3276 !atomic_xchg(&krcp->work_in_progress, 1)) { 3277 if (atomic_read(&krcp->backoff_page_cache_fill)) { 3278 queue_delayed_work(system_wq, 3279 &krcp->page_cache_work, 3280 msecs_to_jiffies(rcu_delay_page_cache_fill_msec)); 3281 } else { 3282 hrtimer_init(&krcp->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 3283 krcp->hrtimer.function = schedule_page_work_fn; 3284 hrtimer_start(&krcp->hrtimer, 0, HRTIMER_MODE_REL); 3285 } 3286 } 3287 } 3288 3289 // Record ptr in a page managed by krcp, with the pre-krc_this_cpu_lock() 3290 // state specified by flags. If can_alloc is true, the caller must 3291 // be schedulable and not be holding any locks or mutexes that might be 3292 // acquired by the memory allocator or anything that it might invoke. 3293 // Returns true if ptr was successfully recorded, else the caller must 3294 // use a fallback. 3295 static inline bool 3296 add_ptr_to_bulk_krc_lock(struct kfree_rcu_cpu **krcp, 3297 unsigned long *flags, void *ptr, bool can_alloc) 3298 { 3299 struct kvfree_rcu_bulk_data *bnode; 3300 int idx; 3301 3302 *krcp = krc_this_cpu_lock(flags); 3303 if (unlikely(!(*krcp)->initialized)) 3304 return false; 3305 3306 idx = !!is_vmalloc_addr(ptr); 3307 bnode = list_first_entry_or_null(&(*krcp)->bulk_head[idx], 3308 struct kvfree_rcu_bulk_data, list); 3309 3310 /* Check if a new block is required. */ 3311 if (!bnode || bnode->nr_records == KVFREE_BULK_MAX_ENTR) { 3312 bnode = get_cached_bnode(*krcp); 3313 if (!bnode && can_alloc) { 3314 krc_this_cpu_unlock(*krcp, *flags); 3315 3316 // __GFP_NORETRY - allows a light-weight direct reclaim 3317 // what is OK from minimizing of fallback hitting point of 3318 // view. Apart of that it forbids any OOM invoking what is 3319 // also beneficial since we are about to release memory soon. 3320 // 3321 // __GFP_NOMEMALLOC - prevents from consuming of all the 3322 // memory reserves. Please note we have a fallback path. 3323 // 3324 // __GFP_NOWARN - it is supposed that an allocation can 3325 // be failed under low memory or high memory pressure 3326 // scenarios. 3327 bnode = (struct kvfree_rcu_bulk_data *) 3328 __get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); 3329 raw_spin_lock_irqsave(&(*krcp)->lock, *flags); 3330 } 3331 3332 if (!bnode) 3333 return false; 3334 3335 // Initialize the new block and attach it. 3336 bnode->nr_records = 0; 3337 list_add(&bnode->list, &(*krcp)->bulk_head[idx]); 3338 } 3339 3340 // Finally insert and update the GP for this page. 3341 bnode->records[bnode->nr_records++] = ptr; 3342 get_state_synchronize_rcu_full(&bnode->gp_snap); 3343 atomic_inc(&(*krcp)->bulk_count[idx]); 3344 3345 return true; 3346 } 3347 3348 /* 3349 * Queue a request for lazy invocation of the appropriate free routine 3350 * after a grace period. Please note that three paths are maintained, 3351 * two for the common case using arrays of pointers and a third one that 3352 * is used only when the main paths cannot be used, for example, due to 3353 * memory pressure. 3354 * 3355 * Each kvfree_call_rcu() request is added to a batch. The batch will be drained 3356 * every KFREE_DRAIN_JIFFIES number of jiffies. All the objects in the batch will 3357 * be free'd in workqueue context. This allows us to: batch requests together to 3358 * reduce the number of grace periods during heavy kfree_rcu()/kvfree_rcu() load. 3359 */ 3360 void kvfree_call_rcu(struct rcu_head *head, void *ptr) 3361 { 3362 unsigned long flags; 3363 struct kfree_rcu_cpu *krcp; 3364 bool success; 3365 3366 /* 3367 * Please note there is a limitation for the head-less 3368 * variant, that is why there is a clear rule for such 3369 * objects: it can be used from might_sleep() context 3370 * only. For other places please embed an rcu_head to 3371 * your data. 3372 */ 3373 if (!head) 3374 might_sleep(); 3375 3376 // Queue the object but don't yet schedule the batch. 3377 if (debug_rcu_head_queue(ptr)) { 3378 // Probable double kfree_rcu(), just leak. 3379 WARN_ONCE(1, "%s(): Double-freed call. rcu_head %p\n", 3380 __func__, head); 3381 3382 // Mark as success and leave. 3383 return; 3384 } 3385 3386 kasan_record_aux_stack_noalloc(ptr); 3387 success = add_ptr_to_bulk_krc_lock(&krcp, &flags, ptr, !head); 3388 if (!success) { 3389 run_page_cache_worker(krcp); 3390 3391 if (head == NULL) 3392 // Inline if kvfree_rcu(one_arg) call. 3393 goto unlock_return; 3394 3395 head->func = ptr; 3396 head->next = krcp->head; 3397 WRITE_ONCE(krcp->head, head); 3398 atomic_inc(&krcp->head_count); 3399 3400 // Take a snapshot for this krcp. 3401 krcp->head_gp_snap = get_state_synchronize_rcu(); 3402 success = true; 3403 } 3404 3405 /* 3406 * The kvfree_rcu() caller considers the pointer freed at this point 3407 * and likely removes any references to it. Since the actual slab 3408 * freeing (and kmemleak_free()) is deferred, tell kmemleak to ignore 3409 * this object (no scanning or false positives reporting). 3410 */ 3411 kmemleak_ignore(ptr); 3412 3413 // Set timer to drain after KFREE_DRAIN_JIFFIES. 3414 if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING) 3415 schedule_delayed_monitor_work(krcp); 3416 3417 unlock_return: 3418 krc_this_cpu_unlock(krcp, flags); 3419 3420 /* 3421 * Inline kvfree() after synchronize_rcu(). We can do 3422 * it from might_sleep() context only, so the current 3423 * CPU can pass the QS state. 3424 */ 3425 if (!success) { 3426 debug_rcu_head_unqueue((struct rcu_head *) ptr); 3427 synchronize_rcu(); 3428 kvfree(ptr); 3429 } 3430 } 3431 EXPORT_SYMBOL_GPL(kvfree_call_rcu); 3432 3433 static unsigned long 3434 kfree_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc) 3435 { 3436 int cpu; 3437 unsigned long count = 0; 3438 3439 /* Snapshot count of all CPUs */ 3440 for_each_possible_cpu(cpu) { 3441 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); 3442 3443 count += krc_count(krcp); 3444 count += READ_ONCE(krcp->nr_bkv_objs); 3445 atomic_set(&krcp->backoff_page_cache_fill, 1); 3446 } 3447 3448 return count == 0 ? SHRINK_EMPTY : count; 3449 } 3450 3451 static unsigned long 3452 kfree_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) 3453 { 3454 int cpu, freed = 0; 3455 3456 for_each_possible_cpu(cpu) { 3457 int count; 3458 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); 3459 3460 count = krc_count(krcp); 3461 count += drain_page_cache(krcp); 3462 kfree_rcu_monitor(&krcp->monitor_work.work); 3463 3464 sc->nr_to_scan -= count; 3465 freed += count; 3466 3467 if (sc->nr_to_scan <= 0) 3468 break; 3469 } 3470 3471 return freed == 0 ? SHRINK_STOP : freed; 3472 } 3473 3474 static struct shrinker kfree_rcu_shrinker = { 3475 .count_objects = kfree_rcu_shrink_count, 3476 .scan_objects = kfree_rcu_shrink_scan, 3477 .batch = 0, 3478 .seeks = DEFAULT_SEEKS, 3479 }; 3480 3481 void __init kfree_rcu_scheduler_running(void) 3482 { 3483 int cpu; 3484 3485 for_each_possible_cpu(cpu) { 3486 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); 3487 3488 if (need_offload_krc(krcp)) 3489 schedule_delayed_monitor_work(krcp); 3490 } 3491 } 3492 3493 /* 3494 * During early boot, any blocking grace-period wait automatically 3495 * implies a grace period. 3496 * 3497 * Later on, this could in theory be the case for kernels built with 3498 * CONFIG_SMP=y && CONFIG_PREEMPTION=y running on a single CPU, but this 3499 * is not a common case. Furthermore, this optimization would cause 3500 * the rcu_gp_oldstate structure to expand by 50%, so this potential 3501 * grace-period optimization is ignored once the scheduler is running. 3502 */ 3503 static int rcu_blocking_is_gp(void) 3504 { 3505 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) { 3506 might_sleep(); 3507 return false; 3508 } 3509 return true; 3510 } 3511 3512 /** 3513 * synchronize_rcu - wait until a grace period has elapsed. 3514 * 3515 * Control will return to the caller some time after a full grace 3516 * period has elapsed, in other words after all currently executing RCU 3517 * read-side critical sections have completed. Note, however, that 3518 * upon return from synchronize_rcu(), the caller might well be executing 3519 * concurrently with new RCU read-side critical sections that began while 3520 * synchronize_rcu() was waiting. 3521 * 3522 * RCU read-side critical sections are delimited by rcu_read_lock() 3523 * and rcu_read_unlock(), and may be nested. In addition, but only in 3524 * v5.0 and later, regions of code across which interrupts, preemption, 3525 * or softirqs have been disabled also serve as RCU read-side critical 3526 * sections. This includes hardware interrupt handlers, softirq handlers, 3527 * and NMI handlers. 3528 * 3529 * Note that this guarantee implies further memory-ordering guarantees. 3530 * On systems with more than one CPU, when synchronize_rcu() returns, 3531 * each CPU is guaranteed to have executed a full memory barrier since 3532 * the end of its last RCU read-side critical section whose beginning 3533 * preceded the call to synchronize_rcu(). In addition, each CPU having 3534 * an RCU read-side critical section that extends beyond the return from 3535 * synchronize_rcu() is guaranteed to have executed a full memory barrier 3536 * after the beginning of synchronize_rcu() and before the beginning of 3537 * that RCU read-side critical section. Note that these guarantees include 3538 * CPUs that are offline, idle, or executing in user mode, as well as CPUs 3539 * that are executing in the kernel. 3540 * 3541 * Furthermore, if CPU A invoked synchronize_rcu(), which returned 3542 * to its caller on CPU B, then both CPU A and CPU B are guaranteed 3543 * to have executed a full memory barrier during the execution of 3544 * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but 3545 * again only if the system has more than one CPU). 3546 * 3547 * Implementation of these memory-ordering guarantees is described here: 3548 * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst. 3549 */ 3550 void synchronize_rcu(void) 3551 { 3552 unsigned long flags; 3553 struct rcu_node *rnp; 3554 3555 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) || 3556 lock_is_held(&rcu_lock_map) || 3557 lock_is_held(&rcu_sched_lock_map), 3558 "Illegal synchronize_rcu() in RCU read-side critical section"); 3559 if (!rcu_blocking_is_gp()) { 3560 if (rcu_gp_is_expedited()) 3561 synchronize_rcu_expedited(); 3562 else 3563 wait_rcu_gp(call_rcu_hurry); 3564 return; 3565 } 3566 3567 // Context allows vacuous grace periods. 3568 // Note well that this code runs with !PREEMPT && !SMP. 3569 // In addition, all code that advances grace periods runs at 3570 // process level. Therefore, this normal GP overlaps with other 3571 // normal GPs only by being fully nested within them, which allows 3572 // reuse of ->gp_seq_polled_snap. 3573 rcu_poll_gp_seq_start_unlocked(&rcu_state.gp_seq_polled_snap); 3574 rcu_poll_gp_seq_end_unlocked(&rcu_state.gp_seq_polled_snap); 3575 3576 // Update the normal grace-period counters to record 3577 // this grace period, but only those used by the boot CPU. 3578 // The rcu_scheduler_starting() will take care of the rest of 3579 // these counters. 3580 local_irq_save(flags); 3581 WARN_ON_ONCE(num_online_cpus() > 1); 3582 rcu_state.gp_seq += (1 << RCU_SEQ_CTR_SHIFT); 3583 for (rnp = this_cpu_ptr(&rcu_data)->mynode; rnp; rnp = rnp->parent) 3584 rnp->gp_seq_needed = rnp->gp_seq = rcu_state.gp_seq; 3585 local_irq_restore(flags); 3586 } 3587 EXPORT_SYMBOL_GPL(synchronize_rcu); 3588 3589 /** 3590 * get_completed_synchronize_rcu_full - Return a full pre-completed polled state cookie 3591 * @rgosp: Place to put state cookie 3592 * 3593 * Stores into @rgosp a value that will always be treated by functions 3594 * like poll_state_synchronize_rcu_full() as a cookie whose grace period 3595 * has already completed. 3596 */ 3597 void get_completed_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp) 3598 { 3599 rgosp->rgos_norm = RCU_GET_STATE_COMPLETED; 3600 rgosp->rgos_exp = RCU_GET_STATE_COMPLETED; 3601 } 3602 EXPORT_SYMBOL_GPL(get_completed_synchronize_rcu_full); 3603 3604 /** 3605 * get_state_synchronize_rcu - Snapshot current RCU state 3606 * 3607 * Returns a cookie that is used by a later call to cond_synchronize_rcu() 3608 * or poll_state_synchronize_rcu() to determine whether or not a full 3609 * grace period has elapsed in the meantime. 3610 */ 3611 unsigned long get_state_synchronize_rcu(void) 3612 { 3613 /* 3614 * Any prior manipulation of RCU-protected data must happen 3615 * before the load from ->gp_seq. 3616 */ 3617 smp_mb(); /* ^^^ */ 3618 return rcu_seq_snap(&rcu_state.gp_seq_polled); 3619 } 3620 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu); 3621 3622 /** 3623 * get_state_synchronize_rcu_full - Snapshot RCU state, both normal and expedited 3624 * @rgosp: location to place combined normal/expedited grace-period state 3625 * 3626 * Places the normal and expedited grace-period states in @rgosp. This 3627 * state value can be passed to a later call to cond_synchronize_rcu_full() 3628 * or poll_state_synchronize_rcu_full() to determine whether or not a 3629 * grace period (whether normal or expedited) has elapsed in the meantime. 3630 * The rcu_gp_oldstate structure takes up twice the memory of an unsigned 3631 * long, but is guaranteed to see all grace periods. In contrast, the 3632 * combined state occupies less memory, but can sometimes fail to take 3633 * grace periods into account. 3634 * 3635 * This does not guarantee that the needed grace period will actually 3636 * start. 3637 */ 3638 void get_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp) 3639 { 3640 struct rcu_node *rnp = rcu_get_root(); 3641 3642 /* 3643 * Any prior manipulation of RCU-protected data must happen 3644 * before the loads from ->gp_seq and ->expedited_sequence. 3645 */ 3646 smp_mb(); /* ^^^ */ 3647 rgosp->rgos_norm = rcu_seq_snap(&rnp->gp_seq); 3648 rgosp->rgos_exp = rcu_seq_snap(&rcu_state.expedited_sequence); 3649 } 3650 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu_full); 3651 3652 /* 3653 * Helper function for start_poll_synchronize_rcu() and 3654 * start_poll_synchronize_rcu_full(). 3655 */ 3656 static void start_poll_synchronize_rcu_common(void) 3657 { 3658 unsigned long flags; 3659 bool needwake; 3660 struct rcu_data *rdp; 3661 struct rcu_node *rnp; 3662 3663 lockdep_assert_irqs_enabled(); 3664 local_irq_save(flags); 3665 rdp = this_cpu_ptr(&rcu_data); 3666 rnp = rdp->mynode; 3667 raw_spin_lock_rcu_node(rnp); // irqs already disabled. 3668 // Note it is possible for a grace period to have elapsed between 3669 // the above call to get_state_synchronize_rcu() and the below call 3670 // to rcu_seq_snap. This is OK, the worst that happens is that we 3671 // get a grace period that no one needed. These accesses are ordered 3672 // by smp_mb(), and we are accessing them in the opposite order 3673 // from which they are updated at grace-period start, as required. 3674 needwake = rcu_start_this_gp(rnp, rdp, rcu_seq_snap(&rcu_state.gp_seq)); 3675 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3676 if (needwake) 3677 rcu_gp_kthread_wake(); 3678 } 3679 3680 /** 3681 * start_poll_synchronize_rcu - Snapshot and start RCU grace period 3682 * 3683 * Returns a cookie that is used by a later call to cond_synchronize_rcu() 3684 * or poll_state_synchronize_rcu() to determine whether or not a full 3685 * grace period has elapsed in the meantime. If the needed grace period 3686 * is not already slated to start, notifies RCU core of the need for that 3687 * grace period. 3688 * 3689 * Interrupts must be enabled for the case where it is necessary to awaken 3690 * the grace-period kthread. 3691 */ 3692 unsigned long start_poll_synchronize_rcu(void) 3693 { 3694 unsigned long gp_seq = get_state_synchronize_rcu(); 3695 3696 start_poll_synchronize_rcu_common(); 3697 return gp_seq; 3698 } 3699 EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu); 3700 3701 /** 3702 * start_poll_synchronize_rcu_full - Take a full snapshot and start RCU grace period 3703 * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full() 3704 * 3705 * Places the normal and expedited grace-period states in *@rgos. This 3706 * state value can be passed to a later call to cond_synchronize_rcu_full() 3707 * or poll_state_synchronize_rcu_full() to determine whether or not a 3708 * grace period (whether normal or expedited) has elapsed in the meantime. 3709 * If the needed grace period is not already slated to start, notifies 3710 * RCU core of the need for that grace period. 3711 * 3712 * Interrupts must be enabled for the case where it is necessary to awaken 3713 * the grace-period kthread. 3714 */ 3715 void start_poll_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp) 3716 { 3717 get_state_synchronize_rcu_full(rgosp); 3718 3719 start_poll_synchronize_rcu_common(); 3720 } 3721 EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu_full); 3722 3723 /** 3724 * poll_state_synchronize_rcu - Has the specified RCU grace period completed? 3725 * @oldstate: value from get_state_synchronize_rcu() or start_poll_synchronize_rcu() 3726 * 3727 * If a full RCU grace period has elapsed since the earlier call from 3728 * which @oldstate was obtained, return @true, otherwise return @false. 3729 * If @false is returned, it is the caller's responsibility to invoke this 3730 * function later on until it does return @true. Alternatively, the caller 3731 * can explicitly wait for a grace period, for example, by passing @oldstate 3732 * to either cond_synchronize_rcu() or cond_synchronize_rcu_expedited() 3733 * on the one hand or by directly invoking either synchronize_rcu() or 3734 * synchronize_rcu_expedited() on the other. 3735 * 3736 * Yes, this function does not take counter wrap into account. 3737 * But counter wrap is harmless. If the counter wraps, we have waited for 3738 * more than a billion grace periods (and way more on a 64-bit system!). 3739 * Those needing to keep old state values for very long time periods 3740 * (many hours even on 32-bit systems) should check them occasionally and 3741 * either refresh them or set a flag indicating that the grace period has 3742 * completed. Alternatively, they can use get_completed_synchronize_rcu() 3743 * to get a guaranteed-completed grace-period state. 3744 * 3745 * In addition, because oldstate compresses the grace-period state for 3746 * both normal and expedited grace periods into a single unsigned long, 3747 * it can miss a grace period when synchronize_rcu() runs concurrently 3748 * with synchronize_rcu_expedited(). If this is unacceptable, please 3749 * instead use the _full() variant of these polling APIs. 3750 * 3751 * This function provides the same memory-ordering guarantees that 3752 * would be provided by a synchronize_rcu() that was invoked at the call 3753 * to the function that provided @oldstate, and that returned at the end 3754 * of this function. 3755 */ 3756 bool poll_state_synchronize_rcu(unsigned long oldstate) 3757 { 3758 if (oldstate == RCU_GET_STATE_COMPLETED || 3759 rcu_seq_done_exact(&rcu_state.gp_seq_polled, oldstate)) { 3760 smp_mb(); /* Ensure GP ends before subsequent accesses. */ 3761 return true; 3762 } 3763 return false; 3764 } 3765 EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu); 3766 3767 /** 3768 * poll_state_synchronize_rcu_full - Has the specified RCU grace period completed? 3769 * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full() 3770 * 3771 * If a full RCU grace period has elapsed since the earlier call from 3772 * which *rgosp was obtained, return @true, otherwise return @false. 3773 * If @false is returned, it is the caller's responsibility to invoke this 3774 * function later on until it does return @true. Alternatively, the caller 3775 * can explicitly wait for a grace period, for example, by passing @rgosp 3776 * to cond_synchronize_rcu() or by directly invoking synchronize_rcu(). 3777 * 3778 * Yes, this function does not take counter wrap into account. 3779 * But counter wrap is harmless. If the counter wraps, we have waited 3780 * for more than a billion grace periods (and way more on a 64-bit 3781 * system!). Those needing to keep rcu_gp_oldstate values for very 3782 * long time periods (many hours even on 32-bit systems) should check 3783 * them occasionally and either refresh them or set a flag indicating 3784 * that the grace period has completed. Alternatively, they can use 3785 * get_completed_synchronize_rcu_full() to get a guaranteed-completed 3786 * grace-period state. 3787 * 3788 * This function provides the same memory-ordering guarantees that would 3789 * be provided by a synchronize_rcu() that was invoked at the call to 3790 * the function that provided @rgosp, and that returned at the end of this 3791 * function. And this guarantee requires that the root rcu_node structure's 3792 * ->gp_seq field be checked instead of that of the rcu_state structure. 3793 * The problem is that the just-ending grace-period's callbacks can be 3794 * invoked between the time that the root rcu_node structure's ->gp_seq 3795 * field is updated and the time that the rcu_state structure's ->gp_seq 3796 * field is updated. Therefore, if a single synchronize_rcu() is to 3797 * cause a subsequent poll_state_synchronize_rcu_full() to return @true, 3798 * then the root rcu_node structure is the one that needs to be polled. 3799 */ 3800 bool poll_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp) 3801 { 3802 struct rcu_node *rnp = rcu_get_root(); 3803 3804 smp_mb(); // Order against root rcu_node structure grace-period cleanup. 3805 if (rgosp->rgos_norm == RCU_GET_STATE_COMPLETED || 3806 rcu_seq_done_exact(&rnp->gp_seq, rgosp->rgos_norm) || 3807 rgosp->rgos_exp == RCU_GET_STATE_COMPLETED || 3808 rcu_seq_done_exact(&rcu_state.expedited_sequence, rgosp->rgos_exp)) { 3809 smp_mb(); /* Ensure GP ends before subsequent accesses. */ 3810 return true; 3811 } 3812 return false; 3813 } 3814 EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu_full); 3815 3816 /** 3817 * cond_synchronize_rcu - Conditionally wait for an RCU grace period 3818 * @oldstate: value from get_state_synchronize_rcu(), start_poll_synchronize_rcu(), or start_poll_synchronize_rcu_expedited() 3819 * 3820 * If a full RCU grace period has elapsed since the earlier call to 3821 * get_state_synchronize_rcu() or start_poll_synchronize_rcu(), just return. 3822 * Otherwise, invoke synchronize_rcu() to wait for a full grace period. 3823 * 3824 * Yes, this function does not take counter wrap into account. 3825 * But counter wrap is harmless. If the counter wraps, we have waited for 3826 * more than 2 billion grace periods (and way more on a 64-bit system!), 3827 * so waiting for a couple of additional grace periods should be just fine. 3828 * 3829 * This function provides the same memory-ordering guarantees that 3830 * would be provided by a synchronize_rcu() that was invoked at the call 3831 * to the function that provided @oldstate and that returned at the end 3832 * of this function. 3833 */ 3834 void cond_synchronize_rcu(unsigned long oldstate) 3835 { 3836 if (!poll_state_synchronize_rcu(oldstate)) 3837 synchronize_rcu(); 3838 } 3839 EXPORT_SYMBOL_GPL(cond_synchronize_rcu); 3840 3841 /** 3842 * cond_synchronize_rcu_full - Conditionally wait for an RCU grace period 3843 * @rgosp: value from get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(), or start_poll_synchronize_rcu_expedited_full() 3844 * 3845 * If a full RCU grace period has elapsed since the call to 3846 * get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(), 3847 * or start_poll_synchronize_rcu_expedited_full() from which @rgosp was 3848 * obtained, just return. Otherwise, invoke synchronize_rcu() to wait 3849 * for a full grace period. 3850 * 3851 * Yes, this function does not take counter wrap into account. 3852 * But counter wrap is harmless. If the counter wraps, we have waited for 3853 * more than 2 billion grace periods (and way more on a 64-bit system!), 3854 * so waiting for a couple of additional grace periods should be just fine. 3855 * 3856 * This function provides the same memory-ordering guarantees that 3857 * would be provided by a synchronize_rcu() that was invoked at the call 3858 * to the function that provided @rgosp and that returned at the end of 3859 * this function. 3860 */ 3861 void cond_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp) 3862 { 3863 if (!poll_state_synchronize_rcu_full(rgosp)) 3864 synchronize_rcu(); 3865 } 3866 EXPORT_SYMBOL_GPL(cond_synchronize_rcu_full); 3867 3868 /* 3869 * Check to see if there is any immediate RCU-related work to be done by 3870 * the current CPU, returning 1 if so and zero otherwise. The checks are 3871 * in order of increasing expense: checks that can be carried out against 3872 * CPU-local state are performed first. However, we must check for CPU 3873 * stalls first, else we might not get a chance. 3874 */ 3875 static int rcu_pending(int user) 3876 { 3877 bool gp_in_progress; 3878 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 3879 struct rcu_node *rnp = rdp->mynode; 3880 3881 lockdep_assert_irqs_disabled(); 3882 3883 /* Check for CPU stalls, if enabled. */ 3884 check_cpu_stall(rdp); 3885 3886 /* Does this CPU need a deferred NOCB wakeup? */ 3887 if (rcu_nocb_need_deferred_wakeup(rdp, RCU_NOCB_WAKE)) 3888 return 1; 3889 3890 /* Is this a nohz_full CPU in userspace or idle? (Ignore RCU if so.) */ 3891 if ((user || rcu_is_cpu_rrupt_from_idle()) && rcu_nohz_full_cpu()) 3892 return 0; 3893 3894 /* Is the RCU core waiting for a quiescent state from this CPU? */ 3895 gp_in_progress = rcu_gp_in_progress(); 3896 if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm && gp_in_progress) 3897 return 1; 3898 3899 /* Does this CPU have callbacks ready to invoke? */ 3900 if (!rcu_rdp_is_offloaded(rdp) && 3901 rcu_segcblist_ready_cbs(&rdp->cblist)) 3902 return 1; 3903 3904 /* Has RCU gone idle with this CPU needing another grace period? */ 3905 if (!gp_in_progress && rcu_segcblist_is_enabled(&rdp->cblist) && 3906 !rcu_rdp_is_offloaded(rdp) && 3907 !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL)) 3908 return 1; 3909 3910 /* Have RCU grace period completed or started? */ 3911 if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq || 3912 unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */ 3913 return 1; 3914 3915 /* nothing to do */ 3916 return 0; 3917 } 3918 3919 /* 3920 * Helper function for rcu_barrier() tracing. If tracing is disabled, 3921 * the compiler is expected to optimize this away. 3922 */ 3923 static void rcu_barrier_trace(const char *s, int cpu, unsigned long done) 3924 { 3925 trace_rcu_barrier(rcu_state.name, s, cpu, 3926 atomic_read(&rcu_state.barrier_cpu_count), done); 3927 } 3928 3929 /* 3930 * RCU callback function for rcu_barrier(). If we are last, wake 3931 * up the task executing rcu_barrier(). 3932 * 3933 * Note that the value of rcu_state.barrier_sequence must be captured 3934 * before the atomic_dec_and_test(). Otherwise, if this CPU is not last, 3935 * other CPUs might count the value down to zero before this CPU gets 3936 * around to invoking rcu_barrier_trace(), which might result in bogus 3937 * data from the next instance of rcu_barrier(). 3938 */ 3939 static void rcu_barrier_callback(struct rcu_head *rhp) 3940 { 3941 unsigned long __maybe_unused s = rcu_state.barrier_sequence; 3942 3943 if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) { 3944 rcu_barrier_trace(TPS("LastCB"), -1, s); 3945 complete(&rcu_state.barrier_completion); 3946 } else { 3947 rcu_barrier_trace(TPS("CB"), -1, s); 3948 } 3949 } 3950 3951 /* 3952 * If needed, entrain an rcu_barrier() callback on rdp->cblist. 3953 */ 3954 static void rcu_barrier_entrain(struct rcu_data *rdp) 3955 { 3956 unsigned long gseq = READ_ONCE(rcu_state.barrier_sequence); 3957 unsigned long lseq = READ_ONCE(rdp->barrier_seq_snap); 3958 bool wake_nocb = false; 3959 bool was_alldone = false; 3960 3961 lockdep_assert_held(&rcu_state.barrier_lock); 3962 if (rcu_seq_state(lseq) || !rcu_seq_state(gseq) || rcu_seq_ctr(lseq) != rcu_seq_ctr(gseq)) 3963 return; 3964 rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence); 3965 rdp->barrier_head.func = rcu_barrier_callback; 3966 debug_rcu_head_queue(&rdp->barrier_head); 3967 rcu_nocb_lock(rdp); 3968 /* 3969 * Flush bypass and wakeup rcuog if we add callbacks to an empty regular 3970 * queue. This way we don't wait for bypass timer that can reach seconds 3971 * if it's fully lazy. 3972 */ 3973 was_alldone = rcu_rdp_is_offloaded(rdp) && !rcu_segcblist_pend_cbs(&rdp->cblist); 3974 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies, false)); 3975 wake_nocb = was_alldone && rcu_segcblist_pend_cbs(&rdp->cblist); 3976 if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head)) { 3977 atomic_inc(&rcu_state.barrier_cpu_count); 3978 } else { 3979 debug_rcu_head_unqueue(&rdp->barrier_head); 3980 rcu_barrier_trace(TPS("IRQNQ"), -1, rcu_state.barrier_sequence); 3981 } 3982 rcu_nocb_unlock(rdp); 3983 if (wake_nocb) 3984 wake_nocb_gp(rdp, false); 3985 smp_store_release(&rdp->barrier_seq_snap, gseq); 3986 } 3987 3988 /* 3989 * Called with preemption disabled, and from cross-cpu IRQ context. 3990 */ 3991 static void rcu_barrier_handler(void *cpu_in) 3992 { 3993 uintptr_t cpu = (uintptr_t)cpu_in; 3994 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 3995 3996 lockdep_assert_irqs_disabled(); 3997 WARN_ON_ONCE(cpu != rdp->cpu); 3998 WARN_ON_ONCE(cpu != smp_processor_id()); 3999 raw_spin_lock(&rcu_state.barrier_lock); 4000 rcu_barrier_entrain(rdp); 4001 raw_spin_unlock(&rcu_state.barrier_lock); 4002 } 4003 4004 /** 4005 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete. 4006 * 4007 * Note that this primitive does not necessarily wait for an RCU grace period 4008 * to complete. For example, if there are no RCU callbacks queued anywhere 4009 * in the system, then rcu_barrier() is within its rights to return 4010 * immediately, without waiting for anything, much less an RCU grace period. 4011 */ 4012 void rcu_barrier(void) 4013 { 4014 uintptr_t cpu; 4015 unsigned long flags; 4016 unsigned long gseq; 4017 struct rcu_data *rdp; 4018 unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence); 4019 4020 rcu_barrier_trace(TPS("Begin"), -1, s); 4021 4022 /* Take mutex to serialize concurrent rcu_barrier() requests. */ 4023 mutex_lock(&rcu_state.barrier_mutex); 4024 4025 /* Did someone else do our work for us? */ 4026 if (rcu_seq_done(&rcu_state.barrier_sequence, s)) { 4027 rcu_barrier_trace(TPS("EarlyExit"), -1, rcu_state.barrier_sequence); 4028 smp_mb(); /* caller's subsequent code after above check. */ 4029 mutex_unlock(&rcu_state.barrier_mutex); 4030 return; 4031 } 4032 4033 /* Mark the start of the barrier operation. */ 4034 raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags); 4035 rcu_seq_start(&rcu_state.barrier_sequence); 4036 gseq = rcu_state.barrier_sequence; 4037 rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence); 4038 4039 /* 4040 * Initialize the count to two rather than to zero in order 4041 * to avoid a too-soon return to zero in case of an immediate 4042 * invocation of the just-enqueued callback (or preemption of 4043 * this task). Exclude CPU-hotplug operations to ensure that no 4044 * offline non-offloaded CPU has callbacks queued. 4045 */ 4046 init_completion(&rcu_state.barrier_completion); 4047 atomic_set(&rcu_state.barrier_cpu_count, 2); 4048 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags); 4049 4050 /* 4051 * Force each CPU with callbacks to register a new callback. 4052 * When that callback is invoked, we will know that all of the 4053 * corresponding CPU's preceding callbacks have been invoked. 4054 */ 4055 for_each_possible_cpu(cpu) { 4056 rdp = per_cpu_ptr(&rcu_data, cpu); 4057 retry: 4058 if (smp_load_acquire(&rdp->barrier_seq_snap) == gseq) 4059 continue; 4060 raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags); 4061 if (!rcu_segcblist_n_cbs(&rdp->cblist)) { 4062 WRITE_ONCE(rdp->barrier_seq_snap, gseq); 4063 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags); 4064 rcu_barrier_trace(TPS("NQ"), cpu, rcu_state.barrier_sequence); 4065 continue; 4066 } 4067 if (!rcu_rdp_cpu_online(rdp)) { 4068 rcu_barrier_entrain(rdp); 4069 WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq); 4070 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags); 4071 rcu_barrier_trace(TPS("OfflineNoCBQ"), cpu, rcu_state.barrier_sequence); 4072 continue; 4073 } 4074 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags); 4075 if (smp_call_function_single(cpu, rcu_barrier_handler, (void *)cpu, 1)) { 4076 schedule_timeout_uninterruptible(1); 4077 goto retry; 4078 } 4079 WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq); 4080 rcu_barrier_trace(TPS("OnlineQ"), cpu, rcu_state.barrier_sequence); 4081 } 4082 4083 /* 4084 * Now that we have an rcu_barrier_callback() callback on each 4085 * CPU, and thus each counted, remove the initial count. 4086 */ 4087 if (atomic_sub_and_test(2, &rcu_state.barrier_cpu_count)) 4088 complete(&rcu_state.barrier_completion); 4089 4090 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */ 4091 wait_for_completion(&rcu_state.barrier_completion); 4092 4093 /* Mark the end of the barrier operation. */ 4094 rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence); 4095 rcu_seq_end(&rcu_state.barrier_sequence); 4096 gseq = rcu_state.barrier_sequence; 4097 for_each_possible_cpu(cpu) { 4098 rdp = per_cpu_ptr(&rcu_data, cpu); 4099 4100 WRITE_ONCE(rdp->barrier_seq_snap, gseq); 4101 } 4102 4103 /* Other rcu_barrier() invocations can now safely proceed. */ 4104 mutex_unlock(&rcu_state.barrier_mutex); 4105 } 4106 EXPORT_SYMBOL_GPL(rcu_barrier); 4107 4108 static unsigned long rcu_barrier_last_throttle; 4109 4110 /** 4111 * rcu_barrier_throttled - Do rcu_barrier(), but limit to one per second 4112 * 4113 * This can be thought of as guard rails around rcu_barrier() that 4114 * permits unrestricted userspace use, at least assuming the hardware's 4115 * try_cmpxchg() is robust. There will be at most one call per second to 4116 * rcu_barrier() system-wide from use of this function, which means that 4117 * callers might needlessly wait a second or three. 4118 * 4119 * This is intended for use by test suites to avoid OOM by flushing RCU 4120 * callbacks from the previous test before starting the next. See the 4121 * rcutree.do_rcu_barrier module parameter for more information. 4122 * 4123 * Why not simply make rcu_barrier() more scalable? That might be 4124 * the eventual endpoint, but let's keep it simple for the time being. 4125 * Note that the module parameter infrastructure serializes calls to a 4126 * given .set() function, but should concurrent .set() invocation ever be 4127 * possible, we are ready! 4128 */ 4129 static void rcu_barrier_throttled(void) 4130 { 4131 unsigned long j = jiffies; 4132 unsigned long old = READ_ONCE(rcu_barrier_last_throttle); 4133 unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence); 4134 4135 while (time_in_range(j, old, old + HZ / 16) || 4136 !try_cmpxchg(&rcu_barrier_last_throttle, &old, j)) { 4137 schedule_timeout_idle(HZ / 16); 4138 if (rcu_seq_done(&rcu_state.barrier_sequence, s)) { 4139 smp_mb(); /* caller's subsequent code after above check. */ 4140 return; 4141 } 4142 j = jiffies; 4143 old = READ_ONCE(rcu_barrier_last_throttle); 4144 } 4145 rcu_barrier(); 4146 } 4147 4148 /* 4149 * Invoke rcu_barrier_throttled() when a rcutree.do_rcu_barrier 4150 * request arrives. We insist on a true value to allow for possible 4151 * future expansion. 4152 */ 4153 static int param_set_do_rcu_barrier(const char *val, const struct kernel_param *kp) 4154 { 4155 bool b; 4156 int ret; 4157 4158 if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING) 4159 return -EAGAIN; 4160 ret = kstrtobool(val, &b); 4161 if (!ret && b) { 4162 atomic_inc((atomic_t *)kp->arg); 4163 rcu_barrier_throttled(); 4164 atomic_dec((atomic_t *)kp->arg); 4165 } 4166 return ret; 4167 } 4168 4169 /* 4170 * Output the number of outstanding rcutree.do_rcu_barrier requests. 4171 */ 4172 static int param_get_do_rcu_barrier(char *buffer, const struct kernel_param *kp) 4173 { 4174 return sprintf(buffer, "%d\n", atomic_read((atomic_t *)kp->arg)); 4175 } 4176 4177 static const struct kernel_param_ops do_rcu_barrier_ops = { 4178 .set = param_set_do_rcu_barrier, 4179 .get = param_get_do_rcu_barrier, 4180 }; 4181 static atomic_t do_rcu_barrier; 4182 module_param_cb(do_rcu_barrier, &do_rcu_barrier_ops, &do_rcu_barrier, 0644); 4183 4184 /* 4185 * Compute the mask of online CPUs for the specified rcu_node structure. 4186 * This will not be stable unless the rcu_node structure's ->lock is 4187 * held, but the bit corresponding to the current CPU will be stable 4188 * in most contexts. 4189 */ 4190 static unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp) 4191 { 4192 return READ_ONCE(rnp->qsmaskinitnext); 4193 } 4194 4195 /* 4196 * Is the CPU corresponding to the specified rcu_data structure online 4197 * from RCU's perspective? This perspective is given by that structure's 4198 * ->qsmaskinitnext field rather than by the global cpu_online_mask. 4199 */ 4200 static bool rcu_rdp_cpu_online(struct rcu_data *rdp) 4201 { 4202 return !!(rdp->grpmask & rcu_rnp_online_cpus(rdp->mynode)); 4203 } 4204 4205 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) 4206 4207 /* 4208 * Is the current CPU online as far as RCU is concerned? 4209 * 4210 * Disable preemption to avoid false positives that could otherwise 4211 * happen due to the current CPU number being sampled, this task being 4212 * preempted, its old CPU being taken offline, resuming on some other CPU, 4213 * then determining that its old CPU is now offline. 4214 * 4215 * Disable checking if in an NMI handler because we cannot safely 4216 * report errors from NMI handlers anyway. In addition, it is OK to use 4217 * RCU on an offline processor during initial boot, hence the check for 4218 * rcu_scheduler_fully_active. 4219 */ 4220 bool rcu_lockdep_current_cpu_online(void) 4221 { 4222 struct rcu_data *rdp; 4223 bool ret = false; 4224 4225 if (in_nmi() || !rcu_scheduler_fully_active) 4226 return true; 4227 preempt_disable_notrace(); 4228 rdp = this_cpu_ptr(&rcu_data); 4229 /* 4230 * Strictly, we care here about the case where the current CPU is 4231 * in rcutree_report_cpu_starting() and thus has an excuse for rdp->grpmask 4232 * not being up to date. So arch_spin_is_locked() might have a 4233 * false positive if it's held by some *other* CPU, but that's 4234 * OK because that just means a false *negative* on the warning. 4235 */ 4236 if (rcu_rdp_cpu_online(rdp) || arch_spin_is_locked(&rcu_state.ofl_lock)) 4237 ret = true; 4238 preempt_enable_notrace(); 4239 return ret; 4240 } 4241 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online); 4242 4243 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */ 4244 4245 // Has rcu_init() been invoked? This is used (for example) to determine 4246 // whether spinlocks may be acquired safely. 4247 static bool rcu_init_invoked(void) 4248 { 4249 return !!rcu_state.n_online_cpus; 4250 } 4251 4252 /* 4253 * All CPUs for the specified rcu_node structure have gone offline, 4254 * and all tasks that were preempted within an RCU read-side critical 4255 * section while running on one of those CPUs have since exited their RCU 4256 * read-side critical section. Some other CPU is reporting this fact with 4257 * the specified rcu_node structure's ->lock held and interrupts disabled. 4258 * This function therefore goes up the tree of rcu_node structures, 4259 * clearing the corresponding bits in the ->qsmaskinit fields. Note that 4260 * the leaf rcu_node structure's ->qsmaskinit field has already been 4261 * updated. 4262 * 4263 * This function does check that the specified rcu_node structure has 4264 * all CPUs offline and no blocked tasks, so it is OK to invoke it 4265 * prematurely. That said, invoking it after the fact will cost you 4266 * a needless lock acquisition. So once it has done its work, don't 4267 * invoke it again. 4268 */ 4269 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf) 4270 { 4271 long mask; 4272 struct rcu_node *rnp = rnp_leaf; 4273 4274 raw_lockdep_assert_held_rcu_node(rnp_leaf); 4275 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || 4276 WARN_ON_ONCE(rnp_leaf->qsmaskinit) || 4277 WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf))) 4278 return; 4279 for (;;) { 4280 mask = rnp->grpmask; 4281 rnp = rnp->parent; 4282 if (!rnp) 4283 break; 4284 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 4285 rnp->qsmaskinit &= ~mask; 4286 /* Between grace periods, so better already be zero! */ 4287 WARN_ON_ONCE(rnp->qsmask); 4288 if (rnp->qsmaskinit) { 4289 raw_spin_unlock_rcu_node(rnp); 4290 /* irqs remain disabled. */ 4291 return; 4292 } 4293 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 4294 } 4295 } 4296 4297 /* 4298 * Propagate ->qsinitmask bits up the rcu_node tree to account for the 4299 * first CPU in a given leaf rcu_node structure coming online. The caller 4300 * must hold the corresponding leaf rcu_node ->lock with interrupts 4301 * disabled. 4302 */ 4303 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf) 4304 { 4305 long mask; 4306 long oldmask; 4307 struct rcu_node *rnp = rnp_leaf; 4308 4309 raw_lockdep_assert_held_rcu_node(rnp_leaf); 4310 WARN_ON_ONCE(rnp->wait_blkd_tasks); 4311 for (;;) { 4312 mask = rnp->grpmask; 4313 rnp = rnp->parent; 4314 if (rnp == NULL) 4315 return; 4316 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */ 4317 oldmask = rnp->qsmaskinit; 4318 rnp->qsmaskinit |= mask; 4319 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */ 4320 if (oldmask) 4321 return; 4322 } 4323 } 4324 4325 /* 4326 * Do boot-time initialization of a CPU's per-CPU RCU data. 4327 */ 4328 static void __init 4329 rcu_boot_init_percpu_data(int cpu) 4330 { 4331 struct context_tracking *ct = this_cpu_ptr(&context_tracking); 4332 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4333 4334 /* Set up local state, ensuring consistent view of global state. */ 4335 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu); 4336 INIT_WORK(&rdp->strict_work, strict_work_handler); 4337 WARN_ON_ONCE(ct->dynticks_nesting != 1); 4338 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(cpu))); 4339 rdp->barrier_seq_snap = rcu_state.barrier_sequence; 4340 rdp->rcu_ofl_gp_seq = rcu_state.gp_seq; 4341 rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED; 4342 rdp->rcu_onl_gp_seq = rcu_state.gp_seq; 4343 rdp->rcu_onl_gp_flags = RCU_GP_CLEANED; 4344 rdp->last_sched_clock = jiffies; 4345 rdp->cpu = cpu; 4346 rcu_boot_init_nocb_percpu_data(rdp); 4347 } 4348 4349 /* 4350 * Invoked early in the CPU-online process, when pretty much all services 4351 * are available. The incoming CPU is not present. 4352 * 4353 * Initializes a CPU's per-CPU RCU data. Note that only one online or 4354 * offline event can be happening at a given time. Note also that we can 4355 * accept some slop in the rsp->gp_seq access due to the fact that this 4356 * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet. 4357 * And any offloaded callbacks are being numbered elsewhere. 4358 */ 4359 int rcutree_prepare_cpu(unsigned int cpu) 4360 { 4361 unsigned long flags; 4362 struct context_tracking *ct = per_cpu_ptr(&context_tracking, cpu); 4363 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4364 struct rcu_node *rnp = rcu_get_root(); 4365 4366 /* Set up local state, ensuring consistent view of global state. */ 4367 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4368 rdp->qlen_last_fqs_check = 0; 4369 rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs); 4370 rdp->blimit = blimit; 4371 ct->dynticks_nesting = 1; /* CPU not up, no tearing. */ 4372 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 4373 4374 /* 4375 * Only non-NOCB CPUs that didn't have early-boot callbacks need to be 4376 * (re-)initialized. 4377 */ 4378 if (!rcu_segcblist_is_enabled(&rdp->cblist)) 4379 rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */ 4380 4381 /* 4382 * Add CPU to leaf rcu_node pending-online bitmask. Any needed 4383 * propagation up the rcu_node tree will happen at the beginning 4384 * of the next grace period. 4385 */ 4386 rnp = rdp->mynode; 4387 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 4388 rdp->gp_seq = READ_ONCE(rnp->gp_seq); 4389 rdp->gp_seq_needed = rdp->gp_seq; 4390 rdp->cpu_no_qs.b.norm = true; 4391 rdp->core_needs_qs = false; 4392 rdp->rcu_iw_pending = false; 4393 rdp->rcu_iw = IRQ_WORK_INIT_HARD(rcu_iw_handler); 4394 rdp->rcu_iw_gp_seq = rdp->gp_seq - 1; 4395 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl")); 4396 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4397 rcu_spawn_one_boost_kthread(rnp); 4398 rcu_spawn_cpu_nocb_kthread(cpu); 4399 WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus + 1); 4400 4401 return 0; 4402 } 4403 4404 /* 4405 * Update RCU priority boot kthread affinity for CPU-hotplug changes. 4406 */ 4407 static void rcutree_affinity_setting(unsigned int cpu, int outgoing) 4408 { 4409 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4410 4411 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing); 4412 } 4413 4414 /* 4415 * Has the specified (known valid) CPU ever been fully online? 4416 */ 4417 bool rcu_cpu_beenfullyonline(int cpu) 4418 { 4419 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4420 4421 return smp_load_acquire(&rdp->beenonline); 4422 } 4423 4424 /* 4425 * Near the end of the CPU-online process. Pretty much all services 4426 * enabled, and the CPU is now very much alive. 4427 */ 4428 int rcutree_online_cpu(unsigned int cpu) 4429 { 4430 unsigned long flags; 4431 struct rcu_data *rdp; 4432 struct rcu_node *rnp; 4433 4434 rdp = per_cpu_ptr(&rcu_data, cpu); 4435 rnp = rdp->mynode; 4436 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4437 rnp->ffmask |= rdp->grpmask; 4438 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4439 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE) 4440 return 0; /* Too early in boot for scheduler work. */ 4441 sync_sched_exp_online_cleanup(cpu); 4442 rcutree_affinity_setting(cpu, -1); 4443 4444 // Stop-machine done, so allow nohz_full to disable tick. 4445 tick_dep_clear(TICK_DEP_BIT_RCU); 4446 return 0; 4447 } 4448 4449 /* 4450 * Mark the specified CPU as being online so that subsequent grace periods 4451 * (both expedited and normal) will wait on it. Note that this means that 4452 * incoming CPUs are not allowed to use RCU read-side critical sections 4453 * until this function is called. Failing to observe this restriction 4454 * will result in lockdep splats. 4455 * 4456 * Note that this function is special in that it is invoked directly 4457 * from the incoming CPU rather than from the cpuhp_step mechanism. 4458 * This is because this function must be invoked at a precise location. 4459 * This incoming CPU must not have enabled interrupts yet. 4460 * 4461 * This mirrors the effects of rcutree_report_cpu_dead(). 4462 */ 4463 void rcutree_report_cpu_starting(unsigned int cpu) 4464 { 4465 unsigned long mask; 4466 struct rcu_data *rdp; 4467 struct rcu_node *rnp; 4468 bool newcpu; 4469 4470 lockdep_assert_irqs_disabled(); 4471 rdp = per_cpu_ptr(&rcu_data, cpu); 4472 if (rdp->cpu_started) 4473 return; 4474 rdp->cpu_started = true; 4475 4476 rnp = rdp->mynode; 4477 mask = rdp->grpmask; 4478 arch_spin_lock(&rcu_state.ofl_lock); 4479 rcu_dynticks_eqs_online(); 4480 raw_spin_lock(&rcu_state.barrier_lock); 4481 raw_spin_lock_rcu_node(rnp); 4482 WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext | mask); 4483 raw_spin_unlock(&rcu_state.barrier_lock); 4484 newcpu = !(rnp->expmaskinitnext & mask); 4485 rnp->expmaskinitnext |= mask; 4486 /* Allow lockless access for expedited grace periods. */ 4487 smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + newcpu); /* ^^^ */ 4488 ASSERT_EXCLUSIVE_WRITER(rcu_state.ncpus); 4489 rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */ 4490 rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq); 4491 rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags); 4492 4493 /* An incoming CPU should never be blocking a grace period. */ 4494 if (WARN_ON_ONCE(rnp->qsmask & mask)) { /* RCU waiting on incoming CPU? */ 4495 /* rcu_report_qs_rnp() *really* wants some flags to restore */ 4496 unsigned long flags; 4497 4498 local_irq_save(flags); 4499 rcu_disable_urgency_upon_qs(rdp); 4500 /* Report QS -after- changing ->qsmaskinitnext! */ 4501 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 4502 } else { 4503 raw_spin_unlock_rcu_node(rnp); 4504 } 4505 arch_spin_unlock(&rcu_state.ofl_lock); 4506 smp_store_release(&rdp->beenonline, true); 4507 smp_mb(); /* Ensure RCU read-side usage follows above initialization. */ 4508 } 4509 4510 /* 4511 * The outgoing function has no further need of RCU, so remove it from 4512 * the rcu_node tree's ->qsmaskinitnext bit masks. 4513 * 4514 * Note that this function is special in that it is invoked directly 4515 * from the outgoing CPU rather than from the cpuhp_step mechanism. 4516 * This is because this function must be invoked at a precise location. 4517 * 4518 * This mirrors the effect of rcutree_report_cpu_starting(). 4519 */ 4520 void rcutree_report_cpu_dead(void) 4521 { 4522 unsigned long flags; 4523 unsigned long mask; 4524 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 4525 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ 4526 4527 /* 4528 * IRQS must be disabled from now on and until the CPU dies, or an interrupt 4529 * may introduce a new READ-side while it is actually off the QS masks. 4530 */ 4531 lockdep_assert_irqs_disabled(); 4532 // Do any dangling deferred wakeups. 4533 do_nocb_deferred_wakeup(rdp); 4534 4535 rcu_preempt_deferred_qs(current); 4536 4537 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */ 4538 mask = rdp->grpmask; 4539 arch_spin_lock(&rcu_state.ofl_lock); 4540 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */ 4541 rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq); 4542 rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags); 4543 if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */ 4544 /* Report quiescent state -before- changing ->qsmaskinitnext! */ 4545 rcu_disable_urgency_upon_qs(rdp); 4546 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 4547 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4548 } 4549 WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext & ~mask); 4550 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4551 arch_spin_unlock(&rcu_state.ofl_lock); 4552 rdp->cpu_started = false; 4553 } 4554 4555 #ifdef CONFIG_HOTPLUG_CPU 4556 /* 4557 * The outgoing CPU has just passed through the dying-idle state, and we 4558 * are being invoked from the CPU that was IPIed to continue the offline 4559 * operation. Migrate the outgoing CPU's callbacks to the current CPU. 4560 */ 4561 void rcutree_migrate_callbacks(int cpu) 4562 { 4563 unsigned long flags; 4564 struct rcu_data *my_rdp; 4565 struct rcu_node *my_rnp; 4566 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4567 bool needwake; 4568 4569 if (rcu_rdp_is_offloaded(rdp) || 4570 rcu_segcblist_empty(&rdp->cblist)) 4571 return; /* No callbacks to migrate. */ 4572 4573 raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags); 4574 WARN_ON_ONCE(rcu_rdp_cpu_online(rdp)); 4575 rcu_barrier_entrain(rdp); 4576 my_rdp = this_cpu_ptr(&rcu_data); 4577 my_rnp = my_rdp->mynode; 4578 rcu_nocb_lock(my_rdp); /* irqs already disabled. */ 4579 WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies, false)); 4580 raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */ 4581 /* Leverage recent GPs and set GP for new callbacks. */ 4582 needwake = rcu_advance_cbs(my_rnp, rdp) || 4583 rcu_advance_cbs(my_rnp, my_rdp); 4584 rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist); 4585 raw_spin_unlock(&rcu_state.barrier_lock); /* irqs remain disabled. */ 4586 needwake = needwake || rcu_advance_cbs(my_rnp, my_rdp); 4587 rcu_segcblist_disable(&rdp->cblist); 4588 WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) != !rcu_segcblist_n_cbs(&my_rdp->cblist)); 4589 check_cb_ovld_locked(my_rdp, my_rnp); 4590 if (rcu_rdp_is_offloaded(my_rdp)) { 4591 raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */ 4592 __call_rcu_nocb_wake(my_rdp, true, flags); 4593 } else { 4594 rcu_nocb_unlock(my_rdp); /* irqs remain disabled. */ 4595 raw_spin_unlock_irqrestore_rcu_node(my_rnp, flags); 4596 } 4597 if (needwake) 4598 rcu_gp_kthread_wake(); 4599 lockdep_assert_irqs_enabled(); 4600 WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 || 4601 !rcu_segcblist_empty(&rdp->cblist), 4602 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n", 4603 cpu, rcu_segcblist_n_cbs(&rdp->cblist), 4604 rcu_segcblist_first_cb(&rdp->cblist)); 4605 } 4606 4607 /* 4608 * The CPU has been completely removed, and some other CPU is reporting 4609 * this fact from process context. Do the remainder of the cleanup. 4610 * There can only be one CPU hotplug operation at a time, so no need for 4611 * explicit locking. 4612 */ 4613 int rcutree_dead_cpu(unsigned int cpu) 4614 { 4615 WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus - 1); 4616 // Stop-machine done, so allow nohz_full to disable tick. 4617 tick_dep_clear(TICK_DEP_BIT_RCU); 4618 return 0; 4619 } 4620 4621 /* 4622 * Near the end of the offline process. Trace the fact that this CPU 4623 * is going offline. 4624 */ 4625 int rcutree_dying_cpu(unsigned int cpu) 4626 { 4627 bool blkd; 4628 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4629 struct rcu_node *rnp = rdp->mynode; 4630 4631 blkd = !!(READ_ONCE(rnp->qsmask) & rdp->grpmask); 4632 trace_rcu_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq), 4633 blkd ? TPS("cpuofl-bgp") : TPS("cpuofl")); 4634 return 0; 4635 } 4636 4637 /* 4638 * Near the beginning of the process. The CPU is still very much alive 4639 * with pretty much all services enabled. 4640 */ 4641 int rcutree_offline_cpu(unsigned int cpu) 4642 { 4643 unsigned long flags; 4644 struct rcu_data *rdp; 4645 struct rcu_node *rnp; 4646 4647 rdp = per_cpu_ptr(&rcu_data, cpu); 4648 rnp = rdp->mynode; 4649 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4650 rnp->ffmask &= ~rdp->grpmask; 4651 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4652 4653 rcutree_affinity_setting(cpu, cpu); 4654 4655 // nohz_full CPUs need the tick for stop-machine to work quickly 4656 tick_dep_set(TICK_DEP_BIT_RCU); 4657 return 0; 4658 } 4659 #endif /* #ifdef CONFIG_HOTPLUG_CPU */ 4660 4661 /* 4662 * On non-huge systems, use expedited RCU grace periods to make suspend 4663 * and hibernation run faster. 4664 */ 4665 static int rcu_pm_notify(struct notifier_block *self, 4666 unsigned long action, void *hcpu) 4667 { 4668 switch (action) { 4669 case PM_HIBERNATION_PREPARE: 4670 case PM_SUSPEND_PREPARE: 4671 rcu_async_hurry(); 4672 rcu_expedite_gp(); 4673 break; 4674 case PM_POST_HIBERNATION: 4675 case PM_POST_SUSPEND: 4676 rcu_unexpedite_gp(); 4677 rcu_async_relax(); 4678 break; 4679 default: 4680 break; 4681 } 4682 return NOTIFY_OK; 4683 } 4684 4685 #ifdef CONFIG_RCU_EXP_KTHREAD 4686 struct kthread_worker *rcu_exp_gp_kworker; 4687 struct kthread_worker *rcu_exp_par_gp_kworker; 4688 4689 static void __init rcu_start_exp_gp_kworkers(void) 4690 { 4691 const char *par_gp_kworker_name = "rcu_exp_par_gp_kthread_worker"; 4692 const char *gp_kworker_name = "rcu_exp_gp_kthread_worker"; 4693 struct sched_param param = { .sched_priority = kthread_prio }; 4694 4695 rcu_exp_gp_kworker = kthread_create_worker(0, gp_kworker_name); 4696 if (IS_ERR_OR_NULL(rcu_exp_gp_kworker)) { 4697 pr_err("Failed to create %s!\n", gp_kworker_name); 4698 return; 4699 } 4700 4701 rcu_exp_par_gp_kworker = kthread_create_worker(0, par_gp_kworker_name); 4702 if (IS_ERR_OR_NULL(rcu_exp_par_gp_kworker)) { 4703 pr_err("Failed to create %s!\n", par_gp_kworker_name); 4704 kthread_destroy_worker(rcu_exp_gp_kworker); 4705 return; 4706 } 4707 4708 sched_setscheduler_nocheck(rcu_exp_gp_kworker->task, SCHED_FIFO, ¶m); 4709 sched_setscheduler_nocheck(rcu_exp_par_gp_kworker->task, SCHED_FIFO, 4710 ¶m); 4711 } 4712 4713 static inline void rcu_alloc_par_gp_wq(void) 4714 { 4715 } 4716 #else /* !CONFIG_RCU_EXP_KTHREAD */ 4717 struct workqueue_struct *rcu_par_gp_wq; 4718 4719 static void __init rcu_start_exp_gp_kworkers(void) 4720 { 4721 } 4722 4723 static inline void rcu_alloc_par_gp_wq(void) 4724 { 4725 rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0); 4726 WARN_ON(!rcu_par_gp_wq); 4727 } 4728 #endif /* CONFIG_RCU_EXP_KTHREAD */ 4729 4730 /* 4731 * Spawn the kthreads that handle RCU's grace periods. 4732 */ 4733 static int __init rcu_spawn_gp_kthread(void) 4734 { 4735 unsigned long flags; 4736 struct rcu_node *rnp; 4737 struct sched_param sp; 4738 struct task_struct *t; 4739 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 4740 4741 rcu_scheduler_fully_active = 1; 4742 t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name); 4743 if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__)) 4744 return 0; 4745 if (kthread_prio) { 4746 sp.sched_priority = kthread_prio; 4747 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 4748 } 4749 rnp = rcu_get_root(); 4750 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4751 WRITE_ONCE(rcu_state.gp_activity, jiffies); 4752 WRITE_ONCE(rcu_state.gp_req_activity, jiffies); 4753 // Reset .gp_activity and .gp_req_activity before setting .gp_kthread. 4754 smp_store_release(&rcu_state.gp_kthread, t); /* ^^^ */ 4755 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4756 wake_up_process(t); 4757 /* This is a pre-SMP initcall, we expect a single CPU */ 4758 WARN_ON(num_online_cpus() > 1); 4759 /* 4760 * Those kthreads couldn't be created on rcu_init() -> rcutree_prepare_cpu() 4761 * due to rcu_scheduler_fully_active. 4762 */ 4763 rcu_spawn_cpu_nocb_kthread(smp_processor_id()); 4764 rcu_spawn_one_boost_kthread(rdp->mynode); 4765 rcu_spawn_core_kthreads(); 4766 /* Create kthread worker for expedited GPs */ 4767 rcu_start_exp_gp_kworkers(); 4768 return 0; 4769 } 4770 early_initcall(rcu_spawn_gp_kthread); 4771 4772 /* 4773 * This function is invoked towards the end of the scheduler's 4774 * initialization process. Before this is called, the idle task might 4775 * contain synchronous grace-period primitives (during which time, this idle 4776 * task is booting the system, and such primitives are no-ops). After this 4777 * function is called, any synchronous grace-period primitives are run as 4778 * expedited, with the requesting task driving the grace period forward. 4779 * A later core_initcall() rcu_set_runtime_mode() will switch to full 4780 * runtime RCU functionality. 4781 */ 4782 void rcu_scheduler_starting(void) 4783 { 4784 unsigned long flags; 4785 struct rcu_node *rnp; 4786 4787 WARN_ON(num_online_cpus() != 1); 4788 WARN_ON(nr_context_switches() > 0); 4789 rcu_test_sync_prims(); 4790 4791 // Fix up the ->gp_seq counters. 4792 local_irq_save(flags); 4793 rcu_for_each_node_breadth_first(rnp) 4794 rnp->gp_seq_needed = rnp->gp_seq = rcu_state.gp_seq; 4795 local_irq_restore(flags); 4796 4797 // Switch out of early boot mode. 4798 rcu_scheduler_active = RCU_SCHEDULER_INIT; 4799 rcu_test_sync_prims(); 4800 } 4801 4802 /* 4803 * Helper function for rcu_init() that initializes the rcu_state structure. 4804 */ 4805 static void __init rcu_init_one(void) 4806 { 4807 static const char * const buf[] = RCU_NODE_NAME_INIT; 4808 static const char * const fqs[] = RCU_FQS_NAME_INIT; 4809 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS]; 4810 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS]; 4811 4812 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */ 4813 int cpustride = 1; 4814 int i; 4815 int j; 4816 struct rcu_node *rnp; 4817 4818 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */ 4819 4820 /* Silence gcc 4.8 false positive about array index out of range. */ 4821 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS) 4822 panic("rcu_init_one: rcu_num_lvls out of range"); 4823 4824 /* Initialize the level-tracking arrays. */ 4825 4826 for (i = 1; i < rcu_num_lvls; i++) 4827 rcu_state.level[i] = 4828 rcu_state.level[i - 1] + num_rcu_lvl[i - 1]; 4829 rcu_init_levelspread(levelspread, num_rcu_lvl); 4830 4831 /* Initialize the elements themselves, starting from the leaves. */ 4832 4833 for (i = rcu_num_lvls - 1; i >= 0; i--) { 4834 cpustride *= levelspread[i]; 4835 rnp = rcu_state.level[i]; 4836 for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) { 4837 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock)); 4838 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock), 4839 &rcu_node_class[i], buf[i]); 4840 raw_spin_lock_init(&rnp->fqslock); 4841 lockdep_set_class_and_name(&rnp->fqslock, 4842 &rcu_fqs_class[i], fqs[i]); 4843 rnp->gp_seq = rcu_state.gp_seq; 4844 rnp->gp_seq_needed = rcu_state.gp_seq; 4845 rnp->completedqs = rcu_state.gp_seq; 4846 rnp->qsmask = 0; 4847 rnp->qsmaskinit = 0; 4848 rnp->grplo = j * cpustride; 4849 rnp->grphi = (j + 1) * cpustride - 1; 4850 if (rnp->grphi >= nr_cpu_ids) 4851 rnp->grphi = nr_cpu_ids - 1; 4852 if (i == 0) { 4853 rnp->grpnum = 0; 4854 rnp->grpmask = 0; 4855 rnp->parent = NULL; 4856 } else { 4857 rnp->grpnum = j % levelspread[i - 1]; 4858 rnp->grpmask = BIT(rnp->grpnum); 4859 rnp->parent = rcu_state.level[i - 1] + 4860 j / levelspread[i - 1]; 4861 } 4862 rnp->level = i; 4863 INIT_LIST_HEAD(&rnp->blkd_tasks); 4864 rcu_init_one_nocb(rnp); 4865 init_waitqueue_head(&rnp->exp_wq[0]); 4866 init_waitqueue_head(&rnp->exp_wq[1]); 4867 init_waitqueue_head(&rnp->exp_wq[2]); 4868 init_waitqueue_head(&rnp->exp_wq[3]); 4869 spin_lock_init(&rnp->exp_lock); 4870 mutex_init(&rnp->boost_kthread_mutex); 4871 raw_spin_lock_init(&rnp->exp_poll_lock); 4872 rnp->exp_seq_poll_rq = RCU_GET_STATE_COMPLETED; 4873 INIT_WORK(&rnp->exp_poll_wq, sync_rcu_do_polled_gp); 4874 } 4875 } 4876 4877 init_swait_queue_head(&rcu_state.gp_wq); 4878 init_swait_queue_head(&rcu_state.expedited_wq); 4879 rnp = rcu_first_leaf_node(); 4880 for_each_possible_cpu(i) { 4881 while (i > rnp->grphi) 4882 rnp++; 4883 per_cpu_ptr(&rcu_data, i)->mynode = rnp; 4884 rcu_boot_init_percpu_data(i); 4885 } 4886 } 4887 4888 /* 4889 * Force priority from the kernel command-line into range. 4890 */ 4891 static void __init sanitize_kthread_prio(void) 4892 { 4893 int kthread_prio_in = kthread_prio; 4894 4895 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2 4896 && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST)) 4897 kthread_prio = 2; 4898 else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1) 4899 kthread_prio = 1; 4900 else if (kthread_prio < 0) 4901 kthread_prio = 0; 4902 else if (kthread_prio > 99) 4903 kthread_prio = 99; 4904 4905 if (kthread_prio != kthread_prio_in) 4906 pr_alert("%s: Limited prio to %d from %d\n", 4907 __func__, kthread_prio, kthread_prio_in); 4908 } 4909 4910 /* 4911 * Compute the rcu_node tree geometry from kernel parameters. This cannot 4912 * replace the definitions in tree.h because those are needed to size 4913 * the ->node array in the rcu_state structure. 4914 */ 4915 void rcu_init_geometry(void) 4916 { 4917 ulong d; 4918 int i; 4919 static unsigned long old_nr_cpu_ids; 4920 int rcu_capacity[RCU_NUM_LVLS]; 4921 static bool initialized; 4922 4923 if (initialized) { 4924 /* 4925 * Warn if setup_nr_cpu_ids() had not yet been invoked, 4926 * unless nr_cpus_ids == NR_CPUS, in which case who cares? 4927 */ 4928 WARN_ON_ONCE(old_nr_cpu_ids != nr_cpu_ids); 4929 return; 4930 } 4931 4932 old_nr_cpu_ids = nr_cpu_ids; 4933 initialized = true; 4934 4935 /* 4936 * Initialize any unspecified boot parameters. 4937 * The default values of jiffies_till_first_fqs and 4938 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS 4939 * value, which is a function of HZ, then adding one for each 4940 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system. 4941 */ 4942 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; 4943 if (jiffies_till_first_fqs == ULONG_MAX) 4944 jiffies_till_first_fqs = d; 4945 if (jiffies_till_next_fqs == ULONG_MAX) 4946 jiffies_till_next_fqs = d; 4947 adjust_jiffies_till_sched_qs(); 4948 4949 /* If the compile-time values are accurate, just leave. */ 4950 if (rcu_fanout_leaf == RCU_FANOUT_LEAF && 4951 nr_cpu_ids == NR_CPUS) 4952 return; 4953 pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n", 4954 rcu_fanout_leaf, nr_cpu_ids); 4955 4956 /* 4957 * The boot-time rcu_fanout_leaf parameter must be at least two 4958 * and cannot exceed the number of bits in the rcu_node masks. 4959 * Complain and fall back to the compile-time values if this 4960 * limit is exceeded. 4961 */ 4962 if (rcu_fanout_leaf < 2 || 4963 rcu_fanout_leaf > sizeof(unsigned long) * 8) { 4964 rcu_fanout_leaf = RCU_FANOUT_LEAF; 4965 WARN_ON(1); 4966 return; 4967 } 4968 4969 /* 4970 * Compute number of nodes that can be handled an rcu_node tree 4971 * with the given number of levels. 4972 */ 4973 rcu_capacity[0] = rcu_fanout_leaf; 4974 for (i = 1; i < RCU_NUM_LVLS; i++) 4975 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT; 4976 4977 /* 4978 * The tree must be able to accommodate the configured number of CPUs. 4979 * If this limit is exceeded, fall back to the compile-time values. 4980 */ 4981 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) { 4982 rcu_fanout_leaf = RCU_FANOUT_LEAF; 4983 WARN_ON(1); 4984 return; 4985 } 4986 4987 /* Calculate the number of levels in the tree. */ 4988 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) { 4989 } 4990 rcu_num_lvls = i + 1; 4991 4992 /* Calculate the number of rcu_nodes at each level of the tree. */ 4993 for (i = 0; i < rcu_num_lvls; i++) { 4994 int cap = rcu_capacity[(rcu_num_lvls - 1) - i]; 4995 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap); 4996 } 4997 4998 /* Calculate the total number of rcu_node structures. */ 4999 rcu_num_nodes = 0; 5000 for (i = 0; i < rcu_num_lvls; i++) 5001 rcu_num_nodes += num_rcu_lvl[i]; 5002 } 5003 5004 /* 5005 * Dump out the structure of the rcu_node combining tree associated 5006 * with the rcu_state structure. 5007 */ 5008 static void __init rcu_dump_rcu_node_tree(void) 5009 { 5010 int level = 0; 5011 struct rcu_node *rnp; 5012 5013 pr_info("rcu_node tree layout dump\n"); 5014 pr_info(" "); 5015 rcu_for_each_node_breadth_first(rnp) { 5016 if (rnp->level != level) { 5017 pr_cont("\n"); 5018 pr_info(" "); 5019 level = rnp->level; 5020 } 5021 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum); 5022 } 5023 pr_cont("\n"); 5024 } 5025 5026 struct workqueue_struct *rcu_gp_wq; 5027 5028 static void __init kfree_rcu_batch_init(void) 5029 { 5030 int cpu; 5031 int i, j; 5032 5033 /* Clamp it to [0:100] seconds interval. */ 5034 if (rcu_delay_page_cache_fill_msec < 0 || 5035 rcu_delay_page_cache_fill_msec > 100 * MSEC_PER_SEC) { 5036 5037 rcu_delay_page_cache_fill_msec = 5038 clamp(rcu_delay_page_cache_fill_msec, 0, 5039 (int) (100 * MSEC_PER_SEC)); 5040 5041 pr_info("Adjusting rcutree.rcu_delay_page_cache_fill_msec to %d ms.\n", 5042 rcu_delay_page_cache_fill_msec); 5043 } 5044 5045 for_each_possible_cpu(cpu) { 5046 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); 5047 5048 for (i = 0; i < KFREE_N_BATCHES; i++) { 5049 INIT_RCU_WORK(&krcp->krw_arr[i].rcu_work, kfree_rcu_work); 5050 krcp->krw_arr[i].krcp = krcp; 5051 5052 for (j = 0; j < FREE_N_CHANNELS; j++) 5053 INIT_LIST_HEAD(&krcp->krw_arr[i].bulk_head_free[j]); 5054 } 5055 5056 for (i = 0; i < FREE_N_CHANNELS; i++) 5057 INIT_LIST_HEAD(&krcp->bulk_head[i]); 5058 5059 INIT_DELAYED_WORK(&krcp->monitor_work, kfree_rcu_monitor); 5060 INIT_DELAYED_WORK(&krcp->page_cache_work, fill_page_cache_func); 5061 krcp->initialized = true; 5062 } 5063 if (register_shrinker(&kfree_rcu_shrinker, "rcu-kfree")) 5064 pr_err("Failed to register kfree_rcu() shrinker!\n"); 5065 } 5066 5067 void __init rcu_init(void) 5068 { 5069 int cpu = smp_processor_id(); 5070 5071 rcu_early_boot_tests(); 5072 5073 kfree_rcu_batch_init(); 5074 rcu_bootup_announce(); 5075 sanitize_kthread_prio(); 5076 rcu_init_geometry(); 5077 rcu_init_one(); 5078 if (dump_tree) 5079 rcu_dump_rcu_node_tree(); 5080 if (use_softirq) 5081 open_softirq(RCU_SOFTIRQ, rcu_core_si); 5082 5083 /* 5084 * We don't need protection against CPU-hotplug here because 5085 * this is called early in boot, before either interrupts 5086 * or the scheduler are operational. 5087 */ 5088 pm_notifier(rcu_pm_notify, 0); 5089 WARN_ON(num_online_cpus() > 1); // Only one CPU this early in boot. 5090 rcutree_prepare_cpu(cpu); 5091 rcutree_report_cpu_starting(cpu); 5092 rcutree_online_cpu(cpu); 5093 5094 /* Create workqueue for Tree SRCU and for expedited GPs. */ 5095 rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0); 5096 WARN_ON(!rcu_gp_wq); 5097 rcu_alloc_par_gp_wq(); 5098 5099 /* Fill in default value for rcutree.qovld boot parameter. */ 5100 /* -After- the rcu_node ->lock fields are initialized! */ 5101 if (qovld < 0) 5102 qovld_calc = DEFAULT_RCU_QOVLD_MULT * qhimark; 5103 else 5104 qovld_calc = qovld; 5105 5106 // Kick-start in case any polled grace periods started early. 5107 (void)start_poll_synchronize_rcu_expedited(); 5108 5109 rcu_test_sync_prims(); 5110 } 5111 5112 #include "tree_stall.h" 5113 #include "tree_exp.h" 5114 #include "tree_nocb.h" 5115 #include "tree_plugin.h" 5116