1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Read-Copy Update mechanism for mutual exclusion (tree-based version) 4 * 5 * Copyright IBM Corporation, 2008 6 * 7 * Authors: Dipankar Sarma <dipankar@in.ibm.com> 8 * Manfred Spraul <manfred@colorfullife.com> 9 * Paul E. McKenney <paulmck@linux.ibm.com> 10 * 11 * Based on the original work by Paul McKenney <paulmck@linux.ibm.com> 12 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 13 * 14 * For detailed explanation of Read-Copy Update mechanism see - 15 * Documentation/RCU 16 */ 17 18 #define pr_fmt(fmt) "rcu: " fmt 19 20 #include <linux/types.h> 21 #include <linux/kernel.h> 22 #include <linux/init.h> 23 #include <linux/spinlock.h> 24 #include <linux/smp.h> 25 #include <linux/rcupdate_wait.h> 26 #include <linux/interrupt.h> 27 #include <linux/sched.h> 28 #include <linux/sched/debug.h> 29 #include <linux/nmi.h> 30 #include <linux/atomic.h> 31 #include <linux/bitops.h> 32 #include <linux/export.h> 33 #include <linux/completion.h> 34 #include <linux/kmemleak.h> 35 #include <linux/moduleparam.h> 36 #include <linux/panic.h> 37 #include <linux/panic_notifier.h> 38 #include <linux/percpu.h> 39 #include <linux/notifier.h> 40 #include <linux/cpu.h> 41 #include <linux/mutex.h> 42 #include <linux/time.h> 43 #include <linux/kernel_stat.h> 44 #include <linux/wait.h> 45 #include <linux/kthread.h> 46 #include <uapi/linux/sched/types.h> 47 #include <linux/prefetch.h> 48 #include <linux/delay.h> 49 #include <linux/random.h> 50 #include <linux/trace_events.h> 51 #include <linux/suspend.h> 52 #include <linux/ftrace.h> 53 #include <linux/tick.h> 54 #include <linux/sysrq.h> 55 #include <linux/kprobes.h> 56 #include <linux/gfp.h> 57 #include <linux/oom.h> 58 #include <linux/smpboot.h> 59 #include <linux/jiffies.h> 60 #include <linux/slab.h> 61 #include <linux/sched/isolation.h> 62 #include <linux/sched/clock.h> 63 #include <linux/vmalloc.h> 64 #include <linux/mm.h> 65 #include <linux/kasan.h> 66 #include <linux/context_tracking.h> 67 #include "../time/tick-internal.h" 68 69 #include "tree.h" 70 #include "rcu.h" 71 72 #ifdef MODULE_PARAM_PREFIX 73 #undef MODULE_PARAM_PREFIX 74 #endif 75 #define MODULE_PARAM_PREFIX "rcutree." 76 77 /* Data structures. */ 78 static void rcu_sr_normal_gp_cleanup_work(struct work_struct *); 79 80 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = { 81 .gpwrap = true, 82 }; 83 static struct rcu_state rcu_state = { 84 .level = { &rcu_state.node[0] }, 85 .gp_state = RCU_GP_IDLE, 86 .gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT, 87 .barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex), 88 .barrier_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.barrier_lock), 89 .name = RCU_NAME, 90 .abbr = RCU_ABBR, 91 .exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex), 92 .exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex), 93 .ofl_lock = __ARCH_SPIN_LOCK_UNLOCKED, 94 .srs_cleanup_work = __WORK_INITIALIZER(rcu_state.srs_cleanup_work, 95 rcu_sr_normal_gp_cleanup_work), 96 .srs_cleanups_pending = ATOMIC_INIT(0), 97 #ifdef CONFIG_RCU_NOCB_CPU 98 .nocb_mutex = __MUTEX_INITIALIZER(rcu_state.nocb_mutex), 99 #endif 100 }; 101 102 /* Dump rcu_node combining tree at boot to verify correct setup. */ 103 static bool dump_tree; 104 module_param(dump_tree, bool, 0444); 105 /* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */ 106 static bool use_softirq = !IS_ENABLED(CONFIG_PREEMPT_RT); 107 #ifndef CONFIG_PREEMPT_RT 108 module_param(use_softirq, bool, 0444); 109 #endif 110 /* Control rcu_node-tree auto-balancing at boot time. */ 111 static bool rcu_fanout_exact; 112 module_param(rcu_fanout_exact, bool, 0444); 113 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */ 114 static int rcu_fanout_leaf = RCU_FANOUT_LEAF; 115 module_param(rcu_fanout_leaf, int, 0444); 116 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS; 117 /* Number of rcu_nodes at specified level. */ 118 int num_rcu_lvl[] = NUM_RCU_LVL_INIT; 119 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */ 120 121 /* 122 * The rcu_scheduler_active variable is initialized to the value 123 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the 124 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE, 125 * RCU can assume that there is but one task, allowing RCU to (for example) 126 * optimize synchronize_rcu() to a simple barrier(). When this variable 127 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required 128 * to detect real grace periods. This variable is also used to suppress 129 * boot-time false positives from lockdep-RCU error checking. Finally, it 130 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU 131 * is fully initialized, including all of its kthreads having been spawned. 132 */ 133 int rcu_scheduler_active __read_mostly; 134 EXPORT_SYMBOL_GPL(rcu_scheduler_active); 135 136 /* 137 * The rcu_scheduler_fully_active variable transitions from zero to one 138 * during the early_initcall() processing, which is after the scheduler 139 * is capable of creating new tasks. So RCU processing (for example, 140 * creating tasks for RCU priority boosting) must be delayed until after 141 * rcu_scheduler_fully_active transitions from zero to one. We also 142 * currently delay invocation of any RCU callbacks until after this point. 143 * 144 * It might later prove better for people registering RCU callbacks during 145 * early boot to take responsibility for these callbacks, but one step at 146 * a time. 147 */ 148 static int rcu_scheduler_fully_active __read_mostly; 149 150 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp, 151 unsigned long gps, unsigned long flags); 152 static struct task_struct *rcu_boost_task(struct rcu_node *rnp); 153 static void invoke_rcu_core(void); 154 static void rcu_report_exp_rdp(struct rcu_data *rdp); 155 static void sync_sched_exp_online_cleanup(int cpu); 156 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp); 157 static bool rcu_rdp_is_offloaded(struct rcu_data *rdp); 158 static bool rcu_rdp_cpu_online(struct rcu_data *rdp); 159 static bool rcu_init_invoked(void); 160 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf); 161 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf); 162 163 /* 164 * rcuc/rcub/rcuop kthread realtime priority. The "rcuop" 165 * real-time priority(enabling/disabling) is controlled by 166 * the extra CONFIG_RCU_NOCB_CPU_CB_BOOST configuration. 167 */ 168 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0; 169 module_param(kthread_prio, int, 0444); 170 171 /* Delay in jiffies for grace-period initialization delays, debug only. */ 172 173 static int gp_preinit_delay; 174 module_param(gp_preinit_delay, int, 0444); 175 static int gp_init_delay; 176 module_param(gp_init_delay, int, 0444); 177 static int gp_cleanup_delay; 178 module_param(gp_cleanup_delay, int, 0444); 179 static int nohz_full_patience_delay; 180 module_param(nohz_full_patience_delay, int, 0444); 181 static int nohz_full_patience_delay_jiffies; 182 183 // Add delay to rcu_read_unlock() for strict grace periods. 184 static int rcu_unlock_delay; 185 #ifdef CONFIG_RCU_STRICT_GRACE_PERIOD 186 module_param(rcu_unlock_delay, int, 0444); 187 #endif 188 189 /* Retrieve RCU kthreads priority for rcutorture */ 190 int rcu_get_gp_kthreads_prio(void) 191 { 192 return kthread_prio; 193 } 194 EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio); 195 196 /* 197 * Number of grace periods between delays, normalized by the duration of 198 * the delay. The longer the delay, the more the grace periods between 199 * each delay. The reason for this normalization is that it means that, 200 * for non-zero delays, the overall slowdown of grace periods is constant 201 * regardless of the duration of the delay. This arrangement balances 202 * the need for long delays to increase some race probabilities with the 203 * need for fast grace periods to increase other race probabilities. 204 */ 205 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays for debugging. */ 206 207 /* 208 * Return true if an RCU grace period is in progress. The READ_ONCE()s 209 * permit this function to be invoked without holding the root rcu_node 210 * structure's ->lock, but of course results can be subject to change. 211 */ 212 static int rcu_gp_in_progress(void) 213 { 214 return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq)); 215 } 216 217 /* 218 * Return the number of callbacks queued on the specified CPU. 219 * Handles both the nocbs and normal cases. 220 */ 221 static long rcu_get_n_cbs_cpu(int cpu) 222 { 223 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 224 225 if (rcu_segcblist_is_enabled(&rdp->cblist)) 226 return rcu_segcblist_n_cbs(&rdp->cblist); 227 return 0; 228 } 229 230 /** 231 * rcu_softirq_qs - Provide a set of RCU quiescent states in softirq processing 232 * 233 * Mark a quiescent state for RCU, Tasks RCU, and Tasks Trace RCU. 234 * This is a special-purpose function to be used in the softirq 235 * infrastructure and perhaps the occasional long-running softirq 236 * handler. 237 * 238 * Note that from RCU's viewpoint, a call to rcu_softirq_qs() is 239 * equivalent to momentarily completely enabling preemption. For 240 * example, given this code:: 241 * 242 * local_bh_disable(); 243 * do_something(); 244 * rcu_softirq_qs(); // A 245 * do_something_else(); 246 * local_bh_enable(); // B 247 * 248 * A call to synchronize_rcu() that began concurrently with the 249 * call to do_something() would be guaranteed to wait only until 250 * execution reached statement A. Without that rcu_softirq_qs(), 251 * that same synchronize_rcu() would instead be guaranteed to wait 252 * until execution reached statement B. 253 */ 254 void rcu_softirq_qs(void) 255 { 256 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) || 257 lock_is_held(&rcu_lock_map) || 258 lock_is_held(&rcu_sched_lock_map), 259 "Illegal rcu_softirq_qs() in RCU read-side critical section"); 260 rcu_qs(); 261 rcu_preempt_deferred_qs(current); 262 rcu_tasks_qs(current, false); 263 } 264 265 /* 266 * Reset the current CPU's RCU_WATCHING counter to indicate that the 267 * newly onlined CPU is no longer in an extended quiescent state. 268 * This will either leave the counter unchanged, or increment it 269 * to the next non-quiescent value. 270 * 271 * The non-atomic test/increment sequence works because the upper bits 272 * of the ->state variable are manipulated only by the corresponding CPU, 273 * or when the corresponding CPU is offline. 274 */ 275 static void rcu_watching_online(void) 276 { 277 if (ct_rcu_watching() & CT_RCU_WATCHING) 278 return; 279 ct_state_inc(CT_RCU_WATCHING); 280 } 281 282 /* 283 * Return true if the snapshot returned from ct_rcu_watching() 284 * indicates that RCU is in an extended quiescent state. 285 */ 286 static bool rcu_watching_snap_in_eqs(int snap) 287 { 288 return !(snap & CT_RCU_WATCHING); 289 } 290 291 /** 292 * rcu_watching_snap_stopped_since() - Has RCU stopped watching a given CPU 293 * since the specified @snap? 294 * 295 * @rdp: The rcu_data corresponding to the CPU for which to check EQS. 296 * @snap: rcu_watching snapshot taken when the CPU wasn't in an EQS. 297 * 298 * Returns true if the CPU corresponding to @rdp has spent some time in an 299 * extended quiescent state since @snap. Note that this doesn't check if it 300 * /still/ is in an EQS, just that it went through one since @snap. 301 * 302 * This is meant to be used in a loop waiting for a CPU to go through an EQS. 303 */ 304 static bool rcu_watching_snap_stopped_since(struct rcu_data *rdp, int snap) 305 { 306 /* 307 * The first failing snapshot is already ordered against the accesses 308 * performed by the remote CPU after it exits idle. 309 * 310 * The second snapshot therefore only needs to order against accesses 311 * performed by the remote CPU prior to entering idle and therefore can 312 * rely solely on acquire semantics. 313 */ 314 if (WARN_ON_ONCE(rcu_watching_snap_in_eqs(snap))) 315 return true; 316 317 return snap != ct_rcu_watching_cpu_acquire(rdp->cpu); 318 } 319 320 /* 321 * Return true if the referenced integer is zero while the specified 322 * CPU remains within a single extended quiescent state. 323 */ 324 bool rcu_watching_zero_in_eqs(int cpu, int *vp) 325 { 326 int snap; 327 328 // If not quiescent, force back to earlier extended quiescent state. 329 snap = ct_rcu_watching_cpu(cpu) & ~CT_RCU_WATCHING; 330 smp_rmb(); // Order CT state and *vp reads. 331 if (READ_ONCE(*vp)) 332 return false; // Non-zero, so report failure; 333 smp_rmb(); // Order *vp read and CT state re-read. 334 335 // If still in the same extended quiescent state, we are good! 336 return snap == ct_rcu_watching_cpu(cpu); 337 } 338 339 /* 340 * Let the RCU core know that this CPU has gone through the scheduler, 341 * which is a quiescent state. This is called when the need for a 342 * quiescent state is urgent, so we burn an atomic operation and full 343 * memory barriers to let the RCU core know about it, regardless of what 344 * this CPU might (or might not) do in the near future. 345 * 346 * We inform the RCU core by emulating a zero-duration dyntick-idle period. 347 * 348 * The caller must have disabled interrupts and must not be idle. 349 */ 350 notrace void rcu_momentary_eqs(void) 351 { 352 int seq; 353 354 raw_cpu_write(rcu_data.rcu_need_heavy_qs, false); 355 seq = ct_state_inc(2 * CT_RCU_WATCHING); 356 /* It is illegal to call this from idle state. */ 357 WARN_ON_ONCE(!(seq & CT_RCU_WATCHING)); 358 rcu_preempt_deferred_qs(current); 359 } 360 EXPORT_SYMBOL_GPL(rcu_momentary_eqs); 361 362 /** 363 * rcu_is_cpu_rrupt_from_idle - see if 'interrupted' from idle 364 * 365 * If the current CPU is idle and running at a first-level (not nested) 366 * interrupt, or directly, from idle, return true. 367 * 368 * The caller must have at least disabled IRQs. 369 */ 370 static int rcu_is_cpu_rrupt_from_idle(void) 371 { 372 long nesting; 373 374 /* 375 * Usually called from the tick; but also used from smp_function_call() 376 * for expedited grace periods. This latter can result in running from 377 * the idle task, instead of an actual IPI. 378 */ 379 lockdep_assert_irqs_disabled(); 380 381 /* Check for counter underflows */ 382 RCU_LOCKDEP_WARN(ct_nesting() < 0, 383 "RCU nesting counter underflow!"); 384 RCU_LOCKDEP_WARN(ct_nmi_nesting() <= 0, 385 "RCU nmi_nesting counter underflow/zero!"); 386 387 /* Are we at first interrupt nesting level? */ 388 nesting = ct_nmi_nesting(); 389 if (nesting > 1) 390 return false; 391 392 /* 393 * If we're not in an interrupt, we must be in the idle task! 394 */ 395 WARN_ON_ONCE(!nesting && !is_idle_task(current)); 396 397 /* Does CPU appear to be idle from an RCU standpoint? */ 398 return ct_nesting() == 0; 399 } 400 401 #define DEFAULT_RCU_BLIMIT (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 1000 : 10) 402 // Maximum callbacks per rcu_do_batch ... 403 #define DEFAULT_MAX_RCU_BLIMIT 10000 // ... even during callback flood. 404 static long blimit = DEFAULT_RCU_BLIMIT; 405 #define DEFAULT_RCU_QHIMARK 10000 // If this many pending, ignore blimit. 406 static long qhimark = DEFAULT_RCU_QHIMARK; 407 #define DEFAULT_RCU_QLOMARK 100 // Once only this many pending, use blimit. 408 static long qlowmark = DEFAULT_RCU_QLOMARK; 409 #define DEFAULT_RCU_QOVLD_MULT 2 410 #define DEFAULT_RCU_QOVLD (DEFAULT_RCU_QOVLD_MULT * DEFAULT_RCU_QHIMARK) 411 static long qovld = DEFAULT_RCU_QOVLD; // If this many pending, hammer QS. 412 static long qovld_calc = -1; // No pre-initialization lock acquisitions! 413 414 module_param(blimit, long, 0444); 415 module_param(qhimark, long, 0444); 416 module_param(qlowmark, long, 0444); 417 module_param(qovld, long, 0444); 418 419 static ulong jiffies_till_first_fqs = IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 0 : ULONG_MAX; 420 static ulong jiffies_till_next_fqs = ULONG_MAX; 421 static bool rcu_kick_kthreads; 422 static int rcu_divisor = 7; 423 module_param(rcu_divisor, int, 0644); 424 425 /* Force an exit from rcu_do_batch() after 3 milliseconds. */ 426 static long rcu_resched_ns = 3 * NSEC_PER_MSEC; 427 module_param(rcu_resched_ns, long, 0644); 428 429 /* 430 * How long the grace period must be before we start recruiting 431 * quiescent-state help from rcu_note_context_switch(). 432 */ 433 static ulong jiffies_till_sched_qs = ULONG_MAX; 434 module_param(jiffies_till_sched_qs, ulong, 0444); 435 static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */ 436 module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */ 437 438 /* 439 * Make sure that we give the grace-period kthread time to detect any 440 * idle CPUs before taking active measures to force quiescent states. 441 * However, don't go below 100 milliseconds, adjusted upwards for really 442 * large systems. 443 */ 444 static void adjust_jiffies_till_sched_qs(void) 445 { 446 unsigned long j; 447 448 /* If jiffies_till_sched_qs was specified, respect the request. */ 449 if (jiffies_till_sched_qs != ULONG_MAX) { 450 WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs); 451 return; 452 } 453 /* Otherwise, set to third fqs scan, but bound below on large system. */ 454 j = READ_ONCE(jiffies_till_first_fqs) + 455 2 * READ_ONCE(jiffies_till_next_fqs); 456 if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV) 457 j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; 458 pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j); 459 WRITE_ONCE(jiffies_to_sched_qs, j); 460 } 461 462 static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp) 463 { 464 ulong j; 465 int ret = kstrtoul(val, 0, &j); 466 467 if (!ret) { 468 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j); 469 adjust_jiffies_till_sched_qs(); 470 } 471 return ret; 472 } 473 474 static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp) 475 { 476 ulong j; 477 int ret = kstrtoul(val, 0, &j); 478 479 if (!ret) { 480 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1)); 481 adjust_jiffies_till_sched_qs(); 482 } 483 return ret; 484 } 485 486 static const struct kernel_param_ops first_fqs_jiffies_ops = { 487 .set = param_set_first_fqs_jiffies, 488 .get = param_get_ulong, 489 }; 490 491 static const struct kernel_param_ops next_fqs_jiffies_ops = { 492 .set = param_set_next_fqs_jiffies, 493 .get = param_get_ulong, 494 }; 495 496 module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644); 497 module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644); 498 module_param(rcu_kick_kthreads, bool, 0644); 499 500 static void force_qs_rnp(int (*f)(struct rcu_data *rdp)); 501 static int rcu_pending(int user); 502 503 /* 504 * Return the number of RCU GPs completed thus far for debug & stats. 505 */ 506 unsigned long rcu_get_gp_seq(void) 507 { 508 return READ_ONCE(rcu_state.gp_seq); 509 } 510 EXPORT_SYMBOL_GPL(rcu_get_gp_seq); 511 512 /* 513 * Return the number of RCU expedited batches completed thus far for 514 * debug & stats. Odd numbers mean that a batch is in progress, even 515 * numbers mean idle. The value returned will thus be roughly double 516 * the cumulative batches since boot. 517 */ 518 unsigned long rcu_exp_batches_completed(void) 519 { 520 return rcu_state.expedited_sequence; 521 } 522 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed); 523 524 /* 525 * Return the root node of the rcu_state structure. 526 */ 527 static struct rcu_node *rcu_get_root(void) 528 { 529 return &rcu_state.node[0]; 530 } 531 532 /* 533 * Send along grace-period-related data for rcutorture diagnostics. 534 */ 535 void rcutorture_get_gp_data(int *flags, unsigned long *gp_seq) 536 { 537 *flags = READ_ONCE(rcu_state.gp_flags); 538 *gp_seq = rcu_seq_current(&rcu_state.gp_seq); 539 } 540 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data); 541 542 #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK)) 543 /* 544 * An empty function that will trigger a reschedule on 545 * IRQ tail once IRQs get re-enabled on userspace/guest resume. 546 */ 547 static void late_wakeup_func(struct irq_work *work) 548 { 549 } 550 551 static DEFINE_PER_CPU(struct irq_work, late_wakeup_work) = 552 IRQ_WORK_INIT(late_wakeup_func); 553 554 /* 555 * If either: 556 * 557 * 1) the task is about to enter in guest mode and $ARCH doesn't support KVM generic work 558 * 2) the task is about to enter in user mode and $ARCH doesn't support generic entry. 559 * 560 * In these cases the late RCU wake ups aren't supported in the resched loops and our 561 * last resort is to fire a local irq_work that will trigger a reschedule once IRQs 562 * get re-enabled again. 563 */ 564 noinstr void rcu_irq_work_resched(void) 565 { 566 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 567 568 if (IS_ENABLED(CONFIG_GENERIC_ENTRY) && !(current->flags & PF_VCPU)) 569 return; 570 571 if (IS_ENABLED(CONFIG_KVM_XFER_TO_GUEST_WORK) && (current->flags & PF_VCPU)) 572 return; 573 574 instrumentation_begin(); 575 if (do_nocb_deferred_wakeup(rdp) && need_resched()) { 576 irq_work_queue(this_cpu_ptr(&late_wakeup_work)); 577 } 578 instrumentation_end(); 579 } 580 #endif /* #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK)) */ 581 582 #ifdef CONFIG_PROVE_RCU 583 /** 584 * rcu_irq_exit_check_preempt - Validate that scheduling is possible 585 */ 586 void rcu_irq_exit_check_preempt(void) 587 { 588 lockdep_assert_irqs_disabled(); 589 590 RCU_LOCKDEP_WARN(ct_nesting() <= 0, 591 "RCU nesting counter underflow/zero!"); 592 RCU_LOCKDEP_WARN(ct_nmi_nesting() != 593 CT_NESTING_IRQ_NONIDLE, 594 "Bad RCU nmi_nesting counter\n"); 595 RCU_LOCKDEP_WARN(!rcu_is_watching_curr_cpu(), 596 "RCU in extended quiescent state!"); 597 } 598 #endif /* #ifdef CONFIG_PROVE_RCU */ 599 600 #ifdef CONFIG_NO_HZ_FULL 601 /** 602 * __rcu_irq_enter_check_tick - Enable scheduler tick on CPU if RCU needs it. 603 * 604 * The scheduler tick is not normally enabled when CPUs enter the kernel 605 * from nohz_full userspace execution. After all, nohz_full userspace 606 * execution is an RCU quiescent state and the time executing in the kernel 607 * is quite short. Except of course when it isn't. And it is not hard to 608 * cause a large system to spend tens of seconds or even minutes looping 609 * in the kernel, which can cause a number of problems, include RCU CPU 610 * stall warnings. 611 * 612 * Therefore, if a nohz_full CPU fails to report a quiescent state 613 * in a timely manner, the RCU grace-period kthread sets that CPU's 614 * ->rcu_urgent_qs flag with the expectation that the next interrupt or 615 * exception will invoke this function, which will turn on the scheduler 616 * tick, which will enable RCU to detect that CPU's quiescent states, 617 * for example, due to cond_resched() calls in CONFIG_PREEMPT=n kernels. 618 * The tick will be disabled once a quiescent state is reported for 619 * this CPU. 620 * 621 * Of course, in carefully tuned systems, there might never be an 622 * interrupt or exception. In that case, the RCU grace-period kthread 623 * will eventually cause one to happen. However, in less carefully 624 * controlled environments, this function allows RCU to get what it 625 * needs without creating otherwise useless interruptions. 626 */ 627 void __rcu_irq_enter_check_tick(void) 628 { 629 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 630 631 // If we're here from NMI there's nothing to do. 632 if (in_nmi()) 633 return; 634 635 RCU_LOCKDEP_WARN(!rcu_is_watching_curr_cpu(), 636 "Illegal rcu_irq_enter_check_tick() from extended quiescent state"); 637 638 if (!tick_nohz_full_cpu(rdp->cpu) || 639 !READ_ONCE(rdp->rcu_urgent_qs) || 640 READ_ONCE(rdp->rcu_forced_tick)) { 641 // RCU doesn't need nohz_full help from this CPU, or it is 642 // already getting that help. 643 return; 644 } 645 646 // We get here only when not in an extended quiescent state and 647 // from interrupts (as opposed to NMIs). Therefore, (1) RCU is 648 // already watching and (2) The fact that we are in an interrupt 649 // handler and that the rcu_node lock is an irq-disabled lock 650 // prevents self-deadlock. So we can safely recheck under the lock. 651 // Note that the nohz_full state currently cannot change. 652 raw_spin_lock_rcu_node(rdp->mynode); 653 if (READ_ONCE(rdp->rcu_urgent_qs) && !rdp->rcu_forced_tick) { 654 // A nohz_full CPU is in the kernel and RCU needs a 655 // quiescent state. Turn on the tick! 656 WRITE_ONCE(rdp->rcu_forced_tick, true); 657 tick_dep_set_cpu(rdp->cpu, TICK_DEP_BIT_RCU); 658 } 659 raw_spin_unlock_rcu_node(rdp->mynode); 660 } 661 NOKPROBE_SYMBOL(__rcu_irq_enter_check_tick); 662 #endif /* CONFIG_NO_HZ_FULL */ 663 664 /* 665 * Check to see if any future non-offloaded RCU-related work will need 666 * to be done by the current CPU, even if none need be done immediately, 667 * returning 1 if so. This function is part of the RCU implementation; 668 * it is -not- an exported member of the RCU API. This is used by 669 * the idle-entry code to figure out whether it is safe to disable the 670 * scheduler-clock interrupt. 671 * 672 * Just check whether or not this CPU has non-offloaded RCU callbacks 673 * queued. 674 */ 675 int rcu_needs_cpu(void) 676 { 677 return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) && 678 !rcu_rdp_is_offloaded(this_cpu_ptr(&rcu_data)); 679 } 680 681 /* 682 * If any sort of urgency was applied to the current CPU (for example, 683 * the scheduler-clock interrupt was enabled on a nohz_full CPU) in order 684 * to get to a quiescent state, disable it. 685 */ 686 static void rcu_disable_urgency_upon_qs(struct rcu_data *rdp) 687 { 688 raw_lockdep_assert_held_rcu_node(rdp->mynode); 689 WRITE_ONCE(rdp->rcu_urgent_qs, false); 690 WRITE_ONCE(rdp->rcu_need_heavy_qs, false); 691 if (tick_nohz_full_cpu(rdp->cpu) && rdp->rcu_forced_tick) { 692 tick_dep_clear_cpu(rdp->cpu, TICK_DEP_BIT_RCU); 693 WRITE_ONCE(rdp->rcu_forced_tick, false); 694 } 695 } 696 697 /** 698 * rcu_is_watching - RCU read-side critical sections permitted on current CPU? 699 * 700 * Return @true if RCU is watching the running CPU and @false otherwise. 701 * An @true return means that this CPU can safely enter RCU read-side 702 * critical sections. 703 * 704 * Although calls to rcu_is_watching() from most parts of the kernel 705 * will return @true, there are important exceptions. For example, if the 706 * current CPU is deep within its idle loop, in kernel entry/exit code, 707 * or offline, rcu_is_watching() will return @false. 708 * 709 * Make notrace because it can be called by the internal functions of 710 * ftrace, and making this notrace removes unnecessary recursion calls. 711 */ 712 notrace bool rcu_is_watching(void) 713 { 714 bool ret; 715 716 preempt_disable_notrace(); 717 ret = rcu_is_watching_curr_cpu(); 718 preempt_enable_notrace(); 719 return ret; 720 } 721 EXPORT_SYMBOL_GPL(rcu_is_watching); 722 723 /* 724 * If a holdout task is actually running, request an urgent quiescent 725 * state from its CPU. This is unsynchronized, so migrations can cause 726 * the request to go to the wrong CPU. Which is OK, all that will happen 727 * is that the CPU's next context switch will be a bit slower and next 728 * time around this task will generate another request. 729 */ 730 void rcu_request_urgent_qs_task(struct task_struct *t) 731 { 732 int cpu; 733 734 barrier(); 735 cpu = task_cpu(t); 736 if (!task_curr(t)) 737 return; /* This task is not running on that CPU. */ 738 smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true); 739 } 740 741 /* 742 * When trying to report a quiescent state on behalf of some other CPU, 743 * it is our responsibility to check for and handle potential overflow 744 * of the rcu_node ->gp_seq counter with respect to the rcu_data counters. 745 * After all, the CPU might be in deep idle state, and thus executing no 746 * code whatsoever. 747 */ 748 static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp) 749 { 750 raw_lockdep_assert_held_rcu_node(rnp); 751 if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4, 752 rnp->gp_seq)) 753 WRITE_ONCE(rdp->gpwrap, true); 754 if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq)) 755 rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4; 756 } 757 758 /* 759 * Snapshot the specified CPU's RCU_WATCHING counter so that we can later 760 * credit them with an implicit quiescent state. Return 1 if this CPU 761 * is in dynticks idle mode, which is an extended quiescent state. 762 */ 763 static int rcu_watching_snap_save(struct rcu_data *rdp) 764 { 765 /* 766 * Full ordering between remote CPU's post idle accesses and updater's 767 * accesses prior to current GP (and also the started GP sequence number) 768 * is enforced by rcu_seq_start() implicit barrier and even further by 769 * smp_mb__after_unlock_lock() barriers chained all the way throughout the 770 * rnp locking tree since rcu_gp_init() and up to the current leaf rnp 771 * locking. 772 * 773 * Ordering between remote CPU's pre idle accesses and post grace period 774 * updater's accesses is enforced by the below acquire semantic. 775 */ 776 rdp->watching_snap = ct_rcu_watching_cpu_acquire(rdp->cpu); 777 if (rcu_watching_snap_in_eqs(rdp->watching_snap)) { 778 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti")); 779 rcu_gpnum_ovf(rdp->mynode, rdp); 780 return 1; 781 } 782 return 0; 783 } 784 785 /* 786 * Returns positive if the specified CPU has passed through a quiescent state 787 * by virtue of being in or having passed through an dynticks idle state since 788 * the last call to rcu_watching_snap_save() for this same CPU, or by 789 * virtue of having been offline. 790 * 791 * Returns negative if the specified CPU needs a force resched. 792 * 793 * Returns zero otherwise. 794 */ 795 static int rcu_watching_snap_recheck(struct rcu_data *rdp) 796 { 797 unsigned long jtsq; 798 int ret = 0; 799 struct rcu_node *rnp = rdp->mynode; 800 801 /* 802 * If the CPU passed through or entered a dynticks idle phase with 803 * no active irq/NMI handlers, then we can safely pretend that the CPU 804 * already acknowledged the request to pass through a quiescent 805 * state. Either way, that CPU cannot possibly be in an RCU 806 * read-side critical section that started before the beginning 807 * of the current RCU grace period. 808 */ 809 if (rcu_watching_snap_stopped_since(rdp, rdp->watching_snap)) { 810 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti")); 811 rcu_gpnum_ovf(rnp, rdp); 812 return 1; 813 } 814 815 /* 816 * Complain if a CPU that is considered to be offline from RCU's 817 * perspective has not yet reported a quiescent state. After all, 818 * the offline CPU should have reported a quiescent state during 819 * the CPU-offline process, or, failing that, by rcu_gp_init() 820 * if it ran concurrently with either the CPU going offline or the 821 * last task on a leaf rcu_node structure exiting its RCU read-side 822 * critical section while all CPUs corresponding to that structure 823 * are offline. This added warning detects bugs in any of these 824 * code paths. 825 * 826 * The rcu_node structure's ->lock is held here, which excludes 827 * the relevant portions the CPU-hotplug code, the grace-period 828 * initialization code, and the rcu_read_unlock() code paths. 829 * 830 * For more detail, please refer to the "Hotplug CPU" section 831 * of RCU's Requirements documentation. 832 */ 833 if (WARN_ON_ONCE(!rcu_rdp_cpu_online(rdp))) { 834 struct rcu_node *rnp1; 835 836 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n", 837 __func__, rnp->grplo, rnp->grphi, rnp->level, 838 (long)rnp->gp_seq, (long)rnp->completedqs); 839 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent) 840 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n", 841 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask); 842 pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n", 843 __func__, rdp->cpu, ".o"[rcu_rdp_cpu_online(rdp)], 844 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_state, 845 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_state); 846 return 1; /* Break things loose after complaining. */ 847 } 848 849 /* 850 * A CPU running for an extended time within the kernel can 851 * delay RCU grace periods: (1) At age jiffies_to_sched_qs, 852 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set 853 * both .rcu_need_heavy_qs and .rcu_urgent_qs. Note that the 854 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs 855 * variable are safe because the assignments are repeated if this 856 * CPU failed to pass through a quiescent state. This code 857 * also checks .jiffies_resched in case jiffies_to_sched_qs 858 * is set way high. 859 */ 860 jtsq = READ_ONCE(jiffies_to_sched_qs); 861 if (!READ_ONCE(rdp->rcu_need_heavy_qs) && 862 (time_after(jiffies, rcu_state.gp_start + jtsq * 2) || 863 time_after(jiffies, rcu_state.jiffies_resched) || 864 rcu_state.cbovld)) { 865 WRITE_ONCE(rdp->rcu_need_heavy_qs, true); 866 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */ 867 smp_store_release(&rdp->rcu_urgent_qs, true); 868 } else if (time_after(jiffies, rcu_state.gp_start + jtsq)) { 869 WRITE_ONCE(rdp->rcu_urgent_qs, true); 870 } 871 872 /* 873 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq! 874 * The above code handles this, but only for straight cond_resched(). 875 * And some in-kernel loops check need_resched() before calling 876 * cond_resched(), which defeats the above code for CPUs that are 877 * running in-kernel with scheduling-clock interrupts disabled. 878 * So hit them over the head with the resched_cpu() hammer! 879 */ 880 if (tick_nohz_full_cpu(rdp->cpu) && 881 (time_after(jiffies, READ_ONCE(rdp->last_fqs_resched) + jtsq * 3) || 882 rcu_state.cbovld)) { 883 WRITE_ONCE(rdp->rcu_urgent_qs, true); 884 WRITE_ONCE(rdp->last_fqs_resched, jiffies); 885 ret = -1; 886 } 887 888 /* 889 * If more than halfway to RCU CPU stall-warning time, invoke 890 * resched_cpu() more frequently to try to loosen things up a bit. 891 * Also check to see if the CPU is getting hammered with interrupts, 892 * but only once per grace period, just to keep the IPIs down to 893 * a dull roar. 894 */ 895 if (time_after(jiffies, rcu_state.jiffies_resched)) { 896 if (time_after(jiffies, 897 READ_ONCE(rdp->last_fqs_resched) + jtsq)) { 898 WRITE_ONCE(rdp->last_fqs_resched, jiffies); 899 ret = -1; 900 } 901 if (IS_ENABLED(CONFIG_IRQ_WORK) && 902 !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq && 903 (rnp->ffmask & rdp->grpmask)) { 904 rdp->rcu_iw_pending = true; 905 rdp->rcu_iw_gp_seq = rnp->gp_seq; 906 irq_work_queue_on(&rdp->rcu_iw, rdp->cpu); 907 } 908 909 if (rcu_cpu_stall_cputime && rdp->snap_record.gp_seq != rdp->gp_seq) { 910 int cpu = rdp->cpu; 911 struct rcu_snap_record *rsrp; 912 struct kernel_cpustat *kcsp; 913 914 kcsp = &kcpustat_cpu(cpu); 915 916 rsrp = &rdp->snap_record; 917 rsrp->cputime_irq = kcpustat_field(kcsp, CPUTIME_IRQ, cpu); 918 rsrp->cputime_softirq = kcpustat_field(kcsp, CPUTIME_SOFTIRQ, cpu); 919 rsrp->cputime_system = kcpustat_field(kcsp, CPUTIME_SYSTEM, cpu); 920 rsrp->nr_hardirqs = kstat_cpu_irqs_sum(rdp->cpu); 921 rsrp->nr_softirqs = kstat_cpu_softirqs_sum(rdp->cpu); 922 rsrp->nr_csw = nr_context_switches_cpu(rdp->cpu); 923 rsrp->jiffies = jiffies; 924 rsrp->gp_seq = rdp->gp_seq; 925 } 926 } 927 928 return ret; 929 } 930 931 /* Trace-event wrapper function for trace_rcu_future_grace_period. */ 932 static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp, 933 unsigned long gp_seq_req, const char *s) 934 { 935 trace_rcu_future_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq), 936 gp_seq_req, rnp->level, 937 rnp->grplo, rnp->grphi, s); 938 } 939 940 /* 941 * rcu_start_this_gp - Request the start of a particular grace period 942 * @rnp_start: The leaf node of the CPU from which to start. 943 * @rdp: The rcu_data corresponding to the CPU from which to start. 944 * @gp_seq_req: The gp_seq of the grace period to start. 945 * 946 * Start the specified grace period, as needed to handle newly arrived 947 * callbacks. The required future grace periods are recorded in each 948 * rcu_node structure's ->gp_seq_needed field. Returns true if there 949 * is reason to awaken the grace-period kthread. 950 * 951 * The caller must hold the specified rcu_node structure's ->lock, which 952 * is why the caller is responsible for waking the grace-period kthread. 953 * 954 * Returns true if the GP thread needs to be awakened else false. 955 */ 956 static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp, 957 unsigned long gp_seq_req) 958 { 959 bool ret = false; 960 struct rcu_node *rnp; 961 962 /* 963 * Use funnel locking to either acquire the root rcu_node 964 * structure's lock or bail out if the need for this grace period 965 * has already been recorded -- or if that grace period has in 966 * fact already started. If there is already a grace period in 967 * progress in a non-leaf node, no recording is needed because the 968 * end of the grace period will scan the leaf rcu_node structures. 969 * Note that rnp_start->lock must not be released. 970 */ 971 raw_lockdep_assert_held_rcu_node(rnp_start); 972 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf")); 973 for (rnp = rnp_start; 1; rnp = rnp->parent) { 974 if (rnp != rnp_start) 975 raw_spin_lock_rcu_node(rnp); 976 if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) || 977 rcu_seq_started(&rnp->gp_seq, gp_seq_req) || 978 (rnp != rnp_start && 979 rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) { 980 trace_rcu_this_gp(rnp, rdp, gp_seq_req, 981 TPS("Prestarted")); 982 goto unlock_out; 983 } 984 WRITE_ONCE(rnp->gp_seq_needed, gp_seq_req); 985 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) { 986 /* 987 * We just marked the leaf or internal node, and a 988 * grace period is in progress, which means that 989 * rcu_gp_cleanup() will see the marking. Bail to 990 * reduce contention. 991 */ 992 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, 993 TPS("Startedleaf")); 994 goto unlock_out; 995 } 996 if (rnp != rnp_start && rnp->parent != NULL) 997 raw_spin_unlock_rcu_node(rnp); 998 if (!rnp->parent) 999 break; /* At root, and perhaps also leaf. */ 1000 } 1001 1002 /* If GP already in progress, just leave, otherwise start one. */ 1003 if (rcu_gp_in_progress()) { 1004 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot")); 1005 goto unlock_out; 1006 } 1007 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot")); 1008 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT); 1009 WRITE_ONCE(rcu_state.gp_req_activity, jiffies); 1010 if (!READ_ONCE(rcu_state.gp_kthread)) { 1011 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread")); 1012 goto unlock_out; 1013 } 1014 trace_rcu_grace_period(rcu_state.name, data_race(rcu_state.gp_seq), TPS("newreq")); 1015 ret = true; /* Caller must wake GP kthread. */ 1016 unlock_out: 1017 /* Push furthest requested GP to leaf node and rcu_data structure. */ 1018 if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) { 1019 WRITE_ONCE(rnp_start->gp_seq_needed, rnp->gp_seq_needed); 1020 WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed); 1021 } 1022 if (rnp != rnp_start) 1023 raw_spin_unlock_rcu_node(rnp); 1024 return ret; 1025 } 1026 1027 /* 1028 * Clean up any old requests for the just-ended grace period. Also return 1029 * whether any additional grace periods have been requested. 1030 */ 1031 static bool rcu_future_gp_cleanup(struct rcu_node *rnp) 1032 { 1033 bool needmore; 1034 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 1035 1036 needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed); 1037 if (!needmore) 1038 rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */ 1039 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq, 1040 needmore ? TPS("CleanupMore") : TPS("Cleanup")); 1041 return needmore; 1042 } 1043 1044 static void swake_up_one_online_ipi(void *arg) 1045 { 1046 struct swait_queue_head *wqh = arg; 1047 1048 swake_up_one(wqh); 1049 } 1050 1051 static void swake_up_one_online(struct swait_queue_head *wqh) 1052 { 1053 int cpu = get_cpu(); 1054 1055 /* 1056 * If called from rcutree_report_cpu_starting(), wake up 1057 * is dangerous that late in the CPU-down hotplug process. The 1058 * scheduler might queue an ignored hrtimer. Defer the wake up 1059 * to an online CPU instead. 1060 */ 1061 if (unlikely(cpu_is_offline(cpu))) { 1062 int target; 1063 1064 target = cpumask_any_and(housekeeping_cpumask(HK_TYPE_RCU), 1065 cpu_online_mask); 1066 1067 smp_call_function_single(target, swake_up_one_online_ipi, 1068 wqh, 0); 1069 put_cpu(); 1070 } else { 1071 put_cpu(); 1072 swake_up_one(wqh); 1073 } 1074 } 1075 1076 /* 1077 * Awaken the grace-period kthread. Don't do a self-awaken (unless in an 1078 * interrupt or softirq handler, in which case we just might immediately 1079 * sleep upon return, resulting in a grace-period hang), and don't bother 1080 * awakening when there is nothing for the grace-period kthread to do 1081 * (as in several CPUs raced to awaken, we lost), and finally don't try 1082 * to awaken a kthread that has not yet been created. If all those checks 1083 * are passed, track some debug information and awaken. 1084 * 1085 * So why do the self-wakeup when in an interrupt or softirq handler 1086 * in the grace-period kthread's context? Because the kthread might have 1087 * been interrupted just as it was going to sleep, and just after the final 1088 * pre-sleep check of the awaken condition. In this case, a wakeup really 1089 * is required, and is therefore supplied. 1090 */ 1091 static void rcu_gp_kthread_wake(void) 1092 { 1093 struct task_struct *t = READ_ONCE(rcu_state.gp_kthread); 1094 1095 if ((current == t && !in_hardirq() && !in_serving_softirq()) || 1096 !READ_ONCE(rcu_state.gp_flags) || !t) 1097 return; 1098 WRITE_ONCE(rcu_state.gp_wake_time, jiffies); 1099 WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq)); 1100 swake_up_one_online(&rcu_state.gp_wq); 1101 } 1102 1103 /* 1104 * If there is room, assign a ->gp_seq number to any callbacks on this 1105 * CPU that have not already been assigned. Also accelerate any callbacks 1106 * that were previously assigned a ->gp_seq number that has since proven 1107 * to be too conservative, which can happen if callbacks get assigned a 1108 * ->gp_seq number while RCU is idle, but with reference to a non-root 1109 * rcu_node structure. This function is idempotent, so it does not hurt 1110 * to call it repeatedly. Returns an flag saying that we should awaken 1111 * the RCU grace-period kthread. 1112 * 1113 * The caller must hold rnp->lock with interrupts disabled. 1114 */ 1115 static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp) 1116 { 1117 unsigned long gp_seq_req; 1118 bool ret = false; 1119 1120 rcu_lockdep_assert_cblist_protected(rdp); 1121 raw_lockdep_assert_held_rcu_node(rnp); 1122 1123 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */ 1124 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) 1125 return false; 1126 1127 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPreAcc")); 1128 1129 /* 1130 * Callbacks are often registered with incomplete grace-period 1131 * information. Something about the fact that getting exact 1132 * information requires acquiring a global lock... RCU therefore 1133 * makes a conservative estimate of the grace period number at which 1134 * a given callback will become ready to invoke. The following 1135 * code checks this estimate and improves it when possible, thus 1136 * accelerating callback invocation to an earlier grace-period 1137 * number. 1138 */ 1139 gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq); 1140 if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req)) 1141 ret = rcu_start_this_gp(rnp, rdp, gp_seq_req); 1142 1143 /* Trace depending on how much we were able to accelerate. */ 1144 if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL)) 1145 trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccWaitCB")); 1146 else 1147 trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccReadyCB")); 1148 1149 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPostAcc")); 1150 1151 return ret; 1152 } 1153 1154 /* 1155 * Similar to rcu_accelerate_cbs(), but does not require that the leaf 1156 * rcu_node structure's ->lock be held. It consults the cached value 1157 * of ->gp_seq_needed in the rcu_data structure, and if that indicates 1158 * that a new grace-period request be made, invokes rcu_accelerate_cbs() 1159 * while holding the leaf rcu_node structure's ->lock. 1160 */ 1161 static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp, 1162 struct rcu_data *rdp) 1163 { 1164 unsigned long c; 1165 bool needwake; 1166 1167 rcu_lockdep_assert_cblist_protected(rdp); 1168 c = rcu_seq_snap(&rcu_state.gp_seq); 1169 if (!READ_ONCE(rdp->gpwrap) && ULONG_CMP_GE(rdp->gp_seq_needed, c)) { 1170 /* Old request still live, so mark recent callbacks. */ 1171 (void)rcu_segcblist_accelerate(&rdp->cblist, c); 1172 return; 1173 } 1174 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 1175 needwake = rcu_accelerate_cbs(rnp, rdp); 1176 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 1177 if (needwake) 1178 rcu_gp_kthread_wake(); 1179 } 1180 1181 /* 1182 * Move any callbacks whose grace period has completed to the 1183 * RCU_DONE_TAIL sublist, then compact the remaining sublists and 1184 * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL 1185 * sublist. This function is idempotent, so it does not hurt to 1186 * invoke it repeatedly. As long as it is not invoked -too- often... 1187 * Returns true if the RCU grace-period kthread needs to be awakened. 1188 * 1189 * The caller must hold rnp->lock with interrupts disabled. 1190 */ 1191 static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp) 1192 { 1193 rcu_lockdep_assert_cblist_protected(rdp); 1194 raw_lockdep_assert_held_rcu_node(rnp); 1195 1196 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */ 1197 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) 1198 return false; 1199 1200 /* 1201 * Find all callbacks whose ->gp_seq numbers indicate that they 1202 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist. 1203 */ 1204 rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq); 1205 1206 /* Classify any remaining callbacks. */ 1207 return rcu_accelerate_cbs(rnp, rdp); 1208 } 1209 1210 /* 1211 * Move and classify callbacks, but only if doing so won't require 1212 * that the RCU grace-period kthread be awakened. 1213 */ 1214 static void __maybe_unused rcu_advance_cbs_nowake(struct rcu_node *rnp, 1215 struct rcu_data *rdp) 1216 { 1217 rcu_lockdep_assert_cblist_protected(rdp); 1218 if (!rcu_seq_state(rcu_seq_current(&rnp->gp_seq)) || !raw_spin_trylock_rcu_node(rnp)) 1219 return; 1220 // The grace period cannot end while we hold the rcu_node lock. 1221 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) 1222 WARN_ON_ONCE(rcu_advance_cbs(rnp, rdp)); 1223 raw_spin_unlock_rcu_node(rnp); 1224 } 1225 1226 /* 1227 * In CONFIG_RCU_STRICT_GRACE_PERIOD=y kernels, attempt to generate a 1228 * quiescent state. This is intended to be invoked when the CPU notices 1229 * a new grace period. 1230 */ 1231 static void rcu_strict_gp_check_qs(void) 1232 { 1233 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) { 1234 rcu_read_lock(); 1235 rcu_read_unlock(); 1236 } 1237 } 1238 1239 /* 1240 * Update CPU-local rcu_data state to record the beginnings and ends of 1241 * grace periods. The caller must hold the ->lock of the leaf rcu_node 1242 * structure corresponding to the current CPU, and must have irqs disabled. 1243 * Returns true if the grace-period kthread needs to be awakened. 1244 */ 1245 static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp) 1246 { 1247 bool ret = false; 1248 bool need_qs; 1249 const bool offloaded = rcu_rdp_is_offloaded(rdp); 1250 1251 raw_lockdep_assert_held_rcu_node(rnp); 1252 1253 if (rdp->gp_seq == rnp->gp_seq) 1254 return false; /* Nothing to do. */ 1255 1256 /* Handle the ends of any preceding grace periods first. */ 1257 if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) || 1258 unlikely(READ_ONCE(rdp->gpwrap))) { 1259 if (!offloaded) 1260 ret = rcu_advance_cbs(rnp, rdp); /* Advance CBs. */ 1261 rdp->core_needs_qs = false; 1262 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend")); 1263 } else { 1264 if (!offloaded) 1265 ret = rcu_accelerate_cbs(rnp, rdp); /* Recent CBs. */ 1266 if (rdp->core_needs_qs) 1267 rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask); 1268 } 1269 1270 /* Now handle the beginnings of any new-to-this-CPU grace periods. */ 1271 if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) || 1272 unlikely(READ_ONCE(rdp->gpwrap))) { 1273 /* 1274 * If the current grace period is waiting for this CPU, 1275 * set up to detect a quiescent state, otherwise don't 1276 * go looking for one. 1277 */ 1278 trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart")); 1279 need_qs = !!(rnp->qsmask & rdp->grpmask); 1280 rdp->cpu_no_qs.b.norm = need_qs; 1281 rdp->core_needs_qs = need_qs; 1282 zero_cpu_stall_ticks(rdp); 1283 } 1284 rdp->gp_seq = rnp->gp_seq; /* Remember new grace-period state. */ 1285 if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap) 1286 WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed); 1287 if (IS_ENABLED(CONFIG_PROVE_RCU) && READ_ONCE(rdp->gpwrap)) 1288 WRITE_ONCE(rdp->last_sched_clock, jiffies); 1289 WRITE_ONCE(rdp->gpwrap, false); 1290 rcu_gpnum_ovf(rnp, rdp); 1291 return ret; 1292 } 1293 1294 static void note_gp_changes(struct rcu_data *rdp) 1295 { 1296 unsigned long flags; 1297 bool needwake; 1298 struct rcu_node *rnp; 1299 1300 local_irq_save(flags); 1301 rnp = rdp->mynode; 1302 if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) && 1303 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */ 1304 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */ 1305 local_irq_restore(flags); 1306 return; 1307 } 1308 needwake = __note_gp_changes(rnp, rdp); 1309 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1310 rcu_strict_gp_check_qs(); 1311 if (needwake) 1312 rcu_gp_kthread_wake(); 1313 } 1314 1315 static atomic_t *rcu_gp_slow_suppress; 1316 1317 /* Register a counter to suppress debugging grace-period delays. */ 1318 void rcu_gp_slow_register(atomic_t *rgssp) 1319 { 1320 WARN_ON_ONCE(rcu_gp_slow_suppress); 1321 1322 WRITE_ONCE(rcu_gp_slow_suppress, rgssp); 1323 } 1324 EXPORT_SYMBOL_GPL(rcu_gp_slow_register); 1325 1326 /* Unregister a counter, with NULL for not caring which. */ 1327 void rcu_gp_slow_unregister(atomic_t *rgssp) 1328 { 1329 WARN_ON_ONCE(rgssp && rgssp != rcu_gp_slow_suppress && rcu_gp_slow_suppress != NULL); 1330 1331 WRITE_ONCE(rcu_gp_slow_suppress, NULL); 1332 } 1333 EXPORT_SYMBOL_GPL(rcu_gp_slow_unregister); 1334 1335 static bool rcu_gp_slow_is_suppressed(void) 1336 { 1337 atomic_t *rgssp = READ_ONCE(rcu_gp_slow_suppress); 1338 1339 return rgssp && atomic_read(rgssp); 1340 } 1341 1342 static void rcu_gp_slow(int delay) 1343 { 1344 if (!rcu_gp_slow_is_suppressed() && delay > 0 && 1345 !(rcu_seq_ctr(rcu_state.gp_seq) % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay))) 1346 schedule_timeout_idle(delay); 1347 } 1348 1349 static unsigned long sleep_duration; 1350 1351 /* Allow rcutorture to stall the grace-period kthread. */ 1352 void rcu_gp_set_torture_wait(int duration) 1353 { 1354 if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST) && duration > 0) 1355 WRITE_ONCE(sleep_duration, duration); 1356 } 1357 EXPORT_SYMBOL_GPL(rcu_gp_set_torture_wait); 1358 1359 /* Actually implement the aforementioned wait. */ 1360 static void rcu_gp_torture_wait(void) 1361 { 1362 unsigned long duration; 1363 1364 if (!IS_ENABLED(CONFIG_RCU_TORTURE_TEST)) 1365 return; 1366 duration = xchg(&sleep_duration, 0UL); 1367 if (duration > 0) { 1368 pr_alert("%s: Waiting %lu jiffies\n", __func__, duration); 1369 schedule_timeout_idle(duration); 1370 pr_alert("%s: Wait complete\n", __func__); 1371 } 1372 } 1373 1374 /* 1375 * Handler for on_each_cpu() to invoke the target CPU's RCU core 1376 * processing. 1377 */ 1378 static void rcu_strict_gp_boundary(void *unused) 1379 { 1380 invoke_rcu_core(); 1381 } 1382 1383 // Make the polled API aware of the beginning of a grace period. 1384 static void rcu_poll_gp_seq_start(unsigned long *snap) 1385 { 1386 struct rcu_node *rnp = rcu_get_root(); 1387 1388 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) 1389 raw_lockdep_assert_held_rcu_node(rnp); 1390 1391 // If RCU was idle, note beginning of GP. 1392 if (!rcu_seq_state(rcu_state.gp_seq_polled)) 1393 rcu_seq_start(&rcu_state.gp_seq_polled); 1394 1395 // Either way, record current state. 1396 *snap = rcu_state.gp_seq_polled; 1397 } 1398 1399 // Make the polled API aware of the end of a grace period. 1400 static void rcu_poll_gp_seq_end(unsigned long *snap) 1401 { 1402 struct rcu_node *rnp = rcu_get_root(); 1403 1404 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) 1405 raw_lockdep_assert_held_rcu_node(rnp); 1406 1407 // If the previously noted GP is still in effect, record the 1408 // end of that GP. Either way, zero counter to avoid counter-wrap 1409 // problems. 1410 if (*snap && *snap == rcu_state.gp_seq_polled) { 1411 rcu_seq_end(&rcu_state.gp_seq_polled); 1412 rcu_state.gp_seq_polled_snap = 0; 1413 rcu_state.gp_seq_polled_exp_snap = 0; 1414 } else { 1415 *snap = 0; 1416 } 1417 } 1418 1419 // Make the polled API aware of the beginning of a grace period, but 1420 // where caller does not hold the root rcu_node structure's lock. 1421 static void rcu_poll_gp_seq_start_unlocked(unsigned long *snap) 1422 { 1423 unsigned long flags; 1424 struct rcu_node *rnp = rcu_get_root(); 1425 1426 if (rcu_init_invoked()) { 1427 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) 1428 lockdep_assert_irqs_enabled(); 1429 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1430 } 1431 rcu_poll_gp_seq_start(snap); 1432 if (rcu_init_invoked()) 1433 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1434 } 1435 1436 // Make the polled API aware of the end of a grace period, but where 1437 // caller does not hold the root rcu_node structure's lock. 1438 static void rcu_poll_gp_seq_end_unlocked(unsigned long *snap) 1439 { 1440 unsigned long flags; 1441 struct rcu_node *rnp = rcu_get_root(); 1442 1443 if (rcu_init_invoked()) { 1444 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) 1445 lockdep_assert_irqs_enabled(); 1446 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1447 } 1448 rcu_poll_gp_seq_end(snap); 1449 if (rcu_init_invoked()) 1450 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1451 } 1452 1453 /* 1454 * There is a single llist, which is used for handling 1455 * synchronize_rcu() users' enqueued rcu_synchronize nodes. 1456 * Within this llist, there are two tail pointers: 1457 * 1458 * wait tail: Tracks the set of nodes, which need to 1459 * wait for the current GP to complete. 1460 * done tail: Tracks the set of nodes, for which grace 1461 * period has elapsed. These nodes processing 1462 * will be done as part of the cleanup work 1463 * execution by a kworker. 1464 * 1465 * At every grace period init, a new wait node is added 1466 * to the llist. This wait node is used as wait tail 1467 * for this new grace period. Given that there are a fixed 1468 * number of wait nodes, if all wait nodes are in use 1469 * (which can happen when kworker callback processing 1470 * is delayed) and additional grace period is requested. 1471 * This means, a system is slow in processing callbacks. 1472 * 1473 * TODO: If a slow processing is detected, a first node 1474 * in the llist should be used as a wait-tail for this 1475 * grace period, therefore users which should wait due 1476 * to a slow process are handled by _this_ grace period 1477 * and not next. 1478 * 1479 * Below is an illustration of how the done and wait 1480 * tail pointers move from one set of rcu_synchronize nodes 1481 * to the other, as grace periods start and finish and 1482 * nodes are processed by kworker. 1483 * 1484 * 1485 * a. Initial llist callbacks list: 1486 * 1487 * +----------+ +--------+ +-------+ 1488 * | | | | | | 1489 * | head |---------> | cb2 |--------->| cb1 | 1490 * | | | | | | 1491 * +----------+ +--------+ +-------+ 1492 * 1493 * 1494 * 1495 * b. New GP1 Start: 1496 * 1497 * WAIT TAIL 1498 * | 1499 * | 1500 * v 1501 * +----------+ +--------+ +--------+ +-------+ 1502 * | | | | | | | | 1503 * | head ------> wait |------> cb2 |------> | cb1 | 1504 * | | | head1 | | | | | 1505 * +----------+ +--------+ +--------+ +-------+ 1506 * 1507 * 1508 * 1509 * c. GP completion: 1510 * 1511 * WAIT_TAIL == DONE_TAIL 1512 * 1513 * DONE TAIL 1514 * | 1515 * | 1516 * v 1517 * +----------+ +--------+ +--------+ +-------+ 1518 * | | | | | | | | 1519 * | head ------> wait |------> cb2 |------> | cb1 | 1520 * | | | head1 | | | | | 1521 * +----------+ +--------+ +--------+ +-------+ 1522 * 1523 * 1524 * 1525 * d. New callbacks and GP2 start: 1526 * 1527 * WAIT TAIL DONE TAIL 1528 * | | 1529 * | | 1530 * v v 1531 * +----------+ +------+ +------+ +------+ +-----+ +-----+ +-----+ 1532 * | | | | | | | | | | | | | | 1533 * | head ------> wait |--->| cb4 |--->| cb3 |--->|wait |--->| cb2 |--->| cb1 | 1534 * | | | head2| | | | | |head1| | | | | 1535 * +----------+ +------+ +------+ +------+ +-----+ +-----+ +-----+ 1536 * 1537 * 1538 * 1539 * e. GP2 completion: 1540 * 1541 * WAIT_TAIL == DONE_TAIL 1542 * DONE TAIL 1543 * | 1544 * | 1545 * v 1546 * +----------+ +------+ +------+ +------+ +-----+ +-----+ +-----+ 1547 * | | | | | | | | | | | | | | 1548 * | head ------> wait |--->| cb4 |--->| cb3 |--->|wait |--->| cb2 |--->| cb1 | 1549 * | | | head2| | | | | |head1| | | | | 1550 * +----------+ +------+ +------+ +------+ +-----+ +-----+ +-----+ 1551 * 1552 * 1553 * While the llist state transitions from d to e, a kworker 1554 * can start executing rcu_sr_normal_gp_cleanup_work() and 1555 * can observe either the old done tail (@c) or the new 1556 * done tail (@e). So, done tail updates and reads need 1557 * to use the rel-acq semantics. If the concurrent kworker 1558 * observes the old done tail, the newly queued work 1559 * execution will process the updated done tail. If the 1560 * concurrent kworker observes the new done tail, then 1561 * the newly queued work will skip processing the done 1562 * tail, as workqueue semantics guarantees that the new 1563 * work is executed only after the previous one completes. 1564 * 1565 * f. kworker callbacks processing complete: 1566 * 1567 * 1568 * DONE TAIL 1569 * | 1570 * | 1571 * v 1572 * +----------+ +--------+ 1573 * | | | | 1574 * | head ------> wait | 1575 * | | | head2 | 1576 * +----------+ +--------+ 1577 * 1578 */ 1579 static bool rcu_sr_is_wait_head(struct llist_node *node) 1580 { 1581 return &(rcu_state.srs_wait_nodes)[0].node <= node && 1582 node <= &(rcu_state.srs_wait_nodes)[SR_NORMAL_GP_WAIT_HEAD_MAX - 1].node; 1583 } 1584 1585 static struct llist_node *rcu_sr_get_wait_head(void) 1586 { 1587 struct sr_wait_node *sr_wn; 1588 int i; 1589 1590 for (i = 0; i < SR_NORMAL_GP_WAIT_HEAD_MAX; i++) { 1591 sr_wn = &(rcu_state.srs_wait_nodes)[i]; 1592 1593 if (!atomic_cmpxchg_acquire(&sr_wn->inuse, 0, 1)) 1594 return &sr_wn->node; 1595 } 1596 1597 return NULL; 1598 } 1599 1600 static void rcu_sr_put_wait_head(struct llist_node *node) 1601 { 1602 struct sr_wait_node *sr_wn = container_of(node, struct sr_wait_node, node); 1603 1604 atomic_set_release(&sr_wn->inuse, 0); 1605 } 1606 1607 /* Disabled by default. */ 1608 static int rcu_normal_wake_from_gp; 1609 module_param(rcu_normal_wake_from_gp, int, 0644); 1610 static struct workqueue_struct *sync_wq; 1611 1612 static void rcu_sr_normal_complete(struct llist_node *node) 1613 { 1614 struct rcu_synchronize *rs = container_of( 1615 (struct rcu_head *) node, struct rcu_synchronize, head); 1616 unsigned long oldstate = (unsigned long) rs->head.func; 1617 1618 WARN_ONCE(IS_ENABLED(CONFIG_PROVE_RCU) && 1619 !poll_state_synchronize_rcu(oldstate), 1620 "A full grace period is not passed yet: %lu", 1621 rcu_seq_diff(get_state_synchronize_rcu(), oldstate)); 1622 1623 /* Finally. */ 1624 complete(&rs->completion); 1625 } 1626 1627 static void rcu_sr_normal_gp_cleanup_work(struct work_struct *work) 1628 { 1629 struct llist_node *done, *rcu, *next, *head; 1630 1631 /* 1632 * This work execution can potentially execute 1633 * while a new done tail is being updated by 1634 * grace period kthread in rcu_sr_normal_gp_cleanup(). 1635 * So, read and updates of done tail need to 1636 * follow acq-rel semantics. 1637 * 1638 * Given that wq semantics guarantees that a single work 1639 * cannot execute concurrently by multiple kworkers, 1640 * the done tail list manipulations are protected here. 1641 */ 1642 done = smp_load_acquire(&rcu_state.srs_done_tail); 1643 if (WARN_ON_ONCE(!done)) 1644 return; 1645 1646 WARN_ON_ONCE(!rcu_sr_is_wait_head(done)); 1647 head = done->next; 1648 done->next = NULL; 1649 1650 /* 1651 * The dummy node, which is pointed to by the 1652 * done tail which is acq-read above is not removed 1653 * here. This allows lockless additions of new 1654 * rcu_synchronize nodes in rcu_sr_normal_add_req(), 1655 * while the cleanup work executes. The dummy 1656 * nodes is removed, in next round of cleanup 1657 * work execution. 1658 */ 1659 llist_for_each_safe(rcu, next, head) { 1660 if (!rcu_sr_is_wait_head(rcu)) { 1661 rcu_sr_normal_complete(rcu); 1662 continue; 1663 } 1664 1665 rcu_sr_put_wait_head(rcu); 1666 } 1667 1668 /* Order list manipulations with atomic access. */ 1669 atomic_dec_return_release(&rcu_state.srs_cleanups_pending); 1670 } 1671 1672 /* 1673 * Helper function for rcu_gp_cleanup(). 1674 */ 1675 static void rcu_sr_normal_gp_cleanup(void) 1676 { 1677 struct llist_node *wait_tail, *next = NULL, *rcu = NULL; 1678 int done = 0; 1679 1680 wait_tail = rcu_state.srs_wait_tail; 1681 if (wait_tail == NULL) 1682 return; 1683 1684 rcu_state.srs_wait_tail = NULL; 1685 ASSERT_EXCLUSIVE_WRITER(rcu_state.srs_wait_tail); 1686 WARN_ON_ONCE(!rcu_sr_is_wait_head(wait_tail)); 1687 1688 /* 1689 * Process (a) and (d) cases. See an illustration. 1690 */ 1691 llist_for_each_safe(rcu, next, wait_tail->next) { 1692 if (rcu_sr_is_wait_head(rcu)) 1693 break; 1694 1695 rcu_sr_normal_complete(rcu); 1696 // It can be last, update a next on this step. 1697 wait_tail->next = next; 1698 1699 if (++done == SR_MAX_USERS_WAKE_FROM_GP) 1700 break; 1701 } 1702 1703 /* 1704 * Fast path, no more users to process except putting the second last 1705 * wait head if no inflight-workers. If there are in-flight workers, 1706 * they will remove the last wait head. 1707 * 1708 * Note that the ACQUIRE orders atomic access with list manipulation. 1709 */ 1710 if (wait_tail->next && wait_tail->next->next == NULL && 1711 rcu_sr_is_wait_head(wait_tail->next) && 1712 !atomic_read_acquire(&rcu_state.srs_cleanups_pending)) { 1713 rcu_sr_put_wait_head(wait_tail->next); 1714 wait_tail->next = NULL; 1715 } 1716 1717 /* Concurrent sr_normal_gp_cleanup work might observe this update. */ 1718 ASSERT_EXCLUSIVE_WRITER(rcu_state.srs_done_tail); 1719 smp_store_release(&rcu_state.srs_done_tail, wait_tail); 1720 1721 /* 1722 * We schedule a work in order to perform a final processing 1723 * of outstanding users(if still left) and releasing wait-heads 1724 * added by rcu_sr_normal_gp_init() call. 1725 */ 1726 if (wait_tail->next) { 1727 atomic_inc(&rcu_state.srs_cleanups_pending); 1728 if (!queue_work(sync_wq, &rcu_state.srs_cleanup_work)) 1729 atomic_dec(&rcu_state.srs_cleanups_pending); 1730 } 1731 } 1732 1733 /* 1734 * Helper function for rcu_gp_init(). 1735 */ 1736 static bool rcu_sr_normal_gp_init(void) 1737 { 1738 struct llist_node *first; 1739 struct llist_node *wait_head; 1740 bool start_new_poll = false; 1741 1742 first = READ_ONCE(rcu_state.srs_next.first); 1743 if (!first || rcu_sr_is_wait_head(first)) 1744 return start_new_poll; 1745 1746 wait_head = rcu_sr_get_wait_head(); 1747 if (!wait_head) { 1748 // Kick another GP to retry. 1749 start_new_poll = true; 1750 return start_new_poll; 1751 } 1752 1753 /* Inject a wait-dummy-node. */ 1754 llist_add(wait_head, &rcu_state.srs_next); 1755 1756 /* 1757 * A waiting list of rcu_synchronize nodes should be empty on 1758 * this step, since a GP-kthread, rcu_gp_init() -> gp_cleanup(), 1759 * rolls it over. If not, it is a BUG, warn a user. 1760 */ 1761 WARN_ON_ONCE(rcu_state.srs_wait_tail != NULL); 1762 rcu_state.srs_wait_tail = wait_head; 1763 ASSERT_EXCLUSIVE_WRITER(rcu_state.srs_wait_tail); 1764 1765 return start_new_poll; 1766 } 1767 1768 static void rcu_sr_normal_add_req(struct rcu_synchronize *rs) 1769 { 1770 llist_add((struct llist_node *) &rs->head, &rcu_state.srs_next); 1771 } 1772 1773 /* 1774 * Initialize a new grace period. Return false if no grace period required. 1775 */ 1776 static noinline_for_stack bool rcu_gp_init(void) 1777 { 1778 unsigned long flags; 1779 unsigned long oldmask; 1780 unsigned long mask; 1781 struct rcu_data *rdp; 1782 struct rcu_node *rnp = rcu_get_root(); 1783 bool start_new_poll; 1784 1785 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1786 raw_spin_lock_irq_rcu_node(rnp); 1787 if (!rcu_state.gp_flags) { 1788 /* Spurious wakeup, tell caller to go back to sleep. */ 1789 raw_spin_unlock_irq_rcu_node(rnp); 1790 return false; 1791 } 1792 WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */ 1793 1794 if (WARN_ON_ONCE(rcu_gp_in_progress())) { 1795 /* 1796 * Grace period already in progress, don't start another. 1797 * Not supposed to be able to happen. 1798 */ 1799 raw_spin_unlock_irq_rcu_node(rnp); 1800 return false; 1801 } 1802 1803 /* Advance to a new grace period and initialize state. */ 1804 record_gp_stall_check_time(); 1805 /* Record GP times before starting GP, hence rcu_seq_start(). */ 1806 rcu_seq_start(&rcu_state.gp_seq); 1807 ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq); 1808 start_new_poll = rcu_sr_normal_gp_init(); 1809 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start")); 1810 rcu_poll_gp_seq_start(&rcu_state.gp_seq_polled_snap); 1811 raw_spin_unlock_irq_rcu_node(rnp); 1812 1813 /* 1814 * The "start_new_poll" is set to true, only when this GP is not able 1815 * to handle anything and there are outstanding users. It happens when 1816 * the rcu_sr_normal_gp_init() function was not able to insert a dummy 1817 * separator to the llist, because there were no left any dummy-nodes. 1818 * 1819 * Number of dummy-nodes is fixed, it could be that we are run out of 1820 * them, if so we start a new pool request to repeat a try. It is rare 1821 * and it means that a system is doing a slow processing of callbacks. 1822 */ 1823 if (start_new_poll) 1824 (void) start_poll_synchronize_rcu(); 1825 1826 /* 1827 * Apply per-leaf buffered online and offline operations to 1828 * the rcu_node tree. Note that this new grace period need not 1829 * wait for subsequent online CPUs, and that RCU hooks in the CPU 1830 * offlining path, when combined with checks in this function, 1831 * will handle CPUs that are currently going offline or that will 1832 * go offline later. Please also refer to "Hotplug CPU" section 1833 * of RCU's Requirements documentation. 1834 */ 1835 WRITE_ONCE(rcu_state.gp_state, RCU_GP_ONOFF); 1836 /* Exclude CPU hotplug operations. */ 1837 rcu_for_each_leaf_node(rnp) { 1838 local_irq_disable(); 1839 arch_spin_lock(&rcu_state.ofl_lock); 1840 raw_spin_lock_rcu_node(rnp); 1841 if (rnp->qsmaskinit == rnp->qsmaskinitnext && 1842 !rnp->wait_blkd_tasks) { 1843 /* Nothing to do on this leaf rcu_node structure. */ 1844 raw_spin_unlock_rcu_node(rnp); 1845 arch_spin_unlock(&rcu_state.ofl_lock); 1846 local_irq_enable(); 1847 continue; 1848 } 1849 1850 /* Record old state, apply changes to ->qsmaskinit field. */ 1851 oldmask = rnp->qsmaskinit; 1852 rnp->qsmaskinit = rnp->qsmaskinitnext; 1853 1854 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */ 1855 if (!oldmask != !rnp->qsmaskinit) { 1856 if (!oldmask) { /* First online CPU for rcu_node. */ 1857 if (!rnp->wait_blkd_tasks) /* Ever offline? */ 1858 rcu_init_new_rnp(rnp); 1859 } else if (rcu_preempt_has_tasks(rnp)) { 1860 rnp->wait_blkd_tasks = true; /* blocked tasks */ 1861 } else { /* Last offline CPU and can propagate. */ 1862 rcu_cleanup_dead_rnp(rnp); 1863 } 1864 } 1865 1866 /* 1867 * If all waited-on tasks from prior grace period are 1868 * done, and if all this rcu_node structure's CPUs are 1869 * still offline, propagate up the rcu_node tree and 1870 * clear ->wait_blkd_tasks. Otherwise, if one of this 1871 * rcu_node structure's CPUs has since come back online, 1872 * simply clear ->wait_blkd_tasks. 1873 */ 1874 if (rnp->wait_blkd_tasks && 1875 (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) { 1876 rnp->wait_blkd_tasks = false; 1877 if (!rnp->qsmaskinit) 1878 rcu_cleanup_dead_rnp(rnp); 1879 } 1880 1881 raw_spin_unlock_rcu_node(rnp); 1882 arch_spin_unlock(&rcu_state.ofl_lock); 1883 local_irq_enable(); 1884 } 1885 rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */ 1886 1887 /* 1888 * Set the quiescent-state-needed bits in all the rcu_node 1889 * structures for all currently online CPUs in breadth-first 1890 * order, starting from the root rcu_node structure, relying on the 1891 * layout of the tree within the rcu_state.node[] array. Note that 1892 * other CPUs will access only the leaves of the hierarchy, thus 1893 * seeing that no grace period is in progress, at least until the 1894 * corresponding leaf node has been initialized. 1895 * 1896 * The grace period cannot complete until the initialization 1897 * process finishes, because this kthread handles both. 1898 */ 1899 WRITE_ONCE(rcu_state.gp_state, RCU_GP_INIT); 1900 rcu_for_each_node_breadth_first(rnp) { 1901 rcu_gp_slow(gp_init_delay); 1902 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1903 rdp = this_cpu_ptr(&rcu_data); 1904 rcu_preempt_check_blocked_tasks(rnp); 1905 rnp->qsmask = rnp->qsmaskinit; 1906 WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq); 1907 if (rnp == rdp->mynode) 1908 (void)__note_gp_changes(rnp, rdp); 1909 rcu_preempt_boost_start_gp(rnp); 1910 trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq, 1911 rnp->level, rnp->grplo, 1912 rnp->grphi, rnp->qsmask); 1913 /* Quiescent states for tasks on any now-offline CPUs. */ 1914 mask = rnp->qsmask & ~rnp->qsmaskinitnext; 1915 rnp->rcu_gp_init_mask = mask; 1916 if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp)) 1917 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 1918 else 1919 raw_spin_unlock_irq_rcu_node(rnp); 1920 cond_resched_tasks_rcu_qs(); 1921 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1922 } 1923 1924 // If strict, make all CPUs aware of new grace period. 1925 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) 1926 on_each_cpu(rcu_strict_gp_boundary, NULL, 0); 1927 1928 return true; 1929 } 1930 1931 /* 1932 * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state 1933 * time. 1934 */ 1935 static bool rcu_gp_fqs_check_wake(int *gfp) 1936 { 1937 struct rcu_node *rnp = rcu_get_root(); 1938 1939 // If under overload conditions, force an immediate FQS scan. 1940 if (*gfp & RCU_GP_FLAG_OVLD) 1941 return true; 1942 1943 // Someone like call_rcu() requested a force-quiescent-state scan. 1944 *gfp = READ_ONCE(rcu_state.gp_flags); 1945 if (*gfp & RCU_GP_FLAG_FQS) 1946 return true; 1947 1948 // The current grace period has completed. 1949 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp)) 1950 return true; 1951 1952 return false; 1953 } 1954 1955 /* 1956 * Do one round of quiescent-state forcing. 1957 */ 1958 static void rcu_gp_fqs(bool first_time) 1959 { 1960 int nr_fqs = READ_ONCE(rcu_state.nr_fqs_jiffies_stall); 1961 struct rcu_node *rnp = rcu_get_root(); 1962 1963 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1964 WRITE_ONCE(rcu_state.n_force_qs, rcu_state.n_force_qs + 1); 1965 1966 WARN_ON_ONCE(nr_fqs > 3); 1967 /* Only countdown nr_fqs for stall purposes if jiffies moves. */ 1968 if (nr_fqs) { 1969 if (nr_fqs == 1) { 1970 WRITE_ONCE(rcu_state.jiffies_stall, 1971 jiffies + rcu_jiffies_till_stall_check()); 1972 } 1973 WRITE_ONCE(rcu_state.nr_fqs_jiffies_stall, --nr_fqs); 1974 } 1975 1976 if (first_time) { 1977 /* Collect dyntick-idle snapshots. */ 1978 force_qs_rnp(rcu_watching_snap_save); 1979 } else { 1980 /* Handle dyntick-idle and offline CPUs. */ 1981 force_qs_rnp(rcu_watching_snap_recheck); 1982 } 1983 /* Clear flag to prevent immediate re-entry. */ 1984 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) { 1985 raw_spin_lock_irq_rcu_node(rnp); 1986 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags & ~RCU_GP_FLAG_FQS); 1987 raw_spin_unlock_irq_rcu_node(rnp); 1988 } 1989 } 1990 1991 /* 1992 * Loop doing repeated quiescent-state forcing until the grace period ends. 1993 */ 1994 static noinline_for_stack void rcu_gp_fqs_loop(void) 1995 { 1996 bool first_gp_fqs = true; 1997 int gf = 0; 1998 unsigned long j; 1999 int ret; 2000 struct rcu_node *rnp = rcu_get_root(); 2001 2002 j = READ_ONCE(jiffies_till_first_fqs); 2003 if (rcu_state.cbovld) 2004 gf = RCU_GP_FLAG_OVLD; 2005 ret = 0; 2006 for (;;) { 2007 if (rcu_state.cbovld) { 2008 j = (j + 2) / 3; 2009 if (j <= 0) 2010 j = 1; 2011 } 2012 if (!ret || time_before(jiffies + j, rcu_state.jiffies_force_qs)) { 2013 WRITE_ONCE(rcu_state.jiffies_force_qs, jiffies + j); 2014 /* 2015 * jiffies_force_qs before RCU_GP_WAIT_FQS state 2016 * update; required for stall checks. 2017 */ 2018 smp_wmb(); 2019 WRITE_ONCE(rcu_state.jiffies_kick_kthreads, 2020 jiffies + (j ? 3 * j : 2)); 2021 } 2022 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 2023 TPS("fqswait")); 2024 WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_FQS); 2025 (void)swait_event_idle_timeout_exclusive(rcu_state.gp_wq, 2026 rcu_gp_fqs_check_wake(&gf), j); 2027 rcu_gp_torture_wait(); 2028 WRITE_ONCE(rcu_state.gp_state, RCU_GP_DOING_FQS); 2029 /* Locking provides needed memory barriers. */ 2030 /* 2031 * Exit the loop if the root rcu_node structure indicates that the grace period 2032 * has ended, leave the loop. The rcu_preempt_blocked_readers_cgp(rnp) check 2033 * is required only for single-node rcu_node trees because readers blocking 2034 * the current grace period are queued only on leaf rcu_node structures. 2035 * For multi-node trees, checking the root node's ->qsmask suffices, because a 2036 * given root node's ->qsmask bit is cleared only when all CPUs and tasks from 2037 * the corresponding leaf nodes have passed through their quiescent state. 2038 */ 2039 if (!READ_ONCE(rnp->qsmask) && 2040 !rcu_preempt_blocked_readers_cgp(rnp)) 2041 break; 2042 /* If time for quiescent-state forcing, do it. */ 2043 if (!time_after(rcu_state.jiffies_force_qs, jiffies) || 2044 (gf & (RCU_GP_FLAG_FQS | RCU_GP_FLAG_OVLD))) { 2045 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 2046 TPS("fqsstart")); 2047 rcu_gp_fqs(first_gp_fqs); 2048 gf = 0; 2049 if (first_gp_fqs) { 2050 first_gp_fqs = false; 2051 gf = rcu_state.cbovld ? RCU_GP_FLAG_OVLD : 0; 2052 } 2053 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 2054 TPS("fqsend")); 2055 cond_resched_tasks_rcu_qs(); 2056 WRITE_ONCE(rcu_state.gp_activity, jiffies); 2057 ret = 0; /* Force full wait till next FQS. */ 2058 j = READ_ONCE(jiffies_till_next_fqs); 2059 } else { 2060 /* Deal with stray signal. */ 2061 cond_resched_tasks_rcu_qs(); 2062 WRITE_ONCE(rcu_state.gp_activity, jiffies); 2063 WARN_ON(signal_pending(current)); 2064 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 2065 TPS("fqswaitsig")); 2066 ret = 1; /* Keep old FQS timing. */ 2067 j = jiffies; 2068 if (time_after(jiffies, rcu_state.jiffies_force_qs)) 2069 j = 1; 2070 else 2071 j = rcu_state.jiffies_force_qs - j; 2072 gf = 0; 2073 } 2074 } 2075 } 2076 2077 /* 2078 * Clean up after the old grace period. 2079 */ 2080 static noinline void rcu_gp_cleanup(void) 2081 { 2082 int cpu; 2083 bool needgp = false; 2084 unsigned long gp_duration; 2085 unsigned long new_gp_seq; 2086 bool offloaded; 2087 struct rcu_data *rdp; 2088 struct rcu_node *rnp = rcu_get_root(); 2089 struct swait_queue_head *sq; 2090 2091 WRITE_ONCE(rcu_state.gp_activity, jiffies); 2092 raw_spin_lock_irq_rcu_node(rnp); 2093 rcu_state.gp_end = jiffies; 2094 gp_duration = rcu_state.gp_end - rcu_state.gp_start; 2095 if (gp_duration > rcu_state.gp_max) 2096 rcu_state.gp_max = gp_duration; 2097 2098 /* 2099 * We know the grace period is complete, but to everyone else 2100 * it appears to still be ongoing. But it is also the case 2101 * that to everyone else it looks like there is nothing that 2102 * they can do to advance the grace period. It is therefore 2103 * safe for us to drop the lock in order to mark the grace 2104 * period as completed in all of the rcu_node structures. 2105 */ 2106 rcu_poll_gp_seq_end(&rcu_state.gp_seq_polled_snap); 2107 raw_spin_unlock_irq_rcu_node(rnp); 2108 2109 /* 2110 * Propagate new ->gp_seq value to rcu_node structures so that 2111 * other CPUs don't have to wait until the start of the next grace 2112 * period to process their callbacks. This also avoids some nasty 2113 * RCU grace-period initialization races by forcing the end of 2114 * the current grace period to be completely recorded in all of 2115 * the rcu_node structures before the beginning of the next grace 2116 * period is recorded in any of the rcu_node structures. 2117 */ 2118 new_gp_seq = rcu_state.gp_seq; 2119 rcu_seq_end(&new_gp_seq); 2120 rcu_for_each_node_breadth_first(rnp) { 2121 raw_spin_lock_irq_rcu_node(rnp); 2122 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp))) 2123 dump_blkd_tasks(rnp, 10); 2124 WARN_ON_ONCE(rnp->qsmask); 2125 WRITE_ONCE(rnp->gp_seq, new_gp_seq); 2126 if (!rnp->parent) 2127 smp_mb(); // Order against failing poll_state_synchronize_rcu_full(). 2128 rdp = this_cpu_ptr(&rcu_data); 2129 if (rnp == rdp->mynode) 2130 needgp = __note_gp_changes(rnp, rdp) || needgp; 2131 /* smp_mb() provided by prior unlock-lock pair. */ 2132 needgp = rcu_future_gp_cleanup(rnp) || needgp; 2133 // Reset overload indication for CPUs no longer overloaded 2134 if (rcu_is_leaf_node(rnp)) 2135 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->cbovldmask) { 2136 rdp = per_cpu_ptr(&rcu_data, cpu); 2137 check_cb_ovld_locked(rdp, rnp); 2138 } 2139 sq = rcu_nocb_gp_get(rnp); 2140 raw_spin_unlock_irq_rcu_node(rnp); 2141 rcu_nocb_gp_cleanup(sq); 2142 cond_resched_tasks_rcu_qs(); 2143 WRITE_ONCE(rcu_state.gp_activity, jiffies); 2144 rcu_gp_slow(gp_cleanup_delay); 2145 } 2146 rnp = rcu_get_root(); 2147 raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */ 2148 2149 /* Declare grace period done, trace first to use old GP number. */ 2150 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end")); 2151 rcu_seq_end(&rcu_state.gp_seq); 2152 ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq); 2153 WRITE_ONCE(rcu_state.gp_state, RCU_GP_IDLE); 2154 /* Check for GP requests since above loop. */ 2155 rdp = this_cpu_ptr(&rcu_data); 2156 if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) { 2157 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed, 2158 TPS("CleanupMore")); 2159 needgp = true; 2160 } 2161 /* Advance CBs to reduce false positives below. */ 2162 offloaded = rcu_rdp_is_offloaded(rdp); 2163 if ((offloaded || !rcu_accelerate_cbs(rnp, rdp)) && needgp) { 2164 2165 // We get here if a grace period was needed (“needgp”) 2166 // and the above call to rcu_accelerate_cbs() did not set 2167 // the RCU_GP_FLAG_INIT bit in ->gp_state (which records 2168 // the need for another grace period). The purpose 2169 // of the “offloaded” check is to avoid invoking 2170 // rcu_accelerate_cbs() on an offloaded CPU because we do not 2171 // hold the ->nocb_lock needed to safely access an offloaded 2172 // ->cblist. We do not want to acquire that lock because 2173 // it can be heavily contended during callback floods. 2174 2175 WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT); 2176 WRITE_ONCE(rcu_state.gp_req_activity, jiffies); 2177 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("newreq")); 2178 } else { 2179 2180 // We get here either if there is no need for an 2181 // additional grace period or if rcu_accelerate_cbs() has 2182 // already set the RCU_GP_FLAG_INIT bit in ->gp_flags. 2183 // So all we need to do is to clear all of the other 2184 // ->gp_flags bits. 2185 2186 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags & RCU_GP_FLAG_INIT); 2187 } 2188 raw_spin_unlock_irq_rcu_node(rnp); 2189 2190 // Make synchronize_rcu() users aware of the end of old grace period. 2191 rcu_sr_normal_gp_cleanup(); 2192 2193 // If strict, make all CPUs aware of the end of the old grace period. 2194 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) 2195 on_each_cpu(rcu_strict_gp_boundary, NULL, 0); 2196 } 2197 2198 /* 2199 * Body of kthread that handles grace periods. 2200 */ 2201 static int __noreturn rcu_gp_kthread(void *unused) 2202 { 2203 rcu_bind_gp_kthread(); 2204 for (;;) { 2205 2206 /* Handle grace-period start. */ 2207 for (;;) { 2208 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 2209 TPS("reqwait")); 2210 WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_GPS); 2211 swait_event_idle_exclusive(rcu_state.gp_wq, 2212 READ_ONCE(rcu_state.gp_flags) & 2213 RCU_GP_FLAG_INIT); 2214 rcu_gp_torture_wait(); 2215 WRITE_ONCE(rcu_state.gp_state, RCU_GP_DONE_GPS); 2216 /* Locking provides needed memory barrier. */ 2217 if (rcu_gp_init()) 2218 break; 2219 cond_resched_tasks_rcu_qs(); 2220 WRITE_ONCE(rcu_state.gp_activity, jiffies); 2221 WARN_ON(signal_pending(current)); 2222 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 2223 TPS("reqwaitsig")); 2224 } 2225 2226 /* Handle quiescent-state forcing. */ 2227 rcu_gp_fqs_loop(); 2228 2229 /* Handle grace-period end. */ 2230 WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANUP); 2231 rcu_gp_cleanup(); 2232 WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANED); 2233 } 2234 } 2235 2236 /* 2237 * Report a full set of quiescent states to the rcu_state data structure. 2238 * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if 2239 * another grace period is required. Whether we wake the grace-period 2240 * kthread or it awakens itself for the next round of quiescent-state 2241 * forcing, that kthread will clean up after the just-completed grace 2242 * period. Note that the caller must hold rnp->lock, which is released 2243 * before return. 2244 */ 2245 static void rcu_report_qs_rsp(unsigned long flags) 2246 __releases(rcu_get_root()->lock) 2247 { 2248 raw_lockdep_assert_held_rcu_node(rcu_get_root()); 2249 WARN_ON_ONCE(!rcu_gp_in_progress()); 2250 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_FQS); 2251 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags); 2252 rcu_gp_kthread_wake(); 2253 } 2254 2255 /* 2256 * Similar to rcu_report_qs_rdp(), for which it is a helper function. 2257 * Allows quiescent states for a group of CPUs to be reported at one go 2258 * to the specified rcu_node structure, though all the CPUs in the group 2259 * must be represented by the same rcu_node structure (which need not be a 2260 * leaf rcu_node structure, though it often will be). The gps parameter 2261 * is the grace-period snapshot, which means that the quiescent states 2262 * are valid only if rnp->gp_seq is equal to gps. That structure's lock 2263 * must be held upon entry, and it is released before return. 2264 * 2265 * As a special case, if mask is zero, the bit-already-cleared check is 2266 * disabled. This allows propagating quiescent state due to resumed tasks 2267 * during grace-period initialization. 2268 */ 2269 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp, 2270 unsigned long gps, unsigned long flags) 2271 __releases(rnp->lock) 2272 { 2273 unsigned long oldmask = 0; 2274 struct rcu_node *rnp_c; 2275 2276 raw_lockdep_assert_held_rcu_node(rnp); 2277 2278 /* Walk up the rcu_node hierarchy. */ 2279 for (;;) { 2280 if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) { 2281 2282 /* 2283 * Our bit has already been cleared, or the 2284 * relevant grace period is already over, so done. 2285 */ 2286 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2287 return; 2288 } 2289 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */ 2290 WARN_ON_ONCE(!rcu_is_leaf_node(rnp) && 2291 rcu_preempt_blocked_readers_cgp(rnp)); 2292 WRITE_ONCE(rnp->qsmask, rnp->qsmask & ~mask); 2293 trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq, 2294 mask, rnp->qsmask, rnp->level, 2295 rnp->grplo, rnp->grphi, 2296 !!rnp->gp_tasks); 2297 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) { 2298 2299 /* Other bits still set at this level, so done. */ 2300 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2301 return; 2302 } 2303 rnp->completedqs = rnp->gp_seq; 2304 mask = rnp->grpmask; 2305 if (rnp->parent == NULL) { 2306 2307 /* No more levels. Exit loop holding root lock. */ 2308 2309 break; 2310 } 2311 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2312 rnp_c = rnp; 2313 rnp = rnp->parent; 2314 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2315 oldmask = READ_ONCE(rnp_c->qsmask); 2316 } 2317 2318 /* 2319 * Get here if we are the last CPU to pass through a quiescent 2320 * state for this grace period. Invoke rcu_report_qs_rsp() 2321 * to clean up and start the next grace period if one is needed. 2322 */ 2323 rcu_report_qs_rsp(flags); /* releases rnp->lock. */ 2324 } 2325 2326 /* 2327 * Record a quiescent state for all tasks that were previously queued 2328 * on the specified rcu_node structure and that were blocking the current 2329 * RCU grace period. The caller must hold the corresponding rnp->lock with 2330 * irqs disabled, and this lock is released upon return, but irqs remain 2331 * disabled. 2332 */ 2333 static void __maybe_unused 2334 rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags) 2335 __releases(rnp->lock) 2336 { 2337 unsigned long gps; 2338 unsigned long mask; 2339 struct rcu_node *rnp_p; 2340 2341 raw_lockdep_assert_held_rcu_node(rnp); 2342 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT_RCU)) || 2343 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) || 2344 rnp->qsmask != 0) { 2345 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2346 return; /* Still need more quiescent states! */ 2347 } 2348 2349 rnp->completedqs = rnp->gp_seq; 2350 rnp_p = rnp->parent; 2351 if (rnp_p == NULL) { 2352 /* 2353 * Only one rcu_node structure in the tree, so don't 2354 * try to report up to its nonexistent parent! 2355 */ 2356 rcu_report_qs_rsp(flags); 2357 return; 2358 } 2359 2360 /* Report up the rest of the hierarchy, tracking current ->gp_seq. */ 2361 gps = rnp->gp_seq; 2362 mask = rnp->grpmask; 2363 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 2364 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */ 2365 rcu_report_qs_rnp(mask, rnp_p, gps, flags); 2366 } 2367 2368 /* 2369 * Record a quiescent state for the specified CPU to that CPU's rcu_data 2370 * structure. This must be called from the specified CPU. 2371 */ 2372 static void 2373 rcu_report_qs_rdp(struct rcu_data *rdp) 2374 { 2375 unsigned long flags; 2376 unsigned long mask; 2377 struct rcu_node *rnp; 2378 2379 WARN_ON_ONCE(rdp->cpu != smp_processor_id()); 2380 rnp = rdp->mynode; 2381 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2382 if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq || 2383 rdp->gpwrap) { 2384 2385 /* 2386 * The grace period in which this quiescent state was 2387 * recorded has ended, so don't report it upwards. 2388 * We will instead need a new quiescent state that lies 2389 * within the current grace period. 2390 */ 2391 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */ 2392 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2393 return; 2394 } 2395 mask = rdp->grpmask; 2396 rdp->core_needs_qs = false; 2397 if ((rnp->qsmask & mask) == 0) { 2398 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2399 } else { 2400 /* 2401 * This GP can't end until cpu checks in, so all of our 2402 * callbacks can be processed during the next GP. 2403 * 2404 * NOCB kthreads have their own way to deal with that... 2405 */ 2406 if (!rcu_rdp_is_offloaded(rdp)) { 2407 /* 2408 * The current GP has not yet ended, so it 2409 * should not be possible for rcu_accelerate_cbs() 2410 * to return true. So complain, but don't awaken. 2411 */ 2412 WARN_ON_ONCE(rcu_accelerate_cbs(rnp, rdp)); 2413 } 2414 2415 rcu_disable_urgency_upon_qs(rdp); 2416 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 2417 /* ^^^ Released rnp->lock */ 2418 } 2419 } 2420 2421 /* 2422 * Check to see if there is a new grace period of which this CPU 2423 * is not yet aware, and if so, set up local rcu_data state for it. 2424 * Otherwise, see if this CPU has just passed through its first 2425 * quiescent state for this grace period, and record that fact if so. 2426 */ 2427 static void 2428 rcu_check_quiescent_state(struct rcu_data *rdp) 2429 { 2430 /* Check for grace-period ends and beginnings. */ 2431 note_gp_changes(rdp); 2432 2433 /* 2434 * Does this CPU still need to do its part for current grace period? 2435 * If no, return and let the other CPUs do their part as well. 2436 */ 2437 if (!rdp->core_needs_qs) 2438 return; 2439 2440 /* 2441 * Was there a quiescent state since the beginning of the grace 2442 * period? If no, then exit and wait for the next call. 2443 */ 2444 if (rdp->cpu_no_qs.b.norm) 2445 return; 2446 2447 /* 2448 * Tell RCU we are done (but rcu_report_qs_rdp() will be the 2449 * judge of that). 2450 */ 2451 rcu_report_qs_rdp(rdp); 2452 } 2453 2454 /* Return true if callback-invocation time limit exceeded. */ 2455 static bool rcu_do_batch_check_time(long count, long tlimit, 2456 bool jlimit_check, unsigned long jlimit) 2457 { 2458 // Invoke local_clock() only once per 32 consecutive callbacks. 2459 return unlikely(tlimit) && 2460 (!likely(count & 31) || 2461 (IS_ENABLED(CONFIG_RCU_DOUBLE_CHECK_CB_TIME) && 2462 jlimit_check && time_after(jiffies, jlimit))) && 2463 local_clock() >= tlimit; 2464 } 2465 2466 /* 2467 * Invoke any RCU callbacks that have made it to the end of their grace 2468 * period. Throttle as specified by rdp->blimit. 2469 */ 2470 static void rcu_do_batch(struct rcu_data *rdp) 2471 { 2472 long bl; 2473 long count = 0; 2474 int div; 2475 bool __maybe_unused empty; 2476 unsigned long flags; 2477 unsigned long jlimit; 2478 bool jlimit_check = false; 2479 long pending; 2480 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl); 2481 struct rcu_head *rhp; 2482 long tlimit = 0; 2483 2484 /* If no callbacks are ready, just return. */ 2485 if (!rcu_segcblist_ready_cbs(&rdp->cblist)) { 2486 trace_rcu_batch_start(rcu_state.name, 2487 rcu_segcblist_n_cbs(&rdp->cblist), 0); 2488 trace_rcu_batch_end(rcu_state.name, 0, 2489 !rcu_segcblist_empty(&rdp->cblist), 2490 need_resched(), is_idle_task(current), 2491 rcu_is_callbacks_kthread(rdp)); 2492 return; 2493 } 2494 2495 /* 2496 * Extract the list of ready callbacks, disabling IRQs to prevent 2497 * races with call_rcu() from interrupt handlers. Leave the 2498 * callback counts, as rcu_barrier() needs to be conservative. 2499 * 2500 * Callbacks execution is fully ordered against preceding grace period 2501 * completion (materialized by rnp->gp_seq update) thanks to the 2502 * smp_mb__after_unlock_lock() upon node locking required for callbacks 2503 * advancing. In NOCB mode this ordering is then further relayed through 2504 * the nocb locking that protects both callbacks advancing and extraction. 2505 */ 2506 rcu_nocb_lock_irqsave(rdp, flags); 2507 WARN_ON_ONCE(cpu_is_offline(smp_processor_id())); 2508 pending = rcu_segcblist_get_seglen(&rdp->cblist, RCU_DONE_TAIL); 2509 div = READ_ONCE(rcu_divisor); 2510 div = div < 0 ? 7 : div > sizeof(long) * 8 - 2 ? sizeof(long) * 8 - 2 : div; 2511 bl = max(rdp->blimit, pending >> div); 2512 if ((in_serving_softirq() || rdp->rcu_cpu_kthread_status == RCU_KTHREAD_RUNNING) && 2513 (IS_ENABLED(CONFIG_RCU_DOUBLE_CHECK_CB_TIME) || unlikely(bl > 100))) { 2514 const long npj = NSEC_PER_SEC / HZ; 2515 long rrn = READ_ONCE(rcu_resched_ns); 2516 2517 rrn = rrn < NSEC_PER_MSEC ? NSEC_PER_MSEC : rrn > NSEC_PER_SEC ? NSEC_PER_SEC : rrn; 2518 tlimit = local_clock() + rrn; 2519 jlimit = jiffies + (rrn + npj + 1) / npj; 2520 jlimit_check = true; 2521 } 2522 trace_rcu_batch_start(rcu_state.name, 2523 rcu_segcblist_n_cbs(&rdp->cblist), bl); 2524 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl); 2525 if (rcu_rdp_is_offloaded(rdp)) 2526 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist); 2527 2528 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbDequeued")); 2529 rcu_nocb_unlock_irqrestore(rdp, flags); 2530 2531 /* Invoke callbacks. */ 2532 tick_dep_set_task(current, TICK_DEP_BIT_RCU); 2533 rhp = rcu_cblist_dequeue(&rcl); 2534 2535 for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) { 2536 rcu_callback_t f; 2537 2538 count++; 2539 debug_rcu_head_unqueue(rhp); 2540 2541 rcu_lock_acquire(&rcu_callback_map); 2542 trace_rcu_invoke_callback(rcu_state.name, rhp); 2543 2544 f = rhp->func; 2545 debug_rcu_head_callback(rhp); 2546 WRITE_ONCE(rhp->func, (rcu_callback_t)0L); 2547 f(rhp); 2548 2549 rcu_lock_release(&rcu_callback_map); 2550 2551 /* 2552 * Stop only if limit reached and CPU has something to do. 2553 */ 2554 if (in_serving_softirq()) { 2555 if (count >= bl && (need_resched() || !is_idle_task(current))) 2556 break; 2557 /* 2558 * Make sure we don't spend too much time here and deprive other 2559 * softirq vectors of CPU cycles. 2560 */ 2561 if (rcu_do_batch_check_time(count, tlimit, jlimit_check, jlimit)) 2562 break; 2563 } else { 2564 // In rcuc/rcuoc context, so no worries about 2565 // depriving other softirq vectors of CPU cycles. 2566 local_bh_enable(); 2567 lockdep_assert_irqs_enabled(); 2568 cond_resched_tasks_rcu_qs(); 2569 lockdep_assert_irqs_enabled(); 2570 local_bh_disable(); 2571 // But rcuc kthreads can delay quiescent-state 2572 // reporting, so check time limits for them. 2573 if (rdp->rcu_cpu_kthread_status == RCU_KTHREAD_RUNNING && 2574 rcu_do_batch_check_time(count, tlimit, jlimit_check, jlimit)) { 2575 rdp->rcu_cpu_has_work = 1; 2576 break; 2577 } 2578 } 2579 } 2580 2581 rcu_nocb_lock_irqsave(rdp, flags); 2582 rdp->n_cbs_invoked += count; 2583 trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(), 2584 is_idle_task(current), rcu_is_callbacks_kthread(rdp)); 2585 2586 /* Update counts and requeue any remaining callbacks. */ 2587 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl); 2588 rcu_segcblist_add_len(&rdp->cblist, -count); 2589 2590 /* Reinstate batch limit if we have worked down the excess. */ 2591 count = rcu_segcblist_n_cbs(&rdp->cblist); 2592 if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark) 2593 rdp->blimit = blimit; 2594 2595 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */ 2596 if (count == 0 && rdp->qlen_last_fqs_check != 0) { 2597 rdp->qlen_last_fqs_check = 0; 2598 rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs); 2599 } else if (count < rdp->qlen_last_fqs_check - qhimark) 2600 rdp->qlen_last_fqs_check = count; 2601 2602 /* 2603 * The following usually indicates a double call_rcu(). To track 2604 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y. 2605 */ 2606 empty = rcu_segcblist_empty(&rdp->cblist); 2607 WARN_ON_ONCE(count == 0 && !empty); 2608 WARN_ON_ONCE(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) && 2609 count != 0 && empty); 2610 WARN_ON_ONCE(count == 0 && rcu_segcblist_n_segment_cbs(&rdp->cblist) != 0); 2611 WARN_ON_ONCE(!empty && rcu_segcblist_n_segment_cbs(&rdp->cblist) == 0); 2612 2613 rcu_nocb_unlock_irqrestore(rdp, flags); 2614 2615 tick_dep_clear_task(current, TICK_DEP_BIT_RCU); 2616 } 2617 2618 /* 2619 * This function is invoked from each scheduling-clock interrupt, 2620 * and checks to see if this CPU is in a non-context-switch quiescent 2621 * state, for example, user mode or idle loop. It also schedules RCU 2622 * core processing. If the current grace period has gone on too long, 2623 * it will ask the scheduler to manufacture a context switch for the sole 2624 * purpose of providing the needed quiescent state. 2625 */ 2626 void rcu_sched_clock_irq(int user) 2627 { 2628 unsigned long j; 2629 2630 if (IS_ENABLED(CONFIG_PROVE_RCU)) { 2631 j = jiffies; 2632 WARN_ON_ONCE(time_before(j, __this_cpu_read(rcu_data.last_sched_clock))); 2633 __this_cpu_write(rcu_data.last_sched_clock, j); 2634 } 2635 trace_rcu_utilization(TPS("Start scheduler-tick")); 2636 lockdep_assert_irqs_disabled(); 2637 raw_cpu_inc(rcu_data.ticks_this_gp); 2638 /* The load-acquire pairs with the store-release setting to true. */ 2639 if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) { 2640 /* Idle and userspace execution already are quiescent states. */ 2641 if (!rcu_is_cpu_rrupt_from_idle() && !user) { 2642 set_tsk_need_resched(current); 2643 set_preempt_need_resched(); 2644 } 2645 __this_cpu_write(rcu_data.rcu_urgent_qs, false); 2646 } 2647 rcu_flavor_sched_clock_irq(user); 2648 if (rcu_pending(user)) 2649 invoke_rcu_core(); 2650 if (user || rcu_is_cpu_rrupt_from_idle()) 2651 rcu_note_voluntary_context_switch(current); 2652 lockdep_assert_irqs_disabled(); 2653 2654 trace_rcu_utilization(TPS("End scheduler-tick")); 2655 } 2656 2657 /* 2658 * Scan the leaf rcu_node structures. For each structure on which all 2659 * CPUs have reported a quiescent state and on which there are tasks 2660 * blocking the current grace period, initiate RCU priority boosting. 2661 * Otherwise, invoke the specified function to check dyntick state for 2662 * each CPU that has not yet reported a quiescent state. 2663 */ 2664 static void force_qs_rnp(int (*f)(struct rcu_data *rdp)) 2665 { 2666 int cpu; 2667 unsigned long flags; 2668 struct rcu_node *rnp; 2669 2670 rcu_state.cbovld = rcu_state.cbovldnext; 2671 rcu_state.cbovldnext = false; 2672 rcu_for_each_leaf_node(rnp) { 2673 unsigned long mask = 0; 2674 unsigned long rsmask = 0; 2675 2676 cond_resched_tasks_rcu_qs(); 2677 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2678 rcu_state.cbovldnext |= !!rnp->cbovldmask; 2679 if (rnp->qsmask == 0) { 2680 if (rcu_preempt_blocked_readers_cgp(rnp)) { 2681 /* 2682 * No point in scanning bits because they 2683 * are all zero. But we might need to 2684 * priority-boost blocked readers. 2685 */ 2686 rcu_initiate_boost(rnp, flags); 2687 /* rcu_initiate_boost() releases rnp->lock */ 2688 continue; 2689 } 2690 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2691 continue; 2692 } 2693 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->qsmask) { 2694 struct rcu_data *rdp; 2695 int ret; 2696 2697 rdp = per_cpu_ptr(&rcu_data, cpu); 2698 ret = f(rdp); 2699 if (ret > 0) { 2700 mask |= rdp->grpmask; 2701 rcu_disable_urgency_upon_qs(rdp); 2702 } 2703 if (ret < 0) 2704 rsmask |= rdp->grpmask; 2705 } 2706 if (mask != 0) { 2707 /* Idle/offline CPUs, report (releases rnp->lock). */ 2708 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 2709 } else { 2710 /* Nothing to do here, so just drop the lock. */ 2711 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2712 } 2713 2714 for_each_leaf_node_cpu_mask(rnp, cpu, rsmask) 2715 resched_cpu(cpu); 2716 } 2717 } 2718 2719 /* 2720 * Force quiescent states on reluctant CPUs, and also detect which 2721 * CPUs are in dyntick-idle mode. 2722 */ 2723 void rcu_force_quiescent_state(void) 2724 { 2725 unsigned long flags; 2726 bool ret; 2727 struct rcu_node *rnp; 2728 struct rcu_node *rnp_old = NULL; 2729 2730 if (!rcu_gp_in_progress()) 2731 return; 2732 /* Funnel through hierarchy to reduce memory contention. */ 2733 rnp = raw_cpu_read(rcu_data.mynode); 2734 for (; rnp != NULL; rnp = rnp->parent) { 2735 ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) || 2736 !raw_spin_trylock(&rnp->fqslock); 2737 if (rnp_old != NULL) 2738 raw_spin_unlock(&rnp_old->fqslock); 2739 if (ret) 2740 return; 2741 rnp_old = rnp; 2742 } 2743 /* rnp_old == rcu_get_root(), rnp == NULL. */ 2744 2745 /* Reached the root of the rcu_node tree, acquire lock. */ 2746 raw_spin_lock_irqsave_rcu_node(rnp_old, flags); 2747 raw_spin_unlock(&rnp_old->fqslock); 2748 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) { 2749 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); 2750 return; /* Someone beat us to it. */ 2751 } 2752 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_FQS); 2753 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); 2754 rcu_gp_kthread_wake(); 2755 } 2756 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state); 2757 2758 // Workqueue handler for an RCU reader for kernels enforcing struct RCU 2759 // grace periods. 2760 static void strict_work_handler(struct work_struct *work) 2761 { 2762 rcu_read_lock(); 2763 rcu_read_unlock(); 2764 } 2765 2766 /* Perform RCU core processing work for the current CPU. */ 2767 static __latent_entropy void rcu_core(void) 2768 { 2769 unsigned long flags; 2770 struct rcu_data *rdp = raw_cpu_ptr(&rcu_data); 2771 struct rcu_node *rnp = rdp->mynode; 2772 2773 if (cpu_is_offline(smp_processor_id())) 2774 return; 2775 trace_rcu_utilization(TPS("Start RCU core")); 2776 WARN_ON_ONCE(!rdp->beenonline); 2777 2778 /* Report any deferred quiescent states if preemption enabled. */ 2779 if (IS_ENABLED(CONFIG_PREEMPT_COUNT) && (!(preempt_count() & PREEMPT_MASK))) { 2780 rcu_preempt_deferred_qs(current); 2781 } else if (rcu_preempt_need_deferred_qs(current)) { 2782 set_tsk_need_resched(current); 2783 set_preempt_need_resched(); 2784 } 2785 2786 /* Update RCU state based on any recent quiescent states. */ 2787 rcu_check_quiescent_state(rdp); 2788 2789 /* No grace period and unregistered callbacks? */ 2790 if (!rcu_gp_in_progress() && 2791 rcu_segcblist_is_enabled(&rdp->cblist) && !rcu_rdp_is_offloaded(rdp)) { 2792 local_irq_save(flags); 2793 if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL)) 2794 rcu_accelerate_cbs_unlocked(rnp, rdp); 2795 local_irq_restore(flags); 2796 } 2797 2798 rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check()); 2799 2800 /* If there are callbacks ready, invoke them. */ 2801 if (!rcu_rdp_is_offloaded(rdp) && rcu_segcblist_ready_cbs(&rdp->cblist) && 2802 likely(READ_ONCE(rcu_scheduler_fully_active))) { 2803 rcu_do_batch(rdp); 2804 /* Re-invoke RCU core processing if there are callbacks remaining. */ 2805 if (rcu_segcblist_ready_cbs(&rdp->cblist)) 2806 invoke_rcu_core(); 2807 } 2808 2809 /* Do any needed deferred wakeups of rcuo kthreads. */ 2810 do_nocb_deferred_wakeup(rdp); 2811 trace_rcu_utilization(TPS("End RCU core")); 2812 2813 // If strict GPs, schedule an RCU reader in a clean environment. 2814 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) 2815 queue_work_on(rdp->cpu, rcu_gp_wq, &rdp->strict_work); 2816 } 2817 2818 static void rcu_core_si(void) 2819 { 2820 rcu_core(); 2821 } 2822 2823 static void rcu_wake_cond(struct task_struct *t, int status) 2824 { 2825 /* 2826 * If the thread is yielding, only wake it when this 2827 * is invoked from idle 2828 */ 2829 if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current))) 2830 wake_up_process(t); 2831 } 2832 2833 static void invoke_rcu_core_kthread(void) 2834 { 2835 struct task_struct *t; 2836 unsigned long flags; 2837 2838 local_irq_save(flags); 2839 __this_cpu_write(rcu_data.rcu_cpu_has_work, 1); 2840 t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task); 2841 if (t != NULL && t != current) 2842 rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status)); 2843 local_irq_restore(flags); 2844 } 2845 2846 /* 2847 * Wake up this CPU's rcuc kthread to do RCU core processing. 2848 */ 2849 static void invoke_rcu_core(void) 2850 { 2851 if (!cpu_online(smp_processor_id())) 2852 return; 2853 if (use_softirq) 2854 raise_softirq(RCU_SOFTIRQ); 2855 else 2856 invoke_rcu_core_kthread(); 2857 } 2858 2859 static void rcu_cpu_kthread_park(unsigned int cpu) 2860 { 2861 per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU; 2862 } 2863 2864 static int rcu_cpu_kthread_should_run(unsigned int cpu) 2865 { 2866 return __this_cpu_read(rcu_data.rcu_cpu_has_work); 2867 } 2868 2869 /* 2870 * Per-CPU kernel thread that invokes RCU callbacks. This replaces 2871 * the RCU softirq used in configurations of RCU that do not support RCU 2872 * priority boosting. 2873 */ 2874 static void rcu_cpu_kthread(unsigned int cpu) 2875 { 2876 unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status); 2877 char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work); 2878 unsigned long *j = this_cpu_ptr(&rcu_data.rcuc_activity); 2879 int spincnt; 2880 2881 trace_rcu_utilization(TPS("Start CPU kthread@rcu_run")); 2882 for (spincnt = 0; spincnt < 10; spincnt++) { 2883 WRITE_ONCE(*j, jiffies); 2884 local_bh_disable(); 2885 *statusp = RCU_KTHREAD_RUNNING; 2886 local_irq_disable(); 2887 work = *workp; 2888 WRITE_ONCE(*workp, 0); 2889 local_irq_enable(); 2890 if (work) 2891 rcu_core(); 2892 local_bh_enable(); 2893 if (!READ_ONCE(*workp)) { 2894 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait")); 2895 *statusp = RCU_KTHREAD_WAITING; 2896 return; 2897 } 2898 } 2899 *statusp = RCU_KTHREAD_YIELDING; 2900 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield")); 2901 schedule_timeout_idle(2); 2902 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield")); 2903 *statusp = RCU_KTHREAD_WAITING; 2904 WRITE_ONCE(*j, jiffies); 2905 } 2906 2907 static struct smp_hotplug_thread rcu_cpu_thread_spec = { 2908 .store = &rcu_data.rcu_cpu_kthread_task, 2909 .thread_should_run = rcu_cpu_kthread_should_run, 2910 .thread_fn = rcu_cpu_kthread, 2911 .thread_comm = "rcuc/%u", 2912 .setup = rcu_cpu_kthread_setup, 2913 .park = rcu_cpu_kthread_park, 2914 }; 2915 2916 /* 2917 * Spawn per-CPU RCU core processing kthreads. 2918 */ 2919 static int __init rcu_spawn_core_kthreads(void) 2920 { 2921 int cpu; 2922 2923 for_each_possible_cpu(cpu) 2924 per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0; 2925 if (use_softirq) 2926 return 0; 2927 WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec), 2928 "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__); 2929 return 0; 2930 } 2931 2932 static void rcutree_enqueue(struct rcu_data *rdp, struct rcu_head *head, rcu_callback_t func) 2933 { 2934 rcu_segcblist_enqueue(&rdp->cblist, head); 2935 if (__is_kvfree_rcu_offset((unsigned long)func)) 2936 trace_rcu_kvfree_callback(rcu_state.name, head, 2937 (unsigned long)func, 2938 rcu_segcblist_n_cbs(&rdp->cblist)); 2939 else 2940 trace_rcu_callback(rcu_state.name, head, 2941 rcu_segcblist_n_cbs(&rdp->cblist)); 2942 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCBQueued")); 2943 } 2944 2945 /* 2946 * Handle any core-RCU processing required by a call_rcu() invocation. 2947 */ 2948 static void call_rcu_core(struct rcu_data *rdp, struct rcu_head *head, 2949 rcu_callback_t func, unsigned long flags) 2950 { 2951 rcutree_enqueue(rdp, head, func); 2952 /* 2953 * If called from an extended quiescent state, invoke the RCU 2954 * core in order to force a re-evaluation of RCU's idleness. 2955 */ 2956 if (!rcu_is_watching()) 2957 invoke_rcu_core(); 2958 2959 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */ 2960 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id())) 2961 return; 2962 2963 /* 2964 * Force the grace period if too many callbacks or too long waiting. 2965 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state() 2966 * if some other CPU has recently done so. Also, don't bother 2967 * invoking rcu_force_quiescent_state() if the newly enqueued callback 2968 * is the only one waiting for a grace period to complete. 2969 */ 2970 if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) > 2971 rdp->qlen_last_fqs_check + qhimark)) { 2972 2973 /* Are we ignoring a completed grace period? */ 2974 note_gp_changes(rdp); 2975 2976 /* Start a new grace period if one not already started. */ 2977 if (!rcu_gp_in_progress()) { 2978 rcu_accelerate_cbs_unlocked(rdp->mynode, rdp); 2979 } else { 2980 /* Give the grace period a kick. */ 2981 rdp->blimit = DEFAULT_MAX_RCU_BLIMIT; 2982 if (READ_ONCE(rcu_state.n_force_qs) == rdp->n_force_qs_snap && 2983 rcu_segcblist_first_pend_cb(&rdp->cblist) != head) 2984 rcu_force_quiescent_state(); 2985 rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs); 2986 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist); 2987 } 2988 } 2989 } 2990 2991 /* 2992 * RCU callback function to leak a callback. 2993 */ 2994 static void rcu_leak_callback(struct rcu_head *rhp) 2995 { 2996 } 2997 2998 /* 2999 * Check and if necessary update the leaf rcu_node structure's 3000 * ->cbovldmask bit corresponding to the current CPU based on that CPU's 3001 * number of queued RCU callbacks. The caller must hold the leaf rcu_node 3002 * structure's ->lock. 3003 */ 3004 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp) 3005 { 3006 raw_lockdep_assert_held_rcu_node(rnp); 3007 if (qovld_calc <= 0) 3008 return; // Early boot and wildcard value set. 3009 if (rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) 3010 WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask | rdp->grpmask); 3011 else 3012 WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask & ~rdp->grpmask); 3013 } 3014 3015 /* 3016 * Check and if necessary update the leaf rcu_node structure's 3017 * ->cbovldmask bit corresponding to the current CPU based on that CPU's 3018 * number of queued RCU callbacks. No locks need be held, but the 3019 * caller must have disabled interrupts. 3020 * 3021 * Note that this function ignores the possibility that there are a lot 3022 * of callbacks all of which have already seen the end of their respective 3023 * grace periods. This omission is due to the need for no-CBs CPUs to 3024 * be holding ->nocb_lock to do this check, which is too heavy for a 3025 * common-case operation. 3026 */ 3027 static void check_cb_ovld(struct rcu_data *rdp) 3028 { 3029 struct rcu_node *const rnp = rdp->mynode; 3030 3031 if (qovld_calc <= 0 || 3032 ((rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) == 3033 !!(READ_ONCE(rnp->cbovldmask) & rdp->grpmask))) 3034 return; // Early boot wildcard value or already set correctly. 3035 raw_spin_lock_rcu_node(rnp); 3036 check_cb_ovld_locked(rdp, rnp); 3037 raw_spin_unlock_rcu_node(rnp); 3038 } 3039 3040 static void 3041 __call_rcu_common(struct rcu_head *head, rcu_callback_t func, bool lazy_in) 3042 { 3043 static atomic_t doublefrees; 3044 unsigned long flags; 3045 bool lazy; 3046 struct rcu_data *rdp; 3047 3048 /* Misaligned rcu_head! */ 3049 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1)); 3050 3051 if (debug_rcu_head_queue(head)) { 3052 /* 3053 * Probable double call_rcu(), so leak the callback. 3054 * Use rcu:rcu_callback trace event to find the previous 3055 * time callback was passed to call_rcu(). 3056 */ 3057 if (atomic_inc_return(&doublefrees) < 4) { 3058 pr_err("%s(): Double-freed CB %p->%pS()!!! ", __func__, head, head->func); 3059 mem_dump_obj(head); 3060 } 3061 WRITE_ONCE(head->func, rcu_leak_callback); 3062 return; 3063 } 3064 head->func = func; 3065 head->next = NULL; 3066 kasan_record_aux_stack_noalloc(head); 3067 3068 local_irq_save(flags); 3069 rdp = this_cpu_ptr(&rcu_data); 3070 RCU_LOCKDEP_WARN(!rcu_rdp_cpu_online(rdp), "Callback enqueued on offline CPU!"); 3071 3072 lazy = lazy_in && !rcu_async_should_hurry(); 3073 3074 /* Add the callback to our list. */ 3075 if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist))) { 3076 // This can trigger due to call_rcu() from offline CPU: 3077 WARN_ON_ONCE(rcu_scheduler_active != RCU_SCHEDULER_INACTIVE); 3078 WARN_ON_ONCE(!rcu_is_watching()); 3079 // Very early boot, before rcu_init(). Initialize if needed 3080 // and then drop through to queue the callback. 3081 if (rcu_segcblist_empty(&rdp->cblist)) 3082 rcu_segcblist_init(&rdp->cblist); 3083 } 3084 3085 check_cb_ovld(rdp); 3086 3087 if (unlikely(rcu_rdp_is_offloaded(rdp))) 3088 call_rcu_nocb(rdp, head, func, flags, lazy); 3089 else 3090 call_rcu_core(rdp, head, func, flags); 3091 local_irq_restore(flags); 3092 } 3093 3094 #ifdef CONFIG_RCU_LAZY 3095 static bool enable_rcu_lazy __read_mostly = !IS_ENABLED(CONFIG_RCU_LAZY_DEFAULT_OFF); 3096 module_param(enable_rcu_lazy, bool, 0444); 3097 3098 /** 3099 * call_rcu_hurry() - Queue RCU callback for invocation after grace period, and 3100 * flush all lazy callbacks (including the new one) to the main ->cblist while 3101 * doing so. 3102 * 3103 * @head: structure to be used for queueing the RCU updates. 3104 * @func: actual callback function to be invoked after the grace period 3105 * 3106 * The callback function will be invoked some time after a full grace 3107 * period elapses, in other words after all pre-existing RCU read-side 3108 * critical sections have completed. 3109 * 3110 * Use this API instead of call_rcu() if you don't want the callback to be 3111 * invoked after very long periods of time, which can happen on systems without 3112 * memory pressure and on systems which are lightly loaded or mostly idle. 3113 * This function will cause callbacks to be invoked sooner than later at the 3114 * expense of extra power. Other than that, this function is identical to, and 3115 * reuses call_rcu()'s logic. Refer to call_rcu() for more details about memory 3116 * ordering and other functionality. 3117 */ 3118 void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func) 3119 { 3120 __call_rcu_common(head, func, false); 3121 } 3122 EXPORT_SYMBOL_GPL(call_rcu_hurry); 3123 #else 3124 #define enable_rcu_lazy false 3125 #endif 3126 3127 /** 3128 * call_rcu() - Queue an RCU callback for invocation after a grace period. 3129 * By default the callbacks are 'lazy' and are kept hidden from the main 3130 * ->cblist to prevent starting of grace periods too soon. 3131 * If you desire grace periods to start very soon, use call_rcu_hurry(). 3132 * 3133 * @head: structure to be used for queueing the RCU updates. 3134 * @func: actual callback function to be invoked after the grace period 3135 * 3136 * The callback function will be invoked some time after a full grace 3137 * period elapses, in other words after all pre-existing RCU read-side 3138 * critical sections have completed. However, the callback function 3139 * might well execute concurrently with RCU read-side critical sections 3140 * that started after call_rcu() was invoked. 3141 * 3142 * RCU read-side critical sections are delimited by rcu_read_lock() 3143 * and rcu_read_unlock(), and may be nested. In addition, but only in 3144 * v5.0 and later, regions of code across which interrupts, preemption, 3145 * or softirqs have been disabled also serve as RCU read-side critical 3146 * sections. This includes hardware interrupt handlers, softirq handlers, 3147 * and NMI handlers. 3148 * 3149 * Note that all CPUs must agree that the grace period extended beyond 3150 * all pre-existing RCU read-side critical section. On systems with more 3151 * than one CPU, this means that when "func()" is invoked, each CPU is 3152 * guaranteed to have executed a full memory barrier since the end of its 3153 * last RCU read-side critical section whose beginning preceded the call 3154 * to call_rcu(). It also means that each CPU executing an RCU read-side 3155 * critical section that continues beyond the start of "func()" must have 3156 * executed a memory barrier after the call_rcu() but before the beginning 3157 * of that RCU read-side critical section. Note that these guarantees 3158 * include CPUs that are offline, idle, or executing in user mode, as 3159 * well as CPUs that are executing in the kernel. 3160 * 3161 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the 3162 * resulting RCU callback function "func()", then both CPU A and CPU B are 3163 * guaranteed to execute a full memory barrier during the time interval 3164 * between the call to call_rcu() and the invocation of "func()" -- even 3165 * if CPU A and CPU B are the same CPU (but again only if the system has 3166 * more than one CPU). 3167 * 3168 * Implementation of these memory-ordering guarantees is described here: 3169 * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst. 3170 */ 3171 void call_rcu(struct rcu_head *head, rcu_callback_t func) 3172 { 3173 __call_rcu_common(head, func, enable_rcu_lazy); 3174 } 3175 EXPORT_SYMBOL_GPL(call_rcu); 3176 3177 /* 3178 * During early boot, any blocking grace-period wait automatically 3179 * implies a grace period. 3180 * 3181 * Later on, this could in theory be the case for kernels built with 3182 * CONFIG_SMP=y && CONFIG_PREEMPTION=y running on a single CPU, but this 3183 * is not a common case. Furthermore, this optimization would cause 3184 * the rcu_gp_oldstate structure to expand by 50%, so this potential 3185 * grace-period optimization is ignored once the scheduler is running. 3186 */ 3187 static int rcu_blocking_is_gp(void) 3188 { 3189 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) { 3190 might_sleep(); 3191 return false; 3192 } 3193 return true; 3194 } 3195 3196 /* 3197 * Helper function for the synchronize_rcu() API. 3198 */ 3199 static void synchronize_rcu_normal(void) 3200 { 3201 struct rcu_synchronize rs; 3202 3203 trace_rcu_sr_normal(rcu_state.name, &rs.head, TPS("request")); 3204 3205 if (!READ_ONCE(rcu_normal_wake_from_gp)) { 3206 wait_rcu_gp(call_rcu_hurry); 3207 goto trace_complete_out; 3208 } 3209 3210 init_rcu_head_on_stack(&rs.head); 3211 init_completion(&rs.completion); 3212 3213 /* 3214 * This code might be preempted, therefore take a GP 3215 * snapshot before adding a request. 3216 */ 3217 if (IS_ENABLED(CONFIG_PROVE_RCU)) 3218 rs.head.func = (void *) get_state_synchronize_rcu(); 3219 3220 rcu_sr_normal_add_req(&rs); 3221 3222 /* Kick a GP and start waiting. */ 3223 (void) start_poll_synchronize_rcu(); 3224 3225 /* Now we can wait. */ 3226 wait_for_completion(&rs.completion); 3227 destroy_rcu_head_on_stack(&rs.head); 3228 3229 trace_complete_out: 3230 trace_rcu_sr_normal(rcu_state.name, &rs.head, TPS("complete")); 3231 } 3232 3233 /** 3234 * synchronize_rcu - wait until a grace period has elapsed. 3235 * 3236 * Control will return to the caller some time after a full grace 3237 * period has elapsed, in other words after all currently executing RCU 3238 * read-side critical sections have completed. Note, however, that 3239 * upon return from synchronize_rcu(), the caller might well be executing 3240 * concurrently with new RCU read-side critical sections that began while 3241 * synchronize_rcu() was waiting. 3242 * 3243 * RCU read-side critical sections are delimited by rcu_read_lock() 3244 * and rcu_read_unlock(), and may be nested. In addition, but only in 3245 * v5.0 and later, regions of code across which interrupts, preemption, 3246 * or softirqs have been disabled also serve as RCU read-side critical 3247 * sections. This includes hardware interrupt handlers, softirq handlers, 3248 * and NMI handlers. 3249 * 3250 * Note that this guarantee implies further memory-ordering guarantees. 3251 * On systems with more than one CPU, when synchronize_rcu() returns, 3252 * each CPU is guaranteed to have executed a full memory barrier since 3253 * the end of its last RCU read-side critical section whose beginning 3254 * preceded the call to synchronize_rcu(). In addition, each CPU having 3255 * an RCU read-side critical section that extends beyond the return from 3256 * synchronize_rcu() is guaranteed to have executed a full memory barrier 3257 * after the beginning of synchronize_rcu() and before the beginning of 3258 * that RCU read-side critical section. Note that these guarantees include 3259 * CPUs that are offline, idle, or executing in user mode, as well as CPUs 3260 * that are executing in the kernel. 3261 * 3262 * Furthermore, if CPU A invoked synchronize_rcu(), which returned 3263 * to its caller on CPU B, then both CPU A and CPU B are guaranteed 3264 * to have executed a full memory barrier during the execution of 3265 * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but 3266 * again only if the system has more than one CPU). 3267 * 3268 * Implementation of these memory-ordering guarantees is described here: 3269 * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst. 3270 */ 3271 void synchronize_rcu(void) 3272 { 3273 unsigned long flags; 3274 struct rcu_node *rnp; 3275 3276 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) || 3277 lock_is_held(&rcu_lock_map) || 3278 lock_is_held(&rcu_sched_lock_map), 3279 "Illegal synchronize_rcu() in RCU read-side critical section"); 3280 if (!rcu_blocking_is_gp()) { 3281 if (rcu_gp_is_expedited()) 3282 synchronize_rcu_expedited(); 3283 else 3284 synchronize_rcu_normal(); 3285 return; 3286 } 3287 3288 // Context allows vacuous grace periods. 3289 // Note well that this code runs with !PREEMPT && !SMP. 3290 // In addition, all code that advances grace periods runs at 3291 // process level. Therefore, this normal GP overlaps with other 3292 // normal GPs only by being fully nested within them, which allows 3293 // reuse of ->gp_seq_polled_snap. 3294 rcu_poll_gp_seq_start_unlocked(&rcu_state.gp_seq_polled_snap); 3295 rcu_poll_gp_seq_end_unlocked(&rcu_state.gp_seq_polled_snap); 3296 3297 // Update the normal grace-period counters to record 3298 // this grace period, but only those used by the boot CPU. 3299 // The rcu_scheduler_starting() will take care of the rest of 3300 // these counters. 3301 local_irq_save(flags); 3302 WARN_ON_ONCE(num_online_cpus() > 1); 3303 rcu_state.gp_seq += (1 << RCU_SEQ_CTR_SHIFT); 3304 for (rnp = this_cpu_ptr(&rcu_data)->mynode; rnp; rnp = rnp->parent) 3305 rnp->gp_seq_needed = rnp->gp_seq = rcu_state.gp_seq; 3306 local_irq_restore(flags); 3307 } 3308 EXPORT_SYMBOL_GPL(synchronize_rcu); 3309 3310 /** 3311 * get_completed_synchronize_rcu_full - Return a full pre-completed polled state cookie 3312 * @rgosp: Place to put state cookie 3313 * 3314 * Stores into @rgosp a value that will always be treated by functions 3315 * like poll_state_synchronize_rcu_full() as a cookie whose grace period 3316 * has already completed. 3317 */ 3318 void get_completed_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp) 3319 { 3320 rgosp->rgos_norm = RCU_GET_STATE_COMPLETED; 3321 rgosp->rgos_exp = RCU_GET_STATE_COMPLETED; 3322 } 3323 EXPORT_SYMBOL_GPL(get_completed_synchronize_rcu_full); 3324 3325 /** 3326 * get_state_synchronize_rcu - Snapshot current RCU state 3327 * 3328 * Returns a cookie that is used by a later call to cond_synchronize_rcu() 3329 * or poll_state_synchronize_rcu() to determine whether or not a full 3330 * grace period has elapsed in the meantime. 3331 */ 3332 unsigned long get_state_synchronize_rcu(void) 3333 { 3334 /* 3335 * Any prior manipulation of RCU-protected data must happen 3336 * before the load from ->gp_seq. 3337 */ 3338 smp_mb(); /* ^^^ */ 3339 return rcu_seq_snap(&rcu_state.gp_seq_polled); 3340 } 3341 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu); 3342 3343 /** 3344 * get_state_synchronize_rcu_full - Snapshot RCU state, both normal and expedited 3345 * @rgosp: location to place combined normal/expedited grace-period state 3346 * 3347 * Places the normal and expedited grace-period states in @rgosp. This 3348 * state value can be passed to a later call to cond_synchronize_rcu_full() 3349 * or poll_state_synchronize_rcu_full() to determine whether or not a 3350 * grace period (whether normal or expedited) has elapsed in the meantime. 3351 * The rcu_gp_oldstate structure takes up twice the memory of an unsigned 3352 * long, but is guaranteed to see all grace periods. In contrast, the 3353 * combined state occupies less memory, but can sometimes fail to take 3354 * grace periods into account. 3355 * 3356 * This does not guarantee that the needed grace period will actually 3357 * start. 3358 */ 3359 void get_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp) 3360 { 3361 struct rcu_node *rnp = rcu_get_root(); 3362 3363 /* 3364 * Any prior manipulation of RCU-protected data must happen 3365 * before the loads from ->gp_seq and ->expedited_sequence. 3366 */ 3367 smp_mb(); /* ^^^ */ 3368 rgosp->rgos_norm = rcu_seq_snap(&rnp->gp_seq); 3369 rgosp->rgos_exp = rcu_seq_snap(&rcu_state.expedited_sequence); 3370 } 3371 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu_full); 3372 3373 /* 3374 * Helper function for start_poll_synchronize_rcu() and 3375 * start_poll_synchronize_rcu_full(). 3376 */ 3377 static void start_poll_synchronize_rcu_common(void) 3378 { 3379 unsigned long flags; 3380 bool needwake; 3381 struct rcu_data *rdp; 3382 struct rcu_node *rnp; 3383 3384 local_irq_save(flags); 3385 rdp = this_cpu_ptr(&rcu_data); 3386 rnp = rdp->mynode; 3387 raw_spin_lock_rcu_node(rnp); // irqs already disabled. 3388 // Note it is possible for a grace period to have elapsed between 3389 // the above call to get_state_synchronize_rcu() and the below call 3390 // to rcu_seq_snap. This is OK, the worst that happens is that we 3391 // get a grace period that no one needed. These accesses are ordered 3392 // by smp_mb(), and we are accessing them in the opposite order 3393 // from which they are updated at grace-period start, as required. 3394 needwake = rcu_start_this_gp(rnp, rdp, rcu_seq_snap(&rcu_state.gp_seq)); 3395 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3396 if (needwake) 3397 rcu_gp_kthread_wake(); 3398 } 3399 3400 /** 3401 * start_poll_synchronize_rcu - Snapshot and start RCU grace period 3402 * 3403 * Returns a cookie that is used by a later call to cond_synchronize_rcu() 3404 * or poll_state_synchronize_rcu() to determine whether or not a full 3405 * grace period has elapsed in the meantime. If the needed grace period 3406 * is not already slated to start, notifies RCU core of the need for that 3407 * grace period. 3408 */ 3409 unsigned long start_poll_synchronize_rcu(void) 3410 { 3411 unsigned long gp_seq = get_state_synchronize_rcu(); 3412 3413 start_poll_synchronize_rcu_common(); 3414 return gp_seq; 3415 } 3416 EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu); 3417 3418 /** 3419 * start_poll_synchronize_rcu_full - Take a full snapshot and start RCU grace period 3420 * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full() 3421 * 3422 * Places the normal and expedited grace-period states in *@rgos. This 3423 * state value can be passed to a later call to cond_synchronize_rcu_full() 3424 * or poll_state_synchronize_rcu_full() to determine whether or not a 3425 * grace period (whether normal or expedited) has elapsed in the meantime. 3426 * If the needed grace period is not already slated to start, notifies 3427 * RCU core of the need for that grace period. 3428 */ 3429 void start_poll_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp) 3430 { 3431 get_state_synchronize_rcu_full(rgosp); 3432 3433 start_poll_synchronize_rcu_common(); 3434 } 3435 EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu_full); 3436 3437 /** 3438 * poll_state_synchronize_rcu - Has the specified RCU grace period completed? 3439 * @oldstate: value from get_state_synchronize_rcu() or start_poll_synchronize_rcu() 3440 * 3441 * If a full RCU grace period has elapsed since the earlier call from 3442 * which @oldstate was obtained, return @true, otherwise return @false. 3443 * If @false is returned, it is the caller's responsibility to invoke this 3444 * function later on until it does return @true. Alternatively, the caller 3445 * can explicitly wait for a grace period, for example, by passing @oldstate 3446 * to either cond_synchronize_rcu() or cond_synchronize_rcu_expedited() 3447 * on the one hand or by directly invoking either synchronize_rcu() or 3448 * synchronize_rcu_expedited() on the other. 3449 * 3450 * Yes, this function does not take counter wrap into account. 3451 * But counter wrap is harmless. If the counter wraps, we have waited for 3452 * more than a billion grace periods (and way more on a 64-bit system!). 3453 * Those needing to keep old state values for very long time periods 3454 * (many hours even on 32-bit systems) should check them occasionally and 3455 * either refresh them or set a flag indicating that the grace period has 3456 * completed. Alternatively, they can use get_completed_synchronize_rcu() 3457 * to get a guaranteed-completed grace-period state. 3458 * 3459 * In addition, because oldstate compresses the grace-period state for 3460 * both normal and expedited grace periods into a single unsigned long, 3461 * it can miss a grace period when synchronize_rcu() runs concurrently 3462 * with synchronize_rcu_expedited(). If this is unacceptable, please 3463 * instead use the _full() variant of these polling APIs. 3464 * 3465 * This function provides the same memory-ordering guarantees that 3466 * would be provided by a synchronize_rcu() that was invoked at the call 3467 * to the function that provided @oldstate, and that returned at the end 3468 * of this function. 3469 */ 3470 bool poll_state_synchronize_rcu(unsigned long oldstate) 3471 { 3472 if (oldstate == RCU_GET_STATE_COMPLETED || 3473 rcu_seq_done_exact(&rcu_state.gp_seq_polled, oldstate)) { 3474 smp_mb(); /* Ensure GP ends before subsequent accesses. */ 3475 return true; 3476 } 3477 return false; 3478 } 3479 EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu); 3480 3481 /** 3482 * poll_state_synchronize_rcu_full - Has the specified RCU grace period completed? 3483 * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full() 3484 * 3485 * If a full RCU grace period has elapsed since the earlier call from 3486 * which *rgosp was obtained, return @true, otherwise return @false. 3487 * If @false is returned, it is the caller's responsibility to invoke this 3488 * function later on until it does return @true. Alternatively, the caller 3489 * can explicitly wait for a grace period, for example, by passing @rgosp 3490 * to cond_synchronize_rcu() or by directly invoking synchronize_rcu(). 3491 * 3492 * Yes, this function does not take counter wrap into account. 3493 * But counter wrap is harmless. If the counter wraps, we have waited 3494 * for more than a billion grace periods (and way more on a 64-bit 3495 * system!). Those needing to keep rcu_gp_oldstate values for very 3496 * long time periods (many hours even on 32-bit systems) should check 3497 * them occasionally and either refresh them or set a flag indicating 3498 * that the grace period has completed. Alternatively, they can use 3499 * get_completed_synchronize_rcu_full() to get a guaranteed-completed 3500 * grace-period state. 3501 * 3502 * This function provides the same memory-ordering guarantees that would 3503 * be provided by a synchronize_rcu() that was invoked at the call to 3504 * the function that provided @rgosp, and that returned at the end of this 3505 * function. And this guarantee requires that the root rcu_node structure's 3506 * ->gp_seq field be checked instead of that of the rcu_state structure. 3507 * The problem is that the just-ending grace-period's callbacks can be 3508 * invoked between the time that the root rcu_node structure's ->gp_seq 3509 * field is updated and the time that the rcu_state structure's ->gp_seq 3510 * field is updated. Therefore, if a single synchronize_rcu() is to 3511 * cause a subsequent poll_state_synchronize_rcu_full() to return @true, 3512 * then the root rcu_node structure is the one that needs to be polled. 3513 */ 3514 bool poll_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp) 3515 { 3516 struct rcu_node *rnp = rcu_get_root(); 3517 3518 smp_mb(); // Order against root rcu_node structure grace-period cleanup. 3519 if (rgosp->rgos_norm == RCU_GET_STATE_COMPLETED || 3520 rcu_seq_done_exact(&rnp->gp_seq, rgosp->rgos_norm) || 3521 rgosp->rgos_exp == RCU_GET_STATE_COMPLETED || 3522 rcu_seq_done_exact(&rcu_state.expedited_sequence, rgosp->rgos_exp)) { 3523 smp_mb(); /* Ensure GP ends before subsequent accesses. */ 3524 return true; 3525 } 3526 return false; 3527 } 3528 EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu_full); 3529 3530 /** 3531 * cond_synchronize_rcu - Conditionally wait for an RCU grace period 3532 * @oldstate: value from get_state_synchronize_rcu(), start_poll_synchronize_rcu(), or start_poll_synchronize_rcu_expedited() 3533 * 3534 * If a full RCU grace period has elapsed since the earlier call to 3535 * get_state_synchronize_rcu() or start_poll_synchronize_rcu(), just return. 3536 * Otherwise, invoke synchronize_rcu() to wait for a full grace period. 3537 * 3538 * Yes, this function does not take counter wrap into account. 3539 * But counter wrap is harmless. If the counter wraps, we have waited for 3540 * more than 2 billion grace periods (and way more on a 64-bit system!), 3541 * so waiting for a couple of additional grace periods should be just fine. 3542 * 3543 * This function provides the same memory-ordering guarantees that 3544 * would be provided by a synchronize_rcu() that was invoked at the call 3545 * to the function that provided @oldstate and that returned at the end 3546 * of this function. 3547 */ 3548 void cond_synchronize_rcu(unsigned long oldstate) 3549 { 3550 if (!poll_state_synchronize_rcu(oldstate)) 3551 synchronize_rcu(); 3552 } 3553 EXPORT_SYMBOL_GPL(cond_synchronize_rcu); 3554 3555 /** 3556 * cond_synchronize_rcu_full - Conditionally wait for an RCU grace period 3557 * @rgosp: value from get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(), or start_poll_synchronize_rcu_expedited_full() 3558 * 3559 * If a full RCU grace period has elapsed since the call to 3560 * get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(), 3561 * or start_poll_synchronize_rcu_expedited_full() from which @rgosp was 3562 * obtained, just return. Otherwise, invoke synchronize_rcu() to wait 3563 * for a full grace period. 3564 * 3565 * Yes, this function does not take counter wrap into account. 3566 * But counter wrap is harmless. If the counter wraps, we have waited for 3567 * more than 2 billion grace periods (and way more on a 64-bit system!), 3568 * so waiting for a couple of additional grace periods should be just fine. 3569 * 3570 * This function provides the same memory-ordering guarantees that 3571 * would be provided by a synchronize_rcu() that was invoked at the call 3572 * to the function that provided @rgosp and that returned at the end of 3573 * this function. 3574 */ 3575 void cond_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp) 3576 { 3577 if (!poll_state_synchronize_rcu_full(rgosp)) 3578 synchronize_rcu(); 3579 } 3580 EXPORT_SYMBOL_GPL(cond_synchronize_rcu_full); 3581 3582 /* 3583 * Check to see if there is any immediate RCU-related work to be done by 3584 * the current CPU, returning 1 if so and zero otherwise. The checks are 3585 * in order of increasing expense: checks that can be carried out against 3586 * CPU-local state are performed first. However, we must check for CPU 3587 * stalls first, else we might not get a chance. 3588 */ 3589 static int rcu_pending(int user) 3590 { 3591 bool gp_in_progress; 3592 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 3593 struct rcu_node *rnp = rdp->mynode; 3594 3595 lockdep_assert_irqs_disabled(); 3596 3597 /* Check for CPU stalls, if enabled. */ 3598 check_cpu_stall(rdp); 3599 3600 /* Does this CPU need a deferred NOCB wakeup? */ 3601 if (rcu_nocb_need_deferred_wakeup(rdp, RCU_NOCB_WAKE)) 3602 return 1; 3603 3604 /* Is this a nohz_full CPU in userspace or idle? (Ignore RCU if so.) */ 3605 gp_in_progress = rcu_gp_in_progress(); 3606 if ((user || rcu_is_cpu_rrupt_from_idle() || 3607 (gp_in_progress && 3608 time_before(jiffies, READ_ONCE(rcu_state.gp_start) + 3609 nohz_full_patience_delay_jiffies))) && 3610 rcu_nohz_full_cpu()) 3611 return 0; 3612 3613 /* Is the RCU core waiting for a quiescent state from this CPU? */ 3614 if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm && gp_in_progress) 3615 return 1; 3616 3617 /* Does this CPU have callbacks ready to invoke? */ 3618 if (!rcu_rdp_is_offloaded(rdp) && 3619 rcu_segcblist_ready_cbs(&rdp->cblist)) 3620 return 1; 3621 3622 /* Has RCU gone idle with this CPU needing another grace period? */ 3623 if (!gp_in_progress && rcu_segcblist_is_enabled(&rdp->cblist) && 3624 !rcu_rdp_is_offloaded(rdp) && 3625 !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL)) 3626 return 1; 3627 3628 /* Have RCU grace period completed or started? */ 3629 if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq || 3630 unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */ 3631 return 1; 3632 3633 /* nothing to do */ 3634 return 0; 3635 } 3636 3637 /* 3638 * Helper function for rcu_barrier() tracing. If tracing is disabled, 3639 * the compiler is expected to optimize this away. 3640 */ 3641 static void rcu_barrier_trace(const char *s, int cpu, unsigned long done) 3642 { 3643 trace_rcu_barrier(rcu_state.name, s, cpu, 3644 atomic_read(&rcu_state.barrier_cpu_count), done); 3645 } 3646 3647 /* 3648 * RCU callback function for rcu_barrier(). If we are last, wake 3649 * up the task executing rcu_barrier(). 3650 * 3651 * Note that the value of rcu_state.barrier_sequence must be captured 3652 * before the atomic_dec_and_test(). Otherwise, if this CPU is not last, 3653 * other CPUs might count the value down to zero before this CPU gets 3654 * around to invoking rcu_barrier_trace(), which might result in bogus 3655 * data from the next instance of rcu_barrier(). 3656 */ 3657 static void rcu_barrier_callback(struct rcu_head *rhp) 3658 { 3659 unsigned long __maybe_unused s = rcu_state.barrier_sequence; 3660 3661 rhp->next = rhp; // Mark the callback as having been invoked. 3662 if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) { 3663 rcu_barrier_trace(TPS("LastCB"), -1, s); 3664 complete(&rcu_state.barrier_completion); 3665 } else { 3666 rcu_barrier_trace(TPS("CB"), -1, s); 3667 } 3668 } 3669 3670 /* 3671 * If needed, entrain an rcu_barrier() callback on rdp->cblist. 3672 */ 3673 static void rcu_barrier_entrain(struct rcu_data *rdp) 3674 { 3675 unsigned long gseq = READ_ONCE(rcu_state.barrier_sequence); 3676 unsigned long lseq = READ_ONCE(rdp->barrier_seq_snap); 3677 bool wake_nocb = false; 3678 bool was_alldone = false; 3679 3680 lockdep_assert_held(&rcu_state.barrier_lock); 3681 if (rcu_seq_state(lseq) || !rcu_seq_state(gseq) || rcu_seq_ctr(lseq) != rcu_seq_ctr(gseq)) 3682 return; 3683 rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence); 3684 rdp->barrier_head.func = rcu_barrier_callback; 3685 debug_rcu_head_queue(&rdp->barrier_head); 3686 rcu_nocb_lock(rdp); 3687 /* 3688 * Flush bypass and wakeup rcuog if we add callbacks to an empty regular 3689 * queue. This way we don't wait for bypass timer that can reach seconds 3690 * if it's fully lazy. 3691 */ 3692 was_alldone = rcu_rdp_is_offloaded(rdp) && !rcu_segcblist_pend_cbs(&rdp->cblist); 3693 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies, false)); 3694 wake_nocb = was_alldone && rcu_segcblist_pend_cbs(&rdp->cblist); 3695 if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head)) { 3696 atomic_inc(&rcu_state.barrier_cpu_count); 3697 } else { 3698 debug_rcu_head_unqueue(&rdp->barrier_head); 3699 rcu_barrier_trace(TPS("IRQNQ"), -1, rcu_state.barrier_sequence); 3700 } 3701 rcu_nocb_unlock(rdp); 3702 if (wake_nocb) 3703 wake_nocb_gp(rdp, false); 3704 smp_store_release(&rdp->barrier_seq_snap, gseq); 3705 } 3706 3707 /* 3708 * Called with preemption disabled, and from cross-cpu IRQ context. 3709 */ 3710 static void rcu_barrier_handler(void *cpu_in) 3711 { 3712 uintptr_t cpu = (uintptr_t)cpu_in; 3713 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 3714 3715 lockdep_assert_irqs_disabled(); 3716 WARN_ON_ONCE(cpu != rdp->cpu); 3717 WARN_ON_ONCE(cpu != smp_processor_id()); 3718 raw_spin_lock(&rcu_state.barrier_lock); 3719 rcu_barrier_entrain(rdp); 3720 raw_spin_unlock(&rcu_state.barrier_lock); 3721 } 3722 3723 /** 3724 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete. 3725 * 3726 * Note that this primitive does not necessarily wait for an RCU grace period 3727 * to complete. For example, if there are no RCU callbacks queued anywhere 3728 * in the system, then rcu_barrier() is within its rights to return 3729 * immediately, without waiting for anything, much less an RCU grace period. 3730 */ 3731 void rcu_barrier(void) 3732 { 3733 uintptr_t cpu; 3734 unsigned long flags; 3735 unsigned long gseq; 3736 struct rcu_data *rdp; 3737 unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence); 3738 3739 rcu_barrier_trace(TPS("Begin"), -1, s); 3740 3741 /* Take mutex to serialize concurrent rcu_barrier() requests. */ 3742 mutex_lock(&rcu_state.barrier_mutex); 3743 3744 /* Did someone else do our work for us? */ 3745 if (rcu_seq_done(&rcu_state.barrier_sequence, s)) { 3746 rcu_barrier_trace(TPS("EarlyExit"), -1, rcu_state.barrier_sequence); 3747 smp_mb(); /* caller's subsequent code after above check. */ 3748 mutex_unlock(&rcu_state.barrier_mutex); 3749 return; 3750 } 3751 3752 /* Mark the start of the barrier operation. */ 3753 raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags); 3754 rcu_seq_start(&rcu_state.barrier_sequence); 3755 gseq = rcu_state.barrier_sequence; 3756 rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence); 3757 3758 /* 3759 * Initialize the count to two rather than to zero in order 3760 * to avoid a too-soon return to zero in case of an immediate 3761 * invocation of the just-enqueued callback (or preemption of 3762 * this task). Exclude CPU-hotplug operations to ensure that no 3763 * offline non-offloaded CPU has callbacks queued. 3764 */ 3765 init_completion(&rcu_state.barrier_completion); 3766 atomic_set(&rcu_state.barrier_cpu_count, 2); 3767 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags); 3768 3769 /* 3770 * Force each CPU with callbacks to register a new callback. 3771 * When that callback is invoked, we will know that all of the 3772 * corresponding CPU's preceding callbacks have been invoked. 3773 */ 3774 for_each_possible_cpu(cpu) { 3775 rdp = per_cpu_ptr(&rcu_data, cpu); 3776 retry: 3777 if (smp_load_acquire(&rdp->barrier_seq_snap) == gseq) 3778 continue; 3779 raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags); 3780 if (!rcu_segcblist_n_cbs(&rdp->cblist)) { 3781 WRITE_ONCE(rdp->barrier_seq_snap, gseq); 3782 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags); 3783 rcu_barrier_trace(TPS("NQ"), cpu, rcu_state.barrier_sequence); 3784 continue; 3785 } 3786 if (!rcu_rdp_cpu_online(rdp)) { 3787 rcu_barrier_entrain(rdp); 3788 WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq); 3789 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags); 3790 rcu_barrier_trace(TPS("OfflineNoCBQ"), cpu, rcu_state.barrier_sequence); 3791 continue; 3792 } 3793 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags); 3794 if (smp_call_function_single(cpu, rcu_barrier_handler, (void *)cpu, 1)) { 3795 schedule_timeout_uninterruptible(1); 3796 goto retry; 3797 } 3798 WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq); 3799 rcu_barrier_trace(TPS("OnlineQ"), cpu, rcu_state.barrier_sequence); 3800 } 3801 3802 /* 3803 * Now that we have an rcu_barrier_callback() callback on each 3804 * CPU, and thus each counted, remove the initial count. 3805 */ 3806 if (atomic_sub_and_test(2, &rcu_state.barrier_cpu_count)) 3807 complete(&rcu_state.barrier_completion); 3808 3809 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */ 3810 wait_for_completion(&rcu_state.barrier_completion); 3811 3812 /* Mark the end of the barrier operation. */ 3813 rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence); 3814 rcu_seq_end(&rcu_state.barrier_sequence); 3815 gseq = rcu_state.barrier_sequence; 3816 for_each_possible_cpu(cpu) { 3817 rdp = per_cpu_ptr(&rcu_data, cpu); 3818 3819 WRITE_ONCE(rdp->barrier_seq_snap, gseq); 3820 } 3821 3822 /* Other rcu_barrier() invocations can now safely proceed. */ 3823 mutex_unlock(&rcu_state.barrier_mutex); 3824 } 3825 EXPORT_SYMBOL_GPL(rcu_barrier); 3826 3827 static unsigned long rcu_barrier_last_throttle; 3828 3829 /** 3830 * rcu_barrier_throttled - Do rcu_barrier(), but limit to one per second 3831 * 3832 * This can be thought of as guard rails around rcu_barrier() that 3833 * permits unrestricted userspace use, at least assuming the hardware's 3834 * try_cmpxchg() is robust. There will be at most one call per second to 3835 * rcu_barrier() system-wide from use of this function, which means that 3836 * callers might needlessly wait a second or three. 3837 * 3838 * This is intended for use by test suites to avoid OOM by flushing RCU 3839 * callbacks from the previous test before starting the next. See the 3840 * rcutree.do_rcu_barrier module parameter for more information. 3841 * 3842 * Why not simply make rcu_barrier() more scalable? That might be 3843 * the eventual endpoint, but let's keep it simple for the time being. 3844 * Note that the module parameter infrastructure serializes calls to a 3845 * given .set() function, but should concurrent .set() invocation ever be 3846 * possible, we are ready! 3847 */ 3848 static void rcu_barrier_throttled(void) 3849 { 3850 unsigned long j = jiffies; 3851 unsigned long old = READ_ONCE(rcu_barrier_last_throttle); 3852 unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence); 3853 3854 while (time_in_range(j, old, old + HZ / 16) || 3855 !try_cmpxchg(&rcu_barrier_last_throttle, &old, j)) { 3856 schedule_timeout_idle(HZ / 16); 3857 if (rcu_seq_done(&rcu_state.barrier_sequence, s)) { 3858 smp_mb(); /* caller's subsequent code after above check. */ 3859 return; 3860 } 3861 j = jiffies; 3862 old = READ_ONCE(rcu_barrier_last_throttle); 3863 } 3864 rcu_barrier(); 3865 } 3866 3867 /* 3868 * Invoke rcu_barrier_throttled() when a rcutree.do_rcu_barrier 3869 * request arrives. We insist on a true value to allow for possible 3870 * future expansion. 3871 */ 3872 static int param_set_do_rcu_barrier(const char *val, const struct kernel_param *kp) 3873 { 3874 bool b; 3875 int ret; 3876 3877 if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING) 3878 return -EAGAIN; 3879 ret = kstrtobool(val, &b); 3880 if (!ret && b) { 3881 atomic_inc((atomic_t *)kp->arg); 3882 rcu_barrier_throttled(); 3883 atomic_dec((atomic_t *)kp->arg); 3884 } 3885 return ret; 3886 } 3887 3888 /* 3889 * Output the number of outstanding rcutree.do_rcu_barrier requests. 3890 */ 3891 static int param_get_do_rcu_barrier(char *buffer, const struct kernel_param *kp) 3892 { 3893 return sprintf(buffer, "%d\n", atomic_read((atomic_t *)kp->arg)); 3894 } 3895 3896 static const struct kernel_param_ops do_rcu_barrier_ops = { 3897 .set = param_set_do_rcu_barrier, 3898 .get = param_get_do_rcu_barrier, 3899 }; 3900 static atomic_t do_rcu_barrier; 3901 module_param_cb(do_rcu_barrier, &do_rcu_barrier_ops, &do_rcu_barrier, 0644); 3902 3903 /* 3904 * Compute the mask of online CPUs for the specified rcu_node structure. 3905 * This will not be stable unless the rcu_node structure's ->lock is 3906 * held, but the bit corresponding to the current CPU will be stable 3907 * in most contexts. 3908 */ 3909 static unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp) 3910 { 3911 return READ_ONCE(rnp->qsmaskinitnext); 3912 } 3913 3914 /* 3915 * Is the CPU corresponding to the specified rcu_data structure online 3916 * from RCU's perspective? This perspective is given by that structure's 3917 * ->qsmaskinitnext field rather than by the global cpu_online_mask. 3918 */ 3919 static bool rcu_rdp_cpu_online(struct rcu_data *rdp) 3920 { 3921 return !!(rdp->grpmask & rcu_rnp_online_cpus(rdp->mynode)); 3922 } 3923 3924 bool rcu_cpu_online(int cpu) 3925 { 3926 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 3927 3928 return rcu_rdp_cpu_online(rdp); 3929 } 3930 3931 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) 3932 3933 /* 3934 * Is the current CPU online as far as RCU is concerned? 3935 * 3936 * Disable preemption to avoid false positives that could otherwise 3937 * happen due to the current CPU number being sampled, this task being 3938 * preempted, its old CPU being taken offline, resuming on some other CPU, 3939 * then determining that its old CPU is now offline. 3940 * 3941 * Disable checking if in an NMI handler because we cannot safely 3942 * report errors from NMI handlers anyway. In addition, it is OK to use 3943 * RCU on an offline processor during initial boot, hence the check for 3944 * rcu_scheduler_fully_active. 3945 */ 3946 bool rcu_lockdep_current_cpu_online(void) 3947 { 3948 struct rcu_data *rdp; 3949 bool ret = false; 3950 3951 if (in_nmi() || !rcu_scheduler_fully_active) 3952 return true; 3953 preempt_disable_notrace(); 3954 rdp = this_cpu_ptr(&rcu_data); 3955 /* 3956 * Strictly, we care here about the case where the current CPU is 3957 * in rcutree_report_cpu_starting() and thus has an excuse for rdp->grpmask 3958 * not being up to date. So arch_spin_is_locked() might have a 3959 * false positive if it's held by some *other* CPU, but that's 3960 * OK because that just means a false *negative* on the warning. 3961 */ 3962 if (rcu_rdp_cpu_online(rdp) || arch_spin_is_locked(&rcu_state.ofl_lock)) 3963 ret = true; 3964 preempt_enable_notrace(); 3965 return ret; 3966 } 3967 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online); 3968 3969 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */ 3970 3971 // Has rcu_init() been invoked? This is used (for example) to determine 3972 // whether spinlocks may be acquired safely. 3973 static bool rcu_init_invoked(void) 3974 { 3975 return !!READ_ONCE(rcu_state.n_online_cpus); 3976 } 3977 3978 /* 3979 * All CPUs for the specified rcu_node structure have gone offline, 3980 * and all tasks that were preempted within an RCU read-side critical 3981 * section while running on one of those CPUs have since exited their RCU 3982 * read-side critical section. Some other CPU is reporting this fact with 3983 * the specified rcu_node structure's ->lock held and interrupts disabled. 3984 * This function therefore goes up the tree of rcu_node structures, 3985 * clearing the corresponding bits in the ->qsmaskinit fields. Note that 3986 * the leaf rcu_node structure's ->qsmaskinit field has already been 3987 * updated. 3988 * 3989 * This function does check that the specified rcu_node structure has 3990 * all CPUs offline and no blocked tasks, so it is OK to invoke it 3991 * prematurely. That said, invoking it after the fact will cost you 3992 * a needless lock acquisition. So once it has done its work, don't 3993 * invoke it again. 3994 */ 3995 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf) 3996 { 3997 long mask; 3998 struct rcu_node *rnp = rnp_leaf; 3999 4000 raw_lockdep_assert_held_rcu_node(rnp_leaf); 4001 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || 4002 WARN_ON_ONCE(rnp_leaf->qsmaskinit) || 4003 WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf))) 4004 return; 4005 for (;;) { 4006 mask = rnp->grpmask; 4007 rnp = rnp->parent; 4008 if (!rnp) 4009 break; 4010 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 4011 rnp->qsmaskinit &= ~mask; 4012 /* Between grace periods, so better already be zero! */ 4013 WARN_ON_ONCE(rnp->qsmask); 4014 if (rnp->qsmaskinit) { 4015 raw_spin_unlock_rcu_node(rnp); 4016 /* irqs remain disabled. */ 4017 return; 4018 } 4019 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 4020 } 4021 } 4022 4023 /* 4024 * Propagate ->qsinitmask bits up the rcu_node tree to account for the 4025 * first CPU in a given leaf rcu_node structure coming online. The caller 4026 * must hold the corresponding leaf rcu_node ->lock with interrupts 4027 * disabled. 4028 */ 4029 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf) 4030 { 4031 long mask; 4032 long oldmask; 4033 struct rcu_node *rnp = rnp_leaf; 4034 4035 raw_lockdep_assert_held_rcu_node(rnp_leaf); 4036 WARN_ON_ONCE(rnp->wait_blkd_tasks); 4037 for (;;) { 4038 mask = rnp->grpmask; 4039 rnp = rnp->parent; 4040 if (rnp == NULL) 4041 return; 4042 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */ 4043 oldmask = rnp->qsmaskinit; 4044 rnp->qsmaskinit |= mask; 4045 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */ 4046 if (oldmask) 4047 return; 4048 } 4049 } 4050 4051 /* 4052 * Do boot-time initialization of a CPU's per-CPU RCU data. 4053 */ 4054 static void __init 4055 rcu_boot_init_percpu_data(int cpu) 4056 { 4057 struct context_tracking *ct = this_cpu_ptr(&context_tracking); 4058 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4059 4060 /* Set up local state, ensuring consistent view of global state. */ 4061 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu); 4062 INIT_WORK(&rdp->strict_work, strict_work_handler); 4063 WARN_ON_ONCE(ct->nesting != 1); 4064 WARN_ON_ONCE(rcu_watching_snap_in_eqs(ct_rcu_watching_cpu(cpu))); 4065 rdp->barrier_seq_snap = rcu_state.barrier_sequence; 4066 rdp->rcu_ofl_gp_seq = rcu_state.gp_seq; 4067 rdp->rcu_ofl_gp_state = RCU_GP_CLEANED; 4068 rdp->rcu_onl_gp_seq = rcu_state.gp_seq; 4069 rdp->rcu_onl_gp_state = RCU_GP_CLEANED; 4070 rdp->last_sched_clock = jiffies; 4071 rdp->cpu = cpu; 4072 rcu_boot_init_nocb_percpu_data(rdp); 4073 } 4074 4075 struct kthread_worker *rcu_exp_gp_kworker; 4076 4077 static void rcu_spawn_exp_par_gp_kworker(struct rcu_node *rnp) 4078 { 4079 struct kthread_worker *kworker; 4080 const char *name = "rcu_exp_par_gp_kthread_worker/%d"; 4081 struct sched_param param = { .sched_priority = kthread_prio }; 4082 int rnp_index = rnp - rcu_get_root(); 4083 4084 if (rnp->exp_kworker) 4085 return; 4086 4087 kworker = kthread_create_worker(0, name, rnp_index); 4088 if (IS_ERR_OR_NULL(kworker)) { 4089 pr_err("Failed to create par gp kworker on %d/%d\n", 4090 rnp->grplo, rnp->grphi); 4091 return; 4092 } 4093 WRITE_ONCE(rnp->exp_kworker, kworker); 4094 4095 if (IS_ENABLED(CONFIG_RCU_EXP_KTHREAD)) 4096 sched_setscheduler_nocheck(kworker->task, SCHED_FIFO, ¶m); 4097 } 4098 4099 static struct task_struct *rcu_exp_par_gp_task(struct rcu_node *rnp) 4100 { 4101 struct kthread_worker *kworker = READ_ONCE(rnp->exp_kworker); 4102 4103 if (!kworker) 4104 return NULL; 4105 4106 return kworker->task; 4107 } 4108 4109 static void __init rcu_start_exp_gp_kworker(void) 4110 { 4111 const char *name = "rcu_exp_gp_kthread_worker"; 4112 struct sched_param param = { .sched_priority = kthread_prio }; 4113 4114 rcu_exp_gp_kworker = kthread_create_worker(0, name); 4115 if (IS_ERR_OR_NULL(rcu_exp_gp_kworker)) { 4116 pr_err("Failed to create %s!\n", name); 4117 rcu_exp_gp_kworker = NULL; 4118 return; 4119 } 4120 4121 if (IS_ENABLED(CONFIG_RCU_EXP_KTHREAD)) 4122 sched_setscheduler_nocheck(rcu_exp_gp_kworker->task, SCHED_FIFO, ¶m); 4123 } 4124 4125 static void rcu_spawn_rnp_kthreads(struct rcu_node *rnp) 4126 { 4127 if (rcu_scheduler_fully_active) { 4128 mutex_lock(&rnp->kthread_mutex); 4129 rcu_spawn_one_boost_kthread(rnp); 4130 rcu_spawn_exp_par_gp_kworker(rnp); 4131 mutex_unlock(&rnp->kthread_mutex); 4132 } 4133 } 4134 4135 /* 4136 * Invoked early in the CPU-online process, when pretty much all services 4137 * are available. The incoming CPU is not present. 4138 * 4139 * Initializes a CPU's per-CPU RCU data. Note that only one online or 4140 * offline event can be happening at a given time. Note also that we can 4141 * accept some slop in the rsp->gp_seq access due to the fact that this 4142 * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet. 4143 * And any offloaded callbacks are being numbered elsewhere. 4144 */ 4145 int rcutree_prepare_cpu(unsigned int cpu) 4146 { 4147 unsigned long flags; 4148 struct context_tracking *ct = per_cpu_ptr(&context_tracking, cpu); 4149 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4150 struct rcu_node *rnp = rcu_get_root(); 4151 4152 /* Set up local state, ensuring consistent view of global state. */ 4153 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4154 rdp->qlen_last_fqs_check = 0; 4155 rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs); 4156 rdp->blimit = blimit; 4157 ct->nesting = 1; /* CPU not up, no tearing. */ 4158 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 4159 4160 /* 4161 * Only non-NOCB CPUs that didn't have early-boot callbacks need to be 4162 * (re-)initialized. 4163 */ 4164 if (!rcu_segcblist_is_enabled(&rdp->cblist)) 4165 rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */ 4166 4167 /* 4168 * Add CPU to leaf rcu_node pending-online bitmask. Any needed 4169 * propagation up the rcu_node tree will happen at the beginning 4170 * of the next grace period. 4171 */ 4172 rnp = rdp->mynode; 4173 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 4174 rdp->gp_seq = READ_ONCE(rnp->gp_seq); 4175 rdp->gp_seq_needed = rdp->gp_seq; 4176 rdp->cpu_no_qs.b.norm = true; 4177 rdp->core_needs_qs = false; 4178 rdp->rcu_iw_pending = false; 4179 rdp->rcu_iw = IRQ_WORK_INIT_HARD(rcu_iw_handler); 4180 rdp->rcu_iw_gp_seq = rdp->gp_seq - 1; 4181 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl")); 4182 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4183 rcu_spawn_rnp_kthreads(rnp); 4184 rcu_spawn_cpu_nocb_kthread(cpu); 4185 ASSERT_EXCLUSIVE_WRITER(rcu_state.n_online_cpus); 4186 WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus + 1); 4187 4188 return 0; 4189 } 4190 4191 /* 4192 * Update kthreads affinity during CPU-hotplug changes. 4193 * 4194 * Set the per-rcu_node kthread's affinity to cover all CPUs that are 4195 * served by the rcu_node in question. The CPU hotplug lock is still 4196 * held, so the value of rnp->qsmaskinit will be stable. 4197 * 4198 * We don't include outgoingcpu in the affinity set, use -1 if there is 4199 * no outgoing CPU. If there are no CPUs left in the affinity set, 4200 * this function allows the kthread to execute on any CPU. 4201 * 4202 * Any future concurrent calls are serialized via ->kthread_mutex. 4203 */ 4204 static void rcutree_affinity_setting(unsigned int cpu, int outgoingcpu) 4205 { 4206 cpumask_var_t cm; 4207 unsigned long mask; 4208 struct rcu_data *rdp; 4209 struct rcu_node *rnp; 4210 struct task_struct *task_boost, *task_exp; 4211 4212 rdp = per_cpu_ptr(&rcu_data, cpu); 4213 rnp = rdp->mynode; 4214 4215 task_boost = rcu_boost_task(rnp); 4216 task_exp = rcu_exp_par_gp_task(rnp); 4217 4218 /* 4219 * If CPU is the boot one, those tasks are created later from early 4220 * initcall since kthreadd must be created first. 4221 */ 4222 if (!task_boost && !task_exp) 4223 return; 4224 4225 if (!zalloc_cpumask_var(&cm, GFP_KERNEL)) 4226 return; 4227 4228 mutex_lock(&rnp->kthread_mutex); 4229 mask = rcu_rnp_online_cpus(rnp); 4230 for_each_leaf_node_possible_cpu(rnp, cpu) 4231 if ((mask & leaf_node_cpu_bit(rnp, cpu)) && 4232 cpu != outgoingcpu) 4233 cpumask_set_cpu(cpu, cm); 4234 cpumask_and(cm, cm, housekeeping_cpumask(HK_TYPE_RCU)); 4235 if (cpumask_empty(cm)) { 4236 cpumask_copy(cm, housekeeping_cpumask(HK_TYPE_RCU)); 4237 if (outgoingcpu >= 0) 4238 cpumask_clear_cpu(outgoingcpu, cm); 4239 } 4240 4241 if (task_exp) 4242 set_cpus_allowed_ptr(task_exp, cm); 4243 4244 if (task_boost) 4245 set_cpus_allowed_ptr(task_boost, cm); 4246 4247 mutex_unlock(&rnp->kthread_mutex); 4248 4249 free_cpumask_var(cm); 4250 } 4251 4252 /* 4253 * Has the specified (known valid) CPU ever been fully online? 4254 */ 4255 bool rcu_cpu_beenfullyonline(int cpu) 4256 { 4257 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4258 4259 return smp_load_acquire(&rdp->beenonline); 4260 } 4261 4262 /* 4263 * Near the end of the CPU-online process. Pretty much all services 4264 * enabled, and the CPU is now very much alive. 4265 */ 4266 int rcutree_online_cpu(unsigned int cpu) 4267 { 4268 unsigned long flags; 4269 struct rcu_data *rdp; 4270 struct rcu_node *rnp; 4271 4272 rdp = per_cpu_ptr(&rcu_data, cpu); 4273 rnp = rdp->mynode; 4274 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4275 rnp->ffmask |= rdp->grpmask; 4276 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4277 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE) 4278 return 0; /* Too early in boot for scheduler work. */ 4279 sync_sched_exp_online_cleanup(cpu); 4280 rcutree_affinity_setting(cpu, -1); 4281 4282 // Stop-machine done, so allow nohz_full to disable tick. 4283 tick_dep_clear(TICK_DEP_BIT_RCU); 4284 return 0; 4285 } 4286 4287 /* 4288 * Mark the specified CPU as being online so that subsequent grace periods 4289 * (both expedited and normal) will wait on it. Note that this means that 4290 * incoming CPUs are not allowed to use RCU read-side critical sections 4291 * until this function is called. Failing to observe this restriction 4292 * will result in lockdep splats. 4293 * 4294 * Note that this function is special in that it is invoked directly 4295 * from the incoming CPU rather than from the cpuhp_step mechanism. 4296 * This is because this function must be invoked at a precise location. 4297 * This incoming CPU must not have enabled interrupts yet. 4298 * 4299 * This mirrors the effects of rcutree_report_cpu_dead(). 4300 */ 4301 void rcutree_report_cpu_starting(unsigned int cpu) 4302 { 4303 unsigned long mask; 4304 struct rcu_data *rdp; 4305 struct rcu_node *rnp; 4306 bool newcpu; 4307 4308 lockdep_assert_irqs_disabled(); 4309 rdp = per_cpu_ptr(&rcu_data, cpu); 4310 if (rdp->cpu_started) 4311 return; 4312 rdp->cpu_started = true; 4313 4314 rnp = rdp->mynode; 4315 mask = rdp->grpmask; 4316 arch_spin_lock(&rcu_state.ofl_lock); 4317 rcu_watching_online(); 4318 raw_spin_lock(&rcu_state.barrier_lock); 4319 raw_spin_lock_rcu_node(rnp); 4320 WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext | mask); 4321 raw_spin_unlock(&rcu_state.barrier_lock); 4322 newcpu = !(rnp->expmaskinitnext & mask); 4323 rnp->expmaskinitnext |= mask; 4324 /* Allow lockless access for expedited grace periods. */ 4325 smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + newcpu); /* ^^^ */ 4326 ASSERT_EXCLUSIVE_WRITER(rcu_state.ncpus); 4327 rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */ 4328 rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq); 4329 rdp->rcu_onl_gp_state = READ_ONCE(rcu_state.gp_state); 4330 4331 /* An incoming CPU should never be blocking a grace period. */ 4332 if (WARN_ON_ONCE(rnp->qsmask & mask)) { /* RCU waiting on incoming CPU? */ 4333 /* rcu_report_qs_rnp() *really* wants some flags to restore */ 4334 unsigned long flags; 4335 4336 local_irq_save(flags); 4337 rcu_disable_urgency_upon_qs(rdp); 4338 /* Report QS -after- changing ->qsmaskinitnext! */ 4339 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 4340 } else { 4341 raw_spin_unlock_rcu_node(rnp); 4342 } 4343 arch_spin_unlock(&rcu_state.ofl_lock); 4344 smp_store_release(&rdp->beenonline, true); 4345 smp_mb(); /* Ensure RCU read-side usage follows above initialization. */ 4346 } 4347 4348 /* 4349 * The outgoing function has no further need of RCU, so remove it from 4350 * the rcu_node tree's ->qsmaskinitnext bit masks. 4351 * 4352 * Note that this function is special in that it is invoked directly 4353 * from the outgoing CPU rather than from the cpuhp_step mechanism. 4354 * This is because this function must be invoked at a precise location. 4355 * 4356 * This mirrors the effect of rcutree_report_cpu_starting(). 4357 */ 4358 void rcutree_report_cpu_dead(void) 4359 { 4360 unsigned long flags; 4361 unsigned long mask; 4362 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 4363 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ 4364 4365 /* 4366 * IRQS must be disabled from now on and until the CPU dies, or an interrupt 4367 * may introduce a new READ-side while it is actually off the QS masks. 4368 */ 4369 lockdep_assert_irqs_disabled(); 4370 // Do any dangling deferred wakeups. 4371 do_nocb_deferred_wakeup(rdp); 4372 4373 rcu_preempt_deferred_qs(current); 4374 4375 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */ 4376 mask = rdp->grpmask; 4377 arch_spin_lock(&rcu_state.ofl_lock); 4378 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */ 4379 rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq); 4380 rdp->rcu_ofl_gp_state = READ_ONCE(rcu_state.gp_state); 4381 if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */ 4382 /* Report quiescent state -before- changing ->qsmaskinitnext! */ 4383 rcu_disable_urgency_upon_qs(rdp); 4384 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 4385 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4386 } 4387 WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext & ~mask); 4388 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4389 arch_spin_unlock(&rcu_state.ofl_lock); 4390 rdp->cpu_started = false; 4391 } 4392 4393 #ifdef CONFIG_HOTPLUG_CPU 4394 /* 4395 * The outgoing CPU has just passed through the dying-idle state, and we 4396 * are being invoked from the CPU that was IPIed to continue the offline 4397 * operation. Migrate the outgoing CPU's callbacks to the current CPU. 4398 */ 4399 void rcutree_migrate_callbacks(int cpu) 4400 { 4401 unsigned long flags; 4402 struct rcu_data *my_rdp; 4403 struct rcu_node *my_rnp; 4404 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4405 bool needwake; 4406 4407 if (rcu_rdp_is_offloaded(rdp)) 4408 return; 4409 4410 raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags); 4411 if (rcu_segcblist_empty(&rdp->cblist)) { 4412 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags); 4413 return; /* No callbacks to migrate. */ 4414 } 4415 4416 WARN_ON_ONCE(rcu_rdp_cpu_online(rdp)); 4417 rcu_barrier_entrain(rdp); 4418 my_rdp = this_cpu_ptr(&rcu_data); 4419 my_rnp = my_rdp->mynode; 4420 rcu_nocb_lock(my_rdp); /* irqs already disabled. */ 4421 WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies, false)); 4422 raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */ 4423 /* Leverage recent GPs and set GP for new callbacks. */ 4424 needwake = rcu_advance_cbs(my_rnp, rdp) || 4425 rcu_advance_cbs(my_rnp, my_rdp); 4426 rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist); 4427 raw_spin_unlock(&rcu_state.barrier_lock); /* irqs remain disabled. */ 4428 needwake = needwake || rcu_advance_cbs(my_rnp, my_rdp); 4429 rcu_segcblist_disable(&rdp->cblist); 4430 WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) != !rcu_segcblist_n_cbs(&my_rdp->cblist)); 4431 check_cb_ovld_locked(my_rdp, my_rnp); 4432 if (rcu_rdp_is_offloaded(my_rdp)) { 4433 raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */ 4434 __call_rcu_nocb_wake(my_rdp, true, flags); 4435 } else { 4436 rcu_nocb_unlock(my_rdp); /* irqs remain disabled. */ 4437 raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */ 4438 } 4439 local_irq_restore(flags); 4440 if (needwake) 4441 rcu_gp_kthread_wake(); 4442 lockdep_assert_irqs_enabled(); 4443 WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 || 4444 !rcu_segcblist_empty(&rdp->cblist), 4445 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n", 4446 cpu, rcu_segcblist_n_cbs(&rdp->cblist), 4447 rcu_segcblist_first_cb(&rdp->cblist)); 4448 } 4449 4450 /* 4451 * The CPU has been completely removed, and some other CPU is reporting 4452 * this fact from process context. Do the remainder of the cleanup. 4453 * There can only be one CPU hotplug operation at a time, so no need for 4454 * explicit locking. 4455 */ 4456 int rcutree_dead_cpu(unsigned int cpu) 4457 { 4458 ASSERT_EXCLUSIVE_WRITER(rcu_state.n_online_cpus); 4459 WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus - 1); 4460 // Stop-machine done, so allow nohz_full to disable tick. 4461 tick_dep_clear(TICK_DEP_BIT_RCU); 4462 return 0; 4463 } 4464 4465 /* 4466 * Near the end of the offline process. Trace the fact that this CPU 4467 * is going offline. 4468 */ 4469 int rcutree_dying_cpu(unsigned int cpu) 4470 { 4471 bool blkd; 4472 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4473 struct rcu_node *rnp = rdp->mynode; 4474 4475 blkd = !!(READ_ONCE(rnp->qsmask) & rdp->grpmask); 4476 trace_rcu_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq), 4477 blkd ? TPS("cpuofl-bgp") : TPS("cpuofl")); 4478 return 0; 4479 } 4480 4481 /* 4482 * Near the beginning of the process. The CPU is still very much alive 4483 * with pretty much all services enabled. 4484 */ 4485 int rcutree_offline_cpu(unsigned int cpu) 4486 { 4487 unsigned long flags; 4488 struct rcu_data *rdp; 4489 struct rcu_node *rnp; 4490 4491 rdp = per_cpu_ptr(&rcu_data, cpu); 4492 rnp = rdp->mynode; 4493 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4494 rnp->ffmask &= ~rdp->grpmask; 4495 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4496 4497 rcutree_affinity_setting(cpu, cpu); 4498 4499 // nohz_full CPUs need the tick for stop-machine to work quickly 4500 tick_dep_set(TICK_DEP_BIT_RCU); 4501 return 0; 4502 } 4503 #endif /* #ifdef CONFIG_HOTPLUG_CPU */ 4504 4505 /* 4506 * On non-huge systems, use expedited RCU grace periods to make suspend 4507 * and hibernation run faster. 4508 */ 4509 static int rcu_pm_notify(struct notifier_block *self, 4510 unsigned long action, void *hcpu) 4511 { 4512 switch (action) { 4513 case PM_HIBERNATION_PREPARE: 4514 case PM_SUSPEND_PREPARE: 4515 rcu_async_hurry(); 4516 rcu_expedite_gp(); 4517 break; 4518 case PM_POST_HIBERNATION: 4519 case PM_POST_SUSPEND: 4520 rcu_unexpedite_gp(); 4521 rcu_async_relax(); 4522 break; 4523 default: 4524 break; 4525 } 4526 return NOTIFY_OK; 4527 } 4528 4529 /* 4530 * Spawn the kthreads that handle RCU's grace periods. 4531 */ 4532 static int __init rcu_spawn_gp_kthread(void) 4533 { 4534 unsigned long flags; 4535 struct rcu_node *rnp; 4536 struct sched_param sp; 4537 struct task_struct *t; 4538 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 4539 4540 rcu_scheduler_fully_active = 1; 4541 t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name); 4542 if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__)) 4543 return 0; 4544 if (kthread_prio) { 4545 sp.sched_priority = kthread_prio; 4546 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 4547 } 4548 rnp = rcu_get_root(); 4549 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4550 WRITE_ONCE(rcu_state.gp_activity, jiffies); 4551 WRITE_ONCE(rcu_state.gp_req_activity, jiffies); 4552 // Reset .gp_activity and .gp_req_activity before setting .gp_kthread. 4553 smp_store_release(&rcu_state.gp_kthread, t); /* ^^^ */ 4554 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4555 wake_up_process(t); 4556 /* This is a pre-SMP initcall, we expect a single CPU */ 4557 WARN_ON(num_online_cpus() > 1); 4558 /* 4559 * Those kthreads couldn't be created on rcu_init() -> rcutree_prepare_cpu() 4560 * due to rcu_scheduler_fully_active. 4561 */ 4562 rcu_spawn_cpu_nocb_kthread(smp_processor_id()); 4563 rcu_spawn_rnp_kthreads(rdp->mynode); 4564 rcu_spawn_core_kthreads(); 4565 /* Create kthread worker for expedited GPs */ 4566 rcu_start_exp_gp_kworker(); 4567 return 0; 4568 } 4569 early_initcall(rcu_spawn_gp_kthread); 4570 4571 /* 4572 * This function is invoked towards the end of the scheduler's 4573 * initialization process. Before this is called, the idle task might 4574 * contain synchronous grace-period primitives (during which time, this idle 4575 * task is booting the system, and such primitives are no-ops). After this 4576 * function is called, any synchronous grace-period primitives are run as 4577 * expedited, with the requesting task driving the grace period forward. 4578 * A later core_initcall() rcu_set_runtime_mode() will switch to full 4579 * runtime RCU functionality. 4580 */ 4581 void rcu_scheduler_starting(void) 4582 { 4583 unsigned long flags; 4584 struct rcu_node *rnp; 4585 4586 WARN_ON(num_online_cpus() != 1); 4587 WARN_ON(nr_context_switches() > 0); 4588 rcu_test_sync_prims(); 4589 4590 // Fix up the ->gp_seq counters. 4591 local_irq_save(flags); 4592 rcu_for_each_node_breadth_first(rnp) 4593 rnp->gp_seq_needed = rnp->gp_seq = rcu_state.gp_seq; 4594 local_irq_restore(flags); 4595 4596 // Switch out of early boot mode. 4597 rcu_scheduler_active = RCU_SCHEDULER_INIT; 4598 rcu_test_sync_prims(); 4599 } 4600 4601 /* 4602 * Helper function for rcu_init() that initializes the rcu_state structure. 4603 */ 4604 static void __init rcu_init_one(void) 4605 { 4606 static const char * const buf[] = RCU_NODE_NAME_INIT; 4607 static const char * const fqs[] = RCU_FQS_NAME_INIT; 4608 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS]; 4609 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS]; 4610 4611 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */ 4612 int cpustride = 1; 4613 int i; 4614 int j; 4615 struct rcu_node *rnp; 4616 4617 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */ 4618 4619 /* Silence gcc 4.8 false positive about array index out of range. */ 4620 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS) 4621 panic("rcu_init_one: rcu_num_lvls out of range"); 4622 4623 /* Initialize the level-tracking arrays. */ 4624 4625 for (i = 1; i < rcu_num_lvls; i++) 4626 rcu_state.level[i] = 4627 rcu_state.level[i - 1] + num_rcu_lvl[i - 1]; 4628 rcu_init_levelspread(levelspread, num_rcu_lvl); 4629 4630 /* Initialize the elements themselves, starting from the leaves. */ 4631 4632 for (i = rcu_num_lvls - 1; i >= 0; i--) { 4633 cpustride *= levelspread[i]; 4634 rnp = rcu_state.level[i]; 4635 for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) { 4636 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock)); 4637 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock), 4638 &rcu_node_class[i], buf[i]); 4639 raw_spin_lock_init(&rnp->fqslock); 4640 lockdep_set_class_and_name(&rnp->fqslock, 4641 &rcu_fqs_class[i], fqs[i]); 4642 rnp->gp_seq = rcu_state.gp_seq; 4643 rnp->gp_seq_needed = rcu_state.gp_seq; 4644 rnp->completedqs = rcu_state.gp_seq; 4645 rnp->qsmask = 0; 4646 rnp->qsmaskinit = 0; 4647 rnp->grplo = j * cpustride; 4648 rnp->grphi = (j + 1) * cpustride - 1; 4649 if (rnp->grphi >= nr_cpu_ids) 4650 rnp->grphi = nr_cpu_ids - 1; 4651 if (i == 0) { 4652 rnp->grpnum = 0; 4653 rnp->grpmask = 0; 4654 rnp->parent = NULL; 4655 } else { 4656 rnp->grpnum = j % levelspread[i - 1]; 4657 rnp->grpmask = BIT(rnp->grpnum); 4658 rnp->parent = rcu_state.level[i - 1] + 4659 j / levelspread[i - 1]; 4660 } 4661 rnp->level = i; 4662 INIT_LIST_HEAD(&rnp->blkd_tasks); 4663 rcu_init_one_nocb(rnp); 4664 init_waitqueue_head(&rnp->exp_wq[0]); 4665 init_waitqueue_head(&rnp->exp_wq[1]); 4666 init_waitqueue_head(&rnp->exp_wq[2]); 4667 init_waitqueue_head(&rnp->exp_wq[3]); 4668 spin_lock_init(&rnp->exp_lock); 4669 mutex_init(&rnp->kthread_mutex); 4670 raw_spin_lock_init(&rnp->exp_poll_lock); 4671 rnp->exp_seq_poll_rq = RCU_GET_STATE_COMPLETED; 4672 INIT_WORK(&rnp->exp_poll_wq, sync_rcu_do_polled_gp); 4673 } 4674 } 4675 4676 init_swait_queue_head(&rcu_state.gp_wq); 4677 init_swait_queue_head(&rcu_state.expedited_wq); 4678 rnp = rcu_first_leaf_node(); 4679 for_each_possible_cpu(i) { 4680 while (i > rnp->grphi) 4681 rnp++; 4682 per_cpu_ptr(&rcu_data, i)->mynode = rnp; 4683 per_cpu_ptr(&rcu_data, i)->barrier_head.next = 4684 &per_cpu_ptr(&rcu_data, i)->barrier_head; 4685 rcu_boot_init_percpu_data(i); 4686 } 4687 } 4688 4689 /* 4690 * Force priority from the kernel command-line into range. 4691 */ 4692 static void __init sanitize_kthread_prio(void) 4693 { 4694 int kthread_prio_in = kthread_prio; 4695 4696 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2 4697 && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST)) 4698 kthread_prio = 2; 4699 else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1) 4700 kthread_prio = 1; 4701 else if (kthread_prio < 0) 4702 kthread_prio = 0; 4703 else if (kthread_prio > 99) 4704 kthread_prio = 99; 4705 4706 if (kthread_prio != kthread_prio_in) 4707 pr_alert("%s: Limited prio to %d from %d\n", 4708 __func__, kthread_prio, kthread_prio_in); 4709 } 4710 4711 /* 4712 * Compute the rcu_node tree geometry from kernel parameters. This cannot 4713 * replace the definitions in tree.h because those are needed to size 4714 * the ->node array in the rcu_state structure. 4715 */ 4716 void rcu_init_geometry(void) 4717 { 4718 ulong d; 4719 int i; 4720 static unsigned long old_nr_cpu_ids; 4721 int rcu_capacity[RCU_NUM_LVLS]; 4722 static bool initialized; 4723 4724 if (initialized) { 4725 /* 4726 * Warn if setup_nr_cpu_ids() had not yet been invoked, 4727 * unless nr_cpus_ids == NR_CPUS, in which case who cares? 4728 */ 4729 WARN_ON_ONCE(old_nr_cpu_ids != nr_cpu_ids); 4730 return; 4731 } 4732 4733 old_nr_cpu_ids = nr_cpu_ids; 4734 initialized = true; 4735 4736 /* 4737 * Initialize any unspecified boot parameters. 4738 * The default values of jiffies_till_first_fqs and 4739 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS 4740 * value, which is a function of HZ, then adding one for each 4741 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system. 4742 */ 4743 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; 4744 if (jiffies_till_first_fqs == ULONG_MAX) 4745 jiffies_till_first_fqs = d; 4746 if (jiffies_till_next_fqs == ULONG_MAX) 4747 jiffies_till_next_fqs = d; 4748 adjust_jiffies_till_sched_qs(); 4749 4750 /* If the compile-time values are accurate, just leave. */ 4751 if (rcu_fanout_leaf == RCU_FANOUT_LEAF && 4752 nr_cpu_ids == NR_CPUS) 4753 return; 4754 pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n", 4755 rcu_fanout_leaf, nr_cpu_ids); 4756 4757 /* 4758 * The boot-time rcu_fanout_leaf parameter must be at least two 4759 * and cannot exceed the number of bits in the rcu_node masks. 4760 * Complain and fall back to the compile-time values if this 4761 * limit is exceeded. 4762 */ 4763 if (rcu_fanout_leaf < 2 || rcu_fanout_leaf > BITS_PER_LONG) { 4764 rcu_fanout_leaf = RCU_FANOUT_LEAF; 4765 WARN_ON(1); 4766 return; 4767 } 4768 4769 /* 4770 * Compute number of nodes that can be handled an rcu_node tree 4771 * with the given number of levels. 4772 */ 4773 rcu_capacity[0] = rcu_fanout_leaf; 4774 for (i = 1; i < RCU_NUM_LVLS; i++) 4775 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT; 4776 4777 /* 4778 * The tree must be able to accommodate the configured number of CPUs. 4779 * If this limit is exceeded, fall back to the compile-time values. 4780 */ 4781 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) { 4782 rcu_fanout_leaf = RCU_FANOUT_LEAF; 4783 WARN_ON(1); 4784 return; 4785 } 4786 4787 /* Calculate the number of levels in the tree. */ 4788 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) { 4789 } 4790 rcu_num_lvls = i + 1; 4791 4792 /* Calculate the number of rcu_nodes at each level of the tree. */ 4793 for (i = 0; i < rcu_num_lvls; i++) { 4794 int cap = rcu_capacity[(rcu_num_lvls - 1) - i]; 4795 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap); 4796 } 4797 4798 /* Calculate the total number of rcu_node structures. */ 4799 rcu_num_nodes = 0; 4800 for (i = 0; i < rcu_num_lvls; i++) 4801 rcu_num_nodes += num_rcu_lvl[i]; 4802 } 4803 4804 /* 4805 * Dump out the structure of the rcu_node combining tree associated 4806 * with the rcu_state structure. 4807 */ 4808 static void __init rcu_dump_rcu_node_tree(void) 4809 { 4810 int level = 0; 4811 struct rcu_node *rnp; 4812 4813 pr_info("rcu_node tree layout dump\n"); 4814 pr_info(" "); 4815 rcu_for_each_node_breadth_first(rnp) { 4816 if (rnp->level != level) { 4817 pr_cont("\n"); 4818 pr_info(" "); 4819 level = rnp->level; 4820 } 4821 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum); 4822 } 4823 pr_cont("\n"); 4824 } 4825 4826 struct workqueue_struct *rcu_gp_wq; 4827 4828 void __init rcu_init(void) 4829 { 4830 int cpu = smp_processor_id(); 4831 4832 rcu_early_boot_tests(); 4833 4834 rcu_bootup_announce(); 4835 sanitize_kthread_prio(); 4836 rcu_init_geometry(); 4837 rcu_init_one(); 4838 if (dump_tree) 4839 rcu_dump_rcu_node_tree(); 4840 if (use_softirq) 4841 open_softirq(RCU_SOFTIRQ, rcu_core_si); 4842 4843 /* 4844 * We don't need protection against CPU-hotplug here because 4845 * this is called early in boot, before either interrupts 4846 * or the scheduler are operational. 4847 */ 4848 pm_notifier(rcu_pm_notify, 0); 4849 WARN_ON(num_online_cpus() > 1); // Only one CPU this early in boot. 4850 rcutree_prepare_cpu(cpu); 4851 rcutree_report_cpu_starting(cpu); 4852 rcutree_online_cpu(cpu); 4853 4854 /* Create workqueue for Tree SRCU and for expedited GPs. */ 4855 rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0); 4856 WARN_ON(!rcu_gp_wq); 4857 4858 sync_wq = alloc_workqueue("sync_wq", WQ_MEM_RECLAIM, 0); 4859 WARN_ON(!sync_wq); 4860 4861 /* Fill in default value for rcutree.qovld boot parameter. */ 4862 /* -After- the rcu_node ->lock fields are initialized! */ 4863 if (qovld < 0) 4864 qovld_calc = DEFAULT_RCU_QOVLD_MULT * qhimark; 4865 else 4866 qovld_calc = qovld; 4867 4868 // Kick-start in case any polled grace periods started early. 4869 (void)start_poll_synchronize_rcu_expedited(); 4870 4871 rcu_test_sync_prims(); 4872 4873 tasks_cblist_init_generic(); 4874 } 4875 4876 #include "tree_stall.h" 4877 #include "tree_exp.h" 4878 #include "tree_nocb.h" 4879 #include "tree_plugin.h" 4880