1 /* SPDX-License-Identifier: GPL-2.0+ */ 2 /* 3 * Task-based RCU implementations. 4 * 5 * Copyright (C) 2020 Paul E. McKenney 6 */ 7 8 #ifdef CONFIG_TASKS_RCU_GENERIC 9 #include "rcu_segcblist.h" 10 11 //////////////////////////////////////////////////////////////////////// 12 // 13 // Generic data structures. 14 15 struct rcu_tasks; 16 typedef void (*rcu_tasks_gp_func_t)(struct rcu_tasks *rtp); 17 typedef void (*pregp_func_t)(void); 18 typedef void (*pertask_func_t)(struct task_struct *t, struct list_head *hop); 19 typedef void (*postscan_func_t)(struct list_head *hop); 20 typedef void (*holdouts_func_t)(struct list_head *hop, bool ndrpt, bool *frptp); 21 typedef void (*postgp_func_t)(struct rcu_tasks *rtp); 22 23 /** 24 * struct rcu_tasks_percpu - Per-CPU component of definition for a Tasks-RCU-like mechanism. 25 * @cblist: Callback list. 26 * @lock: Lock protecting per-CPU callback list. 27 * @rtp_jiffies: Jiffies counter value for statistics. 28 * @rtp_n_lock_retries: Rough lock-contention statistic. 29 * @rtp_work: Work queue for invoking callbacks. 30 * @rtp_irq_work: IRQ work queue for deferred wakeups. 31 * @barrier_q_head: RCU callback for barrier operation. 32 * @cpu: CPU number corresponding to this entry. 33 * @rtpp: Pointer to the rcu_tasks structure. 34 */ 35 struct rcu_tasks_percpu { 36 struct rcu_segcblist cblist; 37 raw_spinlock_t __private lock; 38 unsigned long rtp_jiffies; 39 unsigned long rtp_n_lock_retries; 40 struct work_struct rtp_work; 41 struct irq_work rtp_irq_work; 42 struct rcu_head barrier_q_head; 43 int cpu; 44 struct rcu_tasks *rtpp; 45 }; 46 47 /** 48 * struct rcu_tasks - Definition for a Tasks-RCU-like mechanism. 49 * @cbs_wait: RCU wait allowing a new callback to get kthread's attention. 50 * @cbs_gbl_lock: Lock protecting callback list. 51 * @kthread_ptr: This flavor's grace-period/callback-invocation kthread. 52 * @gp_func: This flavor's grace-period-wait function. 53 * @gp_state: Grace period's most recent state transition (debugging). 54 * @gp_sleep: Per-grace-period sleep to prevent CPU-bound looping. 55 * @init_fract: Initial backoff sleep interval. 56 * @gp_jiffies: Time of last @gp_state transition. 57 * @gp_start: Most recent grace-period start in jiffies. 58 * @tasks_gp_seq: Number of grace periods completed since boot. 59 * @n_ipis: Number of IPIs sent to encourage grace periods to end. 60 * @n_ipis_fails: Number of IPI-send failures. 61 * @pregp_func: This flavor's pre-grace-period function (optional). 62 * @pertask_func: This flavor's per-task scan function (optional). 63 * @postscan_func: This flavor's post-task scan function (optional). 64 * @holdouts_func: This flavor's holdout-list scan function (optional). 65 * @postgp_func: This flavor's post-grace-period function (optional). 66 * @call_func: This flavor's call_rcu()-equivalent function. 67 * @rtpcpu: This flavor's rcu_tasks_percpu structure. 68 * @percpu_enqueue_shift: Shift down CPU ID this much when enqueuing callbacks. 69 * @percpu_enqueue_lim: Number of per-CPU callback queues in use for enqueuing. 70 * @percpu_dequeue_lim: Number of per-CPU callback queues in use for dequeuing. 71 * @percpu_dequeue_gpseq: RCU grace-period number to propagate enqueue limit to dequeuers. 72 * @barrier_q_mutex: Serialize barrier operations. 73 * @barrier_q_count: Number of queues being waited on. 74 * @barrier_q_completion: Barrier wait/wakeup mechanism. 75 * @barrier_q_seq: Sequence number for barrier operations. 76 * @name: This flavor's textual name. 77 * @kname: This flavor's kthread name. 78 */ 79 struct rcu_tasks { 80 struct rcuwait cbs_wait; 81 raw_spinlock_t cbs_gbl_lock; 82 int gp_state; 83 int gp_sleep; 84 int init_fract; 85 unsigned long gp_jiffies; 86 unsigned long gp_start; 87 unsigned long tasks_gp_seq; 88 unsigned long n_ipis; 89 unsigned long n_ipis_fails; 90 struct task_struct *kthread_ptr; 91 rcu_tasks_gp_func_t gp_func; 92 pregp_func_t pregp_func; 93 pertask_func_t pertask_func; 94 postscan_func_t postscan_func; 95 holdouts_func_t holdouts_func; 96 postgp_func_t postgp_func; 97 call_rcu_func_t call_func; 98 struct rcu_tasks_percpu __percpu *rtpcpu; 99 int percpu_enqueue_shift; 100 int percpu_enqueue_lim; 101 int percpu_dequeue_lim; 102 unsigned long percpu_dequeue_gpseq; 103 struct mutex barrier_q_mutex; 104 atomic_t barrier_q_count; 105 struct completion barrier_q_completion; 106 unsigned long barrier_q_seq; 107 char *name; 108 char *kname; 109 }; 110 111 static void call_rcu_tasks_iw_wakeup(struct irq_work *iwp); 112 113 #define DEFINE_RCU_TASKS(rt_name, gp, call, n) \ 114 static DEFINE_PER_CPU(struct rcu_tasks_percpu, rt_name ## __percpu) = { \ 115 .lock = __RAW_SPIN_LOCK_UNLOCKED(rt_name ## __percpu.cbs_pcpu_lock), \ 116 .rtp_irq_work = IRQ_WORK_INIT_HARD(call_rcu_tasks_iw_wakeup), \ 117 }; \ 118 static struct rcu_tasks rt_name = \ 119 { \ 120 .cbs_wait = __RCUWAIT_INITIALIZER(rt_name.wait), \ 121 .cbs_gbl_lock = __RAW_SPIN_LOCK_UNLOCKED(rt_name.cbs_gbl_lock), \ 122 .gp_func = gp, \ 123 .call_func = call, \ 124 .rtpcpu = &rt_name ## __percpu, \ 125 .name = n, \ 126 .percpu_enqueue_shift = order_base_2(CONFIG_NR_CPUS), \ 127 .percpu_enqueue_lim = 1, \ 128 .percpu_dequeue_lim = 1, \ 129 .barrier_q_mutex = __MUTEX_INITIALIZER(rt_name.barrier_q_mutex), \ 130 .barrier_q_seq = (0UL - 50UL) << RCU_SEQ_CTR_SHIFT, \ 131 .kname = #rt_name, \ 132 } 133 134 /* Track exiting tasks in order to allow them to be waited for. */ 135 DEFINE_STATIC_SRCU(tasks_rcu_exit_srcu); 136 137 /* Avoid IPIing CPUs early in the grace period. */ 138 #define RCU_TASK_IPI_DELAY (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) ? HZ / 2 : 0) 139 static int rcu_task_ipi_delay __read_mostly = RCU_TASK_IPI_DELAY; 140 module_param(rcu_task_ipi_delay, int, 0644); 141 142 /* Control stall timeouts. Disable with <= 0, otherwise jiffies till stall. */ 143 #define RCU_TASK_STALL_TIMEOUT (HZ * 60 * 10) 144 static int rcu_task_stall_timeout __read_mostly = RCU_TASK_STALL_TIMEOUT; 145 module_param(rcu_task_stall_timeout, int, 0644); 146 #define RCU_TASK_STALL_INFO (HZ * 10) 147 static int rcu_task_stall_info __read_mostly = RCU_TASK_STALL_INFO; 148 module_param(rcu_task_stall_info, int, 0644); 149 static int rcu_task_stall_info_mult __read_mostly = 3; 150 module_param(rcu_task_stall_info_mult, int, 0444); 151 152 static int rcu_task_enqueue_lim __read_mostly = -1; 153 module_param(rcu_task_enqueue_lim, int, 0444); 154 155 static bool rcu_task_cb_adjust; 156 static int rcu_task_contend_lim __read_mostly = 100; 157 module_param(rcu_task_contend_lim, int, 0444); 158 static int rcu_task_collapse_lim __read_mostly = 10; 159 module_param(rcu_task_collapse_lim, int, 0444); 160 161 /* RCU tasks grace-period state for debugging. */ 162 #define RTGS_INIT 0 163 #define RTGS_WAIT_WAIT_CBS 1 164 #define RTGS_WAIT_GP 2 165 #define RTGS_PRE_WAIT_GP 3 166 #define RTGS_SCAN_TASKLIST 4 167 #define RTGS_POST_SCAN_TASKLIST 5 168 #define RTGS_WAIT_SCAN_HOLDOUTS 6 169 #define RTGS_SCAN_HOLDOUTS 7 170 #define RTGS_POST_GP 8 171 #define RTGS_WAIT_READERS 9 172 #define RTGS_INVOKE_CBS 10 173 #define RTGS_WAIT_CBS 11 174 #ifndef CONFIG_TINY_RCU 175 static const char * const rcu_tasks_gp_state_names[] = { 176 "RTGS_INIT", 177 "RTGS_WAIT_WAIT_CBS", 178 "RTGS_WAIT_GP", 179 "RTGS_PRE_WAIT_GP", 180 "RTGS_SCAN_TASKLIST", 181 "RTGS_POST_SCAN_TASKLIST", 182 "RTGS_WAIT_SCAN_HOLDOUTS", 183 "RTGS_SCAN_HOLDOUTS", 184 "RTGS_POST_GP", 185 "RTGS_WAIT_READERS", 186 "RTGS_INVOKE_CBS", 187 "RTGS_WAIT_CBS", 188 }; 189 #endif /* #ifndef CONFIG_TINY_RCU */ 190 191 //////////////////////////////////////////////////////////////////////// 192 // 193 // Generic code. 194 195 static void rcu_tasks_invoke_cbs_wq(struct work_struct *wp); 196 197 /* Record grace-period phase and time. */ 198 static void set_tasks_gp_state(struct rcu_tasks *rtp, int newstate) 199 { 200 rtp->gp_state = newstate; 201 rtp->gp_jiffies = jiffies; 202 } 203 204 #ifndef CONFIG_TINY_RCU 205 /* Return state name. */ 206 static const char *tasks_gp_state_getname(struct rcu_tasks *rtp) 207 { 208 int i = data_race(rtp->gp_state); // Let KCSAN detect update races 209 int j = READ_ONCE(i); // Prevent the compiler from reading twice 210 211 if (j >= ARRAY_SIZE(rcu_tasks_gp_state_names)) 212 return "???"; 213 return rcu_tasks_gp_state_names[j]; 214 } 215 #endif /* #ifndef CONFIG_TINY_RCU */ 216 217 // Initialize per-CPU callback lists for the specified flavor of 218 // Tasks RCU. 219 static void cblist_init_generic(struct rcu_tasks *rtp) 220 { 221 int cpu; 222 unsigned long flags; 223 int lim; 224 int shift; 225 226 raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags); 227 if (rcu_task_enqueue_lim < 0) { 228 rcu_task_enqueue_lim = 1; 229 rcu_task_cb_adjust = true; 230 pr_info("%s: Setting adjustable number of callback queues.\n", __func__); 231 } else if (rcu_task_enqueue_lim == 0) { 232 rcu_task_enqueue_lim = 1; 233 } 234 lim = rcu_task_enqueue_lim; 235 236 if (lim > nr_cpu_ids) 237 lim = nr_cpu_ids; 238 shift = ilog2(nr_cpu_ids / lim); 239 if (((nr_cpu_ids - 1) >> shift) >= lim) 240 shift++; 241 WRITE_ONCE(rtp->percpu_enqueue_shift, shift); 242 WRITE_ONCE(rtp->percpu_dequeue_lim, lim); 243 smp_store_release(&rtp->percpu_enqueue_lim, lim); 244 for_each_possible_cpu(cpu) { 245 struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu); 246 247 WARN_ON_ONCE(!rtpcp); 248 if (cpu) 249 raw_spin_lock_init(&ACCESS_PRIVATE(rtpcp, lock)); 250 raw_spin_lock_rcu_node(rtpcp); // irqs already disabled. 251 if (rcu_segcblist_empty(&rtpcp->cblist)) 252 rcu_segcblist_init(&rtpcp->cblist); 253 INIT_WORK(&rtpcp->rtp_work, rcu_tasks_invoke_cbs_wq); 254 rtpcp->cpu = cpu; 255 rtpcp->rtpp = rtp; 256 raw_spin_unlock_rcu_node(rtpcp); // irqs remain disabled. 257 } 258 raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags); 259 pr_info("%s: Setting shift to %d and lim to %d.\n", __func__, data_race(rtp->percpu_enqueue_shift), data_race(rtp->percpu_enqueue_lim)); 260 } 261 262 // IRQ-work handler that does deferred wakeup for call_rcu_tasks_generic(). 263 static void call_rcu_tasks_iw_wakeup(struct irq_work *iwp) 264 { 265 struct rcu_tasks *rtp; 266 struct rcu_tasks_percpu *rtpcp = container_of(iwp, struct rcu_tasks_percpu, rtp_irq_work); 267 268 rtp = rtpcp->rtpp; 269 rcuwait_wake_up(&rtp->cbs_wait); 270 } 271 272 // Enqueue a callback for the specified flavor of Tasks RCU. 273 static void call_rcu_tasks_generic(struct rcu_head *rhp, rcu_callback_t func, 274 struct rcu_tasks *rtp) 275 { 276 int chosen_cpu; 277 unsigned long flags; 278 int ideal_cpu; 279 unsigned long j; 280 bool needadjust = false; 281 bool needwake; 282 struct rcu_tasks_percpu *rtpcp; 283 284 rhp->next = NULL; 285 rhp->func = func; 286 local_irq_save(flags); 287 rcu_read_lock(); 288 ideal_cpu = smp_processor_id() >> READ_ONCE(rtp->percpu_enqueue_shift); 289 chosen_cpu = cpumask_next(ideal_cpu - 1, cpu_possible_mask); 290 rtpcp = per_cpu_ptr(rtp->rtpcpu, chosen_cpu); 291 if (!raw_spin_trylock_rcu_node(rtpcp)) { // irqs already disabled. 292 raw_spin_lock_rcu_node(rtpcp); // irqs already disabled. 293 j = jiffies; 294 if (rtpcp->rtp_jiffies != j) { 295 rtpcp->rtp_jiffies = j; 296 rtpcp->rtp_n_lock_retries = 0; 297 } 298 if (rcu_task_cb_adjust && ++rtpcp->rtp_n_lock_retries > rcu_task_contend_lim && 299 READ_ONCE(rtp->percpu_enqueue_lim) != nr_cpu_ids) 300 needadjust = true; // Defer adjustment to avoid deadlock. 301 } 302 if (!rcu_segcblist_is_enabled(&rtpcp->cblist)) { 303 raw_spin_unlock_rcu_node(rtpcp); // irqs remain disabled. 304 cblist_init_generic(rtp); 305 raw_spin_lock_rcu_node(rtpcp); // irqs already disabled. 306 } 307 needwake = rcu_segcblist_empty(&rtpcp->cblist); 308 rcu_segcblist_enqueue(&rtpcp->cblist, rhp); 309 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 310 if (unlikely(needadjust)) { 311 raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags); 312 if (rtp->percpu_enqueue_lim != nr_cpu_ids) { 313 WRITE_ONCE(rtp->percpu_enqueue_shift, 0); 314 WRITE_ONCE(rtp->percpu_dequeue_lim, nr_cpu_ids); 315 smp_store_release(&rtp->percpu_enqueue_lim, nr_cpu_ids); 316 pr_info("Switching %s to per-CPU callback queuing.\n", rtp->name); 317 } 318 raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags); 319 } 320 rcu_read_unlock(); 321 /* We can't create the thread unless interrupts are enabled. */ 322 if (needwake && READ_ONCE(rtp->kthread_ptr)) 323 irq_work_queue(&rtpcp->rtp_irq_work); 324 } 325 326 // Wait for a grace period for the specified flavor of Tasks RCU. 327 static void synchronize_rcu_tasks_generic(struct rcu_tasks *rtp) 328 { 329 /* Complain if the scheduler has not started. */ 330 RCU_LOCKDEP_WARN(rcu_scheduler_active == RCU_SCHEDULER_INACTIVE, 331 "synchronize_rcu_tasks called too soon"); 332 333 /* Wait for the grace period. */ 334 wait_rcu_gp(rtp->call_func); 335 } 336 337 // RCU callback function for rcu_barrier_tasks_generic(). 338 static void rcu_barrier_tasks_generic_cb(struct rcu_head *rhp) 339 { 340 struct rcu_tasks *rtp; 341 struct rcu_tasks_percpu *rtpcp; 342 343 rtpcp = container_of(rhp, struct rcu_tasks_percpu, barrier_q_head); 344 rtp = rtpcp->rtpp; 345 if (atomic_dec_and_test(&rtp->barrier_q_count)) 346 complete(&rtp->barrier_q_completion); 347 } 348 349 // Wait for all in-flight callbacks for the specified RCU Tasks flavor. 350 // Operates in a manner similar to rcu_barrier(). 351 static void rcu_barrier_tasks_generic(struct rcu_tasks *rtp) 352 { 353 int cpu; 354 unsigned long flags; 355 struct rcu_tasks_percpu *rtpcp; 356 unsigned long s = rcu_seq_snap(&rtp->barrier_q_seq); 357 358 mutex_lock(&rtp->barrier_q_mutex); 359 if (rcu_seq_done(&rtp->barrier_q_seq, s)) { 360 smp_mb(); 361 mutex_unlock(&rtp->barrier_q_mutex); 362 return; 363 } 364 rcu_seq_start(&rtp->barrier_q_seq); 365 init_completion(&rtp->barrier_q_completion); 366 atomic_set(&rtp->barrier_q_count, 2); 367 for_each_possible_cpu(cpu) { 368 if (cpu >= smp_load_acquire(&rtp->percpu_dequeue_lim)) 369 break; 370 rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu); 371 rtpcp->barrier_q_head.func = rcu_barrier_tasks_generic_cb; 372 raw_spin_lock_irqsave_rcu_node(rtpcp, flags); 373 if (rcu_segcblist_entrain(&rtpcp->cblist, &rtpcp->barrier_q_head)) 374 atomic_inc(&rtp->barrier_q_count); 375 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 376 } 377 if (atomic_sub_and_test(2, &rtp->barrier_q_count)) 378 complete(&rtp->barrier_q_completion); 379 wait_for_completion(&rtp->barrier_q_completion); 380 rcu_seq_end(&rtp->barrier_q_seq); 381 mutex_unlock(&rtp->barrier_q_mutex); 382 } 383 384 // Advance callbacks and indicate whether either a grace period or 385 // callback invocation is needed. 386 static int rcu_tasks_need_gpcb(struct rcu_tasks *rtp) 387 { 388 int cpu; 389 unsigned long flags; 390 long n; 391 long ncbs = 0; 392 long ncbsnz = 0; 393 int needgpcb = 0; 394 395 for (cpu = 0; cpu < smp_load_acquire(&rtp->percpu_dequeue_lim); cpu++) { 396 struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu); 397 398 /* Advance and accelerate any new callbacks. */ 399 if (!rcu_segcblist_n_cbs(&rtpcp->cblist)) 400 continue; 401 raw_spin_lock_irqsave_rcu_node(rtpcp, flags); 402 // Should we shrink down to a single callback queue? 403 n = rcu_segcblist_n_cbs(&rtpcp->cblist); 404 if (n) { 405 ncbs += n; 406 if (cpu > 0) 407 ncbsnz += n; 408 } 409 rcu_segcblist_advance(&rtpcp->cblist, rcu_seq_current(&rtp->tasks_gp_seq)); 410 (void)rcu_segcblist_accelerate(&rtpcp->cblist, rcu_seq_snap(&rtp->tasks_gp_seq)); 411 if (rcu_segcblist_pend_cbs(&rtpcp->cblist)) 412 needgpcb |= 0x3; 413 if (!rcu_segcblist_empty(&rtpcp->cblist)) 414 needgpcb |= 0x1; 415 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 416 } 417 418 // Shrink down to a single callback queue if appropriate. 419 // This is done in two stages: (1) If there are no more than 420 // rcu_task_collapse_lim callbacks on CPU 0 and none on any other 421 // CPU, limit enqueueing to CPU 0. (2) After an RCU grace period, 422 // if there has not been an increase in callbacks, limit dequeuing 423 // to CPU 0. Note the matching RCU read-side critical section in 424 // call_rcu_tasks_generic(). 425 if (rcu_task_cb_adjust && ncbs <= rcu_task_collapse_lim) { 426 raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags); 427 if (rtp->percpu_enqueue_lim > 1) { 428 WRITE_ONCE(rtp->percpu_enqueue_shift, order_base_2(nr_cpu_ids)); 429 smp_store_release(&rtp->percpu_enqueue_lim, 1); 430 rtp->percpu_dequeue_gpseq = get_state_synchronize_rcu(); 431 pr_info("Starting switch %s to CPU-0 callback queuing.\n", rtp->name); 432 } 433 raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags); 434 } 435 if (rcu_task_cb_adjust && !ncbsnz && 436 poll_state_synchronize_rcu(rtp->percpu_dequeue_gpseq)) { 437 raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags); 438 if (rtp->percpu_enqueue_lim < rtp->percpu_dequeue_lim) { 439 WRITE_ONCE(rtp->percpu_dequeue_lim, 1); 440 pr_info("Completing switch %s to CPU-0 callback queuing.\n", rtp->name); 441 } 442 raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags); 443 } 444 445 return needgpcb; 446 } 447 448 // Advance callbacks and invoke any that are ready. 449 static void rcu_tasks_invoke_cbs(struct rcu_tasks *rtp, struct rcu_tasks_percpu *rtpcp) 450 { 451 int cpu; 452 int cpunext; 453 unsigned long flags; 454 int len; 455 struct rcu_head *rhp; 456 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl); 457 struct rcu_tasks_percpu *rtpcp_next; 458 459 cpu = rtpcp->cpu; 460 cpunext = cpu * 2 + 1; 461 if (cpunext < smp_load_acquire(&rtp->percpu_dequeue_lim)) { 462 rtpcp_next = per_cpu_ptr(rtp->rtpcpu, cpunext); 463 queue_work_on(cpunext, system_wq, &rtpcp_next->rtp_work); 464 cpunext++; 465 if (cpunext < smp_load_acquire(&rtp->percpu_dequeue_lim)) { 466 rtpcp_next = per_cpu_ptr(rtp->rtpcpu, cpunext); 467 queue_work_on(cpunext, system_wq, &rtpcp_next->rtp_work); 468 } 469 } 470 471 if (rcu_segcblist_empty(&rtpcp->cblist) || !cpu_possible(cpu)) 472 return; 473 raw_spin_lock_irqsave_rcu_node(rtpcp, flags); 474 rcu_segcblist_advance(&rtpcp->cblist, rcu_seq_current(&rtp->tasks_gp_seq)); 475 rcu_segcblist_extract_done_cbs(&rtpcp->cblist, &rcl); 476 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 477 len = rcl.len; 478 for (rhp = rcu_cblist_dequeue(&rcl); rhp; rhp = rcu_cblist_dequeue(&rcl)) { 479 local_bh_disable(); 480 rhp->func(rhp); 481 local_bh_enable(); 482 cond_resched(); 483 } 484 raw_spin_lock_irqsave_rcu_node(rtpcp, flags); 485 rcu_segcblist_add_len(&rtpcp->cblist, -len); 486 (void)rcu_segcblist_accelerate(&rtpcp->cblist, rcu_seq_snap(&rtp->tasks_gp_seq)); 487 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 488 } 489 490 // Workqueue flood to advance callbacks and invoke any that are ready. 491 static void rcu_tasks_invoke_cbs_wq(struct work_struct *wp) 492 { 493 struct rcu_tasks *rtp; 494 struct rcu_tasks_percpu *rtpcp = container_of(wp, struct rcu_tasks_percpu, rtp_work); 495 496 rtp = rtpcp->rtpp; 497 rcu_tasks_invoke_cbs(rtp, rtpcp); 498 } 499 500 /* RCU-tasks kthread that detects grace periods and invokes callbacks. */ 501 static int __noreturn rcu_tasks_kthread(void *arg) 502 { 503 int needgpcb; 504 struct rcu_tasks *rtp = arg; 505 506 /* Run on housekeeping CPUs by default. Sysadm can move if desired. */ 507 housekeeping_affine(current, HK_TYPE_RCU); 508 WRITE_ONCE(rtp->kthread_ptr, current); // Let GPs start! 509 510 /* 511 * Each pass through the following loop makes one check for 512 * newly arrived callbacks, and, if there are some, waits for 513 * one RCU-tasks grace period and then invokes the callbacks. 514 * This loop is terminated by the system going down. ;-) 515 */ 516 for (;;) { 517 set_tasks_gp_state(rtp, RTGS_WAIT_CBS); 518 519 /* If there were none, wait a bit and start over. */ 520 rcuwait_wait_event(&rtp->cbs_wait, 521 (needgpcb = rcu_tasks_need_gpcb(rtp)), 522 TASK_IDLE); 523 524 if (needgpcb & 0x2) { 525 // Wait for one grace period. 526 set_tasks_gp_state(rtp, RTGS_WAIT_GP); 527 rtp->gp_start = jiffies; 528 rcu_seq_start(&rtp->tasks_gp_seq); 529 rtp->gp_func(rtp); 530 rcu_seq_end(&rtp->tasks_gp_seq); 531 } 532 533 /* Invoke callbacks. */ 534 set_tasks_gp_state(rtp, RTGS_INVOKE_CBS); 535 rcu_tasks_invoke_cbs(rtp, per_cpu_ptr(rtp->rtpcpu, 0)); 536 537 /* Paranoid sleep to keep this from entering a tight loop */ 538 schedule_timeout_idle(rtp->gp_sleep); 539 } 540 } 541 542 /* Spawn RCU-tasks grace-period kthread. */ 543 static void __init rcu_spawn_tasks_kthread_generic(struct rcu_tasks *rtp) 544 { 545 struct task_struct *t; 546 547 t = kthread_run(rcu_tasks_kthread, rtp, "%s_kthread", rtp->kname); 548 if (WARN_ONCE(IS_ERR(t), "%s: Could not start %s grace-period kthread, OOM is now expected behavior\n", __func__, rtp->name)) 549 return; 550 smp_mb(); /* Ensure others see full kthread. */ 551 } 552 553 #ifndef CONFIG_TINY_RCU 554 555 /* 556 * Print any non-default Tasks RCU settings. 557 */ 558 static void __init rcu_tasks_bootup_oddness(void) 559 { 560 #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU) 561 int rtsimc; 562 563 if (rcu_task_stall_timeout != RCU_TASK_STALL_TIMEOUT) 564 pr_info("\tTasks-RCU CPU stall warnings timeout set to %d (rcu_task_stall_timeout).\n", rcu_task_stall_timeout); 565 rtsimc = clamp(rcu_task_stall_info_mult, 1, 10); 566 if (rtsimc != rcu_task_stall_info_mult) { 567 pr_info("\tTasks-RCU CPU stall info multiplier clamped to %d (rcu_task_stall_info_mult).\n", rtsimc); 568 rcu_task_stall_info_mult = rtsimc; 569 } 570 #endif /* #ifdef CONFIG_TASKS_RCU */ 571 #ifdef CONFIG_TASKS_RCU 572 pr_info("\tTrampoline variant of Tasks RCU enabled.\n"); 573 #endif /* #ifdef CONFIG_TASKS_RCU */ 574 #ifdef CONFIG_TASKS_RUDE_RCU 575 pr_info("\tRude variant of Tasks RCU enabled.\n"); 576 #endif /* #ifdef CONFIG_TASKS_RUDE_RCU */ 577 #ifdef CONFIG_TASKS_TRACE_RCU 578 pr_info("\tTracing variant of Tasks RCU enabled.\n"); 579 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 580 } 581 582 #endif /* #ifndef CONFIG_TINY_RCU */ 583 584 #ifndef CONFIG_TINY_RCU 585 /* Dump out rcutorture-relevant state common to all RCU-tasks flavors. */ 586 static void show_rcu_tasks_generic_gp_kthread(struct rcu_tasks *rtp, char *s) 587 { 588 int cpu; 589 bool havecbs = false; 590 591 for_each_possible_cpu(cpu) { 592 struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu); 593 594 if (!data_race(rcu_segcblist_empty(&rtpcp->cblist))) { 595 havecbs = true; 596 break; 597 } 598 } 599 pr_info("%s: %s(%d) since %lu g:%lu i:%lu/%lu %c%c %s\n", 600 rtp->kname, 601 tasks_gp_state_getname(rtp), data_race(rtp->gp_state), 602 jiffies - data_race(rtp->gp_jiffies), 603 data_race(rcu_seq_current(&rtp->tasks_gp_seq)), 604 data_race(rtp->n_ipis_fails), data_race(rtp->n_ipis), 605 ".k"[!!data_race(rtp->kthread_ptr)], 606 ".C"[havecbs], 607 s); 608 } 609 #endif // #ifndef CONFIG_TINY_RCU 610 611 static void exit_tasks_rcu_finish_trace(struct task_struct *t); 612 613 #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU) 614 615 //////////////////////////////////////////////////////////////////////// 616 // 617 // Shared code between task-list-scanning variants of Tasks RCU. 618 619 /* Wait for one RCU-tasks grace period. */ 620 static void rcu_tasks_wait_gp(struct rcu_tasks *rtp) 621 { 622 struct task_struct *g; 623 int fract; 624 LIST_HEAD(holdouts); 625 unsigned long j; 626 unsigned long lastinfo; 627 unsigned long lastreport; 628 bool reported = false; 629 int rtsi; 630 struct task_struct *t; 631 632 set_tasks_gp_state(rtp, RTGS_PRE_WAIT_GP); 633 rtp->pregp_func(); 634 635 /* 636 * There were callbacks, so we need to wait for an RCU-tasks 637 * grace period. Start off by scanning the task list for tasks 638 * that are not already voluntarily blocked. Mark these tasks 639 * and make a list of them in holdouts. 640 */ 641 set_tasks_gp_state(rtp, RTGS_SCAN_TASKLIST); 642 rcu_read_lock(); 643 for_each_process_thread(g, t) 644 rtp->pertask_func(t, &holdouts); 645 rcu_read_unlock(); 646 647 set_tasks_gp_state(rtp, RTGS_POST_SCAN_TASKLIST); 648 rtp->postscan_func(&holdouts); 649 650 /* 651 * Each pass through the following loop scans the list of holdout 652 * tasks, removing any that are no longer holdouts. When the list 653 * is empty, we are done. 654 */ 655 lastreport = jiffies; 656 lastinfo = lastreport; 657 rtsi = READ_ONCE(rcu_task_stall_info); 658 659 // Start off with initial wait and slowly back off to 1 HZ wait. 660 fract = rtp->init_fract; 661 662 while (!list_empty(&holdouts)) { 663 ktime_t exp; 664 bool firstreport; 665 bool needreport; 666 int rtst; 667 668 // Slowly back off waiting for holdouts 669 set_tasks_gp_state(rtp, RTGS_WAIT_SCAN_HOLDOUTS); 670 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) { 671 schedule_timeout_idle(fract); 672 } else { 673 exp = jiffies_to_nsecs(fract); 674 __set_current_state(TASK_IDLE); 675 schedule_hrtimeout_range(&exp, jiffies_to_nsecs(HZ / 2), HRTIMER_MODE_REL_HARD); 676 } 677 678 if (fract < HZ) 679 fract++; 680 681 rtst = READ_ONCE(rcu_task_stall_timeout); 682 needreport = rtst > 0 && time_after(jiffies, lastreport + rtst); 683 if (needreport) { 684 lastreport = jiffies; 685 reported = true; 686 } 687 firstreport = true; 688 WARN_ON(signal_pending(current)); 689 set_tasks_gp_state(rtp, RTGS_SCAN_HOLDOUTS); 690 rtp->holdouts_func(&holdouts, needreport, &firstreport); 691 692 // Print pre-stall informational messages if needed. 693 j = jiffies; 694 if (rtsi > 0 && !reported && time_after(j, lastinfo + rtsi)) { 695 lastinfo = j; 696 rtsi = rtsi * rcu_task_stall_info_mult; 697 pr_info("%s: %s grace period %lu is %lu jiffies old.\n", 698 __func__, rtp->kname, rtp->tasks_gp_seq, j - rtp->gp_start); 699 } 700 } 701 702 set_tasks_gp_state(rtp, RTGS_POST_GP); 703 rtp->postgp_func(rtp); 704 } 705 706 #endif /* #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU) */ 707 708 #ifdef CONFIG_TASKS_RCU 709 710 //////////////////////////////////////////////////////////////////////// 711 // 712 // Simple variant of RCU whose quiescent states are voluntary context 713 // switch, cond_resched_tasks_rcu_qs(), user-space execution, and idle. 714 // As such, grace periods can take one good long time. There are no 715 // read-side primitives similar to rcu_read_lock() and rcu_read_unlock() 716 // because this implementation is intended to get the system into a safe 717 // state for some of the manipulations involved in tracing and the like. 718 // Finally, this implementation does not support high call_rcu_tasks() 719 // rates from multiple CPUs. If this is required, per-CPU callback lists 720 // will be needed. 721 // 722 // The implementation uses rcu_tasks_wait_gp(), which relies on function 723 // pointers in the rcu_tasks structure. The rcu_spawn_tasks_kthread() 724 // function sets these function pointers up so that rcu_tasks_wait_gp() 725 // invokes these functions in this order: 726 // 727 // rcu_tasks_pregp_step(): 728 // Invokes synchronize_rcu() in order to wait for all in-flight 729 // t->on_rq and t->nvcsw transitions to complete. This works because 730 // all such transitions are carried out with interrupts disabled. 731 // rcu_tasks_pertask(), invoked on every non-idle task: 732 // For every runnable non-idle task other than the current one, use 733 // get_task_struct() to pin down that task, snapshot that task's 734 // number of voluntary context switches, and add that task to the 735 // holdout list. 736 // rcu_tasks_postscan(): 737 // Invoke synchronize_srcu() to ensure that all tasks that were 738 // in the process of exiting (and which thus might not know to 739 // synchronize with this RCU Tasks grace period) have completed 740 // exiting. 741 // check_all_holdout_tasks(), repeatedly until holdout list is empty: 742 // Scans the holdout list, attempting to identify a quiescent state 743 // for each task on the list. If there is a quiescent state, the 744 // corresponding task is removed from the holdout list. 745 // rcu_tasks_postgp(): 746 // Invokes synchronize_rcu() in order to ensure that all prior 747 // t->on_rq and t->nvcsw transitions are seen by all CPUs and tasks 748 // to have happened before the end of this RCU Tasks grace period. 749 // Again, this works because all such transitions are carried out 750 // with interrupts disabled. 751 // 752 // For each exiting task, the exit_tasks_rcu_start() and 753 // exit_tasks_rcu_finish() functions begin and end, respectively, the SRCU 754 // read-side critical sections waited for by rcu_tasks_postscan(). 755 // 756 // Pre-grace-period update-side code is ordered before the grace 757 // via the raw_spin_lock.*rcu_node(). Pre-grace-period read-side code 758 // is ordered before the grace period via synchronize_rcu() call in 759 // rcu_tasks_pregp_step() and by the scheduler's locks and interrupt 760 // disabling. 761 762 /* Pre-grace-period preparation. */ 763 static void rcu_tasks_pregp_step(void) 764 { 765 /* 766 * Wait for all pre-existing t->on_rq and t->nvcsw transitions 767 * to complete. Invoking synchronize_rcu() suffices because all 768 * these transitions occur with interrupts disabled. Without this 769 * synchronize_rcu(), a read-side critical section that started 770 * before the grace period might be incorrectly seen as having 771 * started after the grace period. 772 * 773 * This synchronize_rcu() also dispenses with the need for a 774 * memory barrier on the first store to t->rcu_tasks_holdout, 775 * as it forces the store to happen after the beginning of the 776 * grace period. 777 */ 778 synchronize_rcu(); 779 } 780 781 /* Per-task initial processing. */ 782 static void rcu_tasks_pertask(struct task_struct *t, struct list_head *hop) 783 { 784 if (t != current && READ_ONCE(t->on_rq) && !is_idle_task(t)) { 785 get_task_struct(t); 786 t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw); 787 WRITE_ONCE(t->rcu_tasks_holdout, true); 788 list_add(&t->rcu_tasks_holdout_list, hop); 789 } 790 } 791 792 /* Processing between scanning taskslist and draining the holdout list. */ 793 static void rcu_tasks_postscan(struct list_head *hop) 794 { 795 /* 796 * Wait for tasks that are in the process of exiting. This 797 * does only part of the job, ensuring that all tasks that were 798 * previously exiting reach the point where they have disabled 799 * preemption, allowing the later synchronize_rcu() to finish 800 * the job. 801 */ 802 synchronize_srcu(&tasks_rcu_exit_srcu); 803 } 804 805 /* See if tasks are still holding out, complain if so. */ 806 static void check_holdout_task(struct task_struct *t, 807 bool needreport, bool *firstreport) 808 { 809 int cpu; 810 811 if (!READ_ONCE(t->rcu_tasks_holdout) || 812 t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) || 813 !READ_ONCE(t->on_rq) || 814 (IS_ENABLED(CONFIG_NO_HZ_FULL) && 815 !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) { 816 WRITE_ONCE(t->rcu_tasks_holdout, false); 817 list_del_init(&t->rcu_tasks_holdout_list); 818 put_task_struct(t); 819 return; 820 } 821 rcu_request_urgent_qs_task(t); 822 if (!needreport) 823 return; 824 if (*firstreport) { 825 pr_err("INFO: rcu_tasks detected stalls on tasks:\n"); 826 *firstreport = false; 827 } 828 cpu = task_cpu(t); 829 pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n", 830 t, ".I"[is_idle_task(t)], 831 "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)], 832 t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout, 833 t->rcu_tasks_idle_cpu, cpu); 834 sched_show_task(t); 835 } 836 837 /* Scan the holdout lists for tasks no longer holding out. */ 838 static void check_all_holdout_tasks(struct list_head *hop, 839 bool needreport, bool *firstreport) 840 { 841 struct task_struct *t, *t1; 842 843 list_for_each_entry_safe(t, t1, hop, rcu_tasks_holdout_list) { 844 check_holdout_task(t, needreport, firstreport); 845 cond_resched(); 846 } 847 } 848 849 /* Finish off the Tasks-RCU grace period. */ 850 static void rcu_tasks_postgp(struct rcu_tasks *rtp) 851 { 852 /* 853 * Because ->on_rq and ->nvcsw are not guaranteed to have a full 854 * memory barriers prior to them in the schedule() path, memory 855 * reordering on other CPUs could cause their RCU-tasks read-side 856 * critical sections to extend past the end of the grace period. 857 * However, because these ->nvcsw updates are carried out with 858 * interrupts disabled, we can use synchronize_rcu() to force the 859 * needed ordering on all such CPUs. 860 * 861 * This synchronize_rcu() also confines all ->rcu_tasks_holdout 862 * accesses to be within the grace period, avoiding the need for 863 * memory barriers for ->rcu_tasks_holdout accesses. 864 * 865 * In addition, this synchronize_rcu() waits for exiting tasks 866 * to complete their final preempt_disable() region of execution, 867 * cleaning up after the synchronize_srcu() above. 868 */ 869 synchronize_rcu(); 870 } 871 872 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func); 873 DEFINE_RCU_TASKS(rcu_tasks, rcu_tasks_wait_gp, call_rcu_tasks, "RCU Tasks"); 874 875 /** 876 * call_rcu_tasks() - Queue an RCU for invocation task-based grace period 877 * @rhp: structure to be used for queueing the RCU updates. 878 * @func: actual callback function to be invoked after the grace period 879 * 880 * The callback function will be invoked some time after a full grace 881 * period elapses, in other words after all currently executing RCU 882 * read-side critical sections have completed. call_rcu_tasks() assumes 883 * that the read-side critical sections end at a voluntary context 884 * switch (not a preemption!), cond_resched_tasks_rcu_qs(), entry into idle, 885 * or transition to usermode execution. As such, there are no read-side 886 * primitives analogous to rcu_read_lock() and rcu_read_unlock() because 887 * this primitive is intended to determine that all tasks have passed 888 * through a safe state, not so much for data-structure synchronization. 889 * 890 * See the description of call_rcu() for more detailed information on 891 * memory ordering guarantees. 892 */ 893 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func) 894 { 895 call_rcu_tasks_generic(rhp, func, &rcu_tasks); 896 } 897 EXPORT_SYMBOL_GPL(call_rcu_tasks); 898 899 /** 900 * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed. 901 * 902 * Control will return to the caller some time after a full rcu-tasks 903 * grace period has elapsed, in other words after all currently 904 * executing rcu-tasks read-side critical sections have elapsed. These 905 * read-side critical sections are delimited by calls to schedule(), 906 * cond_resched_tasks_rcu_qs(), idle execution, userspace execution, calls 907 * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched(). 908 * 909 * This is a very specialized primitive, intended only for a few uses in 910 * tracing and other situations requiring manipulation of function 911 * preambles and profiling hooks. The synchronize_rcu_tasks() function 912 * is not (yet) intended for heavy use from multiple CPUs. 913 * 914 * See the description of synchronize_rcu() for more detailed information 915 * on memory ordering guarantees. 916 */ 917 void synchronize_rcu_tasks(void) 918 { 919 synchronize_rcu_tasks_generic(&rcu_tasks); 920 } 921 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks); 922 923 /** 924 * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks. 925 * 926 * Although the current implementation is guaranteed to wait, it is not 927 * obligated to, for example, if there are no pending callbacks. 928 */ 929 void rcu_barrier_tasks(void) 930 { 931 rcu_barrier_tasks_generic(&rcu_tasks); 932 } 933 EXPORT_SYMBOL_GPL(rcu_barrier_tasks); 934 935 static int __init rcu_spawn_tasks_kthread(void) 936 { 937 cblist_init_generic(&rcu_tasks); 938 rcu_tasks.gp_sleep = HZ / 10; 939 rcu_tasks.init_fract = HZ / 10; 940 rcu_tasks.pregp_func = rcu_tasks_pregp_step; 941 rcu_tasks.pertask_func = rcu_tasks_pertask; 942 rcu_tasks.postscan_func = rcu_tasks_postscan; 943 rcu_tasks.holdouts_func = check_all_holdout_tasks; 944 rcu_tasks.postgp_func = rcu_tasks_postgp; 945 rcu_spawn_tasks_kthread_generic(&rcu_tasks); 946 return 0; 947 } 948 949 #if !defined(CONFIG_TINY_RCU) 950 void show_rcu_tasks_classic_gp_kthread(void) 951 { 952 show_rcu_tasks_generic_gp_kthread(&rcu_tasks, ""); 953 } 954 EXPORT_SYMBOL_GPL(show_rcu_tasks_classic_gp_kthread); 955 #endif // !defined(CONFIG_TINY_RCU) 956 957 /* Do the srcu_read_lock() for the above synchronize_srcu(). */ 958 void exit_tasks_rcu_start(void) __acquires(&tasks_rcu_exit_srcu) 959 { 960 preempt_disable(); 961 current->rcu_tasks_idx = __srcu_read_lock(&tasks_rcu_exit_srcu); 962 preempt_enable(); 963 } 964 965 /* Do the srcu_read_unlock() for the above synchronize_srcu(). */ 966 void exit_tasks_rcu_finish(void) __releases(&tasks_rcu_exit_srcu) 967 { 968 struct task_struct *t = current; 969 970 preempt_disable(); 971 __srcu_read_unlock(&tasks_rcu_exit_srcu, t->rcu_tasks_idx); 972 preempt_enable(); 973 exit_tasks_rcu_finish_trace(t); 974 } 975 976 #else /* #ifdef CONFIG_TASKS_RCU */ 977 void exit_tasks_rcu_start(void) { } 978 void exit_tasks_rcu_finish(void) { exit_tasks_rcu_finish_trace(current); } 979 #endif /* #else #ifdef CONFIG_TASKS_RCU */ 980 981 #ifdef CONFIG_TASKS_RUDE_RCU 982 983 //////////////////////////////////////////////////////////////////////// 984 // 985 // "Rude" variant of Tasks RCU, inspired by Steve Rostedt's trick of 986 // passing an empty function to schedule_on_each_cpu(). This approach 987 // provides an asynchronous call_rcu_tasks_rude() API and batching of 988 // concurrent calls to the synchronous synchronize_rcu_tasks_rude() API. 989 // This invokes schedule_on_each_cpu() in order to send IPIs far and wide 990 // and induces otherwise unnecessary context switches on all online CPUs, 991 // whether idle or not. 992 // 993 // Callback handling is provided by the rcu_tasks_kthread() function. 994 // 995 // Ordering is provided by the scheduler's context-switch code. 996 997 // Empty function to allow workqueues to force a context switch. 998 static void rcu_tasks_be_rude(struct work_struct *work) 999 { 1000 } 1001 1002 // Wait for one rude RCU-tasks grace period. 1003 static void rcu_tasks_rude_wait_gp(struct rcu_tasks *rtp) 1004 { 1005 if (num_online_cpus() <= 1) 1006 return; // Fastpath for only one CPU. 1007 1008 rtp->n_ipis += cpumask_weight(cpu_online_mask); 1009 schedule_on_each_cpu(rcu_tasks_be_rude); 1010 } 1011 1012 void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func); 1013 DEFINE_RCU_TASKS(rcu_tasks_rude, rcu_tasks_rude_wait_gp, call_rcu_tasks_rude, 1014 "RCU Tasks Rude"); 1015 1016 /** 1017 * call_rcu_tasks_rude() - Queue a callback rude task-based grace period 1018 * @rhp: structure to be used for queueing the RCU updates. 1019 * @func: actual callback function to be invoked after the grace period 1020 * 1021 * The callback function will be invoked some time after a full grace 1022 * period elapses, in other words after all currently executing RCU 1023 * read-side critical sections have completed. call_rcu_tasks_rude() 1024 * assumes that the read-side critical sections end at context switch, 1025 * cond_resched_tasks_rcu_qs(), or transition to usermode execution (as 1026 * usermode execution is schedulable). As such, there are no read-side 1027 * primitives analogous to rcu_read_lock() and rcu_read_unlock() because 1028 * this primitive is intended to determine that all tasks have passed 1029 * through a safe state, not so much for data-structure synchronization. 1030 * 1031 * See the description of call_rcu() for more detailed information on 1032 * memory ordering guarantees. 1033 */ 1034 void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func) 1035 { 1036 call_rcu_tasks_generic(rhp, func, &rcu_tasks_rude); 1037 } 1038 EXPORT_SYMBOL_GPL(call_rcu_tasks_rude); 1039 1040 /** 1041 * synchronize_rcu_tasks_rude - wait for a rude rcu-tasks grace period 1042 * 1043 * Control will return to the caller some time after a rude rcu-tasks 1044 * grace period has elapsed, in other words after all currently 1045 * executing rcu-tasks read-side critical sections have elapsed. These 1046 * read-side critical sections are delimited by calls to schedule(), 1047 * cond_resched_tasks_rcu_qs(), userspace execution (which is a schedulable 1048 * context), and (in theory, anyway) cond_resched(). 1049 * 1050 * This is a very specialized primitive, intended only for a few uses in 1051 * tracing and other situations requiring manipulation of function preambles 1052 * and profiling hooks. The synchronize_rcu_tasks_rude() function is not 1053 * (yet) intended for heavy use from multiple CPUs. 1054 * 1055 * See the description of synchronize_rcu() for more detailed information 1056 * on memory ordering guarantees. 1057 */ 1058 void synchronize_rcu_tasks_rude(void) 1059 { 1060 synchronize_rcu_tasks_generic(&rcu_tasks_rude); 1061 } 1062 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_rude); 1063 1064 /** 1065 * rcu_barrier_tasks_rude - Wait for in-flight call_rcu_tasks_rude() callbacks. 1066 * 1067 * Although the current implementation is guaranteed to wait, it is not 1068 * obligated to, for example, if there are no pending callbacks. 1069 */ 1070 void rcu_barrier_tasks_rude(void) 1071 { 1072 rcu_barrier_tasks_generic(&rcu_tasks_rude); 1073 } 1074 EXPORT_SYMBOL_GPL(rcu_barrier_tasks_rude); 1075 1076 static int __init rcu_spawn_tasks_rude_kthread(void) 1077 { 1078 cblist_init_generic(&rcu_tasks_rude); 1079 rcu_tasks_rude.gp_sleep = HZ / 10; 1080 rcu_spawn_tasks_kthread_generic(&rcu_tasks_rude); 1081 return 0; 1082 } 1083 1084 #if !defined(CONFIG_TINY_RCU) 1085 void show_rcu_tasks_rude_gp_kthread(void) 1086 { 1087 show_rcu_tasks_generic_gp_kthread(&rcu_tasks_rude, ""); 1088 } 1089 EXPORT_SYMBOL_GPL(show_rcu_tasks_rude_gp_kthread); 1090 #endif // !defined(CONFIG_TINY_RCU) 1091 #endif /* #ifdef CONFIG_TASKS_RUDE_RCU */ 1092 1093 //////////////////////////////////////////////////////////////////////// 1094 // 1095 // Tracing variant of Tasks RCU. This variant is designed to be used 1096 // to protect tracing hooks, including those of BPF. This variant 1097 // therefore: 1098 // 1099 // 1. Has explicit read-side markers to allow finite grace periods 1100 // in the face of in-kernel loops for PREEMPT=n builds. 1101 // 1102 // 2. Protects code in the idle loop, exception entry/exit, and 1103 // CPU-hotplug code paths, similar to the capabilities of SRCU. 1104 // 1105 // 3. Avoids expensive read-side instructions, having overhead similar 1106 // to that of Preemptible RCU. 1107 // 1108 // There are of course downsides. The grace-period code can send IPIs to 1109 // CPUs, even when those CPUs are in the idle loop or in nohz_full userspace. 1110 // It is necessary to scan the full tasklist, much as for Tasks RCU. There 1111 // is a single callback queue guarded by a single lock, again, much as for 1112 // Tasks RCU. If needed, these downsides can be at least partially remedied. 1113 // 1114 // Perhaps most important, this variant of RCU does not affect the vanilla 1115 // flavors, rcu_preempt and rcu_sched. The fact that RCU Tasks Trace 1116 // readers can operate from idle, offline, and exception entry/exit in no 1117 // way allows rcu_preempt and rcu_sched readers to also do so. 1118 // 1119 // The implementation uses rcu_tasks_wait_gp(), which relies on function 1120 // pointers in the rcu_tasks structure. The rcu_spawn_tasks_trace_kthread() 1121 // function sets these function pointers up so that rcu_tasks_wait_gp() 1122 // invokes these functions in this order: 1123 // 1124 // rcu_tasks_trace_pregp_step(): 1125 // Initialize the count of readers and block CPU-hotplug operations. 1126 // rcu_tasks_trace_pertask(), invoked on every non-idle task: 1127 // Initialize per-task state and attempt to identify an immediate 1128 // quiescent state for that task, or, failing that, attempt to 1129 // set that task's .need_qs flag so that task's next outermost 1130 // rcu_read_unlock_trace() will report the quiescent state (in which 1131 // case the count of readers is incremented). If both attempts fail, 1132 // the task is added to a "holdout" list. Note that IPIs are used 1133 // to invoke trc_read_check_handler() in the context of running tasks 1134 // in order to avoid ordering overhead on common-case shared-variable 1135 // accessses. 1136 // rcu_tasks_trace_postscan(): 1137 // Initialize state and attempt to identify an immediate quiescent 1138 // state as above (but only for idle tasks), unblock CPU-hotplug 1139 // operations, and wait for an RCU grace period to avoid races with 1140 // tasks that are in the process of exiting. 1141 // check_all_holdout_tasks_trace(), repeatedly until holdout list is empty: 1142 // Scans the holdout list, attempting to identify a quiescent state 1143 // for each task on the list. If there is a quiescent state, the 1144 // corresponding task is removed from the holdout list. 1145 // rcu_tasks_trace_postgp(): 1146 // Wait for the count of readers do drop to zero, reporting any stalls. 1147 // Also execute full memory barriers to maintain ordering with code 1148 // executing after the grace period. 1149 // 1150 // The exit_tasks_rcu_finish_trace() synchronizes with exiting tasks. 1151 // 1152 // Pre-grace-period update-side code is ordered before the grace 1153 // period via the ->cbs_lock and barriers in rcu_tasks_kthread(). 1154 // Pre-grace-period read-side code is ordered before the grace period by 1155 // atomic_dec_and_test() of the count of readers (for IPIed readers) and by 1156 // scheduler context-switch ordering (for locked-down non-running readers). 1157 1158 // The lockdep state must be outside of #ifdef to be useful. 1159 #ifdef CONFIG_DEBUG_LOCK_ALLOC 1160 static struct lock_class_key rcu_lock_trace_key; 1161 struct lockdep_map rcu_trace_lock_map = 1162 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_trace", &rcu_lock_trace_key); 1163 EXPORT_SYMBOL_GPL(rcu_trace_lock_map); 1164 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 1165 1166 #ifdef CONFIG_TASKS_TRACE_RCU 1167 1168 static atomic_t trc_n_readers_need_end; // Number of waited-for readers. 1169 static DECLARE_WAIT_QUEUE_HEAD(trc_wait); // List of holdout tasks. 1170 1171 // Record outstanding IPIs to each CPU. No point in sending two... 1172 static DEFINE_PER_CPU(bool, trc_ipi_to_cpu); 1173 1174 // The number of detections of task quiescent state relying on 1175 // heavyweight readers executing explicit memory barriers. 1176 static unsigned long n_heavy_reader_attempts; 1177 static unsigned long n_heavy_reader_updates; 1178 static unsigned long n_heavy_reader_ofl_updates; 1179 1180 void call_rcu_tasks_trace(struct rcu_head *rhp, rcu_callback_t func); 1181 DEFINE_RCU_TASKS(rcu_tasks_trace, rcu_tasks_wait_gp, call_rcu_tasks_trace, 1182 "RCU Tasks Trace"); 1183 1184 /* 1185 * This irq_work handler allows rcu_read_unlock_trace() to be invoked 1186 * while the scheduler locks are held. 1187 */ 1188 static void rcu_read_unlock_iw(struct irq_work *iwp) 1189 { 1190 wake_up(&trc_wait); 1191 } 1192 static DEFINE_IRQ_WORK(rcu_tasks_trace_iw, rcu_read_unlock_iw); 1193 1194 /* If we are the last reader, wake up the grace-period kthread. */ 1195 void rcu_read_unlock_trace_special(struct task_struct *t) 1196 { 1197 int nq = READ_ONCE(t->trc_reader_special.b.need_qs); 1198 1199 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) && 1200 t->trc_reader_special.b.need_mb) 1201 smp_mb(); // Pairs with update-side barriers. 1202 // Update .need_qs before ->trc_reader_nesting for irq/NMI handlers. 1203 if (nq) 1204 WRITE_ONCE(t->trc_reader_special.b.need_qs, false); 1205 WRITE_ONCE(t->trc_reader_nesting, 0); 1206 if (nq && atomic_dec_and_test(&trc_n_readers_need_end)) 1207 irq_work_queue(&rcu_tasks_trace_iw); 1208 } 1209 EXPORT_SYMBOL_GPL(rcu_read_unlock_trace_special); 1210 1211 /* Add a task to the holdout list, if it is not already on the list. */ 1212 static void trc_add_holdout(struct task_struct *t, struct list_head *bhp) 1213 { 1214 if (list_empty(&t->trc_holdout_list)) { 1215 get_task_struct(t); 1216 list_add(&t->trc_holdout_list, bhp); 1217 } 1218 } 1219 1220 /* Remove a task from the holdout list, if it is in fact present. */ 1221 static void trc_del_holdout(struct task_struct *t) 1222 { 1223 if (!list_empty(&t->trc_holdout_list)) { 1224 list_del_init(&t->trc_holdout_list); 1225 put_task_struct(t); 1226 } 1227 } 1228 1229 /* IPI handler to check task state. */ 1230 static void trc_read_check_handler(void *t_in) 1231 { 1232 struct task_struct *t = current; 1233 struct task_struct *texp = t_in; 1234 1235 // If the task is no longer running on this CPU, leave. 1236 if (unlikely(texp != t)) { 1237 goto reset_ipi; // Already on holdout list, so will check later. 1238 } 1239 1240 // If the task is not in a read-side critical section, and 1241 // if this is the last reader, awaken the grace-period kthread. 1242 if (likely(!READ_ONCE(t->trc_reader_nesting))) { 1243 WRITE_ONCE(t->trc_reader_checked, true); 1244 goto reset_ipi; 1245 } 1246 // If we are racing with an rcu_read_unlock_trace(), try again later. 1247 if (unlikely(READ_ONCE(t->trc_reader_nesting) < 0)) 1248 goto reset_ipi; 1249 WRITE_ONCE(t->trc_reader_checked, true); 1250 1251 // Get here if the task is in a read-side critical section. Set 1252 // its state so that it will awaken the grace-period kthread upon 1253 // exit from that critical section. 1254 atomic_inc(&trc_n_readers_need_end); // One more to wait on. 1255 WARN_ON_ONCE(READ_ONCE(t->trc_reader_special.b.need_qs)); 1256 WRITE_ONCE(t->trc_reader_special.b.need_qs, true); 1257 1258 reset_ipi: 1259 // Allow future IPIs to be sent on CPU and for task. 1260 // Also order this IPI handler against any later manipulations of 1261 // the intended task. 1262 smp_store_release(per_cpu_ptr(&trc_ipi_to_cpu, smp_processor_id()), false); // ^^^ 1263 smp_store_release(&texp->trc_ipi_to_cpu, -1); // ^^^ 1264 } 1265 1266 /* Callback function for scheduler to check locked-down task. */ 1267 static int trc_inspect_reader(struct task_struct *t, void *arg) 1268 { 1269 int cpu = task_cpu(t); 1270 int nesting; 1271 bool ofl = cpu_is_offline(cpu); 1272 1273 if (task_curr(t)) { 1274 WARN_ON_ONCE(ofl && !is_idle_task(t)); 1275 1276 // If no chance of heavyweight readers, do it the hard way. 1277 if (!ofl && !IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB)) 1278 return -EINVAL; 1279 1280 // If heavyweight readers are enabled on the remote task, 1281 // we can inspect its state despite its currently running. 1282 // However, we cannot safely change its state. 1283 n_heavy_reader_attempts++; 1284 if (!ofl && // Check for "running" idle tasks on offline CPUs. 1285 !rcu_dynticks_zero_in_eqs(cpu, &t->trc_reader_nesting)) 1286 return -EINVAL; // No quiescent state, do it the hard way. 1287 n_heavy_reader_updates++; 1288 if (ofl) 1289 n_heavy_reader_ofl_updates++; 1290 nesting = 0; 1291 } else { 1292 // The task is not running, so C-language access is safe. 1293 nesting = t->trc_reader_nesting; 1294 } 1295 1296 // If not exiting a read-side critical section, mark as checked 1297 // so that the grace-period kthread will remove it from the 1298 // holdout list. 1299 t->trc_reader_checked = nesting >= 0; 1300 if (nesting <= 0) 1301 return nesting ? -EINVAL : 0; // If in QS, done, otherwise try again later. 1302 1303 // The task is in a read-side critical section, so set up its 1304 // state so that it will awaken the grace-period kthread upon exit 1305 // from that critical section. 1306 atomic_inc(&trc_n_readers_need_end); // One more to wait on. 1307 WARN_ON_ONCE(READ_ONCE(t->trc_reader_special.b.need_qs)); 1308 WRITE_ONCE(t->trc_reader_special.b.need_qs, true); 1309 return 0; 1310 } 1311 1312 /* Attempt to extract the state for the specified task. */ 1313 static void trc_wait_for_one_reader(struct task_struct *t, 1314 struct list_head *bhp) 1315 { 1316 int cpu; 1317 1318 // If a previous IPI is still in flight, let it complete. 1319 if (smp_load_acquire(&t->trc_ipi_to_cpu) != -1) // Order IPI 1320 return; 1321 1322 // The current task had better be in a quiescent state. 1323 if (t == current) { 1324 t->trc_reader_checked = true; 1325 WARN_ON_ONCE(READ_ONCE(t->trc_reader_nesting)); 1326 return; 1327 } 1328 1329 // Attempt to nail down the task for inspection. 1330 get_task_struct(t); 1331 if (!task_call_func(t, trc_inspect_reader, NULL)) { 1332 put_task_struct(t); 1333 return; 1334 } 1335 put_task_struct(t); 1336 1337 // If this task is not yet on the holdout list, then we are in 1338 // an RCU read-side critical section. Otherwise, the invocation of 1339 // trc_add_holdout() that added it to the list did the necessary 1340 // get_task_struct(). Either way, the task cannot be freed out 1341 // from under this code. 1342 1343 // If currently running, send an IPI, either way, add to list. 1344 trc_add_holdout(t, bhp); 1345 if (task_curr(t) && 1346 time_after(jiffies + 1, rcu_tasks_trace.gp_start + rcu_task_ipi_delay)) { 1347 // The task is currently running, so try IPIing it. 1348 cpu = task_cpu(t); 1349 1350 // If there is already an IPI outstanding, let it happen. 1351 if (per_cpu(trc_ipi_to_cpu, cpu) || t->trc_ipi_to_cpu >= 0) 1352 return; 1353 1354 per_cpu(trc_ipi_to_cpu, cpu) = true; 1355 t->trc_ipi_to_cpu = cpu; 1356 rcu_tasks_trace.n_ipis++; 1357 if (smp_call_function_single(cpu, trc_read_check_handler, t, 0)) { 1358 // Just in case there is some other reason for 1359 // failure than the target CPU being offline. 1360 WARN_ONCE(1, "%s(): smp_call_function_single() failed for CPU: %d\n", 1361 __func__, cpu); 1362 rcu_tasks_trace.n_ipis_fails++; 1363 per_cpu(trc_ipi_to_cpu, cpu) = false; 1364 t->trc_ipi_to_cpu = -1; 1365 } 1366 } 1367 } 1368 1369 /* Initialize for a new RCU-tasks-trace grace period. */ 1370 static void rcu_tasks_trace_pregp_step(void) 1371 { 1372 int cpu; 1373 1374 // Allow for fast-acting IPIs. 1375 atomic_set(&trc_n_readers_need_end, 1); 1376 1377 // There shouldn't be any old IPIs, but... 1378 for_each_possible_cpu(cpu) 1379 WARN_ON_ONCE(per_cpu(trc_ipi_to_cpu, cpu)); 1380 1381 // Disable CPU hotplug across the tasklist scan. 1382 // This also waits for all readers in CPU-hotplug code paths. 1383 cpus_read_lock(); 1384 } 1385 1386 /* Do first-round processing for the specified task. */ 1387 static void rcu_tasks_trace_pertask(struct task_struct *t, 1388 struct list_head *hop) 1389 { 1390 // During early boot when there is only the one boot CPU, there 1391 // is no idle task for the other CPUs. Just return. 1392 if (unlikely(t == NULL)) 1393 return; 1394 1395 WRITE_ONCE(t->trc_reader_special.b.need_qs, false); 1396 WRITE_ONCE(t->trc_reader_checked, false); 1397 t->trc_ipi_to_cpu = -1; 1398 trc_wait_for_one_reader(t, hop); 1399 } 1400 1401 /* 1402 * Do intermediate processing between task and holdout scans and 1403 * pick up the idle tasks. 1404 */ 1405 static void rcu_tasks_trace_postscan(struct list_head *hop) 1406 { 1407 int cpu; 1408 1409 for_each_possible_cpu(cpu) 1410 rcu_tasks_trace_pertask(idle_task(cpu), hop); 1411 1412 // Re-enable CPU hotplug now that the tasklist scan has completed. 1413 cpus_read_unlock(); 1414 1415 // Wait for late-stage exiting tasks to finish exiting. 1416 // These might have passed the call to exit_tasks_rcu_finish(). 1417 synchronize_rcu(); 1418 // Any tasks that exit after this point will set ->trc_reader_checked. 1419 } 1420 1421 /* Communicate task state back to the RCU tasks trace stall warning request. */ 1422 struct trc_stall_chk_rdr { 1423 int nesting; 1424 int ipi_to_cpu; 1425 u8 needqs; 1426 }; 1427 1428 static int trc_check_slow_task(struct task_struct *t, void *arg) 1429 { 1430 struct trc_stall_chk_rdr *trc_rdrp = arg; 1431 1432 if (task_curr(t)) 1433 return false; // It is running, so decline to inspect it. 1434 trc_rdrp->nesting = READ_ONCE(t->trc_reader_nesting); 1435 trc_rdrp->ipi_to_cpu = READ_ONCE(t->trc_ipi_to_cpu); 1436 trc_rdrp->needqs = READ_ONCE(t->trc_reader_special.b.need_qs); 1437 return true; 1438 } 1439 1440 /* Show the state of a task stalling the current RCU tasks trace GP. */ 1441 static void show_stalled_task_trace(struct task_struct *t, bool *firstreport) 1442 { 1443 int cpu; 1444 struct trc_stall_chk_rdr trc_rdr; 1445 bool is_idle_tsk = is_idle_task(t); 1446 1447 if (*firstreport) { 1448 pr_err("INFO: rcu_tasks_trace detected stalls on tasks:\n"); 1449 *firstreport = false; 1450 } 1451 cpu = task_cpu(t); 1452 if (!task_call_func(t, trc_check_slow_task, &trc_rdr)) 1453 pr_alert("P%d: %c\n", 1454 t->pid, 1455 ".i"[is_idle_tsk]); 1456 else 1457 pr_alert("P%d: %c%c%c nesting: %d%c cpu: %d\n", 1458 t->pid, 1459 ".I"[trc_rdr.ipi_to_cpu >= 0], 1460 ".i"[is_idle_tsk], 1461 ".N"[cpu >= 0 && tick_nohz_full_cpu(cpu)], 1462 trc_rdr.nesting, 1463 " N"[!!trc_rdr.needqs], 1464 cpu); 1465 sched_show_task(t); 1466 } 1467 1468 /* List stalled IPIs for RCU tasks trace. */ 1469 static void show_stalled_ipi_trace(void) 1470 { 1471 int cpu; 1472 1473 for_each_possible_cpu(cpu) 1474 if (per_cpu(trc_ipi_to_cpu, cpu)) 1475 pr_alert("\tIPI outstanding to CPU %d\n", cpu); 1476 } 1477 1478 /* Do one scan of the holdout list. */ 1479 static void check_all_holdout_tasks_trace(struct list_head *hop, 1480 bool needreport, bool *firstreport) 1481 { 1482 struct task_struct *g, *t; 1483 1484 // Disable CPU hotplug across the holdout list scan. 1485 cpus_read_lock(); 1486 1487 list_for_each_entry_safe(t, g, hop, trc_holdout_list) { 1488 // If safe and needed, try to check the current task. 1489 if (READ_ONCE(t->trc_ipi_to_cpu) == -1 && 1490 !READ_ONCE(t->trc_reader_checked)) 1491 trc_wait_for_one_reader(t, hop); 1492 1493 // If check succeeded, remove this task from the list. 1494 if (smp_load_acquire(&t->trc_ipi_to_cpu) == -1 && 1495 READ_ONCE(t->trc_reader_checked)) 1496 trc_del_holdout(t); 1497 else if (needreport) 1498 show_stalled_task_trace(t, firstreport); 1499 } 1500 1501 // Re-enable CPU hotplug now that the holdout list scan has completed. 1502 cpus_read_unlock(); 1503 1504 if (needreport) { 1505 if (*firstreport) 1506 pr_err("INFO: rcu_tasks_trace detected stalls? (Late IPI?)\n"); 1507 show_stalled_ipi_trace(); 1508 } 1509 } 1510 1511 static void rcu_tasks_trace_empty_fn(void *unused) 1512 { 1513 } 1514 1515 /* Wait for grace period to complete and provide ordering. */ 1516 static void rcu_tasks_trace_postgp(struct rcu_tasks *rtp) 1517 { 1518 int cpu; 1519 bool firstreport; 1520 struct task_struct *g, *t; 1521 LIST_HEAD(holdouts); 1522 long ret; 1523 1524 // Wait for any lingering IPI handlers to complete. Note that 1525 // if a CPU has gone offline or transitioned to userspace in the 1526 // meantime, all IPI handlers should have been drained beforehand. 1527 // Yes, this assumes that CPUs process IPIs in order. If that ever 1528 // changes, there will need to be a recheck and/or timed wait. 1529 for_each_online_cpu(cpu) 1530 if (WARN_ON_ONCE(smp_load_acquire(per_cpu_ptr(&trc_ipi_to_cpu, cpu)))) 1531 smp_call_function_single(cpu, rcu_tasks_trace_empty_fn, NULL, 1); 1532 1533 // Remove the safety count. 1534 smp_mb__before_atomic(); // Order vs. earlier atomics 1535 atomic_dec(&trc_n_readers_need_end); 1536 smp_mb__after_atomic(); // Order vs. later atomics 1537 1538 // Wait for readers. 1539 set_tasks_gp_state(rtp, RTGS_WAIT_READERS); 1540 for (;;) { 1541 ret = wait_event_idle_exclusive_timeout( 1542 trc_wait, 1543 atomic_read(&trc_n_readers_need_end) == 0, 1544 READ_ONCE(rcu_task_stall_timeout)); 1545 if (ret) 1546 break; // Count reached zero. 1547 // Stall warning time, so make a list of the offenders. 1548 rcu_read_lock(); 1549 for_each_process_thread(g, t) 1550 if (READ_ONCE(t->trc_reader_special.b.need_qs)) 1551 trc_add_holdout(t, &holdouts); 1552 rcu_read_unlock(); 1553 firstreport = true; 1554 list_for_each_entry_safe(t, g, &holdouts, trc_holdout_list) { 1555 if (READ_ONCE(t->trc_reader_special.b.need_qs)) 1556 show_stalled_task_trace(t, &firstreport); 1557 trc_del_holdout(t); // Release task_struct reference. 1558 } 1559 if (firstreport) 1560 pr_err("INFO: rcu_tasks_trace detected stalls? (Counter/taskslist mismatch?)\n"); 1561 show_stalled_ipi_trace(); 1562 pr_err("\t%d holdouts\n", atomic_read(&trc_n_readers_need_end)); 1563 } 1564 smp_mb(); // Caller's code must be ordered after wakeup. 1565 // Pairs with pretty much every ordering primitive. 1566 } 1567 1568 /* Report any needed quiescent state for this exiting task. */ 1569 static void exit_tasks_rcu_finish_trace(struct task_struct *t) 1570 { 1571 WRITE_ONCE(t->trc_reader_checked, true); 1572 WARN_ON_ONCE(READ_ONCE(t->trc_reader_nesting)); 1573 WRITE_ONCE(t->trc_reader_nesting, 0); 1574 if (WARN_ON_ONCE(READ_ONCE(t->trc_reader_special.b.need_qs))) 1575 rcu_read_unlock_trace_special(t); 1576 } 1577 1578 /** 1579 * call_rcu_tasks_trace() - Queue a callback trace task-based grace period 1580 * @rhp: structure to be used for queueing the RCU updates. 1581 * @func: actual callback function to be invoked after the grace period 1582 * 1583 * The callback function will be invoked some time after a trace rcu-tasks 1584 * grace period elapses, in other words after all currently executing 1585 * trace rcu-tasks read-side critical sections have completed. These 1586 * read-side critical sections are delimited by calls to rcu_read_lock_trace() 1587 * and rcu_read_unlock_trace(). 1588 * 1589 * See the description of call_rcu() for more detailed information on 1590 * memory ordering guarantees. 1591 */ 1592 void call_rcu_tasks_trace(struct rcu_head *rhp, rcu_callback_t func) 1593 { 1594 call_rcu_tasks_generic(rhp, func, &rcu_tasks_trace); 1595 } 1596 EXPORT_SYMBOL_GPL(call_rcu_tasks_trace); 1597 1598 /** 1599 * synchronize_rcu_tasks_trace - wait for a trace rcu-tasks grace period 1600 * 1601 * Control will return to the caller some time after a trace rcu-tasks 1602 * grace period has elapsed, in other words after all currently executing 1603 * trace rcu-tasks read-side critical sections have elapsed. These read-side 1604 * critical sections are delimited by calls to rcu_read_lock_trace() 1605 * and rcu_read_unlock_trace(). 1606 * 1607 * This is a very specialized primitive, intended only for a few uses in 1608 * tracing and other situations requiring manipulation of function preambles 1609 * and profiling hooks. The synchronize_rcu_tasks_trace() function is not 1610 * (yet) intended for heavy use from multiple CPUs. 1611 * 1612 * See the description of synchronize_rcu() for more detailed information 1613 * on memory ordering guarantees. 1614 */ 1615 void synchronize_rcu_tasks_trace(void) 1616 { 1617 RCU_LOCKDEP_WARN(lock_is_held(&rcu_trace_lock_map), "Illegal synchronize_rcu_tasks_trace() in RCU Tasks Trace read-side critical section"); 1618 synchronize_rcu_tasks_generic(&rcu_tasks_trace); 1619 } 1620 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_trace); 1621 1622 /** 1623 * rcu_barrier_tasks_trace - Wait for in-flight call_rcu_tasks_trace() callbacks. 1624 * 1625 * Although the current implementation is guaranteed to wait, it is not 1626 * obligated to, for example, if there are no pending callbacks. 1627 */ 1628 void rcu_barrier_tasks_trace(void) 1629 { 1630 rcu_barrier_tasks_generic(&rcu_tasks_trace); 1631 } 1632 EXPORT_SYMBOL_GPL(rcu_barrier_tasks_trace); 1633 1634 static int __init rcu_spawn_tasks_trace_kthread(void) 1635 { 1636 cblist_init_generic(&rcu_tasks_trace); 1637 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB)) { 1638 rcu_tasks_trace.gp_sleep = HZ / 10; 1639 rcu_tasks_trace.init_fract = HZ / 10; 1640 } else { 1641 rcu_tasks_trace.gp_sleep = HZ / 200; 1642 if (rcu_tasks_trace.gp_sleep <= 0) 1643 rcu_tasks_trace.gp_sleep = 1; 1644 rcu_tasks_trace.init_fract = HZ / 200; 1645 if (rcu_tasks_trace.init_fract <= 0) 1646 rcu_tasks_trace.init_fract = 1; 1647 } 1648 rcu_tasks_trace.pregp_func = rcu_tasks_trace_pregp_step; 1649 rcu_tasks_trace.pertask_func = rcu_tasks_trace_pertask; 1650 rcu_tasks_trace.postscan_func = rcu_tasks_trace_postscan; 1651 rcu_tasks_trace.holdouts_func = check_all_holdout_tasks_trace; 1652 rcu_tasks_trace.postgp_func = rcu_tasks_trace_postgp; 1653 rcu_spawn_tasks_kthread_generic(&rcu_tasks_trace); 1654 return 0; 1655 } 1656 1657 #if !defined(CONFIG_TINY_RCU) 1658 void show_rcu_tasks_trace_gp_kthread(void) 1659 { 1660 char buf[64]; 1661 1662 sprintf(buf, "N%d h:%lu/%lu/%lu", atomic_read(&trc_n_readers_need_end), 1663 data_race(n_heavy_reader_ofl_updates), 1664 data_race(n_heavy_reader_updates), 1665 data_race(n_heavy_reader_attempts)); 1666 show_rcu_tasks_generic_gp_kthread(&rcu_tasks_trace, buf); 1667 } 1668 EXPORT_SYMBOL_GPL(show_rcu_tasks_trace_gp_kthread); 1669 #endif // !defined(CONFIG_TINY_RCU) 1670 1671 #else /* #ifdef CONFIG_TASKS_TRACE_RCU */ 1672 static void exit_tasks_rcu_finish_trace(struct task_struct *t) { } 1673 #endif /* #else #ifdef CONFIG_TASKS_TRACE_RCU */ 1674 1675 #ifndef CONFIG_TINY_RCU 1676 void show_rcu_tasks_gp_kthreads(void) 1677 { 1678 show_rcu_tasks_classic_gp_kthread(); 1679 show_rcu_tasks_rude_gp_kthread(); 1680 show_rcu_tasks_trace_gp_kthread(); 1681 } 1682 #endif /* #ifndef CONFIG_TINY_RCU */ 1683 1684 #ifdef CONFIG_PROVE_RCU 1685 struct rcu_tasks_test_desc { 1686 struct rcu_head rh; 1687 const char *name; 1688 bool notrun; 1689 }; 1690 1691 static struct rcu_tasks_test_desc tests[] = { 1692 { 1693 .name = "call_rcu_tasks()", 1694 /* If not defined, the test is skipped. */ 1695 .notrun = !IS_ENABLED(CONFIG_TASKS_RCU), 1696 }, 1697 { 1698 .name = "call_rcu_tasks_rude()", 1699 /* If not defined, the test is skipped. */ 1700 .notrun = !IS_ENABLED(CONFIG_TASKS_RUDE_RCU), 1701 }, 1702 { 1703 .name = "call_rcu_tasks_trace()", 1704 /* If not defined, the test is skipped. */ 1705 .notrun = !IS_ENABLED(CONFIG_TASKS_TRACE_RCU) 1706 } 1707 }; 1708 1709 static void test_rcu_tasks_callback(struct rcu_head *rhp) 1710 { 1711 struct rcu_tasks_test_desc *rttd = 1712 container_of(rhp, struct rcu_tasks_test_desc, rh); 1713 1714 pr_info("Callback from %s invoked.\n", rttd->name); 1715 1716 rttd->notrun = true; 1717 } 1718 1719 static void rcu_tasks_initiate_self_tests(void) 1720 { 1721 pr_info("Running RCU-tasks wait API self tests\n"); 1722 #ifdef CONFIG_TASKS_RCU 1723 synchronize_rcu_tasks(); 1724 call_rcu_tasks(&tests[0].rh, test_rcu_tasks_callback); 1725 #endif 1726 1727 #ifdef CONFIG_TASKS_RUDE_RCU 1728 synchronize_rcu_tasks_rude(); 1729 call_rcu_tasks_rude(&tests[1].rh, test_rcu_tasks_callback); 1730 #endif 1731 1732 #ifdef CONFIG_TASKS_TRACE_RCU 1733 synchronize_rcu_tasks_trace(); 1734 call_rcu_tasks_trace(&tests[2].rh, test_rcu_tasks_callback); 1735 #endif 1736 } 1737 1738 static int rcu_tasks_verify_self_tests(void) 1739 { 1740 int ret = 0; 1741 int i; 1742 1743 for (i = 0; i < ARRAY_SIZE(tests); i++) { 1744 if (!tests[i].notrun) { // still hanging. 1745 pr_err("%s has been failed.\n", tests[i].name); 1746 ret = -1; 1747 } 1748 } 1749 1750 if (ret) 1751 WARN_ON(1); 1752 1753 return ret; 1754 } 1755 late_initcall(rcu_tasks_verify_self_tests); 1756 #else /* #ifdef CONFIG_PROVE_RCU */ 1757 static void rcu_tasks_initiate_self_tests(void) { } 1758 #endif /* #else #ifdef CONFIG_PROVE_RCU */ 1759 1760 void __init rcu_init_tasks_generic(void) 1761 { 1762 #ifdef CONFIG_TASKS_RCU 1763 rcu_spawn_tasks_kthread(); 1764 #endif 1765 1766 #ifdef CONFIG_TASKS_RUDE_RCU 1767 rcu_spawn_tasks_rude_kthread(); 1768 #endif 1769 1770 #ifdef CONFIG_TASKS_TRACE_RCU 1771 rcu_spawn_tasks_trace_kthread(); 1772 #endif 1773 1774 // Run the self-tests. 1775 rcu_tasks_initiate_self_tests(); 1776 } 1777 1778 #else /* #ifdef CONFIG_TASKS_RCU_GENERIC */ 1779 static inline void rcu_tasks_bootup_oddness(void) {} 1780 #endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */ 1781