1 /* SPDX-License-Identifier: GPL-2.0+ */ 2 /* 3 * Task-based RCU implementations. 4 * 5 * Copyright (C) 2020 Paul E. McKenney 6 */ 7 8 #ifdef CONFIG_TASKS_RCU_GENERIC 9 #include "rcu_segcblist.h" 10 11 //////////////////////////////////////////////////////////////////////// 12 // 13 // Generic data structures. 14 15 struct rcu_tasks; 16 typedef void (*rcu_tasks_gp_func_t)(struct rcu_tasks *rtp); 17 typedef void (*pregp_func_t)(struct list_head *hop); 18 typedef void (*pertask_func_t)(struct task_struct *t, struct list_head *hop); 19 typedef void (*postscan_func_t)(struct list_head *hop); 20 typedef void (*holdouts_func_t)(struct list_head *hop, bool ndrpt, bool *frptp); 21 typedef void (*postgp_func_t)(struct rcu_tasks *rtp); 22 23 /** 24 * struct rcu_tasks_percpu - Per-CPU component of definition for a Tasks-RCU-like mechanism. 25 * @cblist: Callback list. 26 * @lock: Lock protecting per-CPU callback list. 27 * @rtp_jiffies: Jiffies counter value for statistics. 28 * @rtp_n_lock_retries: Rough lock-contention statistic. 29 * @rtp_work: Work queue for invoking callbacks. 30 * @rtp_irq_work: IRQ work queue for deferred wakeups. 31 * @barrier_q_head: RCU callback for barrier operation. 32 * @rtp_blkd_tasks: List of tasks blocked as readers. 33 * @cpu: CPU number corresponding to this entry. 34 * @rtpp: Pointer to the rcu_tasks structure. 35 */ 36 struct rcu_tasks_percpu { 37 struct rcu_segcblist cblist; 38 raw_spinlock_t __private lock; 39 unsigned long rtp_jiffies; 40 unsigned long rtp_n_lock_retries; 41 struct work_struct rtp_work; 42 struct irq_work rtp_irq_work; 43 struct rcu_head barrier_q_head; 44 struct list_head rtp_blkd_tasks; 45 int cpu; 46 struct rcu_tasks *rtpp; 47 }; 48 49 /** 50 * struct rcu_tasks - Definition for a Tasks-RCU-like mechanism. 51 * @cbs_wait: RCU wait allowing a new callback to get kthread's attention. 52 * @cbs_gbl_lock: Lock protecting callback list. 53 * @tasks_gp_mutex: Mutex protecting grace period, needed during mid-boot dead zone. 54 * @kthread_ptr: This flavor's grace-period/callback-invocation kthread. 55 * @gp_func: This flavor's grace-period-wait function. 56 * @gp_state: Grace period's most recent state transition (debugging). 57 * @gp_sleep: Per-grace-period sleep to prevent CPU-bound looping. 58 * @init_fract: Initial backoff sleep interval. 59 * @gp_jiffies: Time of last @gp_state transition. 60 * @gp_start: Most recent grace-period start in jiffies. 61 * @tasks_gp_seq: Number of grace periods completed since boot. 62 * @n_ipis: Number of IPIs sent to encourage grace periods to end. 63 * @n_ipis_fails: Number of IPI-send failures. 64 * @pregp_func: This flavor's pre-grace-period function (optional). 65 * @pertask_func: This flavor's per-task scan function (optional). 66 * @postscan_func: This flavor's post-task scan function (optional). 67 * @holdouts_func: This flavor's holdout-list scan function (optional). 68 * @postgp_func: This flavor's post-grace-period function (optional). 69 * @call_func: This flavor's call_rcu()-equivalent function. 70 * @rtpcpu: This flavor's rcu_tasks_percpu structure. 71 * @percpu_enqueue_shift: Shift down CPU ID this much when enqueuing callbacks. 72 * @percpu_enqueue_lim: Number of per-CPU callback queues in use for enqueuing. 73 * @percpu_dequeue_lim: Number of per-CPU callback queues in use for dequeuing. 74 * @percpu_dequeue_gpseq: RCU grace-period number to propagate enqueue limit to dequeuers. 75 * @barrier_q_mutex: Serialize barrier operations. 76 * @barrier_q_count: Number of queues being waited on. 77 * @barrier_q_completion: Barrier wait/wakeup mechanism. 78 * @barrier_q_seq: Sequence number for barrier operations. 79 * @name: This flavor's textual name. 80 * @kname: This flavor's kthread name. 81 */ 82 struct rcu_tasks { 83 struct rcuwait cbs_wait; 84 raw_spinlock_t cbs_gbl_lock; 85 struct mutex tasks_gp_mutex; 86 int gp_state; 87 int gp_sleep; 88 int init_fract; 89 unsigned long gp_jiffies; 90 unsigned long gp_start; 91 unsigned long tasks_gp_seq; 92 unsigned long n_ipis; 93 unsigned long n_ipis_fails; 94 struct task_struct *kthread_ptr; 95 rcu_tasks_gp_func_t gp_func; 96 pregp_func_t pregp_func; 97 pertask_func_t pertask_func; 98 postscan_func_t postscan_func; 99 holdouts_func_t holdouts_func; 100 postgp_func_t postgp_func; 101 call_rcu_func_t call_func; 102 struct rcu_tasks_percpu __percpu *rtpcpu; 103 int percpu_enqueue_shift; 104 int percpu_enqueue_lim; 105 int percpu_dequeue_lim; 106 unsigned long percpu_dequeue_gpseq; 107 struct mutex barrier_q_mutex; 108 atomic_t barrier_q_count; 109 struct completion barrier_q_completion; 110 unsigned long barrier_q_seq; 111 char *name; 112 char *kname; 113 }; 114 115 static void call_rcu_tasks_iw_wakeup(struct irq_work *iwp); 116 117 #define DEFINE_RCU_TASKS(rt_name, gp, call, n) \ 118 static DEFINE_PER_CPU(struct rcu_tasks_percpu, rt_name ## __percpu) = { \ 119 .lock = __RAW_SPIN_LOCK_UNLOCKED(rt_name ## __percpu.cbs_pcpu_lock), \ 120 .rtp_irq_work = IRQ_WORK_INIT_HARD(call_rcu_tasks_iw_wakeup), \ 121 }; \ 122 static struct rcu_tasks rt_name = \ 123 { \ 124 .cbs_wait = __RCUWAIT_INITIALIZER(rt_name.wait), \ 125 .cbs_gbl_lock = __RAW_SPIN_LOCK_UNLOCKED(rt_name.cbs_gbl_lock), \ 126 .tasks_gp_mutex = __MUTEX_INITIALIZER(rt_name.tasks_gp_mutex), \ 127 .gp_func = gp, \ 128 .call_func = call, \ 129 .rtpcpu = &rt_name ## __percpu, \ 130 .name = n, \ 131 .percpu_enqueue_shift = order_base_2(CONFIG_NR_CPUS), \ 132 .percpu_enqueue_lim = 1, \ 133 .percpu_dequeue_lim = 1, \ 134 .barrier_q_mutex = __MUTEX_INITIALIZER(rt_name.barrier_q_mutex), \ 135 .barrier_q_seq = (0UL - 50UL) << RCU_SEQ_CTR_SHIFT, \ 136 .kname = #rt_name, \ 137 } 138 139 /* Track exiting tasks in order to allow them to be waited for. */ 140 DEFINE_STATIC_SRCU(tasks_rcu_exit_srcu); 141 142 /* Avoid IPIing CPUs early in the grace period. */ 143 #define RCU_TASK_IPI_DELAY (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) ? HZ / 2 : 0) 144 static int rcu_task_ipi_delay __read_mostly = RCU_TASK_IPI_DELAY; 145 module_param(rcu_task_ipi_delay, int, 0644); 146 147 /* Control stall timeouts. Disable with <= 0, otherwise jiffies till stall. */ 148 #define RCU_TASK_BOOT_STALL_TIMEOUT (HZ * 30) 149 #define RCU_TASK_STALL_TIMEOUT (HZ * 60 * 10) 150 static int rcu_task_stall_timeout __read_mostly = RCU_TASK_STALL_TIMEOUT; 151 module_param(rcu_task_stall_timeout, int, 0644); 152 #define RCU_TASK_STALL_INFO (HZ * 10) 153 static int rcu_task_stall_info __read_mostly = RCU_TASK_STALL_INFO; 154 module_param(rcu_task_stall_info, int, 0644); 155 static int rcu_task_stall_info_mult __read_mostly = 3; 156 module_param(rcu_task_stall_info_mult, int, 0444); 157 158 static int rcu_task_enqueue_lim __read_mostly = -1; 159 module_param(rcu_task_enqueue_lim, int, 0444); 160 161 static bool rcu_task_cb_adjust; 162 static int rcu_task_contend_lim __read_mostly = 100; 163 module_param(rcu_task_contend_lim, int, 0444); 164 static int rcu_task_collapse_lim __read_mostly = 10; 165 module_param(rcu_task_collapse_lim, int, 0444); 166 167 /* RCU tasks grace-period state for debugging. */ 168 #define RTGS_INIT 0 169 #define RTGS_WAIT_WAIT_CBS 1 170 #define RTGS_WAIT_GP 2 171 #define RTGS_PRE_WAIT_GP 3 172 #define RTGS_SCAN_TASKLIST 4 173 #define RTGS_POST_SCAN_TASKLIST 5 174 #define RTGS_WAIT_SCAN_HOLDOUTS 6 175 #define RTGS_SCAN_HOLDOUTS 7 176 #define RTGS_POST_GP 8 177 #define RTGS_WAIT_READERS 9 178 #define RTGS_INVOKE_CBS 10 179 #define RTGS_WAIT_CBS 11 180 #ifndef CONFIG_TINY_RCU 181 static const char * const rcu_tasks_gp_state_names[] = { 182 "RTGS_INIT", 183 "RTGS_WAIT_WAIT_CBS", 184 "RTGS_WAIT_GP", 185 "RTGS_PRE_WAIT_GP", 186 "RTGS_SCAN_TASKLIST", 187 "RTGS_POST_SCAN_TASKLIST", 188 "RTGS_WAIT_SCAN_HOLDOUTS", 189 "RTGS_SCAN_HOLDOUTS", 190 "RTGS_POST_GP", 191 "RTGS_WAIT_READERS", 192 "RTGS_INVOKE_CBS", 193 "RTGS_WAIT_CBS", 194 }; 195 #endif /* #ifndef CONFIG_TINY_RCU */ 196 197 //////////////////////////////////////////////////////////////////////// 198 // 199 // Generic code. 200 201 static void rcu_tasks_invoke_cbs_wq(struct work_struct *wp); 202 203 /* Record grace-period phase and time. */ 204 static void set_tasks_gp_state(struct rcu_tasks *rtp, int newstate) 205 { 206 rtp->gp_state = newstate; 207 rtp->gp_jiffies = jiffies; 208 } 209 210 #ifndef CONFIG_TINY_RCU 211 /* Return state name. */ 212 static const char *tasks_gp_state_getname(struct rcu_tasks *rtp) 213 { 214 int i = data_race(rtp->gp_state); // Let KCSAN detect update races 215 int j = READ_ONCE(i); // Prevent the compiler from reading twice 216 217 if (j >= ARRAY_SIZE(rcu_tasks_gp_state_names)) 218 return "???"; 219 return rcu_tasks_gp_state_names[j]; 220 } 221 #endif /* #ifndef CONFIG_TINY_RCU */ 222 223 // Initialize per-CPU callback lists for the specified flavor of 224 // Tasks RCU. 225 static void cblist_init_generic(struct rcu_tasks *rtp) 226 { 227 int cpu; 228 unsigned long flags; 229 int lim; 230 int shift; 231 232 raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags); 233 if (rcu_task_enqueue_lim < 0) { 234 rcu_task_enqueue_lim = 1; 235 rcu_task_cb_adjust = true; 236 pr_info("%s: Setting adjustable number of callback queues.\n", __func__); 237 } else if (rcu_task_enqueue_lim == 0) { 238 rcu_task_enqueue_lim = 1; 239 } 240 lim = rcu_task_enqueue_lim; 241 242 if (lim > nr_cpu_ids) 243 lim = nr_cpu_ids; 244 shift = ilog2(nr_cpu_ids / lim); 245 if (((nr_cpu_ids - 1) >> shift) >= lim) 246 shift++; 247 WRITE_ONCE(rtp->percpu_enqueue_shift, shift); 248 WRITE_ONCE(rtp->percpu_dequeue_lim, lim); 249 smp_store_release(&rtp->percpu_enqueue_lim, lim); 250 for_each_possible_cpu(cpu) { 251 struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu); 252 253 WARN_ON_ONCE(!rtpcp); 254 if (cpu) 255 raw_spin_lock_init(&ACCESS_PRIVATE(rtpcp, lock)); 256 raw_spin_lock_rcu_node(rtpcp); // irqs already disabled. 257 if (rcu_segcblist_empty(&rtpcp->cblist)) 258 rcu_segcblist_init(&rtpcp->cblist); 259 INIT_WORK(&rtpcp->rtp_work, rcu_tasks_invoke_cbs_wq); 260 rtpcp->cpu = cpu; 261 rtpcp->rtpp = rtp; 262 if (!rtpcp->rtp_blkd_tasks.next) 263 INIT_LIST_HEAD(&rtpcp->rtp_blkd_tasks); 264 raw_spin_unlock_rcu_node(rtpcp); // irqs remain disabled. 265 } 266 raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags); 267 pr_info("%s: Setting shift to %d and lim to %d.\n", __func__, data_race(rtp->percpu_enqueue_shift), data_race(rtp->percpu_enqueue_lim)); 268 } 269 270 // IRQ-work handler that does deferred wakeup for call_rcu_tasks_generic(). 271 static void call_rcu_tasks_iw_wakeup(struct irq_work *iwp) 272 { 273 struct rcu_tasks *rtp; 274 struct rcu_tasks_percpu *rtpcp = container_of(iwp, struct rcu_tasks_percpu, rtp_irq_work); 275 276 rtp = rtpcp->rtpp; 277 rcuwait_wake_up(&rtp->cbs_wait); 278 } 279 280 // Enqueue a callback for the specified flavor of Tasks RCU. 281 static void call_rcu_tasks_generic(struct rcu_head *rhp, rcu_callback_t func, 282 struct rcu_tasks *rtp) 283 { 284 int chosen_cpu; 285 unsigned long flags; 286 int ideal_cpu; 287 unsigned long j; 288 bool needadjust = false; 289 bool needwake; 290 struct rcu_tasks_percpu *rtpcp; 291 292 rhp->next = NULL; 293 rhp->func = func; 294 local_irq_save(flags); 295 rcu_read_lock(); 296 ideal_cpu = smp_processor_id() >> READ_ONCE(rtp->percpu_enqueue_shift); 297 chosen_cpu = cpumask_next(ideal_cpu - 1, cpu_possible_mask); 298 rtpcp = per_cpu_ptr(rtp->rtpcpu, chosen_cpu); 299 if (!raw_spin_trylock_rcu_node(rtpcp)) { // irqs already disabled. 300 raw_spin_lock_rcu_node(rtpcp); // irqs already disabled. 301 j = jiffies; 302 if (rtpcp->rtp_jiffies != j) { 303 rtpcp->rtp_jiffies = j; 304 rtpcp->rtp_n_lock_retries = 0; 305 } 306 if (rcu_task_cb_adjust && ++rtpcp->rtp_n_lock_retries > rcu_task_contend_lim && 307 READ_ONCE(rtp->percpu_enqueue_lim) != nr_cpu_ids) 308 needadjust = true; // Defer adjustment to avoid deadlock. 309 } 310 if (!rcu_segcblist_is_enabled(&rtpcp->cblist)) { 311 raw_spin_unlock_rcu_node(rtpcp); // irqs remain disabled. 312 cblist_init_generic(rtp); 313 raw_spin_lock_rcu_node(rtpcp); // irqs already disabled. 314 } 315 needwake = rcu_segcblist_empty(&rtpcp->cblist); 316 rcu_segcblist_enqueue(&rtpcp->cblist, rhp); 317 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 318 if (unlikely(needadjust)) { 319 raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags); 320 if (rtp->percpu_enqueue_lim != nr_cpu_ids) { 321 WRITE_ONCE(rtp->percpu_enqueue_shift, 0); 322 WRITE_ONCE(rtp->percpu_dequeue_lim, nr_cpu_ids); 323 smp_store_release(&rtp->percpu_enqueue_lim, nr_cpu_ids); 324 pr_info("Switching %s to per-CPU callback queuing.\n", rtp->name); 325 } 326 raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags); 327 } 328 rcu_read_unlock(); 329 /* We can't create the thread unless interrupts are enabled. */ 330 if (needwake && READ_ONCE(rtp->kthread_ptr)) 331 irq_work_queue(&rtpcp->rtp_irq_work); 332 } 333 334 // RCU callback function for rcu_barrier_tasks_generic(). 335 static void rcu_barrier_tasks_generic_cb(struct rcu_head *rhp) 336 { 337 struct rcu_tasks *rtp; 338 struct rcu_tasks_percpu *rtpcp; 339 340 rtpcp = container_of(rhp, struct rcu_tasks_percpu, barrier_q_head); 341 rtp = rtpcp->rtpp; 342 if (atomic_dec_and_test(&rtp->barrier_q_count)) 343 complete(&rtp->barrier_q_completion); 344 } 345 346 // Wait for all in-flight callbacks for the specified RCU Tasks flavor. 347 // Operates in a manner similar to rcu_barrier(). 348 static void rcu_barrier_tasks_generic(struct rcu_tasks *rtp) 349 { 350 int cpu; 351 unsigned long flags; 352 struct rcu_tasks_percpu *rtpcp; 353 unsigned long s = rcu_seq_snap(&rtp->barrier_q_seq); 354 355 mutex_lock(&rtp->barrier_q_mutex); 356 if (rcu_seq_done(&rtp->barrier_q_seq, s)) { 357 smp_mb(); 358 mutex_unlock(&rtp->barrier_q_mutex); 359 return; 360 } 361 rcu_seq_start(&rtp->barrier_q_seq); 362 init_completion(&rtp->barrier_q_completion); 363 atomic_set(&rtp->barrier_q_count, 2); 364 for_each_possible_cpu(cpu) { 365 if (cpu >= smp_load_acquire(&rtp->percpu_dequeue_lim)) 366 break; 367 rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu); 368 rtpcp->barrier_q_head.func = rcu_barrier_tasks_generic_cb; 369 raw_spin_lock_irqsave_rcu_node(rtpcp, flags); 370 if (rcu_segcblist_entrain(&rtpcp->cblist, &rtpcp->barrier_q_head)) 371 atomic_inc(&rtp->barrier_q_count); 372 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 373 } 374 if (atomic_sub_and_test(2, &rtp->barrier_q_count)) 375 complete(&rtp->barrier_q_completion); 376 wait_for_completion(&rtp->barrier_q_completion); 377 rcu_seq_end(&rtp->barrier_q_seq); 378 mutex_unlock(&rtp->barrier_q_mutex); 379 } 380 381 // Advance callbacks and indicate whether either a grace period or 382 // callback invocation is needed. 383 static int rcu_tasks_need_gpcb(struct rcu_tasks *rtp) 384 { 385 int cpu; 386 unsigned long flags; 387 long n; 388 long ncbs = 0; 389 long ncbsnz = 0; 390 int needgpcb = 0; 391 392 for (cpu = 0; cpu < smp_load_acquire(&rtp->percpu_dequeue_lim); cpu++) { 393 struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu); 394 395 /* Advance and accelerate any new callbacks. */ 396 if (!rcu_segcblist_n_cbs(&rtpcp->cblist)) 397 continue; 398 raw_spin_lock_irqsave_rcu_node(rtpcp, flags); 399 // Should we shrink down to a single callback queue? 400 n = rcu_segcblist_n_cbs(&rtpcp->cblist); 401 if (n) { 402 ncbs += n; 403 if (cpu > 0) 404 ncbsnz += n; 405 } 406 rcu_segcblist_advance(&rtpcp->cblist, rcu_seq_current(&rtp->tasks_gp_seq)); 407 (void)rcu_segcblist_accelerate(&rtpcp->cblist, rcu_seq_snap(&rtp->tasks_gp_seq)); 408 if (rcu_segcblist_pend_cbs(&rtpcp->cblist)) 409 needgpcb |= 0x3; 410 if (!rcu_segcblist_empty(&rtpcp->cblist)) 411 needgpcb |= 0x1; 412 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 413 } 414 415 // Shrink down to a single callback queue if appropriate. 416 // This is done in two stages: (1) If there are no more than 417 // rcu_task_collapse_lim callbacks on CPU 0 and none on any other 418 // CPU, limit enqueueing to CPU 0. (2) After an RCU grace period, 419 // if there has not been an increase in callbacks, limit dequeuing 420 // to CPU 0. Note the matching RCU read-side critical section in 421 // call_rcu_tasks_generic(). 422 if (rcu_task_cb_adjust && ncbs <= rcu_task_collapse_lim) { 423 raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags); 424 if (rtp->percpu_enqueue_lim > 1) { 425 WRITE_ONCE(rtp->percpu_enqueue_shift, order_base_2(nr_cpu_ids)); 426 smp_store_release(&rtp->percpu_enqueue_lim, 1); 427 rtp->percpu_dequeue_gpseq = get_state_synchronize_rcu(); 428 pr_info("Starting switch %s to CPU-0 callback queuing.\n", rtp->name); 429 } 430 raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags); 431 } 432 if (rcu_task_cb_adjust && !ncbsnz && 433 poll_state_synchronize_rcu(rtp->percpu_dequeue_gpseq)) { 434 raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags); 435 if (rtp->percpu_enqueue_lim < rtp->percpu_dequeue_lim) { 436 WRITE_ONCE(rtp->percpu_dequeue_lim, 1); 437 pr_info("Completing switch %s to CPU-0 callback queuing.\n", rtp->name); 438 } 439 for (cpu = rtp->percpu_dequeue_lim; cpu < nr_cpu_ids; cpu++) { 440 struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu); 441 442 WARN_ON_ONCE(rcu_segcblist_n_cbs(&rtpcp->cblist)); 443 } 444 raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags); 445 } 446 447 return needgpcb; 448 } 449 450 // Advance callbacks and invoke any that are ready. 451 static void rcu_tasks_invoke_cbs(struct rcu_tasks *rtp, struct rcu_tasks_percpu *rtpcp) 452 { 453 int cpu; 454 int cpunext; 455 unsigned long flags; 456 int len; 457 struct rcu_head *rhp; 458 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl); 459 struct rcu_tasks_percpu *rtpcp_next; 460 461 cpu = rtpcp->cpu; 462 cpunext = cpu * 2 + 1; 463 if (cpunext < smp_load_acquire(&rtp->percpu_dequeue_lim)) { 464 rtpcp_next = per_cpu_ptr(rtp->rtpcpu, cpunext); 465 queue_work_on(cpunext, system_wq, &rtpcp_next->rtp_work); 466 cpunext++; 467 if (cpunext < smp_load_acquire(&rtp->percpu_dequeue_lim)) { 468 rtpcp_next = per_cpu_ptr(rtp->rtpcpu, cpunext); 469 queue_work_on(cpunext, system_wq, &rtpcp_next->rtp_work); 470 } 471 } 472 473 if (rcu_segcblist_empty(&rtpcp->cblist) || !cpu_possible(cpu)) 474 return; 475 raw_spin_lock_irqsave_rcu_node(rtpcp, flags); 476 rcu_segcblist_advance(&rtpcp->cblist, rcu_seq_current(&rtp->tasks_gp_seq)); 477 rcu_segcblist_extract_done_cbs(&rtpcp->cblist, &rcl); 478 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 479 len = rcl.len; 480 for (rhp = rcu_cblist_dequeue(&rcl); rhp; rhp = rcu_cblist_dequeue(&rcl)) { 481 local_bh_disable(); 482 rhp->func(rhp); 483 local_bh_enable(); 484 cond_resched(); 485 } 486 raw_spin_lock_irqsave_rcu_node(rtpcp, flags); 487 rcu_segcblist_add_len(&rtpcp->cblist, -len); 488 (void)rcu_segcblist_accelerate(&rtpcp->cblist, rcu_seq_snap(&rtp->tasks_gp_seq)); 489 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 490 } 491 492 // Workqueue flood to advance callbacks and invoke any that are ready. 493 static void rcu_tasks_invoke_cbs_wq(struct work_struct *wp) 494 { 495 struct rcu_tasks *rtp; 496 struct rcu_tasks_percpu *rtpcp = container_of(wp, struct rcu_tasks_percpu, rtp_work); 497 498 rtp = rtpcp->rtpp; 499 rcu_tasks_invoke_cbs(rtp, rtpcp); 500 } 501 502 // Wait for one grace period. 503 static void rcu_tasks_one_gp(struct rcu_tasks *rtp, bool midboot) 504 { 505 int needgpcb; 506 507 mutex_lock(&rtp->tasks_gp_mutex); 508 509 // If there were none, wait a bit and start over. 510 if (unlikely(midboot)) { 511 needgpcb = 0x2; 512 } else { 513 set_tasks_gp_state(rtp, RTGS_WAIT_CBS); 514 rcuwait_wait_event(&rtp->cbs_wait, 515 (needgpcb = rcu_tasks_need_gpcb(rtp)), 516 TASK_IDLE); 517 } 518 519 if (needgpcb & 0x2) { 520 // Wait for one grace period. 521 set_tasks_gp_state(rtp, RTGS_WAIT_GP); 522 rtp->gp_start = jiffies; 523 rcu_seq_start(&rtp->tasks_gp_seq); 524 rtp->gp_func(rtp); 525 rcu_seq_end(&rtp->tasks_gp_seq); 526 } 527 528 // Invoke callbacks. 529 set_tasks_gp_state(rtp, RTGS_INVOKE_CBS); 530 rcu_tasks_invoke_cbs(rtp, per_cpu_ptr(rtp->rtpcpu, 0)); 531 mutex_unlock(&rtp->tasks_gp_mutex); 532 } 533 534 // RCU-tasks kthread that detects grace periods and invokes callbacks. 535 static int __noreturn rcu_tasks_kthread(void *arg) 536 { 537 struct rcu_tasks *rtp = arg; 538 539 /* Run on housekeeping CPUs by default. Sysadm can move if desired. */ 540 housekeeping_affine(current, HK_TYPE_RCU); 541 WRITE_ONCE(rtp->kthread_ptr, current); // Let GPs start! 542 543 /* 544 * Each pass through the following loop makes one check for 545 * newly arrived callbacks, and, if there are some, waits for 546 * one RCU-tasks grace period and then invokes the callbacks. 547 * This loop is terminated by the system going down. ;-) 548 */ 549 for (;;) { 550 // Wait for one grace period and invoke any callbacks 551 // that are ready. 552 rcu_tasks_one_gp(rtp, false); 553 554 // Paranoid sleep to keep this from entering a tight loop. 555 schedule_timeout_idle(rtp->gp_sleep); 556 } 557 } 558 559 // Wait for a grace period for the specified flavor of Tasks RCU. 560 static void synchronize_rcu_tasks_generic(struct rcu_tasks *rtp) 561 { 562 /* Complain if the scheduler has not started. */ 563 RCU_LOCKDEP_WARN(rcu_scheduler_active == RCU_SCHEDULER_INACTIVE, 564 "synchronize_rcu_tasks called too soon"); 565 566 // If the grace-period kthread is running, use it. 567 if (READ_ONCE(rtp->kthread_ptr)) { 568 wait_rcu_gp(rtp->call_func); 569 return; 570 } 571 rcu_tasks_one_gp(rtp, true); 572 } 573 574 /* Spawn RCU-tasks grace-period kthread. */ 575 static void __init rcu_spawn_tasks_kthread_generic(struct rcu_tasks *rtp) 576 { 577 struct task_struct *t; 578 579 t = kthread_run(rcu_tasks_kthread, rtp, "%s_kthread", rtp->kname); 580 if (WARN_ONCE(IS_ERR(t), "%s: Could not start %s grace-period kthread, OOM is now expected behavior\n", __func__, rtp->name)) 581 return; 582 smp_mb(); /* Ensure others see full kthread. */ 583 } 584 585 #ifndef CONFIG_TINY_RCU 586 587 /* 588 * Print any non-default Tasks RCU settings. 589 */ 590 static void __init rcu_tasks_bootup_oddness(void) 591 { 592 #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU) 593 int rtsimc; 594 595 if (rcu_task_stall_timeout != RCU_TASK_STALL_TIMEOUT) 596 pr_info("\tTasks-RCU CPU stall warnings timeout set to %d (rcu_task_stall_timeout).\n", rcu_task_stall_timeout); 597 rtsimc = clamp(rcu_task_stall_info_mult, 1, 10); 598 if (rtsimc != rcu_task_stall_info_mult) { 599 pr_info("\tTasks-RCU CPU stall info multiplier clamped to %d (rcu_task_stall_info_mult).\n", rtsimc); 600 rcu_task_stall_info_mult = rtsimc; 601 } 602 #endif /* #ifdef CONFIG_TASKS_RCU */ 603 #ifdef CONFIG_TASKS_RCU 604 pr_info("\tTrampoline variant of Tasks RCU enabled.\n"); 605 #endif /* #ifdef CONFIG_TASKS_RCU */ 606 #ifdef CONFIG_TASKS_RUDE_RCU 607 pr_info("\tRude variant of Tasks RCU enabled.\n"); 608 #endif /* #ifdef CONFIG_TASKS_RUDE_RCU */ 609 #ifdef CONFIG_TASKS_TRACE_RCU 610 pr_info("\tTracing variant of Tasks RCU enabled.\n"); 611 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 612 } 613 614 #endif /* #ifndef CONFIG_TINY_RCU */ 615 616 #ifndef CONFIG_TINY_RCU 617 /* Dump out rcutorture-relevant state common to all RCU-tasks flavors. */ 618 static void show_rcu_tasks_generic_gp_kthread(struct rcu_tasks *rtp, char *s) 619 { 620 int cpu; 621 bool havecbs = false; 622 623 for_each_possible_cpu(cpu) { 624 struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu); 625 626 if (!data_race(rcu_segcblist_empty(&rtpcp->cblist))) { 627 havecbs = true; 628 break; 629 } 630 } 631 pr_info("%s: %s(%d) since %lu g:%lu i:%lu/%lu %c%c %s\n", 632 rtp->kname, 633 tasks_gp_state_getname(rtp), data_race(rtp->gp_state), 634 jiffies - data_race(rtp->gp_jiffies), 635 data_race(rcu_seq_current(&rtp->tasks_gp_seq)), 636 data_race(rtp->n_ipis_fails), data_race(rtp->n_ipis), 637 ".k"[!!data_race(rtp->kthread_ptr)], 638 ".C"[havecbs], 639 s); 640 } 641 #endif // #ifndef CONFIG_TINY_RCU 642 643 static void exit_tasks_rcu_finish_trace(struct task_struct *t); 644 645 #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU) 646 647 //////////////////////////////////////////////////////////////////////// 648 // 649 // Shared code between task-list-scanning variants of Tasks RCU. 650 651 /* Wait for one RCU-tasks grace period. */ 652 static void rcu_tasks_wait_gp(struct rcu_tasks *rtp) 653 { 654 struct task_struct *g; 655 int fract; 656 LIST_HEAD(holdouts); 657 unsigned long j; 658 unsigned long lastinfo; 659 unsigned long lastreport; 660 bool reported = false; 661 int rtsi; 662 struct task_struct *t; 663 664 set_tasks_gp_state(rtp, RTGS_PRE_WAIT_GP); 665 rtp->pregp_func(&holdouts); 666 667 /* 668 * There were callbacks, so we need to wait for an RCU-tasks 669 * grace period. Start off by scanning the task list for tasks 670 * that are not already voluntarily blocked. Mark these tasks 671 * and make a list of them in holdouts. 672 */ 673 set_tasks_gp_state(rtp, RTGS_SCAN_TASKLIST); 674 if (rtp->pertask_func) { 675 rcu_read_lock(); 676 for_each_process_thread(g, t) 677 rtp->pertask_func(t, &holdouts); 678 rcu_read_unlock(); 679 } 680 681 set_tasks_gp_state(rtp, RTGS_POST_SCAN_TASKLIST); 682 rtp->postscan_func(&holdouts); 683 684 /* 685 * Each pass through the following loop scans the list of holdout 686 * tasks, removing any that are no longer holdouts. When the list 687 * is empty, we are done. 688 */ 689 lastreport = jiffies; 690 lastinfo = lastreport; 691 rtsi = READ_ONCE(rcu_task_stall_info); 692 693 // Start off with initial wait and slowly back off to 1 HZ wait. 694 fract = rtp->init_fract; 695 696 while (!list_empty(&holdouts)) { 697 ktime_t exp; 698 bool firstreport; 699 bool needreport; 700 int rtst; 701 702 // Slowly back off waiting for holdouts 703 set_tasks_gp_state(rtp, RTGS_WAIT_SCAN_HOLDOUTS); 704 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) { 705 schedule_timeout_idle(fract); 706 } else { 707 exp = jiffies_to_nsecs(fract); 708 __set_current_state(TASK_IDLE); 709 schedule_hrtimeout_range(&exp, jiffies_to_nsecs(HZ / 2), HRTIMER_MODE_REL_HARD); 710 } 711 712 if (fract < HZ) 713 fract++; 714 715 rtst = READ_ONCE(rcu_task_stall_timeout); 716 needreport = rtst > 0 && time_after(jiffies, lastreport + rtst); 717 if (needreport) { 718 lastreport = jiffies; 719 reported = true; 720 } 721 firstreport = true; 722 WARN_ON(signal_pending(current)); 723 set_tasks_gp_state(rtp, RTGS_SCAN_HOLDOUTS); 724 rtp->holdouts_func(&holdouts, needreport, &firstreport); 725 726 // Print pre-stall informational messages if needed. 727 j = jiffies; 728 if (rtsi > 0 && !reported && time_after(j, lastinfo + rtsi)) { 729 lastinfo = j; 730 rtsi = rtsi * rcu_task_stall_info_mult; 731 pr_info("%s: %s grace period %lu is %lu jiffies old.\n", 732 __func__, rtp->kname, rtp->tasks_gp_seq, j - rtp->gp_start); 733 } 734 } 735 736 set_tasks_gp_state(rtp, RTGS_POST_GP); 737 rtp->postgp_func(rtp); 738 } 739 740 #endif /* #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU) */ 741 742 #ifdef CONFIG_TASKS_RCU 743 744 //////////////////////////////////////////////////////////////////////// 745 // 746 // Simple variant of RCU whose quiescent states are voluntary context 747 // switch, cond_resched_tasks_rcu_qs(), user-space execution, and idle. 748 // As such, grace periods can take one good long time. There are no 749 // read-side primitives similar to rcu_read_lock() and rcu_read_unlock() 750 // because this implementation is intended to get the system into a safe 751 // state for some of the manipulations involved in tracing and the like. 752 // Finally, this implementation does not support high call_rcu_tasks() 753 // rates from multiple CPUs. If this is required, per-CPU callback lists 754 // will be needed. 755 // 756 // The implementation uses rcu_tasks_wait_gp(), which relies on function 757 // pointers in the rcu_tasks structure. The rcu_spawn_tasks_kthread() 758 // function sets these function pointers up so that rcu_tasks_wait_gp() 759 // invokes these functions in this order: 760 // 761 // rcu_tasks_pregp_step(): 762 // Invokes synchronize_rcu() in order to wait for all in-flight 763 // t->on_rq and t->nvcsw transitions to complete. This works because 764 // all such transitions are carried out with interrupts disabled. 765 // rcu_tasks_pertask(), invoked on every non-idle task: 766 // For every runnable non-idle task other than the current one, use 767 // get_task_struct() to pin down that task, snapshot that task's 768 // number of voluntary context switches, and add that task to the 769 // holdout list. 770 // rcu_tasks_postscan(): 771 // Invoke synchronize_srcu() to ensure that all tasks that were 772 // in the process of exiting (and which thus might not know to 773 // synchronize with this RCU Tasks grace period) have completed 774 // exiting. 775 // check_all_holdout_tasks(), repeatedly until holdout list is empty: 776 // Scans the holdout list, attempting to identify a quiescent state 777 // for each task on the list. If there is a quiescent state, the 778 // corresponding task is removed from the holdout list. 779 // rcu_tasks_postgp(): 780 // Invokes synchronize_rcu() in order to ensure that all prior 781 // t->on_rq and t->nvcsw transitions are seen by all CPUs and tasks 782 // to have happened before the end of this RCU Tasks grace period. 783 // Again, this works because all such transitions are carried out 784 // with interrupts disabled. 785 // 786 // For each exiting task, the exit_tasks_rcu_start() and 787 // exit_tasks_rcu_finish() functions begin and end, respectively, the SRCU 788 // read-side critical sections waited for by rcu_tasks_postscan(). 789 // 790 // Pre-grace-period update-side code is ordered before the grace 791 // via the raw_spin_lock.*rcu_node(). Pre-grace-period read-side code 792 // is ordered before the grace period via synchronize_rcu() call in 793 // rcu_tasks_pregp_step() and by the scheduler's locks and interrupt 794 // disabling. 795 796 /* Pre-grace-period preparation. */ 797 static void rcu_tasks_pregp_step(struct list_head *hop) 798 { 799 /* 800 * Wait for all pre-existing t->on_rq and t->nvcsw transitions 801 * to complete. Invoking synchronize_rcu() suffices because all 802 * these transitions occur with interrupts disabled. Without this 803 * synchronize_rcu(), a read-side critical section that started 804 * before the grace period might be incorrectly seen as having 805 * started after the grace period. 806 * 807 * This synchronize_rcu() also dispenses with the need for a 808 * memory barrier on the first store to t->rcu_tasks_holdout, 809 * as it forces the store to happen after the beginning of the 810 * grace period. 811 */ 812 synchronize_rcu(); 813 } 814 815 /* Per-task initial processing. */ 816 static void rcu_tasks_pertask(struct task_struct *t, struct list_head *hop) 817 { 818 if (t != current && READ_ONCE(t->on_rq) && !is_idle_task(t)) { 819 get_task_struct(t); 820 t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw); 821 WRITE_ONCE(t->rcu_tasks_holdout, true); 822 list_add(&t->rcu_tasks_holdout_list, hop); 823 } 824 } 825 826 /* Processing between scanning taskslist and draining the holdout list. */ 827 static void rcu_tasks_postscan(struct list_head *hop) 828 { 829 /* 830 * Wait for tasks that are in the process of exiting. This 831 * does only part of the job, ensuring that all tasks that were 832 * previously exiting reach the point where they have disabled 833 * preemption, allowing the later synchronize_rcu() to finish 834 * the job. 835 */ 836 synchronize_srcu(&tasks_rcu_exit_srcu); 837 } 838 839 /* See if tasks are still holding out, complain if so. */ 840 static void check_holdout_task(struct task_struct *t, 841 bool needreport, bool *firstreport) 842 { 843 int cpu; 844 845 if (!READ_ONCE(t->rcu_tasks_holdout) || 846 t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) || 847 !READ_ONCE(t->on_rq) || 848 (IS_ENABLED(CONFIG_NO_HZ_FULL) && 849 !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) { 850 WRITE_ONCE(t->rcu_tasks_holdout, false); 851 list_del_init(&t->rcu_tasks_holdout_list); 852 put_task_struct(t); 853 return; 854 } 855 rcu_request_urgent_qs_task(t); 856 if (!needreport) 857 return; 858 if (*firstreport) { 859 pr_err("INFO: rcu_tasks detected stalls on tasks:\n"); 860 *firstreport = false; 861 } 862 cpu = task_cpu(t); 863 pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n", 864 t, ".I"[is_idle_task(t)], 865 "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)], 866 t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout, 867 t->rcu_tasks_idle_cpu, cpu); 868 sched_show_task(t); 869 } 870 871 /* Scan the holdout lists for tasks no longer holding out. */ 872 static void check_all_holdout_tasks(struct list_head *hop, 873 bool needreport, bool *firstreport) 874 { 875 struct task_struct *t, *t1; 876 877 list_for_each_entry_safe(t, t1, hop, rcu_tasks_holdout_list) { 878 check_holdout_task(t, needreport, firstreport); 879 cond_resched(); 880 } 881 } 882 883 /* Finish off the Tasks-RCU grace period. */ 884 static void rcu_tasks_postgp(struct rcu_tasks *rtp) 885 { 886 /* 887 * Because ->on_rq and ->nvcsw are not guaranteed to have a full 888 * memory barriers prior to them in the schedule() path, memory 889 * reordering on other CPUs could cause their RCU-tasks read-side 890 * critical sections to extend past the end of the grace period. 891 * However, because these ->nvcsw updates are carried out with 892 * interrupts disabled, we can use synchronize_rcu() to force the 893 * needed ordering on all such CPUs. 894 * 895 * This synchronize_rcu() also confines all ->rcu_tasks_holdout 896 * accesses to be within the grace period, avoiding the need for 897 * memory barriers for ->rcu_tasks_holdout accesses. 898 * 899 * In addition, this synchronize_rcu() waits for exiting tasks 900 * to complete their final preempt_disable() region of execution, 901 * cleaning up after the synchronize_srcu() above. 902 */ 903 synchronize_rcu(); 904 } 905 906 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func); 907 DEFINE_RCU_TASKS(rcu_tasks, rcu_tasks_wait_gp, call_rcu_tasks, "RCU Tasks"); 908 909 /** 910 * call_rcu_tasks() - Queue an RCU for invocation task-based grace period 911 * @rhp: structure to be used for queueing the RCU updates. 912 * @func: actual callback function to be invoked after the grace period 913 * 914 * The callback function will be invoked some time after a full grace 915 * period elapses, in other words after all currently executing RCU 916 * read-side critical sections have completed. call_rcu_tasks() assumes 917 * that the read-side critical sections end at a voluntary context 918 * switch (not a preemption!), cond_resched_tasks_rcu_qs(), entry into idle, 919 * or transition to usermode execution. As such, there are no read-side 920 * primitives analogous to rcu_read_lock() and rcu_read_unlock() because 921 * this primitive is intended to determine that all tasks have passed 922 * through a safe state, not so much for data-structure synchronization. 923 * 924 * See the description of call_rcu() for more detailed information on 925 * memory ordering guarantees. 926 */ 927 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func) 928 { 929 call_rcu_tasks_generic(rhp, func, &rcu_tasks); 930 } 931 EXPORT_SYMBOL_GPL(call_rcu_tasks); 932 933 /** 934 * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed. 935 * 936 * Control will return to the caller some time after a full rcu-tasks 937 * grace period has elapsed, in other words after all currently 938 * executing rcu-tasks read-side critical sections have elapsed. These 939 * read-side critical sections are delimited by calls to schedule(), 940 * cond_resched_tasks_rcu_qs(), idle execution, userspace execution, calls 941 * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched(). 942 * 943 * This is a very specialized primitive, intended only for a few uses in 944 * tracing and other situations requiring manipulation of function 945 * preambles and profiling hooks. The synchronize_rcu_tasks() function 946 * is not (yet) intended for heavy use from multiple CPUs. 947 * 948 * See the description of synchronize_rcu() for more detailed information 949 * on memory ordering guarantees. 950 */ 951 void synchronize_rcu_tasks(void) 952 { 953 synchronize_rcu_tasks_generic(&rcu_tasks); 954 } 955 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks); 956 957 /** 958 * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks. 959 * 960 * Although the current implementation is guaranteed to wait, it is not 961 * obligated to, for example, if there are no pending callbacks. 962 */ 963 void rcu_barrier_tasks(void) 964 { 965 rcu_barrier_tasks_generic(&rcu_tasks); 966 } 967 EXPORT_SYMBOL_GPL(rcu_barrier_tasks); 968 969 static int __init rcu_spawn_tasks_kthread(void) 970 { 971 cblist_init_generic(&rcu_tasks); 972 rcu_tasks.gp_sleep = HZ / 10; 973 rcu_tasks.init_fract = HZ / 10; 974 rcu_tasks.pregp_func = rcu_tasks_pregp_step; 975 rcu_tasks.pertask_func = rcu_tasks_pertask; 976 rcu_tasks.postscan_func = rcu_tasks_postscan; 977 rcu_tasks.holdouts_func = check_all_holdout_tasks; 978 rcu_tasks.postgp_func = rcu_tasks_postgp; 979 rcu_spawn_tasks_kthread_generic(&rcu_tasks); 980 return 0; 981 } 982 983 #if !defined(CONFIG_TINY_RCU) 984 void show_rcu_tasks_classic_gp_kthread(void) 985 { 986 show_rcu_tasks_generic_gp_kthread(&rcu_tasks, ""); 987 } 988 EXPORT_SYMBOL_GPL(show_rcu_tasks_classic_gp_kthread); 989 #endif // !defined(CONFIG_TINY_RCU) 990 991 /* Do the srcu_read_lock() for the above synchronize_srcu(). */ 992 void exit_tasks_rcu_start(void) __acquires(&tasks_rcu_exit_srcu) 993 { 994 preempt_disable(); 995 current->rcu_tasks_idx = __srcu_read_lock(&tasks_rcu_exit_srcu); 996 preempt_enable(); 997 } 998 999 /* Do the srcu_read_unlock() for the above synchronize_srcu(). */ 1000 void exit_tasks_rcu_finish(void) __releases(&tasks_rcu_exit_srcu) 1001 { 1002 struct task_struct *t = current; 1003 1004 preempt_disable(); 1005 __srcu_read_unlock(&tasks_rcu_exit_srcu, t->rcu_tasks_idx); 1006 preempt_enable(); 1007 exit_tasks_rcu_finish_trace(t); 1008 } 1009 1010 #else /* #ifdef CONFIG_TASKS_RCU */ 1011 void exit_tasks_rcu_start(void) { } 1012 void exit_tasks_rcu_finish(void) { exit_tasks_rcu_finish_trace(current); } 1013 #endif /* #else #ifdef CONFIG_TASKS_RCU */ 1014 1015 #ifdef CONFIG_TASKS_RUDE_RCU 1016 1017 //////////////////////////////////////////////////////////////////////// 1018 // 1019 // "Rude" variant of Tasks RCU, inspired by Steve Rostedt's trick of 1020 // passing an empty function to schedule_on_each_cpu(). This approach 1021 // provides an asynchronous call_rcu_tasks_rude() API and batching of 1022 // concurrent calls to the synchronous synchronize_rcu_tasks_rude() API. 1023 // This invokes schedule_on_each_cpu() in order to send IPIs far and wide 1024 // and induces otherwise unnecessary context switches on all online CPUs, 1025 // whether idle or not. 1026 // 1027 // Callback handling is provided by the rcu_tasks_kthread() function. 1028 // 1029 // Ordering is provided by the scheduler's context-switch code. 1030 1031 // Empty function to allow workqueues to force a context switch. 1032 static void rcu_tasks_be_rude(struct work_struct *work) 1033 { 1034 } 1035 1036 // Wait for one rude RCU-tasks grace period. 1037 static void rcu_tasks_rude_wait_gp(struct rcu_tasks *rtp) 1038 { 1039 if (num_online_cpus() <= 1) 1040 return; // Fastpath for only one CPU. 1041 1042 rtp->n_ipis += cpumask_weight(cpu_online_mask); 1043 schedule_on_each_cpu(rcu_tasks_be_rude); 1044 } 1045 1046 void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func); 1047 DEFINE_RCU_TASKS(rcu_tasks_rude, rcu_tasks_rude_wait_gp, call_rcu_tasks_rude, 1048 "RCU Tasks Rude"); 1049 1050 /** 1051 * call_rcu_tasks_rude() - Queue a callback rude task-based grace period 1052 * @rhp: structure to be used for queueing the RCU updates. 1053 * @func: actual callback function to be invoked after the grace period 1054 * 1055 * The callback function will be invoked some time after a full grace 1056 * period elapses, in other words after all currently executing RCU 1057 * read-side critical sections have completed. call_rcu_tasks_rude() 1058 * assumes that the read-side critical sections end at context switch, 1059 * cond_resched_tasks_rcu_qs(), or transition to usermode execution (as 1060 * usermode execution is schedulable). As such, there are no read-side 1061 * primitives analogous to rcu_read_lock() and rcu_read_unlock() because 1062 * this primitive is intended to determine that all tasks have passed 1063 * through a safe state, not so much for data-structure synchronization. 1064 * 1065 * See the description of call_rcu() for more detailed information on 1066 * memory ordering guarantees. 1067 */ 1068 void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func) 1069 { 1070 call_rcu_tasks_generic(rhp, func, &rcu_tasks_rude); 1071 } 1072 EXPORT_SYMBOL_GPL(call_rcu_tasks_rude); 1073 1074 /** 1075 * synchronize_rcu_tasks_rude - wait for a rude rcu-tasks grace period 1076 * 1077 * Control will return to the caller some time after a rude rcu-tasks 1078 * grace period has elapsed, in other words after all currently 1079 * executing rcu-tasks read-side critical sections have elapsed. These 1080 * read-side critical sections are delimited by calls to schedule(), 1081 * cond_resched_tasks_rcu_qs(), userspace execution (which is a schedulable 1082 * context), and (in theory, anyway) cond_resched(). 1083 * 1084 * This is a very specialized primitive, intended only for a few uses in 1085 * tracing and other situations requiring manipulation of function preambles 1086 * and profiling hooks. The synchronize_rcu_tasks_rude() function is not 1087 * (yet) intended for heavy use from multiple CPUs. 1088 * 1089 * See the description of synchronize_rcu() for more detailed information 1090 * on memory ordering guarantees. 1091 */ 1092 void synchronize_rcu_tasks_rude(void) 1093 { 1094 synchronize_rcu_tasks_generic(&rcu_tasks_rude); 1095 } 1096 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_rude); 1097 1098 /** 1099 * rcu_barrier_tasks_rude - Wait for in-flight call_rcu_tasks_rude() callbacks. 1100 * 1101 * Although the current implementation is guaranteed to wait, it is not 1102 * obligated to, for example, if there are no pending callbacks. 1103 */ 1104 void rcu_barrier_tasks_rude(void) 1105 { 1106 rcu_barrier_tasks_generic(&rcu_tasks_rude); 1107 } 1108 EXPORT_SYMBOL_GPL(rcu_barrier_tasks_rude); 1109 1110 static int __init rcu_spawn_tasks_rude_kthread(void) 1111 { 1112 cblist_init_generic(&rcu_tasks_rude); 1113 rcu_tasks_rude.gp_sleep = HZ / 10; 1114 rcu_spawn_tasks_kthread_generic(&rcu_tasks_rude); 1115 return 0; 1116 } 1117 1118 #if !defined(CONFIG_TINY_RCU) 1119 void show_rcu_tasks_rude_gp_kthread(void) 1120 { 1121 show_rcu_tasks_generic_gp_kthread(&rcu_tasks_rude, ""); 1122 } 1123 EXPORT_SYMBOL_GPL(show_rcu_tasks_rude_gp_kthread); 1124 #endif // !defined(CONFIG_TINY_RCU) 1125 #endif /* #ifdef CONFIG_TASKS_RUDE_RCU */ 1126 1127 //////////////////////////////////////////////////////////////////////// 1128 // 1129 // Tracing variant of Tasks RCU. This variant is designed to be used 1130 // to protect tracing hooks, including those of BPF. This variant 1131 // therefore: 1132 // 1133 // 1. Has explicit read-side markers to allow finite grace periods 1134 // in the face of in-kernel loops for PREEMPT=n builds. 1135 // 1136 // 2. Protects code in the idle loop, exception entry/exit, and 1137 // CPU-hotplug code paths, similar to the capabilities of SRCU. 1138 // 1139 // 3. Avoids expensive read-side instructions, having overhead similar 1140 // to that of Preemptible RCU. 1141 // 1142 // There are of course downsides. For example, the grace-period code 1143 // can send IPIs to CPUs, even when those CPUs are in the idle loop or 1144 // in nohz_full userspace. If needed, these downsides can be at least 1145 // partially remedied. 1146 // 1147 // Perhaps most important, this variant of RCU does not affect the vanilla 1148 // flavors, rcu_preempt and rcu_sched. The fact that RCU Tasks Trace 1149 // readers can operate from idle, offline, and exception entry/exit in no 1150 // way allows rcu_preempt and rcu_sched readers to also do so. 1151 // 1152 // The implementation uses rcu_tasks_wait_gp(), which relies on function 1153 // pointers in the rcu_tasks structure. The rcu_spawn_tasks_trace_kthread() 1154 // function sets these function pointers up so that rcu_tasks_wait_gp() 1155 // invokes these functions in this order: 1156 // 1157 // rcu_tasks_trace_pregp_step(): 1158 // Disables CPU hotplug, adds all currently executing tasks to the 1159 // holdout list, then checks the state of all tasks that blocked 1160 // or were preempted within their current RCU Tasks Trace read-side 1161 // critical section, adding them to the holdout list if appropriate. 1162 // Finally, this function re-enables CPU hotplug. 1163 // The ->pertask_func() pointer is NULL, so there is no per-task processing. 1164 // rcu_tasks_trace_postscan(): 1165 // Invokes synchronize_rcu() to wait for late-stage exiting tasks 1166 // to finish exiting. 1167 // check_all_holdout_tasks_trace(), repeatedly until holdout list is empty: 1168 // Scans the holdout list, attempting to identify a quiescent state 1169 // for each task on the list. If there is a quiescent state, the 1170 // corresponding task is removed from the holdout list. Once this 1171 // list is empty, the grace period has completed. 1172 // rcu_tasks_trace_postgp(): 1173 // Provides the needed full memory barrier and does debug checks. 1174 // 1175 // The exit_tasks_rcu_finish_trace() synchronizes with exiting tasks. 1176 // 1177 // Pre-grace-period update-side code is ordered before the grace period 1178 // via the ->cbs_lock and barriers in rcu_tasks_kthread(). Pre-grace-period 1179 // read-side code is ordered before the grace period by atomic operations 1180 // on .b.need_qs flag of each task involved in this process, or by scheduler 1181 // context-switch ordering (for locked-down non-running readers). 1182 1183 // The lockdep state must be outside of #ifdef to be useful. 1184 #ifdef CONFIG_DEBUG_LOCK_ALLOC 1185 static struct lock_class_key rcu_lock_trace_key; 1186 struct lockdep_map rcu_trace_lock_map = 1187 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_trace", &rcu_lock_trace_key); 1188 EXPORT_SYMBOL_GPL(rcu_trace_lock_map); 1189 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 1190 1191 #ifdef CONFIG_TASKS_TRACE_RCU 1192 1193 // Record outstanding IPIs to each CPU. No point in sending two... 1194 static DEFINE_PER_CPU(bool, trc_ipi_to_cpu); 1195 1196 // The number of detections of task quiescent state relying on 1197 // heavyweight readers executing explicit memory barriers. 1198 static unsigned long n_heavy_reader_attempts; 1199 static unsigned long n_heavy_reader_updates; 1200 static unsigned long n_heavy_reader_ofl_updates; 1201 static unsigned long n_trc_holdouts; 1202 1203 void call_rcu_tasks_trace(struct rcu_head *rhp, rcu_callback_t func); 1204 DEFINE_RCU_TASKS(rcu_tasks_trace, rcu_tasks_wait_gp, call_rcu_tasks_trace, 1205 "RCU Tasks Trace"); 1206 1207 /* Load from ->trc_reader_special.b.need_qs with proper ordering. */ 1208 static u8 rcu_ld_need_qs(struct task_struct *t) 1209 { 1210 smp_mb(); // Enforce full grace-period ordering. 1211 return smp_load_acquire(&t->trc_reader_special.b.need_qs); 1212 } 1213 1214 /* Store to ->trc_reader_special.b.need_qs with proper ordering. */ 1215 static void rcu_st_need_qs(struct task_struct *t, u8 v) 1216 { 1217 smp_store_release(&t->trc_reader_special.b.need_qs, v); 1218 smp_mb(); // Enforce full grace-period ordering. 1219 } 1220 1221 /* 1222 * Do a cmpxchg() on ->trc_reader_special.b.need_qs, allowing for 1223 * the four-byte operand-size restriction of some platforms. 1224 * Returns the old value, which is often ignored. 1225 */ 1226 u8 rcu_trc_cmpxchg_need_qs(struct task_struct *t, u8 old, u8 new) 1227 { 1228 union rcu_special ret; 1229 union rcu_special trs_old = READ_ONCE(t->trc_reader_special); 1230 union rcu_special trs_new = trs_old; 1231 1232 if (trs_old.b.need_qs != old) 1233 return trs_old.b.need_qs; 1234 trs_new.b.need_qs = new; 1235 ret.s = cmpxchg(&t->trc_reader_special.s, trs_old.s, trs_new.s); 1236 return ret.b.need_qs; 1237 } 1238 EXPORT_SYMBOL_GPL(rcu_trc_cmpxchg_need_qs); 1239 1240 /* 1241 * If we are the last reader, signal the grace-period kthread. 1242 * Also remove from the per-CPU list of blocked tasks. 1243 */ 1244 void rcu_read_unlock_trace_special(struct task_struct *t) 1245 { 1246 unsigned long flags; 1247 struct rcu_tasks_percpu *rtpcp; 1248 union rcu_special trs; 1249 1250 // Open-coded full-word version of rcu_ld_need_qs(). 1251 smp_mb(); // Enforce full grace-period ordering. 1252 trs = smp_load_acquire(&t->trc_reader_special); 1253 1254 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) && t->trc_reader_special.b.need_mb) 1255 smp_mb(); // Pairs with update-side barriers. 1256 // Update .need_qs before ->trc_reader_nesting for irq/NMI handlers. 1257 if (trs.b.need_qs == (TRC_NEED_QS_CHECKED | TRC_NEED_QS)) { 1258 u8 result = rcu_trc_cmpxchg_need_qs(t, TRC_NEED_QS_CHECKED | TRC_NEED_QS, 1259 TRC_NEED_QS_CHECKED); 1260 1261 WARN_ONCE(result != trs.b.need_qs, "%s: result = %d", __func__, result); 1262 } 1263 if (trs.b.blocked) { 1264 rtpcp = per_cpu_ptr(rcu_tasks_trace.rtpcpu, t->trc_blkd_cpu); 1265 raw_spin_lock_irqsave_rcu_node(rtpcp, flags); 1266 list_del_init(&t->trc_blkd_node); 1267 WRITE_ONCE(t->trc_reader_special.b.blocked, false); 1268 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 1269 } 1270 WRITE_ONCE(t->trc_reader_nesting, 0); 1271 } 1272 EXPORT_SYMBOL_GPL(rcu_read_unlock_trace_special); 1273 1274 /* Add a newly blocked reader task to its CPU's list. */ 1275 void rcu_tasks_trace_qs_blkd(struct task_struct *t) 1276 { 1277 unsigned long flags; 1278 struct rcu_tasks_percpu *rtpcp; 1279 1280 local_irq_save(flags); 1281 rtpcp = this_cpu_ptr(rcu_tasks_trace.rtpcpu); 1282 raw_spin_lock_rcu_node(rtpcp); // irqs already disabled 1283 t->trc_blkd_cpu = smp_processor_id(); 1284 if (!rtpcp->rtp_blkd_tasks.next) 1285 INIT_LIST_HEAD(&rtpcp->rtp_blkd_tasks); 1286 list_add(&t->trc_blkd_node, &rtpcp->rtp_blkd_tasks); 1287 WRITE_ONCE(t->trc_reader_special.b.blocked, true); 1288 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 1289 } 1290 EXPORT_SYMBOL_GPL(rcu_tasks_trace_qs_blkd); 1291 1292 /* Add a task to the holdout list, if it is not already on the list. */ 1293 static void trc_add_holdout(struct task_struct *t, struct list_head *bhp) 1294 { 1295 if (list_empty(&t->trc_holdout_list)) { 1296 get_task_struct(t); 1297 list_add(&t->trc_holdout_list, bhp); 1298 n_trc_holdouts++; 1299 } 1300 } 1301 1302 /* Remove a task from the holdout list, if it is in fact present. */ 1303 static void trc_del_holdout(struct task_struct *t) 1304 { 1305 if (!list_empty(&t->trc_holdout_list)) { 1306 list_del_init(&t->trc_holdout_list); 1307 put_task_struct(t); 1308 n_trc_holdouts--; 1309 } 1310 } 1311 1312 /* IPI handler to check task state. */ 1313 static void trc_read_check_handler(void *t_in) 1314 { 1315 int nesting; 1316 struct task_struct *t = current; 1317 struct task_struct *texp = t_in; 1318 1319 // If the task is no longer running on this CPU, leave. 1320 if (unlikely(texp != t)) 1321 goto reset_ipi; // Already on holdout list, so will check later. 1322 1323 // If the task is not in a read-side critical section, and 1324 // if this is the last reader, awaken the grace-period kthread. 1325 nesting = READ_ONCE(t->trc_reader_nesting); 1326 if (likely(!nesting)) { 1327 rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED); 1328 goto reset_ipi; 1329 } 1330 // If we are racing with an rcu_read_unlock_trace(), try again later. 1331 if (unlikely(nesting < 0)) 1332 goto reset_ipi; 1333 1334 // Get here if the task is in a read-side critical section. 1335 // Set its state so that it will update state for the grace-period 1336 // kthread upon exit from that critical section. 1337 rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS | TRC_NEED_QS_CHECKED); 1338 1339 reset_ipi: 1340 // Allow future IPIs to be sent on CPU and for task. 1341 // Also order this IPI handler against any later manipulations of 1342 // the intended task. 1343 smp_store_release(per_cpu_ptr(&trc_ipi_to_cpu, smp_processor_id()), false); // ^^^ 1344 smp_store_release(&texp->trc_ipi_to_cpu, -1); // ^^^ 1345 } 1346 1347 /* Callback function for scheduler to check locked-down task. */ 1348 static int trc_inspect_reader(struct task_struct *t, void *bhp_in) 1349 { 1350 struct list_head *bhp = bhp_in; 1351 int cpu = task_cpu(t); 1352 int nesting; 1353 bool ofl = cpu_is_offline(cpu); 1354 1355 if (task_curr(t) && !ofl) { 1356 // If no chance of heavyweight readers, do it the hard way. 1357 if (!IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB)) 1358 return -EINVAL; 1359 1360 // If heavyweight readers are enabled on the remote task, 1361 // we can inspect its state despite its currently running. 1362 // However, we cannot safely change its state. 1363 n_heavy_reader_attempts++; 1364 // Check for "running" idle tasks on offline CPUs. 1365 if (!rcu_dynticks_zero_in_eqs(cpu, &t->trc_reader_nesting)) 1366 return -EINVAL; // No quiescent state, do it the hard way. 1367 n_heavy_reader_updates++; 1368 nesting = 0; 1369 } else { 1370 // The task is not running, so C-language access is safe. 1371 nesting = t->trc_reader_nesting; 1372 WARN_ON_ONCE(ofl && task_curr(t) && !is_idle_task(t)); 1373 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) && ofl) 1374 n_heavy_reader_ofl_updates++; 1375 } 1376 1377 // If not exiting a read-side critical section, mark as checked 1378 // so that the grace-period kthread will remove it from the 1379 // holdout list. 1380 if (!nesting) { 1381 rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED); 1382 return 0; // In QS, so done. 1383 } 1384 if (nesting < 0) 1385 return -EINVAL; // Reader transitioning, try again later. 1386 1387 // The task is in a read-side critical section, so set up its 1388 // state so that it will update state upon exit from that critical 1389 // section. 1390 if (!rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS | TRC_NEED_QS_CHECKED)) 1391 trc_add_holdout(t, bhp); 1392 return 0; 1393 } 1394 1395 /* Attempt to extract the state for the specified task. */ 1396 static void trc_wait_for_one_reader(struct task_struct *t, 1397 struct list_head *bhp) 1398 { 1399 int cpu; 1400 1401 // If a previous IPI is still in flight, let it complete. 1402 if (smp_load_acquire(&t->trc_ipi_to_cpu) != -1) // Order IPI 1403 return; 1404 1405 // The current task had better be in a quiescent state. 1406 if (t == current) { 1407 rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED); 1408 WARN_ON_ONCE(READ_ONCE(t->trc_reader_nesting)); 1409 return; 1410 } 1411 1412 // Attempt to nail down the task for inspection. 1413 get_task_struct(t); 1414 if (!task_call_func(t, trc_inspect_reader, bhp)) { 1415 put_task_struct(t); 1416 return; 1417 } 1418 put_task_struct(t); 1419 1420 // If this task is not yet on the holdout list, then we are in 1421 // an RCU read-side critical section. Otherwise, the invocation of 1422 // trc_add_holdout() that added it to the list did the necessary 1423 // get_task_struct(). Either way, the task cannot be freed out 1424 // from under this code. 1425 1426 // If currently running, send an IPI, either way, add to list. 1427 trc_add_holdout(t, bhp); 1428 if (task_curr(t) && 1429 time_after(jiffies + 1, rcu_tasks_trace.gp_start + rcu_task_ipi_delay)) { 1430 // The task is currently running, so try IPIing it. 1431 cpu = task_cpu(t); 1432 1433 // If there is already an IPI outstanding, let it happen. 1434 if (per_cpu(trc_ipi_to_cpu, cpu) || t->trc_ipi_to_cpu >= 0) 1435 return; 1436 1437 per_cpu(trc_ipi_to_cpu, cpu) = true; 1438 t->trc_ipi_to_cpu = cpu; 1439 rcu_tasks_trace.n_ipis++; 1440 if (smp_call_function_single(cpu, trc_read_check_handler, t, 0)) { 1441 // Just in case there is some other reason for 1442 // failure than the target CPU being offline. 1443 WARN_ONCE(1, "%s(): smp_call_function_single() failed for CPU: %d\n", 1444 __func__, cpu); 1445 rcu_tasks_trace.n_ipis_fails++; 1446 per_cpu(trc_ipi_to_cpu, cpu) = false; 1447 t->trc_ipi_to_cpu = -1; 1448 } 1449 } 1450 } 1451 1452 /* 1453 * Initialize for first-round processing for the specified task. 1454 * Return false if task is NULL or already taken care of, true otherwise. 1455 */ 1456 static bool rcu_tasks_trace_pertask_prep(struct task_struct *t, bool notself) 1457 { 1458 // During early boot when there is only the one boot CPU, there 1459 // is no idle task for the other CPUs. Also, the grace-period 1460 // kthread is always in a quiescent state. In addition, just return 1461 // if this task is already on the list. 1462 if (unlikely(t == NULL) || (t == current && notself) || !list_empty(&t->trc_holdout_list)) 1463 return false; 1464 1465 rcu_st_need_qs(t, 0); 1466 t->trc_ipi_to_cpu = -1; 1467 return true; 1468 } 1469 1470 /* Do first-round processing for the specified task. */ 1471 static void rcu_tasks_trace_pertask(struct task_struct *t, struct list_head *hop) 1472 { 1473 if (rcu_tasks_trace_pertask_prep(t, true)) 1474 trc_wait_for_one_reader(t, hop); 1475 } 1476 1477 /* Initialize for a new RCU-tasks-trace grace period. */ 1478 static void rcu_tasks_trace_pregp_step(struct list_head *hop) 1479 { 1480 LIST_HEAD(blkd_tasks); 1481 int cpu; 1482 unsigned long flags; 1483 struct rcu_tasks_percpu *rtpcp; 1484 struct task_struct *t; 1485 1486 // There shouldn't be any old IPIs, but... 1487 for_each_possible_cpu(cpu) 1488 WARN_ON_ONCE(per_cpu(trc_ipi_to_cpu, cpu)); 1489 1490 // Disable CPU hotplug across the CPU scan for the benefit of 1491 // any IPIs that might be needed. This also waits for all readers 1492 // in CPU-hotplug code paths. 1493 cpus_read_lock(); 1494 1495 // These rcu_tasks_trace_pertask_prep() calls are serialized to 1496 // allow safe access to the hop list. 1497 for_each_online_cpu(cpu) { 1498 rcu_read_lock(); 1499 t = cpu_curr_snapshot(cpu); 1500 if (rcu_tasks_trace_pertask_prep(t, true)) 1501 trc_add_holdout(t, hop); 1502 rcu_read_unlock(); 1503 } 1504 1505 // Only after all running tasks have been accounted for is it 1506 // safe to take care of the tasks that have blocked within their 1507 // current RCU tasks trace read-side critical section. 1508 for_each_possible_cpu(cpu) { 1509 rtpcp = per_cpu_ptr(rcu_tasks_trace.rtpcpu, cpu); 1510 raw_spin_lock_irqsave_rcu_node(rtpcp, flags); 1511 list_splice_init(&rtpcp->rtp_blkd_tasks, &blkd_tasks); 1512 while (!list_empty(&blkd_tasks)) { 1513 rcu_read_lock(); 1514 t = list_first_entry(&blkd_tasks, struct task_struct, trc_blkd_node); 1515 list_del_init(&t->trc_blkd_node); 1516 list_add(&t->trc_blkd_node, &rtpcp->rtp_blkd_tasks); 1517 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 1518 rcu_tasks_trace_pertask(t, hop); 1519 rcu_read_unlock(); 1520 raw_spin_lock_irqsave_rcu_node(rtpcp, flags); 1521 } 1522 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 1523 } 1524 1525 // Re-enable CPU hotplug now that the holdout list is populated. 1526 cpus_read_unlock(); 1527 } 1528 1529 /* 1530 * Do intermediate processing between task and holdout scans. 1531 */ 1532 static void rcu_tasks_trace_postscan(struct list_head *hop) 1533 { 1534 // Wait for late-stage exiting tasks to finish exiting. 1535 // These might have passed the call to exit_tasks_rcu_finish(). 1536 synchronize_rcu(); 1537 // Any tasks that exit after this point will set 1538 // TRC_NEED_QS_CHECKED in ->trc_reader_special.b.need_qs. 1539 } 1540 1541 /* Communicate task state back to the RCU tasks trace stall warning request. */ 1542 struct trc_stall_chk_rdr { 1543 int nesting; 1544 int ipi_to_cpu; 1545 u8 needqs; 1546 }; 1547 1548 static int trc_check_slow_task(struct task_struct *t, void *arg) 1549 { 1550 struct trc_stall_chk_rdr *trc_rdrp = arg; 1551 1552 if (task_curr(t) && cpu_online(task_cpu(t))) 1553 return false; // It is running, so decline to inspect it. 1554 trc_rdrp->nesting = READ_ONCE(t->trc_reader_nesting); 1555 trc_rdrp->ipi_to_cpu = READ_ONCE(t->trc_ipi_to_cpu); 1556 trc_rdrp->needqs = rcu_ld_need_qs(t); 1557 return true; 1558 } 1559 1560 /* Show the state of a task stalling the current RCU tasks trace GP. */ 1561 static void show_stalled_task_trace(struct task_struct *t, bool *firstreport) 1562 { 1563 int cpu; 1564 struct trc_stall_chk_rdr trc_rdr; 1565 bool is_idle_tsk = is_idle_task(t); 1566 1567 if (*firstreport) { 1568 pr_err("INFO: rcu_tasks_trace detected stalls on tasks:\n"); 1569 *firstreport = false; 1570 } 1571 cpu = task_cpu(t); 1572 if (!task_call_func(t, trc_check_slow_task, &trc_rdr)) 1573 pr_alert("P%d: %c%c\n", 1574 t->pid, 1575 ".I"[t->trc_ipi_to_cpu >= 0], 1576 ".i"[is_idle_tsk]); 1577 else 1578 pr_alert("P%d: %c%c%c%c nesting: %d%c%c cpu: %d%s\n", 1579 t->pid, 1580 ".I"[trc_rdr.ipi_to_cpu >= 0], 1581 ".i"[is_idle_tsk], 1582 ".N"[cpu >= 0 && tick_nohz_full_cpu(cpu)], 1583 ".B"[!!data_race(t->trc_reader_special.b.blocked)], 1584 trc_rdr.nesting, 1585 " !CN"[trc_rdr.needqs & 0x3], 1586 " ?"[trc_rdr.needqs > 0x3], 1587 cpu, cpu_online(cpu) ? "" : "(offline)"); 1588 sched_show_task(t); 1589 } 1590 1591 /* List stalled IPIs for RCU tasks trace. */ 1592 static void show_stalled_ipi_trace(void) 1593 { 1594 int cpu; 1595 1596 for_each_possible_cpu(cpu) 1597 if (per_cpu(trc_ipi_to_cpu, cpu)) 1598 pr_alert("\tIPI outstanding to CPU %d\n", cpu); 1599 } 1600 1601 /* Do one scan of the holdout list. */ 1602 static void check_all_holdout_tasks_trace(struct list_head *hop, 1603 bool needreport, bool *firstreport) 1604 { 1605 struct task_struct *g, *t; 1606 1607 // Disable CPU hotplug across the holdout list scan for IPIs. 1608 cpus_read_lock(); 1609 1610 list_for_each_entry_safe(t, g, hop, trc_holdout_list) { 1611 // If safe and needed, try to check the current task. 1612 if (READ_ONCE(t->trc_ipi_to_cpu) == -1 && 1613 !(rcu_ld_need_qs(t) & TRC_NEED_QS_CHECKED)) 1614 trc_wait_for_one_reader(t, hop); 1615 1616 // If check succeeded, remove this task from the list. 1617 if (smp_load_acquire(&t->trc_ipi_to_cpu) == -1 && 1618 rcu_ld_need_qs(t) == TRC_NEED_QS_CHECKED) 1619 trc_del_holdout(t); 1620 else if (needreport) 1621 show_stalled_task_trace(t, firstreport); 1622 } 1623 1624 // Re-enable CPU hotplug now that the holdout list scan has completed. 1625 cpus_read_unlock(); 1626 1627 if (needreport) { 1628 if (*firstreport) 1629 pr_err("INFO: rcu_tasks_trace detected stalls? (Late IPI?)\n"); 1630 show_stalled_ipi_trace(); 1631 } 1632 } 1633 1634 static void rcu_tasks_trace_empty_fn(void *unused) 1635 { 1636 } 1637 1638 /* Wait for grace period to complete and provide ordering. */ 1639 static void rcu_tasks_trace_postgp(struct rcu_tasks *rtp) 1640 { 1641 int cpu; 1642 1643 // Wait for any lingering IPI handlers to complete. Note that 1644 // if a CPU has gone offline or transitioned to userspace in the 1645 // meantime, all IPI handlers should have been drained beforehand. 1646 // Yes, this assumes that CPUs process IPIs in order. If that ever 1647 // changes, there will need to be a recheck and/or timed wait. 1648 for_each_online_cpu(cpu) 1649 if (WARN_ON_ONCE(smp_load_acquire(per_cpu_ptr(&trc_ipi_to_cpu, cpu)))) 1650 smp_call_function_single(cpu, rcu_tasks_trace_empty_fn, NULL, 1); 1651 1652 smp_mb(); // Caller's code must be ordered after wakeup. 1653 // Pairs with pretty much every ordering primitive. 1654 } 1655 1656 /* Report any needed quiescent state for this exiting task. */ 1657 static void exit_tasks_rcu_finish_trace(struct task_struct *t) 1658 { 1659 union rcu_special trs = READ_ONCE(t->trc_reader_special); 1660 1661 rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED); 1662 WARN_ON_ONCE(READ_ONCE(t->trc_reader_nesting)); 1663 if (WARN_ON_ONCE(rcu_ld_need_qs(t) & TRC_NEED_QS || trs.b.blocked)) 1664 rcu_read_unlock_trace_special(t); 1665 else 1666 WRITE_ONCE(t->trc_reader_nesting, 0); 1667 } 1668 1669 /** 1670 * call_rcu_tasks_trace() - Queue a callback trace task-based grace period 1671 * @rhp: structure to be used for queueing the RCU updates. 1672 * @func: actual callback function to be invoked after the grace period 1673 * 1674 * The callback function will be invoked some time after a trace rcu-tasks 1675 * grace period elapses, in other words after all currently executing 1676 * trace rcu-tasks read-side critical sections have completed. These 1677 * read-side critical sections are delimited by calls to rcu_read_lock_trace() 1678 * and rcu_read_unlock_trace(). 1679 * 1680 * See the description of call_rcu() for more detailed information on 1681 * memory ordering guarantees. 1682 */ 1683 void call_rcu_tasks_trace(struct rcu_head *rhp, rcu_callback_t func) 1684 { 1685 call_rcu_tasks_generic(rhp, func, &rcu_tasks_trace); 1686 } 1687 EXPORT_SYMBOL_GPL(call_rcu_tasks_trace); 1688 1689 /** 1690 * synchronize_rcu_tasks_trace - wait for a trace rcu-tasks grace period 1691 * 1692 * Control will return to the caller some time after a trace rcu-tasks 1693 * grace period has elapsed, in other words after all currently executing 1694 * trace rcu-tasks read-side critical sections have elapsed. These read-side 1695 * critical sections are delimited by calls to rcu_read_lock_trace() 1696 * and rcu_read_unlock_trace(). 1697 * 1698 * This is a very specialized primitive, intended only for a few uses in 1699 * tracing and other situations requiring manipulation of function preambles 1700 * and profiling hooks. The synchronize_rcu_tasks_trace() function is not 1701 * (yet) intended for heavy use from multiple CPUs. 1702 * 1703 * See the description of synchronize_rcu() for more detailed information 1704 * on memory ordering guarantees. 1705 */ 1706 void synchronize_rcu_tasks_trace(void) 1707 { 1708 RCU_LOCKDEP_WARN(lock_is_held(&rcu_trace_lock_map), "Illegal synchronize_rcu_tasks_trace() in RCU Tasks Trace read-side critical section"); 1709 synchronize_rcu_tasks_generic(&rcu_tasks_trace); 1710 } 1711 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_trace); 1712 1713 /** 1714 * rcu_barrier_tasks_trace - Wait for in-flight call_rcu_tasks_trace() callbacks. 1715 * 1716 * Although the current implementation is guaranteed to wait, it is not 1717 * obligated to, for example, if there are no pending callbacks. 1718 */ 1719 void rcu_barrier_tasks_trace(void) 1720 { 1721 rcu_barrier_tasks_generic(&rcu_tasks_trace); 1722 } 1723 EXPORT_SYMBOL_GPL(rcu_barrier_tasks_trace); 1724 1725 static int __init rcu_spawn_tasks_trace_kthread(void) 1726 { 1727 cblist_init_generic(&rcu_tasks_trace); 1728 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB)) { 1729 rcu_tasks_trace.gp_sleep = HZ / 10; 1730 rcu_tasks_trace.init_fract = HZ / 10; 1731 } else { 1732 rcu_tasks_trace.gp_sleep = HZ / 200; 1733 if (rcu_tasks_trace.gp_sleep <= 0) 1734 rcu_tasks_trace.gp_sleep = 1; 1735 rcu_tasks_trace.init_fract = HZ / 200; 1736 if (rcu_tasks_trace.init_fract <= 0) 1737 rcu_tasks_trace.init_fract = 1; 1738 } 1739 rcu_tasks_trace.pregp_func = rcu_tasks_trace_pregp_step; 1740 rcu_tasks_trace.postscan_func = rcu_tasks_trace_postscan; 1741 rcu_tasks_trace.holdouts_func = check_all_holdout_tasks_trace; 1742 rcu_tasks_trace.postgp_func = rcu_tasks_trace_postgp; 1743 rcu_spawn_tasks_kthread_generic(&rcu_tasks_trace); 1744 return 0; 1745 } 1746 1747 #if !defined(CONFIG_TINY_RCU) 1748 void show_rcu_tasks_trace_gp_kthread(void) 1749 { 1750 char buf[64]; 1751 1752 sprintf(buf, "N%lu h:%lu/%lu/%lu", 1753 data_race(n_trc_holdouts), 1754 data_race(n_heavy_reader_ofl_updates), 1755 data_race(n_heavy_reader_updates), 1756 data_race(n_heavy_reader_attempts)); 1757 show_rcu_tasks_generic_gp_kthread(&rcu_tasks_trace, buf); 1758 } 1759 EXPORT_SYMBOL_GPL(show_rcu_tasks_trace_gp_kthread); 1760 #endif // !defined(CONFIG_TINY_RCU) 1761 1762 #else /* #ifdef CONFIG_TASKS_TRACE_RCU */ 1763 static void exit_tasks_rcu_finish_trace(struct task_struct *t) { } 1764 #endif /* #else #ifdef CONFIG_TASKS_TRACE_RCU */ 1765 1766 #ifndef CONFIG_TINY_RCU 1767 void show_rcu_tasks_gp_kthreads(void) 1768 { 1769 show_rcu_tasks_classic_gp_kthread(); 1770 show_rcu_tasks_rude_gp_kthread(); 1771 show_rcu_tasks_trace_gp_kthread(); 1772 } 1773 #endif /* #ifndef CONFIG_TINY_RCU */ 1774 1775 #ifdef CONFIG_PROVE_RCU 1776 struct rcu_tasks_test_desc { 1777 struct rcu_head rh; 1778 const char *name; 1779 bool notrun; 1780 unsigned long runstart; 1781 }; 1782 1783 static struct rcu_tasks_test_desc tests[] = { 1784 { 1785 .name = "call_rcu_tasks()", 1786 /* If not defined, the test is skipped. */ 1787 .notrun = IS_ENABLED(CONFIG_TASKS_RCU), 1788 }, 1789 { 1790 .name = "call_rcu_tasks_rude()", 1791 /* If not defined, the test is skipped. */ 1792 .notrun = IS_ENABLED(CONFIG_TASKS_RUDE_RCU), 1793 }, 1794 { 1795 .name = "call_rcu_tasks_trace()", 1796 /* If not defined, the test is skipped. */ 1797 .notrun = IS_ENABLED(CONFIG_TASKS_TRACE_RCU) 1798 } 1799 }; 1800 1801 static void test_rcu_tasks_callback(struct rcu_head *rhp) 1802 { 1803 struct rcu_tasks_test_desc *rttd = 1804 container_of(rhp, struct rcu_tasks_test_desc, rh); 1805 1806 pr_info("Callback from %s invoked.\n", rttd->name); 1807 1808 rttd->notrun = false; 1809 } 1810 1811 static void rcu_tasks_initiate_self_tests(void) 1812 { 1813 unsigned long j = jiffies; 1814 1815 pr_info("Running RCU-tasks wait API self tests\n"); 1816 #ifdef CONFIG_TASKS_RCU 1817 tests[0].runstart = j; 1818 synchronize_rcu_tasks(); 1819 call_rcu_tasks(&tests[0].rh, test_rcu_tasks_callback); 1820 #endif 1821 1822 #ifdef CONFIG_TASKS_RUDE_RCU 1823 tests[1].runstart = j; 1824 synchronize_rcu_tasks_rude(); 1825 call_rcu_tasks_rude(&tests[1].rh, test_rcu_tasks_callback); 1826 #endif 1827 1828 #ifdef CONFIG_TASKS_TRACE_RCU 1829 tests[2].runstart = j; 1830 synchronize_rcu_tasks_trace(); 1831 call_rcu_tasks_trace(&tests[2].rh, test_rcu_tasks_callback); 1832 #endif 1833 } 1834 1835 /* 1836 * Return: 0 - test passed 1837 * 1 - test failed, but have not timed out yet 1838 * -1 - test failed and timed out 1839 */ 1840 static int rcu_tasks_verify_self_tests(void) 1841 { 1842 int ret = 0; 1843 int i; 1844 unsigned long bst = rcu_task_stall_timeout; 1845 1846 if (bst <= 0 || bst > RCU_TASK_BOOT_STALL_TIMEOUT) 1847 bst = RCU_TASK_BOOT_STALL_TIMEOUT; 1848 for (i = 0; i < ARRAY_SIZE(tests); i++) { 1849 while (tests[i].notrun) { // still hanging. 1850 if (time_after(jiffies, tests[i].runstart + bst)) { 1851 pr_err("%s has failed boot-time tests.\n", tests[i].name); 1852 ret = -1; 1853 break; 1854 } 1855 ret = 1; 1856 break; 1857 } 1858 } 1859 WARN_ON(ret < 0); 1860 1861 return ret; 1862 } 1863 1864 /* 1865 * Repeat the rcu_tasks_verify_self_tests() call once every second until the 1866 * test passes or has timed out. 1867 */ 1868 static struct delayed_work rcu_tasks_verify_work; 1869 static void rcu_tasks_verify_work_fn(struct work_struct *work __maybe_unused) 1870 { 1871 int ret = rcu_tasks_verify_self_tests(); 1872 1873 if (ret <= 0) 1874 return; 1875 1876 /* Test fails but not timed out yet, reschedule another check */ 1877 schedule_delayed_work(&rcu_tasks_verify_work, HZ); 1878 } 1879 1880 static int rcu_tasks_verify_schedule_work(void) 1881 { 1882 INIT_DELAYED_WORK(&rcu_tasks_verify_work, rcu_tasks_verify_work_fn); 1883 rcu_tasks_verify_work_fn(NULL); 1884 return 0; 1885 } 1886 late_initcall(rcu_tasks_verify_schedule_work); 1887 #else /* #ifdef CONFIG_PROVE_RCU */ 1888 static void rcu_tasks_initiate_self_tests(void) { } 1889 #endif /* #else #ifdef CONFIG_PROVE_RCU */ 1890 1891 void __init rcu_init_tasks_generic(void) 1892 { 1893 #ifdef CONFIG_TASKS_RCU 1894 rcu_spawn_tasks_kthread(); 1895 #endif 1896 1897 #ifdef CONFIG_TASKS_RUDE_RCU 1898 rcu_spawn_tasks_rude_kthread(); 1899 #endif 1900 1901 #ifdef CONFIG_TASKS_TRACE_RCU 1902 rcu_spawn_tasks_trace_kthread(); 1903 #endif 1904 1905 // Run the self-tests. 1906 rcu_tasks_initiate_self_tests(); 1907 } 1908 1909 #else /* #ifdef CONFIG_TASKS_RCU_GENERIC */ 1910 static inline void rcu_tasks_bootup_oddness(void) {} 1911 #endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */ 1912