1 /* SPDX-License-Identifier: GPL-2.0+ */ 2 /* 3 * Task-based RCU implementations. 4 * 5 * Copyright (C) 2020 Paul E. McKenney 6 */ 7 8 #ifdef CONFIG_TASKS_RCU_GENERIC 9 #include "rcu_segcblist.h" 10 11 //////////////////////////////////////////////////////////////////////// 12 // 13 // Generic data structures. 14 15 struct rcu_tasks; 16 typedef void (*rcu_tasks_gp_func_t)(struct rcu_tasks *rtp); 17 typedef void (*pregp_func_t)(struct list_head *hop); 18 typedef void (*pertask_func_t)(struct task_struct *t, struct list_head *hop); 19 typedef void (*postscan_func_t)(struct list_head *hop); 20 typedef void (*holdouts_func_t)(struct list_head *hop, bool ndrpt, bool *frptp); 21 typedef void (*postgp_func_t)(struct rcu_tasks *rtp); 22 23 /** 24 * struct rcu_tasks_percpu - Per-CPU component of definition for a Tasks-RCU-like mechanism. 25 * @cblist: Callback list. 26 * @lock: Lock protecting per-CPU callback list. 27 * @rtp_jiffies: Jiffies counter value for statistics. 28 * @lazy_timer: Timer to unlazify callbacks. 29 * @urgent_gp: Number of additional non-lazy grace periods. 30 * @rtp_n_lock_retries: Rough lock-contention statistic. 31 * @rtp_work: Work queue for invoking callbacks. 32 * @rtp_irq_work: IRQ work queue for deferred wakeups. 33 * @barrier_q_head: RCU callback for barrier operation. 34 * @rtp_blkd_tasks: List of tasks blocked as readers. 35 * @rtp_exit_list: List of tasks in the latter portion of do_exit(). 36 * @cpu: CPU number corresponding to this entry. 37 * @rtpp: Pointer to the rcu_tasks structure. 38 */ 39 struct rcu_tasks_percpu { 40 struct rcu_segcblist cblist; 41 raw_spinlock_t __private lock; 42 unsigned long rtp_jiffies; 43 unsigned long rtp_n_lock_retries; 44 struct timer_list lazy_timer; 45 unsigned int urgent_gp; 46 struct work_struct rtp_work; 47 struct irq_work rtp_irq_work; 48 struct rcu_head barrier_q_head; 49 struct list_head rtp_blkd_tasks; 50 struct list_head rtp_exit_list; 51 int cpu; 52 struct rcu_tasks *rtpp; 53 }; 54 55 /** 56 * struct rcu_tasks - Definition for a Tasks-RCU-like mechanism. 57 * @cbs_wait: RCU wait allowing a new callback to get kthread's attention. 58 * @cbs_gbl_lock: Lock protecting callback list. 59 * @tasks_gp_mutex: Mutex protecting grace period, needed during mid-boot dead zone. 60 * @gp_func: This flavor's grace-period-wait function. 61 * @gp_state: Grace period's most recent state transition (debugging). 62 * @gp_sleep: Per-grace-period sleep to prevent CPU-bound looping. 63 * @init_fract: Initial backoff sleep interval. 64 * @gp_jiffies: Time of last @gp_state transition. 65 * @gp_start: Most recent grace-period start in jiffies. 66 * @tasks_gp_seq: Number of grace periods completed since boot. 67 * @n_ipis: Number of IPIs sent to encourage grace periods to end. 68 * @n_ipis_fails: Number of IPI-send failures. 69 * @kthread_ptr: This flavor's grace-period/callback-invocation kthread. 70 * @lazy_jiffies: Number of jiffies to allow callbacks to be lazy. 71 * @pregp_func: This flavor's pre-grace-period function (optional). 72 * @pertask_func: This flavor's per-task scan function (optional). 73 * @postscan_func: This flavor's post-task scan function (optional). 74 * @holdouts_func: This flavor's holdout-list scan function (optional). 75 * @postgp_func: This flavor's post-grace-period function (optional). 76 * @call_func: This flavor's call_rcu()-equivalent function. 77 * @rtpcpu: This flavor's rcu_tasks_percpu structure. 78 * @percpu_enqueue_shift: Shift down CPU ID this much when enqueuing callbacks. 79 * @percpu_enqueue_lim: Number of per-CPU callback queues in use for enqueuing. 80 * @percpu_dequeue_lim: Number of per-CPU callback queues in use for dequeuing. 81 * @percpu_dequeue_gpseq: RCU grace-period number to propagate enqueue limit to dequeuers. 82 * @barrier_q_mutex: Serialize barrier operations. 83 * @barrier_q_count: Number of queues being waited on. 84 * @barrier_q_completion: Barrier wait/wakeup mechanism. 85 * @barrier_q_seq: Sequence number for barrier operations. 86 * @name: This flavor's textual name. 87 * @kname: This flavor's kthread name. 88 */ 89 struct rcu_tasks { 90 struct rcuwait cbs_wait; 91 raw_spinlock_t cbs_gbl_lock; 92 struct mutex tasks_gp_mutex; 93 int gp_state; 94 int gp_sleep; 95 int init_fract; 96 unsigned long gp_jiffies; 97 unsigned long gp_start; 98 unsigned long tasks_gp_seq; 99 unsigned long n_ipis; 100 unsigned long n_ipis_fails; 101 struct task_struct *kthread_ptr; 102 unsigned long lazy_jiffies; 103 rcu_tasks_gp_func_t gp_func; 104 pregp_func_t pregp_func; 105 pertask_func_t pertask_func; 106 postscan_func_t postscan_func; 107 holdouts_func_t holdouts_func; 108 postgp_func_t postgp_func; 109 call_rcu_func_t call_func; 110 struct rcu_tasks_percpu __percpu *rtpcpu; 111 int percpu_enqueue_shift; 112 int percpu_enqueue_lim; 113 int percpu_dequeue_lim; 114 unsigned long percpu_dequeue_gpseq; 115 struct mutex barrier_q_mutex; 116 atomic_t barrier_q_count; 117 struct completion barrier_q_completion; 118 unsigned long barrier_q_seq; 119 char *name; 120 char *kname; 121 }; 122 123 static void call_rcu_tasks_iw_wakeup(struct irq_work *iwp); 124 125 #define DEFINE_RCU_TASKS(rt_name, gp, call, n) \ 126 static DEFINE_PER_CPU(struct rcu_tasks_percpu, rt_name ## __percpu) = { \ 127 .lock = __RAW_SPIN_LOCK_UNLOCKED(rt_name ## __percpu.cbs_pcpu_lock), \ 128 .rtp_irq_work = IRQ_WORK_INIT_HARD(call_rcu_tasks_iw_wakeup), \ 129 }; \ 130 static struct rcu_tasks rt_name = \ 131 { \ 132 .cbs_wait = __RCUWAIT_INITIALIZER(rt_name.wait), \ 133 .cbs_gbl_lock = __RAW_SPIN_LOCK_UNLOCKED(rt_name.cbs_gbl_lock), \ 134 .tasks_gp_mutex = __MUTEX_INITIALIZER(rt_name.tasks_gp_mutex), \ 135 .gp_func = gp, \ 136 .call_func = call, \ 137 .rtpcpu = &rt_name ## __percpu, \ 138 .lazy_jiffies = DIV_ROUND_UP(HZ, 4), \ 139 .name = n, \ 140 .percpu_enqueue_shift = order_base_2(CONFIG_NR_CPUS), \ 141 .percpu_enqueue_lim = 1, \ 142 .percpu_dequeue_lim = 1, \ 143 .barrier_q_mutex = __MUTEX_INITIALIZER(rt_name.barrier_q_mutex), \ 144 .barrier_q_seq = (0UL - 50UL) << RCU_SEQ_CTR_SHIFT, \ 145 .kname = #rt_name, \ 146 } 147 148 #ifdef CONFIG_TASKS_RCU 149 150 /* Report delay in synchronize_srcu() completion in rcu_tasks_postscan(). */ 151 static void tasks_rcu_exit_srcu_stall(struct timer_list *unused); 152 static DEFINE_TIMER(tasks_rcu_exit_srcu_stall_timer, tasks_rcu_exit_srcu_stall); 153 #endif 154 155 /* Avoid IPIing CPUs early in the grace period. */ 156 #define RCU_TASK_IPI_DELAY (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) ? HZ / 2 : 0) 157 static int rcu_task_ipi_delay __read_mostly = RCU_TASK_IPI_DELAY; 158 module_param(rcu_task_ipi_delay, int, 0644); 159 160 /* Control stall timeouts. Disable with <= 0, otherwise jiffies till stall. */ 161 #define RCU_TASK_BOOT_STALL_TIMEOUT (HZ * 30) 162 #define RCU_TASK_STALL_TIMEOUT (HZ * 60 * 10) 163 static int rcu_task_stall_timeout __read_mostly = RCU_TASK_STALL_TIMEOUT; 164 module_param(rcu_task_stall_timeout, int, 0644); 165 #define RCU_TASK_STALL_INFO (HZ * 10) 166 static int rcu_task_stall_info __read_mostly = RCU_TASK_STALL_INFO; 167 module_param(rcu_task_stall_info, int, 0644); 168 static int rcu_task_stall_info_mult __read_mostly = 3; 169 module_param(rcu_task_stall_info_mult, int, 0444); 170 171 static int rcu_task_enqueue_lim __read_mostly = -1; 172 module_param(rcu_task_enqueue_lim, int, 0444); 173 174 static bool rcu_task_cb_adjust; 175 static int rcu_task_contend_lim __read_mostly = 100; 176 module_param(rcu_task_contend_lim, int, 0444); 177 static int rcu_task_collapse_lim __read_mostly = 10; 178 module_param(rcu_task_collapse_lim, int, 0444); 179 static int rcu_task_lazy_lim __read_mostly = 32; 180 module_param(rcu_task_lazy_lim, int, 0444); 181 182 /* RCU tasks grace-period state for debugging. */ 183 #define RTGS_INIT 0 184 #define RTGS_WAIT_WAIT_CBS 1 185 #define RTGS_WAIT_GP 2 186 #define RTGS_PRE_WAIT_GP 3 187 #define RTGS_SCAN_TASKLIST 4 188 #define RTGS_POST_SCAN_TASKLIST 5 189 #define RTGS_WAIT_SCAN_HOLDOUTS 6 190 #define RTGS_SCAN_HOLDOUTS 7 191 #define RTGS_POST_GP 8 192 #define RTGS_WAIT_READERS 9 193 #define RTGS_INVOKE_CBS 10 194 #define RTGS_WAIT_CBS 11 195 #ifndef CONFIG_TINY_RCU 196 static const char * const rcu_tasks_gp_state_names[] = { 197 "RTGS_INIT", 198 "RTGS_WAIT_WAIT_CBS", 199 "RTGS_WAIT_GP", 200 "RTGS_PRE_WAIT_GP", 201 "RTGS_SCAN_TASKLIST", 202 "RTGS_POST_SCAN_TASKLIST", 203 "RTGS_WAIT_SCAN_HOLDOUTS", 204 "RTGS_SCAN_HOLDOUTS", 205 "RTGS_POST_GP", 206 "RTGS_WAIT_READERS", 207 "RTGS_INVOKE_CBS", 208 "RTGS_WAIT_CBS", 209 }; 210 #endif /* #ifndef CONFIG_TINY_RCU */ 211 212 //////////////////////////////////////////////////////////////////////// 213 // 214 // Generic code. 215 216 static void rcu_tasks_invoke_cbs_wq(struct work_struct *wp); 217 218 /* Record grace-period phase and time. */ 219 static void set_tasks_gp_state(struct rcu_tasks *rtp, int newstate) 220 { 221 rtp->gp_state = newstate; 222 rtp->gp_jiffies = jiffies; 223 } 224 225 #ifndef CONFIG_TINY_RCU 226 /* Return state name. */ 227 static const char *tasks_gp_state_getname(struct rcu_tasks *rtp) 228 { 229 int i = data_race(rtp->gp_state); // Let KCSAN detect update races 230 int j = READ_ONCE(i); // Prevent the compiler from reading twice 231 232 if (j >= ARRAY_SIZE(rcu_tasks_gp_state_names)) 233 return "???"; 234 return rcu_tasks_gp_state_names[j]; 235 } 236 #endif /* #ifndef CONFIG_TINY_RCU */ 237 238 // Initialize per-CPU callback lists for the specified flavor of 239 // Tasks RCU. Do not enqueue callbacks before this function is invoked. 240 static void cblist_init_generic(struct rcu_tasks *rtp) 241 { 242 int cpu; 243 int lim; 244 int shift; 245 246 if (rcu_task_enqueue_lim < 0) { 247 rcu_task_enqueue_lim = 1; 248 rcu_task_cb_adjust = true; 249 } else if (rcu_task_enqueue_lim == 0) { 250 rcu_task_enqueue_lim = 1; 251 } 252 lim = rcu_task_enqueue_lim; 253 254 if (lim > nr_cpu_ids) 255 lim = nr_cpu_ids; 256 shift = ilog2(nr_cpu_ids / lim); 257 if (((nr_cpu_ids - 1) >> shift) >= lim) 258 shift++; 259 WRITE_ONCE(rtp->percpu_enqueue_shift, shift); 260 WRITE_ONCE(rtp->percpu_dequeue_lim, lim); 261 smp_store_release(&rtp->percpu_enqueue_lim, lim); 262 for_each_possible_cpu(cpu) { 263 struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu); 264 265 WARN_ON_ONCE(!rtpcp); 266 if (cpu) 267 raw_spin_lock_init(&ACCESS_PRIVATE(rtpcp, lock)); 268 if (rcu_segcblist_empty(&rtpcp->cblist)) 269 rcu_segcblist_init(&rtpcp->cblist); 270 INIT_WORK(&rtpcp->rtp_work, rcu_tasks_invoke_cbs_wq); 271 rtpcp->cpu = cpu; 272 rtpcp->rtpp = rtp; 273 if (!rtpcp->rtp_blkd_tasks.next) 274 INIT_LIST_HEAD(&rtpcp->rtp_blkd_tasks); 275 if (!rtpcp->rtp_exit_list.next) 276 INIT_LIST_HEAD(&rtpcp->rtp_exit_list); 277 } 278 279 pr_info("%s: Setting shift to %d and lim to %d rcu_task_cb_adjust=%d.\n", rtp->name, 280 data_race(rtp->percpu_enqueue_shift), data_race(rtp->percpu_enqueue_lim), rcu_task_cb_adjust); 281 } 282 283 // Compute wakeup time for lazy callback timer. 284 static unsigned long rcu_tasks_lazy_time(struct rcu_tasks *rtp) 285 { 286 return jiffies + rtp->lazy_jiffies; 287 } 288 289 // Timer handler that unlazifies lazy callbacks. 290 static void call_rcu_tasks_generic_timer(struct timer_list *tlp) 291 { 292 unsigned long flags; 293 bool needwake = false; 294 struct rcu_tasks *rtp; 295 struct rcu_tasks_percpu *rtpcp = from_timer(rtpcp, tlp, lazy_timer); 296 297 rtp = rtpcp->rtpp; 298 raw_spin_lock_irqsave_rcu_node(rtpcp, flags); 299 if (!rcu_segcblist_empty(&rtpcp->cblist) && rtp->lazy_jiffies) { 300 if (!rtpcp->urgent_gp) 301 rtpcp->urgent_gp = 1; 302 needwake = true; 303 mod_timer(&rtpcp->lazy_timer, rcu_tasks_lazy_time(rtp)); 304 } 305 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 306 if (needwake) 307 rcuwait_wake_up(&rtp->cbs_wait); 308 } 309 310 // IRQ-work handler that does deferred wakeup for call_rcu_tasks_generic(). 311 static void call_rcu_tasks_iw_wakeup(struct irq_work *iwp) 312 { 313 struct rcu_tasks *rtp; 314 struct rcu_tasks_percpu *rtpcp = container_of(iwp, struct rcu_tasks_percpu, rtp_irq_work); 315 316 rtp = rtpcp->rtpp; 317 rcuwait_wake_up(&rtp->cbs_wait); 318 } 319 320 // Enqueue a callback for the specified flavor of Tasks RCU. 321 static void call_rcu_tasks_generic(struct rcu_head *rhp, rcu_callback_t func, 322 struct rcu_tasks *rtp) 323 { 324 int chosen_cpu; 325 unsigned long flags; 326 bool havekthread = smp_load_acquire(&rtp->kthread_ptr); 327 int ideal_cpu; 328 unsigned long j; 329 bool needadjust = false; 330 bool needwake; 331 struct rcu_tasks_percpu *rtpcp; 332 333 rhp->next = NULL; 334 rhp->func = func; 335 local_irq_save(flags); 336 rcu_read_lock(); 337 ideal_cpu = smp_processor_id() >> READ_ONCE(rtp->percpu_enqueue_shift); 338 chosen_cpu = cpumask_next(ideal_cpu - 1, cpu_possible_mask); 339 rtpcp = per_cpu_ptr(rtp->rtpcpu, chosen_cpu); 340 if (!raw_spin_trylock_rcu_node(rtpcp)) { // irqs already disabled. 341 raw_spin_lock_rcu_node(rtpcp); // irqs already disabled. 342 j = jiffies; 343 if (rtpcp->rtp_jiffies != j) { 344 rtpcp->rtp_jiffies = j; 345 rtpcp->rtp_n_lock_retries = 0; 346 } 347 if (rcu_task_cb_adjust && ++rtpcp->rtp_n_lock_retries > rcu_task_contend_lim && 348 READ_ONCE(rtp->percpu_enqueue_lim) != nr_cpu_ids) 349 needadjust = true; // Defer adjustment to avoid deadlock. 350 } 351 // Queuing callbacks before initialization not yet supported. 352 if (WARN_ON_ONCE(!rcu_segcblist_is_enabled(&rtpcp->cblist))) 353 rcu_segcblist_init(&rtpcp->cblist); 354 needwake = (func == wakeme_after_rcu) || 355 (rcu_segcblist_n_cbs(&rtpcp->cblist) == rcu_task_lazy_lim); 356 if (havekthread && !needwake && !timer_pending(&rtpcp->lazy_timer)) { 357 if (rtp->lazy_jiffies) 358 mod_timer(&rtpcp->lazy_timer, rcu_tasks_lazy_time(rtp)); 359 else 360 needwake = rcu_segcblist_empty(&rtpcp->cblist); 361 } 362 if (needwake) 363 rtpcp->urgent_gp = 3; 364 rcu_segcblist_enqueue(&rtpcp->cblist, rhp); 365 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 366 if (unlikely(needadjust)) { 367 raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags); 368 if (rtp->percpu_enqueue_lim != nr_cpu_ids) { 369 WRITE_ONCE(rtp->percpu_enqueue_shift, 0); 370 WRITE_ONCE(rtp->percpu_dequeue_lim, nr_cpu_ids); 371 smp_store_release(&rtp->percpu_enqueue_lim, nr_cpu_ids); 372 pr_info("Switching %s to per-CPU callback queuing.\n", rtp->name); 373 } 374 raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags); 375 } 376 rcu_read_unlock(); 377 /* We can't create the thread unless interrupts are enabled. */ 378 if (needwake && READ_ONCE(rtp->kthread_ptr)) 379 irq_work_queue(&rtpcp->rtp_irq_work); 380 } 381 382 // RCU callback function for rcu_barrier_tasks_generic(). 383 static void rcu_barrier_tasks_generic_cb(struct rcu_head *rhp) 384 { 385 struct rcu_tasks *rtp; 386 struct rcu_tasks_percpu *rtpcp; 387 388 rtpcp = container_of(rhp, struct rcu_tasks_percpu, barrier_q_head); 389 rtp = rtpcp->rtpp; 390 if (atomic_dec_and_test(&rtp->barrier_q_count)) 391 complete(&rtp->barrier_q_completion); 392 } 393 394 // Wait for all in-flight callbacks for the specified RCU Tasks flavor. 395 // Operates in a manner similar to rcu_barrier(). 396 static void rcu_barrier_tasks_generic(struct rcu_tasks *rtp) 397 { 398 int cpu; 399 unsigned long flags; 400 struct rcu_tasks_percpu *rtpcp; 401 unsigned long s = rcu_seq_snap(&rtp->barrier_q_seq); 402 403 mutex_lock(&rtp->barrier_q_mutex); 404 if (rcu_seq_done(&rtp->barrier_q_seq, s)) { 405 smp_mb(); 406 mutex_unlock(&rtp->barrier_q_mutex); 407 return; 408 } 409 rcu_seq_start(&rtp->barrier_q_seq); 410 init_completion(&rtp->barrier_q_completion); 411 atomic_set(&rtp->barrier_q_count, 2); 412 for_each_possible_cpu(cpu) { 413 if (cpu >= smp_load_acquire(&rtp->percpu_dequeue_lim)) 414 break; 415 rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu); 416 rtpcp->barrier_q_head.func = rcu_barrier_tasks_generic_cb; 417 raw_spin_lock_irqsave_rcu_node(rtpcp, flags); 418 if (rcu_segcblist_entrain(&rtpcp->cblist, &rtpcp->barrier_q_head)) 419 atomic_inc(&rtp->barrier_q_count); 420 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 421 } 422 if (atomic_sub_and_test(2, &rtp->barrier_q_count)) 423 complete(&rtp->barrier_q_completion); 424 wait_for_completion(&rtp->barrier_q_completion); 425 rcu_seq_end(&rtp->barrier_q_seq); 426 mutex_unlock(&rtp->barrier_q_mutex); 427 } 428 429 // Advance callbacks and indicate whether either a grace period or 430 // callback invocation is needed. 431 static int rcu_tasks_need_gpcb(struct rcu_tasks *rtp) 432 { 433 int cpu; 434 int dequeue_limit; 435 unsigned long flags; 436 bool gpdone = poll_state_synchronize_rcu(rtp->percpu_dequeue_gpseq); 437 long n; 438 long ncbs = 0; 439 long ncbsnz = 0; 440 int needgpcb = 0; 441 442 dequeue_limit = smp_load_acquire(&rtp->percpu_dequeue_lim); 443 for (cpu = 0; cpu < dequeue_limit; cpu++) { 444 struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu); 445 446 /* Advance and accelerate any new callbacks. */ 447 if (!rcu_segcblist_n_cbs(&rtpcp->cblist)) 448 continue; 449 raw_spin_lock_irqsave_rcu_node(rtpcp, flags); 450 // Should we shrink down to a single callback queue? 451 n = rcu_segcblist_n_cbs(&rtpcp->cblist); 452 if (n) { 453 ncbs += n; 454 if (cpu > 0) 455 ncbsnz += n; 456 } 457 rcu_segcblist_advance(&rtpcp->cblist, rcu_seq_current(&rtp->tasks_gp_seq)); 458 (void)rcu_segcblist_accelerate(&rtpcp->cblist, rcu_seq_snap(&rtp->tasks_gp_seq)); 459 if (rtpcp->urgent_gp > 0 && rcu_segcblist_pend_cbs(&rtpcp->cblist)) { 460 if (rtp->lazy_jiffies) 461 rtpcp->urgent_gp--; 462 needgpcb |= 0x3; 463 } else if (rcu_segcblist_empty(&rtpcp->cblist)) { 464 rtpcp->urgent_gp = 0; 465 } 466 if (rcu_segcblist_ready_cbs(&rtpcp->cblist)) 467 needgpcb |= 0x1; 468 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 469 } 470 471 // Shrink down to a single callback queue if appropriate. 472 // This is done in two stages: (1) If there are no more than 473 // rcu_task_collapse_lim callbacks on CPU 0 and none on any other 474 // CPU, limit enqueueing to CPU 0. (2) After an RCU grace period, 475 // if there has not been an increase in callbacks, limit dequeuing 476 // to CPU 0. Note the matching RCU read-side critical section in 477 // call_rcu_tasks_generic(). 478 if (rcu_task_cb_adjust && ncbs <= rcu_task_collapse_lim) { 479 raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags); 480 if (rtp->percpu_enqueue_lim > 1) { 481 WRITE_ONCE(rtp->percpu_enqueue_shift, order_base_2(nr_cpu_ids)); 482 smp_store_release(&rtp->percpu_enqueue_lim, 1); 483 rtp->percpu_dequeue_gpseq = get_state_synchronize_rcu(); 484 gpdone = false; 485 pr_info("Starting switch %s to CPU-0 callback queuing.\n", rtp->name); 486 } 487 raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags); 488 } 489 if (rcu_task_cb_adjust && !ncbsnz && gpdone) { 490 raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags); 491 if (rtp->percpu_enqueue_lim < rtp->percpu_dequeue_lim) { 492 WRITE_ONCE(rtp->percpu_dequeue_lim, 1); 493 pr_info("Completing switch %s to CPU-0 callback queuing.\n", rtp->name); 494 } 495 if (rtp->percpu_dequeue_lim == 1) { 496 for (cpu = rtp->percpu_dequeue_lim; cpu < nr_cpu_ids; cpu++) { 497 struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu); 498 499 WARN_ON_ONCE(rcu_segcblist_n_cbs(&rtpcp->cblist)); 500 } 501 } 502 raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags); 503 } 504 505 return needgpcb; 506 } 507 508 // Advance callbacks and invoke any that are ready. 509 static void rcu_tasks_invoke_cbs(struct rcu_tasks *rtp, struct rcu_tasks_percpu *rtpcp) 510 { 511 int cpu; 512 int cpunext; 513 int cpuwq; 514 unsigned long flags; 515 int len; 516 struct rcu_head *rhp; 517 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl); 518 struct rcu_tasks_percpu *rtpcp_next; 519 520 cpu = rtpcp->cpu; 521 cpunext = cpu * 2 + 1; 522 if (cpunext < smp_load_acquire(&rtp->percpu_dequeue_lim)) { 523 rtpcp_next = per_cpu_ptr(rtp->rtpcpu, cpunext); 524 cpuwq = rcu_cpu_beenfullyonline(cpunext) ? cpunext : WORK_CPU_UNBOUND; 525 queue_work_on(cpuwq, system_wq, &rtpcp_next->rtp_work); 526 cpunext++; 527 if (cpunext < smp_load_acquire(&rtp->percpu_dequeue_lim)) { 528 rtpcp_next = per_cpu_ptr(rtp->rtpcpu, cpunext); 529 cpuwq = rcu_cpu_beenfullyonline(cpunext) ? cpunext : WORK_CPU_UNBOUND; 530 queue_work_on(cpuwq, system_wq, &rtpcp_next->rtp_work); 531 } 532 } 533 534 if (rcu_segcblist_empty(&rtpcp->cblist) || !cpu_possible(cpu)) 535 return; 536 raw_spin_lock_irqsave_rcu_node(rtpcp, flags); 537 rcu_segcblist_advance(&rtpcp->cblist, rcu_seq_current(&rtp->tasks_gp_seq)); 538 rcu_segcblist_extract_done_cbs(&rtpcp->cblist, &rcl); 539 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 540 len = rcl.len; 541 for (rhp = rcu_cblist_dequeue(&rcl); rhp; rhp = rcu_cblist_dequeue(&rcl)) { 542 debug_rcu_head_callback(rhp); 543 local_bh_disable(); 544 rhp->func(rhp); 545 local_bh_enable(); 546 cond_resched(); 547 } 548 raw_spin_lock_irqsave_rcu_node(rtpcp, flags); 549 rcu_segcblist_add_len(&rtpcp->cblist, -len); 550 (void)rcu_segcblist_accelerate(&rtpcp->cblist, rcu_seq_snap(&rtp->tasks_gp_seq)); 551 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 552 } 553 554 // Workqueue flood to advance callbacks and invoke any that are ready. 555 static void rcu_tasks_invoke_cbs_wq(struct work_struct *wp) 556 { 557 struct rcu_tasks *rtp; 558 struct rcu_tasks_percpu *rtpcp = container_of(wp, struct rcu_tasks_percpu, rtp_work); 559 560 rtp = rtpcp->rtpp; 561 rcu_tasks_invoke_cbs(rtp, rtpcp); 562 } 563 564 // Wait for one grace period. 565 static void rcu_tasks_one_gp(struct rcu_tasks *rtp, bool midboot) 566 { 567 int needgpcb; 568 569 mutex_lock(&rtp->tasks_gp_mutex); 570 571 // If there were none, wait a bit and start over. 572 if (unlikely(midboot)) { 573 needgpcb = 0x2; 574 } else { 575 mutex_unlock(&rtp->tasks_gp_mutex); 576 set_tasks_gp_state(rtp, RTGS_WAIT_CBS); 577 rcuwait_wait_event(&rtp->cbs_wait, 578 (needgpcb = rcu_tasks_need_gpcb(rtp)), 579 TASK_IDLE); 580 mutex_lock(&rtp->tasks_gp_mutex); 581 } 582 583 if (needgpcb & 0x2) { 584 // Wait for one grace period. 585 set_tasks_gp_state(rtp, RTGS_WAIT_GP); 586 rtp->gp_start = jiffies; 587 rcu_seq_start(&rtp->tasks_gp_seq); 588 rtp->gp_func(rtp); 589 rcu_seq_end(&rtp->tasks_gp_seq); 590 } 591 592 // Invoke callbacks. 593 set_tasks_gp_state(rtp, RTGS_INVOKE_CBS); 594 rcu_tasks_invoke_cbs(rtp, per_cpu_ptr(rtp->rtpcpu, 0)); 595 mutex_unlock(&rtp->tasks_gp_mutex); 596 } 597 598 // RCU-tasks kthread that detects grace periods and invokes callbacks. 599 static int __noreturn rcu_tasks_kthread(void *arg) 600 { 601 int cpu; 602 struct rcu_tasks *rtp = arg; 603 604 for_each_possible_cpu(cpu) { 605 struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu); 606 607 timer_setup(&rtpcp->lazy_timer, call_rcu_tasks_generic_timer, 0); 608 rtpcp->urgent_gp = 1; 609 } 610 611 /* Run on housekeeping CPUs by default. Sysadm can move if desired. */ 612 housekeeping_affine(current, HK_TYPE_RCU); 613 smp_store_release(&rtp->kthread_ptr, current); // Let GPs start! 614 615 /* 616 * Each pass through the following loop makes one check for 617 * newly arrived callbacks, and, if there are some, waits for 618 * one RCU-tasks grace period and then invokes the callbacks. 619 * This loop is terminated by the system going down. ;-) 620 */ 621 for (;;) { 622 // Wait for one grace period and invoke any callbacks 623 // that are ready. 624 rcu_tasks_one_gp(rtp, false); 625 626 // Paranoid sleep to keep this from entering a tight loop. 627 schedule_timeout_idle(rtp->gp_sleep); 628 } 629 } 630 631 // Wait for a grace period for the specified flavor of Tasks RCU. 632 static void synchronize_rcu_tasks_generic(struct rcu_tasks *rtp) 633 { 634 /* Complain if the scheduler has not started. */ 635 if (WARN_ONCE(rcu_scheduler_active == RCU_SCHEDULER_INACTIVE, 636 "synchronize_%s() called too soon", rtp->name)) 637 return; 638 639 // If the grace-period kthread is running, use it. 640 if (READ_ONCE(rtp->kthread_ptr)) { 641 wait_rcu_gp(rtp->call_func); 642 return; 643 } 644 rcu_tasks_one_gp(rtp, true); 645 } 646 647 /* Spawn RCU-tasks grace-period kthread. */ 648 static void __init rcu_spawn_tasks_kthread_generic(struct rcu_tasks *rtp) 649 { 650 struct task_struct *t; 651 652 t = kthread_run(rcu_tasks_kthread, rtp, "%s_kthread", rtp->kname); 653 if (WARN_ONCE(IS_ERR(t), "%s: Could not start %s grace-period kthread, OOM is now expected behavior\n", __func__, rtp->name)) 654 return; 655 smp_mb(); /* Ensure others see full kthread. */ 656 } 657 658 #ifndef CONFIG_TINY_RCU 659 660 /* 661 * Print any non-default Tasks RCU settings. 662 */ 663 static void __init rcu_tasks_bootup_oddness(void) 664 { 665 #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU) 666 int rtsimc; 667 668 if (rcu_task_stall_timeout != RCU_TASK_STALL_TIMEOUT) 669 pr_info("\tTasks-RCU CPU stall warnings timeout set to %d (rcu_task_stall_timeout).\n", rcu_task_stall_timeout); 670 rtsimc = clamp(rcu_task_stall_info_mult, 1, 10); 671 if (rtsimc != rcu_task_stall_info_mult) { 672 pr_info("\tTasks-RCU CPU stall info multiplier clamped to %d (rcu_task_stall_info_mult).\n", rtsimc); 673 rcu_task_stall_info_mult = rtsimc; 674 } 675 #endif /* #ifdef CONFIG_TASKS_RCU */ 676 #ifdef CONFIG_TASKS_RCU 677 pr_info("\tTrampoline variant of Tasks RCU enabled.\n"); 678 #endif /* #ifdef CONFIG_TASKS_RCU */ 679 #ifdef CONFIG_TASKS_RUDE_RCU 680 pr_info("\tRude variant of Tasks RCU enabled.\n"); 681 #endif /* #ifdef CONFIG_TASKS_RUDE_RCU */ 682 #ifdef CONFIG_TASKS_TRACE_RCU 683 pr_info("\tTracing variant of Tasks RCU enabled.\n"); 684 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 685 } 686 687 #endif /* #ifndef CONFIG_TINY_RCU */ 688 689 #ifndef CONFIG_TINY_RCU 690 /* Dump out rcutorture-relevant state common to all RCU-tasks flavors. */ 691 static void show_rcu_tasks_generic_gp_kthread(struct rcu_tasks *rtp, char *s) 692 { 693 int cpu; 694 bool havecbs = false; 695 bool haveurgent = false; 696 bool haveurgentcbs = false; 697 698 for_each_possible_cpu(cpu) { 699 struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu); 700 701 if (!data_race(rcu_segcblist_empty(&rtpcp->cblist))) 702 havecbs = true; 703 if (data_race(rtpcp->urgent_gp)) 704 haveurgent = true; 705 if (!data_race(rcu_segcblist_empty(&rtpcp->cblist)) && data_race(rtpcp->urgent_gp)) 706 haveurgentcbs = true; 707 if (havecbs && haveurgent && haveurgentcbs) 708 break; 709 } 710 pr_info("%s: %s(%d) since %lu g:%lu i:%lu/%lu %c%c%c%c l:%lu %s\n", 711 rtp->kname, 712 tasks_gp_state_getname(rtp), data_race(rtp->gp_state), 713 jiffies - data_race(rtp->gp_jiffies), 714 data_race(rcu_seq_current(&rtp->tasks_gp_seq)), 715 data_race(rtp->n_ipis_fails), data_race(rtp->n_ipis), 716 ".k"[!!data_race(rtp->kthread_ptr)], 717 ".C"[havecbs], 718 ".u"[haveurgent], 719 ".U"[haveurgentcbs], 720 rtp->lazy_jiffies, 721 s); 722 } 723 #endif // #ifndef CONFIG_TINY_RCU 724 725 static void exit_tasks_rcu_finish_trace(struct task_struct *t); 726 727 #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU) 728 729 //////////////////////////////////////////////////////////////////////// 730 // 731 // Shared code between task-list-scanning variants of Tasks RCU. 732 733 /* Wait for one RCU-tasks grace period. */ 734 static void rcu_tasks_wait_gp(struct rcu_tasks *rtp) 735 { 736 struct task_struct *g; 737 int fract; 738 LIST_HEAD(holdouts); 739 unsigned long j; 740 unsigned long lastinfo; 741 unsigned long lastreport; 742 bool reported = false; 743 int rtsi; 744 struct task_struct *t; 745 746 set_tasks_gp_state(rtp, RTGS_PRE_WAIT_GP); 747 rtp->pregp_func(&holdouts); 748 749 /* 750 * There were callbacks, so we need to wait for an RCU-tasks 751 * grace period. Start off by scanning the task list for tasks 752 * that are not already voluntarily blocked. Mark these tasks 753 * and make a list of them in holdouts. 754 */ 755 set_tasks_gp_state(rtp, RTGS_SCAN_TASKLIST); 756 if (rtp->pertask_func) { 757 rcu_read_lock(); 758 for_each_process_thread(g, t) 759 rtp->pertask_func(t, &holdouts); 760 rcu_read_unlock(); 761 } 762 763 set_tasks_gp_state(rtp, RTGS_POST_SCAN_TASKLIST); 764 rtp->postscan_func(&holdouts); 765 766 /* 767 * Each pass through the following loop scans the list of holdout 768 * tasks, removing any that are no longer holdouts. When the list 769 * is empty, we are done. 770 */ 771 lastreport = jiffies; 772 lastinfo = lastreport; 773 rtsi = READ_ONCE(rcu_task_stall_info); 774 775 // Start off with initial wait and slowly back off to 1 HZ wait. 776 fract = rtp->init_fract; 777 778 while (!list_empty(&holdouts)) { 779 ktime_t exp; 780 bool firstreport; 781 bool needreport; 782 int rtst; 783 784 // Slowly back off waiting for holdouts 785 set_tasks_gp_state(rtp, RTGS_WAIT_SCAN_HOLDOUTS); 786 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) { 787 schedule_timeout_idle(fract); 788 } else { 789 exp = jiffies_to_nsecs(fract); 790 __set_current_state(TASK_IDLE); 791 schedule_hrtimeout_range(&exp, jiffies_to_nsecs(HZ / 2), HRTIMER_MODE_REL_HARD); 792 } 793 794 if (fract < HZ) 795 fract++; 796 797 rtst = READ_ONCE(rcu_task_stall_timeout); 798 needreport = rtst > 0 && time_after(jiffies, lastreport + rtst); 799 if (needreport) { 800 lastreport = jiffies; 801 reported = true; 802 } 803 firstreport = true; 804 WARN_ON(signal_pending(current)); 805 set_tasks_gp_state(rtp, RTGS_SCAN_HOLDOUTS); 806 rtp->holdouts_func(&holdouts, needreport, &firstreport); 807 808 // Print pre-stall informational messages if needed. 809 j = jiffies; 810 if (rtsi > 0 && !reported && time_after(j, lastinfo + rtsi)) { 811 lastinfo = j; 812 rtsi = rtsi * rcu_task_stall_info_mult; 813 pr_info("%s: %s grace period number %lu (since boot) is %lu jiffies old.\n", 814 __func__, rtp->kname, rtp->tasks_gp_seq, j - rtp->gp_start); 815 } 816 } 817 818 set_tasks_gp_state(rtp, RTGS_POST_GP); 819 rtp->postgp_func(rtp); 820 } 821 822 #endif /* #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU) */ 823 824 #ifdef CONFIG_TASKS_RCU 825 826 //////////////////////////////////////////////////////////////////////// 827 // 828 // Simple variant of RCU whose quiescent states are voluntary context 829 // switch, cond_resched_tasks_rcu_qs(), user-space execution, and idle. 830 // As such, grace periods can take one good long time. There are no 831 // read-side primitives similar to rcu_read_lock() and rcu_read_unlock() 832 // because this implementation is intended to get the system into a safe 833 // state for some of the manipulations involved in tracing and the like. 834 // Finally, this implementation does not support high call_rcu_tasks() 835 // rates from multiple CPUs. If this is required, per-CPU callback lists 836 // will be needed. 837 // 838 // The implementation uses rcu_tasks_wait_gp(), which relies on function 839 // pointers in the rcu_tasks structure. The rcu_spawn_tasks_kthread() 840 // function sets these function pointers up so that rcu_tasks_wait_gp() 841 // invokes these functions in this order: 842 // 843 // rcu_tasks_pregp_step(): 844 // Invokes synchronize_rcu() in order to wait for all in-flight 845 // t->on_rq and t->nvcsw transitions to complete. This works because 846 // all such transitions are carried out with interrupts disabled. 847 // rcu_tasks_pertask(), invoked on every non-idle task: 848 // For every runnable non-idle task other than the current one, use 849 // get_task_struct() to pin down that task, snapshot that task's 850 // number of voluntary context switches, and add that task to the 851 // holdout list. 852 // rcu_tasks_postscan(): 853 // Gather per-CPU lists of tasks in do_exit() to ensure that all 854 // tasks that were in the process of exiting (and which thus might 855 // not know to synchronize with this RCU Tasks grace period) have 856 // completed exiting. The synchronize_rcu() in rcu_tasks_postgp() 857 // will take care of any tasks stuck in the non-preemptible region 858 // of do_exit() following its call to exit_tasks_rcu_stop(). 859 // check_all_holdout_tasks(), repeatedly until holdout list is empty: 860 // Scans the holdout list, attempting to identify a quiescent state 861 // for each task on the list. If there is a quiescent state, the 862 // corresponding task is removed from the holdout list. 863 // rcu_tasks_postgp(): 864 // Invokes synchronize_rcu() in order to ensure that all prior 865 // t->on_rq and t->nvcsw transitions are seen by all CPUs and tasks 866 // to have happened before the end of this RCU Tasks grace period. 867 // Again, this works because all such transitions are carried out 868 // with interrupts disabled. 869 // 870 // For each exiting task, the exit_tasks_rcu_start() and 871 // exit_tasks_rcu_finish() functions add and remove, respectively, the 872 // current task to a per-CPU list of tasks that rcu_tasks_postscan() must 873 // wait on. This is necessary because rcu_tasks_postscan() must wait on 874 // tasks that have already been removed from the global list of tasks. 875 // 876 // Pre-grace-period update-side code is ordered before the grace 877 // via the raw_spin_lock.*rcu_node(). Pre-grace-period read-side code 878 // is ordered before the grace period via synchronize_rcu() call in 879 // rcu_tasks_pregp_step() and by the scheduler's locks and interrupt 880 // disabling. 881 882 /* Pre-grace-period preparation. */ 883 static void rcu_tasks_pregp_step(struct list_head *hop) 884 { 885 /* 886 * Wait for all pre-existing t->on_rq and t->nvcsw transitions 887 * to complete. Invoking synchronize_rcu() suffices because all 888 * these transitions occur with interrupts disabled. Without this 889 * synchronize_rcu(), a read-side critical section that started 890 * before the grace period might be incorrectly seen as having 891 * started after the grace period. 892 * 893 * This synchronize_rcu() also dispenses with the need for a 894 * memory barrier on the first store to t->rcu_tasks_holdout, 895 * as it forces the store to happen after the beginning of the 896 * grace period. 897 */ 898 synchronize_rcu(); 899 } 900 901 /* Check for quiescent states since the pregp's synchronize_rcu() */ 902 static bool rcu_tasks_is_holdout(struct task_struct *t) 903 { 904 int cpu; 905 906 /* Has the task been seen voluntarily sleeping? */ 907 if (!READ_ONCE(t->on_rq)) 908 return false; 909 910 /* 911 * Idle tasks (or idle injection) within the idle loop are RCU-tasks 912 * quiescent states. But CPU boot code performed by the idle task 913 * isn't a quiescent state. 914 */ 915 if (is_idle_task(t)) 916 return false; 917 918 cpu = task_cpu(t); 919 920 /* Idle tasks on offline CPUs are RCU-tasks quiescent states. */ 921 if (t == idle_task(cpu) && !rcu_cpu_online(cpu)) 922 return false; 923 924 return true; 925 } 926 927 /* Per-task initial processing. */ 928 static void rcu_tasks_pertask(struct task_struct *t, struct list_head *hop) 929 { 930 if (t != current && rcu_tasks_is_holdout(t)) { 931 get_task_struct(t); 932 t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw); 933 WRITE_ONCE(t->rcu_tasks_holdout, true); 934 list_add(&t->rcu_tasks_holdout_list, hop); 935 } 936 } 937 938 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func); 939 DEFINE_RCU_TASKS(rcu_tasks, rcu_tasks_wait_gp, call_rcu_tasks, "RCU Tasks"); 940 941 /* Processing between scanning taskslist and draining the holdout list. */ 942 static void rcu_tasks_postscan(struct list_head *hop) 943 { 944 int cpu; 945 int rtsi = READ_ONCE(rcu_task_stall_info); 946 947 if (!IS_ENABLED(CONFIG_TINY_RCU)) { 948 tasks_rcu_exit_srcu_stall_timer.expires = jiffies + rtsi; 949 add_timer(&tasks_rcu_exit_srcu_stall_timer); 950 } 951 952 /* 953 * Exiting tasks may escape the tasklist scan. Those are vulnerable 954 * until their final schedule() with TASK_DEAD state. To cope with 955 * this, divide the fragile exit path part in two intersecting 956 * read side critical sections: 957 * 958 * 1) A task_struct list addition before calling exit_notify(), 959 * which may remove the task from the tasklist, with the 960 * removal after the final preempt_disable() call in do_exit(). 961 * 962 * 2) An _RCU_ read side starting with the final preempt_disable() 963 * call in do_exit() and ending with the final call to schedule() 964 * with TASK_DEAD state. 965 * 966 * This handles the part 1). And postgp will handle part 2) with a 967 * call to synchronize_rcu(). 968 */ 969 970 for_each_possible_cpu(cpu) { 971 unsigned long j = jiffies + 1; 972 struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rcu_tasks.rtpcpu, cpu); 973 struct task_struct *t; 974 struct task_struct *t1; 975 struct list_head tmp; 976 977 raw_spin_lock_irq_rcu_node(rtpcp); 978 list_for_each_entry_safe(t, t1, &rtpcp->rtp_exit_list, rcu_tasks_exit_list) { 979 if (list_empty(&t->rcu_tasks_holdout_list)) 980 rcu_tasks_pertask(t, hop); 981 982 // RT kernels need frequent pauses, otherwise 983 // pause at least once per pair of jiffies. 984 if (!IS_ENABLED(CONFIG_PREEMPT_RT) && time_before(jiffies, j)) 985 continue; 986 987 // Keep our place in the list while pausing. 988 // Nothing else traverses this list, so adding a 989 // bare list_head is OK. 990 list_add(&tmp, &t->rcu_tasks_exit_list); 991 raw_spin_unlock_irq_rcu_node(rtpcp); 992 cond_resched(); // For CONFIG_PREEMPT=n kernels 993 raw_spin_lock_irq_rcu_node(rtpcp); 994 t1 = list_entry(tmp.next, struct task_struct, rcu_tasks_exit_list); 995 list_del(&tmp); 996 j = jiffies + 1; 997 } 998 raw_spin_unlock_irq_rcu_node(rtpcp); 999 } 1000 1001 if (!IS_ENABLED(CONFIG_TINY_RCU)) 1002 del_timer_sync(&tasks_rcu_exit_srcu_stall_timer); 1003 } 1004 1005 /* See if tasks are still holding out, complain if so. */ 1006 static void check_holdout_task(struct task_struct *t, 1007 bool needreport, bool *firstreport) 1008 { 1009 int cpu; 1010 1011 if (!READ_ONCE(t->rcu_tasks_holdout) || 1012 t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) || 1013 !rcu_tasks_is_holdout(t) || 1014 (IS_ENABLED(CONFIG_NO_HZ_FULL) && 1015 !is_idle_task(t) && READ_ONCE(t->rcu_tasks_idle_cpu) >= 0)) { 1016 WRITE_ONCE(t->rcu_tasks_holdout, false); 1017 list_del_init(&t->rcu_tasks_holdout_list); 1018 put_task_struct(t); 1019 return; 1020 } 1021 rcu_request_urgent_qs_task(t); 1022 if (!needreport) 1023 return; 1024 if (*firstreport) { 1025 pr_err("INFO: rcu_tasks detected stalls on tasks:\n"); 1026 *firstreport = false; 1027 } 1028 cpu = task_cpu(t); 1029 pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n", 1030 t, ".I"[is_idle_task(t)], 1031 "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)], 1032 t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout, 1033 data_race(t->rcu_tasks_idle_cpu), cpu); 1034 sched_show_task(t); 1035 } 1036 1037 /* Scan the holdout lists for tasks no longer holding out. */ 1038 static void check_all_holdout_tasks(struct list_head *hop, 1039 bool needreport, bool *firstreport) 1040 { 1041 struct task_struct *t, *t1; 1042 1043 list_for_each_entry_safe(t, t1, hop, rcu_tasks_holdout_list) { 1044 check_holdout_task(t, needreport, firstreport); 1045 cond_resched(); 1046 } 1047 } 1048 1049 /* Finish off the Tasks-RCU grace period. */ 1050 static void rcu_tasks_postgp(struct rcu_tasks *rtp) 1051 { 1052 /* 1053 * Because ->on_rq and ->nvcsw are not guaranteed to have a full 1054 * memory barriers prior to them in the schedule() path, memory 1055 * reordering on other CPUs could cause their RCU-tasks read-side 1056 * critical sections to extend past the end of the grace period. 1057 * However, because these ->nvcsw updates are carried out with 1058 * interrupts disabled, we can use synchronize_rcu() to force the 1059 * needed ordering on all such CPUs. 1060 * 1061 * This synchronize_rcu() also confines all ->rcu_tasks_holdout 1062 * accesses to be within the grace period, avoiding the need for 1063 * memory barriers for ->rcu_tasks_holdout accesses. 1064 * 1065 * In addition, this synchronize_rcu() waits for exiting tasks 1066 * to complete their final preempt_disable() region of execution, 1067 * enforcing the whole region before tasklist removal until 1068 * the final schedule() with TASK_DEAD state to be an RCU TASKS 1069 * read side critical section. 1070 */ 1071 synchronize_rcu(); 1072 } 1073 1074 static void tasks_rcu_exit_srcu_stall(struct timer_list *unused) 1075 { 1076 #ifndef CONFIG_TINY_RCU 1077 int rtsi; 1078 1079 rtsi = READ_ONCE(rcu_task_stall_info); 1080 pr_info("%s: %s grace period number %lu (since boot) gp_state: %s is %lu jiffies old.\n", 1081 __func__, rcu_tasks.kname, rcu_tasks.tasks_gp_seq, 1082 tasks_gp_state_getname(&rcu_tasks), jiffies - rcu_tasks.gp_jiffies); 1083 pr_info("Please check any exiting tasks stuck between calls to exit_tasks_rcu_start() and exit_tasks_rcu_finish()\n"); 1084 tasks_rcu_exit_srcu_stall_timer.expires = jiffies + rtsi; 1085 add_timer(&tasks_rcu_exit_srcu_stall_timer); 1086 #endif // #ifndef CONFIG_TINY_RCU 1087 } 1088 1089 /** 1090 * call_rcu_tasks() - Queue an RCU for invocation task-based grace period 1091 * @rhp: structure to be used for queueing the RCU updates. 1092 * @func: actual callback function to be invoked after the grace period 1093 * 1094 * The callback function will be invoked some time after a full grace 1095 * period elapses, in other words after all currently executing RCU 1096 * read-side critical sections have completed. call_rcu_tasks() assumes 1097 * that the read-side critical sections end at a voluntary context 1098 * switch (not a preemption!), cond_resched_tasks_rcu_qs(), entry into idle, 1099 * or transition to usermode execution. As such, there are no read-side 1100 * primitives analogous to rcu_read_lock() and rcu_read_unlock() because 1101 * this primitive is intended to determine that all tasks have passed 1102 * through a safe state, not so much for data-structure synchronization. 1103 * 1104 * See the description of call_rcu() for more detailed information on 1105 * memory ordering guarantees. 1106 */ 1107 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func) 1108 { 1109 call_rcu_tasks_generic(rhp, func, &rcu_tasks); 1110 } 1111 EXPORT_SYMBOL_GPL(call_rcu_tasks); 1112 1113 /** 1114 * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed. 1115 * 1116 * Control will return to the caller some time after a full rcu-tasks 1117 * grace period has elapsed, in other words after all currently 1118 * executing rcu-tasks read-side critical sections have elapsed. These 1119 * read-side critical sections are delimited by calls to schedule(), 1120 * cond_resched_tasks_rcu_qs(), idle execution, userspace execution, calls 1121 * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched(). 1122 * 1123 * This is a very specialized primitive, intended only for a few uses in 1124 * tracing and other situations requiring manipulation of function 1125 * preambles and profiling hooks. The synchronize_rcu_tasks() function 1126 * is not (yet) intended for heavy use from multiple CPUs. 1127 * 1128 * See the description of synchronize_rcu() for more detailed information 1129 * on memory ordering guarantees. 1130 */ 1131 void synchronize_rcu_tasks(void) 1132 { 1133 synchronize_rcu_tasks_generic(&rcu_tasks); 1134 } 1135 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks); 1136 1137 /** 1138 * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks. 1139 * 1140 * Although the current implementation is guaranteed to wait, it is not 1141 * obligated to, for example, if there are no pending callbacks. 1142 */ 1143 void rcu_barrier_tasks(void) 1144 { 1145 rcu_barrier_tasks_generic(&rcu_tasks); 1146 } 1147 EXPORT_SYMBOL_GPL(rcu_barrier_tasks); 1148 1149 static int rcu_tasks_lazy_ms = -1; 1150 module_param(rcu_tasks_lazy_ms, int, 0444); 1151 1152 static int __init rcu_spawn_tasks_kthread(void) 1153 { 1154 rcu_tasks.gp_sleep = HZ / 10; 1155 rcu_tasks.init_fract = HZ / 10; 1156 if (rcu_tasks_lazy_ms >= 0) 1157 rcu_tasks.lazy_jiffies = msecs_to_jiffies(rcu_tasks_lazy_ms); 1158 rcu_tasks.pregp_func = rcu_tasks_pregp_step; 1159 rcu_tasks.pertask_func = rcu_tasks_pertask; 1160 rcu_tasks.postscan_func = rcu_tasks_postscan; 1161 rcu_tasks.holdouts_func = check_all_holdout_tasks; 1162 rcu_tasks.postgp_func = rcu_tasks_postgp; 1163 rcu_spawn_tasks_kthread_generic(&rcu_tasks); 1164 return 0; 1165 } 1166 1167 #if !defined(CONFIG_TINY_RCU) 1168 void show_rcu_tasks_classic_gp_kthread(void) 1169 { 1170 show_rcu_tasks_generic_gp_kthread(&rcu_tasks, ""); 1171 } 1172 EXPORT_SYMBOL_GPL(show_rcu_tasks_classic_gp_kthread); 1173 #endif // !defined(CONFIG_TINY_RCU) 1174 1175 struct task_struct *get_rcu_tasks_gp_kthread(void) 1176 { 1177 return rcu_tasks.kthread_ptr; 1178 } 1179 EXPORT_SYMBOL_GPL(get_rcu_tasks_gp_kthread); 1180 1181 /* 1182 * Protect against tasklist scan blind spot while the task is exiting and 1183 * may be removed from the tasklist. Do this by adding the task to yet 1184 * another list. 1185 * 1186 * Note that the task will remove itself from this list, so there is no 1187 * need for get_task_struct(), except in the case where rcu_tasks_pertask() 1188 * adds it to the holdout list, in which case rcu_tasks_pertask() supplies 1189 * the needed get_task_struct(). 1190 */ 1191 void exit_tasks_rcu_start(void) 1192 { 1193 unsigned long flags; 1194 struct rcu_tasks_percpu *rtpcp; 1195 struct task_struct *t = current; 1196 1197 WARN_ON_ONCE(!list_empty(&t->rcu_tasks_exit_list)); 1198 preempt_disable(); 1199 rtpcp = this_cpu_ptr(rcu_tasks.rtpcpu); 1200 t->rcu_tasks_exit_cpu = smp_processor_id(); 1201 raw_spin_lock_irqsave_rcu_node(rtpcp, flags); 1202 if (!rtpcp->rtp_exit_list.next) 1203 INIT_LIST_HEAD(&rtpcp->rtp_exit_list); 1204 list_add(&t->rcu_tasks_exit_list, &rtpcp->rtp_exit_list); 1205 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 1206 preempt_enable(); 1207 } 1208 1209 /* 1210 * Remove the task from the "yet another list" because do_exit() is now 1211 * non-preemptible, allowing synchronize_rcu() to wait beyond this point. 1212 */ 1213 void exit_tasks_rcu_stop(void) 1214 { 1215 unsigned long flags; 1216 struct rcu_tasks_percpu *rtpcp; 1217 struct task_struct *t = current; 1218 1219 WARN_ON_ONCE(list_empty(&t->rcu_tasks_exit_list)); 1220 rtpcp = per_cpu_ptr(rcu_tasks.rtpcpu, t->rcu_tasks_exit_cpu); 1221 raw_spin_lock_irqsave_rcu_node(rtpcp, flags); 1222 list_del_init(&t->rcu_tasks_exit_list); 1223 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 1224 } 1225 1226 /* 1227 * Contribute to protect against tasklist scan blind spot while the 1228 * task is exiting and may be removed from the tasklist. See 1229 * corresponding synchronize_srcu() for further details. 1230 */ 1231 void exit_tasks_rcu_finish(void) 1232 { 1233 exit_tasks_rcu_stop(); 1234 exit_tasks_rcu_finish_trace(current); 1235 } 1236 1237 #else /* #ifdef CONFIG_TASKS_RCU */ 1238 void exit_tasks_rcu_start(void) { } 1239 void exit_tasks_rcu_stop(void) { } 1240 void exit_tasks_rcu_finish(void) { exit_tasks_rcu_finish_trace(current); } 1241 #endif /* #else #ifdef CONFIG_TASKS_RCU */ 1242 1243 #ifdef CONFIG_TASKS_RUDE_RCU 1244 1245 //////////////////////////////////////////////////////////////////////// 1246 // 1247 // "Rude" variant of Tasks RCU, inspired by Steve Rostedt's trick of 1248 // passing an empty function to schedule_on_each_cpu(). This approach 1249 // provides an asynchronous call_rcu_tasks_rude() API and batching of 1250 // concurrent calls to the synchronous synchronize_rcu_tasks_rude() API. 1251 // This invokes schedule_on_each_cpu() in order to send IPIs far and wide 1252 // and induces otherwise unnecessary context switches on all online CPUs, 1253 // whether idle or not. 1254 // 1255 // Callback handling is provided by the rcu_tasks_kthread() function. 1256 // 1257 // Ordering is provided by the scheduler's context-switch code. 1258 1259 // Empty function to allow workqueues to force a context switch. 1260 static void rcu_tasks_be_rude(struct work_struct *work) 1261 { 1262 } 1263 1264 // Wait for one rude RCU-tasks grace period. 1265 static void rcu_tasks_rude_wait_gp(struct rcu_tasks *rtp) 1266 { 1267 rtp->n_ipis += cpumask_weight(cpu_online_mask); 1268 schedule_on_each_cpu(rcu_tasks_be_rude); 1269 } 1270 1271 void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func); 1272 DEFINE_RCU_TASKS(rcu_tasks_rude, rcu_tasks_rude_wait_gp, call_rcu_tasks_rude, 1273 "RCU Tasks Rude"); 1274 1275 /** 1276 * call_rcu_tasks_rude() - Queue a callback rude task-based grace period 1277 * @rhp: structure to be used for queueing the RCU updates. 1278 * @func: actual callback function to be invoked after the grace period 1279 * 1280 * The callback function will be invoked some time after a full grace 1281 * period elapses, in other words after all currently executing RCU 1282 * read-side critical sections have completed. call_rcu_tasks_rude() 1283 * assumes that the read-side critical sections end at context switch, 1284 * cond_resched_tasks_rcu_qs(), or transition to usermode execution (as 1285 * usermode execution is schedulable). As such, there are no read-side 1286 * primitives analogous to rcu_read_lock() and rcu_read_unlock() because 1287 * this primitive is intended to determine that all tasks have passed 1288 * through a safe state, not so much for data-structure synchronization. 1289 * 1290 * See the description of call_rcu() for more detailed information on 1291 * memory ordering guarantees. 1292 */ 1293 void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func) 1294 { 1295 call_rcu_tasks_generic(rhp, func, &rcu_tasks_rude); 1296 } 1297 EXPORT_SYMBOL_GPL(call_rcu_tasks_rude); 1298 1299 /** 1300 * synchronize_rcu_tasks_rude - wait for a rude rcu-tasks grace period 1301 * 1302 * Control will return to the caller some time after a rude rcu-tasks 1303 * grace period has elapsed, in other words after all currently 1304 * executing rcu-tasks read-side critical sections have elapsed. These 1305 * read-side critical sections are delimited by calls to schedule(), 1306 * cond_resched_tasks_rcu_qs(), userspace execution (which is a schedulable 1307 * context), and (in theory, anyway) cond_resched(). 1308 * 1309 * This is a very specialized primitive, intended only for a few uses in 1310 * tracing and other situations requiring manipulation of function preambles 1311 * and profiling hooks. The synchronize_rcu_tasks_rude() function is not 1312 * (yet) intended for heavy use from multiple CPUs. 1313 * 1314 * See the description of synchronize_rcu() for more detailed information 1315 * on memory ordering guarantees. 1316 */ 1317 void synchronize_rcu_tasks_rude(void) 1318 { 1319 synchronize_rcu_tasks_generic(&rcu_tasks_rude); 1320 } 1321 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_rude); 1322 1323 /** 1324 * rcu_barrier_tasks_rude - Wait for in-flight call_rcu_tasks_rude() callbacks. 1325 * 1326 * Although the current implementation is guaranteed to wait, it is not 1327 * obligated to, for example, if there are no pending callbacks. 1328 */ 1329 void rcu_barrier_tasks_rude(void) 1330 { 1331 rcu_barrier_tasks_generic(&rcu_tasks_rude); 1332 } 1333 EXPORT_SYMBOL_GPL(rcu_barrier_tasks_rude); 1334 1335 int rcu_tasks_rude_lazy_ms = -1; 1336 module_param(rcu_tasks_rude_lazy_ms, int, 0444); 1337 1338 static int __init rcu_spawn_tasks_rude_kthread(void) 1339 { 1340 rcu_tasks_rude.gp_sleep = HZ / 10; 1341 if (rcu_tasks_rude_lazy_ms >= 0) 1342 rcu_tasks_rude.lazy_jiffies = msecs_to_jiffies(rcu_tasks_rude_lazy_ms); 1343 rcu_spawn_tasks_kthread_generic(&rcu_tasks_rude); 1344 return 0; 1345 } 1346 1347 #if !defined(CONFIG_TINY_RCU) 1348 void show_rcu_tasks_rude_gp_kthread(void) 1349 { 1350 show_rcu_tasks_generic_gp_kthread(&rcu_tasks_rude, ""); 1351 } 1352 EXPORT_SYMBOL_GPL(show_rcu_tasks_rude_gp_kthread); 1353 #endif // !defined(CONFIG_TINY_RCU) 1354 1355 struct task_struct *get_rcu_tasks_rude_gp_kthread(void) 1356 { 1357 return rcu_tasks_rude.kthread_ptr; 1358 } 1359 EXPORT_SYMBOL_GPL(get_rcu_tasks_rude_gp_kthread); 1360 1361 #endif /* #ifdef CONFIG_TASKS_RUDE_RCU */ 1362 1363 //////////////////////////////////////////////////////////////////////// 1364 // 1365 // Tracing variant of Tasks RCU. This variant is designed to be used 1366 // to protect tracing hooks, including those of BPF. This variant 1367 // therefore: 1368 // 1369 // 1. Has explicit read-side markers to allow finite grace periods 1370 // in the face of in-kernel loops for PREEMPT=n builds. 1371 // 1372 // 2. Protects code in the idle loop, exception entry/exit, and 1373 // CPU-hotplug code paths, similar to the capabilities of SRCU. 1374 // 1375 // 3. Avoids expensive read-side instructions, having overhead similar 1376 // to that of Preemptible RCU. 1377 // 1378 // There are of course downsides. For example, the grace-period code 1379 // can send IPIs to CPUs, even when those CPUs are in the idle loop or 1380 // in nohz_full userspace. If needed, these downsides can be at least 1381 // partially remedied. 1382 // 1383 // Perhaps most important, this variant of RCU does not affect the vanilla 1384 // flavors, rcu_preempt and rcu_sched. The fact that RCU Tasks Trace 1385 // readers can operate from idle, offline, and exception entry/exit in no 1386 // way allows rcu_preempt and rcu_sched readers to also do so. 1387 // 1388 // The implementation uses rcu_tasks_wait_gp(), which relies on function 1389 // pointers in the rcu_tasks structure. The rcu_spawn_tasks_trace_kthread() 1390 // function sets these function pointers up so that rcu_tasks_wait_gp() 1391 // invokes these functions in this order: 1392 // 1393 // rcu_tasks_trace_pregp_step(): 1394 // Disables CPU hotplug, adds all currently executing tasks to the 1395 // holdout list, then checks the state of all tasks that blocked 1396 // or were preempted within their current RCU Tasks Trace read-side 1397 // critical section, adding them to the holdout list if appropriate. 1398 // Finally, this function re-enables CPU hotplug. 1399 // The ->pertask_func() pointer is NULL, so there is no per-task processing. 1400 // rcu_tasks_trace_postscan(): 1401 // Invokes synchronize_rcu() to wait for late-stage exiting tasks 1402 // to finish exiting. 1403 // check_all_holdout_tasks_trace(), repeatedly until holdout list is empty: 1404 // Scans the holdout list, attempting to identify a quiescent state 1405 // for each task on the list. If there is a quiescent state, the 1406 // corresponding task is removed from the holdout list. Once this 1407 // list is empty, the grace period has completed. 1408 // rcu_tasks_trace_postgp(): 1409 // Provides the needed full memory barrier and does debug checks. 1410 // 1411 // The exit_tasks_rcu_finish_trace() synchronizes with exiting tasks. 1412 // 1413 // Pre-grace-period update-side code is ordered before the grace period 1414 // via the ->cbs_lock and barriers in rcu_tasks_kthread(). Pre-grace-period 1415 // read-side code is ordered before the grace period by atomic operations 1416 // on .b.need_qs flag of each task involved in this process, or by scheduler 1417 // context-switch ordering (for locked-down non-running readers). 1418 1419 // The lockdep state must be outside of #ifdef to be useful. 1420 #ifdef CONFIG_DEBUG_LOCK_ALLOC 1421 static struct lock_class_key rcu_lock_trace_key; 1422 struct lockdep_map rcu_trace_lock_map = 1423 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_trace", &rcu_lock_trace_key); 1424 EXPORT_SYMBOL_GPL(rcu_trace_lock_map); 1425 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 1426 1427 #ifdef CONFIG_TASKS_TRACE_RCU 1428 1429 // Record outstanding IPIs to each CPU. No point in sending two... 1430 static DEFINE_PER_CPU(bool, trc_ipi_to_cpu); 1431 1432 // The number of detections of task quiescent state relying on 1433 // heavyweight readers executing explicit memory barriers. 1434 static unsigned long n_heavy_reader_attempts; 1435 static unsigned long n_heavy_reader_updates; 1436 static unsigned long n_heavy_reader_ofl_updates; 1437 static unsigned long n_trc_holdouts; 1438 1439 void call_rcu_tasks_trace(struct rcu_head *rhp, rcu_callback_t func); 1440 DEFINE_RCU_TASKS(rcu_tasks_trace, rcu_tasks_wait_gp, call_rcu_tasks_trace, 1441 "RCU Tasks Trace"); 1442 1443 /* Load from ->trc_reader_special.b.need_qs with proper ordering. */ 1444 static u8 rcu_ld_need_qs(struct task_struct *t) 1445 { 1446 smp_mb(); // Enforce full grace-period ordering. 1447 return smp_load_acquire(&t->trc_reader_special.b.need_qs); 1448 } 1449 1450 /* Store to ->trc_reader_special.b.need_qs with proper ordering. */ 1451 static void rcu_st_need_qs(struct task_struct *t, u8 v) 1452 { 1453 smp_store_release(&t->trc_reader_special.b.need_qs, v); 1454 smp_mb(); // Enforce full grace-period ordering. 1455 } 1456 1457 /* 1458 * Do a cmpxchg() on ->trc_reader_special.b.need_qs, allowing for 1459 * the four-byte operand-size restriction of some platforms. 1460 * Returns the old value, which is often ignored. 1461 */ 1462 u8 rcu_trc_cmpxchg_need_qs(struct task_struct *t, u8 old, u8 new) 1463 { 1464 union rcu_special ret; 1465 union rcu_special trs_old = READ_ONCE(t->trc_reader_special); 1466 union rcu_special trs_new = trs_old; 1467 1468 if (trs_old.b.need_qs != old) 1469 return trs_old.b.need_qs; 1470 trs_new.b.need_qs = new; 1471 ret.s = cmpxchg(&t->trc_reader_special.s, trs_old.s, trs_new.s); 1472 return ret.b.need_qs; 1473 } 1474 EXPORT_SYMBOL_GPL(rcu_trc_cmpxchg_need_qs); 1475 1476 /* 1477 * If we are the last reader, signal the grace-period kthread. 1478 * Also remove from the per-CPU list of blocked tasks. 1479 */ 1480 void rcu_read_unlock_trace_special(struct task_struct *t) 1481 { 1482 unsigned long flags; 1483 struct rcu_tasks_percpu *rtpcp; 1484 union rcu_special trs; 1485 1486 // Open-coded full-word version of rcu_ld_need_qs(). 1487 smp_mb(); // Enforce full grace-period ordering. 1488 trs = smp_load_acquire(&t->trc_reader_special); 1489 1490 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) && t->trc_reader_special.b.need_mb) 1491 smp_mb(); // Pairs with update-side barriers. 1492 // Update .need_qs before ->trc_reader_nesting for irq/NMI handlers. 1493 if (trs.b.need_qs == (TRC_NEED_QS_CHECKED | TRC_NEED_QS)) { 1494 u8 result = rcu_trc_cmpxchg_need_qs(t, TRC_NEED_QS_CHECKED | TRC_NEED_QS, 1495 TRC_NEED_QS_CHECKED); 1496 1497 WARN_ONCE(result != trs.b.need_qs, "%s: result = %d", __func__, result); 1498 } 1499 if (trs.b.blocked) { 1500 rtpcp = per_cpu_ptr(rcu_tasks_trace.rtpcpu, t->trc_blkd_cpu); 1501 raw_spin_lock_irqsave_rcu_node(rtpcp, flags); 1502 list_del_init(&t->trc_blkd_node); 1503 WRITE_ONCE(t->trc_reader_special.b.blocked, false); 1504 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 1505 } 1506 WRITE_ONCE(t->trc_reader_nesting, 0); 1507 } 1508 EXPORT_SYMBOL_GPL(rcu_read_unlock_trace_special); 1509 1510 /* Add a newly blocked reader task to its CPU's list. */ 1511 void rcu_tasks_trace_qs_blkd(struct task_struct *t) 1512 { 1513 unsigned long flags; 1514 struct rcu_tasks_percpu *rtpcp; 1515 1516 local_irq_save(flags); 1517 rtpcp = this_cpu_ptr(rcu_tasks_trace.rtpcpu); 1518 raw_spin_lock_rcu_node(rtpcp); // irqs already disabled 1519 t->trc_blkd_cpu = smp_processor_id(); 1520 if (!rtpcp->rtp_blkd_tasks.next) 1521 INIT_LIST_HEAD(&rtpcp->rtp_blkd_tasks); 1522 list_add(&t->trc_blkd_node, &rtpcp->rtp_blkd_tasks); 1523 WRITE_ONCE(t->trc_reader_special.b.blocked, true); 1524 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 1525 } 1526 EXPORT_SYMBOL_GPL(rcu_tasks_trace_qs_blkd); 1527 1528 /* Add a task to the holdout list, if it is not already on the list. */ 1529 static void trc_add_holdout(struct task_struct *t, struct list_head *bhp) 1530 { 1531 if (list_empty(&t->trc_holdout_list)) { 1532 get_task_struct(t); 1533 list_add(&t->trc_holdout_list, bhp); 1534 n_trc_holdouts++; 1535 } 1536 } 1537 1538 /* Remove a task from the holdout list, if it is in fact present. */ 1539 static void trc_del_holdout(struct task_struct *t) 1540 { 1541 if (!list_empty(&t->trc_holdout_list)) { 1542 list_del_init(&t->trc_holdout_list); 1543 put_task_struct(t); 1544 n_trc_holdouts--; 1545 } 1546 } 1547 1548 /* IPI handler to check task state. */ 1549 static void trc_read_check_handler(void *t_in) 1550 { 1551 int nesting; 1552 struct task_struct *t = current; 1553 struct task_struct *texp = t_in; 1554 1555 // If the task is no longer running on this CPU, leave. 1556 if (unlikely(texp != t)) 1557 goto reset_ipi; // Already on holdout list, so will check later. 1558 1559 // If the task is not in a read-side critical section, and 1560 // if this is the last reader, awaken the grace-period kthread. 1561 nesting = READ_ONCE(t->trc_reader_nesting); 1562 if (likely(!nesting)) { 1563 rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED); 1564 goto reset_ipi; 1565 } 1566 // If we are racing with an rcu_read_unlock_trace(), try again later. 1567 if (unlikely(nesting < 0)) 1568 goto reset_ipi; 1569 1570 // Get here if the task is in a read-side critical section. 1571 // Set its state so that it will update state for the grace-period 1572 // kthread upon exit from that critical section. 1573 rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS | TRC_NEED_QS_CHECKED); 1574 1575 reset_ipi: 1576 // Allow future IPIs to be sent on CPU and for task. 1577 // Also order this IPI handler against any later manipulations of 1578 // the intended task. 1579 smp_store_release(per_cpu_ptr(&trc_ipi_to_cpu, smp_processor_id()), false); // ^^^ 1580 smp_store_release(&texp->trc_ipi_to_cpu, -1); // ^^^ 1581 } 1582 1583 /* Callback function for scheduler to check locked-down task. */ 1584 static int trc_inspect_reader(struct task_struct *t, void *bhp_in) 1585 { 1586 struct list_head *bhp = bhp_in; 1587 int cpu = task_cpu(t); 1588 int nesting; 1589 bool ofl = cpu_is_offline(cpu); 1590 1591 if (task_curr(t) && !ofl) { 1592 // If no chance of heavyweight readers, do it the hard way. 1593 if (!IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB)) 1594 return -EINVAL; 1595 1596 // If heavyweight readers are enabled on the remote task, 1597 // we can inspect its state despite its currently running. 1598 // However, we cannot safely change its state. 1599 n_heavy_reader_attempts++; 1600 // Check for "running" idle tasks on offline CPUs. 1601 if (!rcu_dynticks_zero_in_eqs(cpu, &t->trc_reader_nesting)) 1602 return -EINVAL; // No quiescent state, do it the hard way. 1603 n_heavy_reader_updates++; 1604 nesting = 0; 1605 } else { 1606 // The task is not running, so C-language access is safe. 1607 nesting = t->trc_reader_nesting; 1608 WARN_ON_ONCE(ofl && task_curr(t) && (t != idle_task(task_cpu(t)))); 1609 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) && ofl) 1610 n_heavy_reader_ofl_updates++; 1611 } 1612 1613 // If not exiting a read-side critical section, mark as checked 1614 // so that the grace-period kthread will remove it from the 1615 // holdout list. 1616 if (!nesting) { 1617 rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED); 1618 return 0; // In QS, so done. 1619 } 1620 if (nesting < 0) 1621 return -EINVAL; // Reader transitioning, try again later. 1622 1623 // The task is in a read-side critical section, so set up its 1624 // state so that it will update state upon exit from that critical 1625 // section. 1626 if (!rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS | TRC_NEED_QS_CHECKED)) 1627 trc_add_holdout(t, bhp); 1628 return 0; 1629 } 1630 1631 /* Attempt to extract the state for the specified task. */ 1632 static void trc_wait_for_one_reader(struct task_struct *t, 1633 struct list_head *bhp) 1634 { 1635 int cpu; 1636 1637 // If a previous IPI is still in flight, let it complete. 1638 if (smp_load_acquire(&t->trc_ipi_to_cpu) != -1) // Order IPI 1639 return; 1640 1641 // The current task had better be in a quiescent state. 1642 if (t == current) { 1643 rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED); 1644 WARN_ON_ONCE(READ_ONCE(t->trc_reader_nesting)); 1645 return; 1646 } 1647 1648 // Attempt to nail down the task for inspection. 1649 get_task_struct(t); 1650 if (!task_call_func(t, trc_inspect_reader, bhp)) { 1651 put_task_struct(t); 1652 return; 1653 } 1654 put_task_struct(t); 1655 1656 // If this task is not yet on the holdout list, then we are in 1657 // an RCU read-side critical section. Otherwise, the invocation of 1658 // trc_add_holdout() that added it to the list did the necessary 1659 // get_task_struct(). Either way, the task cannot be freed out 1660 // from under this code. 1661 1662 // If currently running, send an IPI, either way, add to list. 1663 trc_add_holdout(t, bhp); 1664 if (task_curr(t) && 1665 time_after(jiffies + 1, rcu_tasks_trace.gp_start + rcu_task_ipi_delay)) { 1666 // The task is currently running, so try IPIing it. 1667 cpu = task_cpu(t); 1668 1669 // If there is already an IPI outstanding, let it happen. 1670 if (per_cpu(trc_ipi_to_cpu, cpu) || t->trc_ipi_to_cpu >= 0) 1671 return; 1672 1673 per_cpu(trc_ipi_to_cpu, cpu) = true; 1674 t->trc_ipi_to_cpu = cpu; 1675 rcu_tasks_trace.n_ipis++; 1676 if (smp_call_function_single(cpu, trc_read_check_handler, t, 0)) { 1677 // Just in case there is some other reason for 1678 // failure than the target CPU being offline. 1679 WARN_ONCE(1, "%s(): smp_call_function_single() failed for CPU: %d\n", 1680 __func__, cpu); 1681 rcu_tasks_trace.n_ipis_fails++; 1682 per_cpu(trc_ipi_to_cpu, cpu) = false; 1683 t->trc_ipi_to_cpu = -1; 1684 } 1685 } 1686 } 1687 1688 /* 1689 * Initialize for first-round processing for the specified task. 1690 * Return false if task is NULL or already taken care of, true otherwise. 1691 */ 1692 static bool rcu_tasks_trace_pertask_prep(struct task_struct *t, bool notself) 1693 { 1694 // During early boot when there is only the one boot CPU, there 1695 // is no idle task for the other CPUs. Also, the grace-period 1696 // kthread is always in a quiescent state. In addition, just return 1697 // if this task is already on the list. 1698 if (unlikely(t == NULL) || (t == current && notself) || !list_empty(&t->trc_holdout_list)) 1699 return false; 1700 1701 rcu_st_need_qs(t, 0); 1702 t->trc_ipi_to_cpu = -1; 1703 return true; 1704 } 1705 1706 /* Do first-round processing for the specified task. */ 1707 static void rcu_tasks_trace_pertask(struct task_struct *t, struct list_head *hop) 1708 { 1709 if (rcu_tasks_trace_pertask_prep(t, true)) 1710 trc_wait_for_one_reader(t, hop); 1711 } 1712 1713 /* Initialize for a new RCU-tasks-trace grace period. */ 1714 static void rcu_tasks_trace_pregp_step(struct list_head *hop) 1715 { 1716 LIST_HEAD(blkd_tasks); 1717 int cpu; 1718 unsigned long flags; 1719 struct rcu_tasks_percpu *rtpcp; 1720 struct task_struct *t; 1721 1722 // There shouldn't be any old IPIs, but... 1723 for_each_possible_cpu(cpu) 1724 WARN_ON_ONCE(per_cpu(trc_ipi_to_cpu, cpu)); 1725 1726 // Disable CPU hotplug across the CPU scan for the benefit of 1727 // any IPIs that might be needed. This also waits for all readers 1728 // in CPU-hotplug code paths. 1729 cpus_read_lock(); 1730 1731 // These rcu_tasks_trace_pertask_prep() calls are serialized to 1732 // allow safe access to the hop list. 1733 for_each_online_cpu(cpu) { 1734 rcu_read_lock(); 1735 t = cpu_curr_snapshot(cpu); 1736 if (rcu_tasks_trace_pertask_prep(t, true)) 1737 trc_add_holdout(t, hop); 1738 rcu_read_unlock(); 1739 cond_resched_tasks_rcu_qs(); 1740 } 1741 1742 // Only after all running tasks have been accounted for is it 1743 // safe to take care of the tasks that have blocked within their 1744 // current RCU tasks trace read-side critical section. 1745 for_each_possible_cpu(cpu) { 1746 rtpcp = per_cpu_ptr(rcu_tasks_trace.rtpcpu, cpu); 1747 raw_spin_lock_irqsave_rcu_node(rtpcp, flags); 1748 list_splice_init(&rtpcp->rtp_blkd_tasks, &blkd_tasks); 1749 while (!list_empty(&blkd_tasks)) { 1750 rcu_read_lock(); 1751 t = list_first_entry(&blkd_tasks, struct task_struct, trc_blkd_node); 1752 list_del_init(&t->trc_blkd_node); 1753 list_add(&t->trc_blkd_node, &rtpcp->rtp_blkd_tasks); 1754 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 1755 rcu_tasks_trace_pertask(t, hop); 1756 rcu_read_unlock(); 1757 raw_spin_lock_irqsave_rcu_node(rtpcp, flags); 1758 } 1759 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 1760 cond_resched_tasks_rcu_qs(); 1761 } 1762 1763 // Re-enable CPU hotplug now that the holdout list is populated. 1764 cpus_read_unlock(); 1765 } 1766 1767 /* 1768 * Do intermediate processing between task and holdout scans. 1769 */ 1770 static void rcu_tasks_trace_postscan(struct list_head *hop) 1771 { 1772 // Wait for late-stage exiting tasks to finish exiting. 1773 // These might have passed the call to exit_tasks_rcu_finish(). 1774 1775 // If you remove the following line, update rcu_trace_implies_rcu_gp()!!! 1776 synchronize_rcu(); 1777 // Any tasks that exit after this point will set 1778 // TRC_NEED_QS_CHECKED in ->trc_reader_special.b.need_qs. 1779 } 1780 1781 /* Communicate task state back to the RCU tasks trace stall warning request. */ 1782 struct trc_stall_chk_rdr { 1783 int nesting; 1784 int ipi_to_cpu; 1785 u8 needqs; 1786 }; 1787 1788 static int trc_check_slow_task(struct task_struct *t, void *arg) 1789 { 1790 struct trc_stall_chk_rdr *trc_rdrp = arg; 1791 1792 if (task_curr(t) && cpu_online(task_cpu(t))) 1793 return false; // It is running, so decline to inspect it. 1794 trc_rdrp->nesting = READ_ONCE(t->trc_reader_nesting); 1795 trc_rdrp->ipi_to_cpu = READ_ONCE(t->trc_ipi_to_cpu); 1796 trc_rdrp->needqs = rcu_ld_need_qs(t); 1797 return true; 1798 } 1799 1800 /* Show the state of a task stalling the current RCU tasks trace GP. */ 1801 static void show_stalled_task_trace(struct task_struct *t, bool *firstreport) 1802 { 1803 int cpu; 1804 struct trc_stall_chk_rdr trc_rdr; 1805 bool is_idle_tsk = is_idle_task(t); 1806 1807 if (*firstreport) { 1808 pr_err("INFO: rcu_tasks_trace detected stalls on tasks:\n"); 1809 *firstreport = false; 1810 } 1811 cpu = task_cpu(t); 1812 if (!task_call_func(t, trc_check_slow_task, &trc_rdr)) 1813 pr_alert("P%d: %c%c\n", 1814 t->pid, 1815 ".I"[t->trc_ipi_to_cpu >= 0], 1816 ".i"[is_idle_tsk]); 1817 else 1818 pr_alert("P%d: %c%c%c%c nesting: %d%c%c cpu: %d%s\n", 1819 t->pid, 1820 ".I"[trc_rdr.ipi_to_cpu >= 0], 1821 ".i"[is_idle_tsk], 1822 ".N"[cpu >= 0 && tick_nohz_full_cpu(cpu)], 1823 ".B"[!!data_race(t->trc_reader_special.b.blocked)], 1824 trc_rdr.nesting, 1825 " !CN"[trc_rdr.needqs & 0x3], 1826 " ?"[trc_rdr.needqs > 0x3], 1827 cpu, cpu_online(cpu) ? "" : "(offline)"); 1828 sched_show_task(t); 1829 } 1830 1831 /* List stalled IPIs for RCU tasks trace. */ 1832 static void show_stalled_ipi_trace(void) 1833 { 1834 int cpu; 1835 1836 for_each_possible_cpu(cpu) 1837 if (per_cpu(trc_ipi_to_cpu, cpu)) 1838 pr_alert("\tIPI outstanding to CPU %d\n", cpu); 1839 } 1840 1841 /* Do one scan of the holdout list. */ 1842 static void check_all_holdout_tasks_trace(struct list_head *hop, 1843 bool needreport, bool *firstreport) 1844 { 1845 struct task_struct *g, *t; 1846 1847 // Disable CPU hotplug across the holdout list scan for IPIs. 1848 cpus_read_lock(); 1849 1850 list_for_each_entry_safe(t, g, hop, trc_holdout_list) { 1851 // If safe and needed, try to check the current task. 1852 if (READ_ONCE(t->trc_ipi_to_cpu) == -1 && 1853 !(rcu_ld_need_qs(t) & TRC_NEED_QS_CHECKED)) 1854 trc_wait_for_one_reader(t, hop); 1855 1856 // If check succeeded, remove this task from the list. 1857 if (smp_load_acquire(&t->trc_ipi_to_cpu) == -1 && 1858 rcu_ld_need_qs(t) == TRC_NEED_QS_CHECKED) 1859 trc_del_holdout(t); 1860 else if (needreport) 1861 show_stalled_task_trace(t, firstreport); 1862 cond_resched_tasks_rcu_qs(); 1863 } 1864 1865 // Re-enable CPU hotplug now that the holdout list scan has completed. 1866 cpus_read_unlock(); 1867 1868 if (needreport) { 1869 if (*firstreport) 1870 pr_err("INFO: rcu_tasks_trace detected stalls? (Late IPI?)\n"); 1871 show_stalled_ipi_trace(); 1872 } 1873 } 1874 1875 static void rcu_tasks_trace_empty_fn(void *unused) 1876 { 1877 } 1878 1879 /* Wait for grace period to complete and provide ordering. */ 1880 static void rcu_tasks_trace_postgp(struct rcu_tasks *rtp) 1881 { 1882 int cpu; 1883 1884 // Wait for any lingering IPI handlers to complete. Note that 1885 // if a CPU has gone offline or transitioned to userspace in the 1886 // meantime, all IPI handlers should have been drained beforehand. 1887 // Yes, this assumes that CPUs process IPIs in order. If that ever 1888 // changes, there will need to be a recheck and/or timed wait. 1889 for_each_online_cpu(cpu) 1890 if (WARN_ON_ONCE(smp_load_acquire(per_cpu_ptr(&trc_ipi_to_cpu, cpu)))) 1891 smp_call_function_single(cpu, rcu_tasks_trace_empty_fn, NULL, 1); 1892 1893 smp_mb(); // Caller's code must be ordered after wakeup. 1894 // Pairs with pretty much every ordering primitive. 1895 } 1896 1897 /* Report any needed quiescent state for this exiting task. */ 1898 static void exit_tasks_rcu_finish_trace(struct task_struct *t) 1899 { 1900 union rcu_special trs = READ_ONCE(t->trc_reader_special); 1901 1902 rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED); 1903 WARN_ON_ONCE(READ_ONCE(t->trc_reader_nesting)); 1904 if (WARN_ON_ONCE(rcu_ld_need_qs(t) & TRC_NEED_QS || trs.b.blocked)) 1905 rcu_read_unlock_trace_special(t); 1906 else 1907 WRITE_ONCE(t->trc_reader_nesting, 0); 1908 } 1909 1910 /** 1911 * call_rcu_tasks_trace() - Queue a callback trace task-based grace period 1912 * @rhp: structure to be used for queueing the RCU updates. 1913 * @func: actual callback function to be invoked after the grace period 1914 * 1915 * The callback function will be invoked some time after a trace rcu-tasks 1916 * grace period elapses, in other words after all currently executing 1917 * trace rcu-tasks read-side critical sections have completed. These 1918 * read-side critical sections are delimited by calls to rcu_read_lock_trace() 1919 * and rcu_read_unlock_trace(). 1920 * 1921 * See the description of call_rcu() for more detailed information on 1922 * memory ordering guarantees. 1923 */ 1924 void call_rcu_tasks_trace(struct rcu_head *rhp, rcu_callback_t func) 1925 { 1926 call_rcu_tasks_generic(rhp, func, &rcu_tasks_trace); 1927 } 1928 EXPORT_SYMBOL_GPL(call_rcu_tasks_trace); 1929 1930 /** 1931 * synchronize_rcu_tasks_trace - wait for a trace rcu-tasks grace period 1932 * 1933 * Control will return to the caller some time after a trace rcu-tasks 1934 * grace period has elapsed, in other words after all currently executing 1935 * trace rcu-tasks read-side critical sections have elapsed. These read-side 1936 * critical sections are delimited by calls to rcu_read_lock_trace() 1937 * and rcu_read_unlock_trace(). 1938 * 1939 * This is a very specialized primitive, intended only for a few uses in 1940 * tracing and other situations requiring manipulation of function preambles 1941 * and profiling hooks. The synchronize_rcu_tasks_trace() function is not 1942 * (yet) intended for heavy use from multiple CPUs. 1943 * 1944 * See the description of synchronize_rcu() for more detailed information 1945 * on memory ordering guarantees. 1946 */ 1947 void synchronize_rcu_tasks_trace(void) 1948 { 1949 RCU_LOCKDEP_WARN(lock_is_held(&rcu_trace_lock_map), "Illegal synchronize_rcu_tasks_trace() in RCU Tasks Trace read-side critical section"); 1950 synchronize_rcu_tasks_generic(&rcu_tasks_trace); 1951 } 1952 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_trace); 1953 1954 /** 1955 * rcu_barrier_tasks_trace - Wait for in-flight call_rcu_tasks_trace() callbacks. 1956 * 1957 * Although the current implementation is guaranteed to wait, it is not 1958 * obligated to, for example, if there are no pending callbacks. 1959 */ 1960 void rcu_barrier_tasks_trace(void) 1961 { 1962 rcu_barrier_tasks_generic(&rcu_tasks_trace); 1963 } 1964 EXPORT_SYMBOL_GPL(rcu_barrier_tasks_trace); 1965 1966 int rcu_tasks_trace_lazy_ms = -1; 1967 module_param(rcu_tasks_trace_lazy_ms, int, 0444); 1968 1969 static int __init rcu_spawn_tasks_trace_kthread(void) 1970 { 1971 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB)) { 1972 rcu_tasks_trace.gp_sleep = HZ / 10; 1973 rcu_tasks_trace.init_fract = HZ / 10; 1974 } else { 1975 rcu_tasks_trace.gp_sleep = HZ / 200; 1976 if (rcu_tasks_trace.gp_sleep <= 0) 1977 rcu_tasks_trace.gp_sleep = 1; 1978 rcu_tasks_trace.init_fract = HZ / 200; 1979 if (rcu_tasks_trace.init_fract <= 0) 1980 rcu_tasks_trace.init_fract = 1; 1981 } 1982 if (rcu_tasks_trace_lazy_ms >= 0) 1983 rcu_tasks_trace.lazy_jiffies = msecs_to_jiffies(rcu_tasks_trace_lazy_ms); 1984 rcu_tasks_trace.pregp_func = rcu_tasks_trace_pregp_step; 1985 rcu_tasks_trace.postscan_func = rcu_tasks_trace_postscan; 1986 rcu_tasks_trace.holdouts_func = check_all_holdout_tasks_trace; 1987 rcu_tasks_trace.postgp_func = rcu_tasks_trace_postgp; 1988 rcu_spawn_tasks_kthread_generic(&rcu_tasks_trace); 1989 return 0; 1990 } 1991 1992 #if !defined(CONFIG_TINY_RCU) 1993 void show_rcu_tasks_trace_gp_kthread(void) 1994 { 1995 char buf[64]; 1996 1997 sprintf(buf, "N%lu h:%lu/%lu/%lu", 1998 data_race(n_trc_holdouts), 1999 data_race(n_heavy_reader_ofl_updates), 2000 data_race(n_heavy_reader_updates), 2001 data_race(n_heavy_reader_attempts)); 2002 show_rcu_tasks_generic_gp_kthread(&rcu_tasks_trace, buf); 2003 } 2004 EXPORT_SYMBOL_GPL(show_rcu_tasks_trace_gp_kthread); 2005 #endif // !defined(CONFIG_TINY_RCU) 2006 2007 struct task_struct *get_rcu_tasks_trace_gp_kthread(void) 2008 { 2009 return rcu_tasks_trace.kthread_ptr; 2010 } 2011 EXPORT_SYMBOL_GPL(get_rcu_tasks_trace_gp_kthread); 2012 2013 #else /* #ifdef CONFIG_TASKS_TRACE_RCU */ 2014 static void exit_tasks_rcu_finish_trace(struct task_struct *t) { } 2015 #endif /* #else #ifdef CONFIG_TASKS_TRACE_RCU */ 2016 2017 #ifndef CONFIG_TINY_RCU 2018 void show_rcu_tasks_gp_kthreads(void) 2019 { 2020 show_rcu_tasks_classic_gp_kthread(); 2021 show_rcu_tasks_rude_gp_kthread(); 2022 show_rcu_tasks_trace_gp_kthread(); 2023 } 2024 #endif /* #ifndef CONFIG_TINY_RCU */ 2025 2026 #ifdef CONFIG_PROVE_RCU 2027 struct rcu_tasks_test_desc { 2028 struct rcu_head rh; 2029 const char *name; 2030 bool notrun; 2031 unsigned long runstart; 2032 }; 2033 2034 static struct rcu_tasks_test_desc tests[] = { 2035 { 2036 .name = "call_rcu_tasks()", 2037 /* If not defined, the test is skipped. */ 2038 .notrun = IS_ENABLED(CONFIG_TASKS_RCU), 2039 }, 2040 { 2041 .name = "call_rcu_tasks_rude()", 2042 /* If not defined, the test is skipped. */ 2043 .notrun = IS_ENABLED(CONFIG_TASKS_RUDE_RCU), 2044 }, 2045 { 2046 .name = "call_rcu_tasks_trace()", 2047 /* If not defined, the test is skipped. */ 2048 .notrun = IS_ENABLED(CONFIG_TASKS_TRACE_RCU) 2049 } 2050 }; 2051 2052 static void test_rcu_tasks_callback(struct rcu_head *rhp) 2053 { 2054 struct rcu_tasks_test_desc *rttd = 2055 container_of(rhp, struct rcu_tasks_test_desc, rh); 2056 2057 pr_info("Callback from %s invoked.\n", rttd->name); 2058 2059 rttd->notrun = false; 2060 } 2061 2062 static void rcu_tasks_initiate_self_tests(void) 2063 { 2064 #ifdef CONFIG_TASKS_RCU 2065 pr_info("Running RCU Tasks wait API self tests\n"); 2066 tests[0].runstart = jiffies; 2067 synchronize_rcu_tasks(); 2068 call_rcu_tasks(&tests[0].rh, test_rcu_tasks_callback); 2069 #endif 2070 2071 #ifdef CONFIG_TASKS_RUDE_RCU 2072 pr_info("Running RCU Tasks Rude wait API self tests\n"); 2073 tests[1].runstart = jiffies; 2074 synchronize_rcu_tasks_rude(); 2075 call_rcu_tasks_rude(&tests[1].rh, test_rcu_tasks_callback); 2076 #endif 2077 2078 #ifdef CONFIG_TASKS_TRACE_RCU 2079 pr_info("Running RCU Tasks Trace wait API self tests\n"); 2080 tests[2].runstart = jiffies; 2081 synchronize_rcu_tasks_trace(); 2082 call_rcu_tasks_trace(&tests[2].rh, test_rcu_tasks_callback); 2083 #endif 2084 } 2085 2086 /* 2087 * Return: 0 - test passed 2088 * 1 - test failed, but have not timed out yet 2089 * -1 - test failed and timed out 2090 */ 2091 static int rcu_tasks_verify_self_tests(void) 2092 { 2093 int ret = 0; 2094 int i; 2095 unsigned long bst = rcu_task_stall_timeout; 2096 2097 if (bst <= 0 || bst > RCU_TASK_BOOT_STALL_TIMEOUT) 2098 bst = RCU_TASK_BOOT_STALL_TIMEOUT; 2099 for (i = 0; i < ARRAY_SIZE(tests); i++) { 2100 while (tests[i].notrun) { // still hanging. 2101 if (time_after(jiffies, tests[i].runstart + bst)) { 2102 pr_err("%s has failed boot-time tests.\n", tests[i].name); 2103 ret = -1; 2104 break; 2105 } 2106 ret = 1; 2107 break; 2108 } 2109 } 2110 WARN_ON(ret < 0); 2111 2112 return ret; 2113 } 2114 2115 /* 2116 * Repeat the rcu_tasks_verify_self_tests() call once every second until the 2117 * test passes or has timed out. 2118 */ 2119 static struct delayed_work rcu_tasks_verify_work; 2120 static void rcu_tasks_verify_work_fn(struct work_struct *work __maybe_unused) 2121 { 2122 int ret = rcu_tasks_verify_self_tests(); 2123 2124 if (ret <= 0) 2125 return; 2126 2127 /* Test fails but not timed out yet, reschedule another check */ 2128 schedule_delayed_work(&rcu_tasks_verify_work, HZ); 2129 } 2130 2131 static int rcu_tasks_verify_schedule_work(void) 2132 { 2133 INIT_DELAYED_WORK(&rcu_tasks_verify_work, rcu_tasks_verify_work_fn); 2134 rcu_tasks_verify_work_fn(NULL); 2135 return 0; 2136 } 2137 late_initcall(rcu_tasks_verify_schedule_work); 2138 #else /* #ifdef CONFIG_PROVE_RCU */ 2139 static void rcu_tasks_initiate_self_tests(void) { } 2140 #endif /* #else #ifdef CONFIG_PROVE_RCU */ 2141 2142 void __init tasks_cblist_init_generic(void) 2143 { 2144 lockdep_assert_irqs_disabled(); 2145 WARN_ON(num_online_cpus() > 1); 2146 2147 #ifdef CONFIG_TASKS_RCU 2148 cblist_init_generic(&rcu_tasks); 2149 #endif 2150 2151 #ifdef CONFIG_TASKS_RUDE_RCU 2152 cblist_init_generic(&rcu_tasks_rude); 2153 #endif 2154 2155 #ifdef CONFIG_TASKS_TRACE_RCU 2156 cblist_init_generic(&rcu_tasks_trace); 2157 #endif 2158 } 2159 2160 void __init rcu_init_tasks_generic(void) 2161 { 2162 #ifdef CONFIG_TASKS_RCU 2163 rcu_spawn_tasks_kthread(); 2164 #endif 2165 2166 #ifdef CONFIG_TASKS_RUDE_RCU 2167 rcu_spawn_tasks_rude_kthread(); 2168 #endif 2169 2170 #ifdef CONFIG_TASKS_TRACE_RCU 2171 rcu_spawn_tasks_trace_kthread(); 2172 #endif 2173 2174 // Run the self-tests. 2175 rcu_tasks_initiate_self_tests(); 2176 } 2177 2178 #else /* #ifdef CONFIG_TASKS_RCU_GENERIC */ 2179 static inline void rcu_tasks_bootup_oddness(void) {} 2180 #endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */ 2181