xref: /linux/kernel/rcu/tasks.h (revision c532de5a67a70f8533d495f8f2aaa9a0491c3ad0)
1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3  * Task-based RCU implementations.
4  *
5  * Copyright (C) 2020 Paul E. McKenney
6  */
7 
8 #ifdef CONFIG_TASKS_RCU_GENERIC
9 #include "rcu_segcblist.h"
10 
11 ////////////////////////////////////////////////////////////////////////
12 //
13 // Generic data structures.
14 
15 struct rcu_tasks;
16 typedef void (*rcu_tasks_gp_func_t)(struct rcu_tasks *rtp);
17 typedef void (*pregp_func_t)(struct list_head *hop);
18 typedef void (*pertask_func_t)(struct task_struct *t, struct list_head *hop);
19 typedef void (*postscan_func_t)(struct list_head *hop);
20 typedef void (*holdouts_func_t)(struct list_head *hop, bool ndrpt, bool *frptp);
21 typedef void (*postgp_func_t)(struct rcu_tasks *rtp);
22 
23 /**
24  * struct rcu_tasks_percpu - Per-CPU component of definition for a Tasks-RCU-like mechanism.
25  * @cblist: Callback list.
26  * @lock: Lock protecting per-CPU callback list.
27  * @rtp_jiffies: Jiffies counter value for statistics.
28  * @lazy_timer: Timer to unlazify callbacks.
29  * @urgent_gp: Number of additional non-lazy grace periods.
30  * @rtp_n_lock_retries: Rough lock-contention statistic.
31  * @rtp_work: Work queue for invoking callbacks.
32  * @rtp_irq_work: IRQ work queue for deferred wakeups.
33  * @barrier_q_head: RCU callback for barrier operation.
34  * @rtp_blkd_tasks: List of tasks blocked as readers.
35  * @rtp_exit_list: List of tasks in the latter portion of do_exit().
36  * @cpu: CPU number corresponding to this entry.
37  * @index: Index of this CPU in rtpcp_array of the rcu_tasks structure.
38  * @rtpp: Pointer to the rcu_tasks structure.
39  */
40 struct rcu_tasks_percpu {
41 	struct rcu_segcblist cblist;
42 	raw_spinlock_t __private lock;
43 	unsigned long rtp_jiffies;
44 	unsigned long rtp_n_lock_retries;
45 	struct timer_list lazy_timer;
46 	unsigned int urgent_gp;
47 	struct work_struct rtp_work;
48 	struct irq_work rtp_irq_work;
49 	struct rcu_head barrier_q_head;
50 	struct list_head rtp_blkd_tasks;
51 	struct list_head rtp_exit_list;
52 	int cpu;
53 	int index;
54 	struct rcu_tasks *rtpp;
55 };
56 
57 /**
58  * struct rcu_tasks - Definition for a Tasks-RCU-like mechanism.
59  * @cbs_wait: RCU wait allowing a new callback to get kthread's attention.
60  * @cbs_gbl_lock: Lock protecting callback list.
61  * @tasks_gp_mutex: Mutex protecting grace period, needed during mid-boot dead zone.
62  * @gp_func: This flavor's grace-period-wait function.
63  * @gp_state: Grace period's most recent state transition (debugging).
64  * @gp_sleep: Per-grace-period sleep to prevent CPU-bound looping.
65  * @init_fract: Initial backoff sleep interval.
66  * @gp_jiffies: Time of last @gp_state transition.
67  * @gp_start: Most recent grace-period start in jiffies.
68  * @tasks_gp_seq: Number of grace periods completed since boot in upper bits.
69  * @n_ipis: Number of IPIs sent to encourage grace periods to end.
70  * @n_ipis_fails: Number of IPI-send failures.
71  * @kthread_ptr: This flavor's grace-period/callback-invocation kthread.
72  * @lazy_jiffies: Number of jiffies to allow callbacks to be lazy.
73  * @pregp_func: This flavor's pre-grace-period function (optional).
74  * @pertask_func: This flavor's per-task scan function (optional).
75  * @postscan_func: This flavor's post-task scan function (optional).
76  * @holdouts_func: This flavor's holdout-list scan function (optional).
77  * @postgp_func: This flavor's post-grace-period function (optional).
78  * @call_func: This flavor's call_rcu()-equivalent function.
79  * @wait_state: Task state for synchronous grace-period waits (default TASK_UNINTERRUPTIBLE).
80  * @rtpcpu: This flavor's rcu_tasks_percpu structure.
81  * @rtpcp_array: Array of pointers to rcu_tasks_percpu structure of CPUs in cpu_possible_mask.
82  * @percpu_enqueue_shift: Shift down CPU ID this much when enqueuing callbacks.
83  * @percpu_enqueue_lim: Number of per-CPU callback queues in use for enqueuing.
84  * @percpu_dequeue_lim: Number of per-CPU callback queues in use for dequeuing.
85  * @percpu_dequeue_gpseq: RCU grace-period number to propagate enqueue limit to dequeuers.
86  * @barrier_q_mutex: Serialize barrier operations.
87  * @barrier_q_count: Number of queues being waited on.
88  * @barrier_q_completion: Barrier wait/wakeup mechanism.
89  * @barrier_q_seq: Sequence number for barrier operations.
90  * @barrier_q_start: Most recent barrier start in jiffies.
91  * @name: This flavor's textual name.
92  * @kname: This flavor's kthread name.
93  */
94 struct rcu_tasks {
95 	struct rcuwait cbs_wait;
96 	raw_spinlock_t cbs_gbl_lock;
97 	struct mutex tasks_gp_mutex;
98 	int gp_state;
99 	int gp_sleep;
100 	int init_fract;
101 	unsigned long gp_jiffies;
102 	unsigned long gp_start;
103 	unsigned long tasks_gp_seq;
104 	unsigned long n_ipis;
105 	unsigned long n_ipis_fails;
106 	struct task_struct *kthread_ptr;
107 	unsigned long lazy_jiffies;
108 	rcu_tasks_gp_func_t gp_func;
109 	pregp_func_t pregp_func;
110 	pertask_func_t pertask_func;
111 	postscan_func_t postscan_func;
112 	holdouts_func_t holdouts_func;
113 	postgp_func_t postgp_func;
114 	call_rcu_func_t call_func;
115 	unsigned int wait_state;
116 	struct rcu_tasks_percpu __percpu *rtpcpu;
117 	struct rcu_tasks_percpu **rtpcp_array;
118 	int percpu_enqueue_shift;
119 	int percpu_enqueue_lim;
120 	int percpu_dequeue_lim;
121 	unsigned long percpu_dequeue_gpseq;
122 	struct mutex barrier_q_mutex;
123 	atomic_t barrier_q_count;
124 	struct completion barrier_q_completion;
125 	unsigned long barrier_q_seq;
126 	unsigned long barrier_q_start;
127 	char *name;
128 	char *kname;
129 };
130 
131 static void call_rcu_tasks_iw_wakeup(struct irq_work *iwp);
132 
133 #define DEFINE_RCU_TASKS(rt_name, gp, call, n)						\
134 static DEFINE_PER_CPU(struct rcu_tasks_percpu, rt_name ## __percpu) = {			\
135 	.lock = __RAW_SPIN_LOCK_UNLOCKED(rt_name ## __percpu.cbs_pcpu_lock),		\
136 	.rtp_irq_work = IRQ_WORK_INIT_HARD(call_rcu_tasks_iw_wakeup),			\
137 };											\
138 static struct rcu_tasks rt_name =							\
139 {											\
140 	.cbs_wait = __RCUWAIT_INITIALIZER(rt_name.wait),				\
141 	.cbs_gbl_lock = __RAW_SPIN_LOCK_UNLOCKED(rt_name.cbs_gbl_lock),			\
142 	.tasks_gp_mutex = __MUTEX_INITIALIZER(rt_name.tasks_gp_mutex),			\
143 	.gp_func = gp,									\
144 	.call_func = call,								\
145 	.wait_state = TASK_UNINTERRUPTIBLE,						\
146 	.rtpcpu = &rt_name ## __percpu,							\
147 	.lazy_jiffies = DIV_ROUND_UP(HZ, 4),						\
148 	.name = n,									\
149 	.percpu_enqueue_shift = order_base_2(CONFIG_NR_CPUS),				\
150 	.percpu_enqueue_lim = 1,							\
151 	.percpu_dequeue_lim = 1,							\
152 	.barrier_q_mutex = __MUTEX_INITIALIZER(rt_name.barrier_q_mutex),		\
153 	.barrier_q_seq = (0UL - 50UL) << RCU_SEQ_CTR_SHIFT,				\
154 	.kname = #rt_name,								\
155 }
156 
157 #ifdef CONFIG_TASKS_RCU
158 
159 /* Report delay of scan exiting tasklist in rcu_tasks_postscan(). */
160 static void tasks_rcu_exit_srcu_stall(struct timer_list *unused);
161 static DEFINE_TIMER(tasks_rcu_exit_srcu_stall_timer, tasks_rcu_exit_srcu_stall);
162 #endif
163 
164 /* Avoid IPIing CPUs early in the grace period. */
165 #define RCU_TASK_IPI_DELAY (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) ? HZ / 2 : 0)
166 static int rcu_task_ipi_delay __read_mostly = RCU_TASK_IPI_DELAY;
167 module_param(rcu_task_ipi_delay, int, 0644);
168 
169 /* Control stall timeouts.  Disable with <= 0, otherwise jiffies till stall. */
170 #define RCU_TASK_BOOT_STALL_TIMEOUT (HZ * 30)
171 #define RCU_TASK_STALL_TIMEOUT (HZ * 60 * 10)
172 static int rcu_task_stall_timeout __read_mostly = RCU_TASK_STALL_TIMEOUT;
173 module_param(rcu_task_stall_timeout, int, 0644);
174 #define RCU_TASK_STALL_INFO (HZ * 10)
175 static int rcu_task_stall_info __read_mostly = RCU_TASK_STALL_INFO;
176 module_param(rcu_task_stall_info, int, 0644);
177 static int rcu_task_stall_info_mult __read_mostly = 3;
178 module_param(rcu_task_stall_info_mult, int, 0444);
179 
180 static int rcu_task_enqueue_lim __read_mostly = -1;
181 module_param(rcu_task_enqueue_lim, int, 0444);
182 
183 static bool rcu_task_cb_adjust;
184 static int rcu_task_contend_lim __read_mostly = 100;
185 module_param(rcu_task_contend_lim, int, 0444);
186 static int rcu_task_collapse_lim __read_mostly = 10;
187 module_param(rcu_task_collapse_lim, int, 0444);
188 static int rcu_task_lazy_lim __read_mostly = 32;
189 module_param(rcu_task_lazy_lim, int, 0444);
190 
191 static int rcu_task_cpu_ids;
192 
193 /* RCU tasks grace-period state for debugging. */
194 #define RTGS_INIT		 0
195 #define RTGS_WAIT_WAIT_CBS	 1
196 #define RTGS_WAIT_GP		 2
197 #define RTGS_PRE_WAIT_GP	 3
198 #define RTGS_SCAN_TASKLIST	 4
199 #define RTGS_POST_SCAN_TASKLIST	 5
200 #define RTGS_WAIT_SCAN_HOLDOUTS	 6
201 #define RTGS_SCAN_HOLDOUTS	 7
202 #define RTGS_POST_GP		 8
203 #define RTGS_WAIT_READERS	 9
204 #define RTGS_INVOKE_CBS		10
205 #define RTGS_WAIT_CBS		11
206 #ifndef CONFIG_TINY_RCU
207 static const char * const rcu_tasks_gp_state_names[] = {
208 	"RTGS_INIT",
209 	"RTGS_WAIT_WAIT_CBS",
210 	"RTGS_WAIT_GP",
211 	"RTGS_PRE_WAIT_GP",
212 	"RTGS_SCAN_TASKLIST",
213 	"RTGS_POST_SCAN_TASKLIST",
214 	"RTGS_WAIT_SCAN_HOLDOUTS",
215 	"RTGS_SCAN_HOLDOUTS",
216 	"RTGS_POST_GP",
217 	"RTGS_WAIT_READERS",
218 	"RTGS_INVOKE_CBS",
219 	"RTGS_WAIT_CBS",
220 };
221 #endif /* #ifndef CONFIG_TINY_RCU */
222 
223 ////////////////////////////////////////////////////////////////////////
224 //
225 // Generic code.
226 
227 static void rcu_tasks_invoke_cbs_wq(struct work_struct *wp);
228 
229 /* Record grace-period phase and time. */
230 static void set_tasks_gp_state(struct rcu_tasks *rtp, int newstate)
231 {
232 	rtp->gp_state = newstate;
233 	rtp->gp_jiffies = jiffies;
234 }
235 
236 #ifndef CONFIG_TINY_RCU
237 /* Return state name. */
238 static const char *tasks_gp_state_getname(struct rcu_tasks *rtp)
239 {
240 	int i = data_race(rtp->gp_state); // Let KCSAN detect update races
241 	int j = READ_ONCE(i); // Prevent the compiler from reading twice
242 
243 	if (j >= ARRAY_SIZE(rcu_tasks_gp_state_names))
244 		return "???";
245 	return rcu_tasks_gp_state_names[j];
246 }
247 #endif /* #ifndef CONFIG_TINY_RCU */
248 
249 // Initialize per-CPU callback lists for the specified flavor of
250 // Tasks RCU.  Do not enqueue callbacks before this function is invoked.
251 static void cblist_init_generic(struct rcu_tasks *rtp)
252 {
253 	int cpu;
254 	int lim;
255 	int shift;
256 	int maxcpu;
257 	int index = 0;
258 
259 	if (rcu_task_enqueue_lim < 0) {
260 		rcu_task_enqueue_lim = 1;
261 		rcu_task_cb_adjust = true;
262 	} else if (rcu_task_enqueue_lim == 0) {
263 		rcu_task_enqueue_lim = 1;
264 	}
265 	lim = rcu_task_enqueue_lim;
266 
267 	rtp->rtpcp_array = kcalloc(num_possible_cpus(), sizeof(struct rcu_tasks_percpu *), GFP_KERNEL);
268 	BUG_ON(!rtp->rtpcp_array);
269 
270 	for_each_possible_cpu(cpu) {
271 		struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
272 
273 		WARN_ON_ONCE(!rtpcp);
274 		if (cpu)
275 			raw_spin_lock_init(&ACCESS_PRIVATE(rtpcp, lock));
276 		if (rcu_segcblist_empty(&rtpcp->cblist))
277 			rcu_segcblist_init(&rtpcp->cblist);
278 		INIT_WORK(&rtpcp->rtp_work, rcu_tasks_invoke_cbs_wq);
279 		rtpcp->cpu = cpu;
280 		rtpcp->rtpp = rtp;
281 		rtpcp->index = index;
282 		rtp->rtpcp_array[index] = rtpcp;
283 		index++;
284 		if (!rtpcp->rtp_blkd_tasks.next)
285 			INIT_LIST_HEAD(&rtpcp->rtp_blkd_tasks);
286 		if (!rtpcp->rtp_exit_list.next)
287 			INIT_LIST_HEAD(&rtpcp->rtp_exit_list);
288 		rtpcp->barrier_q_head.next = &rtpcp->barrier_q_head;
289 		maxcpu = cpu;
290 	}
291 
292 	rcu_task_cpu_ids = maxcpu + 1;
293 	if (lim > rcu_task_cpu_ids)
294 		lim = rcu_task_cpu_ids;
295 	shift = ilog2(rcu_task_cpu_ids / lim);
296 	if (((rcu_task_cpu_ids - 1) >> shift) >= lim)
297 		shift++;
298 	WRITE_ONCE(rtp->percpu_enqueue_shift, shift);
299 	WRITE_ONCE(rtp->percpu_dequeue_lim, lim);
300 	smp_store_release(&rtp->percpu_enqueue_lim, lim);
301 
302 	pr_info("%s: Setting shift to %d and lim to %d rcu_task_cb_adjust=%d rcu_task_cpu_ids=%d.\n",
303 			rtp->name, data_race(rtp->percpu_enqueue_shift), data_race(rtp->percpu_enqueue_lim),
304 			rcu_task_cb_adjust, rcu_task_cpu_ids);
305 }
306 
307 // Compute wakeup time for lazy callback timer.
308 static unsigned long rcu_tasks_lazy_time(struct rcu_tasks *rtp)
309 {
310 	return jiffies + rtp->lazy_jiffies;
311 }
312 
313 // Timer handler that unlazifies lazy callbacks.
314 static void call_rcu_tasks_generic_timer(struct timer_list *tlp)
315 {
316 	unsigned long flags;
317 	bool needwake = false;
318 	struct rcu_tasks *rtp;
319 	struct rcu_tasks_percpu *rtpcp = from_timer(rtpcp, tlp, lazy_timer);
320 
321 	rtp = rtpcp->rtpp;
322 	raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
323 	if (!rcu_segcblist_empty(&rtpcp->cblist) && rtp->lazy_jiffies) {
324 		if (!rtpcp->urgent_gp)
325 			rtpcp->urgent_gp = 1;
326 		needwake = true;
327 		mod_timer(&rtpcp->lazy_timer, rcu_tasks_lazy_time(rtp));
328 	}
329 	raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
330 	if (needwake)
331 		rcuwait_wake_up(&rtp->cbs_wait);
332 }
333 
334 // IRQ-work handler that does deferred wakeup for call_rcu_tasks_generic().
335 static void call_rcu_tasks_iw_wakeup(struct irq_work *iwp)
336 {
337 	struct rcu_tasks *rtp;
338 	struct rcu_tasks_percpu *rtpcp = container_of(iwp, struct rcu_tasks_percpu, rtp_irq_work);
339 
340 	rtp = rtpcp->rtpp;
341 	rcuwait_wake_up(&rtp->cbs_wait);
342 }
343 
344 // Enqueue a callback for the specified flavor of Tasks RCU.
345 static void call_rcu_tasks_generic(struct rcu_head *rhp, rcu_callback_t func,
346 				   struct rcu_tasks *rtp)
347 {
348 	int chosen_cpu;
349 	unsigned long flags;
350 	bool havekthread = smp_load_acquire(&rtp->kthread_ptr);
351 	int ideal_cpu;
352 	unsigned long j;
353 	bool needadjust = false;
354 	bool needwake;
355 	struct rcu_tasks_percpu *rtpcp;
356 
357 	rhp->next = NULL;
358 	rhp->func = func;
359 	local_irq_save(flags);
360 	rcu_read_lock();
361 	ideal_cpu = smp_processor_id() >> READ_ONCE(rtp->percpu_enqueue_shift);
362 	chosen_cpu = cpumask_next(ideal_cpu - 1, cpu_possible_mask);
363 	WARN_ON_ONCE(chosen_cpu >= rcu_task_cpu_ids);
364 	rtpcp = per_cpu_ptr(rtp->rtpcpu, chosen_cpu);
365 	if (!raw_spin_trylock_rcu_node(rtpcp)) { // irqs already disabled.
366 		raw_spin_lock_rcu_node(rtpcp); // irqs already disabled.
367 		j = jiffies;
368 		if (rtpcp->rtp_jiffies != j) {
369 			rtpcp->rtp_jiffies = j;
370 			rtpcp->rtp_n_lock_retries = 0;
371 		}
372 		if (rcu_task_cb_adjust && ++rtpcp->rtp_n_lock_retries > rcu_task_contend_lim &&
373 		    READ_ONCE(rtp->percpu_enqueue_lim) != rcu_task_cpu_ids)
374 			needadjust = true;  // Defer adjustment to avoid deadlock.
375 	}
376 	// Queuing callbacks before initialization not yet supported.
377 	if (WARN_ON_ONCE(!rcu_segcblist_is_enabled(&rtpcp->cblist)))
378 		rcu_segcblist_init(&rtpcp->cblist);
379 	needwake = (func == wakeme_after_rcu) ||
380 		   (rcu_segcblist_n_cbs(&rtpcp->cblist) == rcu_task_lazy_lim);
381 	if (havekthread && !needwake && !timer_pending(&rtpcp->lazy_timer)) {
382 		if (rtp->lazy_jiffies)
383 			mod_timer(&rtpcp->lazy_timer, rcu_tasks_lazy_time(rtp));
384 		else
385 			needwake = rcu_segcblist_empty(&rtpcp->cblist);
386 	}
387 	if (needwake)
388 		rtpcp->urgent_gp = 3;
389 	rcu_segcblist_enqueue(&rtpcp->cblist, rhp);
390 	raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
391 	if (unlikely(needadjust)) {
392 		raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags);
393 		if (rtp->percpu_enqueue_lim != rcu_task_cpu_ids) {
394 			WRITE_ONCE(rtp->percpu_enqueue_shift, 0);
395 			WRITE_ONCE(rtp->percpu_dequeue_lim, rcu_task_cpu_ids);
396 			smp_store_release(&rtp->percpu_enqueue_lim, rcu_task_cpu_ids);
397 			pr_info("Switching %s to per-CPU callback queuing.\n", rtp->name);
398 		}
399 		raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags);
400 	}
401 	rcu_read_unlock();
402 	/* We can't create the thread unless interrupts are enabled. */
403 	if (needwake && READ_ONCE(rtp->kthread_ptr))
404 		irq_work_queue(&rtpcp->rtp_irq_work);
405 }
406 
407 // RCU callback function for rcu_barrier_tasks_generic().
408 static void rcu_barrier_tasks_generic_cb(struct rcu_head *rhp)
409 {
410 	struct rcu_tasks *rtp;
411 	struct rcu_tasks_percpu *rtpcp;
412 
413 	rhp->next = rhp; // Mark the callback as having been invoked.
414 	rtpcp = container_of(rhp, struct rcu_tasks_percpu, barrier_q_head);
415 	rtp = rtpcp->rtpp;
416 	if (atomic_dec_and_test(&rtp->barrier_q_count))
417 		complete(&rtp->barrier_q_completion);
418 }
419 
420 // Wait for all in-flight callbacks for the specified RCU Tasks flavor.
421 // Operates in a manner similar to rcu_barrier().
422 static void __maybe_unused rcu_barrier_tasks_generic(struct rcu_tasks *rtp)
423 {
424 	int cpu;
425 	unsigned long flags;
426 	struct rcu_tasks_percpu *rtpcp;
427 	unsigned long s = rcu_seq_snap(&rtp->barrier_q_seq);
428 
429 	mutex_lock(&rtp->barrier_q_mutex);
430 	if (rcu_seq_done(&rtp->barrier_q_seq, s)) {
431 		smp_mb();
432 		mutex_unlock(&rtp->barrier_q_mutex);
433 		return;
434 	}
435 	rtp->barrier_q_start = jiffies;
436 	rcu_seq_start(&rtp->barrier_q_seq);
437 	init_completion(&rtp->barrier_q_completion);
438 	atomic_set(&rtp->barrier_q_count, 2);
439 	for_each_possible_cpu(cpu) {
440 		if (cpu >= smp_load_acquire(&rtp->percpu_dequeue_lim))
441 			break;
442 		rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
443 		rtpcp->barrier_q_head.func = rcu_barrier_tasks_generic_cb;
444 		raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
445 		if (rcu_segcblist_entrain(&rtpcp->cblist, &rtpcp->barrier_q_head))
446 			atomic_inc(&rtp->barrier_q_count);
447 		raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
448 	}
449 	if (atomic_sub_and_test(2, &rtp->barrier_q_count))
450 		complete(&rtp->barrier_q_completion);
451 	wait_for_completion(&rtp->barrier_q_completion);
452 	rcu_seq_end(&rtp->barrier_q_seq);
453 	mutex_unlock(&rtp->barrier_q_mutex);
454 }
455 
456 // Advance callbacks and indicate whether either a grace period or
457 // callback invocation is needed.
458 static int rcu_tasks_need_gpcb(struct rcu_tasks *rtp)
459 {
460 	int cpu;
461 	int dequeue_limit;
462 	unsigned long flags;
463 	bool gpdone = poll_state_synchronize_rcu(rtp->percpu_dequeue_gpseq);
464 	long n;
465 	long ncbs = 0;
466 	long ncbsnz = 0;
467 	int needgpcb = 0;
468 
469 	dequeue_limit = smp_load_acquire(&rtp->percpu_dequeue_lim);
470 	for (cpu = 0; cpu < dequeue_limit; cpu++) {
471 		if (!cpu_possible(cpu))
472 			continue;
473 		struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
474 
475 		/* Advance and accelerate any new callbacks. */
476 		if (!rcu_segcblist_n_cbs(&rtpcp->cblist))
477 			continue;
478 		raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
479 		// Should we shrink down to a single callback queue?
480 		n = rcu_segcblist_n_cbs(&rtpcp->cblist);
481 		if (n) {
482 			ncbs += n;
483 			if (cpu > 0)
484 				ncbsnz += n;
485 		}
486 		rcu_segcblist_advance(&rtpcp->cblist, rcu_seq_current(&rtp->tasks_gp_seq));
487 		(void)rcu_segcblist_accelerate(&rtpcp->cblist, rcu_seq_snap(&rtp->tasks_gp_seq));
488 		if (rtpcp->urgent_gp > 0 && rcu_segcblist_pend_cbs(&rtpcp->cblist)) {
489 			if (rtp->lazy_jiffies)
490 				rtpcp->urgent_gp--;
491 			needgpcb |= 0x3;
492 		} else if (rcu_segcblist_empty(&rtpcp->cblist)) {
493 			rtpcp->urgent_gp = 0;
494 		}
495 		if (rcu_segcblist_ready_cbs(&rtpcp->cblist))
496 			needgpcb |= 0x1;
497 		raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
498 	}
499 
500 	// Shrink down to a single callback queue if appropriate.
501 	// This is done in two stages: (1) If there are no more than
502 	// rcu_task_collapse_lim callbacks on CPU 0 and none on any other
503 	// CPU, limit enqueueing to CPU 0.  (2) After an RCU grace period,
504 	// if there has not been an increase in callbacks, limit dequeuing
505 	// to CPU 0.  Note the matching RCU read-side critical section in
506 	// call_rcu_tasks_generic().
507 	if (rcu_task_cb_adjust && ncbs <= rcu_task_collapse_lim) {
508 		raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags);
509 		if (rtp->percpu_enqueue_lim > 1) {
510 			WRITE_ONCE(rtp->percpu_enqueue_shift, order_base_2(rcu_task_cpu_ids));
511 			smp_store_release(&rtp->percpu_enqueue_lim, 1);
512 			rtp->percpu_dequeue_gpseq = get_state_synchronize_rcu();
513 			gpdone = false;
514 			pr_info("Starting switch %s to CPU-0 callback queuing.\n", rtp->name);
515 		}
516 		raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags);
517 	}
518 	if (rcu_task_cb_adjust && !ncbsnz && gpdone) {
519 		raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags);
520 		if (rtp->percpu_enqueue_lim < rtp->percpu_dequeue_lim) {
521 			WRITE_ONCE(rtp->percpu_dequeue_lim, 1);
522 			pr_info("Completing switch %s to CPU-0 callback queuing.\n", rtp->name);
523 		}
524 		if (rtp->percpu_dequeue_lim == 1) {
525 			for (cpu = rtp->percpu_dequeue_lim; cpu < rcu_task_cpu_ids; cpu++) {
526 				if (!cpu_possible(cpu))
527 					continue;
528 				struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
529 
530 				WARN_ON_ONCE(rcu_segcblist_n_cbs(&rtpcp->cblist));
531 			}
532 		}
533 		raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags);
534 	}
535 
536 	return needgpcb;
537 }
538 
539 // Advance callbacks and invoke any that are ready.
540 static void rcu_tasks_invoke_cbs(struct rcu_tasks *rtp, struct rcu_tasks_percpu *rtpcp)
541 {
542 	int cpuwq;
543 	unsigned long flags;
544 	int len;
545 	int index;
546 	struct rcu_head *rhp;
547 	struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
548 	struct rcu_tasks_percpu *rtpcp_next;
549 
550 	index = rtpcp->index * 2 + 1;
551 	if (index < num_possible_cpus()) {
552 		rtpcp_next = rtp->rtpcp_array[index];
553 		if (rtpcp_next->cpu < smp_load_acquire(&rtp->percpu_dequeue_lim)) {
554 			cpuwq = rcu_cpu_beenfullyonline(rtpcp_next->cpu) ? rtpcp_next->cpu : WORK_CPU_UNBOUND;
555 			queue_work_on(cpuwq, system_wq, &rtpcp_next->rtp_work);
556 			index++;
557 			if (index < num_possible_cpus()) {
558 				rtpcp_next = rtp->rtpcp_array[index];
559 				if (rtpcp_next->cpu < smp_load_acquire(&rtp->percpu_dequeue_lim)) {
560 					cpuwq = rcu_cpu_beenfullyonline(rtpcp_next->cpu) ? rtpcp_next->cpu : WORK_CPU_UNBOUND;
561 					queue_work_on(cpuwq, system_wq, &rtpcp_next->rtp_work);
562 				}
563 			}
564 		}
565 	}
566 
567 	if (rcu_segcblist_empty(&rtpcp->cblist))
568 		return;
569 	raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
570 	rcu_segcblist_advance(&rtpcp->cblist, rcu_seq_current(&rtp->tasks_gp_seq));
571 	rcu_segcblist_extract_done_cbs(&rtpcp->cblist, &rcl);
572 	raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
573 	len = rcl.len;
574 	for (rhp = rcu_cblist_dequeue(&rcl); rhp; rhp = rcu_cblist_dequeue(&rcl)) {
575 		debug_rcu_head_callback(rhp);
576 		local_bh_disable();
577 		rhp->func(rhp);
578 		local_bh_enable();
579 		cond_resched();
580 	}
581 	raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
582 	rcu_segcblist_add_len(&rtpcp->cblist, -len);
583 	(void)rcu_segcblist_accelerate(&rtpcp->cblist, rcu_seq_snap(&rtp->tasks_gp_seq));
584 	raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
585 }
586 
587 // Workqueue flood to advance callbacks and invoke any that are ready.
588 static void rcu_tasks_invoke_cbs_wq(struct work_struct *wp)
589 {
590 	struct rcu_tasks *rtp;
591 	struct rcu_tasks_percpu *rtpcp = container_of(wp, struct rcu_tasks_percpu, rtp_work);
592 
593 	rtp = rtpcp->rtpp;
594 	rcu_tasks_invoke_cbs(rtp, rtpcp);
595 }
596 
597 // Wait for one grace period.
598 static void rcu_tasks_one_gp(struct rcu_tasks *rtp, bool midboot)
599 {
600 	int needgpcb;
601 
602 	mutex_lock(&rtp->tasks_gp_mutex);
603 
604 	// If there were none, wait a bit and start over.
605 	if (unlikely(midboot)) {
606 		needgpcb = 0x2;
607 	} else {
608 		mutex_unlock(&rtp->tasks_gp_mutex);
609 		set_tasks_gp_state(rtp, RTGS_WAIT_CBS);
610 		rcuwait_wait_event(&rtp->cbs_wait,
611 				   (needgpcb = rcu_tasks_need_gpcb(rtp)),
612 				   TASK_IDLE);
613 		mutex_lock(&rtp->tasks_gp_mutex);
614 	}
615 
616 	if (needgpcb & 0x2) {
617 		// Wait for one grace period.
618 		set_tasks_gp_state(rtp, RTGS_WAIT_GP);
619 		rtp->gp_start = jiffies;
620 		rcu_seq_start(&rtp->tasks_gp_seq);
621 		rtp->gp_func(rtp);
622 		rcu_seq_end(&rtp->tasks_gp_seq);
623 	}
624 
625 	// Invoke callbacks.
626 	set_tasks_gp_state(rtp, RTGS_INVOKE_CBS);
627 	rcu_tasks_invoke_cbs(rtp, per_cpu_ptr(rtp->rtpcpu, 0));
628 	mutex_unlock(&rtp->tasks_gp_mutex);
629 }
630 
631 // RCU-tasks kthread that detects grace periods and invokes callbacks.
632 static int __noreturn rcu_tasks_kthread(void *arg)
633 {
634 	int cpu;
635 	struct rcu_tasks *rtp = arg;
636 
637 	for_each_possible_cpu(cpu) {
638 		struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
639 
640 		timer_setup(&rtpcp->lazy_timer, call_rcu_tasks_generic_timer, 0);
641 		rtpcp->urgent_gp = 1;
642 	}
643 
644 	/* Run on housekeeping CPUs by default.  Sysadm can move if desired. */
645 	housekeeping_affine(current, HK_TYPE_RCU);
646 	smp_store_release(&rtp->kthread_ptr, current); // Let GPs start!
647 
648 	/*
649 	 * Each pass through the following loop makes one check for
650 	 * newly arrived callbacks, and, if there are some, waits for
651 	 * one RCU-tasks grace period and then invokes the callbacks.
652 	 * This loop is terminated by the system going down.  ;-)
653 	 */
654 	for (;;) {
655 		// Wait for one grace period and invoke any callbacks
656 		// that are ready.
657 		rcu_tasks_one_gp(rtp, false);
658 
659 		// Paranoid sleep to keep this from entering a tight loop.
660 		schedule_timeout_idle(rtp->gp_sleep);
661 	}
662 }
663 
664 // Wait for a grace period for the specified flavor of Tasks RCU.
665 static void synchronize_rcu_tasks_generic(struct rcu_tasks *rtp)
666 {
667 	/* Complain if the scheduler has not started.  */
668 	if (WARN_ONCE(rcu_scheduler_active == RCU_SCHEDULER_INACTIVE,
669 			 "synchronize_%s() called too soon", rtp->name))
670 		return;
671 
672 	// If the grace-period kthread is running, use it.
673 	if (READ_ONCE(rtp->kthread_ptr)) {
674 		wait_rcu_gp_state(rtp->wait_state, rtp->call_func);
675 		return;
676 	}
677 	rcu_tasks_one_gp(rtp, true);
678 }
679 
680 /* Spawn RCU-tasks grace-period kthread. */
681 static void __init rcu_spawn_tasks_kthread_generic(struct rcu_tasks *rtp)
682 {
683 	struct task_struct *t;
684 
685 	t = kthread_run(rcu_tasks_kthread, rtp, "%s_kthread", rtp->kname);
686 	if (WARN_ONCE(IS_ERR(t), "%s: Could not start %s grace-period kthread, OOM is now expected behavior\n", __func__, rtp->name))
687 		return;
688 	smp_mb(); /* Ensure others see full kthread. */
689 }
690 
691 #ifndef CONFIG_TINY_RCU
692 
693 /*
694  * Print any non-default Tasks RCU settings.
695  */
696 static void __init rcu_tasks_bootup_oddness(void)
697 {
698 #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU)
699 	int rtsimc;
700 
701 	if (rcu_task_stall_timeout != RCU_TASK_STALL_TIMEOUT)
702 		pr_info("\tTasks-RCU CPU stall warnings timeout set to %d (rcu_task_stall_timeout).\n", rcu_task_stall_timeout);
703 	rtsimc = clamp(rcu_task_stall_info_mult, 1, 10);
704 	if (rtsimc != rcu_task_stall_info_mult) {
705 		pr_info("\tTasks-RCU CPU stall info multiplier clamped to %d (rcu_task_stall_info_mult).\n", rtsimc);
706 		rcu_task_stall_info_mult = rtsimc;
707 	}
708 #endif /* #ifdef CONFIG_TASKS_RCU */
709 #ifdef CONFIG_TASKS_RCU
710 	pr_info("\tTrampoline variant of Tasks RCU enabled.\n");
711 #endif /* #ifdef CONFIG_TASKS_RCU */
712 #ifdef CONFIG_TASKS_RUDE_RCU
713 	pr_info("\tRude variant of Tasks RCU enabled.\n");
714 #endif /* #ifdef CONFIG_TASKS_RUDE_RCU */
715 #ifdef CONFIG_TASKS_TRACE_RCU
716 	pr_info("\tTracing variant of Tasks RCU enabled.\n");
717 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
718 }
719 
720 
721 /* Dump out rcutorture-relevant state common to all RCU-tasks flavors. */
722 static void show_rcu_tasks_generic_gp_kthread(struct rcu_tasks *rtp, char *s)
723 {
724 	int cpu;
725 	bool havecbs = false;
726 	bool haveurgent = false;
727 	bool haveurgentcbs = false;
728 
729 	for_each_possible_cpu(cpu) {
730 		struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
731 
732 		if (!data_race(rcu_segcblist_empty(&rtpcp->cblist)))
733 			havecbs = true;
734 		if (data_race(rtpcp->urgent_gp))
735 			haveurgent = true;
736 		if (!data_race(rcu_segcblist_empty(&rtpcp->cblist)) && data_race(rtpcp->urgent_gp))
737 			haveurgentcbs = true;
738 		if (havecbs && haveurgent && haveurgentcbs)
739 			break;
740 	}
741 	pr_info("%s: %s(%d) since %lu g:%lu i:%lu/%lu %c%c%c%c l:%lu %s\n",
742 		rtp->kname,
743 		tasks_gp_state_getname(rtp), data_race(rtp->gp_state),
744 		jiffies - data_race(rtp->gp_jiffies),
745 		data_race(rcu_seq_current(&rtp->tasks_gp_seq)),
746 		data_race(rtp->n_ipis_fails), data_race(rtp->n_ipis),
747 		".k"[!!data_race(rtp->kthread_ptr)],
748 		".C"[havecbs],
749 		".u"[haveurgent],
750 		".U"[haveurgentcbs],
751 		rtp->lazy_jiffies,
752 		s);
753 }
754 
755 /* Dump out more rcutorture-relevant state common to all RCU-tasks flavors. */
756 static void rcu_tasks_torture_stats_print_generic(struct rcu_tasks *rtp, char *tt,
757 						  char *tf, char *tst)
758 {
759 	cpumask_var_t cm;
760 	int cpu;
761 	bool gotcb = false;
762 	unsigned long j = jiffies;
763 
764 	pr_alert("%s%s Tasks%s RCU g%ld gp_start %lu gp_jiffies %lu gp_state %d (%s).\n",
765 		 tt, tf, tst, data_race(rtp->tasks_gp_seq),
766 		 j - data_race(rtp->gp_start), j - data_race(rtp->gp_jiffies),
767 		 data_race(rtp->gp_state), tasks_gp_state_getname(rtp));
768 	pr_alert("\tEnqueue shift %d limit %d Dequeue limit %d gpseq %lu.\n",
769 		 data_race(rtp->percpu_enqueue_shift),
770 		 data_race(rtp->percpu_enqueue_lim),
771 		 data_race(rtp->percpu_dequeue_lim),
772 		 data_race(rtp->percpu_dequeue_gpseq));
773 	(void)zalloc_cpumask_var(&cm, GFP_KERNEL);
774 	pr_alert("\tCallback counts:");
775 	for_each_possible_cpu(cpu) {
776 		long n;
777 		struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
778 
779 		if (cpumask_available(cm) && !rcu_barrier_cb_is_done(&rtpcp->barrier_q_head))
780 			cpumask_set_cpu(cpu, cm);
781 		n = rcu_segcblist_n_cbs(&rtpcp->cblist);
782 		if (!n)
783 			continue;
784 		pr_cont(" %d:%ld", cpu, n);
785 		gotcb = true;
786 	}
787 	if (gotcb)
788 		pr_cont(".\n");
789 	else
790 		pr_cont(" (none).\n");
791 	pr_alert("\tBarrier seq %lu start %lu count %d holdout CPUs ",
792 		 data_race(rtp->barrier_q_seq), j - data_race(rtp->barrier_q_start),
793 		 atomic_read(&rtp->barrier_q_count));
794 	if (cpumask_available(cm) && !cpumask_empty(cm))
795 		pr_cont(" %*pbl.\n", cpumask_pr_args(cm));
796 	else
797 		pr_cont("(none).\n");
798 	free_cpumask_var(cm);
799 }
800 
801 #endif // #ifndef CONFIG_TINY_RCU
802 
803 static void exit_tasks_rcu_finish_trace(struct task_struct *t);
804 
805 #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU)
806 
807 ////////////////////////////////////////////////////////////////////////
808 //
809 // Shared code between task-list-scanning variants of Tasks RCU.
810 
811 /* Wait for one RCU-tasks grace period. */
812 static void rcu_tasks_wait_gp(struct rcu_tasks *rtp)
813 {
814 	struct task_struct *g;
815 	int fract;
816 	LIST_HEAD(holdouts);
817 	unsigned long j;
818 	unsigned long lastinfo;
819 	unsigned long lastreport;
820 	bool reported = false;
821 	int rtsi;
822 	struct task_struct *t;
823 
824 	set_tasks_gp_state(rtp, RTGS_PRE_WAIT_GP);
825 	rtp->pregp_func(&holdouts);
826 
827 	/*
828 	 * There were callbacks, so we need to wait for an RCU-tasks
829 	 * grace period.  Start off by scanning the task list for tasks
830 	 * that are not already voluntarily blocked.  Mark these tasks
831 	 * and make a list of them in holdouts.
832 	 */
833 	set_tasks_gp_state(rtp, RTGS_SCAN_TASKLIST);
834 	if (rtp->pertask_func) {
835 		rcu_read_lock();
836 		for_each_process_thread(g, t)
837 			rtp->pertask_func(t, &holdouts);
838 		rcu_read_unlock();
839 	}
840 
841 	set_tasks_gp_state(rtp, RTGS_POST_SCAN_TASKLIST);
842 	rtp->postscan_func(&holdouts);
843 
844 	/*
845 	 * Each pass through the following loop scans the list of holdout
846 	 * tasks, removing any that are no longer holdouts.  When the list
847 	 * is empty, we are done.
848 	 */
849 	lastreport = jiffies;
850 	lastinfo = lastreport;
851 	rtsi = READ_ONCE(rcu_task_stall_info);
852 
853 	// Start off with initial wait and slowly back off to 1 HZ wait.
854 	fract = rtp->init_fract;
855 
856 	while (!list_empty(&holdouts)) {
857 		ktime_t exp;
858 		bool firstreport;
859 		bool needreport;
860 		int rtst;
861 
862 		// Slowly back off waiting for holdouts
863 		set_tasks_gp_state(rtp, RTGS_WAIT_SCAN_HOLDOUTS);
864 		if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
865 			schedule_timeout_idle(fract);
866 		} else {
867 			exp = jiffies_to_nsecs(fract);
868 			__set_current_state(TASK_IDLE);
869 			schedule_hrtimeout_range(&exp, jiffies_to_nsecs(HZ / 2), HRTIMER_MODE_REL_HARD);
870 		}
871 
872 		if (fract < HZ)
873 			fract++;
874 
875 		rtst = READ_ONCE(rcu_task_stall_timeout);
876 		needreport = rtst > 0 && time_after(jiffies, lastreport + rtst);
877 		if (needreport) {
878 			lastreport = jiffies;
879 			reported = true;
880 		}
881 		firstreport = true;
882 		WARN_ON(signal_pending(current));
883 		set_tasks_gp_state(rtp, RTGS_SCAN_HOLDOUTS);
884 		rtp->holdouts_func(&holdouts, needreport, &firstreport);
885 
886 		// Print pre-stall informational messages if needed.
887 		j = jiffies;
888 		if (rtsi > 0 && !reported && time_after(j, lastinfo + rtsi)) {
889 			lastinfo = j;
890 			rtsi = rtsi * rcu_task_stall_info_mult;
891 			pr_info("%s: %s grace period number %lu (since boot) is %lu jiffies old.\n",
892 				__func__, rtp->kname, rtp->tasks_gp_seq, j - rtp->gp_start);
893 		}
894 	}
895 
896 	set_tasks_gp_state(rtp, RTGS_POST_GP);
897 	rtp->postgp_func(rtp);
898 }
899 
900 #endif /* #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU) */
901 
902 #ifdef CONFIG_TASKS_RCU
903 
904 ////////////////////////////////////////////////////////////////////////
905 //
906 // Simple variant of RCU whose quiescent states are voluntary context
907 // switch, cond_resched_tasks_rcu_qs(), user-space execution, and idle.
908 // As such, grace periods can take one good long time.  There are no
909 // read-side primitives similar to rcu_read_lock() and rcu_read_unlock()
910 // because this implementation is intended to get the system into a safe
911 // state for some of the manipulations involved in tracing and the like.
912 // Finally, this implementation does not support high call_rcu_tasks()
913 // rates from multiple CPUs.  If this is required, per-CPU callback lists
914 // will be needed.
915 //
916 // The implementation uses rcu_tasks_wait_gp(), which relies on function
917 // pointers in the rcu_tasks structure.  The rcu_spawn_tasks_kthread()
918 // function sets these function pointers up so that rcu_tasks_wait_gp()
919 // invokes these functions in this order:
920 //
921 // rcu_tasks_pregp_step():
922 //	Invokes synchronize_rcu() in order to wait for all in-flight
923 //	t->on_rq and t->nvcsw transitions to complete.	This works because
924 //	all such transitions are carried out with interrupts disabled.
925 // rcu_tasks_pertask(), invoked on every non-idle task:
926 //	For every runnable non-idle task other than the current one, use
927 //	get_task_struct() to pin down that task, snapshot that task's
928 //	number of voluntary context switches, and add that task to the
929 //	holdout list.
930 // rcu_tasks_postscan():
931 //	Gather per-CPU lists of tasks in do_exit() to ensure that all
932 //	tasks that were in the process of exiting (and which thus might
933 //	not know to synchronize with this RCU Tasks grace period) have
934 //	completed exiting.  The synchronize_rcu() in rcu_tasks_postgp()
935 //	will take care of any tasks stuck in the non-preemptible region
936 //	of do_exit() following its call to exit_tasks_rcu_finish().
937 // check_all_holdout_tasks(), repeatedly until holdout list is empty:
938 //	Scans the holdout list, attempting to identify a quiescent state
939 //	for each task on the list.  If there is a quiescent state, the
940 //	corresponding task is removed from the holdout list.
941 // rcu_tasks_postgp():
942 //	Invokes synchronize_rcu() in order to ensure that all prior
943 //	t->on_rq and t->nvcsw transitions are seen by all CPUs and tasks
944 //	to have happened before the end of this RCU Tasks grace period.
945 //	Again, this works because all such transitions are carried out
946 //	with interrupts disabled.
947 //
948 // For each exiting task, the exit_tasks_rcu_start() and
949 // exit_tasks_rcu_finish() functions add and remove, respectively, the
950 // current task to a per-CPU list of tasks that rcu_tasks_postscan() must
951 // wait on.  This is necessary because rcu_tasks_postscan() must wait on
952 // tasks that have already been removed from the global list of tasks.
953 //
954 // Pre-grace-period update-side code is ordered before the grace
955 // via the raw_spin_lock.*rcu_node().  Pre-grace-period read-side code
956 // is ordered before the grace period via synchronize_rcu() call in
957 // rcu_tasks_pregp_step() and by the scheduler's locks and interrupt
958 // disabling.
959 
960 /* Pre-grace-period preparation. */
961 static void rcu_tasks_pregp_step(struct list_head *hop)
962 {
963 	/*
964 	 * Wait for all pre-existing t->on_rq and t->nvcsw transitions
965 	 * to complete.  Invoking synchronize_rcu() suffices because all
966 	 * these transitions occur with interrupts disabled.  Without this
967 	 * synchronize_rcu(), a read-side critical section that started
968 	 * before the grace period might be incorrectly seen as having
969 	 * started after the grace period.
970 	 *
971 	 * This synchronize_rcu() also dispenses with the need for a
972 	 * memory barrier on the first store to t->rcu_tasks_holdout,
973 	 * as it forces the store to happen after the beginning of the
974 	 * grace period.
975 	 */
976 	synchronize_rcu();
977 }
978 
979 /* Check for quiescent states since the pregp's synchronize_rcu() */
980 static bool rcu_tasks_is_holdout(struct task_struct *t)
981 {
982 	int cpu;
983 
984 	/* Has the task been seen voluntarily sleeping? */
985 	if (!READ_ONCE(t->on_rq))
986 		return false;
987 
988 	/*
989 	 * t->on_rq && !t->se.sched_delayed *could* be considered sleeping but
990 	 * since it is a spurious state (it will transition into the
991 	 * traditional blocked state or get woken up without outside
992 	 * dependencies), not considering it such should only affect timing.
993 	 *
994 	 * Be conservative for now and not include it.
995 	 */
996 
997 	/*
998 	 * Idle tasks (or idle injection) within the idle loop are RCU-tasks
999 	 * quiescent states. But CPU boot code performed by the idle task
1000 	 * isn't a quiescent state.
1001 	 */
1002 	if (is_idle_task(t))
1003 		return false;
1004 
1005 	cpu = task_cpu(t);
1006 
1007 	/* Idle tasks on offline CPUs are RCU-tasks quiescent states. */
1008 	if (t == idle_task(cpu) && !rcu_cpu_online(cpu))
1009 		return false;
1010 
1011 	return true;
1012 }
1013 
1014 /* Per-task initial processing. */
1015 static void rcu_tasks_pertask(struct task_struct *t, struct list_head *hop)
1016 {
1017 	if (t != current && rcu_tasks_is_holdout(t)) {
1018 		get_task_struct(t);
1019 		t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw);
1020 		WRITE_ONCE(t->rcu_tasks_holdout, true);
1021 		list_add(&t->rcu_tasks_holdout_list, hop);
1022 	}
1023 }
1024 
1025 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func);
1026 DEFINE_RCU_TASKS(rcu_tasks, rcu_tasks_wait_gp, call_rcu_tasks, "RCU Tasks");
1027 
1028 /* Processing between scanning taskslist and draining the holdout list. */
1029 static void rcu_tasks_postscan(struct list_head *hop)
1030 {
1031 	int cpu;
1032 	int rtsi = READ_ONCE(rcu_task_stall_info);
1033 
1034 	if (!IS_ENABLED(CONFIG_TINY_RCU)) {
1035 		tasks_rcu_exit_srcu_stall_timer.expires = jiffies + rtsi;
1036 		add_timer(&tasks_rcu_exit_srcu_stall_timer);
1037 	}
1038 
1039 	/*
1040 	 * Exiting tasks may escape the tasklist scan. Those are vulnerable
1041 	 * until their final schedule() with TASK_DEAD state. To cope with
1042 	 * this, divide the fragile exit path part in two intersecting
1043 	 * read side critical sections:
1044 	 *
1045 	 * 1) A task_struct list addition before calling exit_notify(),
1046 	 *    which may remove the task from the tasklist, with the
1047 	 *    removal after the final preempt_disable() call in do_exit().
1048 	 *
1049 	 * 2) An _RCU_ read side starting with the final preempt_disable()
1050 	 *    call in do_exit() and ending with the final call to schedule()
1051 	 *    with TASK_DEAD state.
1052 	 *
1053 	 * This handles the part 1). And postgp will handle part 2) with a
1054 	 * call to synchronize_rcu().
1055 	 */
1056 
1057 	for_each_possible_cpu(cpu) {
1058 		unsigned long j = jiffies + 1;
1059 		struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rcu_tasks.rtpcpu, cpu);
1060 		struct task_struct *t;
1061 		struct task_struct *t1;
1062 		struct list_head tmp;
1063 
1064 		raw_spin_lock_irq_rcu_node(rtpcp);
1065 		list_for_each_entry_safe(t, t1, &rtpcp->rtp_exit_list, rcu_tasks_exit_list) {
1066 			if (list_empty(&t->rcu_tasks_holdout_list))
1067 				rcu_tasks_pertask(t, hop);
1068 
1069 			// RT kernels need frequent pauses, otherwise
1070 			// pause at least once per pair of jiffies.
1071 			if (!IS_ENABLED(CONFIG_PREEMPT_RT) && time_before(jiffies, j))
1072 				continue;
1073 
1074 			// Keep our place in the list while pausing.
1075 			// Nothing else traverses this list, so adding a
1076 			// bare list_head is OK.
1077 			list_add(&tmp, &t->rcu_tasks_exit_list);
1078 			raw_spin_unlock_irq_rcu_node(rtpcp);
1079 			cond_resched(); // For CONFIG_PREEMPT=n kernels
1080 			raw_spin_lock_irq_rcu_node(rtpcp);
1081 			t1 = list_entry(tmp.next, struct task_struct, rcu_tasks_exit_list);
1082 			list_del(&tmp);
1083 			j = jiffies + 1;
1084 		}
1085 		raw_spin_unlock_irq_rcu_node(rtpcp);
1086 	}
1087 
1088 	if (!IS_ENABLED(CONFIG_TINY_RCU))
1089 		del_timer_sync(&tasks_rcu_exit_srcu_stall_timer);
1090 }
1091 
1092 /* See if tasks are still holding out, complain if so. */
1093 static void check_holdout_task(struct task_struct *t,
1094 			       bool needreport, bool *firstreport)
1095 {
1096 	int cpu;
1097 
1098 	if (!READ_ONCE(t->rcu_tasks_holdout) ||
1099 	    t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) ||
1100 	    !rcu_tasks_is_holdout(t) ||
1101 	    (IS_ENABLED(CONFIG_NO_HZ_FULL) &&
1102 	     !is_idle_task(t) && READ_ONCE(t->rcu_tasks_idle_cpu) >= 0)) {
1103 		WRITE_ONCE(t->rcu_tasks_holdout, false);
1104 		list_del_init(&t->rcu_tasks_holdout_list);
1105 		put_task_struct(t);
1106 		return;
1107 	}
1108 	rcu_request_urgent_qs_task(t);
1109 	if (!needreport)
1110 		return;
1111 	if (*firstreport) {
1112 		pr_err("INFO: rcu_tasks detected stalls on tasks:\n");
1113 		*firstreport = false;
1114 	}
1115 	cpu = task_cpu(t);
1116 	pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n",
1117 		 t, ".I"[is_idle_task(t)],
1118 		 "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)],
1119 		 t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout,
1120 		 data_race(t->rcu_tasks_idle_cpu), cpu);
1121 	sched_show_task(t);
1122 }
1123 
1124 /* Scan the holdout lists for tasks no longer holding out. */
1125 static void check_all_holdout_tasks(struct list_head *hop,
1126 				    bool needreport, bool *firstreport)
1127 {
1128 	struct task_struct *t, *t1;
1129 
1130 	list_for_each_entry_safe(t, t1, hop, rcu_tasks_holdout_list) {
1131 		check_holdout_task(t, needreport, firstreport);
1132 		cond_resched();
1133 	}
1134 }
1135 
1136 /* Finish off the Tasks-RCU grace period. */
1137 static void rcu_tasks_postgp(struct rcu_tasks *rtp)
1138 {
1139 	/*
1140 	 * Because ->on_rq and ->nvcsw are not guaranteed to have a full
1141 	 * memory barriers prior to them in the schedule() path, memory
1142 	 * reordering on other CPUs could cause their RCU-tasks read-side
1143 	 * critical sections to extend past the end of the grace period.
1144 	 * However, because these ->nvcsw updates are carried out with
1145 	 * interrupts disabled, we can use synchronize_rcu() to force the
1146 	 * needed ordering on all such CPUs.
1147 	 *
1148 	 * This synchronize_rcu() also confines all ->rcu_tasks_holdout
1149 	 * accesses to be within the grace period, avoiding the need for
1150 	 * memory barriers for ->rcu_tasks_holdout accesses.
1151 	 *
1152 	 * In addition, this synchronize_rcu() waits for exiting tasks
1153 	 * to complete their final preempt_disable() region of execution,
1154 	 * enforcing the whole region before tasklist removal until
1155 	 * the final schedule() with TASK_DEAD state to be an RCU TASKS
1156 	 * read side critical section.
1157 	 */
1158 	synchronize_rcu();
1159 }
1160 
1161 static void tasks_rcu_exit_srcu_stall(struct timer_list *unused)
1162 {
1163 #ifndef CONFIG_TINY_RCU
1164 	int rtsi;
1165 
1166 	rtsi = READ_ONCE(rcu_task_stall_info);
1167 	pr_info("%s: %s grace period number %lu (since boot) gp_state: %s is %lu jiffies old.\n",
1168 		__func__, rcu_tasks.kname, rcu_tasks.tasks_gp_seq,
1169 		tasks_gp_state_getname(&rcu_tasks), jiffies - rcu_tasks.gp_jiffies);
1170 	pr_info("Please check any exiting tasks stuck between calls to exit_tasks_rcu_start() and exit_tasks_rcu_finish()\n");
1171 	tasks_rcu_exit_srcu_stall_timer.expires = jiffies + rtsi;
1172 	add_timer(&tasks_rcu_exit_srcu_stall_timer);
1173 #endif // #ifndef CONFIG_TINY_RCU
1174 }
1175 
1176 /**
1177  * call_rcu_tasks() - Queue an RCU for invocation task-based grace period
1178  * @rhp: structure to be used for queueing the RCU updates.
1179  * @func: actual callback function to be invoked after the grace period
1180  *
1181  * The callback function will be invoked some time after a full grace
1182  * period elapses, in other words after all currently executing RCU
1183  * read-side critical sections have completed. call_rcu_tasks() assumes
1184  * that the read-side critical sections end at a voluntary context
1185  * switch (not a preemption!), cond_resched_tasks_rcu_qs(), entry into idle,
1186  * or transition to usermode execution.  As such, there are no read-side
1187  * primitives analogous to rcu_read_lock() and rcu_read_unlock() because
1188  * this primitive is intended to determine that all tasks have passed
1189  * through a safe state, not so much for data-structure synchronization.
1190  *
1191  * See the description of call_rcu() for more detailed information on
1192  * memory ordering guarantees.
1193  */
1194 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func)
1195 {
1196 	call_rcu_tasks_generic(rhp, func, &rcu_tasks);
1197 }
1198 EXPORT_SYMBOL_GPL(call_rcu_tasks);
1199 
1200 /**
1201  * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed.
1202  *
1203  * Control will return to the caller some time after a full rcu-tasks
1204  * grace period has elapsed, in other words after all currently
1205  * executing rcu-tasks read-side critical sections have elapsed.  These
1206  * read-side critical sections are delimited by calls to schedule(),
1207  * cond_resched_tasks_rcu_qs(), idle execution, userspace execution, calls
1208  * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched().
1209  *
1210  * This is a very specialized primitive, intended only for a few uses in
1211  * tracing and other situations requiring manipulation of function
1212  * preambles and profiling hooks.  The synchronize_rcu_tasks() function
1213  * is not (yet) intended for heavy use from multiple CPUs.
1214  *
1215  * See the description of synchronize_rcu() for more detailed information
1216  * on memory ordering guarantees.
1217  */
1218 void synchronize_rcu_tasks(void)
1219 {
1220 	synchronize_rcu_tasks_generic(&rcu_tasks);
1221 }
1222 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks);
1223 
1224 /**
1225  * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks.
1226  *
1227  * Although the current implementation is guaranteed to wait, it is not
1228  * obligated to, for example, if there are no pending callbacks.
1229  */
1230 void rcu_barrier_tasks(void)
1231 {
1232 	rcu_barrier_tasks_generic(&rcu_tasks);
1233 }
1234 EXPORT_SYMBOL_GPL(rcu_barrier_tasks);
1235 
1236 static int rcu_tasks_lazy_ms = -1;
1237 module_param(rcu_tasks_lazy_ms, int, 0444);
1238 
1239 static int __init rcu_spawn_tasks_kthread(void)
1240 {
1241 	rcu_tasks.gp_sleep = HZ / 10;
1242 	rcu_tasks.init_fract = HZ / 10;
1243 	if (rcu_tasks_lazy_ms >= 0)
1244 		rcu_tasks.lazy_jiffies = msecs_to_jiffies(rcu_tasks_lazy_ms);
1245 	rcu_tasks.pregp_func = rcu_tasks_pregp_step;
1246 	rcu_tasks.pertask_func = rcu_tasks_pertask;
1247 	rcu_tasks.postscan_func = rcu_tasks_postscan;
1248 	rcu_tasks.holdouts_func = check_all_holdout_tasks;
1249 	rcu_tasks.postgp_func = rcu_tasks_postgp;
1250 	rcu_tasks.wait_state = TASK_IDLE;
1251 	rcu_spawn_tasks_kthread_generic(&rcu_tasks);
1252 	return 0;
1253 }
1254 
1255 #if !defined(CONFIG_TINY_RCU)
1256 void show_rcu_tasks_classic_gp_kthread(void)
1257 {
1258 	show_rcu_tasks_generic_gp_kthread(&rcu_tasks, "");
1259 }
1260 EXPORT_SYMBOL_GPL(show_rcu_tasks_classic_gp_kthread);
1261 
1262 void rcu_tasks_torture_stats_print(char *tt, char *tf)
1263 {
1264 	rcu_tasks_torture_stats_print_generic(&rcu_tasks, tt, tf, "");
1265 }
1266 EXPORT_SYMBOL_GPL(rcu_tasks_torture_stats_print);
1267 #endif // !defined(CONFIG_TINY_RCU)
1268 
1269 struct task_struct *get_rcu_tasks_gp_kthread(void)
1270 {
1271 	return rcu_tasks.kthread_ptr;
1272 }
1273 EXPORT_SYMBOL_GPL(get_rcu_tasks_gp_kthread);
1274 
1275 void rcu_tasks_get_gp_data(int *flags, unsigned long *gp_seq)
1276 {
1277 	*flags = 0;
1278 	*gp_seq = rcu_seq_current(&rcu_tasks.tasks_gp_seq);
1279 }
1280 EXPORT_SYMBOL_GPL(rcu_tasks_get_gp_data);
1281 
1282 /*
1283  * Protect against tasklist scan blind spot while the task is exiting and
1284  * may be removed from the tasklist.  Do this by adding the task to yet
1285  * another list.
1286  *
1287  * Note that the task will remove itself from this list, so there is no
1288  * need for get_task_struct(), except in the case where rcu_tasks_pertask()
1289  * adds it to the holdout list, in which case rcu_tasks_pertask() supplies
1290  * the needed get_task_struct().
1291  */
1292 void exit_tasks_rcu_start(void)
1293 {
1294 	unsigned long flags;
1295 	struct rcu_tasks_percpu *rtpcp;
1296 	struct task_struct *t = current;
1297 
1298 	WARN_ON_ONCE(!list_empty(&t->rcu_tasks_exit_list));
1299 	preempt_disable();
1300 	rtpcp = this_cpu_ptr(rcu_tasks.rtpcpu);
1301 	t->rcu_tasks_exit_cpu = smp_processor_id();
1302 	raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
1303 	WARN_ON_ONCE(!rtpcp->rtp_exit_list.next);
1304 	list_add(&t->rcu_tasks_exit_list, &rtpcp->rtp_exit_list);
1305 	raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
1306 	preempt_enable();
1307 }
1308 
1309 /*
1310  * Remove the task from the "yet another list" because do_exit() is now
1311  * non-preemptible, allowing synchronize_rcu() to wait beyond this point.
1312  */
1313 void exit_tasks_rcu_finish(void)
1314 {
1315 	unsigned long flags;
1316 	struct rcu_tasks_percpu *rtpcp;
1317 	struct task_struct *t = current;
1318 
1319 	WARN_ON_ONCE(list_empty(&t->rcu_tasks_exit_list));
1320 	rtpcp = per_cpu_ptr(rcu_tasks.rtpcpu, t->rcu_tasks_exit_cpu);
1321 	raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
1322 	list_del_init(&t->rcu_tasks_exit_list);
1323 	raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
1324 
1325 	exit_tasks_rcu_finish_trace(t);
1326 }
1327 
1328 #else /* #ifdef CONFIG_TASKS_RCU */
1329 void exit_tasks_rcu_start(void) { }
1330 void exit_tasks_rcu_finish(void) { exit_tasks_rcu_finish_trace(current); }
1331 #endif /* #else #ifdef CONFIG_TASKS_RCU */
1332 
1333 #ifdef CONFIG_TASKS_RUDE_RCU
1334 
1335 ////////////////////////////////////////////////////////////////////////
1336 //
1337 // "Rude" variant of Tasks RCU, inspired by Steve Rostedt's
1338 // trick of passing an empty function to schedule_on_each_cpu().
1339 // This approach provides batching of concurrent calls to the synchronous
1340 // synchronize_rcu_tasks_rude() API.  This invokes schedule_on_each_cpu()
1341 // in order to send IPIs far and wide and induces otherwise unnecessary
1342 // context switches on all online CPUs, whether idle or not.
1343 //
1344 // Callback handling is provided by the rcu_tasks_kthread() function.
1345 //
1346 // Ordering is provided by the scheduler's context-switch code.
1347 
1348 // Empty function to allow workqueues to force a context switch.
1349 static void rcu_tasks_be_rude(struct work_struct *work)
1350 {
1351 }
1352 
1353 // Wait for one rude RCU-tasks grace period.
1354 static void rcu_tasks_rude_wait_gp(struct rcu_tasks *rtp)
1355 {
1356 	rtp->n_ipis += cpumask_weight(cpu_online_mask);
1357 	schedule_on_each_cpu(rcu_tasks_be_rude);
1358 }
1359 
1360 static void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func);
1361 DEFINE_RCU_TASKS(rcu_tasks_rude, rcu_tasks_rude_wait_gp, call_rcu_tasks_rude,
1362 		 "RCU Tasks Rude");
1363 
1364 /*
1365  * call_rcu_tasks_rude() - Queue a callback rude task-based grace period
1366  * @rhp: structure to be used for queueing the RCU updates.
1367  * @func: actual callback function to be invoked after the grace period
1368  *
1369  * The callback function will be invoked some time after a full grace
1370  * period elapses, in other words after all currently executing RCU
1371  * read-side critical sections have completed. call_rcu_tasks_rude()
1372  * assumes that the read-side critical sections end at context switch,
1373  * cond_resched_tasks_rcu_qs(), or transition to usermode execution (as
1374  * usermode execution is schedulable). As such, there are no read-side
1375  * primitives analogous to rcu_read_lock() and rcu_read_unlock() because
1376  * this primitive is intended to determine that all tasks have passed
1377  * through a safe state, not so much for data-structure synchronization.
1378  *
1379  * See the description of call_rcu() for more detailed information on
1380  * memory ordering guarantees.
1381  *
1382  * This is no longer exported, and is instead reserved for use by
1383  * synchronize_rcu_tasks_rude().
1384  */
1385 static void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func)
1386 {
1387 	call_rcu_tasks_generic(rhp, func, &rcu_tasks_rude);
1388 }
1389 
1390 /**
1391  * synchronize_rcu_tasks_rude - wait for a rude rcu-tasks grace period
1392  *
1393  * Control will return to the caller some time after a rude rcu-tasks
1394  * grace period has elapsed, in other words after all currently
1395  * executing rcu-tasks read-side critical sections have elapsed.  These
1396  * read-side critical sections are delimited by calls to schedule(),
1397  * cond_resched_tasks_rcu_qs(), userspace execution (which is a schedulable
1398  * context), and (in theory, anyway) cond_resched().
1399  *
1400  * This is a very specialized primitive, intended only for a few uses in
1401  * tracing and other situations requiring manipulation of function preambles
1402  * and profiling hooks.  The synchronize_rcu_tasks_rude() function is not
1403  * (yet) intended for heavy use from multiple CPUs.
1404  *
1405  * See the description of synchronize_rcu() for more detailed information
1406  * on memory ordering guarantees.
1407  */
1408 void synchronize_rcu_tasks_rude(void)
1409 {
1410 	synchronize_rcu_tasks_generic(&rcu_tasks_rude);
1411 }
1412 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_rude);
1413 
1414 static int __init rcu_spawn_tasks_rude_kthread(void)
1415 {
1416 	rcu_tasks_rude.gp_sleep = HZ / 10;
1417 	rcu_spawn_tasks_kthread_generic(&rcu_tasks_rude);
1418 	return 0;
1419 }
1420 
1421 #if !defined(CONFIG_TINY_RCU)
1422 void show_rcu_tasks_rude_gp_kthread(void)
1423 {
1424 	show_rcu_tasks_generic_gp_kthread(&rcu_tasks_rude, "");
1425 }
1426 EXPORT_SYMBOL_GPL(show_rcu_tasks_rude_gp_kthread);
1427 
1428 void rcu_tasks_rude_torture_stats_print(char *tt, char *tf)
1429 {
1430 	rcu_tasks_torture_stats_print_generic(&rcu_tasks_rude, tt, tf, "");
1431 }
1432 EXPORT_SYMBOL_GPL(rcu_tasks_rude_torture_stats_print);
1433 #endif // !defined(CONFIG_TINY_RCU)
1434 
1435 struct task_struct *get_rcu_tasks_rude_gp_kthread(void)
1436 {
1437 	return rcu_tasks_rude.kthread_ptr;
1438 }
1439 EXPORT_SYMBOL_GPL(get_rcu_tasks_rude_gp_kthread);
1440 
1441 void rcu_tasks_rude_get_gp_data(int *flags, unsigned long *gp_seq)
1442 {
1443 	*flags = 0;
1444 	*gp_seq = rcu_seq_current(&rcu_tasks_rude.tasks_gp_seq);
1445 }
1446 EXPORT_SYMBOL_GPL(rcu_tasks_rude_get_gp_data);
1447 
1448 #endif /* #ifdef CONFIG_TASKS_RUDE_RCU */
1449 
1450 ////////////////////////////////////////////////////////////////////////
1451 //
1452 // Tracing variant of Tasks RCU.  This variant is designed to be used
1453 // to protect tracing hooks, including those of BPF.  This variant
1454 // therefore:
1455 //
1456 // 1.	Has explicit read-side markers to allow finite grace periods
1457 //	in the face of in-kernel loops for PREEMPT=n builds.
1458 //
1459 // 2.	Protects code in the idle loop, exception entry/exit, and
1460 //	CPU-hotplug code paths, similar to the capabilities of SRCU.
1461 //
1462 // 3.	Avoids expensive read-side instructions, having overhead similar
1463 //	to that of Preemptible RCU.
1464 //
1465 // There are of course downsides.  For example, the grace-period code
1466 // can send IPIs to CPUs, even when those CPUs are in the idle loop or
1467 // in nohz_full userspace.  If needed, these downsides can be at least
1468 // partially remedied.
1469 //
1470 // Perhaps most important, this variant of RCU does not affect the vanilla
1471 // flavors, rcu_preempt and rcu_sched.  The fact that RCU Tasks Trace
1472 // readers can operate from idle, offline, and exception entry/exit in no
1473 // way allows rcu_preempt and rcu_sched readers to also do so.
1474 //
1475 // The implementation uses rcu_tasks_wait_gp(), which relies on function
1476 // pointers in the rcu_tasks structure.  The rcu_spawn_tasks_trace_kthread()
1477 // function sets these function pointers up so that rcu_tasks_wait_gp()
1478 // invokes these functions in this order:
1479 //
1480 // rcu_tasks_trace_pregp_step():
1481 //	Disables CPU hotplug, adds all currently executing tasks to the
1482 //	holdout list, then checks the state of all tasks that blocked
1483 //	or were preempted within their current RCU Tasks Trace read-side
1484 //	critical section, adding them to the holdout list if appropriate.
1485 //	Finally, this function re-enables CPU hotplug.
1486 // The ->pertask_func() pointer is NULL, so there is no per-task processing.
1487 // rcu_tasks_trace_postscan():
1488 //	Invokes synchronize_rcu() to wait for late-stage exiting tasks
1489 //	to finish exiting.
1490 // check_all_holdout_tasks_trace(), repeatedly until holdout list is empty:
1491 //	Scans the holdout list, attempting to identify a quiescent state
1492 //	for each task on the list.  If there is a quiescent state, the
1493 //	corresponding task is removed from the holdout list.  Once this
1494 //	list is empty, the grace period has completed.
1495 // rcu_tasks_trace_postgp():
1496 //	Provides the needed full memory barrier and does debug checks.
1497 //
1498 // The exit_tasks_rcu_finish_trace() synchronizes with exiting tasks.
1499 //
1500 // Pre-grace-period update-side code is ordered before the grace period
1501 // via the ->cbs_lock and barriers in rcu_tasks_kthread().  Pre-grace-period
1502 // read-side code is ordered before the grace period by atomic operations
1503 // on .b.need_qs flag of each task involved in this process, or by scheduler
1504 // context-switch ordering (for locked-down non-running readers).
1505 
1506 // The lockdep state must be outside of #ifdef to be useful.
1507 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1508 static struct lock_class_key rcu_lock_trace_key;
1509 struct lockdep_map rcu_trace_lock_map =
1510 	STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_trace", &rcu_lock_trace_key);
1511 EXPORT_SYMBOL_GPL(rcu_trace_lock_map);
1512 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
1513 
1514 #ifdef CONFIG_TASKS_TRACE_RCU
1515 
1516 // Record outstanding IPIs to each CPU.  No point in sending two...
1517 static DEFINE_PER_CPU(bool, trc_ipi_to_cpu);
1518 
1519 // The number of detections of task quiescent state relying on
1520 // heavyweight readers executing explicit memory barriers.
1521 static unsigned long n_heavy_reader_attempts;
1522 static unsigned long n_heavy_reader_updates;
1523 static unsigned long n_heavy_reader_ofl_updates;
1524 static unsigned long n_trc_holdouts;
1525 
1526 void call_rcu_tasks_trace(struct rcu_head *rhp, rcu_callback_t func);
1527 DEFINE_RCU_TASKS(rcu_tasks_trace, rcu_tasks_wait_gp, call_rcu_tasks_trace,
1528 		 "RCU Tasks Trace");
1529 
1530 /* Load from ->trc_reader_special.b.need_qs with proper ordering. */
1531 static u8 rcu_ld_need_qs(struct task_struct *t)
1532 {
1533 	smp_mb(); // Enforce full grace-period ordering.
1534 	return smp_load_acquire(&t->trc_reader_special.b.need_qs);
1535 }
1536 
1537 /* Store to ->trc_reader_special.b.need_qs with proper ordering. */
1538 static void rcu_st_need_qs(struct task_struct *t, u8 v)
1539 {
1540 	smp_store_release(&t->trc_reader_special.b.need_qs, v);
1541 	smp_mb(); // Enforce full grace-period ordering.
1542 }
1543 
1544 /*
1545  * Do a cmpxchg() on ->trc_reader_special.b.need_qs, allowing for
1546  * the four-byte operand-size restriction of some platforms.
1547  *
1548  * Returns the old value, which is often ignored.
1549  */
1550 u8 rcu_trc_cmpxchg_need_qs(struct task_struct *t, u8 old, u8 new)
1551 {
1552 	union rcu_special ret;
1553 	union rcu_special trs_old = READ_ONCE(t->trc_reader_special);
1554 	union rcu_special trs_new = trs_old;
1555 
1556 	if (trs_old.b.need_qs != old)
1557 		return trs_old.b.need_qs;
1558 	trs_new.b.need_qs = new;
1559 
1560 	// Although cmpxchg() appears to KCSAN to update all four bytes,
1561 	// only the .b.need_qs byte actually changes.
1562 	instrument_atomic_read_write(&t->trc_reader_special.b.need_qs,
1563 				     sizeof(t->trc_reader_special.b.need_qs));
1564 	// Avoid false-positive KCSAN failures.
1565 	ret.s = data_race(cmpxchg(&t->trc_reader_special.s, trs_old.s, trs_new.s));
1566 
1567 	return ret.b.need_qs;
1568 }
1569 EXPORT_SYMBOL_GPL(rcu_trc_cmpxchg_need_qs);
1570 
1571 /*
1572  * If we are the last reader, signal the grace-period kthread.
1573  * Also remove from the per-CPU list of blocked tasks.
1574  */
1575 void rcu_read_unlock_trace_special(struct task_struct *t)
1576 {
1577 	unsigned long flags;
1578 	struct rcu_tasks_percpu *rtpcp;
1579 	union rcu_special trs;
1580 
1581 	// Open-coded full-word version of rcu_ld_need_qs().
1582 	smp_mb(); // Enforce full grace-period ordering.
1583 	trs = smp_load_acquire(&t->trc_reader_special);
1584 
1585 	if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) && t->trc_reader_special.b.need_mb)
1586 		smp_mb(); // Pairs with update-side barriers.
1587 	// Update .need_qs before ->trc_reader_nesting for irq/NMI handlers.
1588 	if (trs.b.need_qs == (TRC_NEED_QS_CHECKED | TRC_NEED_QS)) {
1589 		u8 result = rcu_trc_cmpxchg_need_qs(t, TRC_NEED_QS_CHECKED | TRC_NEED_QS,
1590 						       TRC_NEED_QS_CHECKED);
1591 
1592 		WARN_ONCE(result != trs.b.need_qs, "%s: result = %d", __func__, result);
1593 	}
1594 	if (trs.b.blocked) {
1595 		rtpcp = per_cpu_ptr(rcu_tasks_trace.rtpcpu, t->trc_blkd_cpu);
1596 		raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
1597 		list_del_init(&t->trc_blkd_node);
1598 		WRITE_ONCE(t->trc_reader_special.b.blocked, false);
1599 		raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
1600 	}
1601 	WRITE_ONCE(t->trc_reader_nesting, 0);
1602 }
1603 EXPORT_SYMBOL_GPL(rcu_read_unlock_trace_special);
1604 
1605 /* Add a newly blocked reader task to its CPU's list. */
1606 void rcu_tasks_trace_qs_blkd(struct task_struct *t)
1607 {
1608 	unsigned long flags;
1609 	struct rcu_tasks_percpu *rtpcp;
1610 
1611 	local_irq_save(flags);
1612 	rtpcp = this_cpu_ptr(rcu_tasks_trace.rtpcpu);
1613 	raw_spin_lock_rcu_node(rtpcp); // irqs already disabled
1614 	t->trc_blkd_cpu = smp_processor_id();
1615 	if (!rtpcp->rtp_blkd_tasks.next)
1616 		INIT_LIST_HEAD(&rtpcp->rtp_blkd_tasks);
1617 	list_add(&t->trc_blkd_node, &rtpcp->rtp_blkd_tasks);
1618 	WRITE_ONCE(t->trc_reader_special.b.blocked, true);
1619 	raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
1620 }
1621 EXPORT_SYMBOL_GPL(rcu_tasks_trace_qs_blkd);
1622 
1623 /* Add a task to the holdout list, if it is not already on the list. */
1624 static void trc_add_holdout(struct task_struct *t, struct list_head *bhp)
1625 {
1626 	if (list_empty(&t->trc_holdout_list)) {
1627 		get_task_struct(t);
1628 		list_add(&t->trc_holdout_list, bhp);
1629 		n_trc_holdouts++;
1630 	}
1631 }
1632 
1633 /* Remove a task from the holdout list, if it is in fact present. */
1634 static void trc_del_holdout(struct task_struct *t)
1635 {
1636 	if (!list_empty(&t->trc_holdout_list)) {
1637 		list_del_init(&t->trc_holdout_list);
1638 		put_task_struct(t);
1639 		n_trc_holdouts--;
1640 	}
1641 }
1642 
1643 /* IPI handler to check task state. */
1644 static void trc_read_check_handler(void *t_in)
1645 {
1646 	int nesting;
1647 	struct task_struct *t = current;
1648 	struct task_struct *texp = t_in;
1649 
1650 	// If the task is no longer running on this CPU, leave.
1651 	if (unlikely(texp != t))
1652 		goto reset_ipi; // Already on holdout list, so will check later.
1653 
1654 	// If the task is not in a read-side critical section, and
1655 	// if this is the last reader, awaken the grace-period kthread.
1656 	nesting = READ_ONCE(t->trc_reader_nesting);
1657 	if (likely(!nesting)) {
1658 		rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED);
1659 		goto reset_ipi;
1660 	}
1661 	// If we are racing with an rcu_read_unlock_trace(), try again later.
1662 	if (unlikely(nesting < 0))
1663 		goto reset_ipi;
1664 
1665 	// Get here if the task is in a read-side critical section.
1666 	// Set its state so that it will update state for the grace-period
1667 	// kthread upon exit from that critical section.
1668 	rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS | TRC_NEED_QS_CHECKED);
1669 
1670 reset_ipi:
1671 	// Allow future IPIs to be sent on CPU and for task.
1672 	// Also order this IPI handler against any later manipulations of
1673 	// the intended task.
1674 	smp_store_release(per_cpu_ptr(&trc_ipi_to_cpu, smp_processor_id()), false); // ^^^
1675 	smp_store_release(&texp->trc_ipi_to_cpu, -1); // ^^^
1676 }
1677 
1678 /* Callback function for scheduler to check locked-down task.  */
1679 static int trc_inspect_reader(struct task_struct *t, void *bhp_in)
1680 {
1681 	struct list_head *bhp = bhp_in;
1682 	int cpu = task_cpu(t);
1683 	int nesting;
1684 	bool ofl = cpu_is_offline(cpu);
1685 
1686 	if (task_curr(t) && !ofl) {
1687 		// If no chance of heavyweight readers, do it the hard way.
1688 		if (!IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB))
1689 			return -EINVAL;
1690 
1691 		// If heavyweight readers are enabled on the remote task,
1692 		// we can inspect its state despite its currently running.
1693 		// However, we cannot safely change its state.
1694 		n_heavy_reader_attempts++;
1695 		// Check for "running" idle tasks on offline CPUs.
1696 		if (!rcu_watching_zero_in_eqs(cpu, &t->trc_reader_nesting))
1697 			return -EINVAL; // No quiescent state, do it the hard way.
1698 		n_heavy_reader_updates++;
1699 		nesting = 0;
1700 	} else {
1701 		// The task is not running, so C-language access is safe.
1702 		nesting = t->trc_reader_nesting;
1703 		WARN_ON_ONCE(ofl && task_curr(t) && (t != idle_task(task_cpu(t))));
1704 		if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) && ofl)
1705 			n_heavy_reader_ofl_updates++;
1706 	}
1707 
1708 	// If not exiting a read-side critical section, mark as checked
1709 	// so that the grace-period kthread will remove it from the
1710 	// holdout list.
1711 	if (!nesting) {
1712 		rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED);
1713 		return 0;  // In QS, so done.
1714 	}
1715 	if (nesting < 0)
1716 		return -EINVAL; // Reader transitioning, try again later.
1717 
1718 	// The task is in a read-side critical section, so set up its
1719 	// state so that it will update state upon exit from that critical
1720 	// section.
1721 	if (!rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS | TRC_NEED_QS_CHECKED))
1722 		trc_add_holdout(t, bhp);
1723 	return 0;
1724 }
1725 
1726 /* Attempt to extract the state for the specified task. */
1727 static void trc_wait_for_one_reader(struct task_struct *t,
1728 				    struct list_head *bhp)
1729 {
1730 	int cpu;
1731 
1732 	// If a previous IPI is still in flight, let it complete.
1733 	if (smp_load_acquire(&t->trc_ipi_to_cpu) != -1) // Order IPI
1734 		return;
1735 
1736 	// The current task had better be in a quiescent state.
1737 	if (t == current) {
1738 		rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED);
1739 		WARN_ON_ONCE(READ_ONCE(t->trc_reader_nesting));
1740 		return;
1741 	}
1742 
1743 	// Attempt to nail down the task for inspection.
1744 	get_task_struct(t);
1745 	if (!task_call_func(t, trc_inspect_reader, bhp)) {
1746 		put_task_struct(t);
1747 		return;
1748 	}
1749 	put_task_struct(t);
1750 
1751 	// If this task is not yet on the holdout list, then we are in
1752 	// an RCU read-side critical section.  Otherwise, the invocation of
1753 	// trc_add_holdout() that added it to the list did the necessary
1754 	// get_task_struct().  Either way, the task cannot be freed out
1755 	// from under this code.
1756 
1757 	// If currently running, send an IPI, either way, add to list.
1758 	trc_add_holdout(t, bhp);
1759 	if (task_curr(t) &&
1760 	    time_after(jiffies + 1, rcu_tasks_trace.gp_start + rcu_task_ipi_delay)) {
1761 		// The task is currently running, so try IPIing it.
1762 		cpu = task_cpu(t);
1763 
1764 		// If there is already an IPI outstanding, let it happen.
1765 		if (per_cpu(trc_ipi_to_cpu, cpu) || t->trc_ipi_to_cpu >= 0)
1766 			return;
1767 
1768 		per_cpu(trc_ipi_to_cpu, cpu) = true;
1769 		t->trc_ipi_to_cpu = cpu;
1770 		rcu_tasks_trace.n_ipis++;
1771 		if (smp_call_function_single(cpu, trc_read_check_handler, t, 0)) {
1772 			// Just in case there is some other reason for
1773 			// failure than the target CPU being offline.
1774 			WARN_ONCE(1, "%s():  smp_call_function_single() failed for CPU: %d\n",
1775 				  __func__, cpu);
1776 			rcu_tasks_trace.n_ipis_fails++;
1777 			per_cpu(trc_ipi_to_cpu, cpu) = false;
1778 			t->trc_ipi_to_cpu = -1;
1779 		}
1780 	}
1781 }
1782 
1783 /*
1784  * Initialize for first-round processing for the specified task.
1785  * Return false if task is NULL or already taken care of, true otherwise.
1786  */
1787 static bool rcu_tasks_trace_pertask_prep(struct task_struct *t, bool notself)
1788 {
1789 	// During early boot when there is only the one boot CPU, there
1790 	// is no idle task for the other CPUs.	Also, the grace-period
1791 	// kthread is always in a quiescent state.  In addition, just return
1792 	// if this task is already on the list.
1793 	if (unlikely(t == NULL) || (t == current && notself) || !list_empty(&t->trc_holdout_list))
1794 		return false;
1795 
1796 	rcu_st_need_qs(t, 0);
1797 	t->trc_ipi_to_cpu = -1;
1798 	return true;
1799 }
1800 
1801 /* Do first-round processing for the specified task. */
1802 static void rcu_tasks_trace_pertask(struct task_struct *t, struct list_head *hop)
1803 {
1804 	if (rcu_tasks_trace_pertask_prep(t, true))
1805 		trc_wait_for_one_reader(t, hop);
1806 }
1807 
1808 /* Initialize for a new RCU-tasks-trace grace period. */
1809 static void rcu_tasks_trace_pregp_step(struct list_head *hop)
1810 {
1811 	LIST_HEAD(blkd_tasks);
1812 	int cpu;
1813 	unsigned long flags;
1814 	struct rcu_tasks_percpu *rtpcp;
1815 	struct task_struct *t;
1816 
1817 	// There shouldn't be any old IPIs, but...
1818 	for_each_possible_cpu(cpu)
1819 		WARN_ON_ONCE(per_cpu(trc_ipi_to_cpu, cpu));
1820 
1821 	// Disable CPU hotplug across the CPU scan for the benefit of
1822 	// any IPIs that might be needed.  This also waits for all readers
1823 	// in CPU-hotplug code paths.
1824 	cpus_read_lock();
1825 
1826 	// These rcu_tasks_trace_pertask_prep() calls are serialized to
1827 	// allow safe access to the hop list.
1828 	for_each_online_cpu(cpu) {
1829 		rcu_read_lock();
1830 		// Note that cpu_curr_snapshot() picks up the target
1831 		// CPU's current task while its runqueue is locked with
1832 		// an smp_mb__after_spinlock().  This ensures that either
1833 		// the grace-period kthread will see that task's read-side
1834 		// critical section or the task will see the updater's pre-GP
1835 		// accesses.  The trailing smp_mb() in cpu_curr_snapshot()
1836 		// does not currently play a role other than simplify
1837 		// that function's ordering semantics.  If these simplified
1838 		// ordering semantics continue to be redundant, that smp_mb()
1839 		// might be removed.
1840 		t = cpu_curr_snapshot(cpu);
1841 		if (rcu_tasks_trace_pertask_prep(t, true))
1842 			trc_add_holdout(t, hop);
1843 		rcu_read_unlock();
1844 		cond_resched_tasks_rcu_qs();
1845 	}
1846 
1847 	// Only after all running tasks have been accounted for is it
1848 	// safe to take care of the tasks that have blocked within their
1849 	// current RCU tasks trace read-side critical section.
1850 	for_each_possible_cpu(cpu) {
1851 		rtpcp = per_cpu_ptr(rcu_tasks_trace.rtpcpu, cpu);
1852 		raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
1853 		list_splice_init(&rtpcp->rtp_blkd_tasks, &blkd_tasks);
1854 		while (!list_empty(&blkd_tasks)) {
1855 			rcu_read_lock();
1856 			t = list_first_entry(&blkd_tasks, struct task_struct, trc_blkd_node);
1857 			list_del_init(&t->trc_blkd_node);
1858 			list_add(&t->trc_blkd_node, &rtpcp->rtp_blkd_tasks);
1859 			raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
1860 			rcu_tasks_trace_pertask(t, hop);
1861 			rcu_read_unlock();
1862 			raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
1863 		}
1864 		raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
1865 		cond_resched_tasks_rcu_qs();
1866 	}
1867 
1868 	// Re-enable CPU hotplug now that the holdout list is populated.
1869 	cpus_read_unlock();
1870 }
1871 
1872 /*
1873  * Do intermediate processing between task and holdout scans.
1874  */
1875 static void rcu_tasks_trace_postscan(struct list_head *hop)
1876 {
1877 	// Wait for late-stage exiting tasks to finish exiting.
1878 	// These might have passed the call to exit_tasks_rcu_finish().
1879 
1880 	// If you remove the following line, update rcu_trace_implies_rcu_gp()!!!
1881 	synchronize_rcu();
1882 	// Any tasks that exit after this point will set
1883 	// TRC_NEED_QS_CHECKED in ->trc_reader_special.b.need_qs.
1884 }
1885 
1886 /* Communicate task state back to the RCU tasks trace stall warning request. */
1887 struct trc_stall_chk_rdr {
1888 	int nesting;
1889 	int ipi_to_cpu;
1890 	u8 needqs;
1891 };
1892 
1893 static int trc_check_slow_task(struct task_struct *t, void *arg)
1894 {
1895 	struct trc_stall_chk_rdr *trc_rdrp = arg;
1896 
1897 	if (task_curr(t) && cpu_online(task_cpu(t)))
1898 		return false; // It is running, so decline to inspect it.
1899 	trc_rdrp->nesting = READ_ONCE(t->trc_reader_nesting);
1900 	trc_rdrp->ipi_to_cpu = READ_ONCE(t->trc_ipi_to_cpu);
1901 	trc_rdrp->needqs = rcu_ld_need_qs(t);
1902 	return true;
1903 }
1904 
1905 /* Show the state of a task stalling the current RCU tasks trace GP. */
1906 static void show_stalled_task_trace(struct task_struct *t, bool *firstreport)
1907 {
1908 	int cpu;
1909 	struct trc_stall_chk_rdr trc_rdr;
1910 	bool is_idle_tsk = is_idle_task(t);
1911 
1912 	if (*firstreport) {
1913 		pr_err("INFO: rcu_tasks_trace detected stalls on tasks:\n");
1914 		*firstreport = false;
1915 	}
1916 	cpu = task_cpu(t);
1917 	if (!task_call_func(t, trc_check_slow_task, &trc_rdr))
1918 		pr_alert("P%d: %c%c\n",
1919 			 t->pid,
1920 			 ".I"[t->trc_ipi_to_cpu >= 0],
1921 			 ".i"[is_idle_tsk]);
1922 	else
1923 		pr_alert("P%d: %c%c%c%c nesting: %d%c%c cpu: %d%s\n",
1924 			 t->pid,
1925 			 ".I"[trc_rdr.ipi_to_cpu >= 0],
1926 			 ".i"[is_idle_tsk],
1927 			 ".N"[cpu >= 0 && tick_nohz_full_cpu(cpu)],
1928 			 ".B"[!!data_race(t->trc_reader_special.b.blocked)],
1929 			 trc_rdr.nesting,
1930 			 " !CN"[trc_rdr.needqs & 0x3],
1931 			 " ?"[trc_rdr.needqs > 0x3],
1932 			 cpu, cpu_online(cpu) ? "" : "(offline)");
1933 	sched_show_task(t);
1934 }
1935 
1936 /* List stalled IPIs for RCU tasks trace. */
1937 static void show_stalled_ipi_trace(void)
1938 {
1939 	int cpu;
1940 
1941 	for_each_possible_cpu(cpu)
1942 		if (per_cpu(trc_ipi_to_cpu, cpu))
1943 			pr_alert("\tIPI outstanding to CPU %d\n", cpu);
1944 }
1945 
1946 /* Do one scan of the holdout list. */
1947 static void check_all_holdout_tasks_trace(struct list_head *hop,
1948 					  bool needreport, bool *firstreport)
1949 {
1950 	struct task_struct *g, *t;
1951 
1952 	// Disable CPU hotplug across the holdout list scan for IPIs.
1953 	cpus_read_lock();
1954 
1955 	list_for_each_entry_safe(t, g, hop, trc_holdout_list) {
1956 		// If safe and needed, try to check the current task.
1957 		if (READ_ONCE(t->trc_ipi_to_cpu) == -1 &&
1958 		    !(rcu_ld_need_qs(t) & TRC_NEED_QS_CHECKED))
1959 			trc_wait_for_one_reader(t, hop);
1960 
1961 		// If check succeeded, remove this task from the list.
1962 		if (smp_load_acquire(&t->trc_ipi_to_cpu) == -1 &&
1963 		    rcu_ld_need_qs(t) == TRC_NEED_QS_CHECKED)
1964 			trc_del_holdout(t);
1965 		else if (needreport)
1966 			show_stalled_task_trace(t, firstreport);
1967 		cond_resched_tasks_rcu_qs();
1968 	}
1969 
1970 	// Re-enable CPU hotplug now that the holdout list scan has completed.
1971 	cpus_read_unlock();
1972 
1973 	if (needreport) {
1974 		if (*firstreport)
1975 			pr_err("INFO: rcu_tasks_trace detected stalls? (Late IPI?)\n");
1976 		show_stalled_ipi_trace();
1977 	}
1978 }
1979 
1980 static void rcu_tasks_trace_empty_fn(void *unused)
1981 {
1982 }
1983 
1984 /* Wait for grace period to complete and provide ordering. */
1985 static void rcu_tasks_trace_postgp(struct rcu_tasks *rtp)
1986 {
1987 	int cpu;
1988 
1989 	// Wait for any lingering IPI handlers to complete.  Note that
1990 	// if a CPU has gone offline or transitioned to userspace in the
1991 	// meantime, all IPI handlers should have been drained beforehand.
1992 	// Yes, this assumes that CPUs process IPIs in order.  If that ever
1993 	// changes, there will need to be a recheck and/or timed wait.
1994 	for_each_online_cpu(cpu)
1995 		if (WARN_ON_ONCE(smp_load_acquire(per_cpu_ptr(&trc_ipi_to_cpu, cpu))))
1996 			smp_call_function_single(cpu, rcu_tasks_trace_empty_fn, NULL, 1);
1997 
1998 	smp_mb(); // Caller's code must be ordered after wakeup.
1999 		  // Pairs with pretty much every ordering primitive.
2000 }
2001 
2002 /* Report any needed quiescent state for this exiting task. */
2003 static void exit_tasks_rcu_finish_trace(struct task_struct *t)
2004 {
2005 	union rcu_special trs = READ_ONCE(t->trc_reader_special);
2006 
2007 	rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED);
2008 	WARN_ON_ONCE(READ_ONCE(t->trc_reader_nesting));
2009 	if (WARN_ON_ONCE(rcu_ld_need_qs(t) & TRC_NEED_QS || trs.b.blocked))
2010 		rcu_read_unlock_trace_special(t);
2011 	else
2012 		WRITE_ONCE(t->trc_reader_nesting, 0);
2013 }
2014 
2015 /**
2016  * call_rcu_tasks_trace() - Queue a callback trace task-based grace period
2017  * @rhp: structure to be used for queueing the RCU updates.
2018  * @func: actual callback function to be invoked after the grace period
2019  *
2020  * The callback function will be invoked some time after a trace rcu-tasks
2021  * grace period elapses, in other words after all currently executing
2022  * trace rcu-tasks read-side critical sections have completed. These
2023  * read-side critical sections are delimited by calls to rcu_read_lock_trace()
2024  * and rcu_read_unlock_trace().
2025  *
2026  * See the description of call_rcu() for more detailed information on
2027  * memory ordering guarantees.
2028  */
2029 void call_rcu_tasks_trace(struct rcu_head *rhp, rcu_callback_t func)
2030 {
2031 	call_rcu_tasks_generic(rhp, func, &rcu_tasks_trace);
2032 }
2033 EXPORT_SYMBOL_GPL(call_rcu_tasks_trace);
2034 
2035 /**
2036  * synchronize_rcu_tasks_trace - wait for a trace rcu-tasks grace period
2037  *
2038  * Control will return to the caller some time after a trace rcu-tasks
2039  * grace period has elapsed, in other words after all currently executing
2040  * trace rcu-tasks read-side critical sections have elapsed. These read-side
2041  * critical sections are delimited by calls to rcu_read_lock_trace()
2042  * and rcu_read_unlock_trace().
2043  *
2044  * This is a very specialized primitive, intended only for a few uses in
2045  * tracing and other situations requiring manipulation of function preambles
2046  * and profiling hooks.  The synchronize_rcu_tasks_trace() function is not
2047  * (yet) intended for heavy use from multiple CPUs.
2048  *
2049  * See the description of synchronize_rcu() for more detailed information
2050  * on memory ordering guarantees.
2051  */
2052 void synchronize_rcu_tasks_trace(void)
2053 {
2054 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_trace_lock_map), "Illegal synchronize_rcu_tasks_trace() in RCU Tasks Trace read-side critical section");
2055 	synchronize_rcu_tasks_generic(&rcu_tasks_trace);
2056 }
2057 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_trace);
2058 
2059 /**
2060  * rcu_barrier_tasks_trace - Wait for in-flight call_rcu_tasks_trace() callbacks.
2061  *
2062  * Although the current implementation is guaranteed to wait, it is not
2063  * obligated to, for example, if there are no pending callbacks.
2064  */
2065 void rcu_barrier_tasks_trace(void)
2066 {
2067 	rcu_barrier_tasks_generic(&rcu_tasks_trace);
2068 }
2069 EXPORT_SYMBOL_GPL(rcu_barrier_tasks_trace);
2070 
2071 int rcu_tasks_trace_lazy_ms = -1;
2072 module_param(rcu_tasks_trace_lazy_ms, int, 0444);
2073 
2074 static int __init rcu_spawn_tasks_trace_kthread(void)
2075 {
2076 	if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB)) {
2077 		rcu_tasks_trace.gp_sleep = HZ / 10;
2078 		rcu_tasks_trace.init_fract = HZ / 10;
2079 	} else {
2080 		rcu_tasks_trace.gp_sleep = HZ / 200;
2081 		if (rcu_tasks_trace.gp_sleep <= 0)
2082 			rcu_tasks_trace.gp_sleep = 1;
2083 		rcu_tasks_trace.init_fract = HZ / 200;
2084 		if (rcu_tasks_trace.init_fract <= 0)
2085 			rcu_tasks_trace.init_fract = 1;
2086 	}
2087 	if (rcu_tasks_trace_lazy_ms >= 0)
2088 		rcu_tasks_trace.lazy_jiffies = msecs_to_jiffies(rcu_tasks_trace_lazy_ms);
2089 	rcu_tasks_trace.pregp_func = rcu_tasks_trace_pregp_step;
2090 	rcu_tasks_trace.postscan_func = rcu_tasks_trace_postscan;
2091 	rcu_tasks_trace.holdouts_func = check_all_holdout_tasks_trace;
2092 	rcu_tasks_trace.postgp_func = rcu_tasks_trace_postgp;
2093 	rcu_spawn_tasks_kthread_generic(&rcu_tasks_trace);
2094 	return 0;
2095 }
2096 
2097 #if !defined(CONFIG_TINY_RCU)
2098 void show_rcu_tasks_trace_gp_kthread(void)
2099 {
2100 	char buf[64];
2101 
2102 	snprintf(buf, sizeof(buf), "N%lu h:%lu/%lu/%lu",
2103 		data_race(n_trc_holdouts),
2104 		data_race(n_heavy_reader_ofl_updates),
2105 		data_race(n_heavy_reader_updates),
2106 		data_race(n_heavy_reader_attempts));
2107 	show_rcu_tasks_generic_gp_kthread(&rcu_tasks_trace, buf);
2108 }
2109 EXPORT_SYMBOL_GPL(show_rcu_tasks_trace_gp_kthread);
2110 
2111 void rcu_tasks_trace_torture_stats_print(char *tt, char *tf)
2112 {
2113 	rcu_tasks_torture_stats_print_generic(&rcu_tasks_trace, tt, tf, "");
2114 }
2115 EXPORT_SYMBOL_GPL(rcu_tasks_trace_torture_stats_print);
2116 #endif // !defined(CONFIG_TINY_RCU)
2117 
2118 struct task_struct *get_rcu_tasks_trace_gp_kthread(void)
2119 {
2120 	return rcu_tasks_trace.kthread_ptr;
2121 }
2122 EXPORT_SYMBOL_GPL(get_rcu_tasks_trace_gp_kthread);
2123 
2124 void rcu_tasks_trace_get_gp_data(int *flags, unsigned long *gp_seq)
2125 {
2126 	*flags = 0;
2127 	*gp_seq = rcu_seq_current(&rcu_tasks_trace.tasks_gp_seq);
2128 }
2129 EXPORT_SYMBOL_GPL(rcu_tasks_trace_get_gp_data);
2130 
2131 #else /* #ifdef CONFIG_TASKS_TRACE_RCU */
2132 static void exit_tasks_rcu_finish_trace(struct task_struct *t) { }
2133 #endif /* #else #ifdef CONFIG_TASKS_TRACE_RCU */
2134 
2135 #ifndef CONFIG_TINY_RCU
2136 void show_rcu_tasks_gp_kthreads(void)
2137 {
2138 	show_rcu_tasks_classic_gp_kthread();
2139 	show_rcu_tasks_rude_gp_kthread();
2140 	show_rcu_tasks_trace_gp_kthread();
2141 }
2142 #endif /* #ifndef CONFIG_TINY_RCU */
2143 
2144 #ifdef CONFIG_PROVE_RCU
2145 struct rcu_tasks_test_desc {
2146 	struct rcu_head rh;
2147 	const char *name;
2148 	bool notrun;
2149 	unsigned long runstart;
2150 };
2151 
2152 static struct rcu_tasks_test_desc tests[] = {
2153 	{
2154 		.name = "call_rcu_tasks()",
2155 		/* If not defined, the test is skipped. */
2156 		.notrun = IS_ENABLED(CONFIG_TASKS_RCU),
2157 	},
2158 	{
2159 		.name = "call_rcu_tasks_trace()",
2160 		/* If not defined, the test is skipped. */
2161 		.notrun = IS_ENABLED(CONFIG_TASKS_TRACE_RCU)
2162 	}
2163 };
2164 
2165 #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU)
2166 static void test_rcu_tasks_callback(struct rcu_head *rhp)
2167 {
2168 	struct rcu_tasks_test_desc *rttd =
2169 		container_of(rhp, struct rcu_tasks_test_desc, rh);
2170 
2171 	pr_info("Callback from %s invoked.\n", rttd->name);
2172 
2173 	rttd->notrun = false;
2174 }
2175 #endif // #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU)
2176 
2177 static void rcu_tasks_initiate_self_tests(void)
2178 {
2179 #ifdef CONFIG_TASKS_RCU
2180 	pr_info("Running RCU Tasks wait API self tests\n");
2181 	tests[0].runstart = jiffies;
2182 	synchronize_rcu_tasks();
2183 	call_rcu_tasks(&tests[0].rh, test_rcu_tasks_callback);
2184 #endif
2185 
2186 #ifdef CONFIG_TASKS_RUDE_RCU
2187 	pr_info("Running RCU Tasks Rude wait API self tests\n");
2188 	synchronize_rcu_tasks_rude();
2189 #endif
2190 
2191 #ifdef CONFIG_TASKS_TRACE_RCU
2192 	pr_info("Running RCU Tasks Trace wait API self tests\n");
2193 	tests[1].runstart = jiffies;
2194 	synchronize_rcu_tasks_trace();
2195 	call_rcu_tasks_trace(&tests[1].rh, test_rcu_tasks_callback);
2196 #endif
2197 }
2198 
2199 /*
2200  * Return:  0 - test passed
2201  *	    1 - test failed, but have not timed out yet
2202  *	   -1 - test failed and timed out
2203  */
2204 static int rcu_tasks_verify_self_tests(void)
2205 {
2206 	int ret = 0;
2207 	int i;
2208 	unsigned long bst = rcu_task_stall_timeout;
2209 
2210 	if (bst <= 0 || bst > RCU_TASK_BOOT_STALL_TIMEOUT)
2211 		bst = RCU_TASK_BOOT_STALL_TIMEOUT;
2212 	for (i = 0; i < ARRAY_SIZE(tests); i++) {
2213 		while (tests[i].notrun) {		// still hanging.
2214 			if (time_after(jiffies, tests[i].runstart + bst)) {
2215 				pr_err("%s has failed boot-time tests.\n", tests[i].name);
2216 				ret = -1;
2217 				break;
2218 			}
2219 			ret = 1;
2220 			break;
2221 		}
2222 	}
2223 	WARN_ON(ret < 0);
2224 
2225 	return ret;
2226 }
2227 
2228 /*
2229  * Repeat the rcu_tasks_verify_self_tests() call once every second until the
2230  * test passes or has timed out.
2231  */
2232 static struct delayed_work rcu_tasks_verify_work;
2233 static void rcu_tasks_verify_work_fn(struct work_struct *work __maybe_unused)
2234 {
2235 	int ret = rcu_tasks_verify_self_tests();
2236 
2237 	if (ret <= 0)
2238 		return;
2239 
2240 	/* Test fails but not timed out yet, reschedule another check */
2241 	schedule_delayed_work(&rcu_tasks_verify_work, HZ);
2242 }
2243 
2244 static int rcu_tasks_verify_schedule_work(void)
2245 {
2246 	INIT_DELAYED_WORK(&rcu_tasks_verify_work, rcu_tasks_verify_work_fn);
2247 	rcu_tasks_verify_work_fn(NULL);
2248 	return 0;
2249 }
2250 late_initcall(rcu_tasks_verify_schedule_work);
2251 #else /* #ifdef CONFIG_PROVE_RCU */
2252 static void rcu_tasks_initiate_self_tests(void) { }
2253 #endif /* #else #ifdef CONFIG_PROVE_RCU */
2254 
2255 void __init tasks_cblist_init_generic(void)
2256 {
2257 	lockdep_assert_irqs_disabled();
2258 	WARN_ON(num_online_cpus() > 1);
2259 
2260 #ifdef CONFIG_TASKS_RCU
2261 	cblist_init_generic(&rcu_tasks);
2262 #endif
2263 
2264 #ifdef CONFIG_TASKS_RUDE_RCU
2265 	cblist_init_generic(&rcu_tasks_rude);
2266 #endif
2267 
2268 #ifdef CONFIG_TASKS_TRACE_RCU
2269 	cblist_init_generic(&rcu_tasks_trace);
2270 #endif
2271 }
2272 
2273 void __init rcu_init_tasks_generic(void)
2274 {
2275 #ifdef CONFIG_TASKS_RCU
2276 	rcu_spawn_tasks_kthread();
2277 #endif
2278 
2279 #ifdef CONFIG_TASKS_RUDE_RCU
2280 	rcu_spawn_tasks_rude_kthread();
2281 #endif
2282 
2283 #ifdef CONFIG_TASKS_TRACE_RCU
2284 	rcu_spawn_tasks_trace_kthread();
2285 #endif
2286 
2287 	// Run the self-tests.
2288 	rcu_tasks_initiate_self_tests();
2289 }
2290 
2291 #else /* #ifdef CONFIG_TASKS_RCU_GENERIC */
2292 static inline void rcu_tasks_bootup_oddness(void) {}
2293 #endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */
2294