1 /* SPDX-License-Identifier: GPL-2.0+ */ 2 /* 3 * Task-based RCU implementations. 4 * 5 * Copyright (C) 2020 Paul E. McKenney 6 */ 7 8 #ifdef CONFIG_TASKS_RCU_GENERIC 9 #include "rcu_segcblist.h" 10 11 //////////////////////////////////////////////////////////////////////// 12 // 13 // Generic data structures. 14 15 struct rcu_tasks; 16 typedef void (*rcu_tasks_gp_func_t)(struct rcu_tasks *rtp); 17 typedef void (*pregp_func_t)(struct list_head *hop); 18 typedef void (*pertask_func_t)(struct task_struct *t, struct list_head *hop); 19 typedef void (*postscan_func_t)(struct list_head *hop); 20 typedef void (*holdouts_func_t)(struct list_head *hop, bool ndrpt, bool *frptp); 21 typedef void (*postgp_func_t)(struct rcu_tasks *rtp); 22 23 /** 24 * struct rcu_tasks_percpu - Per-CPU component of definition for a Tasks-RCU-like mechanism. 25 * @cblist: Callback list. 26 * @lock: Lock protecting per-CPU callback list. 27 * @rtp_jiffies: Jiffies counter value for statistics. 28 * @lazy_timer: Timer to unlazify callbacks. 29 * @urgent_gp: Number of additional non-lazy grace periods. 30 * @rtp_n_lock_retries: Rough lock-contention statistic. 31 * @rtp_work: Work queue for invoking callbacks. 32 * @rtp_irq_work: IRQ work queue for deferred wakeups. 33 * @barrier_q_head: RCU callback for barrier operation. 34 * @rtp_blkd_tasks: List of tasks blocked as readers. 35 * @cpu: CPU number corresponding to this entry. 36 * @rtpp: Pointer to the rcu_tasks structure. 37 */ 38 struct rcu_tasks_percpu { 39 struct rcu_segcblist cblist; 40 raw_spinlock_t __private lock; 41 unsigned long rtp_jiffies; 42 unsigned long rtp_n_lock_retries; 43 struct timer_list lazy_timer; 44 unsigned int urgent_gp; 45 struct work_struct rtp_work; 46 struct irq_work rtp_irq_work; 47 struct rcu_head barrier_q_head; 48 struct list_head rtp_blkd_tasks; 49 int cpu; 50 struct rcu_tasks *rtpp; 51 }; 52 53 /** 54 * struct rcu_tasks - Definition for a Tasks-RCU-like mechanism. 55 * @cbs_wait: RCU wait allowing a new callback to get kthread's attention. 56 * @cbs_gbl_lock: Lock protecting callback list. 57 * @tasks_gp_mutex: Mutex protecting grace period, needed during mid-boot dead zone. 58 * @gp_func: This flavor's grace-period-wait function. 59 * @gp_state: Grace period's most recent state transition (debugging). 60 * @gp_sleep: Per-grace-period sleep to prevent CPU-bound looping. 61 * @init_fract: Initial backoff sleep interval. 62 * @gp_jiffies: Time of last @gp_state transition. 63 * @gp_start: Most recent grace-period start in jiffies. 64 * @tasks_gp_seq: Number of grace periods completed since boot. 65 * @n_ipis: Number of IPIs sent to encourage grace periods to end. 66 * @n_ipis_fails: Number of IPI-send failures. 67 * @kthread_ptr: This flavor's grace-period/callback-invocation kthread. 68 * @lazy_jiffies: Number of jiffies to allow callbacks to be lazy. 69 * @pregp_func: This flavor's pre-grace-period function (optional). 70 * @pertask_func: This flavor's per-task scan function (optional). 71 * @postscan_func: This flavor's post-task scan function (optional). 72 * @holdouts_func: This flavor's holdout-list scan function (optional). 73 * @postgp_func: This flavor's post-grace-period function (optional). 74 * @call_func: This flavor's call_rcu()-equivalent function. 75 * @rtpcpu: This flavor's rcu_tasks_percpu structure. 76 * @percpu_enqueue_shift: Shift down CPU ID this much when enqueuing callbacks. 77 * @percpu_enqueue_lim: Number of per-CPU callback queues in use for enqueuing. 78 * @percpu_dequeue_lim: Number of per-CPU callback queues in use for dequeuing. 79 * @percpu_dequeue_gpseq: RCU grace-period number to propagate enqueue limit to dequeuers. 80 * @barrier_q_mutex: Serialize barrier operations. 81 * @barrier_q_count: Number of queues being waited on. 82 * @barrier_q_completion: Barrier wait/wakeup mechanism. 83 * @barrier_q_seq: Sequence number for barrier operations. 84 * @name: This flavor's textual name. 85 * @kname: This flavor's kthread name. 86 */ 87 struct rcu_tasks { 88 struct rcuwait cbs_wait; 89 raw_spinlock_t cbs_gbl_lock; 90 struct mutex tasks_gp_mutex; 91 int gp_state; 92 int gp_sleep; 93 int init_fract; 94 unsigned long gp_jiffies; 95 unsigned long gp_start; 96 unsigned long tasks_gp_seq; 97 unsigned long n_ipis; 98 unsigned long n_ipis_fails; 99 struct task_struct *kthread_ptr; 100 unsigned long lazy_jiffies; 101 rcu_tasks_gp_func_t gp_func; 102 pregp_func_t pregp_func; 103 pertask_func_t pertask_func; 104 postscan_func_t postscan_func; 105 holdouts_func_t holdouts_func; 106 postgp_func_t postgp_func; 107 call_rcu_func_t call_func; 108 struct rcu_tasks_percpu __percpu *rtpcpu; 109 int percpu_enqueue_shift; 110 int percpu_enqueue_lim; 111 int percpu_dequeue_lim; 112 unsigned long percpu_dequeue_gpseq; 113 struct mutex barrier_q_mutex; 114 atomic_t barrier_q_count; 115 struct completion barrier_q_completion; 116 unsigned long barrier_q_seq; 117 char *name; 118 char *kname; 119 }; 120 121 static void call_rcu_tasks_iw_wakeup(struct irq_work *iwp); 122 123 #define DEFINE_RCU_TASKS(rt_name, gp, call, n) \ 124 static DEFINE_PER_CPU(struct rcu_tasks_percpu, rt_name ## __percpu) = { \ 125 .lock = __RAW_SPIN_LOCK_UNLOCKED(rt_name ## __percpu.cbs_pcpu_lock), \ 126 .rtp_irq_work = IRQ_WORK_INIT_HARD(call_rcu_tasks_iw_wakeup), \ 127 }; \ 128 static struct rcu_tasks rt_name = \ 129 { \ 130 .cbs_wait = __RCUWAIT_INITIALIZER(rt_name.wait), \ 131 .cbs_gbl_lock = __RAW_SPIN_LOCK_UNLOCKED(rt_name.cbs_gbl_lock), \ 132 .tasks_gp_mutex = __MUTEX_INITIALIZER(rt_name.tasks_gp_mutex), \ 133 .gp_func = gp, \ 134 .call_func = call, \ 135 .rtpcpu = &rt_name ## __percpu, \ 136 .lazy_jiffies = DIV_ROUND_UP(HZ, 4), \ 137 .name = n, \ 138 .percpu_enqueue_shift = order_base_2(CONFIG_NR_CPUS), \ 139 .percpu_enqueue_lim = 1, \ 140 .percpu_dequeue_lim = 1, \ 141 .barrier_q_mutex = __MUTEX_INITIALIZER(rt_name.barrier_q_mutex), \ 142 .barrier_q_seq = (0UL - 50UL) << RCU_SEQ_CTR_SHIFT, \ 143 .kname = #rt_name, \ 144 } 145 146 #ifdef CONFIG_TASKS_RCU 147 /* Track exiting tasks in order to allow them to be waited for. */ 148 DEFINE_STATIC_SRCU(tasks_rcu_exit_srcu); 149 150 /* Report delay in synchronize_srcu() completion in rcu_tasks_postscan(). */ 151 static void tasks_rcu_exit_srcu_stall(struct timer_list *unused); 152 static DEFINE_TIMER(tasks_rcu_exit_srcu_stall_timer, tasks_rcu_exit_srcu_stall); 153 #endif 154 155 /* Avoid IPIing CPUs early in the grace period. */ 156 #define RCU_TASK_IPI_DELAY (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) ? HZ / 2 : 0) 157 static int rcu_task_ipi_delay __read_mostly = RCU_TASK_IPI_DELAY; 158 module_param(rcu_task_ipi_delay, int, 0644); 159 160 /* Control stall timeouts. Disable with <= 0, otherwise jiffies till stall. */ 161 #define RCU_TASK_BOOT_STALL_TIMEOUT (HZ * 30) 162 #define RCU_TASK_STALL_TIMEOUT (HZ * 60 * 10) 163 static int rcu_task_stall_timeout __read_mostly = RCU_TASK_STALL_TIMEOUT; 164 module_param(rcu_task_stall_timeout, int, 0644); 165 #define RCU_TASK_STALL_INFO (HZ * 10) 166 static int rcu_task_stall_info __read_mostly = RCU_TASK_STALL_INFO; 167 module_param(rcu_task_stall_info, int, 0644); 168 static int rcu_task_stall_info_mult __read_mostly = 3; 169 module_param(rcu_task_stall_info_mult, int, 0444); 170 171 static int rcu_task_enqueue_lim __read_mostly = -1; 172 module_param(rcu_task_enqueue_lim, int, 0444); 173 174 static bool rcu_task_cb_adjust; 175 static int rcu_task_contend_lim __read_mostly = 100; 176 module_param(rcu_task_contend_lim, int, 0444); 177 static int rcu_task_collapse_lim __read_mostly = 10; 178 module_param(rcu_task_collapse_lim, int, 0444); 179 static int rcu_task_lazy_lim __read_mostly = 32; 180 module_param(rcu_task_lazy_lim, int, 0444); 181 182 /* RCU tasks grace-period state for debugging. */ 183 #define RTGS_INIT 0 184 #define RTGS_WAIT_WAIT_CBS 1 185 #define RTGS_WAIT_GP 2 186 #define RTGS_PRE_WAIT_GP 3 187 #define RTGS_SCAN_TASKLIST 4 188 #define RTGS_POST_SCAN_TASKLIST 5 189 #define RTGS_WAIT_SCAN_HOLDOUTS 6 190 #define RTGS_SCAN_HOLDOUTS 7 191 #define RTGS_POST_GP 8 192 #define RTGS_WAIT_READERS 9 193 #define RTGS_INVOKE_CBS 10 194 #define RTGS_WAIT_CBS 11 195 #ifndef CONFIG_TINY_RCU 196 static const char * const rcu_tasks_gp_state_names[] = { 197 "RTGS_INIT", 198 "RTGS_WAIT_WAIT_CBS", 199 "RTGS_WAIT_GP", 200 "RTGS_PRE_WAIT_GP", 201 "RTGS_SCAN_TASKLIST", 202 "RTGS_POST_SCAN_TASKLIST", 203 "RTGS_WAIT_SCAN_HOLDOUTS", 204 "RTGS_SCAN_HOLDOUTS", 205 "RTGS_POST_GP", 206 "RTGS_WAIT_READERS", 207 "RTGS_INVOKE_CBS", 208 "RTGS_WAIT_CBS", 209 }; 210 #endif /* #ifndef CONFIG_TINY_RCU */ 211 212 //////////////////////////////////////////////////////////////////////// 213 // 214 // Generic code. 215 216 static void rcu_tasks_invoke_cbs_wq(struct work_struct *wp); 217 218 /* Record grace-period phase and time. */ 219 static void set_tasks_gp_state(struct rcu_tasks *rtp, int newstate) 220 { 221 rtp->gp_state = newstate; 222 rtp->gp_jiffies = jiffies; 223 } 224 225 #ifndef CONFIG_TINY_RCU 226 /* Return state name. */ 227 static const char *tasks_gp_state_getname(struct rcu_tasks *rtp) 228 { 229 int i = data_race(rtp->gp_state); // Let KCSAN detect update races 230 int j = READ_ONCE(i); // Prevent the compiler from reading twice 231 232 if (j >= ARRAY_SIZE(rcu_tasks_gp_state_names)) 233 return "???"; 234 return rcu_tasks_gp_state_names[j]; 235 } 236 #endif /* #ifndef CONFIG_TINY_RCU */ 237 238 // Initialize per-CPU callback lists for the specified flavor of 239 // Tasks RCU. Do not enqueue callbacks before this function is invoked. 240 static void cblist_init_generic(struct rcu_tasks *rtp) 241 { 242 int cpu; 243 unsigned long flags; 244 int lim; 245 int shift; 246 247 if (rcu_task_enqueue_lim < 0) { 248 rcu_task_enqueue_lim = 1; 249 rcu_task_cb_adjust = true; 250 } else if (rcu_task_enqueue_lim == 0) { 251 rcu_task_enqueue_lim = 1; 252 } 253 lim = rcu_task_enqueue_lim; 254 255 if (lim > nr_cpu_ids) 256 lim = nr_cpu_ids; 257 shift = ilog2(nr_cpu_ids / lim); 258 if (((nr_cpu_ids - 1) >> shift) >= lim) 259 shift++; 260 WRITE_ONCE(rtp->percpu_enqueue_shift, shift); 261 WRITE_ONCE(rtp->percpu_dequeue_lim, lim); 262 smp_store_release(&rtp->percpu_enqueue_lim, lim); 263 for_each_possible_cpu(cpu) { 264 struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu); 265 266 WARN_ON_ONCE(!rtpcp); 267 if (cpu) 268 raw_spin_lock_init(&ACCESS_PRIVATE(rtpcp, lock)); 269 local_irq_save(flags); // serialize initialization 270 if (rcu_segcblist_empty(&rtpcp->cblist)) 271 rcu_segcblist_init(&rtpcp->cblist); 272 local_irq_restore(flags); 273 INIT_WORK(&rtpcp->rtp_work, rcu_tasks_invoke_cbs_wq); 274 rtpcp->cpu = cpu; 275 rtpcp->rtpp = rtp; 276 if (!rtpcp->rtp_blkd_tasks.next) 277 INIT_LIST_HEAD(&rtpcp->rtp_blkd_tasks); 278 } 279 280 pr_info("%s: Setting shift to %d and lim to %d rcu_task_cb_adjust=%d.\n", rtp->name, 281 data_race(rtp->percpu_enqueue_shift), data_race(rtp->percpu_enqueue_lim), rcu_task_cb_adjust); 282 } 283 284 // Compute wakeup time for lazy callback timer. 285 static unsigned long rcu_tasks_lazy_time(struct rcu_tasks *rtp) 286 { 287 return jiffies + rtp->lazy_jiffies; 288 } 289 290 // Timer handler that unlazifies lazy callbacks. 291 static void call_rcu_tasks_generic_timer(struct timer_list *tlp) 292 { 293 unsigned long flags; 294 bool needwake = false; 295 struct rcu_tasks *rtp; 296 struct rcu_tasks_percpu *rtpcp = from_timer(rtpcp, tlp, lazy_timer); 297 298 rtp = rtpcp->rtpp; 299 raw_spin_lock_irqsave_rcu_node(rtpcp, flags); 300 if (!rcu_segcblist_empty(&rtpcp->cblist) && rtp->lazy_jiffies) { 301 if (!rtpcp->urgent_gp) 302 rtpcp->urgent_gp = 1; 303 needwake = true; 304 mod_timer(&rtpcp->lazy_timer, rcu_tasks_lazy_time(rtp)); 305 } 306 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 307 if (needwake) 308 rcuwait_wake_up(&rtp->cbs_wait); 309 } 310 311 // IRQ-work handler that does deferred wakeup for call_rcu_tasks_generic(). 312 static void call_rcu_tasks_iw_wakeup(struct irq_work *iwp) 313 { 314 struct rcu_tasks *rtp; 315 struct rcu_tasks_percpu *rtpcp = container_of(iwp, struct rcu_tasks_percpu, rtp_irq_work); 316 317 rtp = rtpcp->rtpp; 318 rcuwait_wake_up(&rtp->cbs_wait); 319 } 320 321 // Enqueue a callback for the specified flavor of Tasks RCU. 322 static void call_rcu_tasks_generic(struct rcu_head *rhp, rcu_callback_t func, 323 struct rcu_tasks *rtp) 324 { 325 int chosen_cpu; 326 unsigned long flags; 327 bool havekthread = smp_load_acquire(&rtp->kthread_ptr); 328 int ideal_cpu; 329 unsigned long j; 330 bool needadjust = false; 331 bool needwake; 332 struct rcu_tasks_percpu *rtpcp; 333 334 rhp->next = NULL; 335 rhp->func = func; 336 local_irq_save(flags); 337 rcu_read_lock(); 338 ideal_cpu = smp_processor_id() >> READ_ONCE(rtp->percpu_enqueue_shift); 339 chosen_cpu = cpumask_next(ideal_cpu - 1, cpu_possible_mask); 340 rtpcp = per_cpu_ptr(rtp->rtpcpu, chosen_cpu); 341 if (!raw_spin_trylock_rcu_node(rtpcp)) { // irqs already disabled. 342 raw_spin_lock_rcu_node(rtpcp); // irqs already disabled. 343 j = jiffies; 344 if (rtpcp->rtp_jiffies != j) { 345 rtpcp->rtp_jiffies = j; 346 rtpcp->rtp_n_lock_retries = 0; 347 } 348 if (rcu_task_cb_adjust && ++rtpcp->rtp_n_lock_retries > rcu_task_contend_lim && 349 READ_ONCE(rtp->percpu_enqueue_lim) != nr_cpu_ids) 350 needadjust = true; // Defer adjustment to avoid deadlock. 351 } 352 // Queuing callbacks before initialization not yet supported. 353 if (WARN_ON_ONCE(!rcu_segcblist_is_enabled(&rtpcp->cblist))) 354 rcu_segcblist_init(&rtpcp->cblist); 355 needwake = (func == wakeme_after_rcu) || 356 (rcu_segcblist_n_cbs(&rtpcp->cblist) == rcu_task_lazy_lim); 357 if (havekthread && !needwake && !timer_pending(&rtpcp->lazy_timer)) { 358 if (rtp->lazy_jiffies) 359 mod_timer(&rtpcp->lazy_timer, rcu_tasks_lazy_time(rtp)); 360 else 361 needwake = rcu_segcblist_empty(&rtpcp->cblist); 362 } 363 if (needwake) 364 rtpcp->urgent_gp = 3; 365 rcu_segcblist_enqueue(&rtpcp->cblist, rhp); 366 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 367 if (unlikely(needadjust)) { 368 raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags); 369 if (rtp->percpu_enqueue_lim != nr_cpu_ids) { 370 WRITE_ONCE(rtp->percpu_enqueue_shift, 0); 371 WRITE_ONCE(rtp->percpu_dequeue_lim, nr_cpu_ids); 372 smp_store_release(&rtp->percpu_enqueue_lim, nr_cpu_ids); 373 pr_info("Switching %s to per-CPU callback queuing.\n", rtp->name); 374 } 375 raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags); 376 } 377 rcu_read_unlock(); 378 /* We can't create the thread unless interrupts are enabled. */ 379 if (needwake && READ_ONCE(rtp->kthread_ptr)) 380 irq_work_queue(&rtpcp->rtp_irq_work); 381 } 382 383 // RCU callback function for rcu_barrier_tasks_generic(). 384 static void rcu_barrier_tasks_generic_cb(struct rcu_head *rhp) 385 { 386 struct rcu_tasks *rtp; 387 struct rcu_tasks_percpu *rtpcp; 388 389 rtpcp = container_of(rhp, struct rcu_tasks_percpu, barrier_q_head); 390 rtp = rtpcp->rtpp; 391 if (atomic_dec_and_test(&rtp->barrier_q_count)) 392 complete(&rtp->barrier_q_completion); 393 } 394 395 // Wait for all in-flight callbacks for the specified RCU Tasks flavor. 396 // Operates in a manner similar to rcu_barrier(). 397 static void rcu_barrier_tasks_generic(struct rcu_tasks *rtp) 398 { 399 int cpu; 400 unsigned long flags; 401 struct rcu_tasks_percpu *rtpcp; 402 unsigned long s = rcu_seq_snap(&rtp->barrier_q_seq); 403 404 mutex_lock(&rtp->barrier_q_mutex); 405 if (rcu_seq_done(&rtp->barrier_q_seq, s)) { 406 smp_mb(); 407 mutex_unlock(&rtp->barrier_q_mutex); 408 return; 409 } 410 rcu_seq_start(&rtp->barrier_q_seq); 411 init_completion(&rtp->barrier_q_completion); 412 atomic_set(&rtp->barrier_q_count, 2); 413 for_each_possible_cpu(cpu) { 414 if (cpu >= smp_load_acquire(&rtp->percpu_dequeue_lim)) 415 break; 416 rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu); 417 rtpcp->barrier_q_head.func = rcu_barrier_tasks_generic_cb; 418 raw_spin_lock_irqsave_rcu_node(rtpcp, flags); 419 if (rcu_segcblist_entrain(&rtpcp->cblist, &rtpcp->barrier_q_head)) 420 atomic_inc(&rtp->barrier_q_count); 421 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 422 } 423 if (atomic_sub_and_test(2, &rtp->barrier_q_count)) 424 complete(&rtp->barrier_q_completion); 425 wait_for_completion(&rtp->barrier_q_completion); 426 rcu_seq_end(&rtp->barrier_q_seq); 427 mutex_unlock(&rtp->barrier_q_mutex); 428 } 429 430 // Advance callbacks and indicate whether either a grace period or 431 // callback invocation is needed. 432 static int rcu_tasks_need_gpcb(struct rcu_tasks *rtp) 433 { 434 int cpu; 435 int dequeue_limit; 436 unsigned long flags; 437 bool gpdone = poll_state_synchronize_rcu(rtp->percpu_dequeue_gpseq); 438 long n; 439 long ncbs = 0; 440 long ncbsnz = 0; 441 int needgpcb = 0; 442 443 dequeue_limit = smp_load_acquire(&rtp->percpu_dequeue_lim); 444 for (cpu = 0; cpu < dequeue_limit; cpu++) { 445 struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu); 446 447 /* Advance and accelerate any new callbacks. */ 448 if (!rcu_segcblist_n_cbs(&rtpcp->cblist)) 449 continue; 450 raw_spin_lock_irqsave_rcu_node(rtpcp, flags); 451 // Should we shrink down to a single callback queue? 452 n = rcu_segcblist_n_cbs(&rtpcp->cblist); 453 if (n) { 454 ncbs += n; 455 if (cpu > 0) 456 ncbsnz += n; 457 } 458 rcu_segcblist_advance(&rtpcp->cblist, rcu_seq_current(&rtp->tasks_gp_seq)); 459 (void)rcu_segcblist_accelerate(&rtpcp->cblist, rcu_seq_snap(&rtp->tasks_gp_seq)); 460 if (rtpcp->urgent_gp > 0 && rcu_segcblist_pend_cbs(&rtpcp->cblist)) { 461 if (rtp->lazy_jiffies) 462 rtpcp->urgent_gp--; 463 needgpcb |= 0x3; 464 } else if (rcu_segcblist_empty(&rtpcp->cblist)) { 465 rtpcp->urgent_gp = 0; 466 } 467 if (rcu_segcblist_ready_cbs(&rtpcp->cblist)) 468 needgpcb |= 0x1; 469 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 470 } 471 472 // Shrink down to a single callback queue if appropriate. 473 // This is done in two stages: (1) If there are no more than 474 // rcu_task_collapse_lim callbacks on CPU 0 and none on any other 475 // CPU, limit enqueueing to CPU 0. (2) After an RCU grace period, 476 // if there has not been an increase in callbacks, limit dequeuing 477 // to CPU 0. Note the matching RCU read-side critical section in 478 // call_rcu_tasks_generic(). 479 if (rcu_task_cb_adjust && ncbs <= rcu_task_collapse_lim) { 480 raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags); 481 if (rtp->percpu_enqueue_lim > 1) { 482 WRITE_ONCE(rtp->percpu_enqueue_shift, order_base_2(nr_cpu_ids)); 483 smp_store_release(&rtp->percpu_enqueue_lim, 1); 484 rtp->percpu_dequeue_gpseq = get_state_synchronize_rcu(); 485 gpdone = false; 486 pr_info("Starting switch %s to CPU-0 callback queuing.\n", rtp->name); 487 } 488 raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags); 489 } 490 if (rcu_task_cb_adjust && !ncbsnz && gpdone) { 491 raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags); 492 if (rtp->percpu_enqueue_lim < rtp->percpu_dequeue_lim) { 493 WRITE_ONCE(rtp->percpu_dequeue_lim, 1); 494 pr_info("Completing switch %s to CPU-0 callback queuing.\n", rtp->name); 495 } 496 if (rtp->percpu_dequeue_lim == 1) { 497 for (cpu = rtp->percpu_dequeue_lim; cpu < nr_cpu_ids; cpu++) { 498 struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu); 499 500 WARN_ON_ONCE(rcu_segcblist_n_cbs(&rtpcp->cblist)); 501 } 502 } 503 raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags); 504 } 505 506 return needgpcb; 507 } 508 509 // Advance callbacks and invoke any that are ready. 510 static void rcu_tasks_invoke_cbs(struct rcu_tasks *rtp, struct rcu_tasks_percpu *rtpcp) 511 { 512 int cpu; 513 int cpunext; 514 int cpuwq; 515 unsigned long flags; 516 int len; 517 struct rcu_head *rhp; 518 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl); 519 struct rcu_tasks_percpu *rtpcp_next; 520 521 cpu = rtpcp->cpu; 522 cpunext = cpu * 2 + 1; 523 if (cpunext < smp_load_acquire(&rtp->percpu_dequeue_lim)) { 524 rtpcp_next = per_cpu_ptr(rtp->rtpcpu, cpunext); 525 cpuwq = rcu_cpu_beenfullyonline(cpunext) ? cpunext : WORK_CPU_UNBOUND; 526 queue_work_on(cpuwq, system_wq, &rtpcp_next->rtp_work); 527 cpunext++; 528 if (cpunext < smp_load_acquire(&rtp->percpu_dequeue_lim)) { 529 rtpcp_next = per_cpu_ptr(rtp->rtpcpu, cpunext); 530 cpuwq = rcu_cpu_beenfullyonline(cpunext) ? cpunext : WORK_CPU_UNBOUND; 531 queue_work_on(cpuwq, system_wq, &rtpcp_next->rtp_work); 532 } 533 } 534 535 if (rcu_segcblist_empty(&rtpcp->cblist) || !cpu_possible(cpu)) 536 return; 537 raw_spin_lock_irqsave_rcu_node(rtpcp, flags); 538 rcu_segcblist_advance(&rtpcp->cblist, rcu_seq_current(&rtp->tasks_gp_seq)); 539 rcu_segcblist_extract_done_cbs(&rtpcp->cblist, &rcl); 540 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 541 len = rcl.len; 542 for (rhp = rcu_cblist_dequeue(&rcl); rhp; rhp = rcu_cblist_dequeue(&rcl)) { 543 debug_rcu_head_callback(rhp); 544 local_bh_disable(); 545 rhp->func(rhp); 546 local_bh_enable(); 547 cond_resched(); 548 } 549 raw_spin_lock_irqsave_rcu_node(rtpcp, flags); 550 rcu_segcblist_add_len(&rtpcp->cblist, -len); 551 (void)rcu_segcblist_accelerate(&rtpcp->cblist, rcu_seq_snap(&rtp->tasks_gp_seq)); 552 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 553 } 554 555 // Workqueue flood to advance callbacks and invoke any that are ready. 556 static void rcu_tasks_invoke_cbs_wq(struct work_struct *wp) 557 { 558 struct rcu_tasks *rtp; 559 struct rcu_tasks_percpu *rtpcp = container_of(wp, struct rcu_tasks_percpu, rtp_work); 560 561 rtp = rtpcp->rtpp; 562 rcu_tasks_invoke_cbs(rtp, rtpcp); 563 } 564 565 // Wait for one grace period. 566 static void rcu_tasks_one_gp(struct rcu_tasks *rtp, bool midboot) 567 { 568 int needgpcb; 569 570 mutex_lock(&rtp->tasks_gp_mutex); 571 572 // If there were none, wait a bit and start over. 573 if (unlikely(midboot)) { 574 needgpcb = 0x2; 575 } else { 576 mutex_unlock(&rtp->tasks_gp_mutex); 577 set_tasks_gp_state(rtp, RTGS_WAIT_CBS); 578 rcuwait_wait_event(&rtp->cbs_wait, 579 (needgpcb = rcu_tasks_need_gpcb(rtp)), 580 TASK_IDLE); 581 mutex_lock(&rtp->tasks_gp_mutex); 582 } 583 584 if (needgpcb & 0x2) { 585 // Wait for one grace period. 586 set_tasks_gp_state(rtp, RTGS_WAIT_GP); 587 rtp->gp_start = jiffies; 588 rcu_seq_start(&rtp->tasks_gp_seq); 589 rtp->gp_func(rtp); 590 rcu_seq_end(&rtp->tasks_gp_seq); 591 } 592 593 // Invoke callbacks. 594 set_tasks_gp_state(rtp, RTGS_INVOKE_CBS); 595 rcu_tasks_invoke_cbs(rtp, per_cpu_ptr(rtp->rtpcpu, 0)); 596 mutex_unlock(&rtp->tasks_gp_mutex); 597 } 598 599 // RCU-tasks kthread that detects grace periods and invokes callbacks. 600 static int __noreturn rcu_tasks_kthread(void *arg) 601 { 602 int cpu; 603 struct rcu_tasks *rtp = arg; 604 605 for_each_possible_cpu(cpu) { 606 struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu); 607 608 timer_setup(&rtpcp->lazy_timer, call_rcu_tasks_generic_timer, 0); 609 rtpcp->urgent_gp = 1; 610 } 611 612 /* Run on housekeeping CPUs by default. Sysadm can move if desired. */ 613 housekeeping_affine(current, HK_TYPE_RCU); 614 smp_store_release(&rtp->kthread_ptr, current); // Let GPs start! 615 616 /* 617 * Each pass through the following loop makes one check for 618 * newly arrived callbacks, and, if there are some, waits for 619 * one RCU-tasks grace period and then invokes the callbacks. 620 * This loop is terminated by the system going down. ;-) 621 */ 622 for (;;) { 623 // Wait for one grace period and invoke any callbacks 624 // that are ready. 625 rcu_tasks_one_gp(rtp, false); 626 627 // Paranoid sleep to keep this from entering a tight loop. 628 schedule_timeout_idle(rtp->gp_sleep); 629 } 630 } 631 632 // Wait for a grace period for the specified flavor of Tasks RCU. 633 static void synchronize_rcu_tasks_generic(struct rcu_tasks *rtp) 634 { 635 /* Complain if the scheduler has not started. */ 636 if (WARN_ONCE(rcu_scheduler_active == RCU_SCHEDULER_INACTIVE, 637 "synchronize_%s() called too soon", rtp->name)) 638 return; 639 640 // If the grace-period kthread is running, use it. 641 if (READ_ONCE(rtp->kthread_ptr)) { 642 wait_rcu_gp(rtp->call_func); 643 return; 644 } 645 rcu_tasks_one_gp(rtp, true); 646 } 647 648 /* Spawn RCU-tasks grace-period kthread. */ 649 static void __init rcu_spawn_tasks_kthread_generic(struct rcu_tasks *rtp) 650 { 651 struct task_struct *t; 652 653 t = kthread_run(rcu_tasks_kthread, rtp, "%s_kthread", rtp->kname); 654 if (WARN_ONCE(IS_ERR(t), "%s: Could not start %s grace-period kthread, OOM is now expected behavior\n", __func__, rtp->name)) 655 return; 656 smp_mb(); /* Ensure others see full kthread. */ 657 } 658 659 #ifndef CONFIG_TINY_RCU 660 661 /* 662 * Print any non-default Tasks RCU settings. 663 */ 664 static void __init rcu_tasks_bootup_oddness(void) 665 { 666 #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU) 667 int rtsimc; 668 669 if (rcu_task_stall_timeout != RCU_TASK_STALL_TIMEOUT) 670 pr_info("\tTasks-RCU CPU stall warnings timeout set to %d (rcu_task_stall_timeout).\n", rcu_task_stall_timeout); 671 rtsimc = clamp(rcu_task_stall_info_mult, 1, 10); 672 if (rtsimc != rcu_task_stall_info_mult) { 673 pr_info("\tTasks-RCU CPU stall info multiplier clamped to %d (rcu_task_stall_info_mult).\n", rtsimc); 674 rcu_task_stall_info_mult = rtsimc; 675 } 676 #endif /* #ifdef CONFIG_TASKS_RCU */ 677 #ifdef CONFIG_TASKS_RCU 678 pr_info("\tTrampoline variant of Tasks RCU enabled.\n"); 679 #endif /* #ifdef CONFIG_TASKS_RCU */ 680 #ifdef CONFIG_TASKS_RUDE_RCU 681 pr_info("\tRude variant of Tasks RCU enabled.\n"); 682 #endif /* #ifdef CONFIG_TASKS_RUDE_RCU */ 683 #ifdef CONFIG_TASKS_TRACE_RCU 684 pr_info("\tTracing variant of Tasks RCU enabled.\n"); 685 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 686 } 687 688 #endif /* #ifndef CONFIG_TINY_RCU */ 689 690 #ifndef CONFIG_TINY_RCU 691 /* Dump out rcutorture-relevant state common to all RCU-tasks flavors. */ 692 static void show_rcu_tasks_generic_gp_kthread(struct rcu_tasks *rtp, char *s) 693 { 694 int cpu; 695 bool havecbs = false; 696 bool haveurgent = false; 697 bool haveurgentcbs = false; 698 699 for_each_possible_cpu(cpu) { 700 struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu); 701 702 if (!data_race(rcu_segcblist_empty(&rtpcp->cblist))) 703 havecbs = true; 704 if (data_race(rtpcp->urgent_gp)) 705 haveurgent = true; 706 if (!data_race(rcu_segcblist_empty(&rtpcp->cblist)) && data_race(rtpcp->urgent_gp)) 707 haveurgentcbs = true; 708 if (havecbs && haveurgent && haveurgentcbs) 709 break; 710 } 711 pr_info("%s: %s(%d) since %lu g:%lu i:%lu/%lu %c%c%c%c l:%lu %s\n", 712 rtp->kname, 713 tasks_gp_state_getname(rtp), data_race(rtp->gp_state), 714 jiffies - data_race(rtp->gp_jiffies), 715 data_race(rcu_seq_current(&rtp->tasks_gp_seq)), 716 data_race(rtp->n_ipis_fails), data_race(rtp->n_ipis), 717 ".k"[!!data_race(rtp->kthread_ptr)], 718 ".C"[havecbs], 719 ".u"[haveurgent], 720 ".U"[haveurgentcbs], 721 rtp->lazy_jiffies, 722 s); 723 } 724 #endif // #ifndef CONFIG_TINY_RCU 725 726 static void exit_tasks_rcu_finish_trace(struct task_struct *t); 727 728 #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU) 729 730 //////////////////////////////////////////////////////////////////////// 731 // 732 // Shared code between task-list-scanning variants of Tasks RCU. 733 734 /* Wait for one RCU-tasks grace period. */ 735 static void rcu_tasks_wait_gp(struct rcu_tasks *rtp) 736 { 737 struct task_struct *g; 738 int fract; 739 LIST_HEAD(holdouts); 740 unsigned long j; 741 unsigned long lastinfo; 742 unsigned long lastreport; 743 bool reported = false; 744 int rtsi; 745 struct task_struct *t; 746 747 set_tasks_gp_state(rtp, RTGS_PRE_WAIT_GP); 748 rtp->pregp_func(&holdouts); 749 750 /* 751 * There were callbacks, so we need to wait for an RCU-tasks 752 * grace period. Start off by scanning the task list for tasks 753 * that are not already voluntarily blocked. Mark these tasks 754 * and make a list of them in holdouts. 755 */ 756 set_tasks_gp_state(rtp, RTGS_SCAN_TASKLIST); 757 if (rtp->pertask_func) { 758 rcu_read_lock(); 759 for_each_process_thread(g, t) 760 rtp->pertask_func(t, &holdouts); 761 rcu_read_unlock(); 762 } 763 764 set_tasks_gp_state(rtp, RTGS_POST_SCAN_TASKLIST); 765 rtp->postscan_func(&holdouts); 766 767 /* 768 * Each pass through the following loop scans the list of holdout 769 * tasks, removing any that are no longer holdouts. When the list 770 * is empty, we are done. 771 */ 772 lastreport = jiffies; 773 lastinfo = lastreport; 774 rtsi = READ_ONCE(rcu_task_stall_info); 775 776 // Start off with initial wait and slowly back off to 1 HZ wait. 777 fract = rtp->init_fract; 778 779 while (!list_empty(&holdouts)) { 780 ktime_t exp; 781 bool firstreport; 782 bool needreport; 783 int rtst; 784 785 // Slowly back off waiting for holdouts 786 set_tasks_gp_state(rtp, RTGS_WAIT_SCAN_HOLDOUTS); 787 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) { 788 schedule_timeout_idle(fract); 789 } else { 790 exp = jiffies_to_nsecs(fract); 791 __set_current_state(TASK_IDLE); 792 schedule_hrtimeout_range(&exp, jiffies_to_nsecs(HZ / 2), HRTIMER_MODE_REL_HARD); 793 } 794 795 if (fract < HZ) 796 fract++; 797 798 rtst = READ_ONCE(rcu_task_stall_timeout); 799 needreport = rtst > 0 && time_after(jiffies, lastreport + rtst); 800 if (needreport) { 801 lastreport = jiffies; 802 reported = true; 803 } 804 firstreport = true; 805 WARN_ON(signal_pending(current)); 806 set_tasks_gp_state(rtp, RTGS_SCAN_HOLDOUTS); 807 rtp->holdouts_func(&holdouts, needreport, &firstreport); 808 809 // Print pre-stall informational messages if needed. 810 j = jiffies; 811 if (rtsi > 0 && !reported && time_after(j, lastinfo + rtsi)) { 812 lastinfo = j; 813 rtsi = rtsi * rcu_task_stall_info_mult; 814 pr_info("%s: %s grace period number %lu (since boot) is %lu jiffies old.\n", 815 __func__, rtp->kname, rtp->tasks_gp_seq, j - rtp->gp_start); 816 } 817 } 818 819 set_tasks_gp_state(rtp, RTGS_POST_GP); 820 rtp->postgp_func(rtp); 821 } 822 823 #endif /* #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU) */ 824 825 #ifdef CONFIG_TASKS_RCU 826 827 //////////////////////////////////////////////////////////////////////// 828 // 829 // Simple variant of RCU whose quiescent states are voluntary context 830 // switch, cond_resched_tasks_rcu_qs(), user-space execution, and idle. 831 // As such, grace periods can take one good long time. There are no 832 // read-side primitives similar to rcu_read_lock() and rcu_read_unlock() 833 // because this implementation is intended to get the system into a safe 834 // state for some of the manipulations involved in tracing and the like. 835 // Finally, this implementation does not support high call_rcu_tasks() 836 // rates from multiple CPUs. If this is required, per-CPU callback lists 837 // will be needed. 838 // 839 // The implementation uses rcu_tasks_wait_gp(), which relies on function 840 // pointers in the rcu_tasks structure. The rcu_spawn_tasks_kthread() 841 // function sets these function pointers up so that rcu_tasks_wait_gp() 842 // invokes these functions in this order: 843 // 844 // rcu_tasks_pregp_step(): 845 // Invokes synchronize_rcu() in order to wait for all in-flight 846 // t->on_rq and t->nvcsw transitions to complete. This works because 847 // all such transitions are carried out with interrupts disabled. 848 // rcu_tasks_pertask(), invoked on every non-idle task: 849 // For every runnable non-idle task other than the current one, use 850 // get_task_struct() to pin down that task, snapshot that task's 851 // number of voluntary context switches, and add that task to the 852 // holdout list. 853 // rcu_tasks_postscan(): 854 // Invoke synchronize_srcu() to ensure that all tasks that were 855 // in the process of exiting (and which thus might not know to 856 // synchronize with this RCU Tasks grace period) have completed 857 // exiting. 858 // check_all_holdout_tasks(), repeatedly until holdout list is empty: 859 // Scans the holdout list, attempting to identify a quiescent state 860 // for each task on the list. If there is a quiescent state, the 861 // corresponding task is removed from the holdout list. 862 // rcu_tasks_postgp(): 863 // Invokes synchronize_rcu() in order to ensure that all prior 864 // t->on_rq and t->nvcsw transitions are seen by all CPUs and tasks 865 // to have happened before the end of this RCU Tasks grace period. 866 // Again, this works because all such transitions are carried out 867 // with interrupts disabled. 868 // 869 // For each exiting task, the exit_tasks_rcu_start() and 870 // exit_tasks_rcu_finish() functions begin and end, respectively, the SRCU 871 // read-side critical sections waited for by rcu_tasks_postscan(). 872 // 873 // Pre-grace-period update-side code is ordered before the grace 874 // via the raw_spin_lock.*rcu_node(). Pre-grace-period read-side code 875 // is ordered before the grace period via synchronize_rcu() call in 876 // rcu_tasks_pregp_step() and by the scheduler's locks and interrupt 877 // disabling. 878 879 /* Pre-grace-period preparation. */ 880 static void rcu_tasks_pregp_step(struct list_head *hop) 881 { 882 /* 883 * Wait for all pre-existing t->on_rq and t->nvcsw transitions 884 * to complete. Invoking synchronize_rcu() suffices because all 885 * these transitions occur with interrupts disabled. Without this 886 * synchronize_rcu(), a read-side critical section that started 887 * before the grace period might be incorrectly seen as having 888 * started after the grace period. 889 * 890 * This synchronize_rcu() also dispenses with the need for a 891 * memory barrier on the first store to t->rcu_tasks_holdout, 892 * as it forces the store to happen after the beginning of the 893 * grace period. 894 */ 895 synchronize_rcu(); 896 } 897 898 /* Check for quiescent states since the pregp's synchronize_rcu() */ 899 static bool rcu_tasks_is_holdout(struct task_struct *t) 900 { 901 int cpu; 902 903 /* Has the task been seen voluntarily sleeping? */ 904 if (!READ_ONCE(t->on_rq)) 905 return false; 906 907 /* 908 * Idle tasks (or idle injection) within the idle loop are RCU-tasks 909 * quiescent states. But CPU boot code performed by the idle task 910 * isn't a quiescent state. 911 */ 912 if (is_idle_task(t)) 913 return false; 914 915 cpu = task_cpu(t); 916 917 /* Idle tasks on offline CPUs are RCU-tasks quiescent states. */ 918 if (t == idle_task(cpu) && !rcu_cpu_online(cpu)) 919 return false; 920 921 return true; 922 } 923 924 /* Per-task initial processing. */ 925 static void rcu_tasks_pertask(struct task_struct *t, struct list_head *hop) 926 { 927 if (t != current && rcu_tasks_is_holdout(t)) { 928 get_task_struct(t); 929 t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw); 930 WRITE_ONCE(t->rcu_tasks_holdout, true); 931 list_add(&t->rcu_tasks_holdout_list, hop); 932 } 933 } 934 935 /* Processing between scanning taskslist and draining the holdout list. */ 936 static void rcu_tasks_postscan(struct list_head *hop) 937 { 938 int rtsi = READ_ONCE(rcu_task_stall_info); 939 940 if (!IS_ENABLED(CONFIG_TINY_RCU)) { 941 tasks_rcu_exit_srcu_stall_timer.expires = jiffies + rtsi; 942 add_timer(&tasks_rcu_exit_srcu_stall_timer); 943 } 944 945 /* 946 * Exiting tasks may escape the tasklist scan. Those are vulnerable 947 * until their final schedule() with TASK_DEAD state. To cope with 948 * this, divide the fragile exit path part in two intersecting 949 * read side critical sections: 950 * 951 * 1) An _SRCU_ read side starting before calling exit_notify(), 952 * which may remove the task from the tasklist, and ending after 953 * the final preempt_disable() call in do_exit(). 954 * 955 * 2) An _RCU_ read side starting with the final preempt_disable() 956 * call in do_exit() and ending with the final call to schedule() 957 * with TASK_DEAD state. 958 * 959 * This handles the part 1). And postgp will handle part 2) with a 960 * call to synchronize_rcu(). 961 */ 962 synchronize_srcu(&tasks_rcu_exit_srcu); 963 964 if (!IS_ENABLED(CONFIG_TINY_RCU)) 965 del_timer_sync(&tasks_rcu_exit_srcu_stall_timer); 966 } 967 968 /* See if tasks are still holding out, complain if so. */ 969 static void check_holdout_task(struct task_struct *t, 970 bool needreport, bool *firstreport) 971 { 972 int cpu; 973 974 if (!READ_ONCE(t->rcu_tasks_holdout) || 975 t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) || 976 !rcu_tasks_is_holdout(t) || 977 (IS_ENABLED(CONFIG_NO_HZ_FULL) && 978 !is_idle_task(t) && READ_ONCE(t->rcu_tasks_idle_cpu) >= 0)) { 979 WRITE_ONCE(t->rcu_tasks_holdout, false); 980 list_del_init(&t->rcu_tasks_holdout_list); 981 put_task_struct(t); 982 return; 983 } 984 rcu_request_urgent_qs_task(t); 985 if (!needreport) 986 return; 987 if (*firstreport) { 988 pr_err("INFO: rcu_tasks detected stalls on tasks:\n"); 989 *firstreport = false; 990 } 991 cpu = task_cpu(t); 992 pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n", 993 t, ".I"[is_idle_task(t)], 994 "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)], 995 t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout, 996 data_race(t->rcu_tasks_idle_cpu), cpu); 997 sched_show_task(t); 998 } 999 1000 /* Scan the holdout lists for tasks no longer holding out. */ 1001 static void check_all_holdout_tasks(struct list_head *hop, 1002 bool needreport, bool *firstreport) 1003 { 1004 struct task_struct *t, *t1; 1005 1006 list_for_each_entry_safe(t, t1, hop, rcu_tasks_holdout_list) { 1007 check_holdout_task(t, needreport, firstreport); 1008 cond_resched(); 1009 } 1010 } 1011 1012 /* Finish off the Tasks-RCU grace period. */ 1013 static void rcu_tasks_postgp(struct rcu_tasks *rtp) 1014 { 1015 /* 1016 * Because ->on_rq and ->nvcsw are not guaranteed to have a full 1017 * memory barriers prior to them in the schedule() path, memory 1018 * reordering on other CPUs could cause their RCU-tasks read-side 1019 * critical sections to extend past the end of the grace period. 1020 * However, because these ->nvcsw updates are carried out with 1021 * interrupts disabled, we can use synchronize_rcu() to force the 1022 * needed ordering on all such CPUs. 1023 * 1024 * This synchronize_rcu() also confines all ->rcu_tasks_holdout 1025 * accesses to be within the grace period, avoiding the need for 1026 * memory barriers for ->rcu_tasks_holdout accesses. 1027 * 1028 * In addition, this synchronize_rcu() waits for exiting tasks 1029 * to complete their final preempt_disable() region of execution, 1030 * cleaning up after synchronize_srcu(&tasks_rcu_exit_srcu), 1031 * enforcing the whole region before tasklist removal until 1032 * the final schedule() with TASK_DEAD state to be an RCU TASKS 1033 * read side critical section. 1034 */ 1035 synchronize_rcu(); 1036 } 1037 1038 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func); 1039 DEFINE_RCU_TASKS(rcu_tasks, rcu_tasks_wait_gp, call_rcu_tasks, "RCU Tasks"); 1040 1041 static void tasks_rcu_exit_srcu_stall(struct timer_list *unused) 1042 { 1043 #ifndef CONFIG_TINY_RCU 1044 int rtsi; 1045 1046 rtsi = READ_ONCE(rcu_task_stall_info); 1047 pr_info("%s: %s grace period number %lu (since boot) gp_state: %s is %lu jiffies old.\n", 1048 __func__, rcu_tasks.kname, rcu_tasks.tasks_gp_seq, 1049 tasks_gp_state_getname(&rcu_tasks), jiffies - rcu_tasks.gp_jiffies); 1050 pr_info("Please check any exiting tasks stuck between calls to exit_tasks_rcu_start() and exit_tasks_rcu_finish()\n"); 1051 tasks_rcu_exit_srcu_stall_timer.expires = jiffies + rtsi; 1052 add_timer(&tasks_rcu_exit_srcu_stall_timer); 1053 #endif // #ifndef CONFIG_TINY_RCU 1054 } 1055 1056 /** 1057 * call_rcu_tasks() - Queue an RCU for invocation task-based grace period 1058 * @rhp: structure to be used for queueing the RCU updates. 1059 * @func: actual callback function to be invoked after the grace period 1060 * 1061 * The callback function will be invoked some time after a full grace 1062 * period elapses, in other words after all currently executing RCU 1063 * read-side critical sections have completed. call_rcu_tasks() assumes 1064 * that the read-side critical sections end at a voluntary context 1065 * switch (not a preemption!), cond_resched_tasks_rcu_qs(), entry into idle, 1066 * or transition to usermode execution. As such, there are no read-side 1067 * primitives analogous to rcu_read_lock() and rcu_read_unlock() because 1068 * this primitive is intended to determine that all tasks have passed 1069 * through a safe state, not so much for data-structure synchronization. 1070 * 1071 * See the description of call_rcu() for more detailed information on 1072 * memory ordering guarantees. 1073 */ 1074 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func) 1075 { 1076 call_rcu_tasks_generic(rhp, func, &rcu_tasks); 1077 } 1078 EXPORT_SYMBOL_GPL(call_rcu_tasks); 1079 1080 /** 1081 * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed. 1082 * 1083 * Control will return to the caller some time after a full rcu-tasks 1084 * grace period has elapsed, in other words after all currently 1085 * executing rcu-tasks read-side critical sections have elapsed. These 1086 * read-side critical sections are delimited by calls to schedule(), 1087 * cond_resched_tasks_rcu_qs(), idle execution, userspace execution, calls 1088 * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched(). 1089 * 1090 * This is a very specialized primitive, intended only for a few uses in 1091 * tracing and other situations requiring manipulation of function 1092 * preambles and profiling hooks. The synchronize_rcu_tasks() function 1093 * is not (yet) intended for heavy use from multiple CPUs. 1094 * 1095 * See the description of synchronize_rcu() for more detailed information 1096 * on memory ordering guarantees. 1097 */ 1098 void synchronize_rcu_tasks(void) 1099 { 1100 synchronize_rcu_tasks_generic(&rcu_tasks); 1101 } 1102 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks); 1103 1104 /** 1105 * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks. 1106 * 1107 * Although the current implementation is guaranteed to wait, it is not 1108 * obligated to, for example, if there are no pending callbacks. 1109 */ 1110 void rcu_barrier_tasks(void) 1111 { 1112 rcu_barrier_tasks_generic(&rcu_tasks); 1113 } 1114 EXPORT_SYMBOL_GPL(rcu_barrier_tasks); 1115 1116 static int rcu_tasks_lazy_ms = -1; 1117 module_param(rcu_tasks_lazy_ms, int, 0444); 1118 1119 static int __init rcu_spawn_tasks_kthread(void) 1120 { 1121 cblist_init_generic(&rcu_tasks); 1122 rcu_tasks.gp_sleep = HZ / 10; 1123 rcu_tasks.init_fract = HZ / 10; 1124 if (rcu_tasks_lazy_ms >= 0) 1125 rcu_tasks.lazy_jiffies = msecs_to_jiffies(rcu_tasks_lazy_ms); 1126 rcu_tasks.pregp_func = rcu_tasks_pregp_step; 1127 rcu_tasks.pertask_func = rcu_tasks_pertask; 1128 rcu_tasks.postscan_func = rcu_tasks_postscan; 1129 rcu_tasks.holdouts_func = check_all_holdout_tasks; 1130 rcu_tasks.postgp_func = rcu_tasks_postgp; 1131 rcu_spawn_tasks_kthread_generic(&rcu_tasks); 1132 return 0; 1133 } 1134 1135 #if !defined(CONFIG_TINY_RCU) 1136 void show_rcu_tasks_classic_gp_kthread(void) 1137 { 1138 show_rcu_tasks_generic_gp_kthread(&rcu_tasks, ""); 1139 } 1140 EXPORT_SYMBOL_GPL(show_rcu_tasks_classic_gp_kthread); 1141 #endif // !defined(CONFIG_TINY_RCU) 1142 1143 struct task_struct *get_rcu_tasks_gp_kthread(void) 1144 { 1145 return rcu_tasks.kthread_ptr; 1146 } 1147 EXPORT_SYMBOL_GPL(get_rcu_tasks_gp_kthread); 1148 1149 /* 1150 * Contribute to protect against tasklist scan blind spot while the 1151 * task is exiting and may be removed from the tasklist. See 1152 * corresponding synchronize_srcu() for further details. 1153 */ 1154 void exit_tasks_rcu_start(void) __acquires(&tasks_rcu_exit_srcu) 1155 { 1156 current->rcu_tasks_idx = __srcu_read_lock(&tasks_rcu_exit_srcu); 1157 } 1158 1159 /* 1160 * Contribute to protect against tasklist scan blind spot while the 1161 * task is exiting and may be removed from the tasklist. See 1162 * corresponding synchronize_srcu() for further details. 1163 */ 1164 void exit_tasks_rcu_stop(void) __releases(&tasks_rcu_exit_srcu) 1165 { 1166 struct task_struct *t = current; 1167 1168 __srcu_read_unlock(&tasks_rcu_exit_srcu, t->rcu_tasks_idx); 1169 } 1170 1171 /* 1172 * Contribute to protect against tasklist scan blind spot while the 1173 * task is exiting and may be removed from the tasklist. See 1174 * corresponding synchronize_srcu() for further details. 1175 */ 1176 void exit_tasks_rcu_finish(void) 1177 { 1178 exit_tasks_rcu_stop(); 1179 exit_tasks_rcu_finish_trace(current); 1180 } 1181 1182 #else /* #ifdef CONFIG_TASKS_RCU */ 1183 void exit_tasks_rcu_start(void) { } 1184 void exit_tasks_rcu_stop(void) { } 1185 void exit_tasks_rcu_finish(void) { exit_tasks_rcu_finish_trace(current); } 1186 #endif /* #else #ifdef CONFIG_TASKS_RCU */ 1187 1188 #ifdef CONFIG_TASKS_RUDE_RCU 1189 1190 //////////////////////////////////////////////////////////////////////// 1191 // 1192 // "Rude" variant of Tasks RCU, inspired by Steve Rostedt's trick of 1193 // passing an empty function to schedule_on_each_cpu(). This approach 1194 // provides an asynchronous call_rcu_tasks_rude() API and batching of 1195 // concurrent calls to the synchronous synchronize_rcu_tasks_rude() API. 1196 // This invokes schedule_on_each_cpu() in order to send IPIs far and wide 1197 // and induces otherwise unnecessary context switches on all online CPUs, 1198 // whether idle or not. 1199 // 1200 // Callback handling is provided by the rcu_tasks_kthread() function. 1201 // 1202 // Ordering is provided by the scheduler's context-switch code. 1203 1204 // Empty function to allow workqueues to force a context switch. 1205 static void rcu_tasks_be_rude(struct work_struct *work) 1206 { 1207 } 1208 1209 // Wait for one rude RCU-tasks grace period. 1210 static void rcu_tasks_rude_wait_gp(struct rcu_tasks *rtp) 1211 { 1212 rtp->n_ipis += cpumask_weight(cpu_online_mask); 1213 schedule_on_each_cpu(rcu_tasks_be_rude); 1214 } 1215 1216 void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func); 1217 DEFINE_RCU_TASKS(rcu_tasks_rude, rcu_tasks_rude_wait_gp, call_rcu_tasks_rude, 1218 "RCU Tasks Rude"); 1219 1220 /** 1221 * call_rcu_tasks_rude() - Queue a callback rude task-based grace period 1222 * @rhp: structure to be used for queueing the RCU updates. 1223 * @func: actual callback function to be invoked after the grace period 1224 * 1225 * The callback function will be invoked some time after a full grace 1226 * period elapses, in other words after all currently executing RCU 1227 * read-side critical sections have completed. call_rcu_tasks_rude() 1228 * assumes that the read-side critical sections end at context switch, 1229 * cond_resched_tasks_rcu_qs(), or transition to usermode execution (as 1230 * usermode execution is schedulable). As such, there are no read-side 1231 * primitives analogous to rcu_read_lock() and rcu_read_unlock() because 1232 * this primitive is intended to determine that all tasks have passed 1233 * through a safe state, not so much for data-structure synchronization. 1234 * 1235 * See the description of call_rcu() for more detailed information on 1236 * memory ordering guarantees. 1237 */ 1238 void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func) 1239 { 1240 call_rcu_tasks_generic(rhp, func, &rcu_tasks_rude); 1241 } 1242 EXPORT_SYMBOL_GPL(call_rcu_tasks_rude); 1243 1244 /** 1245 * synchronize_rcu_tasks_rude - wait for a rude rcu-tasks grace period 1246 * 1247 * Control will return to the caller some time after a rude rcu-tasks 1248 * grace period has elapsed, in other words after all currently 1249 * executing rcu-tasks read-side critical sections have elapsed. These 1250 * read-side critical sections are delimited by calls to schedule(), 1251 * cond_resched_tasks_rcu_qs(), userspace execution (which is a schedulable 1252 * context), and (in theory, anyway) cond_resched(). 1253 * 1254 * This is a very specialized primitive, intended only for a few uses in 1255 * tracing and other situations requiring manipulation of function preambles 1256 * and profiling hooks. The synchronize_rcu_tasks_rude() function is not 1257 * (yet) intended for heavy use from multiple CPUs. 1258 * 1259 * See the description of synchronize_rcu() for more detailed information 1260 * on memory ordering guarantees. 1261 */ 1262 void synchronize_rcu_tasks_rude(void) 1263 { 1264 synchronize_rcu_tasks_generic(&rcu_tasks_rude); 1265 } 1266 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_rude); 1267 1268 /** 1269 * rcu_barrier_tasks_rude - Wait for in-flight call_rcu_tasks_rude() callbacks. 1270 * 1271 * Although the current implementation is guaranteed to wait, it is not 1272 * obligated to, for example, if there are no pending callbacks. 1273 */ 1274 void rcu_barrier_tasks_rude(void) 1275 { 1276 rcu_barrier_tasks_generic(&rcu_tasks_rude); 1277 } 1278 EXPORT_SYMBOL_GPL(rcu_barrier_tasks_rude); 1279 1280 int rcu_tasks_rude_lazy_ms = -1; 1281 module_param(rcu_tasks_rude_lazy_ms, int, 0444); 1282 1283 static int __init rcu_spawn_tasks_rude_kthread(void) 1284 { 1285 cblist_init_generic(&rcu_tasks_rude); 1286 rcu_tasks_rude.gp_sleep = HZ / 10; 1287 if (rcu_tasks_rude_lazy_ms >= 0) 1288 rcu_tasks_rude.lazy_jiffies = msecs_to_jiffies(rcu_tasks_rude_lazy_ms); 1289 rcu_spawn_tasks_kthread_generic(&rcu_tasks_rude); 1290 return 0; 1291 } 1292 1293 #if !defined(CONFIG_TINY_RCU) 1294 void show_rcu_tasks_rude_gp_kthread(void) 1295 { 1296 show_rcu_tasks_generic_gp_kthread(&rcu_tasks_rude, ""); 1297 } 1298 EXPORT_SYMBOL_GPL(show_rcu_tasks_rude_gp_kthread); 1299 #endif // !defined(CONFIG_TINY_RCU) 1300 1301 struct task_struct *get_rcu_tasks_rude_gp_kthread(void) 1302 { 1303 return rcu_tasks_rude.kthread_ptr; 1304 } 1305 EXPORT_SYMBOL_GPL(get_rcu_tasks_rude_gp_kthread); 1306 1307 #endif /* #ifdef CONFIG_TASKS_RUDE_RCU */ 1308 1309 //////////////////////////////////////////////////////////////////////// 1310 // 1311 // Tracing variant of Tasks RCU. This variant is designed to be used 1312 // to protect tracing hooks, including those of BPF. This variant 1313 // therefore: 1314 // 1315 // 1. Has explicit read-side markers to allow finite grace periods 1316 // in the face of in-kernel loops for PREEMPT=n builds. 1317 // 1318 // 2. Protects code in the idle loop, exception entry/exit, and 1319 // CPU-hotplug code paths, similar to the capabilities of SRCU. 1320 // 1321 // 3. Avoids expensive read-side instructions, having overhead similar 1322 // to that of Preemptible RCU. 1323 // 1324 // There are of course downsides. For example, the grace-period code 1325 // can send IPIs to CPUs, even when those CPUs are in the idle loop or 1326 // in nohz_full userspace. If needed, these downsides can be at least 1327 // partially remedied. 1328 // 1329 // Perhaps most important, this variant of RCU does not affect the vanilla 1330 // flavors, rcu_preempt and rcu_sched. The fact that RCU Tasks Trace 1331 // readers can operate from idle, offline, and exception entry/exit in no 1332 // way allows rcu_preempt and rcu_sched readers to also do so. 1333 // 1334 // The implementation uses rcu_tasks_wait_gp(), which relies on function 1335 // pointers in the rcu_tasks structure. The rcu_spawn_tasks_trace_kthread() 1336 // function sets these function pointers up so that rcu_tasks_wait_gp() 1337 // invokes these functions in this order: 1338 // 1339 // rcu_tasks_trace_pregp_step(): 1340 // Disables CPU hotplug, adds all currently executing tasks to the 1341 // holdout list, then checks the state of all tasks that blocked 1342 // or were preempted within their current RCU Tasks Trace read-side 1343 // critical section, adding them to the holdout list if appropriate. 1344 // Finally, this function re-enables CPU hotplug. 1345 // The ->pertask_func() pointer is NULL, so there is no per-task processing. 1346 // rcu_tasks_trace_postscan(): 1347 // Invokes synchronize_rcu() to wait for late-stage exiting tasks 1348 // to finish exiting. 1349 // check_all_holdout_tasks_trace(), repeatedly until holdout list is empty: 1350 // Scans the holdout list, attempting to identify a quiescent state 1351 // for each task on the list. If there is a quiescent state, the 1352 // corresponding task is removed from the holdout list. Once this 1353 // list is empty, the grace period has completed. 1354 // rcu_tasks_trace_postgp(): 1355 // Provides the needed full memory barrier and does debug checks. 1356 // 1357 // The exit_tasks_rcu_finish_trace() synchronizes with exiting tasks. 1358 // 1359 // Pre-grace-period update-side code is ordered before the grace period 1360 // via the ->cbs_lock and barriers in rcu_tasks_kthread(). Pre-grace-period 1361 // read-side code is ordered before the grace period by atomic operations 1362 // on .b.need_qs flag of each task involved in this process, or by scheduler 1363 // context-switch ordering (for locked-down non-running readers). 1364 1365 // The lockdep state must be outside of #ifdef to be useful. 1366 #ifdef CONFIG_DEBUG_LOCK_ALLOC 1367 static struct lock_class_key rcu_lock_trace_key; 1368 struct lockdep_map rcu_trace_lock_map = 1369 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_trace", &rcu_lock_trace_key); 1370 EXPORT_SYMBOL_GPL(rcu_trace_lock_map); 1371 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 1372 1373 #ifdef CONFIG_TASKS_TRACE_RCU 1374 1375 // Record outstanding IPIs to each CPU. No point in sending two... 1376 static DEFINE_PER_CPU(bool, trc_ipi_to_cpu); 1377 1378 // The number of detections of task quiescent state relying on 1379 // heavyweight readers executing explicit memory barriers. 1380 static unsigned long n_heavy_reader_attempts; 1381 static unsigned long n_heavy_reader_updates; 1382 static unsigned long n_heavy_reader_ofl_updates; 1383 static unsigned long n_trc_holdouts; 1384 1385 void call_rcu_tasks_trace(struct rcu_head *rhp, rcu_callback_t func); 1386 DEFINE_RCU_TASKS(rcu_tasks_trace, rcu_tasks_wait_gp, call_rcu_tasks_trace, 1387 "RCU Tasks Trace"); 1388 1389 /* Load from ->trc_reader_special.b.need_qs with proper ordering. */ 1390 static u8 rcu_ld_need_qs(struct task_struct *t) 1391 { 1392 smp_mb(); // Enforce full grace-period ordering. 1393 return smp_load_acquire(&t->trc_reader_special.b.need_qs); 1394 } 1395 1396 /* Store to ->trc_reader_special.b.need_qs with proper ordering. */ 1397 static void rcu_st_need_qs(struct task_struct *t, u8 v) 1398 { 1399 smp_store_release(&t->trc_reader_special.b.need_qs, v); 1400 smp_mb(); // Enforce full grace-period ordering. 1401 } 1402 1403 /* 1404 * Do a cmpxchg() on ->trc_reader_special.b.need_qs, allowing for 1405 * the four-byte operand-size restriction of some platforms. 1406 * Returns the old value, which is often ignored. 1407 */ 1408 u8 rcu_trc_cmpxchg_need_qs(struct task_struct *t, u8 old, u8 new) 1409 { 1410 union rcu_special ret; 1411 union rcu_special trs_old = READ_ONCE(t->trc_reader_special); 1412 union rcu_special trs_new = trs_old; 1413 1414 if (trs_old.b.need_qs != old) 1415 return trs_old.b.need_qs; 1416 trs_new.b.need_qs = new; 1417 ret.s = cmpxchg(&t->trc_reader_special.s, trs_old.s, trs_new.s); 1418 return ret.b.need_qs; 1419 } 1420 EXPORT_SYMBOL_GPL(rcu_trc_cmpxchg_need_qs); 1421 1422 /* 1423 * If we are the last reader, signal the grace-period kthread. 1424 * Also remove from the per-CPU list of blocked tasks. 1425 */ 1426 void rcu_read_unlock_trace_special(struct task_struct *t) 1427 { 1428 unsigned long flags; 1429 struct rcu_tasks_percpu *rtpcp; 1430 union rcu_special trs; 1431 1432 // Open-coded full-word version of rcu_ld_need_qs(). 1433 smp_mb(); // Enforce full grace-period ordering. 1434 trs = smp_load_acquire(&t->trc_reader_special); 1435 1436 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) && t->trc_reader_special.b.need_mb) 1437 smp_mb(); // Pairs with update-side barriers. 1438 // Update .need_qs before ->trc_reader_nesting for irq/NMI handlers. 1439 if (trs.b.need_qs == (TRC_NEED_QS_CHECKED | TRC_NEED_QS)) { 1440 u8 result = rcu_trc_cmpxchg_need_qs(t, TRC_NEED_QS_CHECKED | TRC_NEED_QS, 1441 TRC_NEED_QS_CHECKED); 1442 1443 WARN_ONCE(result != trs.b.need_qs, "%s: result = %d", __func__, result); 1444 } 1445 if (trs.b.blocked) { 1446 rtpcp = per_cpu_ptr(rcu_tasks_trace.rtpcpu, t->trc_blkd_cpu); 1447 raw_spin_lock_irqsave_rcu_node(rtpcp, flags); 1448 list_del_init(&t->trc_blkd_node); 1449 WRITE_ONCE(t->trc_reader_special.b.blocked, false); 1450 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 1451 } 1452 WRITE_ONCE(t->trc_reader_nesting, 0); 1453 } 1454 EXPORT_SYMBOL_GPL(rcu_read_unlock_trace_special); 1455 1456 /* Add a newly blocked reader task to its CPU's list. */ 1457 void rcu_tasks_trace_qs_blkd(struct task_struct *t) 1458 { 1459 unsigned long flags; 1460 struct rcu_tasks_percpu *rtpcp; 1461 1462 local_irq_save(flags); 1463 rtpcp = this_cpu_ptr(rcu_tasks_trace.rtpcpu); 1464 raw_spin_lock_rcu_node(rtpcp); // irqs already disabled 1465 t->trc_blkd_cpu = smp_processor_id(); 1466 if (!rtpcp->rtp_blkd_tasks.next) 1467 INIT_LIST_HEAD(&rtpcp->rtp_blkd_tasks); 1468 list_add(&t->trc_blkd_node, &rtpcp->rtp_blkd_tasks); 1469 WRITE_ONCE(t->trc_reader_special.b.blocked, true); 1470 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 1471 } 1472 EXPORT_SYMBOL_GPL(rcu_tasks_trace_qs_blkd); 1473 1474 /* Add a task to the holdout list, if it is not already on the list. */ 1475 static void trc_add_holdout(struct task_struct *t, struct list_head *bhp) 1476 { 1477 if (list_empty(&t->trc_holdout_list)) { 1478 get_task_struct(t); 1479 list_add(&t->trc_holdout_list, bhp); 1480 n_trc_holdouts++; 1481 } 1482 } 1483 1484 /* Remove a task from the holdout list, if it is in fact present. */ 1485 static void trc_del_holdout(struct task_struct *t) 1486 { 1487 if (!list_empty(&t->trc_holdout_list)) { 1488 list_del_init(&t->trc_holdout_list); 1489 put_task_struct(t); 1490 n_trc_holdouts--; 1491 } 1492 } 1493 1494 /* IPI handler to check task state. */ 1495 static void trc_read_check_handler(void *t_in) 1496 { 1497 int nesting; 1498 struct task_struct *t = current; 1499 struct task_struct *texp = t_in; 1500 1501 // If the task is no longer running on this CPU, leave. 1502 if (unlikely(texp != t)) 1503 goto reset_ipi; // Already on holdout list, so will check later. 1504 1505 // If the task is not in a read-side critical section, and 1506 // if this is the last reader, awaken the grace-period kthread. 1507 nesting = READ_ONCE(t->trc_reader_nesting); 1508 if (likely(!nesting)) { 1509 rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED); 1510 goto reset_ipi; 1511 } 1512 // If we are racing with an rcu_read_unlock_trace(), try again later. 1513 if (unlikely(nesting < 0)) 1514 goto reset_ipi; 1515 1516 // Get here if the task is in a read-side critical section. 1517 // Set its state so that it will update state for the grace-period 1518 // kthread upon exit from that critical section. 1519 rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS | TRC_NEED_QS_CHECKED); 1520 1521 reset_ipi: 1522 // Allow future IPIs to be sent on CPU and for task. 1523 // Also order this IPI handler against any later manipulations of 1524 // the intended task. 1525 smp_store_release(per_cpu_ptr(&trc_ipi_to_cpu, smp_processor_id()), false); // ^^^ 1526 smp_store_release(&texp->trc_ipi_to_cpu, -1); // ^^^ 1527 } 1528 1529 /* Callback function for scheduler to check locked-down task. */ 1530 static int trc_inspect_reader(struct task_struct *t, void *bhp_in) 1531 { 1532 struct list_head *bhp = bhp_in; 1533 int cpu = task_cpu(t); 1534 int nesting; 1535 bool ofl = cpu_is_offline(cpu); 1536 1537 if (task_curr(t) && !ofl) { 1538 // If no chance of heavyweight readers, do it the hard way. 1539 if (!IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB)) 1540 return -EINVAL; 1541 1542 // If heavyweight readers are enabled on the remote task, 1543 // we can inspect its state despite its currently running. 1544 // However, we cannot safely change its state. 1545 n_heavy_reader_attempts++; 1546 // Check for "running" idle tasks on offline CPUs. 1547 if (!rcu_dynticks_zero_in_eqs(cpu, &t->trc_reader_nesting)) 1548 return -EINVAL; // No quiescent state, do it the hard way. 1549 n_heavy_reader_updates++; 1550 nesting = 0; 1551 } else { 1552 // The task is not running, so C-language access is safe. 1553 nesting = t->trc_reader_nesting; 1554 WARN_ON_ONCE(ofl && task_curr(t) && (t != idle_task(task_cpu(t)))); 1555 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) && ofl) 1556 n_heavy_reader_ofl_updates++; 1557 } 1558 1559 // If not exiting a read-side critical section, mark as checked 1560 // so that the grace-period kthread will remove it from the 1561 // holdout list. 1562 if (!nesting) { 1563 rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED); 1564 return 0; // In QS, so done. 1565 } 1566 if (nesting < 0) 1567 return -EINVAL; // Reader transitioning, try again later. 1568 1569 // The task is in a read-side critical section, so set up its 1570 // state so that it will update state upon exit from that critical 1571 // section. 1572 if (!rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS | TRC_NEED_QS_CHECKED)) 1573 trc_add_holdout(t, bhp); 1574 return 0; 1575 } 1576 1577 /* Attempt to extract the state for the specified task. */ 1578 static void trc_wait_for_one_reader(struct task_struct *t, 1579 struct list_head *bhp) 1580 { 1581 int cpu; 1582 1583 // If a previous IPI is still in flight, let it complete. 1584 if (smp_load_acquire(&t->trc_ipi_to_cpu) != -1) // Order IPI 1585 return; 1586 1587 // The current task had better be in a quiescent state. 1588 if (t == current) { 1589 rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED); 1590 WARN_ON_ONCE(READ_ONCE(t->trc_reader_nesting)); 1591 return; 1592 } 1593 1594 // Attempt to nail down the task for inspection. 1595 get_task_struct(t); 1596 if (!task_call_func(t, trc_inspect_reader, bhp)) { 1597 put_task_struct(t); 1598 return; 1599 } 1600 put_task_struct(t); 1601 1602 // If this task is not yet on the holdout list, then we are in 1603 // an RCU read-side critical section. Otherwise, the invocation of 1604 // trc_add_holdout() that added it to the list did the necessary 1605 // get_task_struct(). Either way, the task cannot be freed out 1606 // from under this code. 1607 1608 // If currently running, send an IPI, either way, add to list. 1609 trc_add_holdout(t, bhp); 1610 if (task_curr(t) && 1611 time_after(jiffies + 1, rcu_tasks_trace.gp_start + rcu_task_ipi_delay)) { 1612 // The task is currently running, so try IPIing it. 1613 cpu = task_cpu(t); 1614 1615 // If there is already an IPI outstanding, let it happen. 1616 if (per_cpu(trc_ipi_to_cpu, cpu) || t->trc_ipi_to_cpu >= 0) 1617 return; 1618 1619 per_cpu(trc_ipi_to_cpu, cpu) = true; 1620 t->trc_ipi_to_cpu = cpu; 1621 rcu_tasks_trace.n_ipis++; 1622 if (smp_call_function_single(cpu, trc_read_check_handler, t, 0)) { 1623 // Just in case there is some other reason for 1624 // failure than the target CPU being offline. 1625 WARN_ONCE(1, "%s(): smp_call_function_single() failed for CPU: %d\n", 1626 __func__, cpu); 1627 rcu_tasks_trace.n_ipis_fails++; 1628 per_cpu(trc_ipi_to_cpu, cpu) = false; 1629 t->trc_ipi_to_cpu = -1; 1630 } 1631 } 1632 } 1633 1634 /* 1635 * Initialize for first-round processing for the specified task. 1636 * Return false if task is NULL or already taken care of, true otherwise. 1637 */ 1638 static bool rcu_tasks_trace_pertask_prep(struct task_struct *t, bool notself) 1639 { 1640 // During early boot when there is only the one boot CPU, there 1641 // is no idle task for the other CPUs. Also, the grace-period 1642 // kthread is always in a quiescent state. In addition, just return 1643 // if this task is already on the list. 1644 if (unlikely(t == NULL) || (t == current && notself) || !list_empty(&t->trc_holdout_list)) 1645 return false; 1646 1647 rcu_st_need_qs(t, 0); 1648 t->trc_ipi_to_cpu = -1; 1649 return true; 1650 } 1651 1652 /* Do first-round processing for the specified task. */ 1653 static void rcu_tasks_trace_pertask(struct task_struct *t, struct list_head *hop) 1654 { 1655 if (rcu_tasks_trace_pertask_prep(t, true)) 1656 trc_wait_for_one_reader(t, hop); 1657 } 1658 1659 /* Initialize for a new RCU-tasks-trace grace period. */ 1660 static void rcu_tasks_trace_pregp_step(struct list_head *hop) 1661 { 1662 LIST_HEAD(blkd_tasks); 1663 int cpu; 1664 unsigned long flags; 1665 struct rcu_tasks_percpu *rtpcp; 1666 struct task_struct *t; 1667 1668 // There shouldn't be any old IPIs, but... 1669 for_each_possible_cpu(cpu) 1670 WARN_ON_ONCE(per_cpu(trc_ipi_to_cpu, cpu)); 1671 1672 // Disable CPU hotplug across the CPU scan for the benefit of 1673 // any IPIs that might be needed. This also waits for all readers 1674 // in CPU-hotplug code paths. 1675 cpus_read_lock(); 1676 1677 // These rcu_tasks_trace_pertask_prep() calls are serialized to 1678 // allow safe access to the hop list. 1679 for_each_online_cpu(cpu) { 1680 rcu_read_lock(); 1681 t = cpu_curr_snapshot(cpu); 1682 if (rcu_tasks_trace_pertask_prep(t, true)) 1683 trc_add_holdout(t, hop); 1684 rcu_read_unlock(); 1685 cond_resched_tasks_rcu_qs(); 1686 } 1687 1688 // Only after all running tasks have been accounted for is it 1689 // safe to take care of the tasks that have blocked within their 1690 // current RCU tasks trace read-side critical section. 1691 for_each_possible_cpu(cpu) { 1692 rtpcp = per_cpu_ptr(rcu_tasks_trace.rtpcpu, cpu); 1693 raw_spin_lock_irqsave_rcu_node(rtpcp, flags); 1694 list_splice_init(&rtpcp->rtp_blkd_tasks, &blkd_tasks); 1695 while (!list_empty(&blkd_tasks)) { 1696 rcu_read_lock(); 1697 t = list_first_entry(&blkd_tasks, struct task_struct, trc_blkd_node); 1698 list_del_init(&t->trc_blkd_node); 1699 list_add(&t->trc_blkd_node, &rtpcp->rtp_blkd_tasks); 1700 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 1701 rcu_tasks_trace_pertask(t, hop); 1702 rcu_read_unlock(); 1703 raw_spin_lock_irqsave_rcu_node(rtpcp, flags); 1704 } 1705 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 1706 cond_resched_tasks_rcu_qs(); 1707 } 1708 1709 // Re-enable CPU hotplug now that the holdout list is populated. 1710 cpus_read_unlock(); 1711 } 1712 1713 /* 1714 * Do intermediate processing between task and holdout scans. 1715 */ 1716 static void rcu_tasks_trace_postscan(struct list_head *hop) 1717 { 1718 // Wait for late-stage exiting tasks to finish exiting. 1719 // These might have passed the call to exit_tasks_rcu_finish(). 1720 1721 // If you remove the following line, update rcu_trace_implies_rcu_gp()!!! 1722 synchronize_rcu(); 1723 // Any tasks that exit after this point will set 1724 // TRC_NEED_QS_CHECKED in ->trc_reader_special.b.need_qs. 1725 } 1726 1727 /* Communicate task state back to the RCU tasks trace stall warning request. */ 1728 struct trc_stall_chk_rdr { 1729 int nesting; 1730 int ipi_to_cpu; 1731 u8 needqs; 1732 }; 1733 1734 static int trc_check_slow_task(struct task_struct *t, void *arg) 1735 { 1736 struct trc_stall_chk_rdr *trc_rdrp = arg; 1737 1738 if (task_curr(t) && cpu_online(task_cpu(t))) 1739 return false; // It is running, so decline to inspect it. 1740 trc_rdrp->nesting = READ_ONCE(t->trc_reader_nesting); 1741 trc_rdrp->ipi_to_cpu = READ_ONCE(t->trc_ipi_to_cpu); 1742 trc_rdrp->needqs = rcu_ld_need_qs(t); 1743 return true; 1744 } 1745 1746 /* Show the state of a task stalling the current RCU tasks trace GP. */ 1747 static void show_stalled_task_trace(struct task_struct *t, bool *firstreport) 1748 { 1749 int cpu; 1750 struct trc_stall_chk_rdr trc_rdr; 1751 bool is_idle_tsk = is_idle_task(t); 1752 1753 if (*firstreport) { 1754 pr_err("INFO: rcu_tasks_trace detected stalls on tasks:\n"); 1755 *firstreport = false; 1756 } 1757 cpu = task_cpu(t); 1758 if (!task_call_func(t, trc_check_slow_task, &trc_rdr)) 1759 pr_alert("P%d: %c%c\n", 1760 t->pid, 1761 ".I"[t->trc_ipi_to_cpu >= 0], 1762 ".i"[is_idle_tsk]); 1763 else 1764 pr_alert("P%d: %c%c%c%c nesting: %d%c%c cpu: %d%s\n", 1765 t->pid, 1766 ".I"[trc_rdr.ipi_to_cpu >= 0], 1767 ".i"[is_idle_tsk], 1768 ".N"[cpu >= 0 && tick_nohz_full_cpu(cpu)], 1769 ".B"[!!data_race(t->trc_reader_special.b.blocked)], 1770 trc_rdr.nesting, 1771 " !CN"[trc_rdr.needqs & 0x3], 1772 " ?"[trc_rdr.needqs > 0x3], 1773 cpu, cpu_online(cpu) ? "" : "(offline)"); 1774 sched_show_task(t); 1775 } 1776 1777 /* List stalled IPIs for RCU tasks trace. */ 1778 static void show_stalled_ipi_trace(void) 1779 { 1780 int cpu; 1781 1782 for_each_possible_cpu(cpu) 1783 if (per_cpu(trc_ipi_to_cpu, cpu)) 1784 pr_alert("\tIPI outstanding to CPU %d\n", cpu); 1785 } 1786 1787 /* Do one scan of the holdout list. */ 1788 static void check_all_holdout_tasks_trace(struct list_head *hop, 1789 bool needreport, bool *firstreport) 1790 { 1791 struct task_struct *g, *t; 1792 1793 // Disable CPU hotplug across the holdout list scan for IPIs. 1794 cpus_read_lock(); 1795 1796 list_for_each_entry_safe(t, g, hop, trc_holdout_list) { 1797 // If safe and needed, try to check the current task. 1798 if (READ_ONCE(t->trc_ipi_to_cpu) == -1 && 1799 !(rcu_ld_need_qs(t) & TRC_NEED_QS_CHECKED)) 1800 trc_wait_for_one_reader(t, hop); 1801 1802 // If check succeeded, remove this task from the list. 1803 if (smp_load_acquire(&t->trc_ipi_to_cpu) == -1 && 1804 rcu_ld_need_qs(t) == TRC_NEED_QS_CHECKED) 1805 trc_del_holdout(t); 1806 else if (needreport) 1807 show_stalled_task_trace(t, firstreport); 1808 cond_resched_tasks_rcu_qs(); 1809 } 1810 1811 // Re-enable CPU hotplug now that the holdout list scan has completed. 1812 cpus_read_unlock(); 1813 1814 if (needreport) { 1815 if (*firstreport) 1816 pr_err("INFO: rcu_tasks_trace detected stalls? (Late IPI?)\n"); 1817 show_stalled_ipi_trace(); 1818 } 1819 } 1820 1821 static void rcu_tasks_trace_empty_fn(void *unused) 1822 { 1823 } 1824 1825 /* Wait for grace period to complete and provide ordering. */ 1826 static void rcu_tasks_trace_postgp(struct rcu_tasks *rtp) 1827 { 1828 int cpu; 1829 1830 // Wait for any lingering IPI handlers to complete. Note that 1831 // if a CPU has gone offline or transitioned to userspace in the 1832 // meantime, all IPI handlers should have been drained beforehand. 1833 // Yes, this assumes that CPUs process IPIs in order. If that ever 1834 // changes, there will need to be a recheck and/or timed wait. 1835 for_each_online_cpu(cpu) 1836 if (WARN_ON_ONCE(smp_load_acquire(per_cpu_ptr(&trc_ipi_to_cpu, cpu)))) 1837 smp_call_function_single(cpu, rcu_tasks_trace_empty_fn, NULL, 1); 1838 1839 smp_mb(); // Caller's code must be ordered after wakeup. 1840 // Pairs with pretty much every ordering primitive. 1841 } 1842 1843 /* Report any needed quiescent state for this exiting task. */ 1844 static void exit_tasks_rcu_finish_trace(struct task_struct *t) 1845 { 1846 union rcu_special trs = READ_ONCE(t->trc_reader_special); 1847 1848 rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED); 1849 WARN_ON_ONCE(READ_ONCE(t->trc_reader_nesting)); 1850 if (WARN_ON_ONCE(rcu_ld_need_qs(t) & TRC_NEED_QS || trs.b.blocked)) 1851 rcu_read_unlock_trace_special(t); 1852 else 1853 WRITE_ONCE(t->trc_reader_nesting, 0); 1854 } 1855 1856 /** 1857 * call_rcu_tasks_trace() - Queue a callback trace task-based grace period 1858 * @rhp: structure to be used for queueing the RCU updates. 1859 * @func: actual callback function to be invoked after the grace period 1860 * 1861 * The callback function will be invoked some time after a trace rcu-tasks 1862 * grace period elapses, in other words after all currently executing 1863 * trace rcu-tasks read-side critical sections have completed. These 1864 * read-side critical sections are delimited by calls to rcu_read_lock_trace() 1865 * and rcu_read_unlock_trace(). 1866 * 1867 * See the description of call_rcu() for more detailed information on 1868 * memory ordering guarantees. 1869 */ 1870 void call_rcu_tasks_trace(struct rcu_head *rhp, rcu_callback_t func) 1871 { 1872 call_rcu_tasks_generic(rhp, func, &rcu_tasks_trace); 1873 } 1874 EXPORT_SYMBOL_GPL(call_rcu_tasks_trace); 1875 1876 /** 1877 * synchronize_rcu_tasks_trace - wait for a trace rcu-tasks grace period 1878 * 1879 * Control will return to the caller some time after a trace rcu-tasks 1880 * grace period has elapsed, in other words after all currently executing 1881 * trace rcu-tasks read-side critical sections have elapsed. These read-side 1882 * critical sections are delimited by calls to rcu_read_lock_trace() 1883 * and rcu_read_unlock_trace(). 1884 * 1885 * This is a very specialized primitive, intended only for a few uses in 1886 * tracing and other situations requiring manipulation of function preambles 1887 * and profiling hooks. The synchronize_rcu_tasks_trace() function is not 1888 * (yet) intended for heavy use from multiple CPUs. 1889 * 1890 * See the description of synchronize_rcu() for more detailed information 1891 * on memory ordering guarantees. 1892 */ 1893 void synchronize_rcu_tasks_trace(void) 1894 { 1895 RCU_LOCKDEP_WARN(lock_is_held(&rcu_trace_lock_map), "Illegal synchronize_rcu_tasks_trace() in RCU Tasks Trace read-side critical section"); 1896 synchronize_rcu_tasks_generic(&rcu_tasks_trace); 1897 } 1898 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_trace); 1899 1900 /** 1901 * rcu_barrier_tasks_trace - Wait for in-flight call_rcu_tasks_trace() callbacks. 1902 * 1903 * Although the current implementation is guaranteed to wait, it is not 1904 * obligated to, for example, if there are no pending callbacks. 1905 */ 1906 void rcu_barrier_tasks_trace(void) 1907 { 1908 rcu_barrier_tasks_generic(&rcu_tasks_trace); 1909 } 1910 EXPORT_SYMBOL_GPL(rcu_barrier_tasks_trace); 1911 1912 int rcu_tasks_trace_lazy_ms = -1; 1913 module_param(rcu_tasks_trace_lazy_ms, int, 0444); 1914 1915 static int __init rcu_spawn_tasks_trace_kthread(void) 1916 { 1917 cblist_init_generic(&rcu_tasks_trace); 1918 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB)) { 1919 rcu_tasks_trace.gp_sleep = HZ / 10; 1920 rcu_tasks_trace.init_fract = HZ / 10; 1921 } else { 1922 rcu_tasks_trace.gp_sleep = HZ / 200; 1923 if (rcu_tasks_trace.gp_sleep <= 0) 1924 rcu_tasks_trace.gp_sleep = 1; 1925 rcu_tasks_trace.init_fract = HZ / 200; 1926 if (rcu_tasks_trace.init_fract <= 0) 1927 rcu_tasks_trace.init_fract = 1; 1928 } 1929 if (rcu_tasks_trace_lazy_ms >= 0) 1930 rcu_tasks_trace.lazy_jiffies = msecs_to_jiffies(rcu_tasks_trace_lazy_ms); 1931 rcu_tasks_trace.pregp_func = rcu_tasks_trace_pregp_step; 1932 rcu_tasks_trace.postscan_func = rcu_tasks_trace_postscan; 1933 rcu_tasks_trace.holdouts_func = check_all_holdout_tasks_trace; 1934 rcu_tasks_trace.postgp_func = rcu_tasks_trace_postgp; 1935 rcu_spawn_tasks_kthread_generic(&rcu_tasks_trace); 1936 return 0; 1937 } 1938 1939 #if !defined(CONFIG_TINY_RCU) 1940 void show_rcu_tasks_trace_gp_kthread(void) 1941 { 1942 char buf[64]; 1943 1944 sprintf(buf, "N%lu h:%lu/%lu/%lu", 1945 data_race(n_trc_holdouts), 1946 data_race(n_heavy_reader_ofl_updates), 1947 data_race(n_heavy_reader_updates), 1948 data_race(n_heavy_reader_attempts)); 1949 show_rcu_tasks_generic_gp_kthread(&rcu_tasks_trace, buf); 1950 } 1951 EXPORT_SYMBOL_GPL(show_rcu_tasks_trace_gp_kthread); 1952 #endif // !defined(CONFIG_TINY_RCU) 1953 1954 struct task_struct *get_rcu_tasks_trace_gp_kthread(void) 1955 { 1956 return rcu_tasks_trace.kthread_ptr; 1957 } 1958 EXPORT_SYMBOL_GPL(get_rcu_tasks_trace_gp_kthread); 1959 1960 #else /* #ifdef CONFIG_TASKS_TRACE_RCU */ 1961 static void exit_tasks_rcu_finish_trace(struct task_struct *t) { } 1962 #endif /* #else #ifdef CONFIG_TASKS_TRACE_RCU */ 1963 1964 #ifndef CONFIG_TINY_RCU 1965 void show_rcu_tasks_gp_kthreads(void) 1966 { 1967 show_rcu_tasks_classic_gp_kthread(); 1968 show_rcu_tasks_rude_gp_kthread(); 1969 show_rcu_tasks_trace_gp_kthread(); 1970 } 1971 #endif /* #ifndef CONFIG_TINY_RCU */ 1972 1973 #ifdef CONFIG_PROVE_RCU 1974 struct rcu_tasks_test_desc { 1975 struct rcu_head rh; 1976 const char *name; 1977 bool notrun; 1978 unsigned long runstart; 1979 }; 1980 1981 static struct rcu_tasks_test_desc tests[] = { 1982 { 1983 .name = "call_rcu_tasks()", 1984 /* If not defined, the test is skipped. */ 1985 .notrun = IS_ENABLED(CONFIG_TASKS_RCU), 1986 }, 1987 { 1988 .name = "call_rcu_tasks_rude()", 1989 /* If not defined, the test is skipped. */ 1990 .notrun = IS_ENABLED(CONFIG_TASKS_RUDE_RCU), 1991 }, 1992 { 1993 .name = "call_rcu_tasks_trace()", 1994 /* If not defined, the test is skipped. */ 1995 .notrun = IS_ENABLED(CONFIG_TASKS_TRACE_RCU) 1996 } 1997 }; 1998 1999 static void test_rcu_tasks_callback(struct rcu_head *rhp) 2000 { 2001 struct rcu_tasks_test_desc *rttd = 2002 container_of(rhp, struct rcu_tasks_test_desc, rh); 2003 2004 pr_info("Callback from %s invoked.\n", rttd->name); 2005 2006 rttd->notrun = false; 2007 } 2008 2009 static void rcu_tasks_initiate_self_tests(void) 2010 { 2011 #ifdef CONFIG_TASKS_RCU 2012 pr_info("Running RCU Tasks wait API self tests\n"); 2013 tests[0].runstart = jiffies; 2014 synchronize_rcu_tasks(); 2015 call_rcu_tasks(&tests[0].rh, test_rcu_tasks_callback); 2016 #endif 2017 2018 #ifdef CONFIG_TASKS_RUDE_RCU 2019 pr_info("Running RCU Tasks Rude wait API self tests\n"); 2020 tests[1].runstart = jiffies; 2021 synchronize_rcu_tasks_rude(); 2022 call_rcu_tasks_rude(&tests[1].rh, test_rcu_tasks_callback); 2023 #endif 2024 2025 #ifdef CONFIG_TASKS_TRACE_RCU 2026 pr_info("Running RCU Tasks Trace wait API self tests\n"); 2027 tests[2].runstart = jiffies; 2028 synchronize_rcu_tasks_trace(); 2029 call_rcu_tasks_trace(&tests[2].rh, test_rcu_tasks_callback); 2030 #endif 2031 } 2032 2033 /* 2034 * Return: 0 - test passed 2035 * 1 - test failed, but have not timed out yet 2036 * -1 - test failed and timed out 2037 */ 2038 static int rcu_tasks_verify_self_tests(void) 2039 { 2040 int ret = 0; 2041 int i; 2042 unsigned long bst = rcu_task_stall_timeout; 2043 2044 if (bst <= 0 || bst > RCU_TASK_BOOT_STALL_TIMEOUT) 2045 bst = RCU_TASK_BOOT_STALL_TIMEOUT; 2046 for (i = 0; i < ARRAY_SIZE(tests); i++) { 2047 while (tests[i].notrun) { // still hanging. 2048 if (time_after(jiffies, tests[i].runstart + bst)) { 2049 pr_err("%s has failed boot-time tests.\n", tests[i].name); 2050 ret = -1; 2051 break; 2052 } 2053 ret = 1; 2054 break; 2055 } 2056 } 2057 WARN_ON(ret < 0); 2058 2059 return ret; 2060 } 2061 2062 /* 2063 * Repeat the rcu_tasks_verify_self_tests() call once every second until the 2064 * test passes or has timed out. 2065 */ 2066 static struct delayed_work rcu_tasks_verify_work; 2067 static void rcu_tasks_verify_work_fn(struct work_struct *work __maybe_unused) 2068 { 2069 int ret = rcu_tasks_verify_self_tests(); 2070 2071 if (ret <= 0) 2072 return; 2073 2074 /* Test fails but not timed out yet, reschedule another check */ 2075 schedule_delayed_work(&rcu_tasks_verify_work, HZ); 2076 } 2077 2078 static int rcu_tasks_verify_schedule_work(void) 2079 { 2080 INIT_DELAYED_WORK(&rcu_tasks_verify_work, rcu_tasks_verify_work_fn); 2081 rcu_tasks_verify_work_fn(NULL); 2082 return 0; 2083 } 2084 late_initcall(rcu_tasks_verify_schedule_work); 2085 #else /* #ifdef CONFIG_PROVE_RCU */ 2086 static void rcu_tasks_initiate_self_tests(void) { } 2087 #endif /* #else #ifdef CONFIG_PROVE_RCU */ 2088 2089 void __init rcu_init_tasks_generic(void) 2090 { 2091 #ifdef CONFIG_TASKS_RCU 2092 rcu_spawn_tasks_kthread(); 2093 #endif 2094 2095 #ifdef CONFIG_TASKS_RUDE_RCU 2096 rcu_spawn_tasks_rude_kthread(); 2097 #endif 2098 2099 #ifdef CONFIG_TASKS_TRACE_RCU 2100 rcu_spawn_tasks_trace_kthread(); 2101 #endif 2102 2103 // Run the self-tests. 2104 rcu_tasks_initiate_self_tests(); 2105 } 2106 2107 #else /* #ifdef CONFIG_TASKS_RCU_GENERIC */ 2108 static inline void rcu_tasks_bootup_oddness(void) {} 2109 #endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */ 2110