1 /* SPDX-License-Identifier: GPL-2.0+ */ 2 /* 3 * Task-based RCU implementations. 4 * 5 * Copyright (C) 2020 Paul E. McKenney 6 */ 7 8 #ifdef CONFIG_TASKS_RCU_GENERIC 9 10 //////////////////////////////////////////////////////////////////////// 11 // 12 // Generic data structures. 13 14 struct rcu_tasks; 15 typedef void (*rcu_tasks_gp_func_t)(struct rcu_tasks *rtp); 16 typedef void (*pregp_func_t)(void); 17 typedef void (*pertask_func_t)(struct task_struct *t, struct list_head *hop); 18 typedef void (*postscan_func_t)(struct list_head *hop); 19 typedef void (*holdouts_func_t)(struct list_head *hop, bool ndrpt, bool *frptp); 20 typedef void (*postgp_func_t)(struct rcu_tasks *rtp); 21 22 /** 23 * struct rcu_tasks - Definition for a Tasks-RCU-like mechanism. 24 * @cbs_head: Head of callback list. 25 * @cbs_tail: Tail pointer for callback list. 26 * @cbs_wq: Wait queue allowing new callback to get kthread's attention. 27 * @cbs_lock: Lock protecting callback list. 28 * @kthread_ptr: This flavor's grace-period/callback-invocation kthread. 29 * @gp_func: This flavor's grace-period-wait function. 30 * @gp_state: Grace period's most recent state transition (debugging). 31 * @gp_sleep: Per-grace-period sleep to prevent CPU-bound looping. 32 * @init_fract: Initial backoff sleep interval. 33 * @gp_jiffies: Time of last @gp_state transition. 34 * @gp_start: Most recent grace-period start in jiffies. 35 * @n_gps: Number of grace periods completed since boot. 36 * @n_ipis: Number of IPIs sent to encourage grace periods to end. 37 * @n_ipis_fails: Number of IPI-send failures. 38 * @pregp_func: This flavor's pre-grace-period function (optional). 39 * @pertask_func: This flavor's per-task scan function (optional). 40 * @postscan_func: This flavor's post-task scan function (optional). 41 * @holdouts_func: This flavor's holdout-list scan function (optional). 42 * @postgp_func: This flavor's post-grace-period function (optional). 43 * @call_func: This flavor's call_rcu()-equivalent function. 44 * @name: This flavor's textual name. 45 * @kname: This flavor's kthread name. 46 */ 47 struct rcu_tasks { 48 struct rcu_head *cbs_head; 49 struct rcu_head **cbs_tail; 50 struct wait_queue_head cbs_wq; 51 raw_spinlock_t cbs_lock; 52 int gp_state; 53 int gp_sleep; 54 int init_fract; 55 unsigned long gp_jiffies; 56 unsigned long gp_start; 57 unsigned long n_gps; 58 unsigned long n_ipis; 59 unsigned long n_ipis_fails; 60 struct task_struct *kthread_ptr; 61 rcu_tasks_gp_func_t gp_func; 62 pregp_func_t pregp_func; 63 pertask_func_t pertask_func; 64 postscan_func_t postscan_func; 65 holdouts_func_t holdouts_func; 66 postgp_func_t postgp_func; 67 call_rcu_func_t call_func; 68 char *name; 69 char *kname; 70 }; 71 72 #define DEFINE_RCU_TASKS(rt_name, gp, call, n) \ 73 static struct rcu_tasks rt_name = \ 74 { \ 75 .cbs_tail = &rt_name.cbs_head, \ 76 .cbs_wq = __WAIT_QUEUE_HEAD_INITIALIZER(rt_name.cbs_wq), \ 77 .cbs_lock = __RAW_SPIN_LOCK_UNLOCKED(rt_name.cbs_lock), \ 78 .gp_func = gp, \ 79 .call_func = call, \ 80 .name = n, \ 81 .kname = #rt_name, \ 82 } 83 84 /* Track exiting tasks in order to allow them to be waited for. */ 85 DEFINE_STATIC_SRCU(tasks_rcu_exit_srcu); 86 87 /* Avoid IPIing CPUs early in the grace period. */ 88 #define RCU_TASK_IPI_DELAY (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) ? HZ / 2 : 0) 89 static int rcu_task_ipi_delay __read_mostly = RCU_TASK_IPI_DELAY; 90 module_param(rcu_task_ipi_delay, int, 0644); 91 92 /* Control stall timeouts. Disable with <= 0, otherwise jiffies till stall. */ 93 #define RCU_TASK_STALL_TIMEOUT (HZ * 60 * 10) 94 static int rcu_task_stall_timeout __read_mostly = RCU_TASK_STALL_TIMEOUT; 95 module_param(rcu_task_stall_timeout, int, 0644); 96 97 /* RCU tasks grace-period state for debugging. */ 98 #define RTGS_INIT 0 99 #define RTGS_WAIT_WAIT_CBS 1 100 #define RTGS_WAIT_GP 2 101 #define RTGS_PRE_WAIT_GP 3 102 #define RTGS_SCAN_TASKLIST 4 103 #define RTGS_POST_SCAN_TASKLIST 5 104 #define RTGS_WAIT_SCAN_HOLDOUTS 6 105 #define RTGS_SCAN_HOLDOUTS 7 106 #define RTGS_POST_GP 8 107 #define RTGS_WAIT_READERS 9 108 #define RTGS_INVOKE_CBS 10 109 #define RTGS_WAIT_CBS 11 110 #ifndef CONFIG_TINY_RCU 111 static const char * const rcu_tasks_gp_state_names[] = { 112 "RTGS_INIT", 113 "RTGS_WAIT_WAIT_CBS", 114 "RTGS_WAIT_GP", 115 "RTGS_PRE_WAIT_GP", 116 "RTGS_SCAN_TASKLIST", 117 "RTGS_POST_SCAN_TASKLIST", 118 "RTGS_WAIT_SCAN_HOLDOUTS", 119 "RTGS_SCAN_HOLDOUTS", 120 "RTGS_POST_GP", 121 "RTGS_WAIT_READERS", 122 "RTGS_INVOKE_CBS", 123 "RTGS_WAIT_CBS", 124 }; 125 #endif /* #ifndef CONFIG_TINY_RCU */ 126 127 //////////////////////////////////////////////////////////////////////// 128 // 129 // Generic code. 130 131 /* Record grace-period phase and time. */ 132 static void set_tasks_gp_state(struct rcu_tasks *rtp, int newstate) 133 { 134 rtp->gp_state = newstate; 135 rtp->gp_jiffies = jiffies; 136 } 137 138 #ifndef CONFIG_TINY_RCU 139 /* Return state name. */ 140 static const char *tasks_gp_state_getname(struct rcu_tasks *rtp) 141 { 142 int i = data_race(rtp->gp_state); // Let KCSAN detect update races 143 int j = READ_ONCE(i); // Prevent the compiler from reading twice 144 145 if (j >= ARRAY_SIZE(rcu_tasks_gp_state_names)) 146 return "???"; 147 return rcu_tasks_gp_state_names[j]; 148 } 149 #endif /* #ifndef CONFIG_TINY_RCU */ 150 151 // Enqueue a callback for the specified flavor of Tasks RCU. 152 static void call_rcu_tasks_generic(struct rcu_head *rhp, rcu_callback_t func, 153 struct rcu_tasks *rtp) 154 { 155 unsigned long flags; 156 bool needwake; 157 158 rhp->next = NULL; 159 rhp->func = func; 160 raw_spin_lock_irqsave(&rtp->cbs_lock, flags); 161 needwake = !rtp->cbs_head; 162 WRITE_ONCE(*rtp->cbs_tail, rhp); 163 rtp->cbs_tail = &rhp->next; 164 raw_spin_unlock_irqrestore(&rtp->cbs_lock, flags); 165 /* We can't create the thread unless interrupts are enabled. */ 166 if (needwake && READ_ONCE(rtp->kthread_ptr)) 167 wake_up(&rtp->cbs_wq); 168 } 169 170 // Wait for a grace period for the specified flavor of Tasks RCU. 171 static void synchronize_rcu_tasks_generic(struct rcu_tasks *rtp) 172 { 173 /* Complain if the scheduler has not started. */ 174 RCU_LOCKDEP_WARN(rcu_scheduler_active == RCU_SCHEDULER_INACTIVE, 175 "synchronize_rcu_tasks called too soon"); 176 177 /* Wait for the grace period. */ 178 wait_rcu_gp(rtp->call_func); 179 } 180 181 /* RCU-tasks kthread that detects grace periods and invokes callbacks. */ 182 static int __noreturn rcu_tasks_kthread(void *arg) 183 { 184 unsigned long flags; 185 struct rcu_head *list; 186 struct rcu_head *next; 187 struct rcu_tasks *rtp = arg; 188 189 /* Run on housekeeping CPUs by default. Sysadm can move if desired. */ 190 housekeeping_affine(current, HK_FLAG_RCU); 191 WRITE_ONCE(rtp->kthread_ptr, current); // Let GPs start! 192 193 /* 194 * Each pass through the following loop makes one check for 195 * newly arrived callbacks, and, if there are some, waits for 196 * one RCU-tasks grace period and then invokes the callbacks. 197 * This loop is terminated by the system going down. ;-) 198 */ 199 for (;;) { 200 201 /* Pick up any new callbacks. */ 202 raw_spin_lock_irqsave(&rtp->cbs_lock, flags); 203 smp_mb__after_spinlock(); // Order updates vs. GP. 204 list = rtp->cbs_head; 205 rtp->cbs_head = NULL; 206 rtp->cbs_tail = &rtp->cbs_head; 207 raw_spin_unlock_irqrestore(&rtp->cbs_lock, flags); 208 209 /* If there were none, wait a bit and start over. */ 210 if (!list) { 211 wait_event_interruptible(rtp->cbs_wq, 212 READ_ONCE(rtp->cbs_head)); 213 if (!rtp->cbs_head) { 214 WARN_ON(signal_pending(current)); 215 set_tasks_gp_state(rtp, RTGS_WAIT_WAIT_CBS); 216 schedule_timeout_idle(HZ/10); 217 } 218 continue; 219 } 220 221 // Wait for one grace period. 222 set_tasks_gp_state(rtp, RTGS_WAIT_GP); 223 rtp->gp_start = jiffies; 224 rtp->gp_func(rtp); 225 rtp->n_gps++; 226 227 /* Invoke the callbacks. */ 228 set_tasks_gp_state(rtp, RTGS_INVOKE_CBS); 229 while (list) { 230 next = list->next; 231 local_bh_disable(); 232 list->func(list); 233 local_bh_enable(); 234 list = next; 235 cond_resched(); 236 } 237 /* Paranoid sleep to keep this from entering a tight loop */ 238 schedule_timeout_idle(rtp->gp_sleep); 239 240 set_tasks_gp_state(rtp, RTGS_WAIT_CBS); 241 } 242 } 243 244 /* Spawn RCU-tasks grace-period kthread. */ 245 static void __init rcu_spawn_tasks_kthread_generic(struct rcu_tasks *rtp) 246 { 247 struct task_struct *t; 248 249 t = kthread_run(rcu_tasks_kthread, rtp, "%s_kthread", rtp->kname); 250 if (WARN_ONCE(IS_ERR(t), "%s: Could not start %s grace-period kthread, OOM is now expected behavior\n", __func__, rtp->name)) 251 return; 252 smp_mb(); /* Ensure others see full kthread. */ 253 } 254 255 #ifndef CONFIG_TINY_RCU 256 257 /* 258 * Print any non-default Tasks RCU settings. 259 */ 260 static void __init rcu_tasks_bootup_oddness(void) 261 { 262 #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU) 263 if (rcu_task_stall_timeout != RCU_TASK_STALL_TIMEOUT) 264 pr_info("\tTasks-RCU CPU stall warnings timeout set to %d (rcu_task_stall_timeout).\n", rcu_task_stall_timeout); 265 #endif /* #ifdef CONFIG_TASKS_RCU */ 266 #ifdef CONFIG_TASKS_RCU 267 pr_info("\tTrampoline variant of Tasks RCU enabled.\n"); 268 #endif /* #ifdef CONFIG_TASKS_RCU */ 269 #ifdef CONFIG_TASKS_RUDE_RCU 270 pr_info("\tRude variant of Tasks RCU enabled.\n"); 271 #endif /* #ifdef CONFIG_TASKS_RUDE_RCU */ 272 #ifdef CONFIG_TASKS_TRACE_RCU 273 pr_info("\tTracing variant of Tasks RCU enabled.\n"); 274 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 275 } 276 277 #endif /* #ifndef CONFIG_TINY_RCU */ 278 279 #ifndef CONFIG_TINY_RCU 280 /* Dump out rcutorture-relevant state common to all RCU-tasks flavors. */ 281 static void show_rcu_tasks_generic_gp_kthread(struct rcu_tasks *rtp, char *s) 282 { 283 pr_info("%s: %s(%d) since %lu g:%lu i:%lu/%lu %c%c %s\n", 284 rtp->kname, 285 tasks_gp_state_getname(rtp), data_race(rtp->gp_state), 286 jiffies - data_race(rtp->gp_jiffies), 287 data_race(rtp->n_gps), 288 data_race(rtp->n_ipis_fails), data_race(rtp->n_ipis), 289 ".k"[!!data_race(rtp->kthread_ptr)], 290 ".C"[!!data_race(rtp->cbs_head)], 291 s); 292 } 293 #endif // #ifndef CONFIG_TINY_RCU 294 295 static void exit_tasks_rcu_finish_trace(struct task_struct *t); 296 297 #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU) 298 299 //////////////////////////////////////////////////////////////////////// 300 // 301 // Shared code between task-list-scanning variants of Tasks RCU. 302 303 /* Wait for one RCU-tasks grace period. */ 304 static void rcu_tasks_wait_gp(struct rcu_tasks *rtp) 305 { 306 struct task_struct *g, *t; 307 unsigned long lastreport; 308 LIST_HEAD(holdouts); 309 int fract; 310 311 set_tasks_gp_state(rtp, RTGS_PRE_WAIT_GP); 312 rtp->pregp_func(); 313 314 /* 315 * There were callbacks, so we need to wait for an RCU-tasks 316 * grace period. Start off by scanning the task list for tasks 317 * that are not already voluntarily blocked. Mark these tasks 318 * and make a list of them in holdouts. 319 */ 320 set_tasks_gp_state(rtp, RTGS_SCAN_TASKLIST); 321 rcu_read_lock(); 322 for_each_process_thread(g, t) 323 rtp->pertask_func(t, &holdouts); 324 rcu_read_unlock(); 325 326 set_tasks_gp_state(rtp, RTGS_POST_SCAN_TASKLIST); 327 rtp->postscan_func(&holdouts); 328 329 /* 330 * Each pass through the following loop scans the list of holdout 331 * tasks, removing any that are no longer holdouts. When the list 332 * is empty, we are done. 333 */ 334 lastreport = jiffies; 335 336 // Start off with initial wait and slowly back off to 1 HZ wait. 337 fract = rtp->init_fract; 338 339 while (!list_empty(&holdouts)) { 340 bool firstreport; 341 bool needreport; 342 int rtst; 343 344 /* Slowly back off waiting for holdouts */ 345 set_tasks_gp_state(rtp, RTGS_WAIT_SCAN_HOLDOUTS); 346 schedule_timeout_idle(fract); 347 348 if (fract < HZ) 349 fract++; 350 351 rtst = READ_ONCE(rcu_task_stall_timeout); 352 needreport = rtst > 0 && time_after(jiffies, lastreport + rtst); 353 if (needreport) 354 lastreport = jiffies; 355 firstreport = true; 356 WARN_ON(signal_pending(current)); 357 set_tasks_gp_state(rtp, RTGS_SCAN_HOLDOUTS); 358 rtp->holdouts_func(&holdouts, needreport, &firstreport); 359 } 360 361 set_tasks_gp_state(rtp, RTGS_POST_GP); 362 rtp->postgp_func(rtp); 363 } 364 365 #endif /* #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU) */ 366 367 #ifdef CONFIG_TASKS_RCU 368 369 //////////////////////////////////////////////////////////////////////// 370 // 371 // Simple variant of RCU whose quiescent states are voluntary context 372 // switch, cond_resched_rcu_qs(), user-space execution, and idle. 373 // As such, grace periods can take one good long time. There are no 374 // read-side primitives similar to rcu_read_lock() and rcu_read_unlock() 375 // because this implementation is intended to get the system into a safe 376 // state for some of the manipulations involved in tracing and the like. 377 // Finally, this implementation does not support high call_rcu_tasks() 378 // rates from multiple CPUs. If this is required, per-CPU callback lists 379 // will be needed. 380 // 381 // The implementation uses rcu_tasks_wait_gp(), which relies on function 382 // pointers in the rcu_tasks structure. The rcu_spawn_tasks_kthread() 383 // function sets these function pointers up so that rcu_tasks_wait_gp() 384 // invokes these functions in this order: 385 // 386 // rcu_tasks_pregp_step(): 387 // Invokes synchronize_rcu() in order to wait for all in-flight 388 // t->on_rq and t->nvcsw transitions to complete. This works because 389 // all such transitions are carried out with interrupts disabled. 390 // rcu_tasks_pertask(), invoked on every non-idle task: 391 // For every runnable non-idle task other than the current one, use 392 // get_task_struct() to pin down that task, snapshot that task's 393 // number of voluntary context switches, and add that task to the 394 // holdout list. 395 // rcu_tasks_postscan(): 396 // Invoke synchronize_srcu() to ensure that all tasks that were 397 // in the process of exiting (and which thus might not know to 398 // synchronize with this RCU Tasks grace period) have completed 399 // exiting. 400 // check_all_holdout_tasks(), repeatedly until holdout list is empty: 401 // Scans the holdout list, attempting to identify a quiescent state 402 // for each task on the list. If there is a quiescent state, the 403 // corresponding task is removed from the holdout list. 404 // rcu_tasks_postgp(): 405 // Invokes synchronize_rcu() in order to ensure that all prior 406 // t->on_rq and t->nvcsw transitions are seen by all CPUs and tasks 407 // to have happened before the end of this RCU Tasks grace period. 408 // Again, this works because all such transitions are carried out 409 // with interrupts disabled. 410 // 411 // For each exiting task, the exit_tasks_rcu_start() and 412 // exit_tasks_rcu_finish() functions begin and end, respectively, the SRCU 413 // read-side critical sections waited for by rcu_tasks_postscan(). 414 // 415 // Pre-grace-period update-side code is ordered before the grace via the 416 // ->cbs_lock and the smp_mb__after_spinlock(). Pre-grace-period read-side 417 // code is ordered before the grace period via synchronize_rcu() call 418 // in rcu_tasks_pregp_step() and by the scheduler's locks and interrupt 419 // disabling. 420 421 /* Pre-grace-period preparation. */ 422 static void rcu_tasks_pregp_step(void) 423 { 424 /* 425 * Wait for all pre-existing t->on_rq and t->nvcsw transitions 426 * to complete. Invoking synchronize_rcu() suffices because all 427 * these transitions occur with interrupts disabled. Without this 428 * synchronize_rcu(), a read-side critical section that started 429 * before the grace period might be incorrectly seen as having 430 * started after the grace period. 431 * 432 * This synchronize_rcu() also dispenses with the need for a 433 * memory barrier on the first store to t->rcu_tasks_holdout, 434 * as it forces the store to happen after the beginning of the 435 * grace period. 436 */ 437 synchronize_rcu(); 438 } 439 440 /* Per-task initial processing. */ 441 static void rcu_tasks_pertask(struct task_struct *t, struct list_head *hop) 442 { 443 if (t != current && READ_ONCE(t->on_rq) && !is_idle_task(t)) { 444 get_task_struct(t); 445 t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw); 446 WRITE_ONCE(t->rcu_tasks_holdout, true); 447 list_add(&t->rcu_tasks_holdout_list, hop); 448 } 449 } 450 451 /* Processing between scanning taskslist and draining the holdout list. */ 452 static void rcu_tasks_postscan(struct list_head *hop) 453 { 454 /* 455 * Wait for tasks that are in the process of exiting. This 456 * does only part of the job, ensuring that all tasks that were 457 * previously exiting reach the point where they have disabled 458 * preemption, allowing the later synchronize_rcu() to finish 459 * the job. 460 */ 461 synchronize_srcu(&tasks_rcu_exit_srcu); 462 } 463 464 /* See if tasks are still holding out, complain if so. */ 465 static void check_holdout_task(struct task_struct *t, 466 bool needreport, bool *firstreport) 467 { 468 int cpu; 469 470 if (!READ_ONCE(t->rcu_tasks_holdout) || 471 t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) || 472 !READ_ONCE(t->on_rq) || 473 (IS_ENABLED(CONFIG_NO_HZ_FULL) && 474 !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) { 475 WRITE_ONCE(t->rcu_tasks_holdout, false); 476 list_del_init(&t->rcu_tasks_holdout_list); 477 put_task_struct(t); 478 return; 479 } 480 rcu_request_urgent_qs_task(t); 481 if (!needreport) 482 return; 483 if (*firstreport) { 484 pr_err("INFO: rcu_tasks detected stalls on tasks:\n"); 485 *firstreport = false; 486 } 487 cpu = task_cpu(t); 488 pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n", 489 t, ".I"[is_idle_task(t)], 490 "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)], 491 t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout, 492 t->rcu_tasks_idle_cpu, cpu); 493 sched_show_task(t); 494 } 495 496 /* Scan the holdout lists for tasks no longer holding out. */ 497 static void check_all_holdout_tasks(struct list_head *hop, 498 bool needreport, bool *firstreport) 499 { 500 struct task_struct *t, *t1; 501 502 list_for_each_entry_safe(t, t1, hop, rcu_tasks_holdout_list) { 503 check_holdout_task(t, needreport, firstreport); 504 cond_resched(); 505 } 506 } 507 508 /* Finish off the Tasks-RCU grace period. */ 509 static void rcu_tasks_postgp(struct rcu_tasks *rtp) 510 { 511 /* 512 * Because ->on_rq and ->nvcsw are not guaranteed to have a full 513 * memory barriers prior to them in the schedule() path, memory 514 * reordering on other CPUs could cause their RCU-tasks read-side 515 * critical sections to extend past the end of the grace period. 516 * However, because these ->nvcsw updates are carried out with 517 * interrupts disabled, we can use synchronize_rcu() to force the 518 * needed ordering on all such CPUs. 519 * 520 * This synchronize_rcu() also confines all ->rcu_tasks_holdout 521 * accesses to be within the grace period, avoiding the need for 522 * memory barriers for ->rcu_tasks_holdout accesses. 523 * 524 * In addition, this synchronize_rcu() waits for exiting tasks 525 * to complete their final preempt_disable() region of execution, 526 * cleaning up after the synchronize_srcu() above. 527 */ 528 synchronize_rcu(); 529 } 530 531 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func); 532 DEFINE_RCU_TASKS(rcu_tasks, rcu_tasks_wait_gp, call_rcu_tasks, "RCU Tasks"); 533 534 /** 535 * call_rcu_tasks() - Queue an RCU for invocation task-based grace period 536 * @rhp: structure to be used for queueing the RCU updates. 537 * @func: actual callback function to be invoked after the grace period 538 * 539 * The callback function will be invoked some time after a full grace 540 * period elapses, in other words after all currently executing RCU 541 * read-side critical sections have completed. call_rcu_tasks() assumes 542 * that the read-side critical sections end at a voluntary context 543 * switch (not a preemption!), cond_resched_rcu_qs(), entry into idle, 544 * or transition to usermode execution. As such, there are no read-side 545 * primitives analogous to rcu_read_lock() and rcu_read_unlock() because 546 * this primitive is intended to determine that all tasks have passed 547 * through a safe state, not so much for data-structure synchronization. 548 * 549 * See the description of call_rcu() for more detailed information on 550 * memory ordering guarantees. 551 */ 552 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func) 553 { 554 call_rcu_tasks_generic(rhp, func, &rcu_tasks); 555 } 556 EXPORT_SYMBOL_GPL(call_rcu_tasks); 557 558 /** 559 * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed. 560 * 561 * Control will return to the caller some time after a full rcu-tasks 562 * grace period has elapsed, in other words after all currently 563 * executing rcu-tasks read-side critical sections have elapsed. These 564 * read-side critical sections are delimited by calls to schedule(), 565 * cond_resched_tasks_rcu_qs(), idle execution, userspace execution, calls 566 * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched(). 567 * 568 * This is a very specialized primitive, intended only for a few uses in 569 * tracing and other situations requiring manipulation of function 570 * preambles and profiling hooks. The synchronize_rcu_tasks() function 571 * is not (yet) intended for heavy use from multiple CPUs. 572 * 573 * See the description of synchronize_rcu() for more detailed information 574 * on memory ordering guarantees. 575 */ 576 void synchronize_rcu_tasks(void) 577 { 578 synchronize_rcu_tasks_generic(&rcu_tasks); 579 } 580 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks); 581 582 /** 583 * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks. 584 * 585 * Although the current implementation is guaranteed to wait, it is not 586 * obligated to, for example, if there are no pending callbacks. 587 */ 588 void rcu_barrier_tasks(void) 589 { 590 /* There is only one callback queue, so this is easy. ;-) */ 591 synchronize_rcu_tasks(); 592 } 593 EXPORT_SYMBOL_GPL(rcu_barrier_tasks); 594 595 static int __init rcu_spawn_tasks_kthread(void) 596 { 597 rcu_tasks.gp_sleep = HZ / 10; 598 rcu_tasks.init_fract = HZ / 10; 599 rcu_tasks.pregp_func = rcu_tasks_pregp_step; 600 rcu_tasks.pertask_func = rcu_tasks_pertask; 601 rcu_tasks.postscan_func = rcu_tasks_postscan; 602 rcu_tasks.holdouts_func = check_all_holdout_tasks; 603 rcu_tasks.postgp_func = rcu_tasks_postgp; 604 rcu_spawn_tasks_kthread_generic(&rcu_tasks); 605 return 0; 606 } 607 608 #if !defined(CONFIG_TINY_RCU) 609 void show_rcu_tasks_classic_gp_kthread(void) 610 { 611 show_rcu_tasks_generic_gp_kthread(&rcu_tasks, ""); 612 } 613 EXPORT_SYMBOL_GPL(show_rcu_tasks_classic_gp_kthread); 614 #endif // !defined(CONFIG_TINY_RCU) 615 616 /* Do the srcu_read_lock() for the above synchronize_srcu(). */ 617 void exit_tasks_rcu_start(void) __acquires(&tasks_rcu_exit_srcu) 618 { 619 preempt_disable(); 620 current->rcu_tasks_idx = __srcu_read_lock(&tasks_rcu_exit_srcu); 621 preempt_enable(); 622 } 623 624 /* Do the srcu_read_unlock() for the above synchronize_srcu(). */ 625 void exit_tasks_rcu_finish(void) __releases(&tasks_rcu_exit_srcu) 626 { 627 struct task_struct *t = current; 628 629 preempt_disable(); 630 __srcu_read_unlock(&tasks_rcu_exit_srcu, t->rcu_tasks_idx); 631 preempt_enable(); 632 exit_tasks_rcu_finish_trace(t); 633 } 634 635 #else /* #ifdef CONFIG_TASKS_RCU */ 636 void exit_tasks_rcu_start(void) { } 637 void exit_tasks_rcu_finish(void) { exit_tasks_rcu_finish_trace(current); } 638 #endif /* #else #ifdef CONFIG_TASKS_RCU */ 639 640 #ifdef CONFIG_TASKS_RUDE_RCU 641 642 //////////////////////////////////////////////////////////////////////// 643 // 644 // "Rude" variant of Tasks RCU, inspired by Steve Rostedt's trick of 645 // passing an empty function to schedule_on_each_cpu(). This approach 646 // provides an asynchronous call_rcu_tasks_rude() API and batching of 647 // concurrent calls to the synchronous synchronize_rcu_tasks_rude() API. 648 // This invokes schedule_on_each_cpu() in order to send IPIs far and wide 649 // and induces otherwise unnecessary context switches on all online CPUs, 650 // whether idle or not. 651 // 652 // Callback handling is provided by the rcu_tasks_kthread() function. 653 // 654 // Ordering is provided by the scheduler's context-switch code. 655 656 // Empty function to allow workqueues to force a context switch. 657 static void rcu_tasks_be_rude(struct work_struct *work) 658 { 659 } 660 661 // Wait for one rude RCU-tasks grace period. 662 static void rcu_tasks_rude_wait_gp(struct rcu_tasks *rtp) 663 { 664 rtp->n_ipis += cpumask_weight(cpu_online_mask); 665 schedule_on_each_cpu(rcu_tasks_be_rude); 666 } 667 668 void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func); 669 DEFINE_RCU_TASKS(rcu_tasks_rude, rcu_tasks_rude_wait_gp, call_rcu_tasks_rude, 670 "RCU Tasks Rude"); 671 672 /** 673 * call_rcu_tasks_rude() - Queue a callback rude task-based grace period 674 * @rhp: structure to be used for queueing the RCU updates. 675 * @func: actual callback function to be invoked after the grace period 676 * 677 * The callback function will be invoked some time after a full grace 678 * period elapses, in other words after all currently executing RCU 679 * read-side critical sections have completed. call_rcu_tasks_rude() 680 * assumes that the read-side critical sections end at context switch, 681 * cond_resched_rcu_qs(), or transition to usermode execution. As such, 682 * there are no read-side primitives analogous to rcu_read_lock() and 683 * rcu_read_unlock() because this primitive is intended to determine 684 * that all tasks have passed through a safe state, not so much for 685 * data-structure synchronization. 686 * 687 * See the description of call_rcu() for more detailed information on 688 * memory ordering guarantees. 689 */ 690 void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func) 691 { 692 call_rcu_tasks_generic(rhp, func, &rcu_tasks_rude); 693 } 694 EXPORT_SYMBOL_GPL(call_rcu_tasks_rude); 695 696 /** 697 * synchronize_rcu_tasks_rude - wait for a rude rcu-tasks grace period 698 * 699 * Control will return to the caller some time after a rude rcu-tasks 700 * grace period has elapsed, in other words after all currently 701 * executing rcu-tasks read-side critical sections have elapsed. These 702 * read-side critical sections are delimited by calls to schedule(), 703 * cond_resched_tasks_rcu_qs(), userspace execution, and (in theory, 704 * anyway) cond_resched(). 705 * 706 * This is a very specialized primitive, intended only for a few uses in 707 * tracing and other situations requiring manipulation of function preambles 708 * and profiling hooks. The synchronize_rcu_tasks_rude() function is not 709 * (yet) intended for heavy use from multiple CPUs. 710 * 711 * See the description of synchronize_rcu() for more detailed information 712 * on memory ordering guarantees. 713 */ 714 void synchronize_rcu_tasks_rude(void) 715 { 716 synchronize_rcu_tasks_generic(&rcu_tasks_rude); 717 } 718 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_rude); 719 720 /** 721 * rcu_barrier_tasks_rude - Wait for in-flight call_rcu_tasks_rude() callbacks. 722 * 723 * Although the current implementation is guaranteed to wait, it is not 724 * obligated to, for example, if there are no pending callbacks. 725 */ 726 void rcu_barrier_tasks_rude(void) 727 { 728 /* There is only one callback queue, so this is easy. ;-) */ 729 synchronize_rcu_tasks_rude(); 730 } 731 EXPORT_SYMBOL_GPL(rcu_barrier_tasks_rude); 732 733 static int __init rcu_spawn_tasks_rude_kthread(void) 734 { 735 rcu_tasks_rude.gp_sleep = HZ / 10; 736 rcu_spawn_tasks_kthread_generic(&rcu_tasks_rude); 737 return 0; 738 } 739 740 #if !defined(CONFIG_TINY_RCU) 741 void show_rcu_tasks_rude_gp_kthread(void) 742 { 743 show_rcu_tasks_generic_gp_kthread(&rcu_tasks_rude, ""); 744 } 745 EXPORT_SYMBOL_GPL(show_rcu_tasks_rude_gp_kthread); 746 #endif // !defined(CONFIG_TINY_RCU) 747 #endif /* #ifdef CONFIG_TASKS_RUDE_RCU */ 748 749 //////////////////////////////////////////////////////////////////////// 750 // 751 // Tracing variant of Tasks RCU. This variant is designed to be used 752 // to protect tracing hooks, including those of BPF. This variant 753 // therefore: 754 // 755 // 1. Has explicit read-side markers to allow finite grace periods 756 // in the face of in-kernel loops for PREEMPT=n builds. 757 // 758 // 2. Protects code in the idle loop, exception entry/exit, and 759 // CPU-hotplug code paths, similar to the capabilities of SRCU. 760 // 761 // 3. Avoids expensive read-side instruction, having overhead similar 762 // to that of Preemptible RCU. 763 // 764 // There are of course downsides. The grace-period code can send IPIs to 765 // CPUs, even when those CPUs are in the idle loop or in nohz_full userspace. 766 // It is necessary to scan the full tasklist, much as for Tasks RCU. There 767 // is a single callback queue guarded by a single lock, again, much as for 768 // Tasks RCU. If needed, these downsides can be at least partially remedied. 769 // 770 // Perhaps most important, this variant of RCU does not affect the vanilla 771 // flavors, rcu_preempt and rcu_sched. The fact that RCU Tasks Trace 772 // readers can operate from idle, offline, and exception entry/exit in no 773 // way allows rcu_preempt and rcu_sched readers to also do so. 774 // 775 // The implementation uses rcu_tasks_wait_gp(), which relies on function 776 // pointers in the rcu_tasks structure. The rcu_spawn_tasks_trace_kthread() 777 // function sets these function pointers up so that rcu_tasks_wait_gp() 778 // invokes these functions in this order: 779 // 780 // rcu_tasks_trace_pregp_step(): 781 // Initialize the count of readers and block CPU-hotplug operations. 782 // rcu_tasks_trace_pertask(), invoked on every non-idle task: 783 // Initialize per-task state and attempt to identify an immediate 784 // quiescent state for that task, or, failing that, attempt to 785 // set that task's .need_qs flag so that task's next outermost 786 // rcu_read_unlock_trace() will report the quiescent state (in which 787 // case the count of readers is incremented). If both attempts fail, 788 // the task is added to a "holdout" list. Note that IPIs are used 789 // to invoke trc_read_check_handler() in the context of running tasks 790 // in order to avoid ordering overhead on common-case shared-variable 791 // accessses. 792 // rcu_tasks_trace_postscan(): 793 // Initialize state and attempt to identify an immediate quiescent 794 // state as above (but only for idle tasks), unblock CPU-hotplug 795 // operations, and wait for an RCU grace period to avoid races with 796 // tasks that are in the process of exiting. 797 // check_all_holdout_tasks_trace(), repeatedly until holdout list is empty: 798 // Scans the holdout list, attempting to identify a quiescent state 799 // for each task on the list. If there is a quiescent state, the 800 // corresponding task is removed from the holdout list. 801 // rcu_tasks_trace_postgp(): 802 // Wait for the count of readers do drop to zero, reporting any stalls. 803 // Also execute full memory barriers to maintain ordering with code 804 // executing after the grace period. 805 // 806 // The exit_tasks_rcu_finish_trace() synchronizes with exiting tasks. 807 // 808 // Pre-grace-period update-side code is ordered before the grace 809 // period via the ->cbs_lock and barriers in rcu_tasks_kthread(). 810 // Pre-grace-period read-side code is ordered before the grace period by 811 // atomic_dec_and_test() of the count of readers (for IPIed readers) and by 812 // scheduler context-switch ordering (for locked-down non-running readers). 813 814 // The lockdep state must be outside of #ifdef to be useful. 815 #ifdef CONFIG_DEBUG_LOCK_ALLOC 816 static struct lock_class_key rcu_lock_trace_key; 817 struct lockdep_map rcu_trace_lock_map = 818 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_trace", &rcu_lock_trace_key); 819 EXPORT_SYMBOL_GPL(rcu_trace_lock_map); 820 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 821 822 #ifdef CONFIG_TASKS_TRACE_RCU 823 824 static atomic_t trc_n_readers_need_end; // Number of waited-for readers. 825 static DECLARE_WAIT_QUEUE_HEAD(trc_wait); // List of holdout tasks. 826 827 // Record outstanding IPIs to each CPU. No point in sending two... 828 static DEFINE_PER_CPU(bool, trc_ipi_to_cpu); 829 830 // The number of detections of task quiescent state relying on 831 // heavyweight readers executing explicit memory barriers. 832 static unsigned long n_heavy_reader_attempts; 833 static unsigned long n_heavy_reader_updates; 834 static unsigned long n_heavy_reader_ofl_updates; 835 836 void call_rcu_tasks_trace(struct rcu_head *rhp, rcu_callback_t func); 837 DEFINE_RCU_TASKS(rcu_tasks_trace, rcu_tasks_wait_gp, call_rcu_tasks_trace, 838 "RCU Tasks Trace"); 839 840 /* 841 * This irq_work handler allows rcu_read_unlock_trace() to be invoked 842 * while the scheduler locks are held. 843 */ 844 static void rcu_read_unlock_iw(struct irq_work *iwp) 845 { 846 wake_up(&trc_wait); 847 } 848 static DEFINE_IRQ_WORK(rcu_tasks_trace_iw, rcu_read_unlock_iw); 849 850 /* If we are the last reader, wake up the grace-period kthread. */ 851 void rcu_read_unlock_trace_special(struct task_struct *t, int nesting) 852 { 853 int nq = READ_ONCE(t->trc_reader_special.b.need_qs); 854 855 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) && 856 t->trc_reader_special.b.need_mb) 857 smp_mb(); // Pairs with update-side barriers. 858 // Update .need_qs before ->trc_reader_nesting for irq/NMI handlers. 859 if (nq) 860 WRITE_ONCE(t->trc_reader_special.b.need_qs, false); 861 WRITE_ONCE(t->trc_reader_nesting, nesting); 862 if (nq && atomic_dec_and_test(&trc_n_readers_need_end)) 863 irq_work_queue(&rcu_tasks_trace_iw); 864 } 865 EXPORT_SYMBOL_GPL(rcu_read_unlock_trace_special); 866 867 /* Add a task to the holdout list, if it is not already on the list. */ 868 static void trc_add_holdout(struct task_struct *t, struct list_head *bhp) 869 { 870 if (list_empty(&t->trc_holdout_list)) { 871 get_task_struct(t); 872 list_add(&t->trc_holdout_list, bhp); 873 } 874 } 875 876 /* Remove a task from the holdout list, if it is in fact present. */ 877 static void trc_del_holdout(struct task_struct *t) 878 { 879 if (!list_empty(&t->trc_holdout_list)) { 880 list_del_init(&t->trc_holdout_list); 881 put_task_struct(t); 882 } 883 } 884 885 /* IPI handler to check task state. */ 886 static void trc_read_check_handler(void *t_in) 887 { 888 struct task_struct *t = current; 889 struct task_struct *texp = t_in; 890 891 // If the task is no longer running on this CPU, leave. 892 if (unlikely(texp != t)) { 893 if (WARN_ON_ONCE(atomic_dec_and_test(&trc_n_readers_need_end))) 894 wake_up(&trc_wait); 895 goto reset_ipi; // Already on holdout list, so will check later. 896 } 897 898 // If the task is not in a read-side critical section, and 899 // if this is the last reader, awaken the grace-period kthread. 900 if (likely(!READ_ONCE(t->trc_reader_nesting))) { 901 if (WARN_ON_ONCE(atomic_dec_and_test(&trc_n_readers_need_end))) 902 wake_up(&trc_wait); 903 // Mark as checked after decrement to avoid false 904 // positives on the above WARN_ON_ONCE(). 905 WRITE_ONCE(t->trc_reader_checked, true); 906 goto reset_ipi; 907 } 908 // If we are racing with an rcu_read_unlock_trace(), try again later. 909 if (unlikely(READ_ONCE(t->trc_reader_nesting) < 0)) { 910 if (WARN_ON_ONCE(atomic_dec_and_test(&trc_n_readers_need_end))) 911 wake_up(&trc_wait); 912 goto reset_ipi; 913 } 914 WRITE_ONCE(t->trc_reader_checked, true); 915 916 // Get here if the task is in a read-side critical section. Set 917 // its state so that it will awaken the grace-period kthread upon 918 // exit from that critical section. 919 WARN_ON_ONCE(READ_ONCE(t->trc_reader_special.b.need_qs)); 920 WRITE_ONCE(t->trc_reader_special.b.need_qs, true); 921 922 reset_ipi: 923 // Allow future IPIs to be sent on CPU and for task. 924 // Also order this IPI handler against any later manipulations of 925 // the intended task. 926 smp_store_release(per_cpu_ptr(&trc_ipi_to_cpu, smp_processor_id()), false); // ^^^ 927 smp_store_release(&texp->trc_ipi_to_cpu, -1); // ^^^ 928 } 929 930 /* Callback function for scheduler to check locked-down task. */ 931 static bool trc_inspect_reader(struct task_struct *t, void *arg) 932 { 933 int cpu = task_cpu(t); 934 bool in_qs = false; 935 bool ofl = cpu_is_offline(cpu); 936 937 if (task_curr(t)) { 938 WARN_ON_ONCE(ofl && !is_idle_task(t)); 939 940 // If no chance of heavyweight readers, do it the hard way. 941 if (!ofl && !IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB)) 942 return false; 943 944 // If heavyweight readers are enabled on the remote task, 945 // we can inspect its state despite its currently running. 946 // However, we cannot safely change its state. 947 n_heavy_reader_attempts++; 948 if (!ofl && // Check for "running" idle tasks on offline CPUs. 949 !rcu_dynticks_zero_in_eqs(cpu, &t->trc_reader_nesting)) 950 return false; // No quiescent state, do it the hard way. 951 n_heavy_reader_updates++; 952 if (ofl) 953 n_heavy_reader_ofl_updates++; 954 in_qs = true; 955 } else { 956 // The task is not running, so C-language access is safe. 957 in_qs = likely(!t->trc_reader_nesting); 958 } 959 960 // Mark as checked so that the grace-period kthread will 961 // remove it from the holdout list. 962 t->trc_reader_checked = true; 963 964 if (in_qs) 965 return true; // Already in quiescent state, done!!! 966 967 // The task is in a read-side critical section, so set up its 968 // state so that it will awaken the grace-period kthread upon exit 969 // from that critical section. 970 atomic_inc(&trc_n_readers_need_end); // One more to wait on. 971 WARN_ON_ONCE(READ_ONCE(t->trc_reader_special.b.need_qs)); 972 WRITE_ONCE(t->trc_reader_special.b.need_qs, true); 973 return true; 974 } 975 976 /* Attempt to extract the state for the specified task. */ 977 static void trc_wait_for_one_reader(struct task_struct *t, 978 struct list_head *bhp) 979 { 980 int cpu; 981 982 // If a previous IPI is still in flight, let it complete. 983 if (smp_load_acquire(&t->trc_ipi_to_cpu) != -1) // Order IPI 984 return; 985 986 // The current task had better be in a quiescent state. 987 if (t == current) { 988 t->trc_reader_checked = true; 989 WARN_ON_ONCE(READ_ONCE(t->trc_reader_nesting)); 990 return; 991 } 992 993 // Attempt to nail down the task for inspection. 994 get_task_struct(t); 995 if (try_invoke_on_locked_down_task(t, trc_inspect_reader, NULL)) { 996 put_task_struct(t); 997 return; 998 } 999 put_task_struct(t); 1000 1001 // If this task is not yet on the holdout list, then we are in 1002 // an RCU read-side critical section. Otherwise, the invocation of 1003 // rcu_add_holdout() that added it to the list did the necessary 1004 // get_task_struct(). Either way, the task cannot be freed out 1005 // from under this code. 1006 1007 // If currently running, send an IPI, either way, add to list. 1008 trc_add_holdout(t, bhp); 1009 if (task_curr(t) && 1010 time_after(jiffies + 1, rcu_tasks_trace.gp_start + rcu_task_ipi_delay)) { 1011 // The task is currently running, so try IPIing it. 1012 cpu = task_cpu(t); 1013 1014 // If there is already an IPI outstanding, let it happen. 1015 if (per_cpu(trc_ipi_to_cpu, cpu) || t->trc_ipi_to_cpu >= 0) 1016 return; 1017 1018 atomic_inc(&trc_n_readers_need_end); 1019 per_cpu(trc_ipi_to_cpu, cpu) = true; 1020 t->trc_ipi_to_cpu = cpu; 1021 rcu_tasks_trace.n_ipis++; 1022 if (smp_call_function_single(cpu, 1023 trc_read_check_handler, t, 0)) { 1024 // Just in case there is some other reason for 1025 // failure than the target CPU being offline. 1026 rcu_tasks_trace.n_ipis_fails++; 1027 per_cpu(trc_ipi_to_cpu, cpu) = false; 1028 t->trc_ipi_to_cpu = cpu; 1029 if (atomic_dec_and_test(&trc_n_readers_need_end)) { 1030 WARN_ON_ONCE(1); 1031 wake_up(&trc_wait); 1032 } 1033 } 1034 } 1035 } 1036 1037 /* Initialize for a new RCU-tasks-trace grace period. */ 1038 static void rcu_tasks_trace_pregp_step(void) 1039 { 1040 int cpu; 1041 1042 // Allow for fast-acting IPIs. 1043 atomic_set(&trc_n_readers_need_end, 1); 1044 1045 // There shouldn't be any old IPIs, but... 1046 for_each_possible_cpu(cpu) 1047 WARN_ON_ONCE(per_cpu(trc_ipi_to_cpu, cpu)); 1048 1049 // Disable CPU hotplug across the tasklist scan. 1050 // This also waits for all readers in CPU-hotplug code paths. 1051 cpus_read_lock(); 1052 } 1053 1054 /* Do first-round processing for the specified task. */ 1055 static void rcu_tasks_trace_pertask(struct task_struct *t, 1056 struct list_head *hop) 1057 { 1058 // During early boot when there is only the one boot CPU, there 1059 // is no idle task for the other CPUs. Just return. 1060 if (unlikely(t == NULL)) 1061 return; 1062 1063 WRITE_ONCE(t->trc_reader_special.b.need_qs, false); 1064 WRITE_ONCE(t->trc_reader_checked, false); 1065 t->trc_ipi_to_cpu = -1; 1066 trc_wait_for_one_reader(t, hop); 1067 } 1068 1069 /* 1070 * Do intermediate processing between task and holdout scans and 1071 * pick up the idle tasks. 1072 */ 1073 static void rcu_tasks_trace_postscan(struct list_head *hop) 1074 { 1075 int cpu; 1076 1077 for_each_possible_cpu(cpu) 1078 rcu_tasks_trace_pertask(idle_task(cpu), hop); 1079 1080 // Re-enable CPU hotplug now that the tasklist scan has completed. 1081 cpus_read_unlock(); 1082 1083 // Wait for late-stage exiting tasks to finish exiting. 1084 // These might have passed the call to exit_tasks_rcu_finish(). 1085 synchronize_rcu(); 1086 // Any tasks that exit after this point will set ->trc_reader_checked. 1087 } 1088 1089 /* Show the state of a task stalling the current RCU tasks trace GP. */ 1090 static void show_stalled_task_trace(struct task_struct *t, bool *firstreport) 1091 { 1092 int cpu; 1093 1094 if (*firstreport) { 1095 pr_err("INFO: rcu_tasks_trace detected stalls on tasks:\n"); 1096 *firstreport = false; 1097 } 1098 // FIXME: This should attempt to use try_invoke_on_nonrunning_task(). 1099 cpu = task_cpu(t); 1100 pr_alert("P%d: %c%c%c nesting: %d%c cpu: %d\n", 1101 t->pid, 1102 ".I"[READ_ONCE(t->trc_ipi_to_cpu) > 0], 1103 ".i"[is_idle_task(t)], 1104 ".N"[cpu > 0 && tick_nohz_full_cpu(cpu)], 1105 READ_ONCE(t->trc_reader_nesting), 1106 " N"[!!READ_ONCE(t->trc_reader_special.b.need_qs)], 1107 cpu); 1108 sched_show_task(t); 1109 } 1110 1111 /* List stalled IPIs for RCU tasks trace. */ 1112 static void show_stalled_ipi_trace(void) 1113 { 1114 int cpu; 1115 1116 for_each_possible_cpu(cpu) 1117 if (per_cpu(trc_ipi_to_cpu, cpu)) 1118 pr_alert("\tIPI outstanding to CPU %d\n", cpu); 1119 } 1120 1121 /* Do one scan of the holdout list. */ 1122 static void check_all_holdout_tasks_trace(struct list_head *hop, 1123 bool needreport, bool *firstreport) 1124 { 1125 struct task_struct *g, *t; 1126 1127 // Disable CPU hotplug across the holdout list scan. 1128 cpus_read_lock(); 1129 1130 list_for_each_entry_safe(t, g, hop, trc_holdout_list) { 1131 // If safe and needed, try to check the current task. 1132 if (READ_ONCE(t->trc_ipi_to_cpu) == -1 && 1133 !READ_ONCE(t->trc_reader_checked)) 1134 trc_wait_for_one_reader(t, hop); 1135 1136 // If check succeeded, remove this task from the list. 1137 if (READ_ONCE(t->trc_reader_checked)) 1138 trc_del_holdout(t); 1139 else if (needreport) 1140 show_stalled_task_trace(t, firstreport); 1141 } 1142 1143 // Re-enable CPU hotplug now that the holdout list scan has completed. 1144 cpus_read_unlock(); 1145 1146 if (needreport) { 1147 if (firstreport) 1148 pr_err("INFO: rcu_tasks_trace detected stalls? (Late IPI?)\n"); 1149 show_stalled_ipi_trace(); 1150 } 1151 } 1152 1153 /* Wait for grace period to complete and provide ordering. */ 1154 static void rcu_tasks_trace_postgp(struct rcu_tasks *rtp) 1155 { 1156 bool firstreport; 1157 struct task_struct *g, *t; 1158 LIST_HEAD(holdouts); 1159 long ret; 1160 1161 // Remove the safety count. 1162 smp_mb__before_atomic(); // Order vs. earlier atomics 1163 atomic_dec(&trc_n_readers_need_end); 1164 smp_mb__after_atomic(); // Order vs. later atomics 1165 1166 // Wait for readers. 1167 set_tasks_gp_state(rtp, RTGS_WAIT_READERS); 1168 for (;;) { 1169 ret = wait_event_idle_exclusive_timeout( 1170 trc_wait, 1171 atomic_read(&trc_n_readers_need_end) == 0, 1172 READ_ONCE(rcu_task_stall_timeout)); 1173 if (ret) 1174 break; // Count reached zero. 1175 // Stall warning time, so make a list of the offenders. 1176 rcu_read_lock(); 1177 for_each_process_thread(g, t) 1178 if (READ_ONCE(t->trc_reader_special.b.need_qs)) 1179 trc_add_holdout(t, &holdouts); 1180 rcu_read_unlock(); 1181 firstreport = true; 1182 list_for_each_entry_safe(t, g, &holdouts, trc_holdout_list) { 1183 if (READ_ONCE(t->trc_reader_special.b.need_qs)) 1184 show_stalled_task_trace(t, &firstreport); 1185 trc_del_holdout(t); // Release task_struct reference. 1186 } 1187 if (firstreport) 1188 pr_err("INFO: rcu_tasks_trace detected stalls? (Counter/taskslist mismatch?)\n"); 1189 show_stalled_ipi_trace(); 1190 pr_err("\t%d holdouts\n", atomic_read(&trc_n_readers_need_end)); 1191 } 1192 smp_mb(); // Caller's code must be ordered after wakeup. 1193 // Pairs with pretty much every ordering primitive. 1194 } 1195 1196 /* Report any needed quiescent state for this exiting task. */ 1197 static void exit_tasks_rcu_finish_trace(struct task_struct *t) 1198 { 1199 WRITE_ONCE(t->trc_reader_checked, true); 1200 WARN_ON_ONCE(READ_ONCE(t->trc_reader_nesting)); 1201 WRITE_ONCE(t->trc_reader_nesting, 0); 1202 if (WARN_ON_ONCE(READ_ONCE(t->trc_reader_special.b.need_qs))) 1203 rcu_read_unlock_trace_special(t, 0); 1204 } 1205 1206 /** 1207 * call_rcu_tasks_trace() - Queue a callback trace task-based grace period 1208 * @rhp: structure to be used for queueing the RCU updates. 1209 * @func: actual callback function to be invoked after the grace period 1210 * 1211 * The callback function will be invoked some time after a full grace 1212 * period elapses, in other words after all currently executing RCU 1213 * read-side critical sections have completed. call_rcu_tasks_trace() 1214 * assumes that the read-side critical sections end at context switch, 1215 * cond_resched_rcu_qs(), or transition to usermode execution. As such, 1216 * there are no read-side primitives analogous to rcu_read_lock() and 1217 * rcu_read_unlock() because this primitive is intended to determine 1218 * that all tasks have passed through a safe state, not so much for 1219 * data-structure synchronization. 1220 * 1221 * See the description of call_rcu() for more detailed information on 1222 * memory ordering guarantees. 1223 */ 1224 void call_rcu_tasks_trace(struct rcu_head *rhp, rcu_callback_t func) 1225 { 1226 call_rcu_tasks_generic(rhp, func, &rcu_tasks_trace); 1227 } 1228 EXPORT_SYMBOL_GPL(call_rcu_tasks_trace); 1229 1230 /** 1231 * synchronize_rcu_tasks_trace - wait for a trace rcu-tasks grace period 1232 * 1233 * Control will return to the caller some time after a trace rcu-tasks 1234 * grace period has elapsed, in other words after all currently executing 1235 * rcu-tasks read-side critical sections have elapsed. These read-side 1236 * critical sections are delimited by calls to rcu_read_lock_trace() 1237 * and rcu_read_unlock_trace(). 1238 * 1239 * This is a very specialized primitive, intended only for a few uses in 1240 * tracing and other situations requiring manipulation of function preambles 1241 * and profiling hooks. The synchronize_rcu_tasks_trace() function is not 1242 * (yet) intended for heavy use from multiple CPUs. 1243 * 1244 * See the description of synchronize_rcu() for more detailed information 1245 * on memory ordering guarantees. 1246 */ 1247 void synchronize_rcu_tasks_trace(void) 1248 { 1249 RCU_LOCKDEP_WARN(lock_is_held(&rcu_trace_lock_map), "Illegal synchronize_rcu_tasks_trace() in RCU Tasks Trace read-side critical section"); 1250 synchronize_rcu_tasks_generic(&rcu_tasks_trace); 1251 } 1252 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_trace); 1253 1254 /** 1255 * rcu_barrier_tasks_trace - Wait for in-flight call_rcu_tasks_trace() callbacks. 1256 * 1257 * Although the current implementation is guaranteed to wait, it is not 1258 * obligated to, for example, if there are no pending callbacks. 1259 */ 1260 void rcu_barrier_tasks_trace(void) 1261 { 1262 /* There is only one callback queue, so this is easy. ;-) */ 1263 synchronize_rcu_tasks_trace(); 1264 } 1265 EXPORT_SYMBOL_GPL(rcu_barrier_tasks_trace); 1266 1267 static int __init rcu_spawn_tasks_trace_kthread(void) 1268 { 1269 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB)) { 1270 rcu_tasks_trace.gp_sleep = HZ / 10; 1271 rcu_tasks_trace.init_fract = HZ / 10; 1272 } else { 1273 rcu_tasks_trace.gp_sleep = HZ / 200; 1274 if (rcu_tasks_trace.gp_sleep <= 0) 1275 rcu_tasks_trace.gp_sleep = 1; 1276 rcu_tasks_trace.init_fract = HZ / 200; 1277 if (rcu_tasks_trace.init_fract <= 0) 1278 rcu_tasks_trace.init_fract = 1; 1279 } 1280 rcu_tasks_trace.pregp_func = rcu_tasks_trace_pregp_step; 1281 rcu_tasks_trace.pertask_func = rcu_tasks_trace_pertask; 1282 rcu_tasks_trace.postscan_func = rcu_tasks_trace_postscan; 1283 rcu_tasks_trace.holdouts_func = check_all_holdout_tasks_trace; 1284 rcu_tasks_trace.postgp_func = rcu_tasks_trace_postgp; 1285 rcu_spawn_tasks_kthread_generic(&rcu_tasks_trace); 1286 return 0; 1287 } 1288 1289 #if !defined(CONFIG_TINY_RCU) 1290 void show_rcu_tasks_trace_gp_kthread(void) 1291 { 1292 char buf[64]; 1293 1294 sprintf(buf, "N%d h:%lu/%lu/%lu", atomic_read(&trc_n_readers_need_end), 1295 data_race(n_heavy_reader_ofl_updates), 1296 data_race(n_heavy_reader_updates), 1297 data_race(n_heavy_reader_attempts)); 1298 show_rcu_tasks_generic_gp_kthread(&rcu_tasks_trace, buf); 1299 } 1300 EXPORT_SYMBOL_GPL(show_rcu_tasks_trace_gp_kthread); 1301 #endif // !defined(CONFIG_TINY_RCU) 1302 1303 #else /* #ifdef CONFIG_TASKS_TRACE_RCU */ 1304 static void exit_tasks_rcu_finish_trace(struct task_struct *t) { } 1305 #endif /* #else #ifdef CONFIG_TASKS_TRACE_RCU */ 1306 1307 #ifndef CONFIG_TINY_RCU 1308 void show_rcu_tasks_gp_kthreads(void) 1309 { 1310 show_rcu_tasks_classic_gp_kthread(); 1311 show_rcu_tasks_rude_gp_kthread(); 1312 show_rcu_tasks_trace_gp_kthread(); 1313 } 1314 #endif /* #ifndef CONFIG_TINY_RCU */ 1315 1316 #ifdef CONFIG_PROVE_RCU 1317 struct rcu_tasks_test_desc { 1318 struct rcu_head rh; 1319 const char *name; 1320 bool notrun; 1321 }; 1322 1323 static struct rcu_tasks_test_desc tests[] = { 1324 { 1325 .name = "call_rcu_tasks()", 1326 /* If not defined, the test is skipped. */ 1327 .notrun = !IS_ENABLED(CONFIG_TASKS_RCU), 1328 }, 1329 { 1330 .name = "call_rcu_tasks_rude()", 1331 /* If not defined, the test is skipped. */ 1332 .notrun = !IS_ENABLED(CONFIG_TASKS_RUDE_RCU), 1333 }, 1334 { 1335 .name = "call_rcu_tasks_trace()", 1336 /* If not defined, the test is skipped. */ 1337 .notrun = !IS_ENABLED(CONFIG_TASKS_TRACE_RCU) 1338 } 1339 }; 1340 1341 static void test_rcu_tasks_callback(struct rcu_head *rhp) 1342 { 1343 struct rcu_tasks_test_desc *rttd = 1344 container_of(rhp, struct rcu_tasks_test_desc, rh); 1345 1346 pr_info("Callback from %s invoked.\n", rttd->name); 1347 1348 rttd->notrun = true; 1349 } 1350 1351 static void rcu_tasks_initiate_self_tests(void) 1352 { 1353 pr_info("Running RCU-tasks wait API self tests\n"); 1354 #ifdef CONFIG_TASKS_RCU 1355 synchronize_rcu_tasks(); 1356 call_rcu_tasks(&tests[0].rh, test_rcu_tasks_callback); 1357 #endif 1358 1359 #ifdef CONFIG_TASKS_RUDE_RCU 1360 synchronize_rcu_tasks_rude(); 1361 call_rcu_tasks_rude(&tests[1].rh, test_rcu_tasks_callback); 1362 #endif 1363 1364 #ifdef CONFIG_TASKS_TRACE_RCU 1365 synchronize_rcu_tasks_trace(); 1366 call_rcu_tasks_trace(&tests[2].rh, test_rcu_tasks_callback); 1367 #endif 1368 } 1369 1370 static int rcu_tasks_verify_self_tests(void) 1371 { 1372 int ret = 0; 1373 int i; 1374 1375 for (i = 0; i < ARRAY_SIZE(tests); i++) { 1376 if (!tests[i].notrun) { // still hanging. 1377 pr_err("%s has been failed.\n", tests[i].name); 1378 ret = -1; 1379 } 1380 } 1381 1382 if (ret) 1383 WARN_ON(1); 1384 1385 return ret; 1386 } 1387 late_initcall(rcu_tasks_verify_self_tests); 1388 #else /* #ifdef CONFIG_PROVE_RCU */ 1389 static void rcu_tasks_initiate_self_tests(void) { } 1390 #endif /* #else #ifdef CONFIG_PROVE_RCU */ 1391 1392 void __init rcu_init_tasks_generic(void) 1393 { 1394 #ifdef CONFIG_TASKS_RCU 1395 rcu_spawn_tasks_kthread(); 1396 #endif 1397 1398 #ifdef CONFIG_TASKS_RUDE_RCU 1399 rcu_spawn_tasks_rude_kthread(); 1400 #endif 1401 1402 #ifdef CONFIG_TASKS_TRACE_RCU 1403 rcu_spawn_tasks_trace_kthread(); 1404 #endif 1405 1406 // Run the self-tests. 1407 rcu_tasks_initiate_self_tests(); 1408 } 1409 1410 #else /* #ifdef CONFIG_TASKS_RCU_GENERIC */ 1411 static inline void rcu_tasks_bootup_oddness(void) {} 1412 #endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */ 1413