xref: /linux/kernel/rcu/tasks.h (revision 5afca7e996c42aed1b4a42d4712817601ba42aff)
1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3  * Task-based RCU implementations.
4  *
5  * Copyright (C) 2020 Paul E. McKenney
6  */
7 
8 #ifdef CONFIG_TASKS_RCU_GENERIC
9 #include "rcu_segcblist.h"
10 
11 ////////////////////////////////////////////////////////////////////////
12 //
13 // Generic data structures.
14 
15 struct rcu_tasks;
16 typedef void (*rcu_tasks_gp_func_t)(struct rcu_tasks *rtp);
17 typedef void (*pregp_func_t)(struct list_head *hop);
18 typedef void (*pertask_func_t)(struct task_struct *t, struct list_head *hop);
19 typedef void (*postscan_func_t)(struct list_head *hop);
20 typedef void (*holdouts_func_t)(struct list_head *hop, bool ndrpt, bool *frptp);
21 typedef void (*postgp_func_t)(struct rcu_tasks *rtp);
22 
23 /**
24  * struct rcu_tasks_percpu - Per-CPU component of definition for a Tasks-RCU-like mechanism.
25  * @cblist: Callback list.
26  * @lock: Lock protecting per-CPU callback list.
27  * @rtp_jiffies: Jiffies counter value for statistics.
28  * @lazy_timer: Timer to unlazify callbacks.
29  * @urgent_gp: Number of additional non-lazy grace periods.
30  * @rtp_n_lock_retries: Rough lock-contention statistic.
31  * @rtp_work: Work queue for invoking callbacks.
32  * @rtp_irq_work: IRQ work queue for deferred wakeups.
33  * @barrier_q_head: RCU callback for barrier operation.
34  * @rtp_blkd_tasks: List of tasks blocked as readers.
35  * @rtp_exit_list: List of tasks in the latter portion of do_exit().
36  * @cpu: CPU number corresponding to this entry.
37  * @index: Index of this CPU in rtpcp_array of the rcu_tasks structure.
38  * @rtpp: Pointer to the rcu_tasks structure.
39  */
40 struct rcu_tasks_percpu {
41 	struct rcu_segcblist cblist;
42 	raw_spinlock_t __private lock;
43 	unsigned long rtp_jiffies;
44 	unsigned long rtp_n_lock_retries;
45 	struct timer_list lazy_timer;
46 	unsigned int urgent_gp;
47 	struct work_struct rtp_work;
48 	struct irq_work rtp_irq_work;
49 	struct rcu_head barrier_q_head;
50 	struct list_head rtp_blkd_tasks;
51 	struct list_head rtp_exit_list;
52 	int cpu;
53 	int index;
54 	struct rcu_tasks *rtpp;
55 };
56 
57 /**
58  * struct rcu_tasks - Definition for a Tasks-RCU-like mechanism.
59  * @cbs_wait: RCU wait allowing a new callback to get kthread's attention.
60  * @cbs_gbl_lock: Lock protecting callback list.
61  * @tasks_gp_mutex: Mutex protecting grace period, needed during mid-boot dead zone.
62  * @gp_func: This flavor's grace-period-wait function.
63  * @gp_state: Grace period's most recent state transition (debugging).
64  * @gp_sleep: Per-grace-period sleep to prevent CPU-bound looping.
65  * @init_fract: Initial backoff sleep interval.
66  * @gp_jiffies: Time of last @gp_state transition.
67  * @gp_start: Most recent grace-period start in jiffies.
68  * @tasks_gp_seq: Number of grace periods completed since boot in upper bits.
69  * @n_ipis: Number of IPIs sent to encourage grace periods to end.
70  * @n_ipis_fails: Number of IPI-send failures.
71  * @kthread_ptr: This flavor's grace-period/callback-invocation kthread.
72  * @lazy_jiffies: Number of jiffies to allow callbacks to be lazy.
73  * @pregp_func: This flavor's pre-grace-period function (optional).
74  * @pertask_func: This flavor's per-task scan function (optional).
75  * @postscan_func: This flavor's post-task scan function (optional).
76  * @holdouts_func: This flavor's holdout-list scan function (optional).
77  * @postgp_func: This flavor's post-grace-period function (optional).
78  * @call_func: This flavor's call_rcu()-equivalent function.
79  * @wait_state: Task state for synchronous grace-period waits (default TASK_UNINTERRUPTIBLE).
80  * @rtpcpu: This flavor's rcu_tasks_percpu structure.
81  * @rtpcp_array: Array of pointers to rcu_tasks_percpu structure of CPUs in cpu_possible_mask.
82  * @percpu_enqueue_shift: Shift down CPU ID this much when enqueuing callbacks.
83  * @percpu_enqueue_lim: Number of per-CPU callback queues in use for enqueuing.
84  * @percpu_dequeue_lim: Number of per-CPU callback queues in use for dequeuing.
85  * @percpu_dequeue_gpseq: RCU grace-period number to propagate enqueue limit to dequeuers.
86  * @barrier_q_mutex: Serialize barrier operations.
87  * @barrier_q_count: Number of queues being waited on.
88  * @barrier_q_completion: Barrier wait/wakeup mechanism.
89  * @barrier_q_seq: Sequence number for barrier operations.
90  * @barrier_q_start: Most recent barrier start in jiffies.
91  * @name: This flavor's textual name.
92  * @kname: This flavor's kthread name.
93  */
94 struct rcu_tasks {
95 	struct rcuwait cbs_wait;
96 	raw_spinlock_t cbs_gbl_lock;
97 	struct mutex tasks_gp_mutex;
98 	int gp_state;
99 	int gp_sleep;
100 	int init_fract;
101 	unsigned long gp_jiffies;
102 	unsigned long gp_start;
103 	unsigned long tasks_gp_seq;
104 	unsigned long n_ipis;
105 	unsigned long n_ipis_fails;
106 	struct task_struct *kthread_ptr;
107 	unsigned long lazy_jiffies;
108 	rcu_tasks_gp_func_t gp_func;
109 	pregp_func_t pregp_func;
110 	pertask_func_t pertask_func;
111 	postscan_func_t postscan_func;
112 	holdouts_func_t holdouts_func;
113 	postgp_func_t postgp_func;
114 	call_rcu_func_t call_func;
115 	unsigned int wait_state;
116 	struct rcu_tasks_percpu __percpu *rtpcpu;
117 	struct rcu_tasks_percpu **rtpcp_array;
118 	int percpu_enqueue_shift;
119 	int percpu_enqueue_lim;
120 	int percpu_dequeue_lim;
121 	unsigned long percpu_dequeue_gpseq;
122 	struct mutex barrier_q_mutex;
123 	atomic_t barrier_q_count;
124 	struct completion barrier_q_completion;
125 	unsigned long barrier_q_seq;
126 	unsigned long barrier_q_start;
127 	char *name;
128 	char *kname;
129 };
130 
131 static void call_rcu_tasks_iw_wakeup(struct irq_work *iwp);
132 
133 #define DEFINE_RCU_TASKS(rt_name, gp, call, n)						\
134 static DEFINE_PER_CPU(struct rcu_tasks_percpu, rt_name ## __percpu) = {			\
135 	.lock = __RAW_SPIN_LOCK_UNLOCKED(rt_name ## __percpu.cbs_pcpu_lock),		\
136 	.rtp_irq_work = IRQ_WORK_INIT_HARD(call_rcu_tasks_iw_wakeup),			\
137 };											\
138 static struct rcu_tasks rt_name =							\
139 {											\
140 	.cbs_wait = __RCUWAIT_INITIALIZER(rt_name.wait),				\
141 	.cbs_gbl_lock = __RAW_SPIN_LOCK_UNLOCKED(rt_name.cbs_gbl_lock),			\
142 	.tasks_gp_mutex = __MUTEX_INITIALIZER(rt_name.tasks_gp_mutex),			\
143 	.gp_func = gp,									\
144 	.call_func = call,								\
145 	.wait_state = TASK_UNINTERRUPTIBLE,						\
146 	.rtpcpu = &rt_name ## __percpu,							\
147 	.lazy_jiffies = DIV_ROUND_UP(HZ, 4),						\
148 	.name = n,									\
149 	.percpu_enqueue_shift = order_base_2(CONFIG_NR_CPUS),				\
150 	.percpu_enqueue_lim = 1,							\
151 	.percpu_dequeue_lim = 1,							\
152 	.barrier_q_mutex = __MUTEX_INITIALIZER(rt_name.barrier_q_mutex),		\
153 	.barrier_q_seq = (0UL - 50UL) << RCU_SEQ_CTR_SHIFT,				\
154 	.kname = #rt_name,								\
155 }
156 
157 #ifdef CONFIG_TASKS_RCU
158 
159 /* Report delay of scan exiting tasklist in rcu_tasks_postscan(). */
160 static void tasks_rcu_exit_srcu_stall(struct timer_list *unused);
161 static DEFINE_TIMER(tasks_rcu_exit_srcu_stall_timer, tasks_rcu_exit_srcu_stall);
162 #endif
163 
164 /* Avoid IPIing CPUs early in the grace period. */
165 #define RCU_TASK_IPI_DELAY (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) ? HZ / 2 : 0)
166 static int rcu_task_ipi_delay __read_mostly = RCU_TASK_IPI_DELAY;
167 module_param(rcu_task_ipi_delay, int, 0644);
168 
169 /* Control stall timeouts.  Disable with <= 0, otherwise jiffies till stall. */
170 #define RCU_TASK_BOOT_STALL_TIMEOUT (HZ * 30)
171 #define RCU_TASK_STALL_TIMEOUT (HZ * 60 * 10)
172 static int rcu_task_stall_timeout __read_mostly = RCU_TASK_STALL_TIMEOUT;
173 module_param(rcu_task_stall_timeout, int, 0644);
174 #define RCU_TASK_STALL_INFO (HZ * 10)
175 static int rcu_task_stall_info __read_mostly = RCU_TASK_STALL_INFO;
176 module_param(rcu_task_stall_info, int, 0644);
177 static int rcu_task_stall_info_mult __read_mostly = 3;
178 module_param(rcu_task_stall_info_mult, int, 0444);
179 
180 static int rcu_task_enqueue_lim __read_mostly = -1;
181 module_param(rcu_task_enqueue_lim, int, 0444);
182 
183 static bool rcu_task_cb_adjust;
184 static int rcu_task_contend_lim __read_mostly = 100;
185 module_param(rcu_task_contend_lim, int, 0444);
186 static int rcu_task_collapse_lim __read_mostly = 10;
187 module_param(rcu_task_collapse_lim, int, 0444);
188 static int rcu_task_lazy_lim __read_mostly = 32;
189 module_param(rcu_task_lazy_lim, int, 0444);
190 
191 static int rcu_task_cpu_ids;
192 
193 /* RCU tasks grace-period state for debugging. */
194 #define RTGS_INIT		 0
195 #define RTGS_WAIT_WAIT_CBS	 1
196 #define RTGS_WAIT_GP		 2
197 #define RTGS_PRE_WAIT_GP	 3
198 #define RTGS_SCAN_TASKLIST	 4
199 #define RTGS_POST_SCAN_TASKLIST	 5
200 #define RTGS_WAIT_SCAN_HOLDOUTS	 6
201 #define RTGS_SCAN_HOLDOUTS	 7
202 #define RTGS_POST_GP		 8
203 #define RTGS_WAIT_READERS	 9
204 #define RTGS_INVOKE_CBS		10
205 #define RTGS_WAIT_CBS		11
206 #ifndef CONFIG_TINY_RCU
207 static const char * const rcu_tasks_gp_state_names[] = {
208 	"RTGS_INIT",
209 	"RTGS_WAIT_WAIT_CBS",
210 	"RTGS_WAIT_GP",
211 	"RTGS_PRE_WAIT_GP",
212 	"RTGS_SCAN_TASKLIST",
213 	"RTGS_POST_SCAN_TASKLIST",
214 	"RTGS_WAIT_SCAN_HOLDOUTS",
215 	"RTGS_SCAN_HOLDOUTS",
216 	"RTGS_POST_GP",
217 	"RTGS_WAIT_READERS",
218 	"RTGS_INVOKE_CBS",
219 	"RTGS_WAIT_CBS",
220 };
221 #endif /* #ifndef CONFIG_TINY_RCU */
222 
223 ////////////////////////////////////////////////////////////////////////
224 //
225 // Generic code.
226 
227 static void rcu_tasks_invoke_cbs_wq(struct work_struct *wp);
228 
229 /* Record grace-period phase and time. */
230 static void set_tasks_gp_state(struct rcu_tasks *rtp, int newstate)
231 {
232 	rtp->gp_state = newstate;
233 	rtp->gp_jiffies = jiffies;
234 }
235 
236 #ifndef CONFIG_TINY_RCU
237 /* Return state name. */
238 static const char *tasks_gp_state_getname(struct rcu_tasks *rtp)
239 {
240 	int i = data_race(rtp->gp_state); // Let KCSAN detect update races
241 	int j = READ_ONCE(i); // Prevent the compiler from reading twice
242 
243 	if (j >= ARRAY_SIZE(rcu_tasks_gp_state_names))
244 		return "???";
245 	return rcu_tasks_gp_state_names[j];
246 }
247 #endif /* #ifndef CONFIG_TINY_RCU */
248 
249 // Initialize per-CPU callback lists for the specified flavor of
250 // Tasks RCU.  Do not enqueue callbacks before this function is invoked.
251 static void cblist_init_generic(struct rcu_tasks *rtp)
252 {
253 	int cpu;
254 	int lim;
255 	int shift;
256 	int maxcpu;
257 	int index = 0;
258 
259 	if (rcu_task_enqueue_lim < 0) {
260 		rcu_task_enqueue_lim = 1;
261 		rcu_task_cb_adjust = true;
262 	} else if (rcu_task_enqueue_lim == 0) {
263 		rcu_task_enqueue_lim = 1;
264 	}
265 	lim = rcu_task_enqueue_lim;
266 
267 	rtp->rtpcp_array = kcalloc(num_possible_cpus(), sizeof(struct rcu_tasks_percpu *), GFP_KERNEL);
268 	BUG_ON(!rtp->rtpcp_array);
269 
270 	for_each_possible_cpu(cpu) {
271 		struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
272 
273 		WARN_ON_ONCE(!rtpcp);
274 		if (cpu)
275 			raw_spin_lock_init(&ACCESS_PRIVATE(rtpcp, lock));
276 		if (rcu_segcblist_empty(&rtpcp->cblist))
277 			rcu_segcblist_init(&rtpcp->cblist);
278 		INIT_WORK(&rtpcp->rtp_work, rcu_tasks_invoke_cbs_wq);
279 		rtpcp->cpu = cpu;
280 		rtpcp->rtpp = rtp;
281 		rtpcp->index = index;
282 		rtp->rtpcp_array[index] = rtpcp;
283 		index++;
284 		if (!rtpcp->rtp_blkd_tasks.next)
285 			INIT_LIST_HEAD(&rtpcp->rtp_blkd_tasks);
286 		if (!rtpcp->rtp_exit_list.next)
287 			INIT_LIST_HEAD(&rtpcp->rtp_exit_list);
288 		rtpcp->barrier_q_head.next = &rtpcp->barrier_q_head;
289 		maxcpu = cpu;
290 	}
291 
292 	rcu_task_cpu_ids = maxcpu + 1;
293 	if (lim > rcu_task_cpu_ids)
294 		lim = rcu_task_cpu_ids;
295 	shift = ilog2(rcu_task_cpu_ids / lim);
296 	if (((rcu_task_cpu_ids - 1) >> shift) >= lim)
297 		shift++;
298 	WRITE_ONCE(rtp->percpu_enqueue_shift, shift);
299 	WRITE_ONCE(rtp->percpu_dequeue_lim, lim);
300 	smp_store_release(&rtp->percpu_enqueue_lim, lim);
301 
302 	pr_info("%s: Setting shift to %d and lim to %d rcu_task_cb_adjust=%d rcu_task_cpu_ids=%d.\n",
303 			rtp->name, data_race(rtp->percpu_enqueue_shift), data_race(rtp->percpu_enqueue_lim),
304 			rcu_task_cb_adjust, rcu_task_cpu_ids);
305 }
306 
307 // Compute wakeup time for lazy callback timer.
308 static unsigned long rcu_tasks_lazy_time(struct rcu_tasks *rtp)
309 {
310 	return jiffies + rtp->lazy_jiffies;
311 }
312 
313 // Timer handler that unlazifies lazy callbacks.
314 static void call_rcu_tasks_generic_timer(struct timer_list *tlp)
315 {
316 	unsigned long flags;
317 	bool needwake = false;
318 	struct rcu_tasks *rtp;
319 	struct rcu_tasks_percpu *rtpcp = from_timer(rtpcp, tlp, lazy_timer);
320 
321 	rtp = rtpcp->rtpp;
322 	raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
323 	if (!rcu_segcblist_empty(&rtpcp->cblist) && rtp->lazy_jiffies) {
324 		if (!rtpcp->urgent_gp)
325 			rtpcp->urgent_gp = 1;
326 		needwake = true;
327 		mod_timer(&rtpcp->lazy_timer, rcu_tasks_lazy_time(rtp));
328 	}
329 	raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
330 	if (needwake)
331 		rcuwait_wake_up(&rtp->cbs_wait);
332 }
333 
334 // IRQ-work handler that does deferred wakeup for call_rcu_tasks_generic().
335 static void call_rcu_tasks_iw_wakeup(struct irq_work *iwp)
336 {
337 	struct rcu_tasks *rtp;
338 	struct rcu_tasks_percpu *rtpcp = container_of(iwp, struct rcu_tasks_percpu, rtp_irq_work);
339 
340 	rtp = rtpcp->rtpp;
341 	rcuwait_wake_up(&rtp->cbs_wait);
342 }
343 
344 // Enqueue a callback for the specified flavor of Tasks RCU.
345 static void call_rcu_tasks_generic(struct rcu_head *rhp, rcu_callback_t func,
346 				   struct rcu_tasks *rtp)
347 {
348 	int chosen_cpu;
349 	unsigned long flags;
350 	bool havekthread = smp_load_acquire(&rtp->kthread_ptr);
351 	int ideal_cpu;
352 	unsigned long j;
353 	bool needadjust = false;
354 	bool needwake;
355 	struct rcu_tasks_percpu *rtpcp;
356 
357 	rhp->next = NULL;
358 	rhp->func = func;
359 	local_irq_save(flags);
360 	rcu_read_lock();
361 	ideal_cpu = smp_processor_id() >> READ_ONCE(rtp->percpu_enqueue_shift);
362 	chosen_cpu = cpumask_next(ideal_cpu - 1, cpu_possible_mask);
363 	WARN_ON_ONCE(chosen_cpu >= rcu_task_cpu_ids);
364 	rtpcp = per_cpu_ptr(rtp->rtpcpu, chosen_cpu);
365 	if (!raw_spin_trylock_rcu_node(rtpcp)) { // irqs already disabled.
366 		raw_spin_lock_rcu_node(rtpcp); // irqs already disabled.
367 		j = jiffies;
368 		if (rtpcp->rtp_jiffies != j) {
369 			rtpcp->rtp_jiffies = j;
370 			rtpcp->rtp_n_lock_retries = 0;
371 		}
372 		if (rcu_task_cb_adjust && ++rtpcp->rtp_n_lock_retries > rcu_task_contend_lim &&
373 		    READ_ONCE(rtp->percpu_enqueue_lim) != rcu_task_cpu_ids)
374 			needadjust = true;  // Defer adjustment to avoid deadlock.
375 	}
376 	// Queuing callbacks before initialization not yet supported.
377 	if (WARN_ON_ONCE(!rcu_segcblist_is_enabled(&rtpcp->cblist)))
378 		rcu_segcblist_init(&rtpcp->cblist);
379 	needwake = (func == wakeme_after_rcu) ||
380 		   (rcu_segcblist_n_cbs(&rtpcp->cblist) == rcu_task_lazy_lim);
381 	if (havekthread && !needwake && !timer_pending(&rtpcp->lazy_timer)) {
382 		if (rtp->lazy_jiffies)
383 			mod_timer(&rtpcp->lazy_timer, rcu_tasks_lazy_time(rtp));
384 		else
385 			needwake = rcu_segcblist_empty(&rtpcp->cblist);
386 	}
387 	if (needwake)
388 		rtpcp->urgent_gp = 3;
389 	rcu_segcblist_enqueue(&rtpcp->cblist, rhp);
390 	raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
391 	if (unlikely(needadjust)) {
392 		raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags);
393 		if (rtp->percpu_enqueue_lim != rcu_task_cpu_ids) {
394 			WRITE_ONCE(rtp->percpu_enqueue_shift, 0);
395 			WRITE_ONCE(rtp->percpu_dequeue_lim, rcu_task_cpu_ids);
396 			smp_store_release(&rtp->percpu_enqueue_lim, rcu_task_cpu_ids);
397 			pr_info("Switching %s to per-CPU callback queuing.\n", rtp->name);
398 		}
399 		raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags);
400 	}
401 	rcu_read_unlock();
402 	/* We can't create the thread unless interrupts are enabled. */
403 	if (needwake && READ_ONCE(rtp->kthread_ptr))
404 		irq_work_queue(&rtpcp->rtp_irq_work);
405 }
406 
407 // RCU callback function for rcu_barrier_tasks_generic().
408 static void rcu_barrier_tasks_generic_cb(struct rcu_head *rhp)
409 {
410 	struct rcu_tasks *rtp;
411 	struct rcu_tasks_percpu *rtpcp;
412 
413 	rhp->next = rhp; // Mark the callback as having been invoked.
414 	rtpcp = container_of(rhp, struct rcu_tasks_percpu, barrier_q_head);
415 	rtp = rtpcp->rtpp;
416 	if (atomic_dec_and_test(&rtp->barrier_q_count))
417 		complete(&rtp->barrier_q_completion);
418 }
419 
420 // Wait for all in-flight callbacks for the specified RCU Tasks flavor.
421 // Operates in a manner similar to rcu_barrier().
422 static void __maybe_unused rcu_barrier_tasks_generic(struct rcu_tasks *rtp)
423 {
424 	int cpu;
425 	unsigned long flags;
426 	struct rcu_tasks_percpu *rtpcp;
427 	unsigned long s = rcu_seq_snap(&rtp->barrier_q_seq);
428 
429 	mutex_lock(&rtp->barrier_q_mutex);
430 	if (rcu_seq_done(&rtp->barrier_q_seq, s)) {
431 		smp_mb();
432 		mutex_unlock(&rtp->barrier_q_mutex);
433 		return;
434 	}
435 	rtp->barrier_q_start = jiffies;
436 	rcu_seq_start(&rtp->barrier_q_seq);
437 	init_completion(&rtp->barrier_q_completion);
438 	atomic_set(&rtp->barrier_q_count, 2);
439 	for_each_possible_cpu(cpu) {
440 		if (cpu >= smp_load_acquire(&rtp->percpu_dequeue_lim))
441 			break;
442 		rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
443 		rtpcp->barrier_q_head.func = rcu_barrier_tasks_generic_cb;
444 		raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
445 		if (rcu_segcblist_entrain(&rtpcp->cblist, &rtpcp->barrier_q_head))
446 			atomic_inc(&rtp->barrier_q_count);
447 		raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
448 	}
449 	if (atomic_sub_and_test(2, &rtp->barrier_q_count))
450 		complete(&rtp->barrier_q_completion);
451 	wait_for_completion(&rtp->barrier_q_completion);
452 	rcu_seq_end(&rtp->barrier_q_seq);
453 	mutex_unlock(&rtp->barrier_q_mutex);
454 }
455 
456 // Advance callbacks and indicate whether either a grace period or
457 // callback invocation is needed.
458 static int rcu_tasks_need_gpcb(struct rcu_tasks *rtp)
459 {
460 	int cpu;
461 	int dequeue_limit;
462 	unsigned long flags;
463 	bool gpdone = poll_state_synchronize_rcu(rtp->percpu_dequeue_gpseq);
464 	long n;
465 	long ncbs = 0;
466 	long ncbsnz = 0;
467 	int needgpcb = 0;
468 
469 	dequeue_limit = smp_load_acquire(&rtp->percpu_dequeue_lim);
470 	for (cpu = 0; cpu < dequeue_limit; cpu++) {
471 		if (!cpu_possible(cpu))
472 			continue;
473 		struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
474 
475 		/* Advance and accelerate any new callbacks. */
476 		if (!rcu_segcblist_n_cbs(&rtpcp->cblist))
477 			continue;
478 		raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
479 		// Should we shrink down to a single callback queue?
480 		n = rcu_segcblist_n_cbs(&rtpcp->cblist);
481 		if (n) {
482 			ncbs += n;
483 			if (cpu > 0)
484 				ncbsnz += n;
485 		}
486 		rcu_segcblist_advance(&rtpcp->cblist, rcu_seq_current(&rtp->tasks_gp_seq));
487 		(void)rcu_segcblist_accelerate(&rtpcp->cblist, rcu_seq_snap(&rtp->tasks_gp_seq));
488 		if (rtpcp->urgent_gp > 0 && rcu_segcblist_pend_cbs(&rtpcp->cblist)) {
489 			if (rtp->lazy_jiffies)
490 				rtpcp->urgent_gp--;
491 			needgpcb |= 0x3;
492 		} else if (rcu_segcblist_empty(&rtpcp->cblist)) {
493 			rtpcp->urgent_gp = 0;
494 		}
495 		if (rcu_segcblist_ready_cbs(&rtpcp->cblist))
496 			needgpcb |= 0x1;
497 		raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
498 	}
499 
500 	// Shrink down to a single callback queue if appropriate.
501 	// This is done in two stages: (1) If there are no more than
502 	// rcu_task_collapse_lim callbacks on CPU 0 and none on any other
503 	// CPU, limit enqueueing to CPU 0.  (2) After an RCU grace period,
504 	// if there has not been an increase in callbacks, limit dequeuing
505 	// to CPU 0.  Note the matching RCU read-side critical section in
506 	// call_rcu_tasks_generic().
507 	if (rcu_task_cb_adjust && ncbs <= rcu_task_collapse_lim) {
508 		raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags);
509 		if (rtp->percpu_enqueue_lim > 1) {
510 			WRITE_ONCE(rtp->percpu_enqueue_shift, order_base_2(rcu_task_cpu_ids));
511 			smp_store_release(&rtp->percpu_enqueue_lim, 1);
512 			rtp->percpu_dequeue_gpseq = get_state_synchronize_rcu();
513 			gpdone = false;
514 			pr_info("Starting switch %s to CPU-0 callback queuing.\n", rtp->name);
515 		}
516 		raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags);
517 	}
518 	if (rcu_task_cb_adjust && !ncbsnz && gpdone) {
519 		raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags);
520 		if (rtp->percpu_enqueue_lim < rtp->percpu_dequeue_lim) {
521 			WRITE_ONCE(rtp->percpu_dequeue_lim, 1);
522 			pr_info("Completing switch %s to CPU-0 callback queuing.\n", rtp->name);
523 		}
524 		if (rtp->percpu_dequeue_lim == 1) {
525 			for (cpu = rtp->percpu_dequeue_lim; cpu < rcu_task_cpu_ids; cpu++) {
526 				if (!cpu_possible(cpu))
527 					continue;
528 				struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
529 
530 				WARN_ON_ONCE(rcu_segcblist_n_cbs(&rtpcp->cblist));
531 			}
532 		}
533 		raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags);
534 	}
535 
536 	return needgpcb;
537 }
538 
539 // Advance callbacks and invoke any that are ready.
540 static void rcu_tasks_invoke_cbs(struct rcu_tasks *rtp, struct rcu_tasks_percpu *rtpcp)
541 {
542 	int cpuwq;
543 	unsigned long flags;
544 	int len;
545 	int index;
546 	struct rcu_head *rhp;
547 	struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
548 	struct rcu_tasks_percpu *rtpcp_next;
549 
550 	index = rtpcp->index * 2 + 1;
551 	if (index < num_possible_cpus()) {
552 		rtpcp_next = rtp->rtpcp_array[index];
553 		if (rtpcp_next->cpu < smp_load_acquire(&rtp->percpu_dequeue_lim)) {
554 			cpuwq = rcu_cpu_beenfullyonline(rtpcp_next->cpu) ? rtpcp_next->cpu : WORK_CPU_UNBOUND;
555 			queue_work_on(cpuwq, system_wq, &rtpcp_next->rtp_work);
556 			index++;
557 			if (index < num_possible_cpus()) {
558 				rtpcp_next = rtp->rtpcp_array[index];
559 				if (rtpcp_next->cpu < smp_load_acquire(&rtp->percpu_dequeue_lim)) {
560 					cpuwq = rcu_cpu_beenfullyonline(rtpcp_next->cpu) ? rtpcp_next->cpu : WORK_CPU_UNBOUND;
561 					queue_work_on(cpuwq, system_wq, &rtpcp_next->rtp_work);
562 				}
563 			}
564 		}
565 	}
566 
567 	if (rcu_segcblist_empty(&rtpcp->cblist))
568 		return;
569 	raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
570 	rcu_segcblist_advance(&rtpcp->cblist, rcu_seq_current(&rtp->tasks_gp_seq));
571 	rcu_segcblist_extract_done_cbs(&rtpcp->cblist, &rcl);
572 	raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
573 	len = rcl.len;
574 	for (rhp = rcu_cblist_dequeue(&rcl); rhp; rhp = rcu_cblist_dequeue(&rcl)) {
575 		debug_rcu_head_callback(rhp);
576 		local_bh_disable();
577 		rhp->func(rhp);
578 		local_bh_enable();
579 		cond_resched();
580 	}
581 	raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
582 	rcu_segcblist_add_len(&rtpcp->cblist, -len);
583 	(void)rcu_segcblist_accelerate(&rtpcp->cblist, rcu_seq_snap(&rtp->tasks_gp_seq));
584 	raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
585 }
586 
587 // Workqueue flood to advance callbacks and invoke any that are ready.
588 static void rcu_tasks_invoke_cbs_wq(struct work_struct *wp)
589 {
590 	struct rcu_tasks *rtp;
591 	struct rcu_tasks_percpu *rtpcp = container_of(wp, struct rcu_tasks_percpu, rtp_work);
592 
593 	rtp = rtpcp->rtpp;
594 	rcu_tasks_invoke_cbs(rtp, rtpcp);
595 }
596 
597 // Wait for one grace period.
598 static void rcu_tasks_one_gp(struct rcu_tasks *rtp, bool midboot)
599 {
600 	int needgpcb;
601 
602 	mutex_lock(&rtp->tasks_gp_mutex);
603 
604 	// If there were none, wait a bit and start over.
605 	if (unlikely(midboot)) {
606 		needgpcb = 0x2;
607 	} else {
608 		mutex_unlock(&rtp->tasks_gp_mutex);
609 		set_tasks_gp_state(rtp, RTGS_WAIT_CBS);
610 		rcuwait_wait_event(&rtp->cbs_wait,
611 				   (needgpcb = rcu_tasks_need_gpcb(rtp)),
612 				   TASK_IDLE);
613 		mutex_lock(&rtp->tasks_gp_mutex);
614 	}
615 
616 	if (needgpcb & 0x2) {
617 		// Wait for one grace period.
618 		set_tasks_gp_state(rtp, RTGS_WAIT_GP);
619 		rtp->gp_start = jiffies;
620 		rcu_seq_start(&rtp->tasks_gp_seq);
621 		rtp->gp_func(rtp);
622 		rcu_seq_end(&rtp->tasks_gp_seq);
623 	}
624 
625 	// Invoke callbacks.
626 	set_tasks_gp_state(rtp, RTGS_INVOKE_CBS);
627 	rcu_tasks_invoke_cbs(rtp, per_cpu_ptr(rtp->rtpcpu, 0));
628 	mutex_unlock(&rtp->tasks_gp_mutex);
629 }
630 
631 // RCU-tasks kthread that detects grace periods and invokes callbacks.
632 static int __noreturn rcu_tasks_kthread(void *arg)
633 {
634 	int cpu;
635 	struct rcu_tasks *rtp = arg;
636 
637 	for_each_possible_cpu(cpu) {
638 		struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
639 
640 		timer_setup(&rtpcp->lazy_timer, call_rcu_tasks_generic_timer, 0);
641 		rtpcp->urgent_gp = 1;
642 	}
643 
644 	/* Run on housekeeping CPUs by default.  Sysadm can move if desired. */
645 	housekeeping_affine(current, HK_TYPE_RCU);
646 	smp_store_release(&rtp->kthread_ptr, current); // Let GPs start!
647 
648 	/*
649 	 * Each pass through the following loop makes one check for
650 	 * newly arrived callbacks, and, if there are some, waits for
651 	 * one RCU-tasks grace period and then invokes the callbacks.
652 	 * This loop is terminated by the system going down.  ;-)
653 	 */
654 	for (;;) {
655 		// Wait for one grace period and invoke any callbacks
656 		// that are ready.
657 		rcu_tasks_one_gp(rtp, false);
658 
659 		// Paranoid sleep to keep this from entering a tight loop.
660 		schedule_timeout_idle(rtp->gp_sleep);
661 	}
662 }
663 
664 // Wait for a grace period for the specified flavor of Tasks RCU.
665 static void synchronize_rcu_tasks_generic(struct rcu_tasks *rtp)
666 {
667 	/* Complain if the scheduler has not started.  */
668 	if (WARN_ONCE(rcu_scheduler_active == RCU_SCHEDULER_INACTIVE,
669 			 "synchronize_%s() called too soon", rtp->name))
670 		return;
671 
672 	// If the grace-period kthread is running, use it.
673 	if (READ_ONCE(rtp->kthread_ptr)) {
674 		wait_rcu_gp_state(rtp->wait_state, rtp->call_func);
675 		return;
676 	}
677 	rcu_tasks_one_gp(rtp, true);
678 }
679 
680 /* Spawn RCU-tasks grace-period kthread. */
681 static void __init rcu_spawn_tasks_kthread_generic(struct rcu_tasks *rtp)
682 {
683 	struct task_struct *t;
684 
685 	t = kthread_run(rcu_tasks_kthread, rtp, "%s_kthread", rtp->kname);
686 	if (WARN_ONCE(IS_ERR(t), "%s: Could not start %s grace-period kthread, OOM is now expected behavior\n", __func__, rtp->name))
687 		return;
688 	smp_mb(); /* Ensure others see full kthread. */
689 }
690 
691 #ifndef CONFIG_TINY_RCU
692 
693 /*
694  * Print any non-default Tasks RCU settings.
695  */
696 static void __init rcu_tasks_bootup_oddness(void)
697 {
698 #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU)
699 	int rtsimc;
700 
701 	if (rcu_task_stall_timeout != RCU_TASK_STALL_TIMEOUT)
702 		pr_info("\tTasks-RCU CPU stall warnings timeout set to %d (rcu_task_stall_timeout).\n", rcu_task_stall_timeout);
703 	rtsimc = clamp(rcu_task_stall_info_mult, 1, 10);
704 	if (rtsimc != rcu_task_stall_info_mult) {
705 		pr_info("\tTasks-RCU CPU stall info multiplier clamped to %d (rcu_task_stall_info_mult).\n", rtsimc);
706 		rcu_task_stall_info_mult = rtsimc;
707 	}
708 #endif /* #ifdef CONFIG_TASKS_RCU */
709 #ifdef CONFIG_TASKS_RCU
710 	pr_info("\tTrampoline variant of Tasks RCU enabled.\n");
711 #endif /* #ifdef CONFIG_TASKS_RCU */
712 #ifdef CONFIG_TASKS_RUDE_RCU
713 	pr_info("\tRude variant of Tasks RCU enabled.\n");
714 #endif /* #ifdef CONFIG_TASKS_RUDE_RCU */
715 #ifdef CONFIG_TASKS_TRACE_RCU
716 	pr_info("\tTracing variant of Tasks RCU enabled.\n");
717 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
718 }
719 
720 
721 /* Dump out rcutorture-relevant state common to all RCU-tasks flavors. */
722 static void show_rcu_tasks_generic_gp_kthread(struct rcu_tasks *rtp, char *s)
723 {
724 	int cpu;
725 	bool havecbs = false;
726 	bool haveurgent = false;
727 	bool haveurgentcbs = false;
728 
729 	for_each_possible_cpu(cpu) {
730 		struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
731 
732 		if (!data_race(rcu_segcblist_empty(&rtpcp->cblist)))
733 			havecbs = true;
734 		if (data_race(rtpcp->urgent_gp))
735 			haveurgent = true;
736 		if (!data_race(rcu_segcblist_empty(&rtpcp->cblist)) && data_race(rtpcp->urgent_gp))
737 			haveurgentcbs = true;
738 		if (havecbs && haveurgent && haveurgentcbs)
739 			break;
740 	}
741 	pr_info("%s: %s(%d) since %lu g:%lu i:%lu/%lu %c%c%c%c l:%lu %s\n",
742 		rtp->kname,
743 		tasks_gp_state_getname(rtp), data_race(rtp->gp_state),
744 		jiffies - data_race(rtp->gp_jiffies),
745 		data_race(rcu_seq_current(&rtp->tasks_gp_seq)),
746 		data_race(rtp->n_ipis_fails), data_race(rtp->n_ipis),
747 		".k"[!!data_race(rtp->kthread_ptr)],
748 		".C"[havecbs],
749 		".u"[haveurgent],
750 		".U"[haveurgentcbs],
751 		rtp->lazy_jiffies,
752 		s);
753 }
754 
755 /* Dump out more rcutorture-relevant state common to all RCU-tasks flavors. */
756 static void rcu_tasks_torture_stats_print_generic(struct rcu_tasks *rtp, char *tt,
757 						  char *tf, char *tst)
758 {
759 	cpumask_var_t cm;
760 	int cpu;
761 	bool gotcb = false;
762 	unsigned long j = jiffies;
763 
764 	pr_alert("%s%s Tasks%s RCU g%ld gp_start %lu gp_jiffies %lu gp_state %d (%s).\n",
765 		 tt, tf, tst, data_race(rtp->tasks_gp_seq),
766 		 j - data_race(rtp->gp_start), j - data_race(rtp->gp_jiffies),
767 		 data_race(rtp->gp_state), tasks_gp_state_getname(rtp));
768 	pr_alert("\tEnqueue shift %d limit %d Dequeue limit %d gpseq %lu.\n",
769 		 data_race(rtp->percpu_enqueue_shift),
770 		 data_race(rtp->percpu_enqueue_lim),
771 		 data_race(rtp->percpu_dequeue_lim),
772 		 data_race(rtp->percpu_dequeue_gpseq));
773 	(void)zalloc_cpumask_var(&cm, GFP_KERNEL);
774 	pr_alert("\tCallback counts:");
775 	for_each_possible_cpu(cpu) {
776 		long n;
777 		struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
778 
779 		if (cpumask_available(cm) && !rcu_barrier_cb_is_done(&rtpcp->barrier_q_head))
780 			cpumask_set_cpu(cpu, cm);
781 		n = rcu_segcblist_n_cbs(&rtpcp->cblist);
782 		if (!n)
783 			continue;
784 		pr_cont(" %d:%ld", cpu, n);
785 		gotcb = true;
786 	}
787 	if (gotcb)
788 		pr_cont(".\n");
789 	else
790 		pr_cont(" (none).\n");
791 	pr_alert("\tBarrier seq %lu start %lu count %d holdout CPUs ",
792 		 data_race(rtp->barrier_q_seq), j - data_race(rtp->barrier_q_start),
793 		 atomic_read(&rtp->barrier_q_count));
794 	if (cpumask_available(cm) && !cpumask_empty(cm))
795 		pr_cont(" %*pbl.\n", cpumask_pr_args(cm));
796 	else
797 		pr_cont("(none).\n");
798 	free_cpumask_var(cm);
799 }
800 
801 #endif // #ifndef CONFIG_TINY_RCU
802 
803 static void exit_tasks_rcu_finish_trace(struct task_struct *t);
804 
805 #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU)
806 
807 ////////////////////////////////////////////////////////////////////////
808 //
809 // Shared code between task-list-scanning variants of Tasks RCU.
810 
811 /* Wait for one RCU-tasks grace period. */
812 static void rcu_tasks_wait_gp(struct rcu_tasks *rtp)
813 {
814 	struct task_struct *g;
815 	int fract;
816 	LIST_HEAD(holdouts);
817 	unsigned long j;
818 	unsigned long lastinfo;
819 	unsigned long lastreport;
820 	bool reported = false;
821 	int rtsi;
822 	struct task_struct *t;
823 
824 	set_tasks_gp_state(rtp, RTGS_PRE_WAIT_GP);
825 	rtp->pregp_func(&holdouts);
826 
827 	/*
828 	 * There were callbacks, so we need to wait for an RCU-tasks
829 	 * grace period.  Start off by scanning the task list for tasks
830 	 * that are not already voluntarily blocked.  Mark these tasks
831 	 * and make a list of them in holdouts.
832 	 */
833 	set_tasks_gp_state(rtp, RTGS_SCAN_TASKLIST);
834 	if (rtp->pertask_func) {
835 		rcu_read_lock();
836 		for_each_process_thread(g, t)
837 			rtp->pertask_func(t, &holdouts);
838 		rcu_read_unlock();
839 	}
840 
841 	set_tasks_gp_state(rtp, RTGS_POST_SCAN_TASKLIST);
842 	rtp->postscan_func(&holdouts);
843 
844 	/*
845 	 * Each pass through the following loop scans the list of holdout
846 	 * tasks, removing any that are no longer holdouts.  When the list
847 	 * is empty, we are done.
848 	 */
849 	lastreport = jiffies;
850 	lastinfo = lastreport;
851 	rtsi = READ_ONCE(rcu_task_stall_info);
852 
853 	// Start off with initial wait and slowly back off to 1 HZ wait.
854 	fract = rtp->init_fract;
855 
856 	while (!list_empty(&holdouts)) {
857 		ktime_t exp;
858 		bool firstreport;
859 		bool needreport;
860 		int rtst;
861 
862 		// Slowly back off waiting for holdouts
863 		set_tasks_gp_state(rtp, RTGS_WAIT_SCAN_HOLDOUTS);
864 		if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
865 			schedule_timeout_idle(fract);
866 		} else {
867 			exp = jiffies_to_nsecs(fract);
868 			__set_current_state(TASK_IDLE);
869 			schedule_hrtimeout_range(&exp, jiffies_to_nsecs(HZ / 2), HRTIMER_MODE_REL_HARD);
870 		}
871 
872 		if (fract < HZ)
873 			fract++;
874 
875 		rtst = READ_ONCE(rcu_task_stall_timeout);
876 		needreport = rtst > 0 && time_after(jiffies, lastreport + rtst);
877 		if (needreport) {
878 			lastreport = jiffies;
879 			reported = true;
880 		}
881 		firstreport = true;
882 		WARN_ON(signal_pending(current));
883 		set_tasks_gp_state(rtp, RTGS_SCAN_HOLDOUTS);
884 		rtp->holdouts_func(&holdouts, needreport, &firstreport);
885 
886 		// Print pre-stall informational messages if needed.
887 		j = jiffies;
888 		if (rtsi > 0 && !reported && time_after(j, lastinfo + rtsi)) {
889 			lastinfo = j;
890 			rtsi = rtsi * rcu_task_stall_info_mult;
891 			pr_info("%s: %s grace period number %lu (since boot) is %lu jiffies old.\n",
892 				__func__, rtp->kname, rtp->tasks_gp_seq, j - rtp->gp_start);
893 		}
894 	}
895 
896 	set_tasks_gp_state(rtp, RTGS_POST_GP);
897 	rtp->postgp_func(rtp);
898 }
899 
900 #endif /* #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU) */
901 
902 #ifdef CONFIG_TASKS_RCU
903 
904 ////////////////////////////////////////////////////////////////////////
905 //
906 // Simple variant of RCU whose quiescent states are voluntary context
907 // switch, cond_resched_tasks_rcu_qs(), user-space execution, and idle.
908 // As such, grace periods can take one good long time.  There are no
909 // read-side primitives similar to rcu_read_lock() and rcu_read_unlock()
910 // because this implementation is intended to get the system into a safe
911 // state for some of the manipulations involved in tracing and the like.
912 // Finally, this implementation does not support high call_rcu_tasks()
913 // rates from multiple CPUs.  If this is required, per-CPU callback lists
914 // will be needed.
915 //
916 // The implementation uses rcu_tasks_wait_gp(), which relies on function
917 // pointers in the rcu_tasks structure.  The rcu_spawn_tasks_kthread()
918 // function sets these function pointers up so that rcu_tasks_wait_gp()
919 // invokes these functions in this order:
920 //
921 // rcu_tasks_pregp_step():
922 //	Invokes synchronize_rcu() in order to wait for all in-flight
923 //	t->on_rq and t->nvcsw transitions to complete.	This works because
924 //	all such transitions are carried out with interrupts disabled.
925 // rcu_tasks_pertask(), invoked on every non-idle task:
926 //	For every runnable non-idle task other than the current one, use
927 //	get_task_struct() to pin down that task, snapshot that task's
928 //	number of voluntary context switches, and add that task to the
929 //	holdout list.
930 // rcu_tasks_postscan():
931 //	Gather per-CPU lists of tasks in do_exit() to ensure that all
932 //	tasks that were in the process of exiting (and which thus might
933 //	not know to synchronize with this RCU Tasks grace period) have
934 //	completed exiting.  The synchronize_rcu() in rcu_tasks_postgp()
935 //	will take care of any tasks stuck in the non-preemptible region
936 //	of do_exit() following its call to exit_tasks_rcu_finish().
937 // check_all_holdout_tasks(), repeatedly until holdout list is empty:
938 //	Scans the holdout list, attempting to identify a quiescent state
939 //	for each task on the list.  If there is a quiescent state, the
940 //	corresponding task is removed from the holdout list.
941 // rcu_tasks_postgp():
942 //	Invokes synchronize_rcu() in order to ensure that all prior
943 //	t->on_rq and t->nvcsw transitions are seen by all CPUs and tasks
944 //	to have happened before the end of this RCU Tasks grace period.
945 //	Again, this works because all such transitions are carried out
946 //	with interrupts disabled.
947 //
948 // For each exiting task, the exit_tasks_rcu_start() and
949 // exit_tasks_rcu_finish() functions add and remove, respectively, the
950 // current task to a per-CPU list of tasks that rcu_tasks_postscan() must
951 // wait on.  This is necessary because rcu_tasks_postscan() must wait on
952 // tasks that have already been removed from the global list of tasks.
953 //
954 // Pre-grace-period update-side code is ordered before the grace
955 // via the raw_spin_lock.*rcu_node().  Pre-grace-period read-side code
956 // is ordered before the grace period via synchronize_rcu() call in
957 // rcu_tasks_pregp_step() and by the scheduler's locks and interrupt
958 // disabling.
959 
960 /* Pre-grace-period preparation. */
961 static void rcu_tasks_pregp_step(struct list_head *hop)
962 {
963 	/*
964 	 * Wait for all pre-existing t->on_rq and t->nvcsw transitions
965 	 * to complete.  Invoking synchronize_rcu() suffices because all
966 	 * these transitions occur with interrupts disabled.  Without this
967 	 * synchronize_rcu(), a read-side critical section that started
968 	 * before the grace period might be incorrectly seen as having
969 	 * started after the grace period.
970 	 *
971 	 * This synchronize_rcu() also dispenses with the need for a
972 	 * memory barrier on the first store to t->rcu_tasks_holdout,
973 	 * as it forces the store to happen after the beginning of the
974 	 * grace period.
975 	 */
976 	synchronize_rcu();
977 }
978 
979 /* Check for quiescent states since the pregp's synchronize_rcu() */
980 static bool rcu_tasks_is_holdout(struct task_struct *t)
981 {
982 	int cpu;
983 
984 	/* Has the task been seen voluntarily sleeping? */
985 	if (!READ_ONCE(t->on_rq))
986 		return false;
987 
988 	/*
989 	 * Idle tasks (or idle injection) within the idle loop are RCU-tasks
990 	 * quiescent states. But CPU boot code performed by the idle task
991 	 * isn't a quiescent state.
992 	 */
993 	if (is_idle_task(t))
994 		return false;
995 
996 	cpu = task_cpu(t);
997 
998 	/* Idle tasks on offline CPUs are RCU-tasks quiescent states. */
999 	if (t == idle_task(cpu) && !rcu_cpu_online(cpu))
1000 		return false;
1001 
1002 	return true;
1003 }
1004 
1005 /* Per-task initial processing. */
1006 static void rcu_tasks_pertask(struct task_struct *t, struct list_head *hop)
1007 {
1008 	if (t != current && rcu_tasks_is_holdout(t)) {
1009 		get_task_struct(t);
1010 		t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw);
1011 		WRITE_ONCE(t->rcu_tasks_holdout, true);
1012 		list_add(&t->rcu_tasks_holdout_list, hop);
1013 	}
1014 }
1015 
1016 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func);
1017 DEFINE_RCU_TASKS(rcu_tasks, rcu_tasks_wait_gp, call_rcu_tasks, "RCU Tasks");
1018 
1019 /* Processing between scanning taskslist and draining the holdout list. */
1020 static void rcu_tasks_postscan(struct list_head *hop)
1021 {
1022 	int cpu;
1023 	int rtsi = READ_ONCE(rcu_task_stall_info);
1024 
1025 	if (!IS_ENABLED(CONFIG_TINY_RCU)) {
1026 		tasks_rcu_exit_srcu_stall_timer.expires = jiffies + rtsi;
1027 		add_timer(&tasks_rcu_exit_srcu_stall_timer);
1028 	}
1029 
1030 	/*
1031 	 * Exiting tasks may escape the tasklist scan. Those are vulnerable
1032 	 * until their final schedule() with TASK_DEAD state. To cope with
1033 	 * this, divide the fragile exit path part in two intersecting
1034 	 * read side critical sections:
1035 	 *
1036 	 * 1) A task_struct list addition before calling exit_notify(),
1037 	 *    which may remove the task from the tasklist, with the
1038 	 *    removal after the final preempt_disable() call in do_exit().
1039 	 *
1040 	 * 2) An _RCU_ read side starting with the final preempt_disable()
1041 	 *    call in do_exit() and ending with the final call to schedule()
1042 	 *    with TASK_DEAD state.
1043 	 *
1044 	 * This handles the part 1). And postgp will handle part 2) with a
1045 	 * call to synchronize_rcu().
1046 	 */
1047 
1048 	for_each_possible_cpu(cpu) {
1049 		unsigned long j = jiffies + 1;
1050 		struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rcu_tasks.rtpcpu, cpu);
1051 		struct task_struct *t;
1052 		struct task_struct *t1;
1053 		struct list_head tmp;
1054 
1055 		raw_spin_lock_irq_rcu_node(rtpcp);
1056 		list_for_each_entry_safe(t, t1, &rtpcp->rtp_exit_list, rcu_tasks_exit_list) {
1057 			if (list_empty(&t->rcu_tasks_holdout_list))
1058 				rcu_tasks_pertask(t, hop);
1059 
1060 			// RT kernels need frequent pauses, otherwise
1061 			// pause at least once per pair of jiffies.
1062 			if (!IS_ENABLED(CONFIG_PREEMPT_RT) && time_before(jiffies, j))
1063 				continue;
1064 
1065 			// Keep our place in the list while pausing.
1066 			// Nothing else traverses this list, so adding a
1067 			// bare list_head is OK.
1068 			list_add(&tmp, &t->rcu_tasks_exit_list);
1069 			raw_spin_unlock_irq_rcu_node(rtpcp);
1070 			cond_resched(); // For CONFIG_PREEMPT=n kernels
1071 			raw_spin_lock_irq_rcu_node(rtpcp);
1072 			t1 = list_entry(tmp.next, struct task_struct, rcu_tasks_exit_list);
1073 			list_del(&tmp);
1074 			j = jiffies + 1;
1075 		}
1076 		raw_spin_unlock_irq_rcu_node(rtpcp);
1077 	}
1078 
1079 	if (!IS_ENABLED(CONFIG_TINY_RCU))
1080 		del_timer_sync(&tasks_rcu_exit_srcu_stall_timer);
1081 }
1082 
1083 /* See if tasks are still holding out, complain if so. */
1084 static void check_holdout_task(struct task_struct *t,
1085 			       bool needreport, bool *firstreport)
1086 {
1087 	int cpu;
1088 
1089 	if (!READ_ONCE(t->rcu_tasks_holdout) ||
1090 	    t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) ||
1091 	    !rcu_tasks_is_holdout(t) ||
1092 	    (IS_ENABLED(CONFIG_NO_HZ_FULL) &&
1093 	     !is_idle_task(t) && READ_ONCE(t->rcu_tasks_idle_cpu) >= 0)) {
1094 		WRITE_ONCE(t->rcu_tasks_holdout, false);
1095 		list_del_init(&t->rcu_tasks_holdout_list);
1096 		put_task_struct(t);
1097 		return;
1098 	}
1099 	rcu_request_urgent_qs_task(t);
1100 	if (!needreport)
1101 		return;
1102 	if (*firstreport) {
1103 		pr_err("INFO: rcu_tasks detected stalls on tasks:\n");
1104 		*firstreport = false;
1105 	}
1106 	cpu = task_cpu(t);
1107 	pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n",
1108 		 t, ".I"[is_idle_task(t)],
1109 		 "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)],
1110 		 t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout,
1111 		 data_race(t->rcu_tasks_idle_cpu), cpu);
1112 	sched_show_task(t);
1113 }
1114 
1115 /* Scan the holdout lists for tasks no longer holding out. */
1116 static void check_all_holdout_tasks(struct list_head *hop,
1117 				    bool needreport, bool *firstreport)
1118 {
1119 	struct task_struct *t, *t1;
1120 
1121 	list_for_each_entry_safe(t, t1, hop, rcu_tasks_holdout_list) {
1122 		check_holdout_task(t, needreport, firstreport);
1123 		cond_resched();
1124 	}
1125 }
1126 
1127 /* Finish off the Tasks-RCU grace period. */
1128 static void rcu_tasks_postgp(struct rcu_tasks *rtp)
1129 {
1130 	/*
1131 	 * Because ->on_rq and ->nvcsw are not guaranteed to have a full
1132 	 * memory barriers prior to them in the schedule() path, memory
1133 	 * reordering on other CPUs could cause their RCU-tasks read-side
1134 	 * critical sections to extend past the end of the grace period.
1135 	 * However, because these ->nvcsw updates are carried out with
1136 	 * interrupts disabled, we can use synchronize_rcu() to force the
1137 	 * needed ordering on all such CPUs.
1138 	 *
1139 	 * This synchronize_rcu() also confines all ->rcu_tasks_holdout
1140 	 * accesses to be within the grace period, avoiding the need for
1141 	 * memory barriers for ->rcu_tasks_holdout accesses.
1142 	 *
1143 	 * In addition, this synchronize_rcu() waits for exiting tasks
1144 	 * to complete their final preempt_disable() region of execution,
1145 	 * enforcing the whole region before tasklist removal until
1146 	 * the final schedule() with TASK_DEAD state to be an RCU TASKS
1147 	 * read side critical section.
1148 	 */
1149 	synchronize_rcu();
1150 }
1151 
1152 static void tasks_rcu_exit_srcu_stall(struct timer_list *unused)
1153 {
1154 #ifndef CONFIG_TINY_RCU
1155 	int rtsi;
1156 
1157 	rtsi = READ_ONCE(rcu_task_stall_info);
1158 	pr_info("%s: %s grace period number %lu (since boot) gp_state: %s is %lu jiffies old.\n",
1159 		__func__, rcu_tasks.kname, rcu_tasks.tasks_gp_seq,
1160 		tasks_gp_state_getname(&rcu_tasks), jiffies - rcu_tasks.gp_jiffies);
1161 	pr_info("Please check any exiting tasks stuck between calls to exit_tasks_rcu_start() and exit_tasks_rcu_finish()\n");
1162 	tasks_rcu_exit_srcu_stall_timer.expires = jiffies + rtsi;
1163 	add_timer(&tasks_rcu_exit_srcu_stall_timer);
1164 #endif // #ifndef CONFIG_TINY_RCU
1165 }
1166 
1167 /**
1168  * call_rcu_tasks() - Queue an RCU for invocation task-based grace period
1169  * @rhp: structure to be used for queueing the RCU updates.
1170  * @func: actual callback function to be invoked after the grace period
1171  *
1172  * The callback function will be invoked some time after a full grace
1173  * period elapses, in other words after all currently executing RCU
1174  * read-side critical sections have completed. call_rcu_tasks() assumes
1175  * that the read-side critical sections end at a voluntary context
1176  * switch (not a preemption!), cond_resched_tasks_rcu_qs(), entry into idle,
1177  * or transition to usermode execution.  As such, there are no read-side
1178  * primitives analogous to rcu_read_lock() and rcu_read_unlock() because
1179  * this primitive is intended to determine that all tasks have passed
1180  * through a safe state, not so much for data-structure synchronization.
1181  *
1182  * See the description of call_rcu() for more detailed information on
1183  * memory ordering guarantees.
1184  */
1185 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func)
1186 {
1187 	call_rcu_tasks_generic(rhp, func, &rcu_tasks);
1188 }
1189 EXPORT_SYMBOL_GPL(call_rcu_tasks);
1190 
1191 /**
1192  * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed.
1193  *
1194  * Control will return to the caller some time after a full rcu-tasks
1195  * grace period has elapsed, in other words after all currently
1196  * executing rcu-tasks read-side critical sections have elapsed.  These
1197  * read-side critical sections are delimited by calls to schedule(),
1198  * cond_resched_tasks_rcu_qs(), idle execution, userspace execution, calls
1199  * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched().
1200  *
1201  * This is a very specialized primitive, intended only for a few uses in
1202  * tracing and other situations requiring manipulation of function
1203  * preambles and profiling hooks.  The synchronize_rcu_tasks() function
1204  * is not (yet) intended for heavy use from multiple CPUs.
1205  *
1206  * See the description of synchronize_rcu() for more detailed information
1207  * on memory ordering guarantees.
1208  */
1209 void synchronize_rcu_tasks(void)
1210 {
1211 	synchronize_rcu_tasks_generic(&rcu_tasks);
1212 }
1213 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks);
1214 
1215 /**
1216  * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks.
1217  *
1218  * Although the current implementation is guaranteed to wait, it is not
1219  * obligated to, for example, if there are no pending callbacks.
1220  */
1221 void rcu_barrier_tasks(void)
1222 {
1223 	rcu_barrier_tasks_generic(&rcu_tasks);
1224 }
1225 EXPORT_SYMBOL_GPL(rcu_barrier_tasks);
1226 
1227 static int rcu_tasks_lazy_ms = -1;
1228 module_param(rcu_tasks_lazy_ms, int, 0444);
1229 
1230 static int __init rcu_spawn_tasks_kthread(void)
1231 {
1232 	rcu_tasks.gp_sleep = HZ / 10;
1233 	rcu_tasks.init_fract = HZ / 10;
1234 	if (rcu_tasks_lazy_ms >= 0)
1235 		rcu_tasks.lazy_jiffies = msecs_to_jiffies(rcu_tasks_lazy_ms);
1236 	rcu_tasks.pregp_func = rcu_tasks_pregp_step;
1237 	rcu_tasks.pertask_func = rcu_tasks_pertask;
1238 	rcu_tasks.postscan_func = rcu_tasks_postscan;
1239 	rcu_tasks.holdouts_func = check_all_holdout_tasks;
1240 	rcu_tasks.postgp_func = rcu_tasks_postgp;
1241 	rcu_tasks.wait_state = TASK_IDLE;
1242 	rcu_spawn_tasks_kthread_generic(&rcu_tasks);
1243 	return 0;
1244 }
1245 
1246 #if !defined(CONFIG_TINY_RCU)
1247 void show_rcu_tasks_classic_gp_kthread(void)
1248 {
1249 	show_rcu_tasks_generic_gp_kthread(&rcu_tasks, "");
1250 }
1251 EXPORT_SYMBOL_GPL(show_rcu_tasks_classic_gp_kthread);
1252 
1253 void rcu_tasks_torture_stats_print(char *tt, char *tf)
1254 {
1255 	rcu_tasks_torture_stats_print_generic(&rcu_tasks, tt, tf, "");
1256 }
1257 EXPORT_SYMBOL_GPL(rcu_tasks_torture_stats_print);
1258 #endif // !defined(CONFIG_TINY_RCU)
1259 
1260 struct task_struct *get_rcu_tasks_gp_kthread(void)
1261 {
1262 	return rcu_tasks.kthread_ptr;
1263 }
1264 EXPORT_SYMBOL_GPL(get_rcu_tasks_gp_kthread);
1265 
1266 void rcu_tasks_get_gp_data(int *flags, unsigned long *gp_seq)
1267 {
1268 	*flags = 0;
1269 	*gp_seq = rcu_seq_current(&rcu_tasks.tasks_gp_seq);
1270 }
1271 EXPORT_SYMBOL_GPL(rcu_tasks_get_gp_data);
1272 
1273 /*
1274  * Protect against tasklist scan blind spot while the task is exiting and
1275  * may be removed from the tasklist.  Do this by adding the task to yet
1276  * another list.
1277  *
1278  * Note that the task will remove itself from this list, so there is no
1279  * need for get_task_struct(), except in the case where rcu_tasks_pertask()
1280  * adds it to the holdout list, in which case rcu_tasks_pertask() supplies
1281  * the needed get_task_struct().
1282  */
1283 void exit_tasks_rcu_start(void)
1284 {
1285 	unsigned long flags;
1286 	struct rcu_tasks_percpu *rtpcp;
1287 	struct task_struct *t = current;
1288 
1289 	WARN_ON_ONCE(!list_empty(&t->rcu_tasks_exit_list));
1290 	preempt_disable();
1291 	rtpcp = this_cpu_ptr(rcu_tasks.rtpcpu);
1292 	t->rcu_tasks_exit_cpu = smp_processor_id();
1293 	raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
1294 	WARN_ON_ONCE(!rtpcp->rtp_exit_list.next);
1295 	list_add(&t->rcu_tasks_exit_list, &rtpcp->rtp_exit_list);
1296 	raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
1297 	preempt_enable();
1298 }
1299 
1300 /*
1301  * Remove the task from the "yet another list" because do_exit() is now
1302  * non-preemptible, allowing synchronize_rcu() to wait beyond this point.
1303  */
1304 void exit_tasks_rcu_finish(void)
1305 {
1306 	unsigned long flags;
1307 	struct rcu_tasks_percpu *rtpcp;
1308 	struct task_struct *t = current;
1309 
1310 	WARN_ON_ONCE(list_empty(&t->rcu_tasks_exit_list));
1311 	rtpcp = per_cpu_ptr(rcu_tasks.rtpcpu, t->rcu_tasks_exit_cpu);
1312 	raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
1313 	list_del_init(&t->rcu_tasks_exit_list);
1314 	raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
1315 
1316 	exit_tasks_rcu_finish_trace(t);
1317 }
1318 
1319 #else /* #ifdef CONFIG_TASKS_RCU */
1320 void exit_tasks_rcu_start(void) { }
1321 void exit_tasks_rcu_finish(void) { exit_tasks_rcu_finish_trace(current); }
1322 #endif /* #else #ifdef CONFIG_TASKS_RCU */
1323 
1324 #ifdef CONFIG_TASKS_RUDE_RCU
1325 
1326 ////////////////////////////////////////////////////////////////////////
1327 //
1328 // "Rude" variant of Tasks RCU, inspired by Steve Rostedt's
1329 // trick of passing an empty function to schedule_on_each_cpu().
1330 // This approach provides batching of concurrent calls to the synchronous
1331 // synchronize_rcu_tasks_rude() API.  This invokes schedule_on_each_cpu()
1332 // in order to send IPIs far and wide and induces otherwise unnecessary
1333 // context switches on all online CPUs, whether idle or not.
1334 //
1335 // Callback handling is provided by the rcu_tasks_kthread() function.
1336 //
1337 // Ordering is provided by the scheduler's context-switch code.
1338 
1339 // Empty function to allow workqueues to force a context switch.
1340 static void rcu_tasks_be_rude(struct work_struct *work)
1341 {
1342 }
1343 
1344 // Wait for one rude RCU-tasks grace period.
1345 static void rcu_tasks_rude_wait_gp(struct rcu_tasks *rtp)
1346 {
1347 	rtp->n_ipis += cpumask_weight(cpu_online_mask);
1348 	schedule_on_each_cpu(rcu_tasks_be_rude);
1349 }
1350 
1351 static void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func);
1352 DEFINE_RCU_TASKS(rcu_tasks_rude, rcu_tasks_rude_wait_gp, call_rcu_tasks_rude,
1353 		 "RCU Tasks Rude");
1354 
1355 /*
1356  * call_rcu_tasks_rude() - Queue a callback rude task-based grace period
1357  * @rhp: structure to be used for queueing the RCU updates.
1358  * @func: actual callback function to be invoked after the grace period
1359  *
1360  * The callback function will be invoked some time after a full grace
1361  * period elapses, in other words after all currently executing RCU
1362  * read-side critical sections have completed. call_rcu_tasks_rude()
1363  * assumes that the read-side critical sections end at context switch,
1364  * cond_resched_tasks_rcu_qs(), or transition to usermode execution (as
1365  * usermode execution is schedulable). As such, there are no read-side
1366  * primitives analogous to rcu_read_lock() and rcu_read_unlock() because
1367  * this primitive is intended to determine that all tasks have passed
1368  * through a safe state, not so much for data-structure synchronization.
1369  *
1370  * See the description of call_rcu() for more detailed information on
1371  * memory ordering guarantees.
1372  *
1373  * This is no longer exported, and is instead reserved for use by
1374  * synchronize_rcu_tasks_rude().
1375  */
1376 static void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func)
1377 {
1378 	call_rcu_tasks_generic(rhp, func, &rcu_tasks_rude);
1379 }
1380 
1381 /**
1382  * synchronize_rcu_tasks_rude - wait for a rude rcu-tasks grace period
1383  *
1384  * Control will return to the caller some time after a rude rcu-tasks
1385  * grace period has elapsed, in other words after all currently
1386  * executing rcu-tasks read-side critical sections have elapsed.  These
1387  * read-side critical sections are delimited by calls to schedule(),
1388  * cond_resched_tasks_rcu_qs(), userspace execution (which is a schedulable
1389  * context), and (in theory, anyway) cond_resched().
1390  *
1391  * This is a very specialized primitive, intended only for a few uses in
1392  * tracing and other situations requiring manipulation of function preambles
1393  * and profiling hooks.  The synchronize_rcu_tasks_rude() function is not
1394  * (yet) intended for heavy use from multiple CPUs.
1395  *
1396  * See the description of synchronize_rcu() for more detailed information
1397  * on memory ordering guarantees.
1398  */
1399 void synchronize_rcu_tasks_rude(void)
1400 {
1401 	synchronize_rcu_tasks_generic(&rcu_tasks_rude);
1402 }
1403 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_rude);
1404 
1405 static int __init rcu_spawn_tasks_rude_kthread(void)
1406 {
1407 	rcu_tasks_rude.gp_sleep = HZ / 10;
1408 	rcu_spawn_tasks_kthread_generic(&rcu_tasks_rude);
1409 	return 0;
1410 }
1411 
1412 #if !defined(CONFIG_TINY_RCU)
1413 void show_rcu_tasks_rude_gp_kthread(void)
1414 {
1415 	show_rcu_tasks_generic_gp_kthread(&rcu_tasks_rude, "");
1416 }
1417 EXPORT_SYMBOL_GPL(show_rcu_tasks_rude_gp_kthread);
1418 
1419 void rcu_tasks_rude_torture_stats_print(char *tt, char *tf)
1420 {
1421 	rcu_tasks_torture_stats_print_generic(&rcu_tasks_rude, tt, tf, "");
1422 }
1423 EXPORT_SYMBOL_GPL(rcu_tasks_rude_torture_stats_print);
1424 #endif // !defined(CONFIG_TINY_RCU)
1425 
1426 struct task_struct *get_rcu_tasks_rude_gp_kthread(void)
1427 {
1428 	return rcu_tasks_rude.kthread_ptr;
1429 }
1430 EXPORT_SYMBOL_GPL(get_rcu_tasks_rude_gp_kthread);
1431 
1432 void rcu_tasks_rude_get_gp_data(int *flags, unsigned long *gp_seq)
1433 {
1434 	*flags = 0;
1435 	*gp_seq = rcu_seq_current(&rcu_tasks_rude.tasks_gp_seq);
1436 }
1437 EXPORT_SYMBOL_GPL(rcu_tasks_rude_get_gp_data);
1438 
1439 #endif /* #ifdef CONFIG_TASKS_RUDE_RCU */
1440 
1441 ////////////////////////////////////////////////////////////////////////
1442 //
1443 // Tracing variant of Tasks RCU.  This variant is designed to be used
1444 // to protect tracing hooks, including those of BPF.  This variant
1445 // therefore:
1446 //
1447 // 1.	Has explicit read-side markers to allow finite grace periods
1448 //	in the face of in-kernel loops for PREEMPT=n builds.
1449 //
1450 // 2.	Protects code in the idle loop, exception entry/exit, and
1451 //	CPU-hotplug code paths, similar to the capabilities of SRCU.
1452 //
1453 // 3.	Avoids expensive read-side instructions, having overhead similar
1454 //	to that of Preemptible RCU.
1455 //
1456 // There are of course downsides.  For example, the grace-period code
1457 // can send IPIs to CPUs, even when those CPUs are in the idle loop or
1458 // in nohz_full userspace.  If needed, these downsides can be at least
1459 // partially remedied.
1460 //
1461 // Perhaps most important, this variant of RCU does not affect the vanilla
1462 // flavors, rcu_preempt and rcu_sched.  The fact that RCU Tasks Trace
1463 // readers can operate from idle, offline, and exception entry/exit in no
1464 // way allows rcu_preempt and rcu_sched readers to also do so.
1465 //
1466 // The implementation uses rcu_tasks_wait_gp(), which relies on function
1467 // pointers in the rcu_tasks structure.  The rcu_spawn_tasks_trace_kthread()
1468 // function sets these function pointers up so that rcu_tasks_wait_gp()
1469 // invokes these functions in this order:
1470 //
1471 // rcu_tasks_trace_pregp_step():
1472 //	Disables CPU hotplug, adds all currently executing tasks to the
1473 //	holdout list, then checks the state of all tasks that blocked
1474 //	or were preempted within their current RCU Tasks Trace read-side
1475 //	critical section, adding them to the holdout list if appropriate.
1476 //	Finally, this function re-enables CPU hotplug.
1477 // The ->pertask_func() pointer is NULL, so there is no per-task processing.
1478 // rcu_tasks_trace_postscan():
1479 //	Invokes synchronize_rcu() to wait for late-stage exiting tasks
1480 //	to finish exiting.
1481 // check_all_holdout_tasks_trace(), repeatedly until holdout list is empty:
1482 //	Scans the holdout list, attempting to identify a quiescent state
1483 //	for each task on the list.  If there is a quiescent state, the
1484 //	corresponding task is removed from the holdout list.  Once this
1485 //	list is empty, the grace period has completed.
1486 // rcu_tasks_trace_postgp():
1487 //	Provides the needed full memory barrier and does debug checks.
1488 //
1489 // The exit_tasks_rcu_finish_trace() synchronizes with exiting tasks.
1490 //
1491 // Pre-grace-period update-side code is ordered before the grace period
1492 // via the ->cbs_lock and barriers in rcu_tasks_kthread().  Pre-grace-period
1493 // read-side code is ordered before the grace period by atomic operations
1494 // on .b.need_qs flag of each task involved in this process, or by scheduler
1495 // context-switch ordering (for locked-down non-running readers).
1496 
1497 // The lockdep state must be outside of #ifdef to be useful.
1498 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1499 static struct lock_class_key rcu_lock_trace_key;
1500 struct lockdep_map rcu_trace_lock_map =
1501 	STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_trace", &rcu_lock_trace_key);
1502 EXPORT_SYMBOL_GPL(rcu_trace_lock_map);
1503 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
1504 
1505 #ifdef CONFIG_TASKS_TRACE_RCU
1506 
1507 // Record outstanding IPIs to each CPU.  No point in sending two...
1508 static DEFINE_PER_CPU(bool, trc_ipi_to_cpu);
1509 
1510 // The number of detections of task quiescent state relying on
1511 // heavyweight readers executing explicit memory barriers.
1512 static unsigned long n_heavy_reader_attempts;
1513 static unsigned long n_heavy_reader_updates;
1514 static unsigned long n_heavy_reader_ofl_updates;
1515 static unsigned long n_trc_holdouts;
1516 
1517 void call_rcu_tasks_trace(struct rcu_head *rhp, rcu_callback_t func);
1518 DEFINE_RCU_TASKS(rcu_tasks_trace, rcu_tasks_wait_gp, call_rcu_tasks_trace,
1519 		 "RCU Tasks Trace");
1520 
1521 /* Load from ->trc_reader_special.b.need_qs with proper ordering. */
1522 static u8 rcu_ld_need_qs(struct task_struct *t)
1523 {
1524 	smp_mb(); // Enforce full grace-period ordering.
1525 	return smp_load_acquire(&t->trc_reader_special.b.need_qs);
1526 }
1527 
1528 /* Store to ->trc_reader_special.b.need_qs with proper ordering. */
1529 static void rcu_st_need_qs(struct task_struct *t, u8 v)
1530 {
1531 	smp_store_release(&t->trc_reader_special.b.need_qs, v);
1532 	smp_mb(); // Enforce full grace-period ordering.
1533 }
1534 
1535 /*
1536  * Do a cmpxchg() on ->trc_reader_special.b.need_qs, allowing for
1537  * the four-byte operand-size restriction of some platforms.
1538  *
1539  * Returns the old value, which is often ignored.
1540  */
1541 u8 rcu_trc_cmpxchg_need_qs(struct task_struct *t, u8 old, u8 new)
1542 {
1543 	union rcu_special ret;
1544 	union rcu_special trs_old = READ_ONCE(t->trc_reader_special);
1545 	union rcu_special trs_new = trs_old;
1546 
1547 	if (trs_old.b.need_qs != old)
1548 		return trs_old.b.need_qs;
1549 	trs_new.b.need_qs = new;
1550 
1551 	// Although cmpxchg() appears to KCSAN to update all four bytes,
1552 	// only the .b.need_qs byte actually changes.
1553 	instrument_atomic_read_write(&t->trc_reader_special.b.need_qs,
1554 				     sizeof(t->trc_reader_special.b.need_qs));
1555 	// Avoid false-positive KCSAN failures.
1556 	ret.s = data_race(cmpxchg(&t->trc_reader_special.s, trs_old.s, trs_new.s));
1557 
1558 	return ret.b.need_qs;
1559 }
1560 EXPORT_SYMBOL_GPL(rcu_trc_cmpxchg_need_qs);
1561 
1562 /*
1563  * If we are the last reader, signal the grace-period kthread.
1564  * Also remove from the per-CPU list of blocked tasks.
1565  */
1566 void rcu_read_unlock_trace_special(struct task_struct *t)
1567 {
1568 	unsigned long flags;
1569 	struct rcu_tasks_percpu *rtpcp;
1570 	union rcu_special trs;
1571 
1572 	// Open-coded full-word version of rcu_ld_need_qs().
1573 	smp_mb(); // Enforce full grace-period ordering.
1574 	trs = smp_load_acquire(&t->trc_reader_special);
1575 
1576 	if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) && t->trc_reader_special.b.need_mb)
1577 		smp_mb(); // Pairs with update-side barriers.
1578 	// Update .need_qs before ->trc_reader_nesting for irq/NMI handlers.
1579 	if (trs.b.need_qs == (TRC_NEED_QS_CHECKED | TRC_NEED_QS)) {
1580 		u8 result = rcu_trc_cmpxchg_need_qs(t, TRC_NEED_QS_CHECKED | TRC_NEED_QS,
1581 						       TRC_NEED_QS_CHECKED);
1582 
1583 		WARN_ONCE(result != trs.b.need_qs, "%s: result = %d", __func__, result);
1584 	}
1585 	if (trs.b.blocked) {
1586 		rtpcp = per_cpu_ptr(rcu_tasks_trace.rtpcpu, t->trc_blkd_cpu);
1587 		raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
1588 		list_del_init(&t->trc_blkd_node);
1589 		WRITE_ONCE(t->trc_reader_special.b.blocked, false);
1590 		raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
1591 	}
1592 	WRITE_ONCE(t->trc_reader_nesting, 0);
1593 }
1594 EXPORT_SYMBOL_GPL(rcu_read_unlock_trace_special);
1595 
1596 /* Add a newly blocked reader task to its CPU's list. */
1597 void rcu_tasks_trace_qs_blkd(struct task_struct *t)
1598 {
1599 	unsigned long flags;
1600 	struct rcu_tasks_percpu *rtpcp;
1601 
1602 	local_irq_save(flags);
1603 	rtpcp = this_cpu_ptr(rcu_tasks_trace.rtpcpu);
1604 	raw_spin_lock_rcu_node(rtpcp); // irqs already disabled
1605 	t->trc_blkd_cpu = smp_processor_id();
1606 	if (!rtpcp->rtp_blkd_tasks.next)
1607 		INIT_LIST_HEAD(&rtpcp->rtp_blkd_tasks);
1608 	list_add(&t->trc_blkd_node, &rtpcp->rtp_blkd_tasks);
1609 	WRITE_ONCE(t->trc_reader_special.b.blocked, true);
1610 	raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
1611 }
1612 EXPORT_SYMBOL_GPL(rcu_tasks_trace_qs_blkd);
1613 
1614 /* Add a task to the holdout list, if it is not already on the list. */
1615 static void trc_add_holdout(struct task_struct *t, struct list_head *bhp)
1616 {
1617 	if (list_empty(&t->trc_holdout_list)) {
1618 		get_task_struct(t);
1619 		list_add(&t->trc_holdout_list, bhp);
1620 		n_trc_holdouts++;
1621 	}
1622 }
1623 
1624 /* Remove a task from the holdout list, if it is in fact present. */
1625 static void trc_del_holdout(struct task_struct *t)
1626 {
1627 	if (!list_empty(&t->trc_holdout_list)) {
1628 		list_del_init(&t->trc_holdout_list);
1629 		put_task_struct(t);
1630 		n_trc_holdouts--;
1631 	}
1632 }
1633 
1634 /* IPI handler to check task state. */
1635 static void trc_read_check_handler(void *t_in)
1636 {
1637 	int nesting;
1638 	struct task_struct *t = current;
1639 	struct task_struct *texp = t_in;
1640 
1641 	// If the task is no longer running on this CPU, leave.
1642 	if (unlikely(texp != t))
1643 		goto reset_ipi; // Already on holdout list, so will check later.
1644 
1645 	// If the task is not in a read-side critical section, and
1646 	// if this is the last reader, awaken the grace-period kthread.
1647 	nesting = READ_ONCE(t->trc_reader_nesting);
1648 	if (likely(!nesting)) {
1649 		rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED);
1650 		goto reset_ipi;
1651 	}
1652 	// If we are racing with an rcu_read_unlock_trace(), try again later.
1653 	if (unlikely(nesting < 0))
1654 		goto reset_ipi;
1655 
1656 	// Get here if the task is in a read-side critical section.
1657 	// Set its state so that it will update state for the grace-period
1658 	// kthread upon exit from that critical section.
1659 	rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS | TRC_NEED_QS_CHECKED);
1660 
1661 reset_ipi:
1662 	// Allow future IPIs to be sent on CPU and for task.
1663 	// Also order this IPI handler against any later manipulations of
1664 	// the intended task.
1665 	smp_store_release(per_cpu_ptr(&trc_ipi_to_cpu, smp_processor_id()), false); // ^^^
1666 	smp_store_release(&texp->trc_ipi_to_cpu, -1); // ^^^
1667 }
1668 
1669 /* Callback function for scheduler to check locked-down task.  */
1670 static int trc_inspect_reader(struct task_struct *t, void *bhp_in)
1671 {
1672 	struct list_head *bhp = bhp_in;
1673 	int cpu = task_cpu(t);
1674 	int nesting;
1675 	bool ofl = cpu_is_offline(cpu);
1676 
1677 	if (task_curr(t) && !ofl) {
1678 		// If no chance of heavyweight readers, do it the hard way.
1679 		if (!IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB))
1680 			return -EINVAL;
1681 
1682 		// If heavyweight readers are enabled on the remote task,
1683 		// we can inspect its state despite its currently running.
1684 		// However, we cannot safely change its state.
1685 		n_heavy_reader_attempts++;
1686 		// Check for "running" idle tasks on offline CPUs.
1687 		if (!rcu_watching_zero_in_eqs(cpu, &t->trc_reader_nesting))
1688 			return -EINVAL; // No quiescent state, do it the hard way.
1689 		n_heavy_reader_updates++;
1690 		nesting = 0;
1691 	} else {
1692 		// The task is not running, so C-language access is safe.
1693 		nesting = t->trc_reader_nesting;
1694 		WARN_ON_ONCE(ofl && task_curr(t) && (t != idle_task(task_cpu(t))));
1695 		if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) && ofl)
1696 			n_heavy_reader_ofl_updates++;
1697 	}
1698 
1699 	// If not exiting a read-side critical section, mark as checked
1700 	// so that the grace-period kthread will remove it from the
1701 	// holdout list.
1702 	if (!nesting) {
1703 		rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED);
1704 		return 0;  // In QS, so done.
1705 	}
1706 	if (nesting < 0)
1707 		return -EINVAL; // Reader transitioning, try again later.
1708 
1709 	// The task is in a read-side critical section, so set up its
1710 	// state so that it will update state upon exit from that critical
1711 	// section.
1712 	if (!rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS | TRC_NEED_QS_CHECKED))
1713 		trc_add_holdout(t, bhp);
1714 	return 0;
1715 }
1716 
1717 /* Attempt to extract the state for the specified task. */
1718 static void trc_wait_for_one_reader(struct task_struct *t,
1719 				    struct list_head *bhp)
1720 {
1721 	int cpu;
1722 
1723 	// If a previous IPI is still in flight, let it complete.
1724 	if (smp_load_acquire(&t->trc_ipi_to_cpu) != -1) // Order IPI
1725 		return;
1726 
1727 	// The current task had better be in a quiescent state.
1728 	if (t == current) {
1729 		rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED);
1730 		WARN_ON_ONCE(READ_ONCE(t->trc_reader_nesting));
1731 		return;
1732 	}
1733 
1734 	// Attempt to nail down the task for inspection.
1735 	get_task_struct(t);
1736 	if (!task_call_func(t, trc_inspect_reader, bhp)) {
1737 		put_task_struct(t);
1738 		return;
1739 	}
1740 	put_task_struct(t);
1741 
1742 	// If this task is not yet on the holdout list, then we are in
1743 	// an RCU read-side critical section.  Otherwise, the invocation of
1744 	// trc_add_holdout() that added it to the list did the necessary
1745 	// get_task_struct().  Either way, the task cannot be freed out
1746 	// from under this code.
1747 
1748 	// If currently running, send an IPI, either way, add to list.
1749 	trc_add_holdout(t, bhp);
1750 	if (task_curr(t) &&
1751 	    time_after(jiffies + 1, rcu_tasks_trace.gp_start + rcu_task_ipi_delay)) {
1752 		// The task is currently running, so try IPIing it.
1753 		cpu = task_cpu(t);
1754 
1755 		// If there is already an IPI outstanding, let it happen.
1756 		if (per_cpu(trc_ipi_to_cpu, cpu) || t->trc_ipi_to_cpu >= 0)
1757 			return;
1758 
1759 		per_cpu(trc_ipi_to_cpu, cpu) = true;
1760 		t->trc_ipi_to_cpu = cpu;
1761 		rcu_tasks_trace.n_ipis++;
1762 		if (smp_call_function_single(cpu, trc_read_check_handler, t, 0)) {
1763 			// Just in case there is some other reason for
1764 			// failure than the target CPU being offline.
1765 			WARN_ONCE(1, "%s():  smp_call_function_single() failed for CPU: %d\n",
1766 				  __func__, cpu);
1767 			rcu_tasks_trace.n_ipis_fails++;
1768 			per_cpu(trc_ipi_to_cpu, cpu) = false;
1769 			t->trc_ipi_to_cpu = -1;
1770 		}
1771 	}
1772 }
1773 
1774 /*
1775  * Initialize for first-round processing for the specified task.
1776  * Return false if task is NULL or already taken care of, true otherwise.
1777  */
1778 static bool rcu_tasks_trace_pertask_prep(struct task_struct *t, bool notself)
1779 {
1780 	// During early boot when there is only the one boot CPU, there
1781 	// is no idle task for the other CPUs.	Also, the grace-period
1782 	// kthread is always in a quiescent state.  In addition, just return
1783 	// if this task is already on the list.
1784 	if (unlikely(t == NULL) || (t == current && notself) || !list_empty(&t->trc_holdout_list))
1785 		return false;
1786 
1787 	rcu_st_need_qs(t, 0);
1788 	t->trc_ipi_to_cpu = -1;
1789 	return true;
1790 }
1791 
1792 /* Do first-round processing for the specified task. */
1793 static void rcu_tasks_trace_pertask(struct task_struct *t, struct list_head *hop)
1794 {
1795 	if (rcu_tasks_trace_pertask_prep(t, true))
1796 		trc_wait_for_one_reader(t, hop);
1797 }
1798 
1799 /* Initialize for a new RCU-tasks-trace grace period. */
1800 static void rcu_tasks_trace_pregp_step(struct list_head *hop)
1801 {
1802 	LIST_HEAD(blkd_tasks);
1803 	int cpu;
1804 	unsigned long flags;
1805 	struct rcu_tasks_percpu *rtpcp;
1806 	struct task_struct *t;
1807 
1808 	// There shouldn't be any old IPIs, but...
1809 	for_each_possible_cpu(cpu)
1810 		WARN_ON_ONCE(per_cpu(trc_ipi_to_cpu, cpu));
1811 
1812 	// Disable CPU hotplug across the CPU scan for the benefit of
1813 	// any IPIs that might be needed.  This also waits for all readers
1814 	// in CPU-hotplug code paths.
1815 	cpus_read_lock();
1816 
1817 	// These rcu_tasks_trace_pertask_prep() calls are serialized to
1818 	// allow safe access to the hop list.
1819 	for_each_online_cpu(cpu) {
1820 		rcu_read_lock();
1821 		// Note that cpu_curr_snapshot() picks up the target
1822 		// CPU's current task while its runqueue is locked with
1823 		// an smp_mb__after_spinlock().  This ensures that either
1824 		// the grace-period kthread will see that task's read-side
1825 		// critical section or the task will see the updater's pre-GP
1826 		// accesses.  The trailing smp_mb() in cpu_curr_snapshot()
1827 		// does not currently play a role other than simplify
1828 		// that function's ordering semantics.  If these simplified
1829 		// ordering semantics continue to be redundant, that smp_mb()
1830 		// might be removed.
1831 		t = cpu_curr_snapshot(cpu);
1832 		if (rcu_tasks_trace_pertask_prep(t, true))
1833 			trc_add_holdout(t, hop);
1834 		rcu_read_unlock();
1835 		cond_resched_tasks_rcu_qs();
1836 	}
1837 
1838 	// Only after all running tasks have been accounted for is it
1839 	// safe to take care of the tasks that have blocked within their
1840 	// current RCU tasks trace read-side critical section.
1841 	for_each_possible_cpu(cpu) {
1842 		rtpcp = per_cpu_ptr(rcu_tasks_trace.rtpcpu, cpu);
1843 		raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
1844 		list_splice_init(&rtpcp->rtp_blkd_tasks, &blkd_tasks);
1845 		while (!list_empty(&blkd_tasks)) {
1846 			rcu_read_lock();
1847 			t = list_first_entry(&blkd_tasks, struct task_struct, trc_blkd_node);
1848 			list_del_init(&t->trc_blkd_node);
1849 			list_add(&t->trc_blkd_node, &rtpcp->rtp_blkd_tasks);
1850 			raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
1851 			rcu_tasks_trace_pertask(t, hop);
1852 			rcu_read_unlock();
1853 			raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
1854 		}
1855 		raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
1856 		cond_resched_tasks_rcu_qs();
1857 	}
1858 
1859 	// Re-enable CPU hotplug now that the holdout list is populated.
1860 	cpus_read_unlock();
1861 }
1862 
1863 /*
1864  * Do intermediate processing between task and holdout scans.
1865  */
1866 static void rcu_tasks_trace_postscan(struct list_head *hop)
1867 {
1868 	// Wait for late-stage exiting tasks to finish exiting.
1869 	// These might have passed the call to exit_tasks_rcu_finish().
1870 
1871 	// If you remove the following line, update rcu_trace_implies_rcu_gp()!!!
1872 	synchronize_rcu();
1873 	// Any tasks that exit after this point will set
1874 	// TRC_NEED_QS_CHECKED in ->trc_reader_special.b.need_qs.
1875 }
1876 
1877 /* Communicate task state back to the RCU tasks trace stall warning request. */
1878 struct trc_stall_chk_rdr {
1879 	int nesting;
1880 	int ipi_to_cpu;
1881 	u8 needqs;
1882 };
1883 
1884 static int trc_check_slow_task(struct task_struct *t, void *arg)
1885 {
1886 	struct trc_stall_chk_rdr *trc_rdrp = arg;
1887 
1888 	if (task_curr(t) && cpu_online(task_cpu(t)))
1889 		return false; // It is running, so decline to inspect it.
1890 	trc_rdrp->nesting = READ_ONCE(t->trc_reader_nesting);
1891 	trc_rdrp->ipi_to_cpu = READ_ONCE(t->trc_ipi_to_cpu);
1892 	trc_rdrp->needqs = rcu_ld_need_qs(t);
1893 	return true;
1894 }
1895 
1896 /* Show the state of a task stalling the current RCU tasks trace GP. */
1897 static void show_stalled_task_trace(struct task_struct *t, bool *firstreport)
1898 {
1899 	int cpu;
1900 	struct trc_stall_chk_rdr trc_rdr;
1901 	bool is_idle_tsk = is_idle_task(t);
1902 
1903 	if (*firstreport) {
1904 		pr_err("INFO: rcu_tasks_trace detected stalls on tasks:\n");
1905 		*firstreport = false;
1906 	}
1907 	cpu = task_cpu(t);
1908 	if (!task_call_func(t, trc_check_slow_task, &trc_rdr))
1909 		pr_alert("P%d: %c%c\n",
1910 			 t->pid,
1911 			 ".I"[t->trc_ipi_to_cpu >= 0],
1912 			 ".i"[is_idle_tsk]);
1913 	else
1914 		pr_alert("P%d: %c%c%c%c nesting: %d%c%c cpu: %d%s\n",
1915 			 t->pid,
1916 			 ".I"[trc_rdr.ipi_to_cpu >= 0],
1917 			 ".i"[is_idle_tsk],
1918 			 ".N"[cpu >= 0 && tick_nohz_full_cpu(cpu)],
1919 			 ".B"[!!data_race(t->trc_reader_special.b.blocked)],
1920 			 trc_rdr.nesting,
1921 			 " !CN"[trc_rdr.needqs & 0x3],
1922 			 " ?"[trc_rdr.needqs > 0x3],
1923 			 cpu, cpu_online(cpu) ? "" : "(offline)");
1924 	sched_show_task(t);
1925 }
1926 
1927 /* List stalled IPIs for RCU tasks trace. */
1928 static void show_stalled_ipi_trace(void)
1929 {
1930 	int cpu;
1931 
1932 	for_each_possible_cpu(cpu)
1933 		if (per_cpu(trc_ipi_to_cpu, cpu))
1934 			pr_alert("\tIPI outstanding to CPU %d\n", cpu);
1935 }
1936 
1937 /* Do one scan of the holdout list. */
1938 static void check_all_holdout_tasks_trace(struct list_head *hop,
1939 					  bool needreport, bool *firstreport)
1940 {
1941 	struct task_struct *g, *t;
1942 
1943 	// Disable CPU hotplug across the holdout list scan for IPIs.
1944 	cpus_read_lock();
1945 
1946 	list_for_each_entry_safe(t, g, hop, trc_holdout_list) {
1947 		// If safe and needed, try to check the current task.
1948 		if (READ_ONCE(t->trc_ipi_to_cpu) == -1 &&
1949 		    !(rcu_ld_need_qs(t) & TRC_NEED_QS_CHECKED))
1950 			trc_wait_for_one_reader(t, hop);
1951 
1952 		// If check succeeded, remove this task from the list.
1953 		if (smp_load_acquire(&t->trc_ipi_to_cpu) == -1 &&
1954 		    rcu_ld_need_qs(t) == TRC_NEED_QS_CHECKED)
1955 			trc_del_holdout(t);
1956 		else if (needreport)
1957 			show_stalled_task_trace(t, firstreport);
1958 		cond_resched_tasks_rcu_qs();
1959 	}
1960 
1961 	// Re-enable CPU hotplug now that the holdout list scan has completed.
1962 	cpus_read_unlock();
1963 
1964 	if (needreport) {
1965 		if (*firstreport)
1966 			pr_err("INFO: rcu_tasks_trace detected stalls? (Late IPI?)\n");
1967 		show_stalled_ipi_trace();
1968 	}
1969 }
1970 
1971 static void rcu_tasks_trace_empty_fn(void *unused)
1972 {
1973 }
1974 
1975 /* Wait for grace period to complete and provide ordering. */
1976 static void rcu_tasks_trace_postgp(struct rcu_tasks *rtp)
1977 {
1978 	int cpu;
1979 
1980 	// Wait for any lingering IPI handlers to complete.  Note that
1981 	// if a CPU has gone offline or transitioned to userspace in the
1982 	// meantime, all IPI handlers should have been drained beforehand.
1983 	// Yes, this assumes that CPUs process IPIs in order.  If that ever
1984 	// changes, there will need to be a recheck and/or timed wait.
1985 	for_each_online_cpu(cpu)
1986 		if (WARN_ON_ONCE(smp_load_acquire(per_cpu_ptr(&trc_ipi_to_cpu, cpu))))
1987 			smp_call_function_single(cpu, rcu_tasks_trace_empty_fn, NULL, 1);
1988 
1989 	smp_mb(); // Caller's code must be ordered after wakeup.
1990 		  // Pairs with pretty much every ordering primitive.
1991 }
1992 
1993 /* Report any needed quiescent state for this exiting task. */
1994 static void exit_tasks_rcu_finish_trace(struct task_struct *t)
1995 {
1996 	union rcu_special trs = READ_ONCE(t->trc_reader_special);
1997 
1998 	rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED);
1999 	WARN_ON_ONCE(READ_ONCE(t->trc_reader_nesting));
2000 	if (WARN_ON_ONCE(rcu_ld_need_qs(t) & TRC_NEED_QS || trs.b.blocked))
2001 		rcu_read_unlock_trace_special(t);
2002 	else
2003 		WRITE_ONCE(t->trc_reader_nesting, 0);
2004 }
2005 
2006 /**
2007  * call_rcu_tasks_trace() - Queue a callback trace task-based grace period
2008  * @rhp: structure to be used for queueing the RCU updates.
2009  * @func: actual callback function to be invoked after the grace period
2010  *
2011  * The callback function will be invoked some time after a trace rcu-tasks
2012  * grace period elapses, in other words after all currently executing
2013  * trace rcu-tasks read-side critical sections have completed. These
2014  * read-side critical sections are delimited by calls to rcu_read_lock_trace()
2015  * and rcu_read_unlock_trace().
2016  *
2017  * See the description of call_rcu() for more detailed information on
2018  * memory ordering guarantees.
2019  */
2020 void call_rcu_tasks_trace(struct rcu_head *rhp, rcu_callback_t func)
2021 {
2022 	call_rcu_tasks_generic(rhp, func, &rcu_tasks_trace);
2023 }
2024 EXPORT_SYMBOL_GPL(call_rcu_tasks_trace);
2025 
2026 /**
2027  * synchronize_rcu_tasks_trace - wait for a trace rcu-tasks grace period
2028  *
2029  * Control will return to the caller some time after a trace rcu-tasks
2030  * grace period has elapsed, in other words after all currently executing
2031  * trace rcu-tasks read-side critical sections have elapsed. These read-side
2032  * critical sections are delimited by calls to rcu_read_lock_trace()
2033  * and rcu_read_unlock_trace().
2034  *
2035  * This is a very specialized primitive, intended only for a few uses in
2036  * tracing and other situations requiring manipulation of function preambles
2037  * and profiling hooks.  The synchronize_rcu_tasks_trace() function is not
2038  * (yet) intended for heavy use from multiple CPUs.
2039  *
2040  * See the description of synchronize_rcu() for more detailed information
2041  * on memory ordering guarantees.
2042  */
2043 void synchronize_rcu_tasks_trace(void)
2044 {
2045 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_trace_lock_map), "Illegal synchronize_rcu_tasks_trace() in RCU Tasks Trace read-side critical section");
2046 	synchronize_rcu_tasks_generic(&rcu_tasks_trace);
2047 }
2048 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_trace);
2049 
2050 /**
2051  * rcu_barrier_tasks_trace - Wait for in-flight call_rcu_tasks_trace() callbacks.
2052  *
2053  * Although the current implementation is guaranteed to wait, it is not
2054  * obligated to, for example, if there are no pending callbacks.
2055  */
2056 void rcu_barrier_tasks_trace(void)
2057 {
2058 	rcu_barrier_tasks_generic(&rcu_tasks_trace);
2059 }
2060 EXPORT_SYMBOL_GPL(rcu_barrier_tasks_trace);
2061 
2062 int rcu_tasks_trace_lazy_ms = -1;
2063 module_param(rcu_tasks_trace_lazy_ms, int, 0444);
2064 
2065 static int __init rcu_spawn_tasks_trace_kthread(void)
2066 {
2067 	if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB)) {
2068 		rcu_tasks_trace.gp_sleep = HZ / 10;
2069 		rcu_tasks_trace.init_fract = HZ / 10;
2070 	} else {
2071 		rcu_tasks_trace.gp_sleep = HZ / 200;
2072 		if (rcu_tasks_trace.gp_sleep <= 0)
2073 			rcu_tasks_trace.gp_sleep = 1;
2074 		rcu_tasks_trace.init_fract = HZ / 200;
2075 		if (rcu_tasks_trace.init_fract <= 0)
2076 			rcu_tasks_trace.init_fract = 1;
2077 	}
2078 	if (rcu_tasks_trace_lazy_ms >= 0)
2079 		rcu_tasks_trace.lazy_jiffies = msecs_to_jiffies(rcu_tasks_trace_lazy_ms);
2080 	rcu_tasks_trace.pregp_func = rcu_tasks_trace_pregp_step;
2081 	rcu_tasks_trace.postscan_func = rcu_tasks_trace_postscan;
2082 	rcu_tasks_trace.holdouts_func = check_all_holdout_tasks_trace;
2083 	rcu_tasks_trace.postgp_func = rcu_tasks_trace_postgp;
2084 	rcu_spawn_tasks_kthread_generic(&rcu_tasks_trace);
2085 	return 0;
2086 }
2087 
2088 #if !defined(CONFIG_TINY_RCU)
2089 void show_rcu_tasks_trace_gp_kthread(void)
2090 {
2091 	char buf[64];
2092 
2093 	snprintf(buf, sizeof(buf), "N%lu h:%lu/%lu/%lu",
2094 		data_race(n_trc_holdouts),
2095 		data_race(n_heavy_reader_ofl_updates),
2096 		data_race(n_heavy_reader_updates),
2097 		data_race(n_heavy_reader_attempts));
2098 	show_rcu_tasks_generic_gp_kthread(&rcu_tasks_trace, buf);
2099 }
2100 EXPORT_SYMBOL_GPL(show_rcu_tasks_trace_gp_kthread);
2101 
2102 void rcu_tasks_trace_torture_stats_print(char *tt, char *tf)
2103 {
2104 	rcu_tasks_torture_stats_print_generic(&rcu_tasks_trace, tt, tf, "");
2105 }
2106 EXPORT_SYMBOL_GPL(rcu_tasks_trace_torture_stats_print);
2107 #endif // !defined(CONFIG_TINY_RCU)
2108 
2109 struct task_struct *get_rcu_tasks_trace_gp_kthread(void)
2110 {
2111 	return rcu_tasks_trace.kthread_ptr;
2112 }
2113 EXPORT_SYMBOL_GPL(get_rcu_tasks_trace_gp_kthread);
2114 
2115 void rcu_tasks_trace_get_gp_data(int *flags, unsigned long *gp_seq)
2116 {
2117 	*flags = 0;
2118 	*gp_seq = rcu_seq_current(&rcu_tasks_trace.tasks_gp_seq);
2119 }
2120 EXPORT_SYMBOL_GPL(rcu_tasks_trace_get_gp_data);
2121 
2122 #else /* #ifdef CONFIG_TASKS_TRACE_RCU */
2123 static void exit_tasks_rcu_finish_trace(struct task_struct *t) { }
2124 #endif /* #else #ifdef CONFIG_TASKS_TRACE_RCU */
2125 
2126 #ifndef CONFIG_TINY_RCU
2127 void show_rcu_tasks_gp_kthreads(void)
2128 {
2129 	show_rcu_tasks_classic_gp_kthread();
2130 	show_rcu_tasks_rude_gp_kthread();
2131 	show_rcu_tasks_trace_gp_kthread();
2132 }
2133 #endif /* #ifndef CONFIG_TINY_RCU */
2134 
2135 #ifdef CONFIG_PROVE_RCU
2136 struct rcu_tasks_test_desc {
2137 	struct rcu_head rh;
2138 	const char *name;
2139 	bool notrun;
2140 	unsigned long runstart;
2141 };
2142 
2143 static struct rcu_tasks_test_desc tests[] = {
2144 	{
2145 		.name = "call_rcu_tasks()",
2146 		/* If not defined, the test is skipped. */
2147 		.notrun = IS_ENABLED(CONFIG_TASKS_RCU),
2148 	},
2149 	{
2150 		.name = "call_rcu_tasks_trace()",
2151 		/* If not defined, the test is skipped. */
2152 		.notrun = IS_ENABLED(CONFIG_TASKS_TRACE_RCU)
2153 	}
2154 };
2155 
2156 #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU)
2157 static void test_rcu_tasks_callback(struct rcu_head *rhp)
2158 {
2159 	struct rcu_tasks_test_desc *rttd =
2160 		container_of(rhp, struct rcu_tasks_test_desc, rh);
2161 
2162 	pr_info("Callback from %s invoked.\n", rttd->name);
2163 
2164 	rttd->notrun = false;
2165 }
2166 #endif // #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU)
2167 
2168 static void rcu_tasks_initiate_self_tests(void)
2169 {
2170 #ifdef CONFIG_TASKS_RCU
2171 	pr_info("Running RCU Tasks wait API self tests\n");
2172 	tests[0].runstart = jiffies;
2173 	synchronize_rcu_tasks();
2174 	call_rcu_tasks(&tests[0].rh, test_rcu_tasks_callback);
2175 #endif
2176 
2177 #ifdef CONFIG_TASKS_RUDE_RCU
2178 	pr_info("Running RCU Tasks Rude wait API self tests\n");
2179 	synchronize_rcu_tasks_rude();
2180 #endif
2181 
2182 #ifdef CONFIG_TASKS_TRACE_RCU
2183 	pr_info("Running RCU Tasks Trace wait API self tests\n");
2184 	tests[1].runstart = jiffies;
2185 	synchronize_rcu_tasks_trace();
2186 	call_rcu_tasks_trace(&tests[1].rh, test_rcu_tasks_callback);
2187 #endif
2188 }
2189 
2190 /*
2191  * Return:  0 - test passed
2192  *	    1 - test failed, but have not timed out yet
2193  *	   -1 - test failed and timed out
2194  */
2195 static int rcu_tasks_verify_self_tests(void)
2196 {
2197 	int ret = 0;
2198 	int i;
2199 	unsigned long bst = rcu_task_stall_timeout;
2200 
2201 	if (bst <= 0 || bst > RCU_TASK_BOOT_STALL_TIMEOUT)
2202 		bst = RCU_TASK_BOOT_STALL_TIMEOUT;
2203 	for (i = 0; i < ARRAY_SIZE(tests); i++) {
2204 		while (tests[i].notrun) {		// still hanging.
2205 			if (time_after(jiffies, tests[i].runstart + bst)) {
2206 				pr_err("%s has failed boot-time tests.\n", tests[i].name);
2207 				ret = -1;
2208 				break;
2209 			}
2210 			ret = 1;
2211 			break;
2212 		}
2213 	}
2214 	WARN_ON(ret < 0);
2215 
2216 	return ret;
2217 }
2218 
2219 /*
2220  * Repeat the rcu_tasks_verify_self_tests() call once every second until the
2221  * test passes or has timed out.
2222  */
2223 static struct delayed_work rcu_tasks_verify_work;
2224 static void rcu_tasks_verify_work_fn(struct work_struct *work __maybe_unused)
2225 {
2226 	int ret = rcu_tasks_verify_self_tests();
2227 
2228 	if (ret <= 0)
2229 		return;
2230 
2231 	/* Test fails but not timed out yet, reschedule another check */
2232 	schedule_delayed_work(&rcu_tasks_verify_work, HZ);
2233 }
2234 
2235 static int rcu_tasks_verify_schedule_work(void)
2236 {
2237 	INIT_DELAYED_WORK(&rcu_tasks_verify_work, rcu_tasks_verify_work_fn);
2238 	rcu_tasks_verify_work_fn(NULL);
2239 	return 0;
2240 }
2241 late_initcall(rcu_tasks_verify_schedule_work);
2242 #else /* #ifdef CONFIG_PROVE_RCU */
2243 static void rcu_tasks_initiate_self_tests(void) { }
2244 #endif /* #else #ifdef CONFIG_PROVE_RCU */
2245 
2246 void __init tasks_cblist_init_generic(void)
2247 {
2248 	lockdep_assert_irqs_disabled();
2249 	WARN_ON(num_online_cpus() > 1);
2250 
2251 #ifdef CONFIG_TASKS_RCU
2252 	cblist_init_generic(&rcu_tasks);
2253 #endif
2254 
2255 #ifdef CONFIG_TASKS_RUDE_RCU
2256 	cblist_init_generic(&rcu_tasks_rude);
2257 #endif
2258 
2259 #ifdef CONFIG_TASKS_TRACE_RCU
2260 	cblist_init_generic(&rcu_tasks_trace);
2261 #endif
2262 }
2263 
2264 void __init rcu_init_tasks_generic(void)
2265 {
2266 #ifdef CONFIG_TASKS_RCU
2267 	rcu_spawn_tasks_kthread();
2268 #endif
2269 
2270 #ifdef CONFIG_TASKS_RUDE_RCU
2271 	rcu_spawn_tasks_rude_kthread();
2272 #endif
2273 
2274 #ifdef CONFIG_TASKS_TRACE_RCU
2275 	rcu_spawn_tasks_trace_kthread();
2276 #endif
2277 
2278 	// Run the self-tests.
2279 	rcu_tasks_initiate_self_tests();
2280 }
2281 
2282 #else /* #ifdef CONFIG_TASKS_RCU_GENERIC */
2283 static inline void rcu_tasks_bootup_oddness(void) {}
2284 #endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */
2285