xref: /linux/kernel/rcu/tasks.h (revision 40d269c000bda9fcd276a0412a9cebd3f6e344c5)
1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3  * Task-based RCU implementations.
4  *
5  * Copyright (C) 2020 Paul E. McKenney
6  */
7 
8 #ifdef CONFIG_TASKS_RCU_GENERIC
9 #include "rcu_segcblist.h"
10 
11 ////////////////////////////////////////////////////////////////////////
12 //
13 // Generic data structures.
14 
15 struct rcu_tasks;
16 typedef void (*rcu_tasks_gp_func_t)(struct rcu_tasks *rtp);
17 typedef void (*pregp_func_t)(struct list_head *hop);
18 typedef void (*pertask_func_t)(struct task_struct *t, struct list_head *hop);
19 typedef void (*postscan_func_t)(struct list_head *hop);
20 typedef void (*holdouts_func_t)(struct list_head *hop, bool ndrpt, bool *frptp);
21 typedef void (*postgp_func_t)(struct rcu_tasks *rtp);
22 
23 /**
24  * struct rcu_tasks_percpu - Per-CPU component of definition for a Tasks-RCU-like mechanism.
25  * @cblist: Callback list.
26  * @lock: Lock protecting per-CPU callback list.
27  * @rtp_jiffies: Jiffies counter value for statistics.
28  * @lazy_timer: Timer to unlazify callbacks.
29  * @urgent_gp: Number of additional non-lazy grace periods.
30  * @rtp_n_lock_retries: Rough lock-contention statistic.
31  * @rtp_work: Work queue for invoking callbacks.
32  * @rtp_irq_work: IRQ work queue for deferred wakeups.
33  * @barrier_q_head: RCU callback for barrier operation.
34  * @rtp_blkd_tasks: List of tasks blocked as readers.
35  * @rtp_exit_list: List of tasks in the latter portion of do_exit().
36  * @cpu: CPU number corresponding to this entry.
37  * @rtpp: Pointer to the rcu_tasks structure.
38  */
39 struct rcu_tasks_percpu {
40 	struct rcu_segcblist cblist;
41 	raw_spinlock_t __private lock;
42 	unsigned long rtp_jiffies;
43 	unsigned long rtp_n_lock_retries;
44 	struct timer_list lazy_timer;
45 	unsigned int urgent_gp;
46 	struct work_struct rtp_work;
47 	struct irq_work rtp_irq_work;
48 	struct rcu_head barrier_q_head;
49 	struct list_head rtp_blkd_tasks;
50 	struct list_head rtp_exit_list;
51 	int cpu;
52 	struct rcu_tasks *rtpp;
53 };
54 
55 /**
56  * struct rcu_tasks - Definition for a Tasks-RCU-like mechanism.
57  * @cbs_wait: RCU wait allowing a new callback to get kthread's attention.
58  * @cbs_gbl_lock: Lock protecting callback list.
59  * @tasks_gp_mutex: Mutex protecting grace period, needed during mid-boot dead zone.
60  * @gp_func: This flavor's grace-period-wait function.
61  * @gp_state: Grace period's most recent state transition (debugging).
62  * @gp_sleep: Per-grace-period sleep to prevent CPU-bound looping.
63  * @init_fract: Initial backoff sleep interval.
64  * @gp_jiffies: Time of last @gp_state transition.
65  * @gp_start: Most recent grace-period start in jiffies.
66  * @tasks_gp_seq: Number of grace periods completed since boot.
67  * @n_ipis: Number of IPIs sent to encourage grace periods to end.
68  * @n_ipis_fails: Number of IPI-send failures.
69  * @kthread_ptr: This flavor's grace-period/callback-invocation kthread.
70  * @lazy_jiffies: Number of jiffies to allow callbacks to be lazy.
71  * @pregp_func: This flavor's pre-grace-period function (optional).
72  * @pertask_func: This flavor's per-task scan function (optional).
73  * @postscan_func: This flavor's post-task scan function (optional).
74  * @holdouts_func: This flavor's holdout-list scan function (optional).
75  * @postgp_func: This flavor's post-grace-period function (optional).
76  * @call_func: This flavor's call_rcu()-equivalent function.
77  * @rtpcpu: This flavor's rcu_tasks_percpu structure.
78  * @percpu_enqueue_shift: Shift down CPU ID this much when enqueuing callbacks.
79  * @percpu_enqueue_lim: Number of per-CPU callback queues in use for enqueuing.
80  * @percpu_dequeue_lim: Number of per-CPU callback queues in use for dequeuing.
81  * @percpu_dequeue_gpseq: RCU grace-period number to propagate enqueue limit to dequeuers.
82  * @barrier_q_mutex: Serialize barrier operations.
83  * @barrier_q_count: Number of queues being waited on.
84  * @barrier_q_completion: Barrier wait/wakeup mechanism.
85  * @barrier_q_seq: Sequence number for barrier operations.
86  * @name: This flavor's textual name.
87  * @kname: This flavor's kthread name.
88  */
89 struct rcu_tasks {
90 	struct rcuwait cbs_wait;
91 	raw_spinlock_t cbs_gbl_lock;
92 	struct mutex tasks_gp_mutex;
93 	int gp_state;
94 	int gp_sleep;
95 	int init_fract;
96 	unsigned long gp_jiffies;
97 	unsigned long gp_start;
98 	unsigned long tasks_gp_seq;
99 	unsigned long n_ipis;
100 	unsigned long n_ipis_fails;
101 	struct task_struct *kthread_ptr;
102 	unsigned long lazy_jiffies;
103 	rcu_tasks_gp_func_t gp_func;
104 	pregp_func_t pregp_func;
105 	pertask_func_t pertask_func;
106 	postscan_func_t postscan_func;
107 	holdouts_func_t holdouts_func;
108 	postgp_func_t postgp_func;
109 	call_rcu_func_t call_func;
110 	struct rcu_tasks_percpu __percpu *rtpcpu;
111 	int percpu_enqueue_shift;
112 	int percpu_enqueue_lim;
113 	int percpu_dequeue_lim;
114 	unsigned long percpu_dequeue_gpseq;
115 	struct mutex barrier_q_mutex;
116 	atomic_t barrier_q_count;
117 	struct completion barrier_q_completion;
118 	unsigned long barrier_q_seq;
119 	char *name;
120 	char *kname;
121 };
122 
123 static void call_rcu_tasks_iw_wakeup(struct irq_work *iwp);
124 
125 #define DEFINE_RCU_TASKS(rt_name, gp, call, n)						\
126 static DEFINE_PER_CPU(struct rcu_tasks_percpu, rt_name ## __percpu) = {			\
127 	.lock = __RAW_SPIN_LOCK_UNLOCKED(rt_name ## __percpu.cbs_pcpu_lock),		\
128 	.rtp_irq_work = IRQ_WORK_INIT_HARD(call_rcu_tasks_iw_wakeup),			\
129 };											\
130 static struct rcu_tasks rt_name =							\
131 {											\
132 	.cbs_wait = __RCUWAIT_INITIALIZER(rt_name.wait),				\
133 	.cbs_gbl_lock = __RAW_SPIN_LOCK_UNLOCKED(rt_name.cbs_gbl_lock),			\
134 	.tasks_gp_mutex = __MUTEX_INITIALIZER(rt_name.tasks_gp_mutex),			\
135 	.gp_func = gp,									\
136 	.call_func = call,								\
137 	.rtpcpu = &rt_name ## __percpu,							\
138 	.lazy_jiffies = DIV_ROUND_UP(HZ, 4),						\
139 	.name = n,									\
140 	.percpu_enqueue_shift = order_base_2(CONFIG_NR_CPUS),				\
141 	.percpu_enqueue_lim = 1,							\
142 	.percpu_dequeue_lim = 1,							\
143 	.barrier_q_mutex = __MUTEX_INITIALIZER(rt_name.barrier_q_mutex),		\
144 	.barrier_q_seq = (0UL - 50UL) << RCU_SEQ_CTR_SHIFT,				\
145 	.kname = #rt_name,								\
146 }
147 
148 #ifdef CONFIG_TASKS_RCU
149 
150 /* Report delay in synchronize_srcu() completion in rcu_tasks_postscan(). */
151 static void tasks_rcu_exit_srcu_stall(struct timer_list *unused);
152 static DEFINE_TIMER(tasks_rcu_exit_srcu_stall_timer, tasks_rcu_exit_srcu_stall);
153 #endif
154 
155 /* Avoid IPIing CPUs early in the grace period. */
156 #define RCU_TASK_IPI_DELAY (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) ? HZ / 2 : 0)
157 static int rcu_task_ipi_delay __read_mostly = RCU_TASK_IPI_DELAY;
158 module_param(rcu_task_ipi_delay, int, 0644);
159 
160 /* Control stall timeouts.  Disable with <= 0, otherwise jiffies till stall. */
161 #define RCU_TASK_BOOT_STALL_TIMEOUT (HZ * 30)
162 #define RCU_TASK_STALL_TIMEOUT (HZ * 60 * 10)
163 static int rcu_task_stall_timeout __read_mostly = RCU_TASK_STALL_TIMEOUT;
164 module_param(rcu_task_stall_timeout, int, 0644);
165 #define RCU_TASK_STALL_INFO (HZ * 10)
166 static int rcu_task_stall_info __read_mostly = RCU_TASK_STALL_INFO;
167 module_param(rcu_task_stall_info, int, 0644);
168 static int rcu_task_stall_info_mult __read_mostly = 3;
169 module_param(rcu_task_stall_info_mult, int, 0444);
170 
171 static int rcu_task_enqueue_lim __read_mostly = -1;
172 module_param(rcu_task_enqueue_lim, int, 0444);
173 
174 static bool rcu_task_cb_adjust;
175 static int rcu_task_contend_lim __read_mostly = 100;
176 module_param(rcu_task_contend_lim, int, 0444);
177 static int rcu_task_collapse_lim __read_mostly = 10;
178 module_param(rcu_task_collapse_lim, int, 0444);
179 static int rcu_task_lazy_lim __read_mostly = 32;
180 module_param(rcu_task_lazy_lim, int, 0444);
181 
182 /* RCU tasks grace-period state for debugging. */
183 #define RTGS_INIT		 0
184 #define RTGS_WAIT_WAIT_CBS	 1
185 #define RTGS_WAIT_GP		 2
186 #define RTGS_PRE_WAIT_GP	 3
187 #define RTGS_SCAN_TASKLIST	 4
188 #define RTGS_POST_SCAN_TASKLIST	 5
189 #define RTGS_WAIT_SCAN_HOLDOUTS	 6
190 #define RTGS_SCAN_HOLDOUTS	 7
191 #define RTGS_POST_GP		 8
192 #define RTGS_WAIT_READERS	 9
193 #define RTGS_INVOKE_CBS		10
194 #define RTGS_WAIT_CBS		11
195 #ifndef CONFIG_TINY_RCU
196 static const char * const rcu_tasks_gp_state_names[] = {
197 	"RTGS_INIT",
198 	"RTGS_WAIT_WAIT_CBS",
199 	"RTGS_WAIT_GP",
200 	"RTGS_PRE_WAIT_GP",
201 	"RTGS_SCAN_TASKLIST",
202 	"RTGS_POST_SCAN_TASKLIST",
203 	"RTGS_WAIT_SCAN_HOLDOUTS",
204 	"RTGS_SCAN_HOLDOUTS",
205 	"RTGS_POST_GP",
206 	"RTGS_WAIT_READERS",
207 	"RTGS_INVOKE_CBS",
208 	"RTGS_WAIT_CBS",
209 };
210 #endif /* #ifndef CONFIG_TINY_RCU */
211 
212 ////////////////////////////////////////////////////////////////////////
213 //
214 // Generic code.
215 
216 static void rcu_tasks_invoke_cbs_wq(struct work_struct *wp);
217 
218 /* Record grace-period phase and time. */
219 static void set_tasks_gp_state(struct rcu_tasks *rtp, int newstate)
220 {
221 	rtp->gp_state = newstate;
222 	rtp->gp_jiffies = jiffies;
223 }
224 
225 #ifndef CONFIG_TINY_RCU
226 /* Return state name. */
227 static const char *tasks_gp_state_getname(struct rcu_tasks *rtp)
228 {
229 	int i = data_race(rtp->gp_state); // Let KCSAN detect update races
230 	int j = READ_ONCE(i); // Prevent the compiler from reading twice
231 
232 	if (j >= ARRAY_SIZE(rcu_tasks_gp_state_names))
233 		return "???";
234 	return rcu_tasks_gp_state_names[j];
235 }
236 #endif /* #ifndef CONFIG_TINY_RCU */
237 
238 // Initialize per-CPU callback lists for the specified flavor of
239 // Tasks RCU.  Do not enqueue callbacks before this function is invoked.
240 static void cblist_init_generic(struct rcu_tasks *rtp)
241 {
242 	int cpu;
243 	int lim;
244 	int shift;
245 
246 	if (rcu_task_enqueue_lim < 0) {
247 		rcu_task_enqueue_lim = 1;
248 		rcu_task_cb_adjust = true;
249 	} else if (rcu_task_enqueue_lim == 0) {
250 		rcu_task_enqueue_lim = 1;
251 	}
252 	lim = rcu_task_enqueue_lim;
253 
254 	if (lim > nr_cpu_ids)
255 		lim = nr_cpu_ids;
256 	shift = ilog2(nr_cpu_ids / lim);
257 	if (((nr_cpu_ids - 1) >> shift) >= lim)
258 		shift++;
259 	WRITE_ONCE(rtp->percpu_enqueue_shift, shift);
260 	WRITE_ONCE(rtp->percpu_dequeue_lim, lim);
261 	smp_store_release(&rtp->percpu_enqueue_lim, lim);
262 	for_each_possible_cpu(cpu) {
263 		struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
264 
265 		WARN_ON_ONCE(!rtpcp);
266 		if (cpu)
267 			raw_spin_lock_init(&ACCESS_PRIVATE(rtpcp, lock));
268 		if (rcu_segcblist_empty(&rtpcp->cblist))
269 			rcu_segcblist_init(&rtpcp->cblist);
270 		INIT_WORK(&rtpcp->rtp_work, rcu_tasks_invoke_cbs_wq);
271 		rtpcp->cpu = cpu;
272 		rtpcp->rtpp = rtp;
273 		if (!rtpcp->rtp_blkd_tasks.next)
274 			INIT_LIST_HEAD(&rtpcp->rtp_blkd_tasks);
275 		if (!rtpcp->rtp_exit_list.next)
276 			INIT_LIST_HEAD(&rtpcp->rtp_exit_list);
277 	}
278 
279 	pr_info("%s: Setting shift to %d and lim to %d rcu_task_cb_adjust=%d.\n", rtp->name,
280 			data_race(rtp->percpu_enqueue_shift), data_race(rtp->percpu_enqueue_lim), rcu_task_cb_adjust);
281 }
282 
283 // Compute wakeup time for lazy callback timer.
284 static unsigned long rcu_tasks_lazy_time(struct rcu_tasks *rtp)
285 {
286 	return jiffies + rtp->lazy_jiffies;
287 }
288 
289 // Timer handler that unlazifies lazy callbacks.
290 static void call_rcu_tasks_generic_timer(struct timer_list *tlp)
291 {
292 	unsigned long flags;
293 	bool needwake = false;
294 	struct rcu_tasks *rtp;
295 	struct rcu_tasks_percpu *rtpcp = from_timer(rtpcp, tlp, lazy_timer);
296 
297 	rtp = rtpcp->rtpp;
298 	raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
299 	if (!rcu_segcblist_empty(&rtpcp->cblist) && rtp->lazy_jiffies) {
300 		if (!rtpcp->urgent_gp)
301 			rtpcp->urgent_gp = 1;
302 		needwake = true;
303 		mod_timer(&rtpcp->lazy_timer, rcu_tasks_lazy_time(rtp));
304 	}
305 	raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
306 	if (needwake)
307 		rcuwait_wake_up(&rtp->cbs_wait);
308 }
309 
310 // IRQ-work handler that does deferred wakeup for call_rcu_tasks_generic().
311 static void call_rcu_tasks_iw_wakeup(struct irq_work *iwp)
312 {
313 	struct rcu_tasks *rtp;
314 	struct rcu_tasks_percpu *rtpcp = container_of(iwp, struct rcu_tasks_percpu, rtp_irq_work);
315 
316 	rtp = rtpcp->rtpp;
317 	rcuwait_wake_up(&rtp->cbs_wait);
318 }
319 
320 // Enqueue a callback for the specified flavor of Tasks RCU.
321 static void call_rcu_tasks_generic(struct rcu_head *rhp, rcu_callback_t func,
322 				   struct rcu_tasks *rtp)
323 {
324 	int chosen_cpu;
325 	unsigned long flags;
326 	bool havekthread = smp_load_acquire(&rtp->kthread_ptr);
327 	int ideal_cpu;
328 	unsigned long j;
329 	bool needadjust = false;
330 	bool needwake;
331 	struct rcu_tasks_percpu *rtpcp;
332 
333 	rhp->next = NULL;
334 	rhp->func = func;
335 	local_irq_save(flags);
336 	rcu_read_lock();
337 	ideal_cpu = smp_processor_id() >> READ_ONCE(rtp->percpu_enqueue_shift);
338 	chosen_cpu = cpumask_next(ideal_cpu - 1, cpu_possible_mask);
339 	rtpcp = per_cpu_ptr(rtp->rtpcpu, chosen_cpu);
340 	if (!raw_spin_trylock_rcu_node(rtpcp)) { // irqs already disabled.
341 		raw_spin_lock_rcu_node(rtpcp); // irqs already disabled.
342 		j = jiffies;
343 		if (rtpcp->rtp_jiffies != j) {
344 			rtpcp->rtp_jiffies = j;
345 			rtpcp->rtp_n_lock_retries = 0;
346 		}
347 		if (rcu_task_cb_adjust && ++rtpcp->rtp_n_lock_retries > rcu_task_contend_lim &&
348 		    READ_ONCE(rtp->percpu_enqueue_lim) != nr_cpu_ids)
349 			needadjust = true;  // Defer adjustment to avoid deadlock.
350 	}
351 	// Queuing callbacks before initialization not yet supported.
352 	if (WARN_ON_ONCE(!rcu_segcblist_is_enabled(&rtpcp->cblist)))
353 		rcu_segcblist_init(&rtpcp->cblist);
354 	needwake = (func == wakeme_after_rcu) ||
355 		   (rcu_segcblist_n_cbs(&rtpcp->cblist) == rcu_task_lazy_lim);
356 	if (havekthread && !needwake && !timer_pending(&rtpcp->lazy_timer)) {
357 		if (rtp->lazy_jiffies)
358 			mod_timer(&rtpcp->lazy_timer, rcu_tasks_lazy_time(rtp));
359 		else
360 			needwake = rcu_segcblist_empty(&rtpcp->cblist);
361 	}
362 	if (needwake)
363 		rtpcp->urgent_gp = 3;
364 	rcu_segcblist_enqueue(&rtpcp->cblist, rhp);
365 	raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
366 	if (unlikely(needadjust)) {
367 		raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags);
368 		if (rtp->percpu_enqueue_lim != nr_cpu_ids) {
369 			WRITE_ONCE(rtp->percpu_enqueue_shift, 0);
370 			WRITE_ONCE(rtp->percpu_dequeue_lim, nr_cpu_ids);
371 			smp_store_release(&rtp->percpu_enqueue_lim, nr_cpu_ids);
372 			pr_info("Switching %s to per-CPU callback queuing.\n", rtp->name);
373 		}
374 		raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags);
375 	}
376 	rcu_read_unlock();
377 	/* We can't create the thread unless interrupts are enabled. */
378 	if (needwake && READ_ONCE(rtp->kthread_ptr))
379 		irq_work_queue(&rtpcp->rtp_irq_work);
380 }
381 
382 // RCU callback function for rcu_barrier_tasks_generic().
383 static void rcu_barrier_tasks_generic_cb(struct rcu_head *rhp)
384 {
385 	struct rcu_tasks *rtp;
386 	struct rcu_tasks_percpu *rtpcp;
387 
388 	rtpcp = container_of(rhp, struct rcu_tasks_percpu, barrier_q_head);
389 	rtp = rtpcp->rtpp;
390 	if (atomic_dec_and_test(&rtp->barrier_q_count))
391 		complete(&rtp->barrier_q_completion);
392 }
393 
394 // Wait for all in-flight callbacks for the specified RCU Tasks flavor.
395 // Operates in a manner similar to rcu_barrier().
396 static void rcu_barrier_tasks_generic(struct rcu_tasks *rtp)
397 {
398 	int cpu;
399 	unsigned long flags;
400 	struct rcu_tasks_percpu *rtpcp;
401 	unsigned long s = rcu_seq_snap(&rtp->barrier_q_seq);
402 
403 	mutex_lock(&rtp->barrier_q_mutex);
404 	if (rcu_seq_done(&rtp->barrier_q_seq, s)) {
405 		smp_mb();
406 		mutex_unlock(&rtp->barrier_q_mutex);
407 		return;
408 	}
409 	rcu_seq_start(&rtp->barrier_q_seq);
410 	init_completion(&rtp->barrier_q_completion);
411 	atomic_set(&rtp->barrier_q_count, 2);
412 	for_each_possible_cpu(cpu) {
413 		if (cpu >= smp_load_acquire(&rtp->percpu_dequeue_lim))
414 			break;
415 		rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
416 		rtpcp->barrier_q_head.func = rcu_barrier_tasks_generic_cb;
417 		raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
418 		if (rcu_segcblist_entrain(&rtpcp->cblist, &rtpcp->barrier_q_head))
419 			atomic_inc(&rtp->barrier_q_count);
420 		raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
421 	}
422 	if (atomic_sub_and_test(2, &rtp->barrier_q_count))
423 		complete(&rtp->barrier_q_completion);
424 	wait_for_completion(&rtp->barrier_q_completion);
425 	rcu_seq_end(&rtp->barrier_q_seq);
426 	mutex_unlock(&rtp->barrier_q_mutex);
427 }
428 
429 // Advance callbacks and indicate whether either a grace period or
430 // callback invocation is needed.
431 static int rcu_tasks_need_gpcb(struct rcu_tasks *rtp)
432 {
433 	int cpu;
434 	int dequeue_limit;
435 	unsigned long flags;
436 	bool gpdone = poll_state_synchronize_rcu(rtp->percpu_dequeue_gpseq);
437 	long n;
438 	long ncbs = 0;
439 	long ncbsnz = 0;
440 	int needgpcb = 0;
441 
442 	dequeue_limit = smp_load_acquire(&rtp->percpu_dequeue_lim);
443 	for (cpu = 0; cpu < dequeue_limit; cpu++) {
444 		struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
445 
446 		/* Advance and accelerate any new callbacks. */
447 		if (!rcu_segcblist_n_cbs(&rtpcp->cblist))
448 			continue;
449 		raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
450 		// Should we shrink down to a single callback queue?
451 		n = rcu_segcblist_n_cbs(&rtpcp->cblist);
452 		if (n) {
453 			ncbs += n;
454 			if (cpu > 0)
455 				ncbsnz += n;
456 		}
457 		rcu_segcblist_advance(&rtpcp->cblist, rcu_seq_current(&rtp->tasks_gp_seq));
458 		(void)rcu_segcblist_accelerate(&rtpcp->cblist, rcu_seq_snap(&rtp->tasks_gp_seq));
459 		if (rtpcp->urgent_gp > 0 && rcu_segcblist_pend_cbs(&rtpcp->cblist)) {
460 			if (rtp->lazy_jiffies)
461 				rtpcp->urgent_gp--;
462 			needgpcb |= 0x3;
463 		} else if (rcu_segcblist_empty(&rtpcp->cblist)) {
464 			rtpcp->urgent_gp = 0;
465 		}
466 		if (rcu_segcblist_ready_cbs(&rtpcp->cblist))
467 			needgpcb |= 0x1;
468 		raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
469 	}
470 
471 	// Shrink down to a single callback queue if appropriate.
472 	// This is done in two stages: (1) If there are no more than
473 	// rcu_task_collapse_lim callbacks on CPU 0 and none on any other
474 	// CPU, limit enqueueing to CPU 0.  (2) After an RCU grace period,
475 	// if there has not been an increase in callbacks, limit dequeuing
476 	// to CPU 0.  Note the matching RCU read-side critical section in
477 	// call_rcu_tasks_generic().
478 	if (rcu_task_cb_adjust && ncbs <= rcu_task_collapse_lim) {
479 		raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags);
480 		if (rtp->percpu_enqueue_lim > 1) {
481 			WRITE_ONCE(rtp->percpu_enqueue_shift, order_base_2(nr_cpu_ids));
482 			smp_store_release(&rtp->percpu_enqueue_lim, 1);
483 			rtp->percpu_dequeue_gpseq = get_state_synchronize_rcu();
484 			gpdone = false;
485 			pr_info("Starting switch %s to CPU-0 callback queuing.\n", rtp->name);
486 		}
487 		raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags);
488 	}
489 	if (rcu_task_cb_adjust && !ncbsnz && gpdone) {
490 		raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags);
491 		if (rtp->percpu_enqueue_lim < rtp->percpu_dequeue_lim) {
492 			WRITE_ONCE(rtp->percpu_dequeue_lim, 1);
493 			pr_info("Completing switch %s to CPU-0 callback queuing.\n", rtp->name);
494 		}
495 		if (rtp->percpu_dequeue_lim == 1) {
496 			for (cpu = rtp->percpu_dequeue_lim; cpu < nr_cpu_ids; cpu++) {
497 				struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
498 
499 				WARN_ON_ONCE(rcu_segcblist_n_cbs(&rtpcp->cblist));
500 			}
501 		}
502 		raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags);
503 	}
504 
505 	return needgpcb;
506 }
507 
508 // Advance callbacks and invoke any that are ready.
509 static void rcu_tasks_invoke_cbs(struct rcu_tasks *rtp, struct rcu_tasks_percpu *rtpcp)
510 {
511 	int cpu;
512 	int cpunext;
513 	int cpuwq;
514 	unsigned long flags;
515 	int len;
516 	struct rcu_head *rhp;
517 	struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
518 	struct rcu_tasks_percpu *rtpcp_next;
519 
520 	cpu = rtpcp->cpu;
521 	cpunext = cpu * 2 + 1;
522 	if (cpunext < smp_load_acquire(&rtp->percpu_dequeue_lim)) {
523 		rtpcp_next = per_cpu_ptr(rtp->rtpcpu, cpunext);
524 		cpuwq = rcu_cpu_beenfullyonline(cpunext) ? cpunext : WORK_CPU_UNBOUND;
525 		queue_work_on(cpuwq, system_wq, &rtpcp_next->rtp_work);
526 		cpunext++;
527 		if (cpunext < smp_load_acquire(&rtp->percpu_dequeue_lim)) {
528 			rtpcp_next = per_cpu_ptr(rtp->rtpcpu, cpunext);
529 			cpuwq = rcu_cpu_beenfullyonline(cpunext) ? cpunext : WORK_CPU_UNBOUND;
530 			queue_work_on(cpuwq, system_wq, &rtpcp_next->rtp_work);
531 		}
532 	}
533 
534 	if (rcu_segcblist_empty(&rtpcp->cblist) || !cpu_possible(cpu))
535 		return;
536 	raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
537 	rcu_segcblist_advance(&rtpcp->cblist, rcu_seq_current(&rtp->tasks_gp_seq));
538 	rcu_segcblist_extract_done_cbs(&rtpcp->cblist, &rcl);
539 	raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
540 	len = rcl.len;
541 	for (rhp = rcu_cblist_dequeue(&rcl); rhp; rhp = rcu_cblist_dequeue(&rcl)) {
542 		debug_rcu_head_callback(rhp);
543 		local_bh_disable();
544 		rhp->func(rhp);
545 		local_bh_enable();
546 		cond_resched();
547 	}
548 	raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
549 	rcu_segcblist_add_len(&rtpcp->cblist, -len);
550 	(void)rcu_segcblist_accelerate(&rtpcp->cblist, rcu_seq_snap(&rtp->tasks_gp_seq));
551 	raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
552 }
553 
554 // Workqueue flood to advance callbacks and invoke any that are ready.
555 static void rcu_tasks_invoke_cbs_wq(struct work_struct *wp)
556 {
557 	struct rcu_tasks *rtp;
558 	struct rcu_tasks_percpu *rtpcp = container_of(wp, struct rcu_tasks_percpu, rtp_work);
559 
560 	rtp = rtpcp->rtpp;
561 	rcu_tasks_invoke_cbs(rtp, rtpcp);
562 }
563 
564 // Wait for one grace period.
565 static void rcu_tasks_one_gp(struct rcu_tasks *rtp, bool midboot)
566 {
567 	int needgpcb;
568 
569 	mutex_lock(&rtp->tasks_gp_mutex);
570 
571 	// If there were none, wait a bit and start over.
572 	if (unlikely(midboot)) {
573 		needgpcb = 0x2;
574 	} else {
575 		mutex_unlock(&rtp->tasks_gp_mutex);
576 		set_tasks_gp_state(rtp, RTGS_WAIT_CBS);
577 		rcuwait_wait_event(&rtp->cbs_wait,
578 				   (needgpcb = rcu_tasks_need_gpcb(rtp)),
579 				   TASK_IDLE);
580 		mutex_lock(&rtp->tasks_gp_mutex);
581 	}
582 
583 	if (needgpcb & 0x2) {
584 		// Wait for one grace period.
585 		set_tasks_gp_state(rtp, RTGS_WAIT_GP);
586 		rtp->gp_start = jiffies;
587 		rcu_seq_start(&rtp->tasks_gp_seq);
588 		rtp->gp_func(rtp);
589 		rcu_seq_end(&rtp->tasks_gp_seq);
590 	}
591 
592 	// Invoke callbacks.
593 	set_tasks_gp_state(rtp, RTGS_INVOKE_CBS);
594 	rcu_tasks_invoke_cbs(rtp, per_cpu_ptr(rtp->rtpcpu, 0));
595 	mutex_unlock(&rtp->tasks_gp_mutex);
596 }
597 
598 // RCU-tasks kthread that detects grace periods and invokes callbacks.
599 static int __noreturn rcu_tasks_kthread(void *arg)
600 {
601 	int cpu;
602 	struct rcu_tasks *rtp = arg;
603 
604 	for_each_possible_cpu(cpu) {
605 		struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
606 
607 		timer_setup(&rtpcp->lazy_timer, call_rcu_tasks_generic_timer, 0);
608 		rtpcp->urgent_gp = 1;
609 	}
610 
611 	/* Run on housekeeping CPUs by default.  Sysadm can move if desired. */
612 	housekeeping_affine(current, HK_TYPE_RCU);
613 	smp_store_release(&rtp->kthread_ptr, current); // Let GPs start!
614 
615 	/*
616 	 * Each pass through the following loop makes one check for
617 	 * newly arrived callbacks, and, if there are some, waits for
618 	 * one RCU-tasks grace period and then invokes the callbacks.
619 	 * This loop is terminated by the system going down.  ;-)
620 	 */
621 	for (;;) {
622 		// Wait for one grace period and invoke any callbacks
623 		// that are ready.
624 		rcu_tasks_one_gp(rtp, false);
625 
626 		// Paranoid sleep to keep this from entering a tight loop.
627 		schedule_timeout_idle(rtp->gp_sleep);
628 	}
629 }
630 
631 // Wait for a grace period for the specified flavor of Tasks RCU.
632 static void synchronize_rcu_tasks_generic(struct rcu_tasks *rtp)
633 {
634 	/* Complain if the scheduler has not started.  */
635 	if (WARN_ONCE(rcu_scheduler_active == RCU_SCHEDULER_INACTIVE,
636 			 "synchronize_%s() called too soon", rtp->name))
637 		return;
638 
639 	// If the grace-period kthread is running, use it.
640 	if (READ_ONCE(rtp->kthread_ptr)) {
641 		wait_rcu_gp(rtp->call_func);
642 		return;
643 	}
644 	rcu_tasks_one_gp(rtp, true);
645 }
646 
647 /* Spawn RCU-tasks grace-period kthread. */
648 static void __init rcu_spawn_tasks_kthread_generic(struct rcu_tasks *rtp)
649 {
650 	struct task_struct *t;
651 
652 	t = kthread_run(rcu_tasks_kthread, rtp, "%s_kthread", rtp->kname);
653 	if (WARN_ONCE(IS_ERR(t), "%s: Could not start %s grace-period kthread, OOM is now expected behavior\n", __func__, rtp->name))
654 		return;
655 	smp_mb(); /* Ensure others see full kthread. */
656 }
657 
658 #ifndef CONFIG_TINY_RCU
659 
660 /*
661  * Print any non-default Tasks RCU settings.
662  */
663 static void __init rcu_tasks_bootup_oddness(void)
664 {
665 #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU)
666 	int rtsimc;
667 
668 	if (rcu_task_stall_timeout != RCU_TASK_STALL_TIMEOUT)
669 		pr_info("\tTasks-RCU CPU stall warnings timeout set to %d (rcu_task_stall_timeout).\n", rcu_task_stall_timeout);
670 	rtsimc = clamp(rcu_task_stall_info_mult, 1, 10);
671 	if (rtsimc != rcu_task_stall_info_mult) {
672 		pr_info("\tTasks-RCU CPU stall info multiplier clamped to %d (rcu_task_stall_info_mult).\n", rtsimc);
673 		rcu_task_stall_info_mult = rtsimc;
674 	}
675 #endif /* #ifdef CONFIG_TASKS_RCU */
676 #ifdef CONFIG_TASKS_RCU
677 	pr_info("\tTrampoline variant of Tasks RCU enabled.\n");
678 #endif /* #ifdef CONFIG_TASKS_RCU */
679 #ifdef CONFIG_TASKS_RUDE_RCU
680 	pr_info("\tRude variant of Tasks RCU enabled.\n");
681 #endif /* #ifdef CONFIG_TASKS_RUDE_RCU */
682 #ifdef CONFIG_TASKS_TRACE_RCU
683 	pr_info("\tTracing variant of Tasks RCU enabled.\n");
684 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
685 }
686 
687 #endif /* #ifndef CONFIG_TINY_RCU */
688 
689 #ifndef CONFIG_TINY_RCU
690 /* Dump out rcutorture-relevant state common to all RCU-tasks flavors. */
691 static void show_rcu_tasks_generic_gp_kthread(struct rcu_tasks *rtp, char *s)
692 {
693 	int cpu;
694 	bool havecbs = false;
695 	bool haveurgent = false;
696 	bool haveurgentcbs = false;
697 
698 	for_each_possible_cpu(cpu) {
699 		struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
700 
701 		if (!data_race(rcu_segcblist_empty(&rtpcp->cblist)))
702 			havecbs = true;
703 		if (data_race(rtpcp->urgent_gp))
704 			haveurgent = true;
705 		if (!data_race(rcu_segcblist_empty(&rtpcp->cblist)) && data_race(rtpcp->urgent_gp))
706 			haveurgentcbs = true;
707 		if (havecbs && haveurgent && haveurgentcbs)
708 			break;
709 	}
710 	pr_info("%s: %s(%d) since %lu g:%lu i:%lu/%lu %c%c%c%c l:%lu %s\n",
711 		rtp->kname,
712 		tasks_gp_state_getname(rtp), data_race(rtp->gp_state),
713 		jiffies - data_race(rtp->gp_jiffies),
714 		data_race(rcu_seq_current(&rtp->tasks_gp_seq)),
715 		data_race(rtp->n_ipis_fails), data_race(rtp->n_ipis),
716 		".k"[!!data_race(rtp->kthread_ptr)],
717 		".C"[havecbs],
718 		".u"[haveurgent],
719 		".U"[haveurgentcbs],
720 		rtp->lazy_jiffies,
721 		s);
722 }
723 #endif // #ifndef CONFIG_TINY_RCU
724 
725 static void exit_tasks_rcu_finish_trace(struct task_struct *t);
726 
727 #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU)
728 
729 ////////////////////////////////////////////////////////////////////////
730 //
731 // Shared code between task-list-scanning variants of Tasks RCU.
732 
733 /* Wait for one RCU-tasks grace period. */
734 static void rcu_tasks_wait_gp(struct rcu_tasks *rtp)
735 {
736 	struct task_struct *g;
737 	int fract;
738 	LIST_HEAD(holdouts);
739 	unsigned long j;
740 	unsigned long lastinfo;
741 	unsigned long lastreport;
742 	bool reported = false;
743 	int rtsi;
744 	struct task_struct *t;
745 
746 	set_tasks_gp_state(rtp, RTGS_PRE_WAIT_GP);
747 	rtp->pregp_func(&holdouts);
748 
749 	/*
750 	 * There were callbacks, so we need to wait for an RCU-tasks
751 	 * grace period.  Start off by scanning the task list for tasks
752 	 * that are not already voluntarily blocked.  Mark these tasks
753 	 * and make a list of them in holdouts.
754 	 */
755 	set_tasks_gp_state(rtp, RTGS_SCAN_TASKLIST);
756 	if (rtp->pertask_func) {
757 		rcu_read_lock();
758 		for_each_process_thread(g, t)
759 			rtp->pertask_func(t, &holdouts);
760 		rcu_read_unlock();
761 	}
762 
763 	set_tasks_gp_state(rtp, RTGS_POST_SCAN_TASKLIST);
764 	rtp->postscan_func(&holdouts);
765 
766 	/*
767 	 * Each pass through the following loop scans the list of holdout
768 	 * tasks, removing any that are no longer holdouts.  When the list
769 	 * is empty, we are done.
770 	 */
771 	lastreport = jiffies;
772 	lastinfo = lastreport;
773 	rtsi = READ_ONCE(rcu_task_stall_info);
774 
775 	// Start off with initial wait and slowly back off to 1 HZ wait.
776 	fract = rtp->init_fract;
777 
778 	while (!list_empty(&holdouts)) {
779 		ktime_t exp;
780 		bool firstreport;
781 		bool needreport;
782 		int rtst;
783 
784 		// Slowly back off waiting for holdouts
785 		set_tasks_gp_state(rtp, RTGS_WAIT_SCAN_HOLDOUTS);
786 		if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
787 			schedule_timeout_idle(fract);
788 		} else {
789 			exp = jiffies_to_nsecs(fract);
790 			__set_current_state(TASK_IDLE);
791 			schedule_hrtimeout_range(&exp, jiffies_to_nsecs(HZ / 2), HRTIMER_MODE_REL_HARD);
792 		}
793 
794 		if (fract < HZ)
795 			fract++;
796 
797 		rtst = READ_ONCE(rcu_task_stall_timeout);
798 		needreport = rtst > 0 && time_after(jiffies, lastreport + rtst);
799 		if (needreport) {
800 			lastreport = jiffies;
801 			reported = true;
802 		}
803 		firstreport = true;
804 		WARN_ON(signal_pending(current));
805 		set_tasks_gp_state(rtp, RTGS_SCAN_HOLDOUTS);
806 		rtp->holdouts_func(&holdouts, needreport, &firstreport);
807 
808 		// Print pre-stall informational messages if needed.
809 		j = jiffies;
810 		if (rtsi > 0 && !reported && time_after(j, lastinfo + rtsi)) {
811 			lastinfo = j;
812 			rtsi = rtsi * rcu_task_stall_info_mult;
813 			pr_info("%s: %s grace period number %lu (since boot) is %lu jiffies old.\n",
814 				__func__, rtp->kname, rtp->tasks_gp_seq, j - rtp->gp_start);
815 		}
816 	}
817 
818 	set_tasks_gp_state(rtp, RTGS_POST_GP);
819 	rtp->postgp_func(rtp);
820 }
821 
822 #endif /* #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU) */
823 
824 #ifdef CONFIG_TASKS_RCU
825 
826 ////////////////////////////////////////////////////////////////////////
827 //
828 // Simple variant of RCU whose quiescent states are voluntary context
829 // switch, cond_resched_tasks_rcu_qs(), user-space execution, and idle.
830 // As such, grace periods can take one good long time.  There are no
831 // read-side primitives similar to rcu_read_lock() and rcu_read_unlock()
832 // because this implementation is intended to get the system into a safe
833 // state for some of the manipulations involved in tracing and the like.
834 // Finally, this implementation does not support high call_rcu_tasks()
835 // rates from multiple CPUs.  If this is required, per-CPU callback lists
836 // will be needed.
837 //
838 // The implementation uses rcu_tasks_wait_gp(), which relies on function
839 // pointers in the rcu_tasks structure.  The rcu_spawn_tasks_kthread()
840 // function sets these function pointers up so that rcu_tasks_wait_gp()
841 // invokes these functions in this order:
842 //
843 // rcu_tasks_pregp_step():
844 //	Invokes synchronize_rcu() in order to wait for all in-flight
845 //	t->on_rq and t->nvcsw transitions to complete.	This works because
846 //	all such transitions are carried out with interrupts disabled.
847 // rcu_tasks_pertask(), invoked on every non-idle task:
848 //	For every runnable non-idle task other than the current one, use
849 //	get_task_struct() to pin down that task, snapshot that task's
850 //	number of voluntary context switches, and add that task to the
851 //	holdout list.
852 // rcu_tasks_postscan():
853 //	Gather per-CPU lists of tasks in do_exit() to ensure that all
854 //	tasks that were in the process of exiting (and which thus might
855 //	not know to synchronize with this RCU Tasks grace period) have
856 //	completed exiting.  The synchronize_rcu() in rcu_tasks_postgp()
857 //	will take care of any tasks stuck in the non-preemptible region
858 //	of do_exit() following its call to exit_tasks_rcu_stop().
859 // check_all_holdout_tasks(), repeatedly until holdout list is empty:
860 //	Scans the holdout list, attempting to identify a quiescent state
861 //	for each task on the list.  If there is a quiescent state, the
862 //	corresponding task is removed from the holdout list.
863 // rcu_tasks_postgp():
864 //	Invokes synchronize_rcu() in order to ensure that all prior
865 //	t->on_rq and t->nvcsw transitions are seen by all CPUs and tasks
866 //	to have happened before the end of this RCU Tasks grace period.
867 //	Again, this works because all such transitions are carried out
868 //	with interrupts disabled.
869 //
870 // For each exiting task, the exit_tasks_rcu_start() and
871 // exit_tasks_rcu_finish() functions add and remove, respectively, the
872 // current task to a per-CPU list of tasks that rcu_tasks_postscan() must
873 // wait on.  This is necessary because rcu_tasks_postscan() must wait on
874 // tasks that have already been removed from the global list of tasks.
875 //
876 // Pre-grace-period update-side code is ordered before the grace
877 // via the raw_spin_lock.*rcu_node().  Pre-grace-period read-side code
878 // is ordered before the grace period via synchronize_rcu() call in
879 // rcu_tasks_pregp_step() and by the scheduler's locks and interrupt
880 // disabling.
881 
882 /* Pre-grace-period preparation. */
883 static void rcu_tasks_pregp_step(struct list_head *hop)
884 {
885 	/*
886 	 * Wait for all pre-existing t->on_rq and t->nvcsw transitions
887 	 * to complete.  Invoking synchronize_rcu() suffices because all
888 	 * these transitions occur with interrupts disabled.  Without this
889 	 * synchronize_rcu(), a read-side critical section that started
890 	 * before the grace period might be incorrectly seen as having
891 	 * started after the grace period.
892 	 *
893 	 * This synchronize_rcu() also dispenses with the need for a
894 	 * memory barrier on the first store to t->rcu_tasks_holdout,
895 	 * as it forces the store to happen after the beginning of the
896 	 * grace period.
897 	 */
898 	synchronize_rcu();
899 }
900 
901 /* Check for quiescent states since the pregp's synchronize_rcu() */
902 static bool rcu_tasks_is_holdout(struct task_struct *t)
903 {
904 	int cpu;
905 
906 	/* Has the task been seen voluntarily sleeping? */
907 	if (!READ_ONCE(t->on_rq))
908 		return false;
909 
910 	/*
911 	 * Idle tasks (or idle injection) within the idle loop are RCU-tasks
912 	 * quiescent states. But CPU boot code performed by the idle task
913 	 * isn't a quiescent state.
914 	 */
915 	if (is_idle_task(t))
916 		return false;
917 
918 	cpu = task_cpu(t);
919 
920 	/* Idle tasks on offline CPUs are RCU-tasks quiescent states. */
921 	if (t == idle_task(cpu) && !rcu_cpu_online(cpu))
922 		return false;
923 
924 	return true;
925 }
926 
927 /* Per-task initial processing. */
928 static void rcu_tasks_pertask(struct task_struct *t, struct list_head *hop)
929 {
930 	if (t != current && rcu_tasks_is_holdout(t)) {
931 		get_task_struct(t);
932 		t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw);
933 		WRITE_ONCE(t->rcu_tasks_holdout, true);
934 		list_add(&t->rcu_tasks_holdout_list, hop);
935 	}
936 }
937 
938 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func);
939 DEFINE_RCU_TASKS(rcu_tasks, rcu_tasks_wait_gp, call_rcu_tasks, "RCU Tasks");
940 
941 /* Processing between scanning taskslist and draining the holdout list. */
942 static void rcu_tasks_postscan(struct list_head *hop)
943 {
944 	int cpu;
945 	int rtsi = READ_ONCE(rcu_task_stall_info);
946 
947 	if (!IS_ENABLED(CONFIG_TINY_RCU)) {
948 		tasks_rcu_exit_srcu_stall_timer.expires = jiffies + rtsi;
949 		add_timer(&tasks_rcu_exit_srcu_stall_timer);
950 	}
951 
952 	/*
953 	 * Exiting tasks may escape the tasklist scan. Those are vulnerable
954 	 * until their final schedule() with TASK_DEAD state. To cope with
955 	 * this, divide the fragile exit path part in two intersecting
956 	 * read side critical sections:
957 	 *
958 	 * 1) A task_struct list addition before calling exit_notify(),
959 	 *    which may remove the task from the tasklist, with the
960 	 *    removal after the final preempt_disable() call in do_exit().
961 	 *
962 	 * 2) An _RCU_ read side starting with the final preempt_disable()
963 	 *    call in do_exit() and ending with the final call to schedule()
964 	 *    with TASK_DEAD state.
965 	 *
966 	 * This handles the part 1). And postgp will handle part 2) with a
967 	 * call to synchronize_rcu().
968 	 */
969 
970 	for_each_possible_cpu(cpu) {
971 		unsigned long j = jiffies + 1;
972 		struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rcu_tasks.rtpcpu, cpu);
973 		struct task_struct *t;
974 		struct task_struct *t1;
975 		struct list_head tmp;
976 
977 		raw_spin_lock_irq_rcu_node(rtpcp);
978 		list_for_each_entry_safe(t, t1, &rtpcp->rtp_exit_list, rcu_tasks_exit_list) {
979 			if (list_empty(&t->rcu_tasks_holdout_list))
980 				rcu_tasks_pertask(t, hop);
981 
982 			// RT kernels need frequent pauses, otherwise
983 			// pause at least once per pair of jiffies.
984 			if (!IS_ENABLED(CONFIG_PREEMPT_RT) && time_before(jiffies, j))
985 				continue;
986 
987 			// Keep our place in the list while pausing.
988 			// Nothing else traverses this list, so adding a
989 			// bare list_head is OK.
990 			list_add(&tmp, &t->rcu_tasks_exit_list);
991 			raw_spin_unlock_irq_rcu_node(rtpcp);
992 			cond_resched(); // For CONFIG_PREEMPT=n kernels
993 			raw_spin_lock_irq_rcu_node(rtpcp);
994 			t1 = list_entry(tmp.next, struct task_struct, rcu_tasks_exit_list);
995 			list_del(&tmp);
996 			j = jiffies + 1;
997 		}
998 		raw_spin_unlock_irq_rcu_node(rtpcp);
999 	}
1000 
1001 	if (!IS_ENABLED(CONFIG_TINY_RCU))
1002 		del_timer_sync(&tasks_rcu_exit_srcu_stall_timer);
1003 }
1004 
1005 /* See if tasks are still holding out, complain if so. */
1006 static void check_holdout_task(struct task_struct *t,
1007 			       bool needreport, bool *firstreport)
1008 {
1009 	int cpu;
1010 
1011 	if (!READ_ONCE(t->rcu_tasks_holdout) ||
1012 	    t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) ||
1013 	    !rcu_tasks_is_holdout(t) ||
1014 	    (IS_ENABLED(CONFIG_NO_HZ_FULL) &&
1015 	     !is_idle_task(t) && READ_ONCE(t->rcu_tasks_idle_cpu) >= 0)) {
1016 		WRITE_ONCE(t->rcu_tasks_holdout, false);
1017 		list_del_init(&t->rcu_tasks_holdout_list);
1018 		put_task_struct(t);
1019 		return;
1020 	}
1021 	rcu_request_urgent_qs_task(t);
1022 	if (!needreport)
1023 		return;
1024 	if (*firstreport) {
1025 		pr_err("INFO: rcu_tasks detected stalls on tasks:\n");
1026 		*firstreport = false;
1027 	}
1028 	cpu = task_cpu(t);
1029 	pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n",
1030 		 t, ".I"[is_idle_task(t)],
1031 		 "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)],
1032 		 t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout,
1033 		 data_race(t->rcu_tasks_idle_cpu), cpu);
1034 	sched_show_task(t);
1035 }
1036 
1037 /* Scan the holdout lists for tasks no longer holding out. */
1038 static void check_all_holdout_tasks(struct list_head *hop,
1039 				    bool needreport, bool *firstreport)
1040 {
1041 	struct task_struct *t, *t1;
1042 
1043 	list_for_each_entry_safe(t, t1, hop, rcu_tasks_holdout_list) {
1044 		check_holdout_task(t, needreport, firstreport);
1045 		cond_resched();
1046 	}
1047 }
1048 
1049 /* Finish off the Tasks-RCU grace period. */
1050 static void rcu_tasks_postgp(struct rcu_tasks *rtp)
1051 {
1052 	/*
1053 	 * Because ->on_rq and ->nvcsw are not guaranteed to have a full
1054 	 * memory barriers prior to them in the schedule() path, memory
1055 	 * reordering on other CPUs could cause their RCU-tasks read-side
1056 	 * critical sections to extend past the end of the grace period.
1057 	 * However, because these ->nvcsw updates are carried out with
1058 	 * interrupts disabled, we can use synchronize_rcu() to force the
1059 	 * needed ordering on all such CPUs.
1060 	 *
1061 	 * This synchronize_rcu() also confines all ->rcu_tasks_holdout
1062 	 * accesses to be within the grace period, avoiding the need for
1063 	 * memory barriers for ->rcu_tasks_holdout accesses.
1064 	 *
1065 	 * In addition, this synchronize_rcu() waits for exiting tasks
1066 	 * to complete their final preempt_disable() region of execution,
1067 	 * enforcing the whole region before tasklist removal until
1068 	 * the final schedule() with TASK_DEAD state to be an RCU TASKS
1069 	 * read side critical section.
1070 	 */
1071 	synchronize_rcu();
1072 }
1073 
1074 static void tasks_rcu_exit_srcu_stall(struct timer_list *unused)
1075 {
1076 #ifndef CONFIG_TINY_RCU
1077 	int rtsi;
1078 
1079 	rtsi = READ_ONCE(rcu_task_stall_info);
1080 	pr_info("%s: %s grace period number %lu (since boot) gp_state: %s is %lu jiffies old.\n",
1081 		__func__, rcu_tasks.kname, rcu_tasks.tasks_gp_seq,
1082 		tasks_gp_state_getname(&rcu_tasks), jiffies - rcu_tasks.gp_jiffies);
1083 	pr_info("Please check any exiting tasks stuck between calls to exit_tasks_rcu_start() and exit_tasks_rcu_finish()\n");
1084 	tasks_rcu_exit_srcu_stall_timer.expires = jiffies + rtsi;
1085 	add_timer(&tasks_rcu_exit_srcu_stall_timer);
1086 #endif // #ifndef CONFIG_TINY_RCU
1087 }
1088 
1089 /**
1090  * call_rcu_tasks() - Queue an RCU for invocation task-based grace period
1091  * @rhp: structure to be used for queueing the RCU updates.
1092  * @func: actual callback function to be invoked after the grace period
1093  *
1094  * The callback function will be invoked some time after a full grace
1095  * period elapses, in other words after all currently executing RCU
1096  * read-side critical sections have completed. call_rcu_tasks() assumes
1097  * that the read-side critical sections end at a voluntary context
1098  * switch (not a preemption!), cond_resched_tasks_rcu_qs(), entry into idle,
1099  * or transition to usermode execution.  As such, there are no read-side
1100  * primitives analogous to rcu_read_lock() and rcu_read_unlock() because
1101  * this primitive is intended to determine that all tasks have passed
1102  * through a safe state, not so much for data-structure synchronization.
1103  *
1104  * See the description of call_rcu() for more detailed information on
1105  * memory ordering guarantees.
1106  */
1107 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func)
1108 {
1109 	call_rcu_tasks_generic(rhp, func, &rcu_tasks);
1110 }
1111 EXPORT_SYMBOL_GPL(call_rcu_tasks);
1112 
1113 /**
1114  * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed.
1115  *
1116  * Control will return to the caller some time after a full rcu-tasks
1117  * grace period has elapsed, in other words after all currently
1118  * executing rcu-tasks read-side critical sections have elapsed.  These
1119  * read-side critical sections are delimited by calls to schedule(),
1120  * cond_resched_tasks_rcu_qs(), idle execution, userspace execution, calls
1121  * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched().
1122  *
1123  * This is a very specialized primitive, intended only for a few uses in
1124  * tracing and other situations requiring manipulation of function
1125  * preambles and profiling hooks.  The synchronize_rcu_tasks() function
1126  * is not (yet) intended for heavy use from multiple CPUs.
1127  *
1128  * See the description of synchronize_rcu() for more detailed information
1129  * on memory ordering guarantees.
1130  */
1131 void synchronize_rcu_tasks(void)
1132 {
1133 	synchronize_rcu_tasks_generic(&rcu_tasks);
1134 }
1135 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks);
1136 
1137 /**
1138  * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks.
1139  *
1140  * Although the current implementation is guaranteed to wait, it is not
1141  * obligated to, for example, if there are no pending callbacks.
1142  */
1143 void rcu_barrier_tasks(void)
1144 {
1145 	rcu_barrier_tasks_generic(&rcu_tasks);
1146 }
1147 EXPORT_SYMBOL_GPL(rcu_barrier_tasks);
1148 
1149 static int rcu_tasks_lazy_ms = -1;
1150 module_param(rcu_tasks_lazy_ms, int, 0444);
1151 
1152 static int __init rcu_spawn_tasks_kthread(void)
1153 {
1154 	rcu_tasks.gp_sleep = HZ / 10;
1155 	rcu_tasks.init_fract = HZ / 10;
1156 	if (rcu_tasks_lazy_ms >= 0)
1157 		rcu_tasks.lazy_jiffies = msecs_to_jiffies(rcu_tasks_lazy_ms);
1158 	rcu_tasks.pregp_func = rcu_tasks_pregp_step;
1159 	rcu_tasks.pertask_func = rcu_tasks_pertask;
1160 	rcu_tasks.postscan_func = rcu_tasks_postscan;
1161 	rcu_tasks.holdouts_func = check_all_holdout_tasks;
1162 	rcu_tasks.postgp_func = rcu_tasks_postgp;
1163 	rcu_spawn_tasks_kthread_generic(&rcu_tasks);
1164 	return 0;
1165 }
1166 
1167 #if !defined(CONFIG_TINY_RCU)
1168 void show_rcu_tasks_classic_gp_kthread(void)
1169 {
1170 	show_rcu_tasks_generic_gp_kthread(&rcu_tasks, "");
1171 }
1172 EXPORT_SYMBOL_GPL(show_rcu_tasks_classic_gp_kthread);
1173 #endif // !defined(CONFIG_TINY_RCU)
1174 
1175 struct task_struct *get_rcu_tasks_gp_kthread(void)
1176 {
1177 	return rcu_tasks.kthread_ptr;
1178 }
1179 EXPORT_SYMBOL_GPL(get_rcu_tasks_gp_kthread);
1180 
1181 /*
1182  * Protect against tasklist scan blind spot while the task is exiting and
1183  * may be removed from the tasklist.  Do this by adding the task to yet
1184  * another list.
1185  *
1186  * Note that the task will remove itself from this list, so there is no
1187  * need for get_task_struct(), except in the case where rcu_tasks_pertask()
1188  * adds it to the holdout list, in which case rcu_tasks_pertask() supplies
1189  * the needed get_task_struct().
1190  */
1191 void exit_tasks_rcu_start(void)
1192 {
1193 	unsigned long flags;
1194 	struct rcu_tasks_percpu *rtpcp;
1195 	struct task_struct *t = current;
1196 
1197 	WARN_ON_ONCE(!list_empty(&t->rcu_tasks_exit_list));
1198 	preempt_disable();
1199 	rtpcp = this_cpu_ptr(rcu_tasks.rtpcpu);
1200 	t->rcu_tasks_exit_cpu = smp_processor_id();
1201 	raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
1202 	if (!rtpcp->rtp_exit_list.next)
1203 		INIT_LIST_HEAD(&rtpcp->rtp_exit_list);
1204 	list_add(&t->rcu_tasks_exit_list, &rtpcp->rtp_exit_list);
1205 	raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
1206 	preempt_enable();
1207 }
1208 
1209 /*
1210  * Remove the task from the "yet another list" because do_exit() is now
1211  * non-preemptible, allowing synchronize_rcu() to wait beyond this point.
1212  */
1213 void exit_tasks_rcu_stop(void)
1214 {
1215 	unsigned long flags;
1216 	struct rcu_tasks_percpu *rtpcp;
1217 	struct task_struct *t = current;
1218 
1219 	WARN_ON_ONCE(list_empty(&t->rcu_tasks_exit_list));
1220 	rtpcp = per_cpu_ptr(rcu_tasks.rtpcpu, t->rcu_tasks_exit_cpu);
1221 	raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
1222 	list_del_init(&t->rcu_tasks_exit_list);
1223 	raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
1224 }
1225 
1226 /*
1227  * Contribute to protect against tasklist scan blind spot while the
1228  * task is exiting and may be removed from the tasklist. See
1229  * corresponding synchronize_srcu() for further details.
1230  */
1231 void exit_tasks_rcu_finish(void)
1232 {
1233 	exit_tasks_rcu_stop();
1234 	exit_tasks_rcu_finish_trace(current);
1235 }
1236 
1237 #else /* #ifdef CONFIG_TASKS_RCU */
1238 void exit_tasks_rcu_start(void) { }
1239 void exit_tasks_rcu_stop(void) { }
1240 void exit_tasks_rcu_finish(void) { exit_tasks_rcu_finish_trace(current); }
1241 #endif /* #else #ifdef CONFIG_TASKS_RCU */
1242 
1243 #ifdef CONFIG_TASKS_RUDE_RCU
1244 
1245 ////////////////////////////////////////////////////////////////////////
1246 //
1247 // "Rude" variant of Tasks RCU, inspired by Steve Rostedt's trick of
1248 // passing an empty function to schedule_on_each_cpu().  This approach
1249 // provides an asynchronous call_rcu_tasks_rude() API and batching of
1250 // concurrent calls to the synchronous synchronize_rcu_tasks_rude() API.
1251 // This invokes schedule_on_each_cpu() in order to send IPIs far and wide
1252 // and induces otherwise unnecessary context switches on all online CPUs,
1253 // whether idle or not.
1254 //
1255 // Callback handling is provided by the rcu_tasks_kthread() function.
1256 //
1257 // Ordering is provided by the scheduler's context-switch code.
1258 
1259 // Empty function to allow workqueues to force a context switch.
1260 static void rcu_tasks_be_rude(struct work_struct *work)
1261 {
1262 }
1263 
1264 // Wait for one rude RCU-tasks grace period.
1265 static void rcu_tasks_rude_wait_gp(struct rcu_tasks *rtp)
1266 {
1267 	rtp->n_ipis += cpumask_weight(cpu_online_mask);
1268 	schedule_on_each_cpu(rcu_tasks_be_rude);
1269 }
1270 
1271 void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func);
1272 DEFINE_RCU_TASKS(rcu_tasks_rude, rcu_tasks_rude_wait_gp, call_rcu_tasks_rude,
1273 		 "RCU Tasks Rude");
1274 
1275 /**
1276  * call_rcu_tasks_rude() - Queue a callback rude task-based grace period
1277  * @rhp: structure to be used for queueing the RCU updates.
1278  * @func: actual callback function to be invoked after the grace period
1279  *
1280  * The callback function will be invoked some time after a full grace
1281  * period elapses, in other words after all currently executing RCU
1282  * read-side critical sections have completed. call_rcu_tasks_rude()
1283  * assumes that the read-side critical sections end at context switch,
1284  * cond_resched_tasks_rcu_qs(), or transition to usermode execution (as
1285  * usermode execution is schedulable). As such, there are no read-side
1286  * primitives analogous to rcu_read_lock() and rcu_read_unlock() because
1287  * this primitive is intended to determine that all tasks have passed
1288  * through a safe state, not so much for data-structure synchronization.
1289  *
1290  * See the description of call_rcu() for more detailed information on
1291  * memory ordering guarantees.
1292  */
1293 void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func)
1294 {
1295 	call_rcu_tasks_generic(rhp, func, &rcu_tasks_rude);
1296 }
1297 EXPORT_SYMBOL_GPL(call_rcu_tasks_rude);
1298 
1299 /**
1300  * synchronize_rcu_tasks_rude - wait for a rude rcu-tasks grace period
1301  *
1302  * Control will return to the caller some time after a rude rcu-tasks
1303  * grace period has elapsed, in other words after all currently
1304  * executing rcu-tasks read-side critical sections have elapsed.  These
1305  * read-side critical sections are delimited by calls to schedule(),
1306  * cond_resched_tasks_rcu_qs(), userspace execution (which is a schedulable
1307  * context), and (in theory, anyway) cond_resched().
1308  *
1309  * This is a very specialized primitive, intended only for a few uses in
1310  * tracing and other situations requiring manipulation of function preambles
1311  * and profiling hooks.  The synchronize_rcu_tasks_rude() function is not
1312  * (yet) intended for heavy use from multiple CPUs.
1313  *
1314  * See the description of synchronize_rcu() for more detailed information
1315  * on memory ordering guarantees.
1316  */
1317 void synchronize_rcu_tasks_rude(void)
1318 {
1319 	synchronize_rcu_tasks_generic(&rcu_tasks_rude);
1320 }
1321 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_rude);
1322 
1323 /**
1324  * rcu_barrier_tasks_rude - Wait for in-flight call_rcu_tasks_rude() callbacks.
1325  *
1326  * Although the current implementation is guaranteed to wait, it is not
1327  * obligated to, for example, if there are no pending callbacks.
1328  */
1329 void rcu_barrier_tasks_rude(void)
1330 {
1331 	rcu_barrier_tasks_generic(&rcu_tasks_rude);
1332 }
1333 EXPORT_SYMBOL_GPL(rcu_barrier_tasks_rude);
1334 
1335 int rcu_tasks_rude_lazy_ms = -1;
1336 module_param(rcu_tasks_rude_lazy_ms, int, 0444);
1337 
1338 static int __init rcu_spawn_tasks_rude_kthread(void)
1339 {
1340 	rcu_tasks_rude.gp_sleep = HZ / 10;
1341 	if (rcu_tasks_rude_lazy_ms >= 0)
1342 		rcu_tasks_rude.lazy_jiffies = msecs_to_jiffies(rcu_tasks_rude_lazy_ms);
1343 	rcu_spawn_tasks_kthread_generic(&rcu_tasks_rude);
1344 	return 0;
1345 }
1346 
1347 #if !defined(CONFIG_TINY_RCU)
1348 void show_rcu_tasks_rude_gp_kthread(void)
1349 {
1350 	show_rcu_tasks_generic_gp_kthread(&rcu_tasks_rude, "");
1351 }
1352 EXPORT_SYMBOL_GPL(show_rcu_tasks_rude_gp_kthread);
1353 #endif // !defined(CONFIG_TINY_RCU)
1354 
1355 struct task_struct *get_rcu_tasks_rude_gp_kthread(void)
1356 {
1357 	return rcu_tasks_rude.kthread_ptr;
1358 }
1359 EXPORT_SYMBOL_GPL(get_rcu_tasks_rude_gp_kthread);
1360 
1361 #endif /* #ifdef CONFIG_TASKS_RUDE_RCU */
1362 
1363 ////////////////////////////////////////////////////////////////////////
1364 //
1365 // Tracing variant of Tasks RCU.  This variant is designed to be used
1366 // to protect tracing hooks, including those of BPF.  This variant
1367 // therefore:
1368 //
1369 // 1.	Has explicit read-side markers to allow finite grace periods
1370 //	in the face of in-kernel loops for PREEMPT=n builds.
1371 //
1372 // 2.	Protects code in the idle loop, exception entry/exit, and
1373 //	CPU-hotplug code paths, similar to the capabilities of SRCU.
1374 //
1375 // 3.	Avoids expensive read-side instructions, having overhead similar
1376 //	to that of Preemptible RCU.
1377 //
1378 // There are of course downsides.  For example, the grace-period code
1379 // can send IPIs to CPUs, even when those CPUs are in the idle loop or
1380 // in nohz_full userspace.  If needed, these downsides can be at least
1381 // partially remedied.
1382 //
1383 // Perhaps most important, this variant of RCU does not affect the vanilla
1384 // flavors, rcu_preempt and rcu_sched.  The fact that RCU Tasks Trace
1385 // readers can operate from idle, offline, and exception entry/exit in no
1386 // way allows rcu_preempt and rcu_sched readers to also do so.
1387 //
1388 // The implementation uses rcu_tasks_wait_gp(), which relies on function
1389 // pointers in the rcu_tasks structure.  The rcu_spawn_tasks_trace_kthread()
1390 // function sets these function pointers up so that rcu_tasks_wait_gp()
1391 // invokes these functions in this order:
1392 //
1393 // rcu_tasks_trace_pregp_step():
1394 //	Disables CPU hotplug, adds all currently executing tasks to the
1395 //	holdout list, then checks the state of all tasks that blocked
1396 //	or were preempted within their current RCU Tasks Trace read-side
1397 //	critical section, adding them to the holdout list if appropriate.
1398 //	Finally, this function re-enables CPU hotplug.
1399 // The ->pertask_func() pointer is NULL, so there is no per-task processing.
1400 // rcu_tasks_trace_postscan():
1401 //	Invokes synchronize_rcu() to wait for late-stage exiting tasks
1402 //	to finish exiting.
1403 // check_all_holdout_tasks_trace(), repeatedly until holdout list is empty:
1404 //	Scans the holdout list, attempting to identify a quiescent state
1405 //	for each task on the list.  If there is a quiescent state, the
1406 //	corresponding task is removed from the holdout list.  Once this
1407 //	list is empty, the grace period has completed.
1408 // rcu_tasks_trace_postgp():
1409 //	Provides the needed full memory barrier and does debug checks.
1410 //
1411 // The exit_tasks_rcu_finish_trace() synchronizes with exiting tasks.
1412 //
1413 // Pre-grace-period update-side code is ordered before the grace period
1414 // via the ->cbs_lock and barriers in rcu_tasks_kthread().  Pre-grace-period
1415 // read-side code is ordered before the grace period by atomic operations
1416 // on .b.need_qs flag of each task involved in this process, or by scheduler
1417 // context-switch ordering (for locked-down non-running readers).
1418 
1419 // The lockdep state must be outside of #ifdef to be useful.
1420 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1421 static struct lock_class_key rcu_lock_trace_key;
1422 struct lockdep_map rcu_trace_lock_map =
1423 	STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_trace", &rcu_lock_trace_key);
1424 EXPORT_SYMBOL_GPL(rcu_trace_lock_map);
1425 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
1426 
1427 #ifdef CONFIG_TASKS_TRACE_RCU
1428 
1429 // Record outstanding IPIs to each CPU.  No point in sending two...
1430 static DEFINE_PER_CPU(bool, trc_ipi_to_cpu);
1431 
1432 // The number of detections of task quiescent state relying on
1433 // heavyweight readers executing explicit memory barriers.
1434 static unsigned long n_heavy_reader_attempts;
1435 static unsigned long n_heavy_reader_updates;
1436 static unsigned long n_heavy_reader_ofl_updates;
1437 static unsigned long n_trc_holdouts;
1438 
1439 void call_rcu_tasks_trace(struct rcu_head *rhp, rcu_callback_t func);
1440 DEFINE_RCU_TASKS(rcu_tasks_trace, rcu_tasks_wait_gp, call_rcu_tasks_trace,
1441 		 "RCU Tasks Trace");
1442 
1443 /* Load from ->trc_reader_special.b.need_qs with proper ordering. */
1444 static u8 rcu_ld_need_qs(struct task_struct *t)
1445 {
1446 	smp_mb(); // Enforce full grace-period ordering.
1447 	return smp_load_acquire(&t->trc_reader_special.b.need_qs);
1448 }
1449 
1450 /* Store to ->trc_reader_special.b.need_qs with proper ordering. */
1451 static void rcu_st_need_qs(struct task_struct *t, u8 v)
1452 {
1453 	smp_store_release(&t->trc_reader_special.b.need_qs, v);
1454 	smp_mb(); // Enforce full grace-period ordering.
1455 }
1456 
1457 /*
1458  * Do a cmpxchg() on ->trc_reader_special.b.need_qs, allowing for
1459  * the four-byte operand-size restriction of some platforms.
1460  * Returns the old value, which is often ignored.
1461  */
1462 u8 rcu_trc_cmpxchg_need_qs(struct task_struct *t, u8 old, u8 new)
1463 {
1464 	union rcu_special ret;
1465 	union rcu_special trs_old = READ_ONCE(t->trc_reader_special);
1466 	union rcu_special trs_new = trs_old;
1467 
1468 	if (trs_old.b.need_qs != old)
1469 		return trs_old.b.need_qs;
1470 	trs_new.b.need_qs = new;
1471 	ret.s = cmpxchg(&t->trc_reader_special.s, trs_old.s, trs_new.s);
1472 	return ret.b.need_qs;
1473 }
1474 EXPORT_SYMBOL_GPL(rcu_trc_cmpxchg_need_qs);
1475 
1476 /*
1477  * If we are the last reader, signal the grace-period kthread.
1478  * Also remove from the per-CPU list of blocked tasks.
1479  */
1480 void rcu_read_unlock_trace_special(struct task_struct *t)
1481 {
1482 	unsigned long flags;
1483 	struct rcu_tasks_percpu *rtpcp;
1484 	union rcu_special trs;
1485 
1486 	// Open-coded full-word version of rcu_ld_need_qs().
1487 	smp_mb(); // Enforce full grace-period ordering.
1488 	trs = smp_load_acquire(&t->trc_reader_special);
1489 
1490 	if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) && t->trc_reader_special.b.need_mb)
1491 		smp_mb(); // Pairs with update-side barriers.
1492 	// Update .need_qs before ->trc_reader_nesting for irq/NMI handlers.
1493 	if (trs.b.need_qs == (TRC_NEED_QS_CHECKED | TRC_NEED_QS)) {
1494 		u8 result = rcu_trc_cmpxchg_need_qs(t, TRC_NEED_QS_CHECKED | TRC_NEED_QS,
1495 						       TRC_NEED_QS_CHECKED);
1496 
1497 		WARN_ONCE(result != trs.b.need_qs, "%s: result = %d", __func__, result);
1498 	}
1499 	if (trs.b.blocked) {
1500 		rtpcp = per_cpu_ptr(rcu_tasks_trace.rtpcpu, t->trc_blkd_cpu);
1501 		raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
1502 		list_del_init(&t->trc_blkd_node);
1503 		WRITE_ONCE(t->trc_reader_special.b.blocked, false);
1504 		raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
1505 	}
1506 	WRITE_ONCE(t->trc_reader_nesting, 0);
1507 }
1508 EXPORT_SYMBOL_GPL(rcu_read_unlock_trace_special);
1509 
1510 /* Add a newly blocked reader task to its CPU's list. */
1511 void rcu_tasks_trace_qs_blkd(struct task_struct *t)
1512 {
1513 	unsigned long flags;
1514 	struct rcu_tasks_percpu *rtpcp;
1515 
1516 	local_irq_save(flags);
1517 	rtpcp = this_cpu_ptr(rcu_tasks_trace.rtpcpu);
1518 	raw_spin_lock_rcu_node(rtpcp); // irqs already disabled
1519 	t->trc_blkd_cpu = smp_processor_id();
1520 	if (!rtpcp->rtp_blkd_tasks.next)
1521 		INIT_LIST_HEAD(&rtpcp->rtp_blkd_tasks);
1522 	list_add(&t->trc_blkd_node, &rtpcp->rtp_blkd_tasks);
1523 	WRITE_ONCE(t->trc_reader_special.b.blocked, true);
1524 	raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
1525 }
1526 EXPORT_SYMBOL_GPL(rcu_tasks_trace_qs_blkd);
1527 
1528 /* Add a task to the holdout list, if it is not already on the list. */
1529 static void trc_add_holdout(struct task_struct *t, struct list_head *bhp)
1530 {
1531 	if (list_empty(&t->trc_holdout_list)) {
1532 		get_task_struct(t);
1533 		list_add(&t->trc_holdout_list, bhp);
1534 		n_trc_holdouts++;
1535 	}
1536 }
1537 
1538 /* Remove a task from the holdout list, if it is in fact present. */
1539 static void trc_del_holdout(struct task_struct *t)
1540 {
1541 	if (!list_empty(&t->trc_holdout_list)) {
1542 		list_del_init(&t->trc_holdout_list);
1543 		put_task_struct(t);
1544 		n_trc_holdouts--;
1545 	}
1546 }
1547 
1548 /* IPI handler to check task state. */
1549 static void trc_read_check_handler(void *t_in)
1550 {
1551 	int nesting;
1552 	struct task_struct *t = current;
1553 	struct task_struct *texp = t_in;
1554 
1555 	// If the task is no longer running on this CPU, leave.
1556 	if (unlikely(texp != t))
1557 		goto reset_ipi; // Already on holdout list, so will check later.
1558 
1559 	// If the task is not in a read-side critical section, and
1560 	// if this is the last reader, awaken the grace-period kthread.
1561 	nesting = READ_ONCE(t->trc_reader_nesting);
1562 	if (likely(!nesting)) {
1563 		rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED);
1564 		goto reset_ipi;
1565 	}
1566 	// If we are racing with an rcu_read_unlock_trace(), try again later.
1567 	if (unlikely(nesting < 0))
1568 		goto reset_ipi;
1569 
1570 	// Get here if the task is in a read-side critical section.
1571 	// Set its state so that it will update state for the grace-period
1572 	// kthread upon exit from that critical section.
1573 	rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS | TRC_NEED_QS_CHECKED);
1574 
1575 reset_ipi:
1576 	// Allow future IPIs to be sent on CPU and for task.
1577 	// Also order this IPI handler against any later manipulations of
1578 	// the intended task.
1579 	smp_store_release(per_cpu_ptr(&trc_ipi_to_cpu, smp_processor_id()), false); // ^^^
1580 	smp_store_release(&texp->trc_ipi_to_cpu, -1); // ^^^
1581 }
1582 
1583 /* Callback function for scheduler to check locked-down task.  */
1584 static int trc_inspect_reader(struct task_struct *t, void *bhp_in)
1585 {
1586 	struct list_head *bhp = bhp_in;
1587 	int cpu = task_cpu(t);
1588 	int nesting;
1589 	bool ofl = cpu_is_offline(cpu);
1590 
1591 	if (task_curr(t) && !ofl) {
1592 		// If no chance of heavyweight readers, do it the hard way.
1593 		if (!IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB))
1594 			return -EINVAL;
1595 
1596 		// If heavyweight readers are enabled on the remote task,
1597 		// we can inspect its state despite its currently running.
1598 		// However, we cannot safely change its state.
1599 		n_heavy_reader_attempts++;
1600 		// Check for "running" idle tasks on offline CPUs.
1601 		if (!rcu_dynticks_zero_in_eqs(cpu, &t->trc_reader_nesting))
1602 			return -EINVAL; // No quiescent state, do it the hard way.
1603 		n_heavy_reader_updates++;
1604 		nesting = 0;
1605 	} else {
1606 		// The task is not running, so C-language access is safe.
1607 		nesting = t->trc_reader_nesting;
1608 		WARN_ON_ONCE(ofl && task_curr(t) && (t != idle_task(task_cpu(t))));
1609 		if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) && ofl)
1610 			n_heavy_reader_ofl_updates++;
1611 	}
1612 
1613 	// If not exiting a read-side critical section, mark as checked
1614 	// so that the grace-period kthread will remove it from the
1615 	// holdout list.
1616 	if (!nesting) {
1617 		rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED);
1618 		return 0;  // In QS, so done.
1619 	}
1620 	if (nesting < 0)
1621 		return -EINVAL; // Reader transitioning, try again later.
1622 
1623 	// The task is in a read-side critical section, so set up its
1624 	// state so that it will update state upon exit from that critical
1625 	// section.
1626 	if (!rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS | TRC_NEED_QS_CHECKED))
1627 		trc_add_holdout(t, bhp);
1628 	return 0;
1629 }
1630 
1631 /* Attempt to extract the state for the specified task. */
1632 static void trc_wait_for_one_reader(struct task_struct *t,
1633 				    struct list_head *bhp)
1634 {
1635 	int cpu;
1636 
1637 	// If a previous IPI is still in flight, let it complete.
1638 	if (smp_load_acquire(&t->trc_ipi_to_cpu) != -1) // Order IPI
1639 		return;
1640 
1641 	// The current task had better be in a quiescent state.
1642 	if (t == current) {
1643 		rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED);
1644 		WARN_ON_ONCE(READ_ONCE(t->trc_reader_nesting));
1645 		return;
1646 	}
1647 
1648 	// Attempt to nail down the task for inspection.
1649 	get_task_struct(t);
1650 	if (!task_call_func(t, trc_inspect_reader, bhp)) {
1651 		put_task_struct(t);
1652 		return;
1653 	}
1654 	put_task_struct(t);
1655 
1656 	// If this task is not yet on the holdout list, then we are in
1657 	// an RCU read-side critical section.  Otherwise, the invocation of
1658 	// trc_add_holdout() that added it to the list did the necessary
1659 	// get_task_struct().  Either way, the task cannot be freed out
1660 	// from under this code.
1661 
1662 	// If currently running, send an IPI, either way, add to list.
1663 	trc_add_holdout(t, bhp);
1664 	if (task_curr(t) &&
1665 	    time_after(jiffies + 1, rcu_tasks_trace.gp_start + rcu_task_ipi_delay)) {
1666 		// The task is currently running, so try IPIing it.
1667 		cpu = task_cpu(t);
1668 
1669 		// If there is already an IPI outstanding, let it happen.
1670 		if (per_cpu(trc_ipi_to_cpu, cpu) || t->trc_ipi_to_cpu >= 0)
1671 			return;
1672 
1673 		per_cpu(trc_ipi_to_cpu, cpu) = true;
1674 		t->trc_ipi_to_cpu = cpu;
1675 		rcu_tasks_trace.n_ipis++;
1676 		if (smp_call_function_single(cpu, trc_read_check_handler, t, 0)) {
1677 			// Just in case there is some other reason for
1678 			// failure than the target CPU being offline.
1679 			WARN_ONCE(1, "%s():  smp_call_function_single() failed for CPU: %d\n",
1680 				  __func__, cpu);
1681 			rcu_tasks_trace.n_ipis_fails++;
1682 			per_cpu(trc_ipi_to_cpu, cpu) = false;
1683 			t->trc_ipi_to_cpu = -1;
1684 		}
1685 	}
1686 }
1687 
1688 /*
1689  * Initialize for first-round processing for the specified task.
1690  * Return false if task is NULL or already taken care of, true otherwise.
1691  */
1692 static bool rcu_tasks_trace_pertask_prep(struct task_struct *t, bool notself)
1693 {
1694 	// During early boot when there is only the one boot CPU, there
1695 	// is no idle task for the other CPUs.	Also, the grace-period
1696 	// kthread is always in a quiescent state.  In addition, just return
1697 	// if this task is already on the list.
1698 	if (unlikely(t == NULL) || (t == current && notself) || !list_empty(&t->trc_holdout_list))
1699 		return false;
1700 
1701 	rcu_st_need_qs(t, 0);
1702 	t->trc_ipi_to_cpu = -1;
1703 	return true;
1704 }
1705 
1706 /* Do first-round processing for the specified task. */
1707 static void rcu_tasks_trace_pertask(struct task_struct *t, struct list_head *hop)
1708 {
1709 	if (rcu_tasks_trace_pertask_prep(t, true))
1710 		trc_wait_for_one_reader(t, hop);
1711 }
1712 
1713 /* Initialize for a new RCU-tasks-trace grace period. */
1714 static void rcu_tasks_trace_pregp_step(struct list_head *hop)
1715 {
1716 	LIST_HEAD(blkd_tasks);
1717 	int cpu;
1718 	unsigned long flags;
1719 	struct rcu_tasks_percpu *rtpcp;
1720 	struct task_struct *t;
1721 
1722 	// There shouldn't be any old IPIs, but...
1723 	for_each_possible_cpu(cpu)
1724 		WARN_ON_ONCE(per_cpu(trc_ipi_to_cpu, cpu));
1725 
1726 	// Disable CPU hotplug across the CPU scan for the benefit of
1727 	// any IPIs that might be needed.  This also waits for all readers
1728 	// in CPU-hotplug code paths.
1729 	cpus_read_lock();
1730 
1731 	// These rcu_tasks_trace_pertask_prep() calls are serialized to
1732 	// allow safe access to the hop list.
1733 	for_each_online_cpu(cpu) {
1734 		rcu_read_lock();
1735 		t = cpu_curr_snapshot(cpu);
1736 		if (rcu_tasks_trace_pertask_prep(t, true))
1737 			trc_add_holdout(t, hop);
1738 		rcu_read_unlock();
1739 		cond_resched_tasks_rcu_qs();
1740 	}
1741 
1742 	// Only after all running tasks have been accounted for is it
1743 	// safe to take care of the tasks that have blocked within their
1744 	// current RCU tasks trace read-side critical section.
1745 	for_each_possible_cpu(cpu) {
1746 		rtpcp = per_cpu_ptr(rcu_tasks_trace.rtpcpu, cpu);
1747 		raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
1748 		list_splice_init(&rtpcp->rtp_blkd_tasks, &blkd_tasks);
1749 		while (!list_empty(&blkd_tasks)) {
1750 			rcu_read_lock();
1751 			t = list_first_entry(&blkd_tasks, struct task_struct, trc_blkd_node);
1752 			list_del_init(&t->trc_blkd_node);
1753 			list_add(&t->trc_blkd_node, &rtpcp->rtp_blkd_tasks);
1754 			raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
1755 			rcu_tasks_trace_pertask(t, hop);
1756 			rcu_read_unlock();
1757 			raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
1758 		}
1759 		raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
1760 		cond_resched_tasks_rcu_qs();
1761 	}
1762 
1763 	// Re-enable CPU hotplug now that the holdout list is populated.
1764 	cpus_read_unlock();
1765 }
1766 
1767 /*
1768  * Do intermediate processing between task and holdout scans.
1769  */
1770 static void rcu_tasks_trace_postscan(struct list_head *hop)
1771 {
1772 	// Wait for late-stage exiting tasks to finish exiting.
1773 	// These might have passed the call to exit_tasks_rcu_finish().
1774 
1775 	// If you remove the following line, update rcu_trace_implies_rcu_gp()!!!
1776 	synchronize_rcu();
1777 	// Any tasks that exit after this point will set
1778 	// TRC_NEED_QS_CHECKED in ->trc_reader_special.b.need_qs.
1779 }
1780 
1781 /* Communicate task state back to the RCU tasks trace stall warning request. */
1782 struct trc_stall_chk_rdr {
1783 	int nesting;
1784 	int ipi_to_cpu;
1785 	u8 needqs;
1786 };
1787 
1788 static int trc_check_slow_task(struct task_struct *t, void *arg)
1789 {
1790 	struct trc_stall_chk_rdr *trc_rdrp = arg;
1791 
1792 	if (task_curr(t) && cpu_online(task_cpu(t)))
1793 		return false; // It is running, so decline to inspect it.
1794 	trc_rdrp->nesting = READ_ONCE(t->trc_reader_nesting);
1795 	trc_rdrp->ipi_to_cpu = READ_ONCE(t->trc_ipi_to_cpu);
1796 	trc_rdrp->needqs = rcu_ld_need_qs(t);
1797 	return true;
1798 }
1799 
1800 /* Show the state of a task stalling the current RCU tasks trace GP. */
1801 static void show_stalled_task_trace(struct task_struct *t, bool *firstreport)
1802 {
1803 	int cpu;
1804 	struct trc_stall_chk_rdr trc_rdr;
1805 	bool is_idle_tsk = is_idle_task(t);
1806 
1807 	if (*firstreport) {
1808 		pr_err("INFO: rcu_tasks_trace detected stalls on tasks:\n");
1809 		*firstreport = false;
1810 	}
1811 	cpu = task_cpu(t);
1812 	if (!task_call_func(t, trc_check_slow_task, &trc_rdr))
1813 		pr_alert("P%d: %c%c\n",
1814 			 t->pid,
1815 			 ".I"[t->trc_ipi_to_cpu >= 0],
1816 			 ".i"[is_idle_tsk]);
1817 	else
1818 		pr_alert("P%d: %c%c%c%c nesting: %d%c%c cpu: %d%s\n",
1819 			 t->pid,
1820 			 ".I"[trc_rdr.ipi_to_cpu >= 0],
1821 			 ".i"[is_idle_tsk],
1822 			 ".N"[cpu >= 0 && tick_nohz_full_cpu(cpu)],
1823 			 ".B"[!!data_race(t->trc_reader_special.b.blocked)],
1824 			 trc_rdr.nesting,
1825 			 " !CN"[trc_rdr.needqs & 0x3],
1826 			 " ?"[trc_rdr.needqs > 0x3],
1827 			 cpu, cpu_online(cpu) ? "" : "(offline)");
1828 	sched_show_task(t);
1829 }
1830 
1831 /* List stalled IPIs for RCU tasks trace. */
1832 static void show_stalled_ipi_trace(void)
1833 {
1834 	int cpu;
1835 
1836 	for_each_possible_cpu(cpu)
1837 		if (per_cpu(trc_ipi_to_cpu, cpu))
1838 			pr_alert("\tIPI outstanding to CPU %d\n", cpu);
1839 }
1840 
1841 /* Do one scan of the holdout list. */
1842 static void check_all_holdout_tasks_trace(struct list_head *hop,
1843 					  bool needreport, bool *firstreport)
1844 {
1845 	struct task_struct *g, *t;
1846 
1847 	// Disable CPU hotplug across the holdout list scan for IPIs.
1848 	cpus_read_lock();
1849 
1850 	list_for_each_entry_safe(t, g, hop, trc_holdout_list) {
1851 		// If safe and needed, try to check the current task.
1852 		if (READ_ONCE(t->trc_ipi_to_cpu) == -1 &&
1853 		    !(rcu_ld_need_qs(t) & TRC_NEED_QS_CHECKED))
1854 			trc_wait_for_one_reader(t, hop);
1855 
1856 		// If check succeeded, remove this task from the list.
1857 		if (smp_load_acquire(&t->trc_ipi_to_cpu) == -1 &&
1858 		    rcu_ld_need_qs(t) == TRC_NEED_QS_CHECKED)
1859 			trc_del_holdout(t);
1860 		else if (needreport)
1861 			show_stalled_task_trace(t, firstreport);
1862 		cond_resched_tasks_rcu_qs();
1863 	}
1864 
1865 	// Re-enable CPU hotplug now that the holdout list scan has completed.
1866 	cpus_read_unlock();
1867 
1868 	if (needreport) {
1869 		if (*firstreport)
1870 			pr_err("INFO: rcu_tasks_trace detected stalls? (Late IPI?)\n");
1871 		show_stalled_ipi_trace();
1872 	}
1873 }
1874 
1875 static void rcu_tasks_trace_empty_fn(void *unused)
1876 {
1877 }
1878 
1879 /* Wait for grace period to complete and provide ordering. */
1880 static void rcu_tasks_trace_postgp(struct rcu_tasks *rtp)
1881 {
1882 	int cpu;
1883 
1884 	// Wait for any lingering IPI handlers to complete.  Note that
1885 	// if a CPU has gone offline or transitioned to userspace in the
1886 	// meantime, all IPI handlers should have been drained beforehand.
1887 	// Yes, this assumes that CPUs process IPIs in order.  If that ever
1888 	// changes, there will need to be a recheck and/or timed wait.
1889 	for_each_online_cpu(cpu)
1890 		if (WARN_ON_ONCE(smp_load_acquire(per_cpu_ptr(&trc_ipi_to_cpu, cpu))))
1891 			smp_call_function_single(cpu, rcu_tasks_trace_empty_fn, NULL, 1);
1892 
1893 	smp_mb(); // Caller's code must be ordered after wakeup.
1894 		  // Pairs with pretty much every ordering primitive.
1895 }
1896 
1897 /* Report any needed quiescent state for this exiting task. */
1898 static void exit_tasks_rcu_finish_trace(struct task_struct *t)
1899 {
1900 	union rcu_special trs = READ_ONCE(t->trc_reader_special);
1901 
1902 	rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED);
1903 	WARN_ON_ONCE(READ_ONCE(t->trc_reader_nesting));
1904 	if (WARN_ON_ONCE(rcu_ld_need_qs(t) & TRC_NEED_QS || trs.b.blocked))
1905 		rcu_read_unlock_trace_special(t);
1906 	else
1907 		WRITE_ONCE(t->trc_reader_nesting, 0);
1908 }
1909 
1910 /**
1911  * call_rcu_tasks_trace() - Queue a callback trace task-based grace period
1912  * @rhp: structure to be used for queueing the RCU updates.
1913  * @func: actual callback function to be invoked after the grace period
1914  *
1915  * The callback function will be invoked some time after a trace rcu-tasks
1916  * grace period elapses, in other words after all currently executing
1917  * trace rcu-tasks read-side critical sections have completed. These
1918  * read-side critical sections are delimited by calls to rcu_read_lock_trace()
1919  * and rcu_read_unlock_trace().
1920  *
1921  * See the description of call_rcu() for more detailed information on
1922  * memory ordering guarantees.
1923  */
1924 void call_rcu_tasks_trace(struct rcu_head *rhp, rcu_callback_t func)
1925 {
1926 	call_rcu_tasks_generic(rhp, func, &rcu_tasks_trace);
1927 }
1928 EXPORT_SYMBOL_GPL(call_rcu_tasks_trace);
1929 
1930 /**
1931  * synchronize_rcu_tasks_trace - wait for a trace rcu-tasks grace period
1932  *
1933  * Control will return to the caller some time after a trace rcu-tasks
1934  * grace period has elapsed, in other words after all currently executing
1935  * trace rcu-tasks read-side critical sections have elapsed. These read-side
1936  * critical sections are delimited by calls to rcu_read_lock_trace()
1937  * and rcu_read_unlock_trace().
1938  *
1939  * This is a very specialized primitive, intended only for a few uses in
1940  * tracing and other situations requiring manipulation of function preambles
1941  * and profiling hooks.  The synchronize_rcu_tasks_trace() function is not
1942  * (yet) intended for heavy use from multiple CPUs.
1943  *
1944  * See the description of synchronize_rcu() for more detailed information
1945  * on memory ordering guarantees.
1946  */
1947 void synchronize_rcu_tasks_trace(void)
1948 {
1949 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_trace_lock_map), "Illegal synchronize_rcu_tasks_trace() in RCU Tasks Trace read-side critical section");
1950 	synchronize_rcu_tasks_generic(&rcu_tasks_trace);
1951 }
1952 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_trace);
1953 
1954 /**
1955  * rcu_barrier_tasks_trace - Wait for in-flight call_rcu_tasks_trace() callbacks.
1956  *
1957  * Although the current implementation is guaranteed to wait, it is not
1958  * obligated to, for example, if there are no pending callbacks.
1959  */
1960 void rcu_barrier_tasks_trace(void)
1961 {
1962 	rcu_barrier_tasks_generic(&rcu_tasks_trace);
1963 }
1964 EXPORT_SYMBOL_GPL(rcu_barrier_tasks_trace);
1965 
1966 int rcu_tasks_trace_lazy_ms = -1;
1967 module_param(rcu_tasks_trace_lazy_ms, int, 0444);
1968 
1969 static int __init rcu_spawn_tasks_trace_kthread(void)
1970 {
1971 	if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB)) {
1972 		rcu_tasks_trace.gp_sleep = HZ / 10;
1973 		rcu_tasks_trace.init_fract = HZ / 10;
1974 	} else {
1975 		rcu_tasks_trace.gp_sleep = HZ / 200;
1976 		if (rcu_tasks_trace.gp_sleep <= 0)
1977 			rcu_tasks_trace.gp_sleep = 1;
1978 		rcu_tasks_trace.init_fract = HZ / 200;
1979 		if (rcu_tasks_trace.init_fract <= 0)
1980 			rcu_tasks_trace.init_fract = 1;
1981 	}
1982 	if (rcu_tasks_trace_lazy_ms >= 0)
1983 		rcu_tasks_trace.lazy_jiffies = msecs_to_jiffies(rcu_tasks_trace_lazy_ms);
1984 	rcu_tasks_trace.pregp_func = rcu_tasks_trace_pregp_step;
1985 	rcu_tasks_trace.postscan_func = rcu_tasks_trace_postscan;
1986 	rcu_tasks_trace.holdouts_func = check_all_holdout_tasks_trace;
1987 	rcu_tasks_trace.postgp_func = rcu_tasks_trace_postgp;
1988 	rcu_spawn_tasks_kthread_generic(&rcu_tasks_trace);
1989 	return 0;
1990 }
1991 
1992 #if !defined(CONFIG_TINY_RCU)
1993 void show_rcu_tasks_trace_gp_kthread(void)
1994 {
1995 	char buf[64];
1996 
1997 	sprintf(buf, "N%lu h:%lu/%lu/%lu",
1998 		data_race(n_trc_holdouts),
1999 		data_race(n_heavy_reader_ofl_updates),
2000 		data_race(n_heavy_reader_updates),
2001 		data_race(n_heavy_reader_attempts));
2002 	show_rcu_tasks_generic_gp_kthread(&rcu_tasks_trace, buf);
2003 }
2004 EXPORT_SYMBOL_GPL(show_rcu_tasks_trace_gp_kthread);
2005 #endif // !defined(CONFIG_TINY_RCU)
2006 
2007 struct task_struct *get_rcu_tasks_trace_gp_kthread(void)
2008 {
2009 	return rcu_tasks_trace.kthread_ptr;
2010 }
2011 EXPORT_SYMBOL_GPL(get_rcu_tasks_trace_gp_kthread);
2012 
2013 #else /* #ifdef CONFIG_TASKS_TRACE_RCU */
2014 static void exit_tasks_rcu_finish_trace(struct task_struct *t) { }
2015 #endif /* #else #ifdef CONFIG_TASKS_TRACE_RCU */
2016 
2017 #ifndef CONFIG_TINY_RCU
2018 void show_rcu_tasks_gp_kthreads(void)
2019 {
2020 	show_rcu_tasks_classic_gp_kthread();
2021 	show_rcu_tasks_rude_gp_kthread();
2022 	show_rcu_tasks_trace_gp_kthread();
2023 }
2024 #endif /* #ifndef CONFIG_TINY_RCU */
2025 
2026 #ifdef CONFIG_PROVE_RCU
2027 struct rcu_tasks_test_desc {
2028 	struct rcu_head rh;
2029 	const char *name;
2030 	bool notrun;
2031 	unsigned long runstart;
2032 };
2033 
2034 static struct rcu_tasks_test_desc tests[] = {
2035 	{
2036 		.name = "call_rcu_tasks()",
2037 		/* If not defined, the test is skipped. */
2038 		.notrun = IS_ENABLED(CONFIG_TASKS_RCU),
2039 	},
2040 	{
2041 		.name = "call_rcu_tasks_rude()",
2042 		/* If not defined, the test is skipped. */
2043 		.notrun = IS_ENABLED(CONFIG_TASKS_RUDE_RCU),
2044 	},
2045 	{
2046 		.name = "call_rcu_tasks_trace()",
2047 		/* If not defined, the test is skipped. */
2048 		.notrun = IS_ENABLED(CONFIG_TASKS_TRACE_RCU)
2049 	}
2050 };
2051 
2052 static void test_rcu_tasks_callback(struct rcu_head *rhp)
2053 {
2054 	struct rcu_tasks_test_desc *rttd =
2055 		container_of(rhp, struct rcu_tasks_test_desc, rh);
2056 
2057 	pr_info("Callback from %s invoked.\n", rttd->name);
2058 
2059 	rttd->notrun = false;
2060 }
2061 
2062 static void rcu_tasks_initiate_self_tests(void)
2063 {
2064 #ifdef CONFIG_TASKS_RCU
2065 	pr_info("Running RCU Tasks wait API self tests\n");
2066 	tests[0].runstart = jiffies;
2067 	synchronize_rcu_tasks();
2068 	call_rcu_tasks(&tests[0].rh, test_rcu_tasks_callback);
2069 #endif
2070 
2071 #ifdef CONFIG_TASKS_RUDE_RCU
2072 	pr_info("Running RCU Tasks Rude wait API self tests\n");
2073 	tests[1].runstart = jiffies;
2074 	synchronize_rcu_tasks_rude();
2075 	call_rcu_tasks_rude(&tests[1].rh, test_rcu_tasks_callback);
2076 #endif
2077 
2078 #ifdef CONFIG_TASKS_TRACE_RCU
2079 	pr_info("Running RCU Tasks Trace wait API self tests\n");
2080 	tests[2].runstart = jiffies;
2081 	synchronize_rcu_tasks_trace();
2082 	call_rcu_tasks_trace(&tests[2].rh, test_rcu_tasks_callback);
2083 #endif
2084 }
2085 
2086 /*
2087  * Return:  0 - test passed
2088  *	    1 - test failed, but have not timed out yet
2089  *	   -1 - test failed and timed out
2090  */
2091 static int rcu_tasks_verify_self_tests(void)
2092 {
2093 	int ret = 0;
2094 	int i;
2095 	unsigned long bst = rcu_task_stall_timeout;
2096 
2097 	if (bst <= 0 || bst > RCU_TASK_BOOT_STALL_TIMEOUT)
2098 		bst = RCU_TASK_BOOT_STALL_TIMEOUT;
2099 	for (i = 0; i < ARRAY_SIZE(tests); i++) {
2100 		while (tests[i].notrun) {		// still hanging.
2101 			if (time_after(jiffies, tests[i].runstart + bst)) {
2102 				pr_err("%s has failed boot-time tests.\n", tests[i].name);
2103 				ret = -1;
2104 				break;
2105 			}
2106 			ret = 1;
2107 			break;
2108 		}
2109 	}
2110 	WARN_ON(ret < 0);
2111 
2112 	return ret;
2113 }
2114 
2115 /*
2116  * Repeat the rcu_tasks_verify_self_tests() call once every second until the
2117  * test passes or has timed out.
2118  */
2119 static struct delayed_work rcu_tasks_verify_work;
2120 static void rcu_tasks_verify_work_fn(struct work_struct *work __maybe_unused)
2121 {
2122 	int ret = rcu_tasks_verify_self_tests();
2123 
2124 	if (ret <= 0)
2125 		return;
2126 
2127 	/* Test fails but not timed out yet, reschedule another check */
2128 	schedule_delayed_work(&rcu_tasks_verify_work, HZ);
2129 }
2130 
2131 static int rcu_tasks_verify_schedule_work(void)
2132 {
2133 	INIT_DELAYED_WORK(&rcu_tasks_verify_work, rcu_tasks_verify_work_fn);
2134 	rcu_tasks_verify_work_fn(NULL);
2135 	return 0;
2136 }
2137 late_initcall(rcu_tasks_verify_schedule_work);
2138 #else /* #ifdef CONFIG_PROVE_RCU */
2139 static void rcu_tasks_initiate_self_tests(void) { }
2140 #endif /* #else #ifdef CONFIG_PROVE_RCU */
2141 
2142 void __init tasks_cblist_init_generic(void)
2143 {
2144 	lockdep_assert_irqs_disabled();
2145 	WARN_ON(num_online_cpus() > 1);
2146 
2147 #ifdef CONFIG_TASKS_RCU
2148 	cblist_init_generic(&rcu_tasks);
2149 #endif
2150 
2151 #ifdef CONFIG_TASKS_RUDE_RCU
2152 	cblist_init_generic(&rcu_tasks_rude);
2153 #endif
2154 
2155 #ifdef CONFIG_TASKS_TRACE_RCU
2156 	cblist_init_generic(&rcu_tasks_trace);
2157 #endif
2158 }
2159 
2160 void __init rcu_init_tasks_generic(void)
2161 {
2162 #ifdef CONFIG_TASKS_RCU
2163 	rcu_spawn_tasks_kthread();
2164 #endif
2165 
2166 #ifdef CONFIG_TASKS_RUDE_RCU
2167 	rcu_spawn_tasks_rude_kthread();
2168 #endif
2169 
2170 #ifdef CONFIG_TASKS_TRACE_RCU
2171 	rcu_spawn_tasks_trace_kthread();
2172 #endif
2173 
2174 	// Run the self-tests.
2175 	rcu_tasks_initiate_self_tests();
2176 }
2177 
2178 #else /* #ifdef CONFIG_TASKS_RCU_GENERIC */
2179 static inline void rcu_tasks_bootup_oddness(void) {}
2180 #endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */
2181