1 /* SPDX-License-Identifier: GPL-2.0+ */ 2 /* 3 * Task-based RCU implementations. 4 * 5 * Copyright (C) 2020 Paul E. McKenney 6 */ 7 8 #ifdef CONFIG_TASKS_RCU_GENERIC 9 #include "rcu_segcblist.h" 10 11 //////////////////////////////////////////////////////////////////////// 12 // 13 // Generic data structures. 14 15 struct rcu_tasks; 16 typedef void (*rcu_tasks_gp_func_t)(struct rcu_tasks *rtp); 17 typedef void (*pregp_func_t)(struct list_head *hop); 18 typedef void (*pertask_func_t)(struct task_struct *t, struct list_head *hop); 19 typedef void (*postscan_func_t)(struct list_head *hop); 20 typedef void (*holdouts_func_t)(struct list_head *hop, bool ndrpt, bool *frptp); 21 typedef void (*postgp_func_t)(struct rcu_tasks *rtp); 22 23 /** 24 * struct rcu_tasks_percpu - Per-CPU component of definition for a Tasks-RCU-like mechanism. 25 * @cblist: Callback list. 26 * @lock: Lock protecting per-CPU callback list. 27 * @rtp_jiffies: Jiffies counter value for statistics. 28 * @lazy_timer: Timer to unlazify callbacks. 29 * @urgent_gp: Number of additional non-lazy grace periods. 30 * @rtp_n_lock_retries: Rough lock-contention statistic. 31 * @rtp_work: Work queue for invoking callbacks. 32 * @rtp_irq_work: IRQ work queue for deferred wakeups. 33 * @barrier_q_head: RCU callback for barrier operation. 34 * @rtp_blkd_tasks: List of tasks blocked as readers. 35 * @rtp_exit_list: List of tasks in the latter portion of do_exit(). 36 * @cpu: CPU number corresponding to this entry. 37 * @index: Index of this CPU in rtpcp_array of the rcu_tasks structure. 38 * @rtpp: Pointer to the rcu_tasks structure. 39 */ 40 struct rcu_tasks_percpu { 41 struct rcu_segcblist cblist; 42 raw_spinlock_t __private lock; 43 unsigned long rtp_jiffies; 44 unsigned long rtp_n_lock_retries; 45 struct timer_list lazy_timer; 46 unsigned int urgent_gp; 47 struct work_struct rtp_work; 48 struct irq_work rtp_irq_work; 49 struct rcu_head barrier_q_head; 50 struct list_head rtp_blkd_tasks; 51 struct list_head rtp_exit_list; 52 int cpu; 53 int index; 54 struct rcu_tasks *rtpp; 55 }; 56 57 /** 58 * struct rcu_tasks - Definition for a Tasks-RCU-like mechanism. 59 * @cbs_wait: RCU wait allowing a new callback to get kthread's attention. 60 * @cbs_gbl_lock: Lock protecting callback list. 61 * @tasks_gp_mutex: Mutex protecting grace period, needed during mid-boot dead zone. 62 * @gp_func: This flavor's grace-period-wait function. 63 * @gp_state: Grace period's most recent state transition (debugging). 64 * @gp_sleep: Per-grace-period sleep to prevent CPU-bound looping. 65 * @init_fract: Initial backoff sleep interval. 66 * @gp_jiffies: Time of last @gp_state transition. 67 * @gp_start: Most recent grace-period start in jiffies. 68 * @tasks_gp_seq: Number of grace periods completed since boot in upper bits. 69 * @n_ipis: Number of IPIs sent to encourage grace periods to end. 70 * @n_ipis_fails: Number of IPI-send failures. 71 * @kthread_ptr: This flavor's grace-period/callback-invocation kthread. 72 * @lazy_jiffies: Number of jiffies to allow callbacks to be lazy. 73 * @pregp_func: This flavor's pre-grace-period function (optional). 74 * @pertask_func: This flavor's per-task scan function (optional). 75 * @postscan_func: This flavor's post-task scan function (optional). 76 * @holdouts_func: This flavor's holdout-list scan function (optional). 77 * @postgp_func: This flavor's post-grace-period function (optional). 78 * @call_func: This flavor's call_rcu()-equivalent function. 79 * @wait_state: Task state for synchronous grace-period waits (default TASK_UNINTERRUPTIBLE). 80 * @rtpcpu: This flavor's rcu_tasks_percpu structure. 81 * @rtpcp_array: Array of pointers to rcu_tasks_percpu structure of CPUs in cpu_possible_mask. 82 * @percpu_enqueue_shift: Shift down CPU ID this much when enqueuing callbacks. 83 * @percpu_enqueue_lim: Number of per-CPU callback queues in use for enqueuing. 84 * @percpu_dequeue_lim: Number of per-CPU callback queues in use for dequeuing. 85 * @percpu_dequeue_gpseq: RCU grace-period number to propagate enqueue limit to dequeuers. 86 * @barrier_q_mutex: Serialize barrier operations. 87 * @barrier_q_count: Number of queues being waited on. 88 * @barrier_q_completion: Barrier wait/wakeup mechanism. 89 * @barrier_q_seq: Sequence number for barrier operations. 90 * @barrier_q_start: Most recent barrier start in jiffies. 91 * @name: This flavor's textual name. 92 * @kname: This flavor's kthread name. 93 */ 94 struct rcu_tasks { 95 struct rcuwait cbs_wait; 96 raw_spinlock_t cbs_gbl_lock; 97 struct mutex tasks_gp_mutex; 98 int gp_state; 99 int gp_sleep; 100 int init_fract; 101 unsigned long gp_jiffies; 102 unsigned long gp_start; 103 unsigned long tasks_gp_seq; 104 unsigned long n_ipis; 105 unsigned long n_ipis_fails; 106 struct task_struct *kthread_ptr; 107 unsigned long lazy_jiffies; 108 rcu_tasks_gp_func_t gp_func; 109 pregp_func_t pregp_func; 110 pertask_func_t pertask_func; 111 postscan_func_t postscan_func; 112 holdouts_func_t holdouts_func; 113 postgp_func_t postgp_func; 114 call_rcu_func_t call_func; 115 unsigned int wait_state; 116 struct rcu_tasks_percpu __percpu *rtpcpu; 117 struct rcu_tasks_percpu **rtpcp_array; 118 int percpu_enqueue_shift; 119 int percpu_enqueue_lim; 120 int percpu_dequeue_lim; 121 unsigned long percpu_dequeue_gpseq; 122 struct mutex barrier_q_mutex; 123 atomic_t barrier_q_count; 124 struct completion barrier_q_completion; 125 unsigned long barrier_q_seq; 126 unsigned long barrier_q_start; 127 char *name; 128 char *kname; 129 }; 130 131 static void call_rcu_tasks_iw_wakeup(struct irq_work *iwp); 132 133 #define DEFINE_RCU_TASKS(rt_name, gp, call, n) \ 134 static DEFINE_PER_CPU(struct rcu_tasks_percpu, rt_name ## __percpu) = { \ 135 .lock = __RAW_SPIN_LOCK_UNLOCKED(rt_name ## __percpu.cbs_pcpu_lock), \ 136 .rtp_irq_work = IRQ_WORK_INIT_HARD(call_rcu_tasks_iw_wakeup), \ 137 }; \ 138 static struct rcu_tasks rt_name = \ 139 { \ 140 .cbs_wait = __RCUWAIT_INITIALIZER(rt_name.wait), \ 141 .cbs_gbl_lock = __RAW_SPIN_LOCK_UNLOCKED(rt_name.cbs_gbl_lock), \ 142 .tasks_gp_mutex = __MUTEX_INITIALIZER(rt_name.tasks_gp_mutex), \ 143 .gp_func = gp, \ 144 .call_func = call, \ 145 .wait_state = TASK_UNINTERRUPTIBLE, \ 146 .rtpcpu = &rt_name ## __percpu, \ 147 .lazy_jiffies = DIV_ROUND_UP(HZ, 4), \ 148 .name = n, \ 149 .percpu_enqueue_shift = order_base_2(CONFIG_NR_CPUS), \ 150 .percpu_enqueue_lim = 1, \ 151 .percpu_dequeue_lim = 1, \ 152 .barrier_q_mutex = __MUTEX_INITIALIZER(rt_name.barrier_q_mutex), \ 153 .barrier_q_seq = (0UL - 50UL) << RCU_SEQ_CTR_SHIFT, \ 154 .kname = #rt_name, \ 155 } 156 157 #ifdef CONFIG_TASKS_RCU 158 159 /* Report delay of scan exiting tasklist in rcu_tasks_postscan(). */ 160 static void tasks_rcu_exit_srcu_stall(struct timer_list *unused); 161 static DEFINE_TIMER(tasks_rcu_exit_srcu_stall_timer, tasks_rcu_exit_srcu_stall); 162 #endif 163 164 /* Avoid IPIing CPUs early in the grace period. */ 165 #define RCU_TASK_IPI_DELAY (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) ? HZ / 2 : 0) 166 static int rcu_task_ipi_delay __read_mostly = RCU_TASK_IPI_DELAY; 167 module_param(rcu_task_ipi_delay, int, 0644); 168 169 /* Control stall timeouts. Disable with <= 0, otherwise jiffies till stall. */ 170 #define RCU_TASK_BOOT_STALL_TIMEOUT (HZ * 30) 171 #define RCU_TASK_STALL_TIMEOUT (HZ * 60 * 10) 172 static int rcu_task_stall_timeout __read_mostly = RCU_TASK_STALL_TIMEOUT; 173 module_param(rcu_task_stall_timeout, int, 0644); 174 #define RCU_TASK_STALL_INFO (HZ * 10) 175 static int rcu_task_stall_info __read_mostly = RCU_TASK_STALL_INFO; 176 module_param(rcu_task_stall_info, int, 0644); 177 static int rcu_task_stall_info_mult __read_mostly = 3; 178 module_param(rcu_task_stall_info_mult, int, 0444); 179 180 static int rcu_task_enqueue_lim __read_mostly = -1; 181 module_param(rcu_task_enqueue_lim, int, 0444); 182 183 static bool rcu_task_cb_adjust; 184 static int rcu_task_contend_lim __read_mostly = 100; 185 module_param(rcu_task_contend_lim, int, 0444); 186 static int rcu_task_collapse_lim __read_mostly = 10; 187 module_param(rcu_task_collapse_lim, int, 0444); 188 static int rcu_task_lazy_lim __read_mostly = 32; 189 module_param(rcu_task_lazy_lim, int, 0444); 190 191 static int rcu_task_cpu_ids; 192 193 /* RCU tasks grace-period state for debugging. */ 194 #define RTGS_INIT 0 195 #define RTGS_WAIT_WAIT_CBS 1 196 #define RTGS_WAIT_GP 2 197 #define RTGS_PRE_WAIT_GP 3 198 #define RTGS_SCAN_TASKLIST 4 199 #define RTGS_POST_SCAN_TASKLIST 5 200 #define RTGS_WAIT_SCAN_HOLDOUTS 6 201 #define RTGS_SCAN_HOLDOUTS 7 202 #define RTGS_POST_GP 8 203 #define RTGS_WAIT_READERS 9 204 #define RTGS_INVOKE_CBS 10 205 #define RTGS_WAIT_CBS 11 206 #ifndef CONFIG_TINY_RCU 207 static const char * const rcu_tasks_gp_state_names[] = { 208 "RTGS_INIT", 209 "RTGS_WAIT_WAIT_CBS", 210 "RTGS_WAIT_GP", 211 "RTGS_PRE_WAIT_GP", 212 "RTGS_SCAN_TASKLIST", 213 "RTGS_POST_SCAN_TASKLIST", 214 "RTGS_WAIT_SCAN_HOLDOUTS", 215 "RTGS_SCAN_HOLDOUTS", 216 "RTGS_POST_GP", 217 "RTGS_WAIT_READERS", 218 "RTGS_INVOKE_CBS", 219 "RTGS_WAIT_CBS", 220 }; 221 #endif /* #ifndef CONFIG_TINY_RCU */ 222 223 //////////////////////////////////////////////////////////////////////// 224 // 225 // Generic code. 226 227 static void rcu_tasks_invoke_cbs_wq(struct work_struct *wp); 228 229 /* Record grace-period phase and time. */ 230 static void set_tasks_gp_state(struct rcu_tasks *rtp, int newstate) 231 { 232 rtp->gp_state = newstate; 233 rtp->gp_jiffies = jiffies; 234 } 235 236 #ifndef CONFIG_TINY_RCU 237 /* Return state name. */ 238 static const char *tasks_gp_state_getname(struct rcu_tasks *rtp) 239 { 240 int i = data_race(rtp->gp_state); // Let KCSAN detect update races 241 int j = READ_ONCE(i); // Prevent the compiler from reading twice 242 243 if (j >= ARRAY_SIZE(rcu_tasks_gp_state_names)) 244 return "???"; 245 return rcu_tasks_gp_state_names[j]; 246 } 247 #endif /* #ifndef CONFIG_TINY_RCU */ 248 249 // Initialize per-CPU callback lists for the specified flavor of 250 // Tasks RCU. Do not enqueue callbacks before this function is invoked. 251 static void cblist_init_generic(struct rcu_tasks *rtp) 252 { 253 int cpu; 254 int lim; 255 int shift; 256 int maxcpu; 257 int index = 0; 258 259 if (rcu_task_enqueue_lim < 0) { 260 rcu_task_enqueue_lim = 1; 261 rcu_task_cb_adjust = true; 262 } else if (rcu_task_enqueue_lim == 0) { 263 rcu_task_enqueue_lim = 1; 264 } 265 lim = rcu_task_enqueue_lim; 266 267 rtp->rtpcp_array = kcalloc(num_possible_cpus(), sizeof(struct rcu_tasks_percpu *), GFP_KERNEL); 268 BUG_ON(!rtp->rtpcp_array); 269 270 for_each_possible_cpu(cpu) { 271 struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu); 272 273 WARN_ON_ONCE(!rtpcp); 274 if (cpu) 275 raw_spin_lock_init(&ACCESS_PRIVATE(rtpcp, lock)); 276 if (rcu_segcblist_empty(&rtpcp->cblist)) 277 rcu_segcblist_init(&rtpcp->cblist); 278 INIT_WORK(&rtpcp->rtp_work, rcu_tasks_invoke_cbs_wq); 279 rtpcp->cpu = cpu; 280 rtpcp->rtpp = rtp; 281 rtpcp->index = index; 282 rtp->rtpcp_array[index] = rtpcp; 283 index++; 284 if (!rtpcp->rtp_blkd_tasks.next) 285 INIT_LIST_HEAD(&rtpcp->rtp_blkd_tasks); 286 if (!rtpcp->rtp_exit_list.next) 287 INIT_LIST_HEAD(&rtpcp->rtp_exit_list); 288 rtpcp->barrier_q_head.next = &rtpcp->barrier_q_head; 289 maxcpu = cpu; 290 } 291 292 rcu_task_cpu_ids = maxcpu + 1; 293 if (lim > rcu_task_cpu_ids) 294 lim = rcu_task_cpu_ids; 295 shift = ilog2(rcu_task_cpu_ids / lim); 296 if (((rcu_task_cpu_ids - 1) >> shift) >= lim) 297 shift++; 298 WRITE_ONCE(rtp->percpu_enqueue_shift, shift); 299 WRITE_ONCE(rtp->percpu_dequeue_lim, lim); 300 smp_store_release(&rtp->percpu_enqueue_lim, lim); 301 302 pr_info("%s: Setting shift to %d and lim to %d rcu_task_cb_adjust=%d rcu_task_cpu_ids=%d.\n", 303 rtp->name, data_race(rtp->percpu_enqueue_shift), data_race(rtp->percpu_enqueue_lim), 304 rcu_task_cb_adjust, rcu_task_cpu_ids); 305 } 306 307 // Compute wakeup time for lazy callback timer. 308 static unsigned long rcu_tasks_lazy_time(struct rcu_tasks *rtp) 309 { 310 return jiffies + rtp->lazy_jiffies; 311 } 312 313 // Timer handler that unlazifies lazy callbacks. 314 static void call_rcu_tasks_generic_timer(struct timer_list *tlp) 315 { 316 unsigned long flags; 317 bool needwake = false; 318 struct rcu_tasks *rtp; 319 struct rcu_tasks_percpu *rtpcp = timer_container_of(rtpcp, tlp, 320 lazy_timer); 321 322 rtp = rtpcp->rtpp; 323 raw_spin_lock_irqsave_rcu_node(rtpcp, flags); 324 if (!rcu_segcblist_empty(&rtpcp->cblist) && rtp->lazy_jiffies) { 325 if (!rtpcp->urgent_gp) 326 rtpcp->urgent_gp = 1; 327 needwake = true; 328 mod_timer(&rtpcp->lazy_timer, rcu_tasks_lazy_time(rtp)); 329 } 330 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 331 if (needwake) 332 rcuwait_wake_up(&rtp->cbs_wait); 333 } 334 335 // IRQ-work handler that does deferred wakeup for call_rcu_tasks_generic(). 336 static void call_rcu_tasks_iw_wakeup(struct irq_work *iwp) 337 { 338 struct rcu_tasks *rtp; 339 struct rcu_tasks_percpu *rtpcp = container_of(iwp, struct rcu_tasks_percpu, rtp_irq_work); 340 341 rtp = rtpcp->rtpp; 342 rcuwait_wake_up(&rtp->cbs_wait); 343 } 344 345 // Enqueue a callback for the specified flavor of Tasks RCU. 346 static void call_rcu_tasks_generic(struct rcu_head *rhp, rcu_callback_t func, 347 struct rcu_tasks *rtp) 348 { 349 int chosen_cpu; 350 unsigned long flags; 351 bool havekthread = smp_load_acquire(&rtp->kthread_ptr); 352 int ideal_cpu; 353 unsigned long j; 354 bool needadjust = false; 355 bool needwake; 356 struct rcu_tasks_percpu *rtpcp; 357 358 rhp->next = NULL; 359 rhp->func = func; 360 local_irq_save(flags); 361 rcu_read_lock(); 362 ideal_cpu = smp_processor_id() >> READ_ONCE(rtp->percpu_enqueue_shift); 363 chosen_cpu = cpumask_next(ideal_cpu - 1, cpu_possible_mask); 364 WARN_ON_ONCE(chosen_cpu >= rcu_task_cpu_ids); 365 rtpcp = per_cpu_ptr(rtp->rtpcpu, chosen_cpu); 366 if (!raw_spin_trylock_rcu_node(rtpcp)) { // irqs already disabled. 367 raw_spin_lock_rcu_node(rtpcp); // irqs already disabled. 368 j = jiffies; 369 if (rtpcp->rtp_jiffies != j) { 370 rtpcp->rtp_jiffies = j; 371 rtpcp->rtp_n_lock_retries = 0; 372 } 373 if (rcu_task_cb_adjust && ++rtpcp->rtp_n_lock_retries > rcu_task_contend_lim && 374 READ_ONCE(rtp->percpu_enqueue_lim) != rcu_task_cpu_ids) 375 needadjust = true; // Defer adjustment to avoid deadlock. 376 } 377 // Queuing callbacks before initialization not yet supported. 378 if (WARN_ON_ONCE(!rcu_segcblist_is_enabled(&rtpcp->cblist))) 379 rcu_segcblist_init(&rtpcp->cblist); 380 needwake = (func == wakeme_after_rcu) || 381 (rcu_segcblist_n_cbs(&rtpcp->cblist) == rcu_task_lazy_lim); 382 if (havekthread && !needwake && !timer_pending(&rtpcp->lazy_timer)) { 383 if (rtp->lazy_jiffies) 384 mod_timer(&rtpcp->lazy_timer, rcu_tasks_lazy_time(rtp)); 385 else 386 needwake = rcu_segcblist_empty(&rtpcp->cblist); 387 } 388 if (needwake) 389 rtpcp->urgent_gp = 3; 390 rcu_segcblist_enqueue(&rtpcp->cblist, rhp); 391 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 392 if (unlikely(needadjust)) { 393 raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags); 394 if (rtp->percpu_enqueue_lim != rcu_task_cpu_ids) { 395 WRITE_ONCE(rtp->percpu_enqueue_shift, 0); 396 WRITE_ONCE(rtp->percpu_dequeue_lim, rcu_task_cpu_ids); 397 smp_store_release(&rtp->percpu_enqueue_lim, rcu_task_cpu_ids); 398 pr_info("Switching %s to per-CPU callback queuing.\n", rtp->name); 399 } 400 raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags); 401 } 402 rcu_read_unlock(); 403 /* We can't create the thread unless interrupts are enabled. */ 404 if (needwake && READ_ONCE(rtp->kthread_ptr)) 405 irq_work_queue(&rtpcp->rtp_irq_work); 406 } 407 408 // RCU callback function for rcu_barrier_tasks_generic(). 409 static void rcu_barrier_tasks_generic_cb(struct rcu_head *rhp) 410 { 411 struct rcu_tasks *rtp; 412 struct rcu_tasks_percpu *rtpcp; 413 414 rhp->next = rhp; // Mark the callback as having been invoked. 415 rtpcp = container_of(rhp, struct rcu_tasks_percpu, barrier_q_head); 416 rtp = rtpcp->rtpp; 417 if (atomic_dec_and_test(&rtp->barrier_q_count)) 418 complete(&rtp->barrier_q_completion); 419 } 420 421 // Wait for all in-flight callbacks for the specified RCU Tasks flavor. 422 // Operates in a manner similar to rcu_barrier(). 423 static void __maybe_unused rcu_barrier_tasks_generic(struct rcu_tasks *rtp) 424 { 425 int cpu; 426 unsigned long flags; 427 struct rcu_tasks_percpu *rtpcp; 428 unsigned long s = rcu_seq_snap(&rtp->barrier_q_seq); 429 430 mutex_lock(&rtp->barrier_q_mutex); 431 if (rcu_seq_done(&rtp->barrier_q_seq, s)) { 432 smp_mb(); 433 mutex_unlock(&rtp->barrier_q_mutex); 434 return; 435 } 436 rtp->barrier_q_start = jiffies; 437 rcu_seq_start(&rtp->barrier_q_seq); 438 init_completion(&rtp->barrier_q_completion); 439 atomic_set(&rtp->barrier_q_count, 2); 440 for_each_possible_cpu(cpu) { 441 if (cpu >= smp_load_acquire(&rtp->percpu_dequeue_lim)) 442 break; 443 rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu); 444 rtpcp->barrier_q_head.func = rcu_barrier_tasks_generic_cb; 445 raw_spin_lock_irqsave_rcu_node(rtpcp, flags); 446 if (rcu_segcblist_entrain(&rtpcp->cblist, &rtpcp->barrier_q_head)) 447 atomic_inc(&rtp->barrier_q_count); 448 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 449 } 450 if (atomic_sub_and_test(2, &rtp->barrier_q_count)) 451 complete(&rtp->barrier_q_completion); 452 wait_for_completion(&rtp->barrier_q_completion); 453 rcu_seq_end(&rtp->barrier_q_seq); 454 mutex_unlock(&rtp->barrier_q_mutex); 455 } 456 457 // Advance callbacks and indicate whether either a grace period or 458 // callback invocation is needed. 459 static int rcu_tasks_need_gpcb(struct rcu_tasks *rtp) 460 { 461 int cpu; 462 int dequeue_limit; 463 unsigned long flags; 464 bool gpdone = poll_state_synchronize_rcu(rtp->percpu_dequeue_gpseq); 465 long n; 466 long ncbs = 0; 467 long ncbsnz = 0; 468 int needgpcb = 0; 469 470 dequeue_limit = smp_load_acquire(&rtp->percpu_dequeue_lim); 471 for (cpu = 0; cpu < dequeue_limit; cpu++) { 472 if (!cpu_possible(cpu)) 473 continue; 474 struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu); 475 476 /* Advance and accelerate any new callbacks. */ 477 if (!rcu_segcblist_n_cbs(&rtpcp->cblist)) 478 continue; 479 raw_spin_lock_irqsave_rcu_node(rtpcp, flags); 480 // Should we shrink down to a single callback queue? 481 n = rcu_segcblist_n_cbs(&rtpcp->cblist); 482 if (n) { 483 ncbs += n; 484 if (cpu > 0) 485 ncbsnz += n; 486 } 487 rcu_segcblist_advance(&rtpcp->cblist, rcu_seq_current(&rtp->tasks_gp_seq)); 488 (void)rcu_segcblist_accelerate(&rtpcp->cblist, rcu_seq_snap(&rtp->tasks_gp_seq)); 489 if (rtpcp->urgent_gp > 0 && rcu_segcblist_pend_cbs(&rtpcp->cblist)) { 490 if (rtp->lazy_jiffies) 491 rtpcp->urgent_gp--; 492 needgpcb |= 0x3; 493 } else if (rcu_segcblist_empty(&rtpcp->cblist)) { 494 rtpcp->urgent_gp = 0; 495 } 496 if (rcu_segcblist_ready_cbs(&rtpcp->cblist)) 497 needgpcb |= 0x1; 498 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 499 } 500 501 // Shrink down to a single callback queue if appropriate. 502 // This is done in two stages: (1) If there are no more than 503 // rcu_task_collapse_lim callbacks on CPU 0 and none on any other 504 // CPU, limit enqueueing to CPU 0. (2) After an RCU grace period, 505 // if there has not been an increase in callbacks, limit dequeuing 506 // to CPU 0. Note the matching RCU read-side critical section in 507 // call_rcu_tasks_generic(). 508 if (rcu_task_cb_adjust && ncbs <= rcu_task_collapse_lim) { 509 raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags); 510 if (rtp->percpu_enqueue_lim > 1) { 511 WRITE_ONCE(rtp->percpu_enqueue_shift, order_base_2(rcu_task_cpu_ids)); 512 smp_store_release(&rtp->percpu_enqueue_lim, 1); 513 rtp->percpu_dequeue_gpseq = get_state_synchronize_rcu(); 514 gpdone = false; 515 pr_info("Starting switch %s to CPU-0 callback queuing.\n", rtp->name); 516 } 517 raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags); 518 } 519 if (rcu_task_cb_adjust && !ncbsnz && gpdone) { 520 raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags); 521 if (rtp->percpu_enqueue_lim < rtp->percpu_dequeue_lim) { 522 WRITE_ONCE(rtp->percpu_dequeue_lim, 1); 523 pr_info("Completing switch %s to CPU-0 callback queuing.\n", rtp->name); 524 } 525 if (rtp->percpu_dequeue_lim == 1) { 526 for (cpu = rtp->percpu_dequeue_lim; cpu < rcu_task_cpu_ids; cpu++) { 527 if (!cpu_possible(cpu)) 528 continue; 529 struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu); 530 531 WARN_ON_ONCE(rcu_segcblist_n_cbs(&rtpcp->cblist)); 532 } 533 } 534 raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags); 535 } 536 537 return needgpcb; 538 } 539 540 // Advance callbacks and invoke any that are ready. 541 static void rcu_tasks_invoke_cbs(struct rcu_tasks *rtp, struct rcu_tasks_percpu *rtpcp) 542 { 543 int cpuwq; 544 unsigned long flags; 545 int len; 546 int index; 547 struct rcu_head *rhp; 548 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl); 549 struct rcu_tasks_percpu *rtpcp_next; 550 551 index = rtpcp->index * 2 + 1; 552 if (index < num_possible_cpus()) { 553 rtpcp_next = rtp->rtpcp_array[index]; 554 if (rtpcp_next->cpu < smp_load_acquire(&rtp->percpu_dequeue_lim)) { 555 cpuwq = rcu_cpu_beenfullyonline(rtpcp_next->cpu) ? rtpcp_next->cpu : WORK_CPU_UNBOUND; 556 queue_work_on(cpuwq, system_wq, &rtpcp_next->rtp_work); 557 index++; 558 if (index < num_possible_cpus()) { 559 rtpcp_next = rtp->rtpcp_array[index]; 560 if (rtpcp_next->cpu < smp_load_acquire(&rtp->percpu_dequeue_lim)) { 561 cpuwq = rcu_cpu_beenfullyonline(rtpcp_next->cpu) ? rtpcp_next->cpu : WORK_CPU_UNBOUND; 562 queue_work_on(cpuwq, system_wq, &rtpcp_next->rtp_work); 563 } 564 } 565 } 566 } 567 568 if (rcu_segcblist_empty(&rtpcp->cblist)) 569 return; 570 raw_spin_lock_irqsave_rcu_node(rtpcp, flags); 571 rcu_segcblist_advance(&rtpcp->cblist, rcu_seq_current(&rtp->tasks_gp_seq)); 572 rcu_segcblist_extract_done_cbs(&rtpcp->cblist, &rcl); 573 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 574 len = rcl.len; 575 for (rhp = rcu_cblist_dequeue(&rcl); rhp; rhp = rcu_cblist_dequeue(&rcl)) { 576 debug_rcu_head_callback(rhp); 577 local_bh_disable(); 578 rhp->func(rhp); 579 local_bh_enable(); 580 cond_resched(); 581 } 582 raw_spin_lock_irqsave_rcu_node(rtpcp, flags); 583 rcu_segcblist_add_len(&rtpcp->cblist, -len); 584 (void)rcu_segcblist_accelerate(&rtpcp->cblist, rcu_seq_snap(&rtp->tasks_gp_seq)); 585 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 586 } 587 588 // Workqueue flood to advance callbacks and invoke any that are ready. 589 static void rcu_tasks_invoke_cbs_wq(struct work_struct *wp) 590 { 591 struct rcu_tasks *rtp; 592 struct rcu_tasks_percpu *rtpcp = container_of(wp, struct rcu_tasks_percpu, rtp_work); 593 594 rtp = rtpcp->rtpp; 595 rcu_tasks_invoke_cbs(rtp, rtpcp); 596 } 597 598 // Wait for one grace period. 599 static void rcu_tasks_one_gp(struct rcu_tasks *rtp, bool midboot) 600 { 601 int needgpcb; 602 603 mutex_lock(&rtp->tasks_gp_mutex); 604 605 // If there were none, wait a bit and start over. 606 if (unlikely(midboot)) { 607 needgpcb = 0x2; 608 } else { 609 mutex_unlock(&rtp->tasks_gp_mutex); 610 set_tasks_gp_state(rtp, RTGS_WAIT_CBS); 611 rcuwait_wait_event(&rtp->cbs_wait, 612 (needgpcb = rcu_tasks_need_gpcb(rtp)), 613 TASK_IDLE); 614 mutex_lock(&rtp->tasks_gp_mutex); 615 } 616 617 if (needgpcb & 0x2) { 618 // Wait for one grace period. 619 set_tasks_gp_state(rtp, RTGS_WAIT_GP); 620 rtp->gp_start = jiffies; 621 rcu_seq_start(&rtp->tasks_gp_seq); 622 rtp->gp_func(rtp); 623 rcu_seq_end(&rtp->tasks_gp_seq); 624 } 625 626 // Invoke callbacks. 627 set_tasks_gp_state(rtp, RTGS_INVOKE_CBS); 628 rcu_tasks_invoke_cbs(rtp, per_cpu_ptr(rtp->rtpcpu, 0)); 629 mutex_unlock(&rtp->tasks_gp_mutex); 630 } 631 632 // RCU-tasks kthread that detects grace periods and invokes callbacks. 633 static int __noreturn rcu_tasks_kthread(void *arg) 634 { 635 int cpu; 636 struct rcu_tasks *rtp = arg; 637 638 for_each_possible_cpu(cpu) { 639 struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu); 640 641 timer_setup(&rtpcp->lazy_timer, call_rcu_tasks_generic_timer, 0); 642 rtpcp->urgent_gp = 1; 643 } 644 645 /* Run on housekeeping CPUs by default. Sysadm can move if desired. */ 646 housekeeping_affine(current, HK_TYPE_RCU); 647 smp_store_release(&rtp->kthread_ptr, current); // Let GPs start! 648 649 /* 650 * Each pass through the following loop makes one check for 651 * newly arrived callbacks, and, if there are some, waits for 652 * one RCU-tasks grace period and then invokes the callbacks. 653 * This loop is terminated by the system going down. ;-) 654 */ 655 for (;;) { 656 // Wait for one grace period and invoke any callbacks 657 // that are ready. 658 rcu_tasks_one_gp(rtp, false); 659 660 // Paranoid sleep to keep this from entering a tight loop. 661 schedule_timeout_idle(rtp->gp_sleep); 662 } 663 } 664 665 // Wait for a grace period for the specified flavor of Tasks RCU. 666 static void synchronize_rcu_tasks_generic(struct rcu_tasks *rtp) 667 { 668 /* Complain if the scheduler has not started. */ 669 if (WARN_ONCE(rcu_scheduler_active == RCU_SCHEDULER_INACTIVE, 670 "synchronize_%s() called too soon", rtp->name)) 671 return; 672 673 // If the grace-period kthread is running, use it. 674 if (READ_ONCE(rtp->kthread_ptr)) { 675 wait_rcu_gp_state(rtp->wait_state, rtp->call_func); 676 return; 677 } 678 rcu_tasks_one_gp(rtp, true); 679 } 680 681 /* Spawn RCU-tasks grace-period kthread. */ 682 static void __init rcu_spawn_tasks_kthread_generic(struct rcu_tasks *rtp) 683 { 684 struct task_struct *t; 685 686 t = kthread_run(rcu_tasks_kthread, rtp, "%s_kthread", rtp->kname); 687 if (WARN_ONCE(IS_ERR(t), "%s: Could not start %s grace-period kthread, OOM is now expected behavior\n", __func__, rtp->name)) 688 return; 689 smp_mb(); /* Ensure others see full kthread. */ 690 } 691 692 #ifndef CONFIG_TINY_RCU 693 694 /* 695 * Print any non-default Tasks RCU settings. 696 */ 697 static void __init rcu_tasks_bootup_oddness(void) 698 { 699 #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU) 700 int rtsimc; 701 702 if (rcu_task_stall_timeout != RCU_TASK_STALL_TIMEOUT) 703 pr_info("\tTasks-RCU CPU stall warnings timeout set to %d (rcu_task_stall_timeout).\n", rcu_task_stall_timeout); 704 rtsimc = clamp(rcu_task_stall_info_mult, 1, 10); 705 if (rtsimc != rcu_task_stall_info_mult) { 706 pr_info("\tTasks-RCU CPU stall info multiplier clamped to %d (rcu_task_stall_info_mult).\n", rtsimc); 707 rcu_task_stall_info_mult = rtsimc; 708 } 709 #endif /* #ifdef CONFIG_TASKS_RCU */ 710 #ifdef CONFIG_TASKS_RCU 711 pr_info("\tTrampoline variant of Tasks RCU enabled.\n"); 712 #endif /* #ifdef CONFIG_TASKS_RCU */ 713 #ifdef CONFIG_TASKS_RUDE_RCU 714 pr_info("\tRude variant of Tasks RCU enabled.\n"); 715 #endif /* #ifdef CONFIG_TASKS_RUDE_RCU */ 716 #ifdef CONFIG_TASKS_TRACE_RCU 717 pr_info("\tTracing variant of Tasks RCU enabled.\n"); 718 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 719 } 720 721 722 /* Dump out rcutorture-relevant state common to all RCU-tasks flavors. */ 723 static void show_rcu_tasks_generic_gp_kthread(struct rcu_tasks *rtp, char *s) 724 { 725 int cpu; 726 bool havecbs = false; 727 bool haveurgent = false; 728 bool haveurgentcbs = false; 729 730 for_each_possible_cpu(cpu) { 731 struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu); 732 733 if (!data_race(rcu_segcblist_empty(&rtpcp->cblist))) 734 havecbs = true; 735 if (data_race(rtpcp->urgent_gp)) 736 haveurgent = true; 737 if (!data_race(rcu_segcblist_empty(&rtpcp->cblist)) && data_race(rtpcp->urgent_gp)) 738 haveurgentcbs = true; 739 if (havecbs && haveurgent && haveurgentcbs) 740 break; 741 } 742 pr_info("%s: %s(%d) since %lu g:%lu i:%lu/%lu %c%c%c%c l:%lu %s\n", 743 rtp->kname, 744 tasks_gp_state_getname(rtp), data_race(rtp->gp_state), 745 jiffies - data_race(rtp->gp_jiffies), 746 data_race(rcu_seq_current(&rtp->tasks_gp_seq)), 747 data_race(rtp->n_ipis_fails), data_race(rtp->n_ipis), 748 ".k"[!!data_race(rtp->kthread_ptr)], 749 ".C"[havecbs], 750 ".u"[haveurgent], 751 ".U"[haveurgentcbs], 752 rtp->lazy_jiffies, 753 s); 754 } 755 756 /* Dump out more rcutorture-relevant state common to all RCU-tasks flavors. */ 757 static void rcu_tasks_torture_stats_print_generic(struct rcu_tasks *rtp, char *tt, 758 char *tf, char *tst) 759 { 760 cpumask_var_t cm; 761 int cpu; 762 bool gotcb = false; 763 unsigned long j = jiffies; 764 765 pr_alert("%s%s Tasks%s RCU g%ld gp_start %lu gp_jiffies %lu gp_state %d (%s).\n", 766 tt, tf, tst, data_race(rtp->tasks_gp_seq), 767 j - data_race(rtp->gp_start), j - data_race(rtp->gp_jiffies), 768 data_race(rtp->gp_state), tasks_gp_state_getname(rtp)); 769 pr_alert("\tEnqueue shift %d limit %d Dequeue limit %d gpseq %lu.\n", 770 data_race(rtp->percpu_enqueue_shift), 771 data_race(rtp->percpu_enqueue_lim), 772 data_race(rtp->percpu_dequeue_lim), 773 data_race(rtp->percpu_dequeue_gpseq)); 774 (void)zalloc_cpumask_var(&cm, GFP_KERNEL); 775 pr_alert("\tCallback counts:"); 776 for_each_possible_cpu(cpu) { 777 long n; 778 struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu); 779 780 if (cpumask_available(cm) && !rcu_barrier_cb_is_done(&rtpcp->barrier_q_head)) 781 cpumask_set_cpu(cpu, cm); 782 n = rcu_segcblist_n_cbs(&rtpcp->cblist); 783 if (!n) 784 continue; 785 pr_cont(" %d:%ld", cpu, n); 786 gotcb = true; 787 } 788 if (gotcb) 789 pr_cont(".\n"); 790 else 791 pr_cont(" (none).\n"); 792 pr_alert("\tBarrier seq %lu start %lu count %d holdout CPUs ", 793 data_race(rtp->barrier_q_seq), j - data_race(rtp->barrier_q_start), 794 atomic_read(&rtp->barrier_q_count)); 795 if (cpumask_available(cm) && !cpumask_empty(cm)) 796 pr_cont(" %*pbl.\n", cpumask_pr_args(cm)); 797 else 798 pr_cont("(none).\n"); 799 free_cpumask_var(cm); 800 } 801 802 #endif // #ifndef CONFIG_TINY_RCU 803 804 static void exit_tasks_rcu_finish_trace(struct task_struct *t); 805 806 #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU) 807 808 //////////////////////////////////////////////////////////////////////// 809 // 810 // Shared code between task-list-scanning variants of Tasks RCU. 811 812 /* Wait for one RCU-tasks grace period. */ 813 static void rcu_tasks_wait_gp(struct rcu_tasks *rtp) 814 { 815 struct task_struct *g; 816 int fract; 817 LIST_HEAD(holdouts); 818 unsigned long j; 819 unsigned long lastinfo; 820 unsigned long lastreport; 821 bool reported = false; 822 int rtsi; 823 struct task_struct *t; 824 825 set_tasks_gp_state(rtp, RTGS_PRE_WAIT_GP); 826 rtp->pregp_func(&holdouts); 827 828 /* 829 * There were callbacks, so we need to wait for an RCU-tasks 830 * grace period. Start off by scanning the task list for tasks 831 * that are not already voluntarily blocked. Mark these tasks 832 * and make a list of them in holdouts. 833 */ 834 set_tasks_gp_state(rtp, RTGS_SCAN_TASKLIST); 835 if (rtp->pertask_func) { 836 rcu_read_lock(); 837 for_each_process_thread(g, t) 838 rtp->pertask_func(t, &holdouts); 839 rcu_read_unlock(); 840 } 841 842 set_tasks_gp_state(rtp, RTGS_POST_SCAN_TASKLIST); 843 rtp->postscan_func(&holdouts); 844 845 /* 846 * Each pass through the following loop scans the list of holdout 847 * tasks, removing any that are no longer holdouts. When the list 848 * is empty, we are done. 849 */ 850 lastreport = jiffies; 851 lastinfo = lastreport; 852 rtsi = READ_ONCE(rcu_task_stall_info); 853 854 // Start off with initial wait and slowly back off to 1 HZ wait. 855 fract = rtp->init_fract; 856 857 while (!list_empty(&holdouts)) { 858 ktime_t exp; 859 bool firstreport; 860 bool needreport; 861 int rtst; 862 863 // Slowly back off waiting for holdouts 864 set_tasks_gp_state(rtp, RTGS_WAIT_SCAN_HOLDOUTS); 865 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) { 866 schedule_timeout_idle(fract); 867 } else { 868 exp = jiffies_to_nsecs(fract); 869 __set_current_state(TASK_IDLE); 870 schedule_hrtimeout_range(&exp, jiffies_to_nsecs(HZ / 2), HRTIMER_MODE_REL_HARD); 871 } 872 873 if (fract < HZ) 874 fract++; 875 876 rtst = READ_ONCE(rcu_task_stall_timeout); 877 needreport = rtst > 0 && time_after(jiffies, lastreport + rtst); 878 if (needreport) { 879 lastreport = jiffies; 880 reported = true; 881 } 882 firstreport = true; 883 WARN_ON(signal_pending(current)); 884 set_tasks_gp_state(rtp, RTGS_SCAN_HOLDOUTS); 885 rtp->holdouts_func(&holdouts, needreport, &firstreport); 886 887 // Print pre-stall informational messages if needed. 888 j = jiffies; 889 if (rtsi > 0 && !reported && time_after(j, lastinfo + rtsi)) { 890 lastinfo = j; 891 rtsi = rtsi * rcu_task_stall_info_mult; 892 pr_info("%s: %s grace period number %lu (since boot) is %lu jiffies old.\n", 893 __func__, rtp->kname, rtp->tasks_gp_seq, j - rtp->gp_start); 894 } 895 } 896 897 set_tasks_gp_state(rtp, RTGS_POST_GP); 898 rtp->postgp_func(rtp); 899 } 900 901 #endif /* #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU) */ 902 903 #ifdef CONFIG_TASKS_RCU 904 905 //////////////////////////////////////////////////////////////////////// 906 // 907 // Simple variant of RCU whose quiescent states are voluntary context 908 // switch, cond_resched_tasks_rcu_qs(), user-space execution, and idle. 909 // As such, grace periods can take one good long time. There are no 910 // read-side primitives similar to rcu_read_lock() and rcu_read_unlock() 911 // because this implementation is intended to get the system into a safe 912 // state for some of the manipulations involved in tracing and the like. 913 // Finally, this implementation does not support high call_rcu_tasks() 914 // rates from multiple CPUs. If this is required, per-CPU callback lists 915 // will be needed. 916 // 917 // The implementation uses rcu_tasks_wait_gp(), which relies on function 918 // pointers in the rcu_tasks structure. The rcu_spawn_tasks_kthread() 919 // function sets these function pointers up so that rcu_tasks_wait_gp() 920 // invokes these functions in this order: 921 // 922 // rcu_tasks_pregp_step(): 923 // Invokes synchronize_rcu() in order to wait for all in-flight 924 // t->on_rq and t->nvcsw transitions to complete. This works because 925 // all such transitions are carried out with interrupts disabled. 926 // rcu_tasks_pertask(), invoked on every non-idle task: 927 // For every runnable non-idle task other than the current one, use 928 // get_task_struct() to pin down that task, snapshot that task's 929 // number of voluntary context switches, and add that task to the 930 // holdout list. 931 // rcu_tasks_postscan(): 932 // Gather per-CPU lists of tasks in do_exit() to ensure that all 933 // tasks that were in the process of exiting (and which thus might 934 // not know to synchronize with this RCU Tasks grace period) have 935 // completed exiting. The synchronize_rcu() in rcu_tasks_postgp() 936 // will take care of any tasks stuck in the non-preemptible region 937 // of do_exit() following its call to exit_tasks_rcu_finish(). 938 // check_all_holdout_tasks(), repeatedly until holdout list is empty: 939 // Scans the holdout list, attempting to identify a quiescent state 940 // for each task on the list. If there is a quiescent state, the 941 // corresponding task is removed from the holdout list. 942 // rcu_tasks_postgp(): 943 // Invokes synchronize_rcu() in order to ensure that all prior 944 // t->on_rq and t->nvcsw transitions are seen by all CPUs and tasks 945 // to have happened before the end of this RCU Tasks grace period. 946 // Again, this works because all such transitions are carried out 947 // with interrupts disabled. 948 // 949 // For each exiting task, the exit_tasks_rcu_start() and 950 // exit_tasks_rcu_finish() functions add and remove, respectively, the 951 // current task to a per-CPU list of tasks that rcu_tasks_postscan() must 952 // wait on. This is necessary because rcu_tasks_postscan() must wait on 953 // tasks that have already been removed from the global list of tasks. 954 // 955 // Pre-grace-period update-side code is ordered before the grace 956 // via the raw_spin_lock.*rcu_node(). Pre-grace-period read-side code 957 // is ordered before the grace period via synchronize_rcu() call in 958 // rcu_tasks_pregp_step() and by the scheduler's locks and interrupt 959 // disabling. 960 961 /* Pre-grace-period preparation. */ 962 static void rcu_tasks_pregp_step(struct list_head *hop) 963 { 964 /* 965 * Wait for all pre-existing t->on_rq and t->nvcsw transitions 966 * to complete. Invoking synchronize_rcu() suffices because all 967 * these transitions occur with interrupts disabled. Without this 968 * synchronize_rcu(), a read-side critical section that started 969 * before the grace period might be incorrectly seen as having 970 * started after the grace period. 971 * 972 * This synchronize_rcu() also dispenses with the need for a 973 * memory barrier on the first store to t->rcu_tasks_holdout, 974 * as it forces the store to happen after the beginning of the 975 * grace period. 976 */ 977 synchronize_rcu(); 978 } 979 980 /* Check for quiescent states since the pregp's synchronize_rcu() */ 981 static bool rcu_tasks_is_holdout(struct task_struct *t) 982 { 983 int cpu; 984 985 /* Has the task been seen voluntarily sleeping? */ 986 if (!READ_ONCE(t->on_rq)) 987 return false; 988 989 /* 990 * t->on_rq && !t->se.sched_delayed *could* be considered sleeping but 991 * since it is a spurious state (it will transition into the 992 * traditional blocked state or get woken up without outside 993 * dependencies), not considering it such should only affect timing. 994 * 995 * Be conservative for now and not include it. 996 */ 997 998 /* 999 * Idle tasks (or idle injection) within the idle loop are RCU-tasks 1000 * quiescent states. But CPU boot code performed by the idle task 1001 * isn't a quiescent state. 1002 */ 1003 if (is_idle_task(t)) 1004 return false; 1005 1006 cpu = task_cpu(t); 1007 1008 /* Idle tasks on offline CPUs are RCU-tasks quiescent states. */ 1009 if (t == idle_task(cpu) && !rcu_cpu_online(cpu)) 1010 return false; 1011 1012 return true; 1013 } 1014 1015 /* Per-task initial processing. */ 1016 static void rcu_tasks_pertask(struct task_struct *t, struct list_head *hop) 1017 { 1018 if (t != current && rcu_tasks_is_holdout(t)) { 1019 get_task_struct(t); 1020 t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw); 1021 WRITE_ONCE(t->rcu_tasks_holdout, true); 1022 list_add(&t->rcu_tasks_holdout_list, hop); 1023 } 1024 } 1025 1026 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func); 1027 DEFINE_RCU_TASKS(rcu_tasks, rcu_tasks_wait_gp, call_rcu_tasks, "RCU Tasks"); 1028 1029 /* Processing between scanning taskslist and draining the holdout list. */ 1030 static void rcu_tasks_postscan(struct list_head *hop) 1031 { 1032 int cpu; 1033 int rtsi = READ_ONCE(rcu_task_stall_info); 1034 1035 if (!IS_ENABLED(CONFIG_TINY_RCU)) { 1036 tasks_rcu_exit_srcu_stall_timer.expires = jiffies + rtsi; 1037 add_timer(&tasks_rcu_exit_srcu_stall_timer); 1038 } 1039 1040 /* 1041 * Exiting tasks may escape the tasklist scan. Those are vulnerable 1042 * until their final schedule() with TASK_DEAD state. To cope with 1043 * this, divide the fragile exit path part in two intersecting 1044 * read side critical sections: 1045 * 1046 * 1) A task_struct list addition before calling exit_notify(), 1047 * which may remove the task from the tasklist, with the 1048 * removal after the final preempt_disable() call in do_exit(). 1049 * 1050 * 2) An _RCU_ read side starting with the final preempt_disable() 1051 * call in do_exit() and ending with the final call to schedule() 1052 * with TASK_DEAD state. 1053 * 1054 * This handles the part 1). And postgp will handle part 2) with a 1055 * call to synchronize_rcu(). 1056 */ 1057 1058 for_each_possible_cpu(cpu) { 1059 unsigned long j = jiffies + 1; 1060 struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rcu_tasks.rtpcpu, cpu); 1061 struct task_struct *t; 1062 struct task_struct *t1; 1063 struct list_head tmp; 1064 1065 raw_spin_lock_irq_rcu_node(rtpcp); 1066 list_for_each_entry_safe(t, t1, &rtpcp->rtp_exit_list, rcu_tasks_exit_list) { 1067 if (list_empty(&t->rcu_tasks_holdout_list)) 1068 rcu_tasks_pertask(t, hop); 1069 1070 // RT kernels need frequent pauses, otherwise 1071 // pause at least once per pair of jiffies. 1072 if (!IS_ENABLED(CONFIG_PREEMPT_RT) && time_before(jiffies, j)) 1073 continue; 1074 1075 // Keep our place in the list while pausing. 1076 // Nothing else traverses this list, so adding a 1077 // bare list_head is OK. 1078 list_add(&tmp, &t->rcu_tasks_exit_list); 1079 raw_spin_unlock_irq_rcu_node(rtpcp); 1080 cond_resched(); // For CONFIG_PREEMPT=n kernels 1081 raw_spin_lock_irq_rcu_node(rtpcp); 1082 t1 = list_entry(tmp.next, struct task_struct, rcu_tasks_exit_list); 1083 list_del(&tmp); 1084 j = jiffies + 1; 1085 } 1086 raw_spin_unlock_irq_rcu_node(rtpcp); 1087 } 1088 1089 if (!IS_ENABLED(CONFIG_TINY_RCU)) 1090 timer_delete_sync(&tasks_rcu_exit_srcu_stall_timer); 1091 } 1092 1093 /* See if tasks are still holding out, complain if so. */ 1094 static void check_holdout_task(struct task_struct *t, 1095 bool needreport, bool *firstreport) 1096 { 1097 int cpu; 1098 1099 if (!READ_ONCE(t->rcu_tasks_holdout) || 1100 t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) || 1101 !rcu_tasks_is_holdout(t) || 1102 (IS_ENABLED(CONFIG_NO_HZ_FULL) && 1103 !is_idle_task(t) && READ_ONCE(t->rcu_tasks_idle_cpu) >= 0)) { 1104 WRITE_ONCE(t->rcu_tasks_holdout, false); 1105 list_del_init(&t->rcu_tasks_holdout_list); 1106 put_task_struct(t); 1107 return; 1108 } 1109 rcu_request_urgent_qs_task(t); 1110 if (!needreport) 1111 return; 1112 if (*firstreport) { 1113 pr_err("INFO: rcu_tasks detected stalls on tasks:\n"); 1114 *firstreport = false; 1115 } 1116 cpu = task_cpu(t); 1117 pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n", 1118 t, ".I"[is_idle_task(t)], 1119 "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)], 1120 t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout, 1121 data_race(t->rcu_tasks_idle_cpu), cpu); 1122 sched_show_task(t); 1123 } 1124 1125 /* Scan the holdout lists for tasks no longer holding out. */ 1126 static void check_all_holdout_tasks(struct list_head *hop, 1127 bool needreport, bool *firstreport) 1128 { 1129 struct task_struct *t, *t1; 1130 1131 list_for_each_entry_safe(t, t1, hop, rcu_tasks_holdout_list) { 1132 check_holdout_task(t, needreport, firstreport); 1133 cond_resched(); 1134 } 1135 } 1136 1137 /* Finish off the Tasks-RCU grace period. */ 1138 static void rcu_tasks_postgp(struct rcu_tasks *rtp) 1139 { 1140 /* 1141 * Because ->on_rq and ->nvcsw are not guaranteed to have a full 1142 * memory barriers prior to them in the schedule() path, memory 1143 * reordering on other CPUs could cause their RCU-tasks read-side 1144 * critical sections to extend past the end of the grace period. 1145 * However, because these ->nvcsw updates are carried out with 1146 * interrupts disabled, we can use synchronize_rcu() to force the 1147 * needed ordering on all such CPUs. 1148 * 1149 * This synchronize_rcu() also confines all ->rcu_tasks_holdout 1150 * accesses to be within the grace period, avoiding the need for 1151 * memory barriers for ->rcu_tasks_holdout accesses. 1152 * 1153 * In addition, this synchronize_rcu() waits for exiting tasks 1154 * to complete their final preempt_disable() region of execution, 1155 * enforcing the whole region before tasklist removal until 1156 * the final schedule() with TASK_DEAD state to be an RCU TASKS 1157 * read side critical section. 1158 */ 1159 synchronize_rcu(); 1160 } 1161 1162 static void tasks_rcu_exit_srcu_stall(struct timer_list *unused) 1163 { 1164 #ifndef CONFIG_TINY_RCU 1165 int rtsi; 1166 1167 rtsi = READ_ONCE(rcu_task_stall_info); 1168 pr_info("%s: %s grace period number %lu (since boot) gp_state: %s is %lu jiffies old.\n", 1169 __func__, rcu_tasks.kname, rcu_tasks.tasks_gp_seq, 1170 tasks_gp_state_getname(&rcu_tasks), jiffies - rcu_tasks.gp_jiffies); 1171 pr_info("Please check any exiting tasks stuck between calls to exit_tasks_rcu_start() and exit_tasks_rcu_finish()\n"); 1172 tasks_rcu_exit_srcu_stall_timer.expires = jiffies + rtsi; 1173 add_timer(&tasks_rcu_exit_srcu_stall_timer); 1174 #endif // #ifndef CONFIG_TINY_RCU 1175 } 1176 1177 /** 1178 * call_rcu_tasks() - Queue an RCU for invocation task-based grace period 1179 * @rhp: structure to be used for queueing the RCU updates. 1180 * @func: actual callback function to be invoked after the grace period 1181 * 1182 * The callback function will be invoked some time after a full grace 1183 * period elapses, in other words after all currently executing RCU 1184 * read-side critical sections have completed. call_rcu_tasks() assumes 1185 * that the read-side critical sections end at a voluntary context 1186 * switch (not a preemption!), cond_resched_tasks_rcu_qs(), entry into idle, 1187 * or transition to usermode execution. As such, there are no read-side 1188 * primitives analogous to rcu_read_lock() and rcu_read_unlock() because 1189 * this primitive is intended to determine that all tasks have passed 1190 * through a safe state, not so much for data-structure synchronization. 1191 * 1192 * See the description of call_rcu() for more detailed information on 1193 * memory ordering guarantees. 1194 */ 1195 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func) 1196 { 1197 call_rcu_tasks_generic(rhp, func, &rcu_tasks); 1198 } 1199 EXPORT_SYMBOL_GPL(call_rcu_tasks); 1200 1201 /** 1202 * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed. 1203 * 1204 * Control will return to the caller some time after a full rcu-tasks 1205 * grace period has elapsed, in other words after all currently 1206 * executing rcu-tasks read-side critical sections have elapsed. These 1207 * read-side critical sections are delimited by calls to schedule(), 1208 * cond_resched_tasks_rcu_qs(), idle execution, userspace execution, calls 1209 * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched(). 1210 * 1211 * This is a very specialized primitive, intended only for a few uses in 1212 * tracing and other situations requiring manipulation of function 1213 * preambles and profiling hooks. The synchronize_rcu_tasks() function 1214 * is not (yet) intended for heavy use from multiple CPUs. 1215 * 1216 * See the description of synchronize_rcu() for more detailed information 1217 * on memory ordering guarantees. 1218 */ 1219 void synchronize_rcu_tasks(void) 1220 { 1221 synchronize_rcu_tasks_generic(&rcu_tasks); 1222 } 1223 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks); 1224 1225 /** 1226 * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks. 1227 * 1228 * Although the current implementation is guaranteed to wait, it is not 1229 * obligated to, for example, if there are no pending callbacks. 1230 */ 1231 void rcu_barrier_tasks(void) 1232 { 1233 rcu_barrier_tasks_generic(&rcu_tasks); 1234 } 1235 EXPORT_SYMBOL_GPL(rcu_barrier_tasks); 1236 1237 static int rcu_tasks_lazy_ms = -1; 1238 module_param(rcu_tasks_lazy_ms, int, 0444); 1239 1240 static int __init rcu_spawn_tasks_kthread(void) 1241 { 1242 rcu_tasks.gp_sleep = HZ / 10; 1243 rcu_tasks.init_fract = HZ / 10; 1244 if (rcu_tasks_lazy_ms >= 0) 1245 rcu_tasks.lazy_jiffies = msecs_to_jiffies(rcu_tasks_lazy_ms); 1246 rcu_tasks.pregp_func = rcu_tasks_pregp_step; 1247 rcu_tasks.pertask_func = rcu_tasks_pertask; 1248 rcu_tasks.postscan_func = rcu_tasks_postscan; 1249 rcu_tasks.holdouts_func = check_all_holdout_tasks; 1250 rcu_tasks.postgp_func = rcu_tasks_postgp; 1251 rcu_tasks.wait_state = TASK_IDLE; 1252 rcu_spawn_tasks_kthread_generic(&rcu_tasks); 1253 return 0; 1254 } 1255 1256 #if !defined(CONFIG_TINY_RCU) 1257 void show_rcu_tasks_classic_gp_kthread(void) 1258 { 1259 show_rcu_tasks_generic_gp_kthread(&rcu_tasks, ""); 1260 } 1261 EXPORT_SYMBOL_GPL(show_rcu_tasks_classic_gp_kthread); 1262 1263 void rcu_tasks_torture_stats_print(char *tt, char *tf) 1264 { 1265 rcu_tasks_torture_stats_print_generic(&rcu_tasks, tt, tf, ""); 1266 } 1267 EXPORT_SYMBOL_GPL(rcu_tasks_torture_stats_print); 1268 #endif // !defined(CONFIG_TINY_RCU) 1269 1270 struct task_struct *get_rcu_tasks_gp_kthread(void) 1271 { 1272 return rcu_tasks.kthread_ptr; 1273 } 1274 EXPORT_SYMBOL_GPL(get_rcu_tasks_gp_kthread); 1275 1276 void rcu_tasks_get_gp_data(int *flags, unsigned long *gp_seq) 1277 { 1278 *flags = 0; 1279 *gp_seq = rcu_seq_current(&rcu_tasks.tasks_gp_seq); 1280 } 1281 EXPORT_SYMBOL_GPL(rcu_tasks_get_gp_data); 1282 1283 /* 1284 * Protect against tasklist scan blind spot while the task is exiting and 1285 * may be removed from the tasklist. Do this by adding the task to yet 1286 * another list. 1287 * 1288 * Note that the task will remove itself from this list, so there is no 1289 * need for get_task_struct(), except in the case where rcu_tasks_pertask() 1290 * adds it to the holdout list, in which case rcu_tasks_pertask() supplies 1291 * the needed get_task_struct(). 1292 */ 1293 void exit_tasks_rcu_start(void) 1294 { 1295 unsigned long flags; 1296 struct rcu_tasks_percpu *rtpcp; 1297 struct task_struct *t = current; 1298 1299 WARN_ON_ONCE(!list_empty(&t->rcu_tasks_exit_list)); 1300 preempt_disable(); 1301 rtpcp = this_cpu_ptr(rcu_tasks.rtpcpu); 1302 t->rcu_tasks_exit_cpu = smp_processor_id(); 1303 raw_spin_lock_irqsave_rcu_node(rtpcp, flags); 1304 WARN_ON_ONCE(!rtpcp->rtp_exit_list.next); 1305 list_add(&t->rcu_tasks_exit_list, &rtpcp->rtp_exit_list); 1306 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 1307 preempt_enable(); 1308 } 1309 1310 /* 1311 * Remove the task from the "yet another list" because do_exit() is now 1312 * non-preemptible, allowing synchronize_rcu() to wait beyond this point. 1313 */ 1314 void exit_tasks_rcu_finish(void) 1315 { 1316 unsigned long flags; 1317 struct rcu_tasks_percpu *rtpcp; 1318 struct task_struct *t = current; 1319 1320 WARN_ON_ONCE(list_empty(&t->rcu_tasks_exit_list)); 1321 rtpcp = per_cpu_ptr(rcu_tasks.rtpcpu, t->rcu_tasks_exit_cpu); 1322 raw_spin_lock_irqsave_rcu_node(rtpcp, flags); 1323 list_del_init(&t->rcu_tasks_exit_list); 1324 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 1325 1326 exit_tasks_rcu_finish_trace(t); 1327 } 1328 1329 #else /* #ifdef CONFIG_TASKS_RCU */ 1330 void exit_tasks_rcu_start(void) { } 1331 void exit_tasks_rcu_finish(void) { exit_tasks_rcu_finish_trace(current); } 1332 #endif /* #else #ifdef CONFIG_TASKS_RCU */ 1333 1334 #ifdef CONFIG_TASKS_RUDE_RCU 1335 1336 //////////////////////////////////////////////////////////////////////// 1337 // 1338 // "Rude" variant of Tasks RCU, inspired by Steve Rostedt's 1339 // trick of passing an empty function to schedule_on_each_cpu(). 1340 // This approach provides batching of concurrent calls to the synchronous 1341 // synchronize_rcu_tasks_rude() API. This invokes schedule_on_each_cpu() 1342 // in order to send IPIs far and wide and induces otherwise unnecessary 1343 // context switches on all online CPUs, whether idle or not. 1344 // 1345 // Callback handling is provided by the rcu_tasks_kthread() function. 1346 // 1347 // Ordering is provided by the scheduler's context-switch code. 1348 1349 // Empty function to allow workqueues to force a context switch. 1350 static void rcu_tasks_be_rude(struct work_struct *work) 1351 { 1352 } 1353 1354 // Wait for one rude RCU-tasks grace period. 1355 static void rcu_tasks_rude_wait_gp(struct rcu_tasks *rtp) 1356 { 1357 rtp->n_ipis += cpumask_weight(cpu_online_mask); 1358 schedule_on_each_cpu(rcu_tasks_be_rude); 1359 } 1360 1361 static void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func); 1362 DEFINE_RCU_TASKS(rcu_tasks_rude, rcu_tasks_rude_wait_gp, call_rcu_tasks_rude, 1363 "RCU Tasks Rude"); 1364 1365 /* 1366 * call_rcu_tasks_rude() - Queue a callback rude task-based grace period 1367 * @rhp: structure to be used for queueing the RCU updates. 1368 * @func: actual callback function to be invoked after the grace period 1369 * 1370 * The callback function will be invoked some time after a full grace 1371 * period elapses, in other words after all currently executing RCU 1372 * read-side critical sections have completed. call_rcu_tasks_rude() 1373 * assumes that the read-side critical sections end at context switch, 1374 * cond_resched_tasks_rcu_qs(), or transition to usermode execution (as 1375 * usermode execution is schedulable). As such, there are no read-side 1376 * primitives analogous to rcu_read_lock() and rcu_read_unlock() because 1377 * this primitive is intended to determine that all tasks have passed 1378 * through a safe state, not so much for data-structure synchronization. 1379 * 1380 * See the description of call_rcu() for more detailed information on 1381 * memory ordering guarantees. 1382 * 1383 * This is no longer exported, and is instead reserved for use by 1384 * synchronize_rcu_tasks_rude(). 1385 */ 1386 static void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func) 1387 { 1388 call_rcu_tasks_generic(rhp, func, &rcu_tasks_rude); 1389 } 1390 1391 /** 1392 * synchronize_rcu_tasks_rude - wait for a rude rcu-tasks grace period 1393 * 1394 * Control will return to the caller some time after a rude rcu-tasks 1395 * grace period has elapsed, in other words after all currently 1396 * executing rcu-tasks read-side critical sections have elapsed. These 1397 * read-side critical sections are delimited by calls to schedule(), 1398 * cond_resched_tasks_rcu_qs(), userspace execution (which is a schedulable 1399 * context), and (in theory, anyway) cond_resched(). 1400 * 1401 * This is a very specialized primitive, intended only for a few uses in 1402 * tracing and other situations requiring manipulation of function preambles 1403 * and profiling hooks. The synchronize_rcu_tasks_rude() function is not 1404 * (yet) intended for heavy use from multiple CPUs. 1405 * 1406 * See the description of synchronize_rcu() for more detailed information 1407 * on memory ordering guarantees. 1408 */ 1409 void synchronize_rcu_tasks_rude(void) 1410 { 1411 if (!IS_ENABLED(CONFIG_ARCH_WANTS_NO_INSTR) || IS_ENABLED(CONFIG_FORCE_TASKS_RUDE_RCU)) 1412 synchronize_rcu_tasks_generic(&rcu_tasks_rude); 1413 } 1414 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_rude); 1415 1416 static int __init rcu_spawn_tasks_rude_kthread(void) 1417 { 1418 rcu_tasks_rude.gp_sleep = HZ / 10; 1419 rcu_spawn_tasks_kthread_generic(&rcu_tasks_rude); 1420 return 0; 1421 } 1422 1423 #if !defined(CONFIG_TINY_RCU) 1424 void show_rcu_tasks_rude_gp_kthread(void) 1425 { 1426 show_rcu_tasks_generic_gp_kthread(&rcu_tasks_rude, ""); 1427 } 1428 EXPORT_SYMBOL_GPL(show_rcu_tasks_rude_gp_kthread); 1429 1430 void rcu_tasks_rude_torture_stats_print(char *tt, char *tf) 1431 { 1432 rcu_tasks_torture_stats_print_generic(&rcu_tasks_rude, tt, tf, ""); 1433 } 1434 EXPORT_SYMBOL_GPL(rcu_tasks_rude_torture_stats_print); 1435 #endif // !defined(CONFIG_TINY_RCU) 1436 1437 struct task_struct *get_rcu_tasks_rude_gp_kthread(void) 1438 { 1439 return rcu_tasks_rude.kthread_ptr; 1440 } 1441 EXPORT_SYMBOL_GPL(get_rcu_tasks_rude_gp_kthread); 1442 1443 void rcu_tasks_rude_get_gp_data(int *flags, unsigned long *gp_seq) 1444 { 1445 *flags = 0; 1446 *gp_seq = rcu_seq_current(&rcu_tasks_rude.tasks_gp_seq); 1447 } 1448 EXPORT_SYMBOL_GPL(rcu_tasks_rude_get_gp_data); 1449 1450 #endif /* #ifdef CONFIG_TASKS_RUDE_RCU */ 1451 1452 //////////////////////////////////////////////////////////////////////// 1453 // 1454 // Tracing variant of Tasks RCU. This variant is designed to be used 1455 // to protect tracing hooks, including those of BPF. This variant 1456 // therefore: 1457 // 1458 // 1. Has explicit read-side markers to allow finite grace periods 1459 // in the face of in-kernel loops for PREEMPT=n builds. 1460 // 1461 // 2. Protects code in the idle loop, exception entry/exit, and 1462 // CPU-hotplug code paths, similar to the capabilities of SRCU. 1463 // 1464 // 3. Avoids expensive read-side instructions, having overhead similar 1465 // to that of Preemptible RCU. 1466 // 1467 // There are of course downsides. For example, the grace-period code 1468 // can send IPIs to CPUs, even when those CPUs are in the idle loop or 1469 // in nohz_full userspace. If needed, these downsides can be at least 1470 // partially remedied. 1471 // 1472 // Perhaps most important, this variant of RCU does not affect the vanilla 1473 // flavors, rcu_preempt and rcu_sched. The fact that RCU Tasks Trace 1474 // readers can operate from idle, offline, and exception entry/exit in no 1475 // way allows rcu_preempt and rcu_sched readers to also do so. 1476 // 1477 // The implementation uses rcu_tasks_wait_gp(), which relies on function 1478 // pointers in the rcu_tasks structure. The rcu_spawn_tasks_trace_kthread() 1479 // function sets these function pointers up so that rcu_tasks_wait_gp() 1480 // invokes these functions in this order: 1481 // 1482 // rcu_tasks_trace_pregp_step(): 1483 // Disables CPU hotplug, adds all currently executing tasks to the 1484 // holdout list, then checks the state of all tasks that blocked 1485 // or were preempted within their current RCU Tasks Trace read-side 1486 // critical section, adding them to the holdout list if appropriate. 1487 // Finally, this function re-enables CPU hotplug. 1488 // The ->pertask_func() pointer is NULL, so there is no per-task processing. 1489 // rcu_tasks_trace_postscan(): 1490 // Invokes synchronize_rcu() to wait for late-stage exiting tasks 1491 // to finish exiting. 1492 // check_all_holdout_tasks_trace(), repeatedly until holdout list is empty: 1493 // Scans the holdout list, attempting to identify a quiescent state 1494 // for each task on the list. If there is a quiescent state, the 1495 // corresponding task is removed from the holdout list. Once this 1496 // list is empty, the grace period has completed. 1497 // rcu_tasks_trace_postgp(): 1498 // Provides the needed full memory barrier and does debug checks. 1499 // 1500 // The exit_tasks_rcu_finish_trace() synchronizes with exiting tasks. 1501 // 1502 // Pre-grace-period update-side code is ordered before the grace period 1503 // via the ->cbs_lock and barriers in rcu_tasks_kthread(). Pre-grace-period 1504 // read-side code is ordered before the grace period by atomic operations 1505 // on .b.need_qs flag of each task involved in this process, or by scheduler 1506 // context-switch ordering (for locked-down non-running readers). 1507 1508 // The lockdep state must be outside of #ifdef to be useful. 1509 #ifdef CONFIG_DEBUG_LOCK_ALLOC 1510 static struct lock_class_key rcu_lock_trace_key; 1511 struct lockdep_map rcu_trace_lock_map = 1512 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_trace", &rcu_lock_trace_key); 1513 EXPORT_SYMBOL_GPL(rcu_trace_lock_map); 1514 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 1515 1516 #ifdef CONFIG_TASKS_TRACE_RCU 1517 1518 // Record outstanding IPIs to each CPU. No point in sending two... 1519 static DEFINE_PER_CPU(bool, trc_ipi_to_cpu); 1520 1521 // The number of detections of task quiescent state relying on 1522 // heavyweight readers executing explicit memory barriers. 1523 static unsigned long n_heavy_reader_attempts; 1524 static unsigned long n_heavy_reader_updates; 1525 static unsigned long n_heavy_reader_ofl_updates; 1526 static unsigned long n_trc_holdouts; 1527 1528 void call_rcu_tasks_trace(struct rcu_head *rhp, rcu_callback_t func); 1529 DEFINE_RCU_TASKS(rcu_tasks_trace, rcu_tasks_wait_gp, call_rcu_tasks_trace, 1530 "RCU Tasks Trace"); 1531 1532 /* Load from ->trc_reader_special.b.need_qs with proper ordering. */ 1533 static u8 rcu_ld_need_qs(struct task_struct *t) 1534 { 1535 smp_mb(); // Enforce full grace-period ordering. 1536 return smp_load_acquire(&t->trc_reader_special.b.need_qs); 1537 } 1538 1539 /* Store to ->trc_reader_special.b.need_qs with proper ordering. */ 1540 static void rcu_st_need_qs(struct task_struct *t, u8 v) 1541 { 1542 smp_store_release(&t->trc_reader_special.b.need_qs, v); 1543 smp_mb(); // Enforce full grace-period ordering. 1544 } 1545 1546 /* 1547 * Do a cmpxchg() on ->trc_reader_special.b.need_qs, allowing for 1548 * the four-byte operand-size restriction of some platforms. 1549 * 1550 * Returns the old value, which is often ignored. 1551 */ 1552 u8 rcu_trc_cmpxchg_need_qs(struct task_struct *t, u8 old, u8 new) 1553 { 1554 return cmpxchg(&t->trc_reader_special.b.need_qs, old, new); 1555 } 1556 EXPORT_SYMBOL_GPL(rcu_trc_cmpxchg_need_qs); 1557 1558 /* 1559 * If we are the last reader, signal the grace-period kthread. 1560 * Also remove from the per-CPU list of blocked tasks. 1561 */ 1562 void rcu_read_unlock_trace_special(struct task_struct *t) 1563 { 1564 unsigned long flags; 1565 struct rcu_tasks_percpu *rtpcp; 1566 union rcu_special trs; 1567 1568 // Open-coded full-word version of rcu_ld_need_qs(). 1569 smp_mb(); // Enforce full grace-period ordering. 1570 trs = smp_load_acquire(&t->trc_reader_special); 1571 1572 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) && t->trc_reader_special.b.need_mb) 1573 smp_mb(); // Pairs with update-side barriers. 1574 // Update .need_qs before ->trc_reader_nesting for irq/NMI handlers. 1575 if (trs.b.need_qs == (TRC_NEED_QS_CHECKED | TRC_NEED_QS)) { 1576 u8 result = rcu_trc_cmpxchg_need_qs(t, TRC_NEED_QS_CHECKED | TRC_NEED_QS, 1577 TRC_NEED_QS_CHECKED); 1578 1579 WARN_ONCE(result != trs.b.need_qs, "%s: result = %d", __func__, result); 1580 } 1581 if (trs.b.blocked) { 1582 rtpcp = per_cpu_ptr(rcu_tasks_trace.rtpcpu, t->trc_blkd_cpu); 1583 raw_spin_lock_irqsave_rcu_node(rtpcp, flags); 1584 list_del_init(&t->trc_blkd_node); 1585 WRITE_ONCE(t->trc_reader_special.b.blocked, false); 1586 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 1587 } 1588 WRITE_ONCE(t->trc_reader_nesting, 0); 1589 } 1590 EXPORT_SYMBOL_GPL(rcu_read_unlock_trace_special); 1591 1592 /* Add a newly blocked reader task to its CPU's list. */ 1593 void rcu_tasks_trace_qs_blkd(struct task_struct *t) 1594 { 1595 unsigned long flags; 1596 struct rcu_tasks_percpu *rtpcp; 1597 1598 local_irq_save(flags); 1599 rtpcp = this_cpu_ptr(rcu_tasks_trace.rtpcpu); 1600 raw_spin_lock_rcu_node(rtpcp); // irqs already disabled 1601 t->trc_blkd_cpu = smp_processor_id(); 1602 if (!rtpcp->rtp_blkd_tasks.next) 1603 INIT_LIST_HEAD(&rtpcp->rtp_blkd_tasks); 1604 list_add(&t->trc_blkd_node, &rtpcp->rtp_blkd_tasks); 1605 WRITE_ONCE(t->trc_reader_special.b.blocked, true); 1606 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 1607 } 1608 EXPORT_SYMBOL_GPL(rcu_tasks_trace_qs_blkd); 1609 1610 /* Add a task to the holdout list, if it is not already on the list. */ 1611 static void trc_add_holdout(struct task_struct *t, struct list_head *bhp) 1612 { 1613 if (list_empty(&t->trc_holdout_list)) { 1614 get_task_struct(t); 1615 list_add(&t->trc_holdout_list, bhp); 1616 n_trc_holdouts++; 1617 } 1618 } 1619 1620 /* Remove a task from the holdout list, if it is in fact present. */ 1621 static void trc_del_holdout(struct task_struct *t) 1622 { 1623 if (!list_empty(&t->trc_holdout_list)) { 1624 list_del_init(&t->trc_holdout_list); 1625 put_task_struct(t); 1626 n_trc_holdouts--; 1627 } 1628 } 1629 1630 /* IPI handler to check task state. */ 1631 static void trc_read_check_handler(void *t_in) 1632 { 1633 int nesting; 1634 struct task_struct *t = current; 1635 struct task_struct *texp = t_in; 1636 1637 // If the task is no longer running on this CPU, leave. 1638 if (unlikely(texp != t)) 1639 goto reset_ipi; // Already on holdout list, so will check later. 1640 1641 // If the task is not in a read-side critical section, and 1642 // if this is the last reader, awaken the grace-period kthread. 1643 nesting = READ_ONCE(t->trc_reader_nesting); 1644 if (likely(!nesting)) { 1645 rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED); 1646 goto reset_ipi; 1647 } 1648 // If we are racing with an rcu_read_unlock_trace(), try again later. 1649 if (unlikely(nesting < 0)) 1650 goto reset_ipi; 1651 1652 // Get here if the task is in a read-side critical section. 1653 // Set its state so that it will update state for the grace-period 1654 // kthread upon exit from that critical section. 1655 rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS | TRC_NEED_QS_CHECKED); 1656 1657 reset_ipi: 1658 // Allow future IPIs to be sent on CPU and for task. 1659 // Also order this IPI handler against any later manipulations of 1660 // the intended task. 1661 smp_store_release(per_cpu_ptr(&trc_ipi_to_cpu, smp_processor_id()), false); // ^^^ 1662 smp_store_release(&texp->trc_ipi_to_cpu, -1); // ^^^ 1663 } 1664 1665 /* Callback function for scheduler to check locked-down task. */ 1666 static int trc_inspect_reader(struct task_struct *t, void *bhp_in) 1667 { 1668 struct list_head *bhp = bhp_in; 1669 int cpu = task_cpu(t); 1670 int nesting; 1671 bool ofl = cpu_is_offline(cpu); 1672 1673 if (task_curr(t) && !ofl) { 1674 // If no chance of heavyweight readers, do it the hard way. 1675 if (!IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB)) 1676 return -EINVAL; 1677 1678 // If heavyweight readers are enabled on the remote task, 1679 // we can inspect its state despite its currently running. 1680 // However, we cannot safely change its state. 1681 n_heavy_reader_attempts++; 1682 // Check for "running" idle tasks on offline CPUs. 1683 if (!rcu_watching_zero_in_eqs(cpu, &t->trc_reader_nesting)) 1684 return -EINVAL; // No quiescent state, do it the hard way. 1685 n_heavy_reader_updates++; 1686 nesting = 0; 1687 } else { 1688 // The task is not running, so C-language access is safe. 1689 nesting = t->trc_reader_nesting; 1690 WARN_ON_ONCE(ofl && task_curr(t) && (t != idle_task(task_cpu(t)))); 1691 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) && ofl) 1692 n_heavy_reader_ofl_updates++; 1693 } 1694 1695 // If not exiting a read-side critical section, mark as checked 1696 // so that the grace-period kthread will remove it from the 1697 // holdout list. 1698 if (!nesting) { 1699 rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED); 1700 return 0; // In QS, so done. 1701 } 1702 if (nesting < 0) 1703 return -EINVAL; // Reader transitioning, try again later. 1704 1705 // The task is in a read-side critical section, so set up its 1706 // state so that it will update state upon exit from that critical 1707 // section. 1708 if (!rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS | TRC_NEED_QS_CHECKED)) 1709 trc_add_holdout(t, bhp); 1710 return 0; 1711 } 1712 1713 /* Attempt to extract the state for the specified task. */ 1714 static void trc_wait_for_one_reader(struct task_struct *t, 1715 struct list_head *bhp) 1716 { 1717 int cpu; 1718 1719 // If a previous IPI is still in flight, let it complete. 1720 if (smp_load_acquire(&t->trc_ipi_to_cpu) != -1) // Order IPI 1721 return; 1722 1723 // The current task had better be in a quiescent state. 1724 if (t == current) { 1725 rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED); 1726 WARN_ON_ONCE(READ_ONCE(t->trc_reader_nesting)); 1727 return; 1728 } 1729 1730 // Attempt to nail down the task for inspection. 1731 get_task_struct(t); 1732 if (!task_call_func(t, trc_inspect_reader, bhp)) { 1733 put_task_struct(t); 1734 return; 1735 } 1736 put_task_struct(t); 1737 1738 // If this task is not yet on the holdout list, then we are in 1739 // an RCU read-side critical section. Otherwise, the invocation of 1740 // trc_add_holdout() that added it to the list did the necessary 1741 // get_task_struct(). Either way, the task cannot be freed out 1742 // from under this code. 1743 1744 // If currently running, send an IPI, either way, add to list. 1745 trc_add_holdout(t, bhp); 1746 if (task_curr(t) && 1747 time_after(jiffies + 1, rcu_tasks_trace.gp_start + rcu_task_ipi_delay)) { 1748 // The task is currently running, so try IPIing it. 1749 cpu = task_cpu(t); 1750 1751 // If there is already an IPI outstanding, let it happen. 1752 if (per_cpu(trc_ipi_to_cpu, cpu) || t->trc_ipi_to_cpu >= 0) 1753 return; 1754 1755 per_cpu(trc_ipi_to_cpu, cpu) = true; 1756 t->trc_ipi_to_cpu = cpu; 1757 rcu_tasks_trace.n_ipis++; 1758 if (smp_call_function_single(cpu, trc_read_check_handler, t, 0)) { 1759 // Just in case there is some other reason for 1760 // failure than the target CPU being offline. 1761 WARN_ONCE(1, "%s(): smp_call_function_single() failed for CPU: %d\n", 1762 __func__, cpu); 1763 rcu_tasks_trace.n_ipis_fails++; 1764 per_cpu(trc_ipi_to_cpu, cpu) = false; 1765 t->trc_ipi_to_cpu = -1; 1766 } 1767 } 1768 } 1769 1770 /* 1771 * Initialize for first-round processing for the specified task. 1772 * Return false if task is NULL or already taken care of, true otherwise. 1773 */ 1774 static bool rcu_tasks_trace_pertask_prep(struct task_struct *t, bool notself) 1775 { 1776 // During early boot when there is only the one boot CPU, there 1777 // is no idle task for the other CPUs. Also, the grace-period 1778 // kthread is always in a quiescent state. In addition, just return 1779 // if this task is already on the list. 1780 if (unlikely(t == NULL) || (t == current && notself) || !list_empty(&t->trc_holdout_list)) 1781 return false; 1782 1783 rcu_st_need_qs(t, 0); 1784 t->trc_ipi_to_cpu = -1; 1785 return true; 1786 } 1787 1788 /* Do first-round processing for the specified task. */ 1789 static void rcu_tasks_trace_pertask(struct task_struct *t, struct list_head *hop) 1790 { 1791 if (rcu_tasks_trace_pertask_prep(t, true)) 1792 trc_wait_for_one_reader(t, hop); 1793 } 1794 1795 /* Initialize for a new RCU-tasks-trace grace period. */ 1796 static void rcu_tasks_trace_pregp_step(struct list_head *hop) 1797 { 1798 LIST_HEAD(blkd_tasks); 1799 int cpu; 1800 unsigned long flags; 1801 struct rcu_tasks_percpu *rtpcp; 1802 struct task_struct *t; 1803 1804 // There shouldn't be any old IPIs, but... 1805 for_each_possible_cpu(cpu) 1806 WARN_ON_ONCE(per_cpu(trc_ipi_to_cpu, cpu)); 1807 1808 // Disable CPU hotplug across the CPU scan for the benefit of 1809 // any IPIs that might be needed. This also waits for all readers 1810 // in CPU-hotplug code paths. 1811 cpus_read_lock(); 1812 1813 // These rcu_tasks_trace_pertask_prep() calls are serialized to 1814 // allow safe access to the hop list. 1815 for_each_online_cpu(cpu) { 1816 rcu_read_lock(); 1817 // Note that cpu_curr_snapshot() picks up the target 1818 // CPU's current task while its runqueue is locked with 1819 // an smp_mb__after_spinlock(). This ensures that either 1820 // the grace-period kthread will see that task's read-side 1821 // critical section or the task will see the updater's pre-GP 1822 // accesses. The trailing smp_mb() in cpu_curr_snapshot() 1823 // does not currently play a role other than simplify 1824 // that function's ordering semantics. If these simplified 1825 // ordering semantics continue to be redundant, that smp_mb() 1826 // might be removed. 1827 t = cpu_curr_snapshot(cpu); 1828 if (rcu_tasks_trace_pertask_prep(t, true)) 1829 trc_add_holdout(t, hop); 1830 rcu_read_unlock(); 1831 cond_resched_tasks_rcu_qs(); 1832 } 1833 1834 // Only after all running tasks have been accounted for is it 1835 // safe to take care of the tasks that have blocked within their 1836 // current RCU tasks trace read-side critical section. 1837 for_each_possible_cpu(cpu) { 1838 rtpcp = per_cpu_ptr(rcu_tasks_trace.rtpcpu, cpu); 1839 raw_spin_lock_irqsave_rcu_node(rtpcp, flags); 1840 list_splice_init(&rtpcp->rtp_blkd_tasks, &blkd_tasks); 1841 while (!list_empty(&blkd_tasks)) { 1842 rcu_read_lock(); 1843 t = list_first_entry(&blkd_tasks, struct task_struct, trc_blkd_node); 1844 list_del_init(&t->trc_blkd_node); 1845 list_add(&t->trc_blkd_node, &rtpcp->rtp_blkd_tasks); 1846 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 1847 rcu_tasks_trace_pertask(t, hop); 1848 rcu_read_unlock(); 1849 raw_spin_lock_irqsave_rcu_node(rtpcp, flags); 1850 } 1851 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 1852 cond_resched_tasks_rcu_qs(); 1853 } 1854 1855 // Re-enable CPU hotplug now that the holdout list is populated. 1856 cpus_read_unlock(); 1857 } 1858 1859 /* 1860 * Do intermediate processing between task and holdout scans. 1861 */ 1862 static void rcu_tasks_trace_postscan(struct list_head *hop) 1863 { 1864 // Wait for late-stage exiting tasks to finish exiting. 1865 // These might have passed the call to exit_tasks_rcu_finish(). 1866 1867 // If you remove the following line, update rcu_trace_implies_rcu_gp()!!! 1868 synchronize_rcu(); 1869 // Any tasks that exit after this point will set 1870 // TRC_NEED_QS_CHECKED in ->trc_reader_special.b.need_qs. 1871 } 1872 1873 /* Communicate task state back to the RCU tasks trace stall warning request. */ 1874 struct trc_stall_chk_rdr { 1875 int nesting; 1876 int ipi_to_cpu; 1877 u8 needqs; 1878 }; 1879 1880 static int trc_check_slow_task(struct task_struct *t, void *arg) 1881 { 1882 struct trc_stall_chk_rdr *trc_rdrp = arg; 1883 1884 if (task_curr(t) && cpu_online(task_cpu(t))) 1885 return false; // It is running, so decline to inspect it. 1886 trc_rdrp->nesting = READ_ONCE(t->trc_reader_nesting); 1887 trc_rdrp->ipi_to_cpu = READ_ONCE(t->trc_ipi_to_cpu); 1888 trc_rdrp->needqs = rcu_ld_need_qs(t); 1889 return true; 1890 } 1891 1892 /* Show the state of a task stalling the current RCU tasks trace GP. */ 1893 static void show_stalled_task_trace(struct task_struct *t, bool *firstreport) 1894 { 1895 int cpu; 1896 struct trc_stall_chk_rdr trc_rdr; 1897 bool is_idle_tsk = is_idle_task(t); 1898 1899 if (*firstreport) { 1900 pr_err("INFO: rcu_tasks_trace detected stalls on tasks:\n"); 1901 *firstreport = false; 1902 } 1903 cpu = task_cpu(t); 1904 if (!task_call_func(t, trc_check_slow_task, &trc_rdr)) 1905 pr_alert("P%d: %c%c\n", 1906 t->pid, 1907 ".I"[t->trc_ipi_to_cpu >= 0], 1908 ".i"[is_idle_tsk]); 1909 else 1910 pr_alert("P%d: %c%c%c%c nesting: %d%c%c cpu: %d%s\n", 1911 t->pid, 1912 ".I"[trc_rdr.ipi_to_cpu >= 0], 1913 ".i"[is_idle_tsk], 1914 ".N"[cpu >= 0 && tick_nohz_full_cpu(cpu)], 1915 ".B"[!!data_race(t->trc_reader_special.b.blocked)], 1916 trc_rdr.nesting, 1917 " !CN"[trc_rdr.needqs & 0x3], 1918 " ?"[trc_rdr.needqs > 0x3], 1919 cpu, cpu_online(cpu) ? "" : "(offline)"); 1920 sched_show_task(t); 1921 } 1922 1923 /* List stalled IPIs for RCU tasks trace. */ 1924 static void show_stalled_ipi_trace(void) 1925 { 1926 int cpu; 1927 1928 for_each_possible_cpu(cpu) 1929 if (per_cpu(trc_ipi_to_cpu, cpu)) 1930 pr_alert("\tIPI outstanding to CPU %d\n", cpu); 1931 } 1932 1933 /* Do one scan of the holdout list. */ 1934 static void check_all_holdout_tasks_trace(struct list_head *hop, 1935 bool needreport, bool *firstreport) 1936 { 1937 struct task_struct *g, *t; 1938 1939 // Disable CPU hotplug across the holdout list scan for IPIs. 1940 cpus_read_lock(); 1941 1942 list_for_each_entry_safe(t, g, hop, trc_holdout_list) { 1943 // If safe and needed, try to check the current task. 1944 if (READ_ONCE(t->trc_ipi_to_cpu) == -1 && 1945 !(rcu_ld_need_qs(t) & TRC_NEED_QS_CHECKED)) 1946 trc_wait_for_one_reader(t, hop); 1947 1948 // If check succeeded, remove this task from the list. 1949 if (smp_load_acquire(&t->trc_ipi_to_cpu) == -1 && 1950 rcu_ld_need_qs(t) == TRC_NEED_QS_CHECKED) 1951 trc_del_holdout(t); 1952 else if (needreport) 1953 show_stalled_task_trace(t, firstreport); 1954 cond_resched_tasks_rcu_qs(); 1955 } 1956 1957 // Re-enable CPU hotplug now that the holdout list scan has completed. 1958 cpus_read_unlock(); 1959 1960 if (needreport) { 1961 if (*firstreport) 1962 pr_err("INFO: rcu_tasks_trace detected stalls? (Late IPI?)\n"); 1963 show_stalled_ipi_trace(); 1964 } 1965 } 1966 1967 static void rcu_tasks_trace_empty_fn(void *unused) 1968 { 1969 } 1970 1971 /* Wait for grace period to complete and provide ordering. */ 1972 static void rcu_tasks_trace_postgp(struct rcu_tasks *rtp) 1973 { 1974 int cpu; 1975 1976 // Wait for any lingering IPI handlers to complete. Note that 1977 // if a CPU has gone offline or transitioned to userspace in the 1978 // meantime, all IPI handlers should have been drained beforehand. 1979 // Yes, this assumes that CPUs process IPIs in order. If that ever 1980 // changes, there will need to be a recheck and/or timed wait. 1981 for_each_online_cpu(cpu) 1982 if (WARN_ON_ONCE(smp_load_acquire(per_cpu_ptr(&trc_ipi_to_cpu, cpu)))) 1983 smp_call_function_single(cpu, rcu_tasks_trace_empty_fn, NULL, 1); 1984 1985 smp_mb(); // Caller's code must be ordered after wakeup. 1986 // Pairs with pretty much every ordering primitive. 1987 } 1988 1989 /* Report any needed quiescent state for this exiting task. */ 1990 static void exit_tasks_rcu_finish_trace(struct task_struct *t) 1991 { 1992 union rcu_special trs = READ_ONCE(t->trc_reader_special); 1993 1994 rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED); 1995 WARN_ON_ONCE(READ_ONCE(t->trc_reader_nesting)); 1996 if (WARN_ON_ONCE(rcu_ld_need_qs(t) & TRC_NEED_QS || trs.b.blocked)) 1997 rcu_read_unlock_trace_special(t); 1998 else 1999 WRITE_ONCE(t->trc_reader_nesting, 0); 2000 } 2001 2002 /** 2003 * call_rcu_tasks_trace() - Queue a callback trace task-based grace period 2004 * @rhp: structure to be used for queueing the RCU updates. 2005 * @func: actual callback function to be invoked after the grace period 2006 * 2007 * The callback function will be invoked some time after a trace rcu-tasks 2008 * grace period elapses, in other words after all currently executing 2009 * trace rcu-tasks read-side critical sections have completed. These 2010 * read-side critical sections are delimited by calls to rcu_read_lock_trace() 2011 * and rcu_read_unlock_trace(). 2012 * 2013 * See the description of call_rcu() for more detailed information on 2014 * memory ordering guarantees. 2015 */ 2016 void call_rcu_tasks_trace(struct rcu_head *rhp, rcu_callback_t func) 2017 { 2018 call_rcu_tasks_generic(rhp, func, &rcu_tasks_trace); 2019 } 2020 EXPORT_SYMBOL_GPL(call_rcu_tasks_trace); 2021 2022 /** 2023 * synchronize_rcu_tasks_trace - wait for a trace rcu-tasks grace period 2024 * 2025 * Control will return to the caller some time after a trace rcu-tasks 2026 * grace period has elapsed, in other words after all currently executing 2027 * trace rcu-tasks read-side critical sections have elapsed. These read-side 2028 * critical sections are delimited by calls to rcu_read_lock_trace() 2029 * and rcu_read_unlock_trace(). 2030 * 2031 * This is a very specialized primitive, intended only for a few uses in 2032 * tracing and other situations requiring manipulation of function preambles 2033 * and profiling hooks. The synchronize_rcu_tasks_trace() function is not 2034 * (yet) intended for heavy use from multiple CPUs. 2035 * 2036 * See the description of synchronize_rcu() for more detailed information 2037 * on memory ordering guarantees. 2038 */ 2039 void synchronize_rcu_tasks_trace(void) 2040 { 2041 RCU_LOCKDEP_WARN(lock_is_held(&rcu_trace_lock_map), "Illegal synchronize_rcu_tasks_trace() in RCU Tasks Trace read-side critical section"); 2042 synchronize_rcu_tasks_generic(&rcu_tasks_trace); 2043 } 2044 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_trace); 2045 2046 /** 2047 * rcu_barrier_tasks_trace - Wait for in-flight call_rcu_tasks_trace() callbacks. 2048 * 2049 * Although the current implementation is guaranteed to wait, it is not 2050 * obligated to, for example, if there are no pending callbacks. 2051 */ 2052 void rcu_barrier_tasks_trace(void) 2053 { 2054 rcu_barrier_tasks_generic(&rcu_tasks_trace); 2055 } 2056 EXPORT_SYMBOL_GPL(rcu_barrier_tasks_trace); 2057 2058 int rcu_tasks_trace_lazy_ms = -1; 2059 module_param(rcu_tasks_trace_lazy_ms, int, 0444); 2060 2061 static int __init rcu_spawn_tasks_trace_kthread(void) 2062 { 2063 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB)) { 2064 rcu_tasks_trace.gp_sleep = HZ / 10; 2065 rcu_tasks_trace.init_fract = HZ / 10; 2066 } else { 2067 rcu_tasks_trace.gp_sleep = HZ / 200; 2068 if (rcu_tasks_trace.gp_sleep <= 0) 2069 rcu_tasks_trace.gp_sleep = 1; 2070 rcu_tasks_trace.init_fract = HZ / 200; 2071 if (rcu_tasks_trace.init_fract <= 0) 2072 rcu_tasks_trace.init_fract = 1; 2073 } 2074 if (rcu_tasks_trace_lazy_ms >= 0) 2075 rcu_tasks_trace.lazy_jiffies = msecs_to_jiffies(rcu_tasks_trace_lazy_ms); 2076 rcu_tasks_trace.pregp_func = rcu_tasks_trace_pregp_step; 2077 rcu_tasks_trace.postscan_func = rcu_tasks_trace_postscan; 2078 rcu_tasks_trace.holdouts_func = check_all_holdout_tasks_trace; 2079 rcu_tasks_trace.postgp_func = rcu_tasks_trace_postgp; 2080 rcu_spawn_tasks_kthread_generic(&rcu_tasks_trace); 2081 return 0; 2082 } 2083 2084 #if !defined(CONFIG_TINY_RCU) 2085 void show_rcu_tasks_trace_gp_kthread(void) 2086 { 2087 char buf[64]; 2088 2089 snprintf(buf, sizeof(buf), "N%lu h:%lu/%lu/%lu", 2090 data_race(n_trc_holdouts), 2091 data_race(n_heavy_reader_ofl_updates), 2092 data_race(n_heavy_reader_updates), 2093 data_race(n_heavy_reader_attempts)); 2094 show_rcu_tasks_generic_gp_kthread(&rcu_tasks_trace, buf); 2095 } 2096 EXPORT_SYMBOL_GPL(show_rcu_tasks_trace_gp_kthread); 2097 2098 void rcu_tasks_trace_torture_stats_print(char *tt, char *tf) 2099 { 2100 rcu_tasks_torture_stats_print_generic(&rcu_tasks_trace, tt, tf, ""); 2101 } 2102 EXPORT_SYMBOL_GPL(rcu_tasks_trace_torture_stats_print); 2103 #endif // !defined(CONFIG_TINY_RCU) 2104 2105 struct task_struct *get_rcu_tasks_trace_gp_kthread(void) 2106 { 2107 return rcu_tasks_trace.kthread_ptr; 2108 } 2109 EXPORT_SYMBOL_GPL(get_rcu_tasks_trace_gp_kthread); 2110 2111 void rcu_tasks_trace_get_gp_data(int *flags, unsigned long *gp_seq) 2112 { 2113 *flags = 0; 2114 *gp_seq = rcu_seq_current(&rcu_tasks_trace.tasks_gp_seq); 2115 } 2116 EXPORT_SYMBOL_GPL(rcu_tasks_trace_get_gp_data); 2117 2118 #else /* #ifdef CONFIG_TASKS_TRACE_RCU */ 2119 static void exit_tasks_rcu_finish_trace(struct task_struct *t) { } 2120 #endif /* #else #ifdef CONFIG_TASKS_TRACE_RCU */ 2121 2122 #ifndef CONFIG_TINY_RCU 2123 void show_rcu_tasks_gp_kthreads(void) 2124 { 2125 show_rcu_tasks_classic_gp_kthread(); 2126 show_rcu_tasks_rude_gp_kthread(); 2127 show_rcu_tasks_trace_gp_kthread(); 2128 } 2129 #endif /* #ifndef CONFIG_TINY_RCU */ 2130 2131 #ifdef CONFIG_PROVE_RCU 2132 struct rcu_tasks_test_desc { 2133 struct rcu_head rh; 2134 const char *name; 2135 bool notrun; 2136 unsigned long runstart; 2137 }; 2138 2139 static struct rcu_tasks_test_desc tests[] = { 2140 { 2141 .name = "call_rcu_tasks()", 2142 /* If not defined, the test is skipped. */ 2143 .notrun = IS_ENABLED(CONFIG_TASKS_RCU), 2144 }, 2145 { 2146 .name = "call_rcu_tasks_trace()", 2147 /* If not defined, the test is skipped. */ 2148 .notrun = IS_ENABLED(CONFIG_TASKS_TRACE_RCU) 2149 } 2150 }; 2151 2152 #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU) 2153 static void test_rcu_tasks_callback(struct rcu_head *rhp) 2154 { 2155 struct rcu_tasks_test_desc *rttd = 2156 container_of(rhp, struct rcu_tasks_test_desc, rh); 2157 2158 pr_info("Callback from %s invoked.\n", rttd->name); 2159 2160 rttd->notrun = false; 2161 } 2162 #endif // #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU) 2163 2164 static void rcu_tasks_initiate_self_tests(void) 2165 { 2166 #ifdef CONFIG_TASKS_RCU 2167 pr_info("Running RCU Tasks wait API self tests\n"); 2168 tests[0].runstart = jiffies; 2169 synchronize_rcu_tasks(); 2170 call_rcu_tasks(&tests[0].rh, test_rcu_tasks_callback); 2171 #endif 2172 2173 #ifdef CONFIG_TASKS_RUDE_RCU 2174 pr_info("Running RCU Tasks Rude wait API self tests\n"); 2175 synchronize_rcu_tasks_rude(); 2176 #endif 2177 2178 #ifdef CONFIG_TASKS_TRACE_RCU 2179 pr_info("Running RCU Tasks Trace wait API self tests\n"); 2180 tests[1].runstart = jiffies; 2181 synchronize_rcu_tasks_trace(); 2182 call_rcu_tasks_trace(&tests[1].rh, test_rcu_tasks_callback); 2183 #endif 2184 } 2185 2186 /* 2187 * Return: 0 - test passed 2188 * 1 - test failed, but have not timed out yet 2189 * -1 - test failed and timed out 2190 */ 2191 static int rcu_tasks_verify_self_tests(void) 2192 { 2193 int ret = 0; 2194 int i; 2195 unsigned long bst = rcu_task_stall_timeout; 2196 2197 if (bst <= 0 || bst > RCU_TASK_BOOT_STALL_TIMEOUT) 2198 bst = RCU_TASK_BOOT_STALL_TIMEOUT; 2199 for (i = 0; i < ARRAY_SIZE(tests); i++) { 2200 while (tests[i].notrun) { // still hanging. 2201 if (time_after(jiffies, tests[i].runstart + bst)) { 2202 pr_err("%s has failed boot-time tests.\n", tests[i].name); 2203 ret = -1; 2204 break; 2205 } 2206 ret = 1; 2207 break; 2208 } 2209 } 2210 WARN_ON(ret < 0); 2211 2212 return ret; 2213 } 2214 2215 /* 2216 * Repeat the rcu_tasks_verify_self_tests() call once every second until the 2217 * test passes or has timed out. 2218 */ 2219 static struct delayed_work rcu_tasks_verify_work; 2220 static void rcu_tasks_verify_work_fn(struct work_struct *work __maybe_unused) 2221 { 2222 int ret = rcu_tasks_verify_self_tests(); 2223 2224 if (ret <= 0) 2225 return; 2226 2227 /* Test fails but not timed out yet, reschedule another check */ 2228 schedule_delayed_work(&rcu_tasks_verify_work, HZ); 2229 } 2230 2231 static int rcu_tasks_verify_schedule_work(void) 2232 { 2233 INIT_DELAYED_WORK(&rcu_tasks_verify_work, rcu_tasks_verify_work_fn); 2234 rcu_tasks_verify_work_fn(NULL); 2235 return 0; 2236 } 2237 late_initcall(rcu_tasks_verify_schedule_work); 2238 #else /* #ifdef CONFIG_PROVE_RCU */ 2239 static void rcu_tasks_initiate_self_tests(void) { } 2240 #endif /* #else #ifdef CONFIG_PROVE_RCU */ 2241 2242 void __init tasks_cblist_init_generic(void) 2243 { 2244 lockdep_assert_irqs_disabled(); 2245 WARN_ON(num_online_cpus() > 1); 2246 2247 #ifdef CONFIG_TASKS_RCU 2248 cblist_init_generic(&rcu_tasks); 2249 #endif 2250 2251 #ifdef CONFIG_TASKS_RUDE_RCU 2252 cblist_init_generic(&rcu_tasks_rude); 2253 #endif 2254 2255 #ifdef CONFIG_TASKS_TRACE_RCU 2256 cblist_init_generic(&rcu_tasks_trace); 2257 #endif 2258 } 2259 2260 static int __init rcu_init_tasks_generic(void) 2261 { 2262 #ifdef CONFIG_TASKS_RCU 2263 rcu_spawn_tasks_kthread(); 2264 #endif 2265 2266 #ifdef CONFIG_TASKS_RUDE_RCU 2267 rcu_spawn_tasks_rude_kthread(); 2268 #endif 2269 2270 #ifdef CONFIG_TASKS_TRACE_RCU 2271 rcu_spawn_tasks_trace_kthread(); 2272 #endif 2273 2274 // Run the self-tests. 2275 rcu_tasks_initiate_self_tests(); 2276 2277 return 0; 2278 } 2279 core_initcall(rcu_init_tasks_generic); 2280 2281 #else /* #ifdef CONFIG_TASKS_RCU_GENERIC */ 2282 static inline void rcu_tasks_bootup_oddness(void) {} 2283 #endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */ 2284