1 /* SPDX-License-Identifier: GPL-2.0+ */ 2 /* 3 * Task-based RCU implementations. 4 * 5 * Copyright (C) 2020 Paul E. McKenney 6 */ 7 8 #ifdef CONFIG_TASKS_RCU_GENERIC 9 #include "rcu_segcblist.h" 10 11 //////////////////////////////////////////////////////////////////////// 12 // 13 // Generic data structures. 14 15 struct rcu_tasks; 16 typedef void (*rcu_tasks_gp_func_t)(struct rcu_tasks *rtp); 17 typedef void (*pregp_func_t)(struct list_head *hop); 18 typedef void (*pertask_func_t)(struct task_struct *t, struct list_head *hop); 19 typedef void (*postscan_func_t)(struct list_head *hop); 20 typedef void (*holdouts_func_t)(struct list_head *hop, bool ndrpt, bool *frptp); 21 typedef void (*postgp_func_t)(struct rcu_tasks *rtp); 22 23 /** 24 * struct rcu_tasks_percpu - Per-CPU component of definition for a Tasks-RCU-like mechanism. 25 * @cblist: Callback list. 26 * @lock: Lock protecting per-CPU callback list. 27 * @rtp_jiffies: Jiffies counter value for statistics. 28 * @lazy_timer: Timer to unlazify callbacks. 29 * @urgent_gp: Number of additional non-lazy grace periods. 30 * @rtp_n_lock_retries: Rough lock-contention statistic. 31 * @rtp_work: Work queue for invoking callbacks. 32 * @rtp_irq_work: IRQ work queue for deferred wakeups. 33 * @barrier_q_head: RCU callback for barrier operation. 34 * @rtp_blkd_tasks: List of tasks blocked as readers. 35 * @rtp_exit_list: List of tasks in the latter portion of do_exit(). 36 * @cpu: CPU number corresponding to this entry. 37 * @index: Index of this CPU in rtpcp_array of the rcu_tasks structure. 38 * @rtpp: Pointer to the rcu_tasks structure. 39 */ 40 struct rcu_tasks_percpu { 41 struct rcu_segcblist cblist; 42 raw_spinlock_t __private lock; 43 unsigned long rtp_jiffies; 44 unsigned long rtp_n_lock_retries; 45 struct timer_list lazy_timer; 46 unsigned int urgent_gp; 47 struct work_struct rtp_work; 48 struct irq_work rtp_irq_work; 49 struct rcu_head barrier_q_head; 50 struct list_head rtp_blkd_tasks; 51 struct list_head rtp_exit_list; 52 int cpu; 53 int index; 54 struct rcu_tasks *rtpp; 55 }; 56 57 /** 58 * struct rcu_tasks - Definition for a Tasks-RCU-like mechanism. 59 * @cbs_wait: RCU wait allowing a new callback to get kthread's attention. 60 * @cbs_gbl_lock: Lock protecting callback list. 61 * @tasks_gp_mutex: Mutex protecting grace period, needed during mid-boot dead zone. 62 * @gp_func: This flavor's grace-period-wait function. 63 * @gp_state: Grace period's most recent state transition (debugging). 64 * @gp_sleep: Per-grace-period sleep to prevent CPU-bound looping. 65 * @init_fract: Initial backoff sleep interval. 66 * @gp_jiffies: Time of last @gp_state transition. 67 * @gp_start: Most recent grace-period start in jiffies. 68 * @tasks_gp_seq: Number of grace periods completed since boot in upper bits. 69 * @n_ipis: Number of IPIs sent to encourage grace periods to end. 70 * @n_ipis_fails: Number of IPI-send failures. 71 * @kthread_ptr: This flavor's grace-period/callback-invocation kthread. 72 * @lazy_jiffies: Number of jiffies to allow callbacks to be lazy. 73 * @pregp_func: This flavor's pre-grace-period function (optional). 74 * @pertask_func: This flavor's per-task scan function (optional). 75 * @postscan_func: This flavor's post-task scan function (optional). 76 * @holdouts_func: This flavor's holdout-list scan function (optional). 77 * @postgp_func: This flavor's post-grace-period function (optional). 78 * @call_func: This flavor's call_rcu()-equivalent function. 79 * @wait_state: Task state for synchronous grace-period waits (default TASK_UNINTERRUPTIBLE). 80 * @rtpcpu: This flavor's rcu_tasks_percpu structure. 81 * @rtpcp_array: Array of pointers to rcu_tasks_percpu structure of CPUs in cpu_possible_mask. 82 * @percpu_enqueue_shift: Shift down CPU ID this much when enqueuing callbacks. 83 * @percpu_enqueue_lim: Number of per-CPU callback queues in use for enqueuing. 84 * @percpu_dequeue_lim: Number of per-CPU callback queues in use for dequeuing. 85 * @percpu_dequeue_gpseq: RCU grace-period number to propagate enqueue limit to dequeuers. 86 * @barrier_q_mutex: Serialize barrier operations. 87 * @barrier_q_count: Number of queues being waited on. 88 * @barrier_q_completion: Barrier wait/wakeup mechanism. 89 * @barrier_q_seq: Sequence number for barrier operations. 90 * @barrier_q_start: Most recent barrier start in jiffies. 91 * @name: This flavor's textual name. 92 * @kname: This flavor's kthread name. 93 */ 94 struct rcu_tasks { 95 struct rcuwait cbs_wait; 96 raw_spinlock_t cbs_gbl_lock; 97 struct mutex tasks_gp_mutex; 98 int gp_state; 99 int gp_sleep; 100 int init_fract; 101 unsigned long gp_jiffies; 102 unsigned long gp_start; 103 unsigned long tasks_gp_seq; 104 unsigned long n_ipis; 105 unsigned long n_ipis_fails; 106 struct task_struct *kthread_ptr; 107 unsigned long lazy_jiffies; 108 rcu_tasks_gp_func_t gp_func; 109 pregp_func_t pregp_func; 110 pertask_func_t pertask_func; 111 postscan_func_t postscan_func; 112 holdouts_func_t holdouts_func; 113 postgp_func_t postgp_func; 114 call_rcu_func_t call_func; 115 unsigned int wait_state; 116 struct rcu_tasks_percpu __percpu *rtpcpu; 117 struct rcu_tasks_percpu **rtpcp_array; 118 int percpu_enqueue_shift; 119 int percpu_enqueue_lim; 120 int percpu_dequeue_lim; 121 unsigned long percpu_dequeue_gpseq; 122 struct mutex barrier_q_mutex; 123 atomic_t barrier_q_count; 124 struct completion barrier_q_completion; 125 unsigned long barrier_q_seq; 126 unsigned long barrier_q_start; 127 char *name; 128 char *kname; 129 }; 130 131 static void call_rcu_tasks_iw_wakeup(struct irq_work *iwp); 132 133 #define DEFINE_RCU_TASKS(rt_name, gp, call, n) \ 134 static DEFINE_PER_CPU(struct rcu_tasks_percpu, rt_name ## __percpu) = { \ 135 .lock = __RAW_SPIN_LOCK_UNLOCKED(rt_name ## __percpu.cbs_pcpu_lock), \ 136 .rtp_irq_work = IRQ_WORK_INIT_HARD(call_rcu_tasks_iw_wakeup), \ 137 }; \ 138 static struct rcu_tasks rt_name = \ 139 { \ 140 .cbs_wait = __RCUWAIT_INITIALIZER(rt_name.wait), \ 141 .cbs_gbl_lock = __RAW_SPIN_LOCK_UNLOCKED(rt_name.cbs_gbl_lock), \ 142 .tasks_gp_mutex = __MUTEX_INITIALIZER(rt_name.tasks_gp_mutex), \ 143 .gp_func = gp, \ 144 .call_func = call, \ 145 .wait_state = TASK_UNINTERRUPTIBLE, \ 146 .rtpcpu = &rt_name ## __percpu, \ 147 .lazy_jiffies = DIV_ROUND_UP(HZ, 4), \ 148 .name = n, \ 149 .percpu_enqueue_shift = order_base_2(CONFIG_NR_CPUS), \ 150 .percpu_enqueue_lim = 1, \ 151 .percpu_dequeue_lim = 1, \ 152 .barrier_q_mutex = __MUTEX_INITIALIZER(rt_name.barrier_q_mutex), \ 153 .barrier_q_seq = (0UL - 50UL) << RCU_SEQ_CTR_SHIFT, \ 154 .kname = #rt_name, \ 155 } 156 157 #ifdef CONFIG_TASKS_RCU 158 159 /* Report delay of scan exiting tasklist in rcu_tasks_postscan(). */ 160 static void tasks_rcu_exit_srcu_stall(struct timer_list *unused); 161 static DEFINE_TIMER(tasks_rcu_exit_srcu_stall_timer, tasks_rcu_exit_srcu_stall); 162 #endif 163 164 /* Control stall timeouts. Disable with <= 0, otherwise jiffies till stall. */ 165 #define RCU_TASK_BOOT_STALL_TIMEOUT (HZ * 30) 166 #define RCU_TASK_STALL_TIMEOUT (HZ * 60 * 10) 167 static int rcu_task_stall_timeout __read_mostly = RCU_TASK_STALL_TIMEOUT; 168 module_param(rcu_task_stall_timeout, int, 0644); 169 #define RCU_TASK_STALL_INFO (HZ * 10) 170 static int rcu_task_stall_info __read_mostly = RCU_TASK_STALL_INFO; 171 module_param(rcu_task_stall_info, int, 0644); 172 static int rcu_task_stall_info_mult __read_mostly = 3; 173 module_param(rcu_task_stall_info_mult, int, 0444); 174 175 static int rcu_task_enqueue_lim __read_mostly = -1; 176 module_param(rcu_task_enqueue_lim, int, 0444); 177 178 static bool rcu_task_cb_adjust; 179 static int rcu_task_contend_lim __read_mostly = 100; 180 module_param(rcu_task_contend_lim, int, 0444); 181 static int rcu_task_collapse_lim __read_mostly = 10; 182 module_param(rcu_task_collapse_lim, int, 0444); 183 static int rcu_task_lazy_lim __read_mostly = 32; 184 module_param(rcu_task_lazy_lim, int, 0444); 185 186 static int rcu_task_cpu_ids; 187 188 /* RCU tasks grace-period state for debugging. */ 189 #define RTGS_INIT 0 190 #define RTGS_WAIT_WAIT_CBS 1 191 #define RTGS_WAIT_GP 2 192 #define RTGS_PRE_WAIT_GP 3 193 #define RTGS_SCAN_TASKLIST 4 194 #define RTGS_POST_SCAN_TASKLIST 5 195 #define RTGS_WAIT_SCAN_HOLDOUTS 6 196 #define RTGS_SCAN_HOLDOUTS 7 197 #define RTGS_POST_GP 8 198 #define RTGS_WAIT_READERS 9 199 #define RTGS_INVOKE_CBS 10 200 #define RTGS_WAIT_CBS 11 201 #ifndef CONFIG_TINY_RCU 202 static const char * const rcu_tasks_gp_state_names[] = { 203 "RTGS_INIT", 204 "RTGS_WAIT_WAIT_CBS", 205 "RTGS_WAIT_GP", 206 "RTGS_PRE_WAIT_GP", 207 "RTGS_SCAN_TASKLIST", 208 "RTGS_POST_SCAN_TASKLIST", 209 "RTGS_WAIT_SCAN_HOLDOUTS", 210 "RTGS_SCAN_HOLDOUTS", 211 "RTGS_POST_GP", 212 "RTGS_WAIT_READERS", 213 "RTGS_INVOKE_CBS", 214 "RTGS_WAIT_CBS", 215 }; 216 #endif /* #ifndef CONFIG_TINY_RCU */ 217 218 //////////////////////////////////////////////////////////////////////// 219 // 220 // Generic code. 221 222 static void rcu_tasks_invoke_cbs_wq(struct work_struct *wp); 223 224 /* Record grace-period phase and time. */ 225 static void set_tasks_gp_state(struct rcu_tasks *rtp, int newstate) 226 { 227 rtp->gp_state = newstate; 228 rtp->gp_jiffies = jiffies; 229 } 230 231 #ifndef CONFIG_TINY_RCU 232 /* Return state name. */ 233 static const char *tasks_gp_state_getname(struct rcu_tasks *rtp) 234 { 235 int i = data_race(rtp->gp_state); // Let KCSAN detect update races 236 int j = READ_ONCE(i); // Prevent the compiler from reading twice 237 238 if (j >= ARRAY_SIZE(rcu_tasks_gp_state_names)) 239 return "???"; 240 return rcu_tasks_gp_state_names[j]; 241 } 242 #endif /* #ifndef CONFIG_TINY_RCU */ 243 244 // Initialize per-CPU callback lists for the specified flavor of 245 // Tasks RCU. Do not enqueue callbacks before this function is invoked. 246 static void cblist_init_generic(struct rcu_tasks *rtp) 247 { 248 int cpu; 249 int lim; 250 int shift; 251 int maxcpu; 252 int index = 0; 253 254 if (rcu_task_enqueue_lim < 0) { 255 rcu_task_enqueue_lim = 1; 256 rcu_task_cb_adjust = true; 257 } else if (rcu_task_enqueue_lim == 0) { 258 rcu_task_enqueue_lim = 1; 259 } 260 lim = rcu_task_enqueue_lim; 261 262 rtp->rtpcp_array = kcalloc(num_possible_cpus(), sizeof(struct rcu_tasks_percpu *), GFP_KERNEL); 263 BUG_ON(!rtp->rtpcp_array); 264 265 for_each_possible_cpu(cpu) { 266 struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu); 267 268 WARN_ON_ONCE(!rtpcp); 269 if (cpu) 270 raw_spin_lock_init(&ACCESS_PRIVATE(rtpcp, lock)); 271 if (rcu_segcblist_empty(&rtpcp->cblist)) 272 rcu_segcblist_init(&rtpcp->cblist); 273 INIT_WORK(&rtpcp->rtp_work, rcu_tasks_invoke_cbs_wq); 274 rtpcp->cpu = cpu; 275 rtpcp->rtpp = rtp; 276 rtpcp->index = index; 277 rtp->rtpcp_array[index] = rtpcp; 278 index++; 279 if (!rtpcp->rtp_blkd_tasks.next) 280 INIT_LIST_HEAD(&rtpcp->rtp_blkd_tasks); 281 if (!rtpcp->rtp_exit_list.next) 282 INIT_LIST_HEAD(&rtpcp->rtp_exit_list); 283 rtpcp->barrier_q_head.next = &rtpcp->barrier_q_head; 284 maxcpu = cpu; 285 } 286 287 rcu_task_cpu_ids = maxcpu + 1; 288 if (lim > rcu_task_cpu_ids) 289 lim = rcu_task_cpu_ids; 290 shift = ilog2(rcu_task_cpu_ids / lim); 291 if (((rcu_task_cpu_ids - 1) >> shift) >= lim) 292 shift++; 293 WRITE_ONCE(rtp->percpu_enqueue_shift, shift); 294 WRITE_ONCE(rtp->percpu_dequeue_lim, lim); 295 smp_store_release(&rtp->percpu_enqueue_lim, lim); 296 297 pr_info("%s: Setting shift to %d and lim to %d rcu_task_cb_adjust=%d rcu_task_cpu_ids=%d.\n", 298 rtp->name, data_race(rtp->percpu_enqueue_shift), data_race(rtp->percpu_enqueue_lim), 299 rcu_task_cb_adjust, rcu_task_cpu_ids); 300 } 301 302 // Compute wakeup time for lazy callback timer. 303 static unsigned long rcu_tasks_lazy_time(struct rcu_tasks *rtp) 304 { 305 return jiffies + rtp->lazy_jiffies; 306 } 307 308 // Timer handler that unlazifies lazy callbacks. 309 static void call_rcu_tasks_generic_timer(struct timer_list *tlp) 310 { 311 unsigned long flags; 312 bool needwake = false; 313 struct rcu_tasks *rtp; 314 struct rcu_tasks_percpu *rtpcp = timer_container_of(rtpcp, tlp, 315 lazy_timer); 316 317 rtp = rtpcp->rtpp; 318 raw_spin_lock_irqsave_rcu_node(rtpcp, flags); 319 if (!rcu_segcblist_empty(&rtpcp->cblist) && rtp->lazy_jiffies) { 320 if (!rtpcp->urgent_gp) 321 rtpcp->urgent_gp = 1; 322 needwake = true; 323 mod_timer(&rtpcp->lazy_timer, rcu_tasks_lazy_time(rtp)); 324 } 325 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 326 if (needwake) 327 rcuwait_wake_up(&rtp->cbs_wait); 328 } 329 330 // IRQ-work handler that does deferred wakeup for call_rcu_tasks_generic(). 331 static void call_rcu_tasks_iw_wakeup(struct irq_work *iwp) 332 { 333 struct rcu_tasks *rtp; 334 struct rcu_tasks_percpu *rtpcp = container_of(iwp, struct rcu_tasks_percpu, rtp_irq_work); 335 336 rtp = rtpcp->rtpp; 337 rcuwait_wake_up(&rtp->cbs_wait); 338 } 339 340 // Enqueue a callback for the specified flavor of Tasks RCU. 341 static void call_rcu_tasks_generic(struct rcu_head *rhp, rcu_callback_t func, 342 struct rcu_tasks *rtp) 343 { 344 int chosen_cpu; 345 unsigned long flags; 346 bool havekthread = smp_load_acquire(&rtp->kthread_ptr); 347 int ideal_cpu; 348 unsigned long j; 349 bool needadjust = false; 350 bool needwake; 351 struct rcu_tasks_percpu *rtpcp; 352 353 rhp->next = NULL; 354 rhp->func = func; 355 local_irq_save(flags); 356 rcu_read_lock(); 357 ideal_cpu = smp_processor_id() >> READ_ONCE(rtp->percpu_enqueue_shift); 358 chosen_cpu = cpumask_next(ideal_cpu - 1, cpu_possible_mask); 359 WARN_ON_ONCE(chosen_cpu >= rcu_task_cpu_ids); 360 rtpcp = per_cpu_ptr(rtp->rtpcpu, chosen_cpu); 361 if (!raw_spin_trylock_rcu_node(rtpcp)) { // irqs already disabled. 362 raw_spin_lock_rcu_node(rtpcp); // irqs already disabled. 363 j = jiffies; 364 if (rtpcp->rtp_jiffies != j) { 365 rtpcp->rtp_jiffies = j; 366 rtpcp->rtp_n_lock_retries = 0; 367 } 368 if (rcu_task_cb_adjust && ++rtpcp->rtp_n_lock_retries > rcu_task_contend_lim && 369 READ_ONCE(rtp->percpu_enqueue_lim) != rcu_task_cpu_ids) 370 needadjust = true; // Defer adjustment to avoid deadlock. 371 } 372 // Queuing callbacks before initialization not yet supported. 373 if (WARN_ON_ONCE(!rcu_segcblist_is_enabled(&rtpcp->cblist))) 374 rcu_segcblist_init(&rtpcp->cblist); 375 needwake = (func == wakeme_after_rcu) || 376 (rcu_segcblist_n_cbs(&rtpcp->cblist) == rcu_task_lazy_lim); 377 if (havekthread && !needwake && !timer_pending(&rtpcp->lazy_timer)) { 378 if (rtp->lazy_jiffies) 379 mod_timer(&rtpcp->lazy_timer, rcu_tasks_lazy_time(rtp)); 380 else 381 needwake = rcu_segcblist_empty(&rtpcp->cblist); 382 } 383 if (needwake) 384 rtpcp->urgent_gp = 3; 385 rcu_segcblist_enqueue(&rtpcp->cblist, rhp); 386 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 387 if (unlikely(needadjust)) { 388 raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags); 389 if (rtp->percpu_enqueue_lim != rcu_task_cpu_ids) { 390 WRITE_ONCE(rtp->percpu_enqueue_shift, 0); 391 WRITE_ONCE(rtp->percpu_dequeue_lim, rcu_task_cpu_ids); 392 smp_store_release(&rtp->percpu_enqueue_lim, rcu_task_cpu_ids); 393 pr_info("Switching %s to per-CPU callback queuing.\n", rtp->name); 394 } 395 raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags); 396 } 397 rcu_read_unlock(); 398 /* We can't create the thread unless interrupts are enabled. */ 399 if (needwake && READ_ONCE(rtp->kthread_ptr)) 400 irq_work_queue(&rtpcp->rtp_irq_work); 401 } 402 403 // RCU callback function for rcu_barrier_tasks_generic(). 404 static void rcu_barrier_tasks_generic_cb(struct rcu_head *rhp) 405 { 406 struct rcu_tasks *rtp; 407 struct rcu_tasks_percpu *rtpcp; 408 409 rhp->next = rhp; // Mark the callback as having been invoked. 410 rtpcp = container_of(rhp, struct rcu_tasks_percpu, barrier_q_head); 411 rtp = rtpcp->rtpp; 412 if (atomic_dec_and_test(&rtp->barrier_q_count)) 413 complete(&rtp->barrier_q_completion); 414 } 415 416 // Wait for all in-flight callbacks for the specified RCU Tasks flavor. 417 // Operates in a manner similar to rcu_barrier(). 418 static void __maybe_unused rcu_barrier_tasks_generic(struct rcu_tasks *rtp) 419 { 420 int cpu; 421 unsigned long flags; 422 struct rcu_tasks_percpu *rtpcp; 423 unsigned long s = rcu_seq_snap(&rtp->barrier_q_seq); 424 425 mutex_lock(&rtp->barrier_q_mutex); 426 if (rcu_seq_done(&rtp->barrier_q_seq, s)) { 427 smp_mb(); 428 mutex_unlock(&rtp->barrier_q_mutex); 429 return; 430 } 431 rtp->barrier_q_start = jiffies; 432 rcu_seq_start(&rtp->barrier_q_seq); 433 init_completion(&rtp->barrier_q_completion); 434 atomic_set(&rtp->barrier_q_count, 2); 435 for_each_possible_cpu(cpu) { 436 if (cpu >= smp_load_acquire(&rtp->percpu_dequeue_lim)) 437 break; 438 rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu); 439 rtpcp->barrier_q_head.func = rcu_barrier_tasks_generic_cb; 440 raw_spin_lock_irqsave_rcu_node(rtpcp, flags); 441 if (rcu_segcblist_entrain(&rtpcp->cblist, &rtpcp->barrier_q_head)) 442 atomic_inc(&rtp->barrier_q_count); 443 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 444 } 445 if (atomic_sub_and_test(2, &rtp->barrier_q_count)) 446 complete(&rtp->barrier_q_completion); 447 wait_for_completion(&rtp->barrier_q_completion); 448 rcu_seq_end(&rtp->barrier_q_seq); 449 mutex_unlock(&rtp->barrier_q_mutex); 450 } 451 452 // Advance callbacks and indicate whether either a grace period or 453 // callback invocation is needed. 454 static int rcu_tasks_need_gpcb(struct rcu_tasks *rtp) 455 { 456 int cpu; 457 int dequeue_limit; 458 unsigned long flags; 459 bool gpdone = poll_state_synchronize_rcu(rtp->percpu_dequeue_gpseq); 460 long n; 461 long ncbs = 0; 462 long ncbsnz = 0; 463 int needgpcb = 0; 464 465 dequeue_limit = smp_load_acquire(&rtp->percpu_dequeue_lim); 466 for (cpu = 0; cpu < dequeue_limit; cpu++) { 467 if (!cpu_possible(cpu)) 468 continue; 469 struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu); 470 471 /* Advance and accelerate any new callbacks. */ 472 if (!rcu_segcblist_n_cbs(&rtpcp->cblist)) 473 continue; 474 raw_spin_lock_irqsave_rcu_node(rtpcp, flags); 475 // Should we shrink down to a single callback queue? 476 n = rcu_segcblist_n_cbs(&rtpcp->cblist); 477 if (n) { 478 ncbs += n; 479 if (cpu > 0) 480 ncbsnz += n; 481 } 482 rcu_segcblist_advance(&rtpcp->cblist, rcu_seq_current(&rtp->tasks_gp_seq)); 483 (void)rcu_segcblist_accelerate(&rtpcp->cblist, rcu_seq_snap(&rtp->tasks_gp_seq)); 484 if (rtpcp->urgent_gp > 0 && rcu_segcblist_pend_cbs(&rtpcp->cblist)) { 485 if (rtp->lazy_jiffies) 486 rtpcp->urgent_gp--; 487 needgpcb |= 0x3; 488 } else if (rcu_segcblist_empty(&rtpcp->cblist)) { 489 rtpcp->urgent_gp = 0; 490 } 491 if (rcu_segcblist_ready_cbs(&rtpcp->cblist)) 492 needgpcb |= 0x1; 493 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 494 } 495 496 // Shrink down to a single callback queue if appropriate. 497 // This is done in two stages: (1) If there are no more than 498 // rcu_task_collapse_lim callbacks on CPU 0 and none on any other 499 // CPU, limit enqueueing to CPU 0. (2) After an RCU grace period, 500 // if there has not been an increase in callbacks, limit dequeuing 501 // to CPU 0. Note the matching RCU read-side critical section in 502 // call_rcu_tasks_generic(). 503 if (rcu_task_cb_adjust && ncbs <= rcu_task_collapse_lim) { 504 raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags); 505 if (rtp->percpu_enqueue_lim > 1) { 506 WRITE_ONCE(rtp->percpu_enqueue_shift, order_base_2(rcu_task_cpu_ids)); 507 smp_store_release(&rtp->percpu_enqueue_lim, 1); 508 rtp->percpu_dequeue_gpseq = get_state_synchronize_rcu(); 509 gpdone = false; 510 pr_info("Starting switch %s to CPU-0 callback queuing.\n", rtp->name); 511 } 512 raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags); 513 } 514 if (rcu_task_cb_adjust && !ncbsnz && gpdone) { 515 raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags); 516 if (rtp->percpu_enqueue_lim < rtp->percpu_dequeue_lim) { 517 WRITE_ONCE(rtp->percpu_dequeue_lim, 1); 518 pr_info("Completing switch %s to CPU-0 callback queuing.\n", rtp->name); 519 } 520 if (rtp->percpu_dequeue_lim == 1) { 521 for (cpu = rtp->percpu_dequeue_lim; cpu < rcu_task_cpu_ids; cpu++) { 522 if (!cpu_possible(cpu)) 523 continue; 524 struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu); 525 526 WARN_ON_ONCE(rcu_segcblist_n_cbs(&rtpcp->cblist)); 527 } 528 } 529 raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags); 530 } 531 532 return needgpcb; 533 } 534 535 // Advance callbacks and invoke any that are ready. 536 static void rcu_tasks_invoke_cbs(struct rcu_tasks *rtp, struct rcu_tasks_percpu *rtpcp) 537 { 538 int cpuwq; 539 unsigned long flags; 540 int len; 541 int index; 542 struct rcu_head *rhp; 543 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl); 544 struct rcu_tasks_percpu *rtpcp_next; 545 546 index = rtpcp->index * 2 + 1; 547 if (index < num_possible_cpus()) { 548 rtpcp_next = rtp->rtpcp_array[index]; 549 if (rtpcp_next->cpu < smp_load_acquire(&rtp->percpu_dequeue_lim)) { 550 cpuwq = rcu_cpu_beenfullyonline(rtpcp_next->cpu) ? rtpcp_next->cpu : WORK_CPU_UNBOUND; 551 queue_work_on(cpuwq, system_percpu_wq, &rtpcp_next->rtp_work); 552 index++; 553 if (index < num_possible_cpus()) { 554 rtpcp_next = rtp->rtpcp_array[index]; 555 if (rtpcp_next->cpu < smp_load_acquire(&rtp->percpu_dequeue_lim)) { 556 cpuwq = rcu_cpu_beenfullyonline(rtpcp_next->cpu) ? rtpcp_next->cpu : WORK_CPU_UNBOUND; 557 queue_work_on(cpuwq, system_percpu_wq, &rtpcp_next->rtp_work); 558 } 559 } 560 } 561 } 562 563 if (rcu_segcblist_empty(&rtpcp->cblist)) 564 return; 565 raw_spin_lock_irqsave_rcu_node(rtpcp, flags); 566 rcu_segcblist_advance(&rtpcp->cblist, rcu_seq_current(&rtp->tasks_gp_seq)); 567 rcu_segcblist_extract_done_cbs(&rtpcp->cblist, &rcl); 568 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 569 len = rcl.len; 570 for (rhp = rcu_cblist_dequeue(&rcl); rhp; rhp = rcu_cblist_dequeue(&rcl)) { 571 debug_rcu_head_callback(rhp); 572 local_bh_disable(); 573 rhp->func(rhp); 574 local_bh_enable(); 575 cond_resched(); 576 } 577 raw_spin_lock_irqsave_rcu_node(rtpcp, flags); 578 rcu_segcblist_add_len(&rtpcp->cblist, -len); 579 (void)rcu_segcblist_accelerate(&rtpcp->cblist, rcu_seq_snap(&rtp->tasks_gp_seq)); 580 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 581 } 582 583 // Workqueue flood to advance callbacks and invoke any that are ready. 584 static void rcu_tasks_invoke_cbs_wq(struct work_struct *wp) 585 { 586 struct rcu_tasks *rtp; 587 struct rcu_tasks_percpu *rtpcp = container_of(wp, struct rcu_tasks_percpu, rtp_work); 588 589 rtp = rtpcp->rtpp; 590 rcu_tasks_invoke_cbs(rtp, rtpcp); 591 } 592 593 // Wait for one grace period. 594 static void rcu_tasks_one_gp(struct rcu_tasks *rtp, bool midboot) 595 { 596 int needgpcb; 597 598 mutex_lock(&rtp->tasks_gp_mutex); 599 600 // If there were none, wait a bit and start over. 601 if (unlikely(midboot)) { 602 needgpcb = 0x2; 603 } else { 604 mutex_unlock(&rtp->tasks_gp_mutex); 605 set_tasks_gp_state(rtp, RTGS_WAIT_CBS); 606 rcuwait_wait_event(&rtp->cbs_wait, 607 (needgpcb = rcu_tasks_need_gpcb(rtp)), 608 TASK_IDLE); 609 mutex_lock(&rtp->tasks_gp_mutex); 610 } 611 612 if (needgpcb & 0x2) { 613 // Wait for one grace period. 614 set_tasks_gp_state(rtp, RTGS_WAIT_GP); 615 rtp->gp_start = jiffies; 616 rcu_seq_start(&rtp->tasks_gp_seq); 617 rtp->gp_func(rtp); 618 rcu_seq_end(&rtp->tasks_gp_seq); 619 } 620 621 // Invoke callbacks. 622 set_tasks_gp_state(rtp, RTGS_INVOKE_CBS); 623 rcu_tasks_invoke_cbs(rtp, per_cpu_ptr(rtp->rtpcpu, 0)); 624 mutex_unlock(&rtp->tasks_gp_mutex); 625 } 626 627 // RCU-tasks kthread that detects grace periods and invokes callbacks. 628 static int __noreturn rcu_tasks_kthread(void *arg) 629 { 630 int cpu; 631 struct rcu_tasks *rtp = arg; 632 633 for_each_possible_cpu(cpu) { 634 struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu); 635 636 timer_setup(&rtpcp->lazy_timer, call_rcu_tasks_generic_timer, 0); 637 rtpcp->urgent_gp = 1; 638 } 639 640 /* Run on housekeeping CPUs by default. Sysadm can move if desired. */ 641 housekeeping_affine(current, HK_TYPE_RCU); 642 smp_store_release(&rtp->kthread_ptr, current); // Let GPs start! 643 644 /* 645 * Each pass through the following loop makes one check for 646 * newly arrived callbacks, and, if there are some, waits for 647 * one RCU-tasks grace period and then invokes the callbacks. 648 * This loop is terminated by the system going down. ;-) 649 */ 650 for (;;) { 651 // Wait for one grace period and invoke any callbacks 652 // that are ready. 653 rcu_tasks_one_gp(rtp, false); 654 655 // Paranoid sleep to keep this from entering a tight loop. 656 schedule_timeout_idle(rtp->gp_sleep); 657 } 658 } 659 660 // Wait for a grace period for the specified flavor of Tasks RCU. 661 static void synchronize_rcu_tasks_generic(struct rcu_tasks *rtp) 662 { 663 /* Complain if the scheduler has not started. */ 664 if (WARN_ONCE(rcu_scheduler_active == RCU_SCHEDULER_INACTIVE, 665 "synchronize_%s() called too soon", rtp->name)) 666 return; 667 668 // If the grace-period kthread is running, use it. 669 if (READ_ONCE(rtp->kthread_ptr)) { 670 wait_rcu_gp_state(rtp->wait_state, rtp->call_func); 671 return; 672 } 673 rcu_tasks_one_gp(rtp, true); 674 } 675 676 /* Spawn RCU-tasks grace-period kthread. */ 677 static void __init rcu_spawn_tasks_kthread_generic(struct rcu_tasks *rtp) 678 { 679 struct task_struct *t; 680 681 t = kthread_run(rcu_tasks_kthread, rtp, "%s_kthread", rtp->kname); 682 if (WARN_ONCE(IS_ERR(t), "%s: Could not start %s grace-period kthread, OOM is now expected behavior\n", __func__, rtp->name)) 683 return; 684 smp_mb(); /* Ensure others see full kthread. */ 685 } 686 687 #ifndef CONFIG_TINY_RCU 688 689 /* 690 * Print any non-default Tasks RCU settings. 691 */ 692 static void __init rcu_tasks_bootup_oddness(void) 693 { 694 #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU) 695 int rtsimc; 696 697 if (rcu_task_stall_timeout != RCU_TASK_STALL_TIMEOUT) 698 pr_info("\tTasks-RCU CPU stall warnings timeout set to %d (rcu_task_stall_timeout).\n", rcu_task_stall_timeout); 699 rtsimc = clamp(rcu_task_stall_info_mult, 1, 10); 700 if (rtsimc != rcu_task_stall_info_mult) { 701 pr_info("\tTasks-RCU CPU stall info multiplier clamped to %d (rcu_task_stall_info_mult).\n", rtsimc); 702 rcu_task_stall_info_mult = rtsimc; 703 } 704 #endif /* #ifdef CONFIG_TASKS_RCU */ 705 #ifdef CONFIG_TASKS_RCU 706 pr_info("\tTrampoline variant of Tasks RCU enabled.\n"); 707 #endif /* #ifdef CONFIG_TASKS_RCU */ 708 #ifdef CONFIG_TASKS_RUDE_RCU 709 pr_info("\tRude variant of Tasks RCU enabled.\n"); 710 #endif /* #ifdef CONFIG_TASKS_RUDE_RCU */ 711 #ifdef CONFIG_TASKS_TRACE_RCU 712 pr_info("\tTracing variant of Tasks RCU enabled.\n"); 713 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 714 } 715 716 /* Dump out rcutorture-relevant state common to all RCU-tasks flavors. */ 717 static void show_rcu_tasks_generic_gp_kthread(struct rcu_tasks *rtp, char *s) 718 { 719 int cpu; 720 bool havecbs = false; 721 bool haveurgent = false; 722 bool haveurgentcbs = false; 723 724 for_each_possible_cpu(cpu) { 725 struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu); 726 727 if (!data_race(rcu_segcblist_empty(&rtpcp->cblist))) 728 havecbs = true; 729 if (data_race(rtpcp->urgent_gp)) 730 haveurgent = true; 731 if (!data_race(rcu_segcblist_empty(&rtpcp->cblist)) && data_race(rtpcp->urgent_gp)) 732 haveurgentcbs = true; 733 if (havecbs && haveurgent && haveurgentcbs) 734 break; 735 } 736 pr_info("%s: %s(%d) since %lu g:%lu i:%lu/%lu %c%c%c%c l:%lu %s\n", 737 rtp->kname, 738 tasks_gp_state_getname(rtp), data_race(rtp->gp_state), 739 jiffies - data_race(rtp->gp_jiffies), 740 data_race(rcu_seq_current(&rtp->tasks_gp_seq)), 741 data_race(rtp->n_ipis_fails), data_race(rtp->n_ipis), 742 ".k"[!!data_race(rtp->kthread_ptr)], 743 ".C"[havecbs], 744 ".u"[haveurgent], 745 ".U"[haveurgentcbs], 746 rtp->lazy_jiffies, 747 s); 748 } 749 750 /* Dump out more rcutorture-relevant state common to all RCU-tasks flavors. */ 751 static void rcu_tasks_torture_stats_print_generic(struct rcu_tasks *rtp, char *tt, 752 char *tf, char *tst) 753 { 754 cpumask_var_t cm; 755 int cpu; 756 bool gotcb = false; 757 unsigned long j = jiffies; 758 759 pr_alert("%s%s Tasks%s RCU g%ld gp_start %lu gp_jiffies %lu gp_state %d (%s).\n", 760 tt, tf, tst, data_race(rtp->tasks_gp_seq), 761 j - data_race(rtp->gp_start), j - data_race(rtp->gp_jiffies), 762 data_race(rtp->gp_state), tasks_gp_state_getname(rtp)); 763 pr_alert("\tEnqueue shift %d limit %d Dequeue limit %d gpseq %lu.\n", 764 data_race(rtp->percpu_enqueue_shift), 765 data_race(rtp->percpu_enqueue_lim), 766 data_race(rtp->percpu_dequeue_lim), 767 data_race(rtp->percpu_dequeue_gpseq)); 768 (void)zalloc_cpumask_var(&cm, GFP_KERNEL); 769 pr_alert("\tCallback counts:"); 770 for_each_possible_cpu(cpu) { 771 long n; 772 struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu); 773 774 if (cpumask_available(cm) && !rcu_barrier_cb_is_done(&rtpcp->barrier_q_head)) 775 cpumask_set_cpu(cpu, cm); 776 n = rcu_segcblist_n_cbs(&rtpcp->cblist); 777 if (!n) 778 continue; 779 pr_cont(" %d:%ld", cpu, n); 780 gotcb = true; 781 } 782 if (gotcb) 783 pr_cont(".\n"); 784 else 785 pr_cont(" (none).\n"); 786 pr_alert("\tBarrier seq %lu start %lu count %d holdout CPUs ", 787 data_race(rtp->barrier_q_seq), j - data_race(rtp->barrier_q_start), 788 atomic_read(&rtp->barrier_q_count)); 789 if (cpumask_available(cm) && !cpumask_empty(cm)) 790 pr_cont(" %*pbl.\n", cpumask_pr_args(cm)); 791 else 792 pr_cont("(none).\n"); 793 free_cpumask_var(cm); 794 } 795 796 #endif // #ifndef CONFIG_TINY_RCU 797 798 #if defined(CONFIG_TASKS_RCU) 799 800 //////////////////////////////////////////////////////////////////////// 801 // 802 // Shared code between task-list-scanning variants of Tasks RCU. 803 804 /* Wait for one RCU-tasks grace period. */ 805 static void rcu_tasks_wait_gp(struct rcu_tasks *rtp) 806 { 807 struct task_struct *g; 808 int fract; 809 LIST_HEAD(holdouts); 810 unsigned long j; 811 unsigned long lastinfo; 812 unsigned long lastreport; 813 bool reported = false; 814 int rtsi; 815 struct task_struct *t; 816 817 set_tasks_gp_state(rtp, RTGS_PRE_WAIT_GP); 818 rtp->pregp_func(&holdouts); 819 820 /* 821 * There were callbacks, so we need to wait for an RCU-tasks 822 * grace period. Start off by scanning the task list for tasks 823 * that are not already voluntarily blocked. Mark these tasks 824 * and make a list of them in holdouts. 825 */ 826 set_tasks_gp_state(rtp, RTGS_SCAN_TASKLIST); 827 if (rtp->pertask_func) { 828 rcu_read_lock(); 829 for_each_process_thread(g, t) 830 rtp->pertask_func(t, &holdouts); 831 rcu_read_unlock(); 832 } 833 834 set_tasks_gp_state(rtp, RTGS_POST_SCAN_TASKLIST); 835 rtp->postscan_func(&holdouts); 836 837 /* 838 * Each pass through the following loop scans the list of holdout 839 * tasks, removing any that are no longer holdouts. When the list 840 * is empty, we are done. 841 */ 842 lastreport = jiffies; 843 lastinfo = lastreport; 844 rtsi = READ_ONCE(rcu_task_stall_info); 845 846 // Start off with initial wait and slowly back off to 1 HZ wait. 847 fract = rtp->init_fract; 848 849 while (!list_empty(&holdouts)) { 850 ktime_t exp; 851 bool firstreport; 852 bool needreport; 853 int rtst; 854 855 // Slowly back off waiting for holdouts 856 set_tasks_gp_state(rtp, RTGS_WAIT_SCAN_HOLDOUTS); 857 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) { 858 schedule_timeout_idle(fract); 859 } else { 860 exp = jiffies_to_nsecs(fract); 861 __set_current_state(TASK_IDLE); 862 schedule_hrtimeout_range(&exp, jiffies_to_nsecs(HZ / 2), HRTIMER_MODE_REL_HARD); 863 } 864 865 if (fract < HZ) 866 fract++; 867 868 rtst = READ_ONCE(rcu_task_stall_timeout); 869 needreport = rtst > 0 && time_after(jiffies, lastreport + rtst); 870 if (needreport) { 871 lastreport = jiffies; 872 reported = true; 873 } 874 firstreport = true; 875 WARN_ON(signal_pending(current)); 876 set_tasks_gp_state(rtp, RTGS_SCAN_HOLDOUTS); 877 rtp->holdouts_func(&holdouts, needreport, &firstreport); 878 879 // Print pre-stall informational messages if needed. 880 j = jiffies; 881 if (rtsi > 0 && !reported && time_after(j, lastinfo + rtsi)) { 882 lastinfo = j; 883 rtsi = rtsi * rcu_task_stall_info_mult; 884 pr_info("%s: %s grace period number %lu (since boot) is %lu jiffies old.\n", 885 __func__, rtp->kname, rtp->tasks_gp_seq, j - rtp->gp_start); 886 } 887 } 888 889 set_tasks_gp_state(rtp, RTGS_POST_GP); 890 rtp->postgp_func(rtp); 891 } 892 893 #endif /* #if defined(CONFIG_TASKS_RCU) */ 894 895 #ifdef CONFIG_TASKS_RCU 896 897 //////////////////////////////////////////////////////////////////////// 898 // 899 // Simple variant of RCU whose quiescent states are voluntary context 900 // switch, cond_resched_tasks_rcu_qs(), user-space execution, and idle. 901 // As such, grace periods can take one good long time. There are no 902 // read-side primitives similar to rcu_read_lock() and rcu_read_unlock() 903 // because this implementation is intended to get the system into a safe 904 // state for some of the manipulations involved in tracing and the like. 905 // Finally, this implementation does not support high call_rcu_tasks() 906 // rates from multiple CPUs. If this is required, per-CPU callback lists 907 // will be needed. 908 // 909 // The implementation uses rcu_tasks_wait_gp(), which relies on function 910 // pointers in the rcu_tasks structure. The rcu_spawn_tasks_kthread() 911 // function sets these function pointers up so that rcu_tasks_wait_gp() 912 // invokes these functions in this order: 913 // 914 // rcu_tasks_pregp_step(): 915 // Invokes synchronize_rcu() in order to wait for all in-flight 916 // t->on_rq and t->nvcsw transitions to complete. This works because 917 // all such transitions are carried out with interrupts disabled. 918 // rcu_tasks_pertask(), invoked on every non-idle task: 919 // For every runnable non-idle task other than the current one, use 920 // get_task_struct() to pin down that task, snapshot that task's 921 // number of voluntary context switches, and add that task to the 922 // holdout list. 923 // rcu_tasks_postscan(): 924 // Gather per-CPU lists of tasks in do_exit() to ensure that all 925 // tasks that were in the process of exiting (and which thus might 926 // not know to synchronize with this RCU Tasks grace period) have 927 // completed exiting. The synchronize_rcu() in rcu_tasks_postgp() 928 // will take care of any tasks stuck in the non-preemptible region 929 // of do_exit() following its call to exit_tasks_rcu_finish(). 930 // check_all_holdout_tasks(), repeatedly until holdout list is empty: 931 // Scans the holdout list, attempting to identify a quiescent state 932 // for each task on the list. If there is a quiescent state, the 933 // corresponding task is removed from the holdout list. 934 // rcu_tasks_postgp(): 935 // Invokes synchronize_rcu() in order to ensure that all prior 936 // t->on_rq and t->nvcsw transitions are seen by all CPUs and tasks 937 // to have happened before the end of this RCU Tasks grace period. 938 // Again, this works because all such transitions are carried out 939 // with interrupts disabled. 940 // 941 // For each exiting task, the exit_tasks_rcu_start() and 942 // exit_tasks_rcu_finish() functions add and remove, respectively, the 943 // current task to a per-CPU list of tasks that rcu_tasks_postscan() must 944 // wait on. This is necessary because rcu_tasks_postscan() must wait on 945 // tasks that have already been removed from the global list of tasks. 946 // 947 // Pre-grace-period update-side code is ordered before the grace 948 // via the raw_spin_lock.*rcu_node(). Pre-grace-period read-side code 949 // is ordered before the grace period via synchronize_rcu() call in 950 // rcu_tasks_pregp_step() and by the scheduler's locks and interrupt 951 // disabling. 952 953 /* Pre-grace-period preparation. */ 954 static void rcu_tasks_pregp_step(struct list_head *hop) 955 { 956 /* 957 * Wait for all pre-existing t->on_rq and t->nvcsw transitions 958 * to complete. Invoking synchronize_rcu() suffices because all 959 * these transitions occur with interrupts disabled. Without this 960 * synchronize_rcu(), a read-side critical section that started 961 * before the grace period might be incorrectly seen as having 962 * started after the grace period. 963 * 964 * This synchronize_rcu() also dispenses with the need for a 965 * memory barrier on the first store to t->rcu_tasks_holdout, 966 * as it forces the store to happen after the beginning of the 967 * grace period. 968 */ 969 synchronize_rcu(); 970 } 971 972 /* Check for quiescent states since the pregp's synchronize_rcu() */ 973 static bool rcu_tasks_is_holdout(struct task_struct *t) 974 { 975 int cpu; 976 977 /* Has the task been seen voluntarily sleeping? */ 978 if (!READ_ONCE(t->on_rq)) 979 return false; 980 981 /* 982 * t->on_rq && !t->se.sched_delayed *could* be considered sleeping but 983 * since it is a spurious state (it will transition into the 984 * traditional blocked state or get woken up without outside 985 * dependencies), not considering it such should only affect timing. 986 * 987 * Be conservative for now and not include it. 988 */ 989 990 /* 991 * Idle tasks (or idle injection) within the idle loop are RCU-tasks 992 * quiescent states. But CPU boot code performed by the idle task 993 * isn't a quiescent state. 994 */ 995 if (is_idle_task(t)) 996 return false; 997 998 cpu = task_cpu(t); 999 1000 /* Idle tasks on offline CPUs are RCU-tasks quiescent states. */ 1001 if (t == idle_task(cpu) && !rcu_cpu_online(cpu)) 1002 return false; 1003 1004 return true; 1005 } 1006 1007 /* Per-task initial processing. */ 1008 static void rcu_tasks_pertask(struct task_struct *t, struct list_head *hop) 1009 { 1010 if (t != current && rcu_tasks_is_holdout(t)) { 1011 get_task_struct(t); 1012 t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw); 1013 WRITE_ONCE(t->rcu_tasks_holdout, true); 1014 list_add(&t->rcu_tasks_holdout_list, hop); 1015 } 1016 } 1017 1018 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func); 1019 DEFINE_RCU_TASKS(rcu_tasks, rcu_tasks_wait_gp, call_rcu_tasks, "RCU Tasks"); 1020 1021 /* Processing between scanning taskslist and draining the holdout list. */ 1022 static void rcu_tasks_postscan(struct list_head *hop) 1023 { 1024 int cpu; 1025 int rtsi = READ_ONCE(rcu_task_stall_info); 1026 1027 if (!IS_ENABLED(CONFIG_TINY_RCU)) { 1028 tasks_rcu_exit_srcu_stall_timer.expires = jiffies + rtsi; 1029 add_timer(&tasks_rcu_exit_srcu_stall_timer); 1030 } 1031 1032 /* 1033 * Exiting tasks may escape the tasklist scan. Those are vulnerable 1034 * until their final schedule() with TASK_DEAD state. To cope with 1035 * this, divide the fragile exit path part in two intersecting 1036 * read side critical sections: 1037 * 1038 * 1) A task_struct list addition before calling exit_notify(), 1039 * which may remove the task from the tasklist, with the 1040 * removal after the final preempt_disable() call in do_exit(). 1041 * 1042 * 2) An _RCU_ read side starting with the final preempt_disable() 1043 * call in do_exit() and ending with the final call to schedule() 1044 * with TASK_DEAD state. 1045 * 1046 * This handles the part 1). And postgp will handle part 2) with a 1047 * call to synchronize_rcu(). 1048 */ 1049 1050 for_each_possible_cpu(cpu) { 1051 unsigned long j = jiffies + 1; 1052 struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rcu_tasks.rtpcpu, cpu); 1053 struct task_struct *t; 1054 struct task_struct *t1; 1055 struct list_head tmp; 1056 1057 raw_spin_lock_irq_rcu_node(rtpcp); 1058 list_for_each_entry_safe(t, t1, &rtpcp->rtp_exit_list, rcu_tasks_exit_list) { 1059 if (list_empty(&t->rcu_tasks_holdout_list)) 1060 rcu_tasks_pertask(t, hop); 1061 1062 // RT kernels need frequent pauses, otherwise 1063 // pause at least once per pair of jiffies. 1064 if (!IS_ENABLED(CONFIG_PREEMPT_RT) && time_before(jiffies, j)) 1065 continue; 1066 1067 // Keep our place in the list while pausing. 1068 // Nothing else traverses this list, so adding a 1069 // bare list_head is OK. 1070 list_add(&tmp, &t->rcu_tasks_exit_list); 1071 raw_spin_unlock_irq_rcu_node(rtpcp); 1072 cond_resched(); // For CONFIG_PREEMPT=n kernels 1073 raw_spin_lock_irq_rcu_node(rtpcp); 1074 t1 = list_entry(tmp.next, struct task_struct, rcu_tasks_exit_list); 1075 list_del(&tmp); 1076 j = jiffies + 1; 1077 } 1078 raw_spin_unlock_irq_rcu_node(rtpcp); 1079 } 1080 1081 if (!IS_ENABLED(CONFIG_TINY_RCU)) 1082 timer_delete_sync(&tasks_rcu_exit_srcu_stall_timer); 1083 } 1084 1085 /* See if tasks are still holding out, complain if so. */ 1086 static void check_holdout_task(struct task_struct *t, 1087 bool needreport, bool *firstreport) 1088 { 1089 int cpu; 1090 1091 if (!READ_ONCE(t->rcu_tasks_holdout) || 1092 t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) || 1093 !rcu_tasks_is_holdout(t) || 1094 (IS_ENABLED(CONFIG_NO_HZ_FULL) && 1095 !is_idle_task(t) && READ_ONCE(t->rcu_tasks_idle_cpu) >= 0)) { 1096 WRITE_ONCE(t->rcu_tasks_holdout, false); 1097 list_del_init(&t->rcu_tasks_holdout_list); 1098 put_task_struct(t); 1099 return; 1100 } 1101 rcu_request_urgent_qs_task(t); 1102 if (!needreport) 1103 return; 1104 if (*firstreport) { 1105 pr_err("INFO: rcu_tasks detected stalls on tasks:\n"); 1106 *firstreport = false; 1107 } 1108 cpu = task_cpu(t); 1109 pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n", 1110 t, ".I"[is_idle_task(t)], 1111 "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)], 1112 t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout, 1113 data_race(t->rcu_tasks_idle_cpu), cpu); 1114 sched_show_task(t); 1115 } 1116 1117 /* Scan the holdout lists for tasks no longer holding out. */ 1118 static void check_all_holdout_tasks(struct list_head *hop, 1119 bool needreport, bool *firstreport) 1120 { 1121 struct task_struct *t, *t1; 1122 1123 list_for_each_entry_safe(t, t1, hop, rcu_tasks_holdout_list) { 1124 check_holdout_task(t, needreport, firstreport); 1125 cond_resched(); 1126 } 1127 } 1128 1129 /* Finish off the Tasks-RCU grace period. */ 1130 static void rcu_tasks_postgp(struct rcu_tasks *rtp) 1131 { 1132 /* 1133 * Because ->on_rq and ->nvcsw are not guaranteed to have a full 1134 * memory barriers prior to them in the schedule() path, memory 1135 * reordering on other CPUs could cause their RCU-tasks read-side 1136 * critical sections to extend past the end of the grace period. 1137 * However, because these ->nvcsw updates are carried out with 1138 * interrupts disabled, we can use synchronize_rcu() to force the 1139 * needed ordering on all such CPUs. 1140 * 1141 * This synchronize_rcu() also confines all ->rcu_tasks_holdout 1142 * accesses to be within the grace period, avoiding the need for 1143 * memory barriers for ->rcu_tasks_holdout accesses. 1144 * 1145 * In addition, this synchronize_rcu() waits for exiting tasks 1146 * to complete their final preempt_disable() region of execution, 1147 * enforcing the whole region before tasklist removal until 1148 * the final schedule() with TASK_DEAD state to be an RCU TASKS 1149 * read side critical section. 1150 */ 1151 synchronize_rcu(); 1152 } 1153 1154 static void tasks_rcu_exit_srcu_stall(struct timer_list *unused) 1155 { 1156 #ifndef CONFIG_TINY_RCU 1157 int rtsi; 1158 1159 rtsi = READ_ONCE(rcu_task_stall_info); 1160 pr_info("%s: %s grace period number %lu (since boot) gp_state: %s is %lu jiffies old.\n", 1161 __func__, rcu_tasks.kname, rcu_tasks.tasks_gp_seq, 1162 tasks_gp_state_getname(&rcu_tasks), jiffies - rcu_tasks.gp_jiffies); 1163 pr_info("Please check any exiting tasks stuck between calls to exit_tasks_rcu_start() and exit_tasks_rcu_finish()\n"); 1164 tasks_rcu_exit_srcu_stall_timer.expires = jiffies + rtsi; 1165 add_timer(&tasks_rcu_exit_srcu_stall_timer); 1166 #endif // #ifndef CONFIG_TINY_RCU 1167 } 1168 1169 /** 1170 * call_rcu_tasks() - Queue an RCU for invocation task-based grace period 1171 * @rhp: structure to be used for queueing the RCU updates. 1172 * @func: actual callback function to be invoked after the grace period 1173 * 1174 * The callback function will be invoked some time after a full grace 1175 * period elapses, in other words after all currently executing RCU 1176 * read-side critical sections have completed. call_rcu_tasks() assumes 1177 * that the read-side critical sections end at a voluntary context 1178 * switch (not a preemption!), cond_resched_tasks_rcu_qs(), entry into idle, 1179 * or transition to usermode execution. As such, there are no read-side 1180 * primitives analogous to rcu_read_lock() and rcu_read_unlock() because 1181 * this primitive is intended to determine that all tasks have passed 1182 * through a safe state, not so much for data-structure synchronization. 1183 * 1184 * See the description of call_rcu() for more detailed information on 1185 * memory ordering guarantees. 1186 */ 1187 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func) 1188 { 1189 call_rcu_tasks_generic(rhp, func, &rcu_tasks); 1190 } 1191 EXPORT_SYMBOL_GPL(call_rcu_tasks); 1192 1193 /** 1194 * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed. 1195 * 1196 * Control will return to the caller some time after a full rcu-tasks 1197 * grace period has elapsed, in other words after all currently 1198 * executing rcu-tasks read-side critical sections have elapsed. These 1199 * read-side critical sections are delimited by calls to schedule(), 1200 * cond_resched_tasks_rcu_qs(), idle execution, userspace execution, calls 1201 * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched(). 1202 * 1203 * This is a very specialized primitive, intended only for a few uses in 1204 * tracing and other situations requiring manipulation of function 1205 * preambles and profiling hooks. The synchronize_rcu_tasks() function 1206 * is not (yet) intended for heavy use from multiple CPUs. 1207 * 1208 * See the description of synchronize_rcu() for more detailed information 1209 * on memory ordering guarantees. 1210 */ 1211 void synchronize_rcu_tasks(void) 1212 { 1213 synchronize_rcu_tasks_generic(&rcu_tasks); 1214 } 1215 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks); 1216 1217 /** 1218 * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks. 1219 * 1220 * Although the current implementation is guaranteed to wait, it is not 1221 * obligated to, for example, if there are no pending callbacks. 1222 */ 1223 void rcu_barrier_tasks(void) 1224 { 1225 rcu_barrier_tasks_generic(&rcu_tasks); 1226 } 1227 EXPORT_SYMBOL_GPL(rcu_barrier_tasks); 1228 1229 static int rcu_tasks_lazy_ms = -1; 1230 module_param(rcu_tasks_lazy_ms, int, 0444); 1231 1232 static int __init rcu_spawn_tasks_kthread(void) 1233 { 1234 rcu_tasks.gp_sleep = HZ / 10; 1235 rcu_tasks.init_fract = HZ / 10; 1236 if (rcu_tasks_lazy_ms >= 0) 1237 rcu_tasks.lazy_jiffies = msecs_to_jiffies(rcu_tasks_lazy_ms); 1238 rcu_tasks.pregp_func = rcu_tasks_pregp_step; 1239 rcu_tasks.pertask_func = rcu_tasks_pertask; 1240 rcu_tasks.postscan_func = rcu_tasks_postscan; 1241 rcu_tasks.holdouts_func = check_all_holdout_tasks; 1242 rcu_tasks.postgp_func = rcu_tasks_postgp; 1243 rcu_tasks.wait_state = TASK_IDLE; 1244 rcu_spawn_tasks_kthread_generic(&rcu_tasks); 1245 return 0; 1246 } 1247 1248 #if !defined(CONFIG_TINY_RCU) 1249 void show_rcu_tasks_classic_gp_kthread(void) 1250 { 1251 show_rcu_tasks_generic_gp_kthread(&rcu_tasks, ""); 1252 } 1253 EXPORT_SYMBOL_GPL(show_rcu_tasks_classic_gp_kthread); 1254 1255 void rcu_tasks_torture_stats_print(char *tt, char *tf) 1256 { 1257 rcu_tasks_torture_stats_print_generic(&rcu_tasks, tt, tf, ""); 1258 } 1259 EXPORT_SYMBOL_GPL(rcu_tasks_torture_stats_print); 1260 #endif // !defined(CONFIG_TINY_RCU) 1261 1262 struct task_struct *get_rcu_tasks_gp_kthread(void) 1263 { 1264 return rcu_tasks.kthread_ptr; 1265 } 1266 EXPORT_SYMBOL_GPL(get_rcu_tasks_gp_kthread); 1267 1268 void rcu_tasks_get_gp_data(int *flags, unsigned long *gp_seq) 1269 { 1270 *flags = 0; 1271 *gp_seq = rcu_seq_current(&rcu_tasks.tasks_gp_seq); 1272 } 1273 EXPORT_SYMBOL_GPL(rcu_tasks_get_gp_data); 1274 1275 /* 1276 * Protect against tasklist scan blind spot while the task is exiting and 1277 * may be removed from the tasklist. Do this by adding the task to yet 1278 * another list. 1279 * 1280 * Note that the task will remove itself from this list, so there is no 1281 * need for get_task_struct(), except in the case where rcu_tasks_pertask() 1282 * adds it to the holdout list, in which case rcu_tasks_pertask() supplies 1283 * the needed get_task_struct(). 1284 */ 1285 void exit_tasks_rcu_start(void) 1286 { 1287 unsigned long flags; 1288 struct rcu_tasks_percpu *rtpcp; 1289 struct task_struct *t = current; 1290 1291 WARN_ON_ONCE(!list_empty(&t->rcu_tasks_exit_list)); 1292 preempt_disable(); 1293 rtpcp = this_cpu_ptr(rcu_tasks.rtpcpu); 1294 t->rcu_tasks_exit_cpu = smp_processor_id(); 1295 raw_spin_lock_irqsave_rcu_node(rtpcp, flags); 1296 WARN_ON_ONCE(!rtpcp->rtp_exit_list.next); 1297 list_add(&t->rcu_tasks_exit_list, &rtpcp->rtp_exit_list); 1298 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 1299 preempt_enable(); 1300 } 1301 1302 /* 1303 * Remove the task from the "yet another list" because do_exit() is now 1304 * non-preemptible, allowing synchronize_rcu() to wait beyond this point. 1305 */ 1306 void exit_tasks_rcu_finish(void) 1307 { 1308 unsigned long flags; 1309 struct rcu_tasks_percpu *rtpcp; 1310 struct task_struct *t = current; 1311 1312 WARN_ON_ONCE(list_empty(&t->rcu_tasks_exit_list)); 1313 rtpcp = per_cpu_ptr(rcu_tasks.rtpcpu, t->rcu_tasks_exit_cpu); 1314 raw_spin_lock_irqsave_rcu_node(rtpcp, flags); 1315 list_del_init(&t->rcu_tasks_exit_list); 1316 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 1317 } 1318 1319 #else /* #ifdef CONFIG_TASKS_RCU */ 1320 void exit_tasks_rcu_start(void) { } 1321 void exit_tasks_rcu_finish(void) { } 1322 #endif /* #else #ifdef CONFIG_TASKS_RCU */ 1323 1324 #ifdef CONFIG_TASKS_RUDE_RCU 1325 1326 //////////////////////////////////////////////////////////////////////// 1327 // 1328 // "Rude" variant of Tasks RCU, inspired by Steve Rostedt's 1329 // trick of passing an empty function to schedule_on_each_cpu(). 1330 // This approach provides batching of concurrent calls to the synchronous 1331 // synchronize_rcu_tasks_rude() API. This invokes schedule_on_each_cpu() 1332 // in order to send IPIs far and wide and induces otherwise unnecessary 1333 // context switches on all online CPUs, whether idle or not. 1334 // 1335 // Callback handling is provided by the rcu_tasks_kthread() function. 1336 // 1337 // Ordering is provided by the scheduler's context-switch code. 1338 1339 // Empty function to allow workqueues to force a context switch. 1340 static void rcu_tasks_be_rude(struct work_struct *work) 1341 { 1342 } 1343 1344 // Wait for one rude RCU-tasks grace period. 1345 static void rcu_tasks_rude_wait_gp(struct rcu_tasks *rtp) 1346 { 1347 rtp->n_ipis += cpumask_weight(cpu_online_mask); 1348 schedule_on_each_cpu(rcu_tasks_be_rude); 1349 } 1350 1351 static void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func); 1352 DEFINE_RCU_TASKS(rcu_tasks_rude, rcu_tasks_rude_wait_gp, call_rcu_tasks_rude, 1353 "RCU Tasks Rude"); 1354 1355 /* 1356 * call_rcu_tasks_rude() - Queue a callback rude task-based grace period 1357 * @rhp: structure to be used for queueing the RCU updates. 1358 * @func: actual callback function to be invoked after the grace period 1359 * 1360 * The callback function will be invoked some time after a full grace 1361 * period elapses, in other words after all currently executing RCU 1362 * read-side critical sections have completed. call_rcu_tasks_rude() 1363 * assumes that the read-side critical sections end at context switch, 1364 * cond_resched_tasks_rcu_qs(), or transition to usermode execution (as 1365 * usermode execution is schedulable). As such, there are no read-side 1366 * primitives analogous to rcu_read_lock() and rcu_read_unlock() because 1367 * this primitive is intended to determine that all tasks have passed 1368 * through a safe state, not so much for data-structure synchronization. 1369 * 1370 * See the description of call_rcu() for more detailed information on 1371 * memory ordering guarantees. 1372 * 1373 * This is no longer exported, and is instead reserved for use by 1374 * synchronize_rcu_tasks_rude(). 1375 */ 1376 static void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func) 1377 { 1378 call_rcu_tasks_generic(rhp, func, &rcu_tasks_rude); 1379 } 1380 1381 /** 1382 * synchronize_rcu_tasks_rude - wait for a rude rcu-tasks grace period 1383 * 1384 * Control will return to the caller some time after a rude rcu-tasks 1385 * grace period has elapsed, in other words after all currently 1386 * executing rcu-tasks read-side critical sections have elapsed. These 1387 * read-side critical sections are delimited by calls to schedule(), 1388 * cond_resched_tasks_rcu_qs(), userspace execution (which is a schedulable 1389 * context), and (in theory, anyway) cond_resched(). 1390 * 1391 * This is a very specialized primitive, intended only for a few uses in 1392 * tracing and other situations requiring manipulation of function preambles 1393 * and profiling hooks. The synchronize_rcu_tasks_rude() function is not 1394 * (yet) intended for heavy use from multiple CPUs. 1395 * 1396 * See the description of synchronize_rcu() for more detailed information 1397 * on memory ordering guarantees. 1398 */ 1399 void synchronize_rcu_tasks_rude(void) 1400 { 1401 if (!IS_ENABLED(CONFIG_ARCH_WANTS_NO_INSTR) || IS_ENABLED(CONFIG_FORCE_TASKS_RUDE_RCU)) 1402 synchronize_rcu_tasks_generic(&rcu_tasks_rude); 1403 } 1404 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_rude); 1405 1406 static int __init rcu_spawn_tasks_rude_kthread(void) 1407 { 1408 rcu_tasks_rude.gp_sleep = HZ / 10; 1409 rcu_spawn_tasks_kthread_generic(&rcu_tasks_rude); 1410 return 0; 1411 } 1412 1413 #if !defined(CONFIG_TINY_RCU) 1414 void show_rcu_tasks_rude_gp_kthread(void) 1415 { 1416 show_rcu_tasks_generic_gp_kthread(&rcu_tasks_rude, ""); 1417 } 1418 EXPORT_SYMBOL_GPL(show_rcu_tasks_rude_gp_kthread); 1419 1420 void rcu_tasks_rude_torture_stats_print(char *tt, char *tf) 1421 { 1422 rcu_tasks_torture_stats_print_generic(&rcu_tasks_rude, tt, tf, ""); 1423 } 1424 EXPORT_SYMBOL_GPL(rcu_tasks_rude_torture_stats_print); 1425 #endif // !defined(CONFIG_TINY_RCU) 1426 1427 struct task_struct *get_rcu_tasks_rude_gp_kthread(void) 1428 { 1429 return rcu_tasks_rude.kthread_ptr; 1430 } 1431 EXPORT_SYMBOL_GPL(get_rcu_tasks_rude_gp_kthread); 1432 1433 void rcu_tasks_rude_get_gp_data(int *flags, unsigned long *gp_seq) 1434 { 1435 *flags = 0; 1436 *gp_seq = rcu_seq_current(&rcu_tasks_rude.tasks_gp_seq); 1437 } 1438 EXPORT_SYMBOL_GPL(rcu_tasks_rude_get_gp_data); 1439 1440 #endif /* #ifdef CONFIG_TASKS_RUDE_RCU */ 1441 1442 #ifndef CONFIG_TINY_RCU 1443 void show_rcu_tasks_gp_kthreads(void) 1444 { 1445 show_rcu_tasks_classic_gp_kthread(); 1446 show_rcu_tasks_rude_gp_kthread(); 1447 } 1448 #endif /* #ifndef CONFIG_TINY_RCU */ 1449 1450 #ifdef CONFIG_PROVE_RCU 1451 struct rcu_tasks_test_desc { 1452 struct rcu_head rh; 1453 const char *name; 1454 bool notrun; 1455 unsigned long runstart; 1456 }; 1457 1458 static struct rcu_tasks_test_desc tests[] = { 1459 { 1460 .name = "call_rcu_tasks()", 1461 /* If not defined, the test is skipped. */ 1462 .notrun = IS_ENABLED(CONFIG_TASKS_RCU), 1463 }, 1464 { 1465 .name = "call_rcu_tasks_trace()", 1466 /* If not defined, the test is skipped. */ 1467 .notrun = IS_ENABLED(CONFIG_TASKS_TRACE_RCU) 1468 } 1469 }; 1470 1471 #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU) 1472 static void test_rcu_tasks_callback(struct rcu_head *rhp) 1473 { 1474 struct rcu_tasks_test_desc *rttd = 1475 container_of(rhp, struct rcu_tasks_test_desc, rh); 1476 1477 pr_info("Callback from %s invoked.\n", rttd->name); 1478 1479 rttd->notrun = false; 1480 } 1481 #endif // #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU) 1482 1483 static void rcu_tasks_initiate_self_tests(void) 1484 { 1485 #ifdef CONFIG_TASKS_RCU 1486 pr_info("Running RCU Tasks wait API self tests\n"); 1487 tests[0].runstart = jiffies; 1488 synchronize_rcu_tasks(); 1489 call_rcu_tasks(&tests[0].rh, test_rcu_tasks_callback); 1490 #endif 1491 1492 #ifdef CONFIG_TASKS_RUDE_RCU 1493 pr_info("Running RCU Tasks Rude wait API self tests\n"); 1494 synchronize_rcu_tasks_rude(); 1495 #endif 1496 1497 #ifdef CONFIG_TASKS_TRACE_RCU 1498 pr_info("Running RCU Tasks Trace wait API self tests\n"); 1499 tests[1].runstart = jiffies; 1500 synchronize_rcu_tasks_trace(); 1501 call_rcu_tasks_trace(&tests[1].rh, test_rcu_tasks_callback); 1502 #endif 1503 } 1504 1505 /* 1506 * Return: 0 - test passed 1507 * 1 - test failed, but have not timed out yet 1508 * -1 - test failed and timed out 1509 */ 1510 static int rcu_tasks_verify_self_tests(void) 1511 { 1512 int ret = 0; 1513 int i; 1514 unsigned long bst = rcu_task_stall_timeout; 1515 1516 if (bst <= 0 || bst > RCU_TASK_BOOT_STALL_TIMEOUT) 1517 bst = RCU_TASK_BOOT_STALL_TIMEOUT; 1518 for (i = 0; i < ARRAY_SIZE(tests); i++) { 1519 while (tests[i].notrun) { // still hanging. 1520 if (time_after(jiffies, tests[i].runstart + bst)) { 1521 pr_err("%s has failed boot-time tests.\n", tests[i].name); 1522 ret = -1; 1523 break; 1524 } 1525 ret = 1; 1526 break; 1527 } 1528 } 1529 WARN_ON(ret < 0); 1530 1531 return ret; 1532 } 1533 1534 /* 1535 * Repeat the rcu_tasks_verify_self_tests() call once every second until the 1536 * test passes or has timed out. 1537 */ 1538 static struct delayed_work rcu_tasks_verify_work; 1539 static void rcu_tasks_verify_work_fn(struct work_struct *work __maybe_unused) 1540 { 1541 int ret = rcu_tasks_verify_self_tests(); 1542 1543 if (ret <= 0) 1544 return; 1545 1546 /* Test fails but not timed out yet, reschedule another check */ 1547 schedule_delayed_work(&rcu_tasks_verify_work, HZ); 1548 } 1549 1550 static int rcu_tasks_verify_schedule_work(void) 1551 { 1552 INIT_DELAYED_WORK(&rcu_tasks_verify_work, rcu_tasks_verify_work_fn); 1553 rcu_tasks_verify_work_fn(NULL); 1554 return 0; 1555 } 1556 late_initcall(rcu_tasks_verify_schedule_work); 1557 #else /* #ifdef CONFIG_PROVE_RCU */ 1558 static void rcu_tasks_initiate_self_tests(void) { } 1559 #endif /* #else #ifdef CONFIG_PROVE_RCU */ 1560 1561 void __init tasks_cblist_init_generic(void) 1562 { 1563 lockdep_assert_irqs_disabled(); 1564 WARN_ON(num_online_cpus() > 1); 1565 1566 #ifdef CONFIG_TASKS_RCU 1567 cblist_init_generic(&rcu_tasks); 1568 #endif 1569 1570 #ifdef CONFIG_TASKS_RUDE_RCU 1571 cblist_init_generic(&rcu_tasks_rude); 1572 #endif 1573 } 1574 1575 static int __init rcu_init_tasks_generic(void) 1576 { 1577 #ifdef CONFIG_TASKS_RCU 1578 rcu_spawn_tasks_kthread(); 1579 #endif 1580 1581 #ifdef CONFIG_TASKS_RUDE_RCU 1582 rcu_spawn_tasks_rude_kthread(); 1583 #endif 1584 1585 // Run the self-tests. 1586 rcu_tasks_initiate_self_tests(); 1587 1588 return 0; 1589 } 1590 core_initcall(rcu_init_tasks_generic); 1591 1592 #else /* #ifdef CONFIG_TASKS_RCU_GENERIC */ 1593 static inline void rcu_tasks_bootup_oddness(void) {} 1594 #endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */ 1595 1596 #ifdef CONFIG_TASKS_TRACE_RCU 1597 1598 //////////////////////////////////////////////////////////////////////// 1599 // 1600 // Tracing variant of Tasks RCU. This variant is designed to be used 1601 // to protect tracing hooks, including those of BPF. This variant 1602 // is implemented via a straightforward mapping onto SRCU-fast. 1603 1604 DEFINE_SRCU_FAST(rcu_tasks_trace_srcu_struct); 1605 EXPORT_SYMBOL_GPL(rcu_tasks_trace_srcu_struct); 1606 1607 #endif /* #else #ifdef CONFIG_TASKS_TRACE_RCU */ 1608