1 /* SPDX-License-Identifier: GPL-2.0+ */ 2 /* 3 * Task-based RCU implementations. 4 * 5 * Copyright (C) 2020 Paul E. McKenney 6 */ 7 8 #ifdef CONFIG_TASKS_RCU_GENERIC 9 #include "rcu_segcblist.h" 10 11 //////////////////////////////////////////////////////////////////////// 12 // 13 // Generic data structures. 14 15 struct rcu_tasks; 16 typedef void (*rcu_tasks_gp_func_t)(struct rcu_tasks *rtp); 17 typedef void (*pregp_func_t)(struct list_head *hop); 18 typedef void (*pertask_func_t)(struct task_struct *t, struct list_head *hop); 19 typedef void (*postscan_func_t)(struct list_head *hop); 20 typedef void (*holdouts_func_t)(struct list_head *hop, bool ndrpt, bool *frptp); 21 typedef void (*postgp_func_t)(struct rcu_tasks *rtp); 22 23 /** 24 * struct rcu_tasks_percpu - Per-CPU component of definition for a Tasks-RCU-like mechanism. 25 * @cblist: Callback list. 26 * @lock: Lock protecting per-CPU callback list. 27 * @rtp_jiffies: Jiffies counter value for statistics. 28 * @rtp_n_lock_retries: Rough lock-contention statistic. 29 * @rtp_work: Work queue for invoking callbacks. 30 * @rtp_irq_work: IRQ work queue for deferred wakeups. 31 * @barrier_q_head: RCU callback for barrier operation. 32 * @rtp_blkd_tasks: List of tasks blocked as readers. 33 * @cpu: CPU number corresponding to this entry. 34 * @rtpp: Pointer to the rcu_tasks structure. 35 */ 36 struct rcu_tasks_percpu { 37 struct rcu_segcblist cblist; 38 raw_spinlock_t __private lock; 39 unsigned long rtp_jiffies; 40 unsigned long rtp_n_lock_retries; 41 struct work_struct rtp_work; 42 struct irq_work rtp_irq_work; 43 struct rcu_head barrier_q_head; 44 struct list_head rtp_blkd_tasks; 45 int cpu; 46 struct rcu_tasks *rtpp; 47 }; 48 49 /** 50 * struct rcu_tasks - Definition for a Tasks-RCU-like mechanism. 51 * @cbs_wait: RCU wait allowing a new callback to get kthread's attention. 52 * @cbs_gbl_lock: Lock protecting callback list. 53 * @tasks_gp_mutex: Mutex protecting grace period, needed during mid-boot dead zone. 54 * @kthread_ptr: This flavor's grace-period/callback-invocation kthread. 55 * @gp_func: This flavor's grace-period-wait function. 56 * @gp_state: Grace period's most recent state transition (debugging). 57 * @gp_sleep: Per-grace-period sleep to prevent CPU-bound looping. 58 * @init_fract: Initial backoff sleep interval. 59 * @gp_jiffies: Time of last @gp_state transition. 60 * @gp_start: Most recent grace-period start in jiffies. 61 * @tasks_gp_seq: Number of grace periods completed since boot. 62 * @n_ipis: Number of IPIs sent to encourage grace periods to end. 63 * @n_ipis_fails: Number of IPI-send failures. 64 * @pregp_func: This flavor's pre-grace-period function (optional). 65 * @pertask_func: This flavor's per-task scan function (optional). 66 * @postscan_func: This flavor's post-task scan function (optional). 67 * @holdouts_func: This flavor's holdout-list scan function (optional). 68 * @postgp_func: This flavor's post-grace-period function (optional). 69 * @call_func: This flavor's call_rcu()-equivalent function. 70 * @rtpcpu: This flavor's rcu_tasks_percpu structure. 71 * @percpu_enqueue_shift: Shift down CPU ID this much when enqueuing callbacks. 72 * @percpu_enqueue_lim: Number of per-CPU callback queues in use for enqueuing. 73 * @percpu_dequeue_lim: Number of per-CPU callback queues in use for dequeuing. 74 * @percpu_dequeue_gpseq: RCU grace-period number to propagate enqueue limit to dequeuers. 75 * @barrier_q_mutex: Serialize barrier operations. 76 * @barrier_q_count: Number of queues being waited on. 77 * @barrier_q_completion: Barrier wait/wakeup mechanism. 78 * @barrier_q_seq: Sequence number for barrier operations. 79 * @name: This flavor's textual name. 80 * @kname: This flavor's kthread name. 81 */ 82 struct rcu_tasks { 83 struct rcuwait cbs_wait; 84 raw_spinlock_t cbs_gbl_lock; 85 struct mutex tasks_gp_mutex; 86 int gp_state; 87 int gp_sleep; 88 int init_fract; 89 unsigned long gp_jiffies; 90 unsigned long gp_start; 91 unsigned long tasks_gp_seq; 92 unsigned long n_ipis; 93 unsigned long n_ipis_fails; 94 struct task_struct *kthread_ptr; 95 rcu_tasks_gp_func_t gp_func; 96 pregp_func_t pregp_func; 97 pertask_func_t pertask_func; 98 postscan_func_t postscan_func; 99 holdouts_func_t holdouts_func; 100 postgp_func_t postgp_func; 101 call_rcu_func_t call_func; 102 struct rcu_tasks_percpu __percpu *rtpcpu; 103 int percpu_enqueue_shift; 104 int percpu_enqueue_lim; 105 int percpu_dequeue_lim; 106 unsigned long percpu_dequeue_gpseq; 107 struct mutex barrier_q_mutex; 108 atomic_t barrier_q_count; 109 struct completion barrier_q_completion; 110 unsigned long barrier_q_seq; 111 char *name; 112 char *kname; 113 }; 114 115 static void call_rcu_tasks_iw_wakeup(struct irq_work *iwp); 116 117 #define DEFINE_RCU_TASKS(rt_name, gp, call, n) \ 118 static DEFINE_PER_CPU(struct rcu_tasks_percpu, rt_name ## __percpu) = { \ 119 .lock = __RAW_SPIN_LOCK_UNLOCKED(rt_name ## __percpu.cbs_pcpu_lock), \ 120 .rtp_irq_work = IRQ_WORK_INIT_HARD(call_rcu_tasks_iw_wakeup), \ 121 }; \ 122 static struct rcu_tasks rt_name = \ 123 { \ 124 .cbs_wait = __RCUWAIT_INITIALIZER(rt_name.wait), \ 125 .cbs_gbl_lock = __RAW_SPIN_LOCK_UNLOCKED(rt_name.cbs_gbl_lock), \ 126 .tasks_gp_mutex = __MUTEX_INITIALIZER(rt_name.tasks_gp_mutex), \ 127 .gp_func = gp, \ 128 .call_func = call, \ 129 .rtpcpu = &rt_name ## __percpu, \ 130 .name = n, \ 131 .percpu_enqueue_shift = order_base_2(CONFIG_NR_CPUS), \ 132 .percpu_enqueue_lim = 1, \ 133 .percpu_dequeue_lim = 1, \ 134 .barrier_q_mutex = __MUTEX_INITIALIZER(rt_name.barrier_q_mutex), \ 135 .barrier_q_seq = (0UL - 50UL) << RCU_SEQ_CTR_SHIFT, \ 136 .kname = #rt_name, \ 137 } 138 139 #ifdef CONFIG_TASKS_RCU 140 /* Track exiting tasks in order to allow them to be waited for. */ 141 DEFINE_STATIC_SRCU(tasks_rcu_exit_srcu); 142 #endif 143 144 #ifdef CONFIG_TASKS_RCU 145 /* Report delay in synchronize_srcu() completion in rcu_tasks_postscan(). */ 146 static void tasks_rcu_exit_srcu_stall(struct timer_list *unused); 147 static DEFINE_TIMER(tasks_rcu_exit_srcu_stall_timer, tasks_rcu_exit_srcu_stall); 148 #endif 149 150 /* Avoid IPIing CPUs early in the grace period. */ 151 #define RCU_TASK_IPI_DELAY (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) ? HZ / 2 : 0) 152 static int rcu_task_ipi_delay __read_mostly = RCU_TASK_IPI_DELAY; 153 module_param(rcu_task_ipi_delay, int, 0644); 154 155 /* Control stall timeouts. Disable with <= 0, otherwise jiffies till stall. */ 156 #define RCU_TASK_BOOT_STALL_TIMEOUT (HZ * 30) 157 #define RCU_TASK_STALL_TIMEOUT (HZ * 60 * 10) 158 static int rcu_task_stall_timeout __read_mostly = RCU_TASK_STALL_TIMEOUT; 159 module_param(rcu_task_stall_timeout, int, 0644); 160 #define RCU_TASK_STALL_INFO (HZ * 10) 161 static int rcu_task_stall_info __read_mostly = RCU_TASK_STALL_INFO; 162 module_param(rcu_task_stall_info, int, 0644); 163 static int rcu_task_stall_info_mult __read_mostly = 3; 164 module_param(rcu_task_stall_info_mult, int, 0444); 165 166 static int rcu_task_enqueue_lim __read_mostly = -1; 167 module_param(rcu_task_enqueue_lim, int, 0444); 168 169 static bool rcu_task_cb_adjust; 170 static int rcu_task_contend_lim __read_mostly = 100; 171 module_param(rcu_task_contend_lim, int, 0444); 172 static int rcu_task_collapse_lim __read_mostly = 10; 173 module_param(rcu_task_collapse_lim, int, 0444); 174 175 /* RCU tasks grace-period state for debugging. */ 176 #define RTGS_INIT 0 177 #define RTGS_WAIT_WAIT_CBS 1 178 #define RTGS_WAIT_GP 2 179 #define RTGS_PRE_WAIT_GP 3 180 #define RTGS_SCAN_TASKLIST 4 181 #define RTGS_POST_SCAN_TASKLIST 5 182 #define RTGS_WAIT_SCAN_HOLDOUTS 6 183 #define RTGS_SCAN_HOLDOUTS 7 184 #define RTGS_POST_GP 8 185 #define RTGS_WAIT_READERS 9 186 #define RTGS_INVOKE_CBS 10 187 #define RTGS_WAIT_CBS 11 188 #ifndef CONFIG_TINY_RCU 189 static const char * const rcu_tasks_gp_state_names[] = { 190 "RTGS_INIT", 191 "RTGS_WAIT_WAIT_CBS", 192 "RTGS_WAIT_GP", 193 "RTGS_PRE_WAIT_GP", 194 "RTGS_SCAN_TASKLIST", 195 "RTGS_POST_SCAN_TASKLIST", 196 "RTGS_WAIT_SCAN_HOLDOUTS", 197 "RTGS_SCAN_HOLDOUTS", 198 "RTGS_POST_GP", 199 "RTGS_WAIT_READERS", 200 "RTGS_INVOKE_CBS", 201 "RTGS_WAIT_CBS", 202 }; 203 #endif /* #ifndef CONFIG_TINY_RCU */ 204 205 //////////////////////////////////////////////////////////////////////// 206 // 207 // Generic code. 208 209 static void rcu_tasks_invoke_cbs_wq(struct work_struct *wp); 210 211 /* Record grace-period phase and time. */ 212 static void set_tasks_gp_state(struct rcu_tasks *rtp, int newstate) 213 { 214 rtp->gp_state = newstate; 215 rtp->gp_jiffies = jiffies; 216 } 217 218 #ifndef CONFIG_TINY_RCU 219 /* Return state name. */ 220 static const char *tasks_gp_state_getname(struct rcu_tasks *rtp) 221 { 222 int i = data_race(rtp->gp_state); // Let KCSAN detect update races 223 int j = READ_ONCE(i); // Prevent the compiler from reading twice 224 225 if (j >= ARRAY_SIZE(rcu_tasks_gp_state_names)) 226 return "???"; 227 return rcu_tasks_gp_state_names[j]; 228 } 229 #endif /* #ifndef CONFIG_TINY_RCU */ 230 231 // Initialize per-CPU callback lists for the specified flavor of 232 // Tasks RCU. 233 static void cblist_init_generic(struct rcu_tasks *rtp) 234 { 235 int cpu; 236 unsigned long flags; 237 int lim; 238 int shift; 239 240 raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags); 241 if (rcu_task_enqueue_lim < 0) { 242 rcu_task_enqueue_lim = 1; 243 rcu_task_cb_adjust = true; 244 } else if (rcu_task_enqueue_lim == 0) { 245 rcu_task_enqueue_lim = 1; 246 } 247 lim = rcu_task_enqueue_lim; 248 249 if (lim > nr_cpu_ids) 250 lim = nr_cpu_ids; 251 shift = ilog2(nr_cpu_ids / lim); 252 if (((nr_cpu_ids - 1) >> shift) >= lim) 253 shift++; 254 WRITE_ONCE(rtp->percpu_enqueue_shift, shift); 255 WRITE_ONCE(rtp->percpu_dequeue_lim, lim); 256 smp_store_release(&rtp->percpu_enqueue_lim, lim); 257 for_each_possible_cpu(cpu) { 258 struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu); 259 260 WARN_ON_ONCE(!rtpcp); 261 if (cpu) 262 raw_spin_lock_init(&ACCESS_PRIVATE(rtpcp, lock)); 263 raw_spin_lock_rcu_node(rtpcp); // irqs already disabled. 264 if (rcu_segcblist_empty(&rtpcp->cblist)) 265 rcu_segcblist_init(&rtpcp->cblist); 266 INIT_WORK(&rtpcp->rtp_work, rcu_tasks_invoke_cbs_wq); 267 rtpcp->cpu = cpu; 268 rtpcp->rtpp = rtp; 269 if (!rtpcp->rtp_blkd_tasks.next) 270 INIT_LIST_HEAD(&rtpcp->rtp_blkd_tasks); 271 raw_spin_unlock_rcu_node(rtpcp); // irqs remain disabled. 272 } 273 raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags); 274 275 pr_info("%s: Setting shift to %d and lim to %d rcu_task_cb_adjust=%d.\n", rtp->name, 276 data_race(rtp->percpu_enqueue_shift), data_race(rtp->percpu_enqueue_lim), rcu_task_cb_adjust); 277 } 278 279 // IRQ-work handler that does deferred wakeup for call_rcu_tasks_generic(). 280 static void call_rcu_tasks_iw_wakeup(struct irq_work *iwp) 281 { 282 struct rcu_tasks *rtp; 283 struct rcu_tasks_percpu *rtpcp = container_of(iwp, struct rcu_tasks_percpu, rtp_irq_work); 284 285 rtp = rtpcp->rtpp; 286 rcuwait_wake_up(&rtp->cbs_wait); 287 } 288 289 // Enqueue a callback for the specified flavor of Tasks RCU. 290 static void call_rcu_tasks_generic(struct rcu_head *rhp, rcu_callback_t func, 291 struct rcu_tasks *rtp) 292 { 293 int chosen_cpu; 294 unsigned long flags; 295 int ideal_cpu; 296 unsigned long j; 297 bool needadjust = false; 298 bool needwake; 299 struct rcu_tasks_percpu *rtpcp; 300 301 rhp->next = NULL; 302 rhp->func = func; 303 local_irq_save(flags); 304 rcu_read_lock(); 305 ideal_cpu = smp_processor_id() >> READ_ONCE(rtp->percpu_enqueue_shift); 306 chosen_cpu = cpumask_next(ideal_cpu - 1, cpu_possible_mask); 307 rtpcp = per_cpu_ptr(rtp->rtpcpu, chosen_cpu); 308 if (!raw_spin_trylock_rcu_node(rtpcp)) { // irqs already disabled. 309 raw_spin_lock_rcu_node(rtpcp); // irqs already disabled. 310 j = jiffies; 311 if (rtpcp->rtp_jiffies != j) { 312 rtpcp->rtp_jiffies = j; 313 rtpcp->rtp_n_lock_retries = 0; 314 } 315 if (rcu_task_cb_adjust && ++rtpcp->rtp_n_lock_retries > rcu_task_contend_lim && 316 READ_ONCE(rtp->percpu_enqueue_lim) != nr_cpu_ids) 317 needadjust = true; // Defer adjustment to avoid deadlock. 318 } 319 if (!rcu_segcblist_is_enabled(&rtpcp->cblist)) { 320 raw_spin_unlock_rcu_node(rtpcp); // irqs remain disabled. 321 cblist_init_generic(rtp); 322 raw_spin_lock_rcu_node(rtpcp); // irqs already disabled. 323 } 324 needwake = rcu_segcblist_empty(&rtpcp->cblist); 325 rcu_segcblist_enqueue(&rtpcp->cblist, rhp); 326 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 327 if (unlikely(needadjust)) { 328 raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags); 329 if (rtp->percpu_enqueue_lim != nr_cpu_ids) { 330 WRITE_ONCE(rtp->percpu_enqueue_shift, 0); 331 WRITE_ONCE(rtp->percpu_dequeue_lim, nr_cpu_ids); 332 smp_store_release(&rtp->percpu_enqueue_lim, nr_cpu_ids); 333 pr_info("Switching %s to per-CPU callback queuing.\n", rtp->name); 334 } 335 raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags); 336 } 337 rcu_read_unlock(); 338 /* We can't create the thread unless interrupts are enabled. */ 339 if (needwake && READ_ONCE(rtp->kthread_ptr)) 340 irq_work_queue(&rtpcp->rtp_irq_work); 341 } 342 343 // RCU callback function for rcu_barrier_tasks_generic(). 344 static void rcu_barrier_tasks_generic_cb(struct rcu_head *rhp) 345 { 346 struct rcu_tasks *rtp; 347 struct rcu_tasks_percpu *rtpcp; 348 349 rtpcp = container_of(rhp, struct rcu_tasks_percpu, barrier_q_head); 350 rtp = rtpcp->rtpp; 351 if (atomic_dec_and_test(&rtp->barrier_q_count)) 352 complete(&rtp->barrier_q_completion); 353 } 354 355 // Wait for all in-flight callbacks for the specified RCU Tasks flavor. 356 // Operates in a manner similar to rcu_barrier(). 357 static void rcu_barrier_tasks_generic(struct rcu_tasks *rtp) 358 { 359 int cpu; 360 unsigned long flags; 361 struct rcu_tasks_percpu *rtpcp; 362 unsigned long s = rcu_seq_snap(&rtp->barrier_q_seq); 363 364 mutex_lock(&rtp->barrier_q_mutex); 365 if (rcu_seq_done(&rtp->barrier_q_seq, s)) { 366 smp_mb(); 367 mutex_unlock(&rtp->barrier_q_mutex); 368 return; 369 } 370 rcu_seq_start(&rtp->barrier_q_seq); 371 init_completion(&rtp->barrier_q_completion); 372 atomic_set(&rtp->barrier_q_count, 2); 373 for_each_possible_cpu(cpu) { 374 if (cpu >= smp_load_acquire(&rtp->percpu_dequeue_lim)) 375 break; 376 rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu); 377 rtpcp->barrier_q_head.func = rcu_barrier_tasks_generic_cb; 378 raw_spin_lock_irqsave_rcu_node(rtpcp, flags); 379 if (rcu_segcblist_entrain(&rtpcp->cblist, &rtpcp->barrier_q_head)) 380 atomic_inc(&rtp->barrier_q_count); 381 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 382 } 383 if (atomic_sub_and_test(2, &rtp->barrier_q_count)) 384 complete(&rtp->barrier_q_completion); 385 wait_for_completion(&rtp->barrier_q_completion); 386 rcu_seq_end(&rtp->barrier_q_seq); 387 mutex_unlock(&rtp->barrier_q_mutex); 388 } 389 390 // Advance callbacks and indicate whether either a grace period or 391 // callback invocation is needed. 392 static int rcu_tasks_need_gpcb(struct rcu_tasks *rtp) 393 { 394 int cpu; 395 unsigned long flags; 396 bool gpdone = poll_state_synchronize_rcu(rtp->percpu_dequeue_gpseq); 397 long n; 398 long ncbs = 0; 399 long ncbsnz = 0; 400 int needgpcb = 0; 401 402 for (cpu = 0; cpu < smp_load_acquire(&rtp->percpu_dequeue_lim); cpu++) { 403 struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu); 404 405 /* Advance and accelerate any new callbacks. */ 406 if (!rcu_segcblist_n_cbs(&rtpcp->cblist)) 407 continue; 408 raw_spin_lock_irqsave_rcu_node(rtpcp, flags); 409 // Should we shrink down to a single callback queue? 410 n = rcu_segcblist_n_cbs(&rtpcp->cblist); 411 if (n) { 412 ncbs += n; 413 if (cpu > 0) 414 ncbsnz += n; 415 } 416 rcu_segcblist_advance(&rtpcp->cblist, rcu_seq_current(&rtp->tasks_gp_seq)); 417 (void)rcu_segcblist_accelerate(&rtpcp->cblist, rcu_seq_snap(&rtp->tasks_gp_seq)); 418 if (rcu_segcblist_pend_cbs(&rtpcp->cblist)) 419 needgpcb |= 0x3; 420 if (!rcu_segcblist_empty(&rtpcp->cblist)) 421 needgpcb |= 0x1; 422 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 423 } 424 425 // Shrink down to a single callback queue if appropriate. 426 // This is done in two stages: (1) If there are no more than 427 // rcu_task_collapse_lim callbacks on CPU 0 and none on any other 428 // CPU, limit enqueueing to CPU 0. (2) After an RCU grace period, 429 // if there has not been an increase in callbacks, limit dequeuing 430 // to CPU 0. Note the matching RCU read-side critical section in 431 // call_rcu_tasks_generic(). 432 if (rcu_task_cb_adjust && ncbs <= rcu_task_collapse_lim) { 433 raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags); 434 if (rtp->percpu_enqueue_lim > 1) { 435 WRITE_ONCE(rtp->percpu_enqueue_shift, order_base_2(nr_cpu_ids)); 436 smp_store_release(&rtp->percpu_enqueue_lim, 1); 437 rtp->percpu_dequeue_gpseq = get_state_synchronize_rcu(); 438 gpdone = false; 439 pr_info("Starting switch %s to CPU-0 callback queuing.\n", rtp->name); 440 } 441 raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags); 442 } 443 if (rcu_task_cb_adjust && !ncbsnz && gpdone) { 444 raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags); 445 if (rtp->percpu_enqueue_lim < rtp->percpu_dequeue_lim) { 446 WRITE_ONCE(rtp->percpu_dequeue_lim, 1); 447 pr_info("Completing switch %s to CPU-0 callback queuing.\n", rtp->name); 448 } 449 if (rtp->percpu_dequeue_lim == 1) { 450 for (cpu = rtp->percpu_dequeue_lim; cpu < nr_cpu_ids; cpu++) { 451 struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu); 452 453 WARN_ON_ONCE(rcu_segcblist_n_cbs(&rtpcp->cblist)); 454 } 455 } 456 raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags); 457 } 458 459 return needgpcb; 460 } 461 462 // Advance callbacks and invoke any that are ready. 463 static void rcu_tasks_invoke_cbs(struct rcu_tasks *rtp, struct rcu_tasks_percpu *rtpcp) 464 { 465 int cpu; 466 int cpunext; 467 int cpuwq; 468 unsigned long flags; 469 int len; 470 struct rcu_head *rhp; 471 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl); 472 struct rcu_tasks_percpu *rtpcp_next; 473 474 cpu = rtpcp->cpu; 475 cpunext = cpu * 2 + 1; 476 if (cpunext < smp_load_acquire(&rtp->percpu_dequeue_lim)) { 477 rtpcp_next = per_cpu_ptr(rtp->rtpcpu, cpunext); 478 cpuwq = rcu_cpu_beenfullyonline(cpunext) ? cpunext : WORK_CPU_UNBOUND; 479 queue_work_on(cpuwq, system_wq, &rtpcp_next->rtp_work); 480 cpunext++; 481 if (cpunext < smp_load_acquire(&rtp->percpu_dequeue_lim)) { 482 rtpcp_next = per_cpu_ptr(rtp->rtpcpu, cpunext); 483 cpuwq = rcu_cpu_beenfullyonline(cpunext) ? cpunext : WORK_CPU_UNBOUND; 484 queue_work_on(cpuwq, system_wq, &rtpcp_next->rtp_work); 485 } 486 } 487 488 if (rcu_segcblist_empty(&rtpcp->cblist) || !cpu_possible(cpu)) 489 return; 490 raw_spin_lock_irqsave_rcu_node(rtpcp, flags); 491 rcu_segcblist_advance(&rtpcp->cblist, rcu_seq_current(&rtp->tasks_gp_seq)); 492 rcu_segcblist_extract_done_cbs(&rtpcp->cblist, &rcl); 493 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 494 len = rcl.len; 495 for (rhp = rcu_cblist_dequeue(&rcl); rhp; rhp = rcu_cblist_dequeue(&rcl)) { 496 local_bh_disable(); 497 rhp->func(rhp); 498 local_bh_enable(); 499 cond_resched(); 500 } 501 raw_spin_lock_irqsave_rcu_node(rtpcp, flags); 502 rcu_segcblist_add_len(&rtpcp->cblist, -len); 503 (void)rcu_segcblist_accelerate(&rtpcp->cblist, rcu_seq_snap(&rtp->tasks_gp_seq)); 504 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 505 } 506 507 // Workqueue flood to advance callbacks and invoke any that are ready. 508 static void rcu_tasks_invoke_cbs_wq(struct work_struct *wp) 509 { 510 struct rcu_tasks *rtp; 511 struct rcu_tasks_percpu *rtpcp = container_of(wp, struct rcu_tasks_percpu, rtp_work); 512 513 rtp = rtpcp->rtpp; 514 rcu_tasks_invoke_cbs(rtp, rtpcp); 515 } 516 517 // Wait for one grace period. 518 static void rcu_tasks_one_gp(struct rcu_tasks *rtp, bool midboot) 519 { 520 int needgpcb; 521 522 mutex_lock(&rtp->tasks_gp_mutex); 523 524 // If there were none, wait a bit and start over. 525 if (unlikely(midboot)) { 526 needgpcb = 0x2; 527 } else { 528 set_tasks_gp_state(rtp, RTGS_WAIT_CBS); 529 rcuwait_wait_event(&rtp->cbs_wait, 530 (needgpcb = rcu_tasks_need_gpcb(rtp)), 531 TASK_IDLE); 532 } 533 534 if (needgpcb & 0x2) { 535 // Wait for one grace period. 536 set_tasks_gp_state(rtp, RTGS_WAIT_GP); 537 rtp->gp_start = jiffies; 538 rcu_seq_start(&rtp->tasks_gp_seq); 539 rtp->gp_func(rtp); 540 rcu_seq_end(&rtp->tasks_gp_seq); 541 } 542 543 // Invoke callbacks. 544 set_tasks_gp_state(rtp, RTGS_INVOKE_CBS); 545 rcu_tasks_invoke_cbs(rtp, per_cpu_ptr(rtp->rtpcpu, 0)); 546 mutex_unlock(&rtp->tasks_gp_mutex); 547 } 548 549 // RCU-tasks kthread that detects grace periods and invokes callbacks. 550 static int __noreturn rcu_tasks_kthread(void *arg) 551 { 552 struct rcu_tasks *rtp = arg; 553 554 /* Run on housekeeping CPUs by default. Sysadm can move if desired. */ 555 housekeeping_affine(current, HK_TYPE_RCU); 556 WRITE_ONCE(rtp->kthread_ptr, current); // Let GPs start! 557 558 /* 559 * Each pass through the following loop makes one check for 560 * newly arrived callbacks, and, if there are some, waits for 561 * one RCU-tasks grace period and then invokes the callbacks. 562 * This loop is terminated by the system going down. ;-) 563 */ 564 for (;;) { 565 // Wait for one grace period and invoke any callbacks 566 // that are ready. 567 rcu_tasks_one_gp(rtp, false); 568 569 // Paranoid sleep to keep this from entering a tight loop. 570 schedule_timeout_idle(rtp->gp_sleep); 571 } 572 } 573 574 // Wait for a grace period for the specified flavor of Tasks RCU. 575 static void synchronize_rcu_tasks_generic(struct rcu_tasks *rtp) 576 { 577 /* Complain if the scheduler has not started. */ 578 if (WARN_ONCE(rcu_scheduler_active == RCU_SCHEDULER_INACTIVE, 579 "synchronize_%s() called too soon", rtp->name)) 580 return; 581 582 // If the grace-period kthread is running, use it. 583 if (READ_ONCE(rtp->kthread_ptr)) { 584 wait_rcu_gp(rtp->call_func); 585 return; 586 } 587 rcu_tasks_one_gp(rtp, true); 588 } 589 590 /* Spawn RCU-tasks grace-period kthread. */ 591 static void __init rcu_spawn_tasks_kthread_generic(struct rcu_tasks *rtp) 592 { 593 struct task_struct *t; 594 595 t = kthread_run(rcu_tasks_kthread, rtp, "%s_kthread", rtp->kname); 596 if (WARN_ONCE(IS_ERR(t), "%s: Could not start %s grace-period kthread, OOM is now expected behavior\n", __func__, rtp->name)) 597 return; 598 smp_mb(); /* Ensure others see full kthread. */ 599 } 600 601 #ifndef CONFIG_TINY_RCU 602 603 /* 604 * Print any non-default Tasks RCU settings. 605 */ 606 static void __init rcu_tasks_bootup_oddness(void) 607 { 608 #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU) 609 int rtsimc; 610 611 if (rcu_task_stall_timeout != RCU_TASK_STALL_TIMEOUT) 612 pr_info("\tTasks-RCU CPU stall warnings timeout set to %d (rcu_task_stall_timeout).\n", rcu_task_stall_timeout); 613 rtsimc = clamp(rcu_task_stall_info_mult, 1, 10); 614 if (rtsimc != rcu_task_stall_info_mult) { 615 pr_info("\tTasks-RCU CPU stall info multiplier clamped to %d (rcu_task_stall_info_mult).\n", rtsimc); 616 rcu_task_stall_info_mult = rtsimc; 617 } 618 #endif /* #ifdef CONFIG_TASKS_RCU */ 619 #ifdef CONFIG_TASKS_RCU 620 pr_info("\tTrampoline variant of Tasks RCU enabled.\n"); 621 #endif /* #ifdef CONFIG_TASKS_RCU */ 622 #ifdef CONFIG_TASKS_RUDE_RCU 623 pr_info("\tRude variant of Tasks RCU enabled.\n"); 624 #endif /* #ifdef CONFIG_TASKS_RUDE_RCU */ 625 #ifdef CONFIG_TASKS_TRACE_RCU 626 pr_info("\tTracing variant of Tasks RCU enabled.\n"); 627 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 628 } 629 630 #endif /* #ifndef CONFIG_TINY_RCU */ 631 632 #ifndef CONFIG_TINY_RCU 633 /* Dump out rcutorture-relevant state common to all RCU-tasks flavors. */ 634 static void show_rcu_tasks_generic_gp_kthread(struct rcu_tasks *rtp, char *s) 635 { 636 int cpu; 637 bool havecbs = false; 638 639 for_each_possible_cpu(cpu) { 640 struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu); 641 642 if (!data_race(rcu_segcblist_empty(&rtpcp->cblist))) { 643 havecbs = true; 644 break; 645 } 646 } 647 pr_info("%s: %s(%d) since %lu g:%lu i:%lu/%lu %c%c %s\n", 648 rtp->kname, 649 tasks_gp_state_getname(rtp), data_race(rtp->gp_state), 650 jiffies - data_race(rtp->gp_jiffies), 651 data_race(rcu_seq_current(&rtp->tasks_gp_seq)), 652 data_race(rtp->n_ipis_fails), data_race(rtp->n_ipis), 653 ".k"[!!data_race(rtp->kthread_ptr)], 654 ".C"[havecbs], 655 s); 656 } 657 #endif // #ifndef CONFIG_TINY_RCU 658 659 static void exit_tasks_rcu_finish_trace(struct task_struct *t); 660 661 #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU) 662 663 //////////////////////////////////////////////////////////////////////// 664 // 665 // Shared code between task-list-scanning variants of Tasks RCU. 666 667 /* Wait for one RCU-tasks grace period. */ 668 static void rcu_tasks_wait_gp(struct rcu_tasks *rtp) 669 { 670 struct task_struct *g; 671 int fract; 672 LIST_HEAD(holdouts); 673 unsigned long j; 674 unsigned long lastinfo; 675 unsigned long lastreport; 676 bool reported = false; 677 int rtsi; 678 struct task_struct *t; 679 680 set_tasks_gp_state(rtp, RTGS_PRE_WAIT_GP); 681 rtp->pregp_func(&holdouts); 682 683 /* 684 * There were callbacks, so we need to wait for an RCU-tasks 685 * grace period. Start off by scanning the task list for tasks 686 * that are not already voluntarily blocked. Mark these tasks 687 * and make a list of them in holdouts. 688 */ 689 set_tasks_gp_state(rtp, RTGS_SCAN_TASKLIST); 690 if (rtp->pertask_func) { 691 rcu_read_lock(); 692 for_each_process_thread(g, t) 693 rtp->pertask_func(t, &holdouts); 694 rcu_read_unlock(); 695 } 696 697 set_tasks_gp_state(rtp, RTGS_POST_SCAN_TASKLIST); 698 rtp->postscan_func(&holdouts); 699 700 /* 701 * Each pass through the following loop scans the list of holdout 702 * tasks, removing any that are no longer holdouts. When the list 703 * is empty, we are done. 704 */ 705 lastreport = jiffies; 706 lastinfo = lastreport; 707 rtsi = READ_ONCE(rcu_task_stall_info); 708 709 // Start off with initial wait and slowly back off to 1 HZ wait. 710 fract = rtp->init_fract; 711 712 while (!list_empty(&holdouts)) { 713 ktime_t exp; 714 bool firstreport; 715 bool needreport; 716 int rtst; 717 718 // Slowly back off waiting for holdouts 719 set_tasks_gp_state(rtp, RTGS_WAIT_SCAN_HOLDOUTS); 720 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) { 721 schedule_timeout_idle(fract); 722 } else { 723 exp = jiffies_to_nsecs(fract); 724 __set_current_state(TASK_IDLE); 725 schedule_hrtimeout_range(&exp, jiffies_to_nsecs(HZ / 2), HRTIMER_MODE_REL_HARD); 726 } 727 728 if (fract < HZ) 729 fract++; 730 731 rtst = READ_ONCE(rcu_task_stall_timeout); 732 needreport = rtst > 0 && time_after(jiffies, lastreport + rtst); 733 if (needreport) { 734 lastreport = jiffies; 735 reported = true; 736 } 737 firstreport = true; 738 WARN_ON(signal_pending(current)); 739 set_tasks_gp_state(rtp, RTGS_SCAN_HOLDOUTS); 740 rtp->holdouts_func(&holdouts, needreport, &firstreport); 741 742 // Print pre-stall informational messages if needed. 743 j = jiffies; 744 if (rtsi > 0 && !reported && time_after(j, lastinfo + rtsi)) { 745 lastinfo = j; 746 rtsi = rtsi * rcu_task_stall_info_mult; 747 pr_info("%s: %s grace period number %lu (since boot) is %lu jiffies old.\n", 748 __func__, rtp->kname, rtp->tasks_gp_seq, j - rtp->gp_start); 749 } 750 } 751 752 set_tasks_gp_state(rtp, RTGS_POST_GP); 753 rtp->postgp_func(rtp); 754 } 755 756 #endif /* #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU) */ 757 758 #ifdef CONFIG_TASKS_RCU 759 760 //////////////////////////////////////////////////////////////////////// 761 // 762 // Simple variant of RCU whose quiescent states are voluntary context 763 // switch, cond_resched_tasks_rcu_qs(), user-space execution, and idle. 764 // As such, grace periods can take one good long time. There are no 765 // read-side primitives similar to rcu_read_lock() and rcu_read_unlock() 766 // because this implementation is intended to get the system into a safe 767 // state for some of the manipulations involved in tracing and the like. 768 // Finally, this implementation does not support high call_rcu_tasks() 769 // rates from multiple CPUs. If this is required, per-CPU callback lists 770 // will be needed. 771 // 772 // The implementation uses rcu_tasks_wait_gp(), which relies on function 773 // pointers in the rcu_tasks structure. The rcu_spawn_tasks_kthread() 774 // function sets these function pointers up so that rcu_tasks_wait_gp() 775 // invokes these functions in this order: 776 // 777 // rcu_tasks_pregp_step(): 778 // Invokes synchronize_rcu() in order to wait for all in-flight 779 // t->on_rq and t->nvcsw transitions to complete. This works because 780 // all such transitions are carried out with interrupts disabled. 781 // rcu_tasks_pertask(), invoked on every non-idle task: 782 // For every runnable non-idle task other than the current one, use 783 // get_task_struct() to pin down that task, snapshot that task's 784 // number of voluntary context switches, and add that task to the 785 // holdout list. 786 // rcu_tasks_postscan(): 787 // Invoke synchronize_srcu() to ensure that all tasks that were 788 // in the process of exiting (and which thus might not know to 789 // synchronize with this RCU Tasks grace period) have completed 790 // exiting. 791 // check_all_holdout_tasks(), repeatedly until holdout list is empty: 792 // Scans the holdout list, attempting to identify a quiescent state 793 // for each task on the list. If there is a quiescent state, the 794 // corresponding task is removed from the holdout list. 795 // rcu_tasks_postgp(): 796 // Invokes synchronize_rcu() in order to ensure that all prior 797 // t->on_rq and t->nvcsw transitions are seen by all CPUs and tasks 798 // to have happened before the end of this RCU Tasks grace period. 799 // Again, this works because all such transitions are carried out 800 // with interrupts disabled. 801 // 802 // For each exiting task, the exit_tasks_rcu_start() and 803 // exit_tasks_rcu_finish() functions begin and end, respectively, the SRCU 804 // read-side critical sections waited for by rcu_tasks_postscan(). 805 // 806 // Pre-grace-period update-side code is ordered before the grace 807 // via the raw_spin_lock.*rcu_node(). Pre-grace-period read-side code 808 // is ordered before the grace period via synchronize_rcu() call in 809 // rcu_tasks_pregp_step() and by the scheduler's locks and interrupt 810 // disabling. 811 812 /* Pre-grace-period preparation. */ 813 static void rcu_tasks_pregp_step(struct list_head *hop) 814 { 815 /* 816 * Wait for all pre-existing t->on_rq and t->nvcsw transitions 817 * to complete. Invoking synchronize_rcu() suffices because all 818 * these transitions occur with interrupts disabled. Without this 819 * synchronize_rcu(), a read-side critical section that started 820 * before the grace period might be incorrectly seen as having 821 * started after the grace period. 822 * 823 * This synchronize_rcu() also dispenses with the need for a 824 * memory barrier on the first store to t->rcu_tasks_holdout, 825 * as it forces the store to happen after the beginning of the 826 * grace period. 827 */ 828 synchronize_rcu(); 829 } 830 831 /* Per-task initial processing. */ 832 static void rcu_tasks_pertask(struct task_struct *t, struct list_head *hop) 833 { 834 if (t != current && READ_ONCE(t->on_rq) && !is_idle_task(t)) { 835 get_task_struct(t); 836 t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw); 837 WRITE_ONCE(t->rcu_tasks_holdout, true); 838 list_add(&t->rcu_tasks_holdout_list, hop); 839 } 840 } 841 842 /* Processing between scanning taskslist and draining the holdout list. */ 843 static void rcu_tasks_postscan(struct list_head *hop) 844 { 845 int rtsi = READ_ONCE(rcu_task_stall_info); 846 847 if (!IS_ENABLED(CONFIG_TINY_RCU)) { 848 tasks_rcu_exit_srcu_stall_timer.expires = jiffies + rtsi; 849 add_timer(&tasks_rcu_exit_srcu_stall_timer); 850 } 851 852 /* 853 * Exiting tasks may escape the tasklist scan. Those are vulnerable 854 * until their final schedule() with TASK_DEAD state. To cope with 855 * this, divide the fragile exit path part in two intersecting 856 * read side critical sections: 857 * 858 * 1) An _SRCU_ read side starting before calling exit_notify(), 859 * which may remove the task from the tasklist, and ending after 860 * the final preempt_disable() call in do_exit(). 861 * 862 * 2) An _RCU_ read side starting with the final preempt_disable() 863 * call in do_exit() and ending with the final call to schedule() 864 * with TASK_DEAD state. 865 * 866 * This handles the part 1). And postgp will handle part 2) with a 867 * call to synchronize_rcu(). 868 */ 869 synchronize_srcu(&tasks_rcu_exit_srcu); 870 871 if (!IS_ENABLED(CONFIG_TINY_RCU)) 872 del_timer_sync(&tasks_rcu_exit_srcu_stall_timer); 873 } 874 875 /* See if tasks are still holding out, complain if so. */ 876 static void check_holdout_task(struct task_struct *t, 877 bool needreport, bool *firstreport) 878 { 879 int cpu; 880 881 if (!READ_ONCE(t->rcu_tasks_holdout) || 882 t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) || 883 !READ_ONCE(t->on_rq) || 884 (IS_ENABLED(CONFIG_NO_HZ_FULL) && 885 !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) { 886 WRITE_ONCE(t->rcu_tasks_holdout, false); 887 list_del_init(&t->rcu_tasks_holdout_list); 888 put_task_struct(t); 889 return; 890 } 891 rcu_request_urgent_qs_task(t); 892 if (!needreport) 893 return; 894 if (*firstreport) { 895 pr_err("INFO: rcu_tasks detected stalls on tasks:\n"); 896 *firstreport = false; 897 } 898 cpu = task_cpu(t); 899 pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n", 900 t, ".I"[is_idle_task(t)], 901 "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)], 902 t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout, 903 t->rcu_tasks_idle_cpu, cpu); 904 sched_show_task(t); 905 } 906 907 /* Scan the holdout lists for tasks no longer holding out. */ 908 static void check_all_holdout_tasks(struct list_head *hop, 909 bool needreport, bool *firstreport) 910 { 911 struct task_struct *t, *t1; 912 913 list_for_each_entry_safe(t, t1, hop, rcu_tasks_holdout_list) { 914 check_holdout_task(t, needreport, firstreport); 915 cond_resched(); 916 } 917 } 918 919 /* Finish off the Tasks-RCU grace period. */ 920 static void rcu_tasks_postgp(struct rcu_tasks *rtp) 921 { 922 /* 923 * Because ->on_rq and ->nvcsw are not guaranteed to have a full 924 * memory barriers prior to them in the schedule() path, memory 925 * reordering on other CPUs could cause their RCU-tasks read-side 926 * critical sections to extend past the end of the grace period. 927 * However, because these ->nvcsw updates are carried out with 928 * interrupts disabled, we can use synchronize_rcu() to force the 929 * needed ordering on all such CPUs. 930 * 931 * This synchronize_rcu() also confines all ->rcu_tasks_holdout 932 * accesses to be within the grace period, avoiding the need for 933 * memory barriers for ->rcu_tasks_holdout accesses. 934 * 935 * In addition, this synchronize_rcu() waits for exiting tasks 936 * to complete their final preempt_disable() region of execution, 937 * cleaning up after synchronize_srcu(&tasks_rcu_exit_srcu), 938 * enforcing the whole region before tasklist removal until 939 * the final schedule() with TASK_DEAD state to be an RCU TASKS 940 * read side critical section. 941 */ 942 synchronize_rcu(); 943 } 944 945 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func); 946 DEFINE_RCU_TASKS(rcu_tasks, rcu_tasks_wait_gp, call_rcu_tasks, "RCU Tasks"); 947 948 static void tasks_rcu_exit_srcu_stall(struct timer_list *unused) 949 { 950 #ifndef CONFIG_TINY_RCU 951 int rtsi; 952 953 rtsi = READ_ONCE(rcu_task_stall_info); 954 pr_info("%s: %s grace period number %lu (since boot) gp_state: %s is %lu jiffies old.\n", 955 __func__, rcu_tasks.kname, rcu_tasks.tasks_gp_seq, 956 tasks_gp_state_getname(&rcu_tasks), jiffies - rcu_tasks.gp_jiffies); 957 pr_info("Please check any exiting tasks stuck between calls to exit_tasks_rcu_start() and exit_tasks_rcu_finish()\n"); 958 tasks_rcu_exit_srcu_stall_timer.expires = jiffies + rtsi; 959 add_timer(&tasks_rcu_exit_srcu_stall_timer); 960 #endif // #ifndef CONFIG_TINY_RCU 961 } 962 963 /** 964 * call_rcu_tasks() - Queue an RCU for invocation task-based grace period 965 * @rhp: structure to be used for queueing the RCU updates. 966 * @func: actual callback function to be invoked after the grace period 967 * 968 * The callback function will be invoked some time after a full grace 969 * period elapses, in other words after all currently executing RCU 970 * read-side critical sections have completed. call_rcu_tasks() assumes 971 * that the read-side critical sections end at a voluntary context 972 * switch (not a preemption!), cond_resched_tasks_rcu_qs(), entry into idle, 973 * or transition to usermode execution. As such, there are no read-side 974 * primitives analogous to rcu_read_lock() and rcu_read_unlock() because 975 * this primitive is intended to determine that all tasks have passed 976 * through a safe state, not so much for data-structure synchronization. 977 * 978 * See the description of call_rcu() for more detailed information on 979 * memory ordering guarantees. 980 */ 981 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func) 982 { 983 call_rcu_tasks_generic(rhp, func, &rcu_tasks); 984 } 985 EXPORT_SYMBOL_GPL(call_rcu_tasks); 986 987 /** 988 * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed. 989 * 990 * Control will return to the caller some time after a full rcu-tasks 991 * grace period has elapsed, in other words after all currently 992 * executing rcu-tasks read-side critical sections have elapsed. These 993 * read-side critical sections are delimited by calls to schedule(), 994 * cond_resched_tasks_rcu_qs(), idle execution, userspace execution, calls 995 * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched(). 996 * 997 * This is a very specialized primitive, intended only for a few uses in 998 * tracing and other situations requiring manipulation of function 999 * preambles and profiling hooks. The synchronize_rcu_tasks() function 1000 * is not (yet) intended for heavy use from multiple CPUs. 1001 * 1002 * See the description of synchronize_rcu() for more detailed information 1003 * on memory ordering guarantees. 1004 */ 1005 void synchronize_rcu_tasks(void) 1006 { 1007 synchronize_rcu_tasks_generic(&rcu_tasks); 1008 } 1009 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks); 1010 1011 /** 1012 * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks. 1013 * 1014 * Although the current implementation is guaranteed to wait, it is not 1015 * obligated to, for example, if there are no pending callbacks. 1016 */ 1017 void rcu_barrier_tasks(void) 1018 { 1019 rcu_barrier_tasks_generic(&rcu_tasks); 1020 } 1021 EXPORT_SYMBOL_GPL(rcu_barrier_tasks); 1022 1023 static int __init rcu_spawn_tasks_kthread(void) 1024 { 1025 cblist_init_generic(&rcu_tasks); 1026 rcu_tasks.gp_sleep = HZ / 10; 1027 rcu_tasks.init_fract = HZ / 10; 1028 rcu_tasks.pregp_func = rcu_tasks_pregp_step; 1029 rcu_tasks.pertask_func = rcu_tasks_pertask; 1030 rcu_tasks.postscan_func = rcu_tasks_postscan; 1031 rcu_tasks.holdouts_func = check_all_holdout_tasks; 1032 rcu_tasks.postgp_func = rcu_tasks_postgp; 1033 rcu_spawn_tasks_kthread_generic(&rcu_tasks); 1034 return 0; 1035 } 1036 1037 #if !defined(CONFIG_TINY_RCU) 1038 void show_rcu_tasks_classic_gp_kthread(void) 1039 { 1040 show_rcu_tasks_generic_gp_kthread(&rcu_tasks, ""); 1041 } 1042 EXPORT_SYMBOL_GPL(show_rcu_tasks_classic_gp_kthread); 1043 #endif // !defined(CONFIG_TINY_RCU) 1044 1045 /* 1046 * Contribute to protect against tasklist scan blind spot while the 1047 * task is exiting and may be removed from the tasklist. See 1048 * corresponding synchronize_srcu() for further details. 1049 */ 1050 void exit_tasks_rcu_start(void) __acquires(&tasks_rcu_exit_srcu) 1051 { 1052 current->rcu_tasks_idx = __srcu_read_lock(&tasks_rcu_exit_srcu); 1053 } 1054 1055 /* 1056 * Contribute to protect against tasklist scan blind spot while the 1057 * task is exiting and may be removed from the tasklist. See 1058 * corresponding synchronize_srcu() for further details. 1059 */ 1060 void exit_tasks_rcu_stop(void) __releases(&tasks_rcu_exit_srcu) 1061 { 1062 struct task_struct *t = current; 1063 1064 __srcu_read_unlock(&tasks_rcu_exit_srcu, t->rcu_tasks_idx); 1065 } 1066 1067 /* 1068 * Contribute to protect against tasklist scan blind spot while the 1069 * task is exiting and may be removed from the tasklist. See 1070 * corresponding synchronize_srcu() for further details. 1071 */ 1072 void exit_tasks_rcu_finish(void) 1073 { 1074 exit_tasks_rcu_stop(); 1075 exit_tasks_rcu_finish_trace(current); 1076 } 1077 1078 #else /* #ifdef CONFIG_TASKS_RCU */ 1079 void exit_tasks_rcu_start(void) { } 1080 void exit_tasks_rcu_stop(void) { } 1081 void exit_tasks_rcu_finish(void) { exit_tasks_rcu_finish_trace(current); } 1082 #endif /* #else #ifdef CONFIG_TASKS_RCU */ 1083 1084 #ifdef CONFIG_TASKS_RUDE_RCU 1085 1086 //////////////////////////////////////////////////////////////////////// 1087 // 1088 // "Rude" variant of Tasks RCU, inspired by Steve Rostedt's trick of 1089 // passing an empty function to schedule_on_each_cpu(). This approach 1090 // provides an asynchronous call_rcu_tasks_rude() API and batching of 1091 // concurrent calls to the synchronous synchronize_rcu_tasks_rude() API. 1092 // This invokes schedule_on_each_cpu() in order to send IPIs far and wide 1093 // and induces otherwise unnecessary context switches on all online CPUs, 1094 // whether idle or not. 1095 // 1096 // Callback handling is provided by the rcu_tasks_kthread() function. 1097 // 1098 // Ordering is provided by the scheduler's context-switch code. 1099 1100 // Empty function to allow workqueues to force a context switch. 1101 static void rcu_tasks_be_rude(struct work_struct *work) 1102 { 1103 } 1104 1105 // Wait for one rude RCU-tasks grace period. 1106 static void rcu_tasks_rude_wait_gp(struct rcu_tasks *rtp) 1107 { 1108 rtp->n_ipis += cpumask_weight(cpu_online_mask); 1109 schedule_on_each_cpu(rcu_tasks_be_rude); 1110 } 1111 1112 void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func); 1113 DEFINE_RCU_TASKS(rcu_tasks_rude, rcu_tasks_rude_wait_gp, call_rcu_tasks_rude, 1114 "RCU Tasks Rude"); 1115 1116 /** 1117 * call_rcu_tasks_rude() - Queue a callback rude task-based grace period 1118 * @rhp: structure to be used for queueing the RCU updates. 1119 * @func: actual callback function to be invoked after the grace period 1120 * 1121 * The callback function will be invoked some time after a full grace 1122 * period elapses, in other words after all currently executing RCU 1123 * read-side critical sections have completed. call_rcu_tasks_rude() 1124 * assumes that the read-side critical sections end at context switch, 1125 * cond_resched_tasks_rcu_qs(), or transition to usermode execution (as 1126 * usermode execution is schedulable). As such, there are no read-side 1127 * primitives analogous to rcu_read_lock() and rcu_read_unlock() because 1128 * this primitive is intended to determine that all tasks have passed 1129 * through a safe state, not so much for data-structure synchronization. 1130 * 1131 * See the description of call_rcu() for more detailed information on 1132 * memory ordering guarantees. 1133 */ 1134 void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func) 1135 { 1136 call_rcu_tasks_generic(rhp, func, &rcu_tasks_rude); 1137 } 1138 EXPORT_SYMBOL_GPL(call_rcu_tasks_rude); 1139 1140 /** 1141 * synchronize_rcu_tasks_rude - wait for a rude rcu-tasks grace period 1142 * 1143 * Control will return to the caller some time after a rude rcu-tasks 1144 * grace period has elapsed, in other words after all currently 1145 * executing rcu-tasks read-side critical sections have elapsed. These 1146 * read-side critical sections are delimited by calls to schedule(), 1147 * cond_resched_tasks_rcu_qs(), userspace execution (which is a schedulable 1148 * context), and (in theory, anyway) cond_resched(). 1149 * 1150 * This is a very specialized primitive, intended only for a few uses in 1151 * tracing and other situations requiring manipulation of function preambles 1152 * and profiling hooks. The synchronize_rcu_tasks_rude() function is not 1153 * (yet) intended for heavy use from multiple CPUs. 1154 * 1155 * See the description of synchronize_rcu() for more detailed information 1156 * on memory ordering guarantees. 1157 */ 1158 void synchronize_rcu_tasks_rude(void) 1159 { 1160 synchronize_rcu_tasks_generic(&rcu_tasks_rude); 1161 } 1162 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_rude); 1163 1164 /** 1165 * rcu_barrier_tasks_rude - Wait for in-flight call_rcu_tasks_rude() callbacks. 1166 * 1167 * Although the current implementation is guaranteed to wait, it is not 1168 * obligated to, for example, if there are no pending callbacks. 1169 */ 1170 void rcu_barrier_tasks_rude(void) 1171 { 1172 rcu_barrier_tasks_generic(&rcu_tasks_rude); 1173 } 1174 EXPORT_SYMBOL_GPL(rcu_barrier_tasks_rude); 1175 1176 static int __init rcu_spawn_tasks_rude_kthread(void) 1177 { 1178 cblist_init_generic(&rcu_tasks_rude); 1179 rcu_tasks_rude.gp_sleep = HZ / 10; 1180 rcu_spawn_tasks_kthread_generic(&rcu_tasks_rude); 1181 return 0; 1182 } 1183 1184 #if !defined(CONFIG_TINY_RCU) 1185 void show_rcu_tasks_rude_gp_kthread(void) 1186 { 1187 show_rcu_tasks_generic_gp_kthread(&rcu_tasks_rude, ""); 1188 } 1189 EXPORT_SYMBOL_GPL(show_rcu_tasks_rude_gp_kthread); 1190 #endif // !defined(CONFIG_TINY_RCU) 1191 #endif /* #ifdef CONFIG_TASKS_RUDE_RCU */ 1192 1193 //////////////////////////////////////////////////////////////////////// 1194 // 1195 // Tracing variant of Tasks RCU. This variant is designed to be used 1196 // to protect tracing hooks, including those of BPF. This variant 1197 // therefore: 1198 // 1199 // 1. Has explicit read-side markers to allow finite grace periods 1200 // in the face of in-kernel loops for PREEMPT=n builds. 1201 // 1202 // 2. Protects code in the idle loop, exception entry/exit, and 1203 // CPU-hotplug code paths, similar to the capabilities of SRCU. 1204 // 1205 // 3. Avoids expensive read-side instructions, having overhead similar 1206 // to that of Preemptible RCU. 1207 // 1208 // There are of course downsides. For example, the grace-period code 1209 // can send IPIs to CPUs, even when those CPUs are in the idle loop or 1210 // in nohz_full userspace. If needed, these downsides can be at least 1211 // partially remedied. 1212 // 1213 // Perhaps most important, this variant of RCU does not affect the vanilla 1214 // flavors, rcu_preempt and rcu_sched. The fact that RCU Tasks Trace 1215 // readers can operate from idle, offline, and exception entry/exit in no 1216 // way allows rcu_preempt and rcu_sched readers to also do so. 1217 // 1218 // The implementation uses rcu_tasks_wait_gp(), which relies on function 1219 // pointers in the rcu_tasks structure. The rcu_spawn_tasks_trace_kthread() 1220 // function sets these function pointers up so that rcu_tasks_wait_gp() 1221 // invokes these functions in this order: 1222 // 1223 // rcu_tasks_trace_pregp_step(): 1224 // Disables CPU hotplug, adds all currently executing tasks to the 1225 // holdout list, then checks the state of all tasks that blocked 1226 // or were preempted within their current RCU Tasks Trace read-side 1227 // critical section, adding them to the holdout list if appropriate. 1228 // Finally, this function re-enables CPU hotplug. 1229 // The ->pertask_func() pointer is NULL, so there is no per-task processing. 1230 // rcu_tasks_trace_postscan(): 1231 // Invokes synchronize_rcu() to wait for late-stage exiting tasks 1232 // to finish exiting. 1233 // check_all_holdout_tasks_trace(), repeatedly until holdout list is empty: 1234 // Scans the holdout list, attempting to identify a quiescent state 1235 // for each task on the list. If there is a quiescent state, the 1236 // corresponding task is removed from the holdout list. Once this 1237 // list is empty, the grace period has completed. 1238 // rcu_tasks_trace_postgp(): 1239 // Provides the needed full memory barrier and does debug checks. 1240 // 1241 // The exit_tasks_rcu_finish_trace() synchronizes with exiting tasks. 1242 // 1243 // Pre-grace-period update-side code is ordered before the grace period 1244 // via the ->cbs_lock and barriers in rcu_tasks_kthread(). Pre-grace-period 1245 // read-side code is ordered before the grace period by atomic operations 1246 // on .b.need_qs flag of each task involved in this process, or by scheduler 1247 // context-switch ordering (for locked-down non-running readers). 1248 1249 // The lockdep state must be outside of #ifdef to be useful. 1250 #ifdef CONFIG_DEBUG_LOCK_ALLOC 1251 static struct lock_class_key rcu_lock_trace_key; 1252 struct lockdep_map rcu_trace_lock_map = 1253 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_trace", &rcu_lock_trace_key); 1254 EXPORT_SYMBOL_GPL(rcu_trace_lock_map); 1255 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 1256 1257 #ifdef CONFIG_TASKS_TRACE_RCU 1258 1259 // Record outstanding IPIs to each CPU. No point in sending two... 1260 static DEFINE_PER_CPU(bool, trc_ipi_to_cpu); 1261 1262 // The number of detections of task quiescent state relying on 1263 // heavyweight readers executing explicit memory barriers. 1264 static unsigned long n_heavy_reader_attempts; 1265 static unsigned long n_heavy_reader_updates; 1266 static unsigned long n_heavy_reader_ofl_updates; 1267 static unsigned long n_trc_holdouts; 1268 1269 void call_rcu_tasks_trace(struct rcu_head *rhp, rcu_callback_t func); 1270 DEFINE_RCU_TASKS(rcu_tasks_trace, rcu_tasks_wait_gp, call_rcu_tasks_trace, 1271 "RCU Tasks Trace"); 1272 1273 /* Load from ->trc_reader_special.b.need_qs with proper ordering. */ 1274 static u8 rcu_ld_need_qs(struct task_struct *t) 1275 { 1276 smp_mb(); // Enforce full grace-period ordering. 1277 return smp_load_acquire(&t->trc_reader_special.b.need_qs); 1278 } 1279 1280 /* Store to ->trc_reader_special.b.need_qs with proper ordering. */ 1281 static void rcu_st_need_qs(struct task_struct *t, u8 v) 1282 { 1283 smp_store_release(&t->trc_reader_special.b.need_qs, v); 1284 smp_mb(); // Enforce full grace-period ordering. 1285 } 1286 1287 /* 1288 * Do a cmpxchg() on ->trc_reader_special.b.need_qs, allowing for 1289 * the four-byte operand-size restriction of some platforms. 1290 * Returns the old value, which is often ignored. 1291 */ 1292 u8 rcu_trc_cmpxchg_need_qs(struct task_struct *t, u8 old, u8 new) 1293 { 1294 union rcu_special ret; 1295 union rcu_special trs_old = READ_ONCE(t->trc_reader_special); 1296 union rcu_special trs_new = trs_old; 1297 1298 if (trs_old.b.need_qs != old) 1299 return trs_old.b.need_qs; 1300 trs_new.b.need_qs = new; 1301 ret.s = cmpxchg(&t->trc_reader_special.s, trs_old.s, trs_new.s); 1302 return ret.b.need_qs; 1303 } 1304 EXPORT_SYMBOL_GPL(rcu_trc_cmpxchg_need_qs); 1305 1306 /* 1307 * If we are the last reader, signal the grace-period kthread. 1308 * Also remove from the per-CPU list of blocked tasks. 1309 */ 1310 void rcu_read_unlock_trace_special(struct task_struct *t) 1311 { 1312 unsigned long flags; 1313 struct rcu_tasks_percpu *rtpcp; 1314 union rcu_special trs; 1315 1316 // Open-coded full-word version of rcu_ld_need_qs(). 1317 smp_mb(); // Enforce full grace-period ordering. 1318 trs = smp_load_acquire(&t->trc_reader_special); 1319 1320 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) && t->trc_reader_special.b.need_mb) 1321 smp_mb(); // Pairs with update-side barriers. 1322 // Update .need_qs before ->trc_reader_nesting for irq/NMI handlers. 1323 if (trs.b.need_qs == (TRC_NEED_QS_CHECKED | TRC_NEED_QS)) { 1324 u8 result = rcu_trc_cmpxchg_need_qs(t, TRC_NEED_QS_CHECKED | TRC_NEED_QS, 1325 TRC_NEED_QS_CHECKED); 1326 1327 WARN_ONCE(result != trs.b.need_qs, "%s: result = %d", __func__, result); 1328 } 1329 if (trs.b.blocked) { 1330 rtpcp = per_cpu_ptr(rcu_tasks_trace.rtpcpu, t->trc_blkd_cpu); 1331 raw_spin_lock_irqsave_rcu_node(rtpcp, flags); 1332 list_del_init(&t->trc_blkd_node); 1333 WRITE_ONCE(t->trc_reader_special.b.blocked, false); 1334 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 1335 } 1336 WRITE_ONCE(t->trc_reader_nesting, 0); 1337 } 1338 EXPORT_SYMBOL_GPL(rcu_read_unlock_trace_special); 1339 1340 /* Add a newly blocked reader task to its CPU's list. */ 1341 void rcu_tasks_trace_qs_blkd(struct task_struct *t) 1342 { 1343 unsigned long flags; 1344 struct rcu_tasks_percpu *rtpcp; 1345 1346 local_irq_save(flags); 1347 rtpcp = this_cpu_ptr(rcu_tasks_trace.rtpcpu); 1348 raw_spin_lock_rcu_node(rtpcp); // irqs already disabled 1349 t->trc_blkd_cpu = smp_processor_id(); 1350 if (!rtpcp->rtp_blkd_tasks.next) 1351 INIT_LIST_HEAD(&rtpcp->rtp_blkd_tasks); 1352 list_add(&t->trc_blkd_node, &rtpcp->rtp_blkd_tasks); 1353 WRITE_ONCE(t->trc_reader_special.b.blocked, true); 1354 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 1355 } 1356 EXPORT_SYMBOL_GPL(rcu_tasks_trace_qs_blkd); 1357 1358 /* Add a task to the holdout list, if it is not already on the list. */ 1359 static void trc_add_holdout(struct task_struct *t, struct list_head *bhp) 1360 { 1361 if (list_empty(&t->trc_holdout_list)) { 1362 get_task_struct(t); 1363 list_add(&t->trc_holdout_list, bhp); 1364 n_trc_holdouts++; 1365 } 1366 } 1367 1368 /* Remove a task from the holdout list, if it is in fact present. */ 1369 static void trc_del_holdout(struct task_struct *t) 1370 { 1371 if (!list_empty(&t->trc_holdout_list)) { 1372 list_del_init(&t->trc_holdout_list); 1373 put_task_struct(t); 1374 n_trc_holdouts--; 1375 } 1376 } 1377 1378 /* IPI handler to check task state. */ 1379 static void trc_read_check_handler(void *t_in) 1380 { 1381 int nesting; 1382 struct task_struct *t = current; 1383 struct task_struct *texp = t_in; 1384 1385 // If the task is no longer running on this CPU, leave. 1386 if (unlikely(texp != t)) 1387 goto reset_ipi; // Already on holdout list, so will check later. 1388 1389 // If the task is not in a read-side critical section, and 1390 // if this is the last reader, awaken the grace-period kthread. 1391 nesting = READ_ONCE(t->trc_reader_nesting); 1392 if (likely(!nesting)) { 1393 rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED); 1394 goto reset_ipi; 1395 } 1396 // If we are racing with an rcu_read_unlock_trace(), try again later. 1397 if (unlikely(nesting < 0)) 1398 goto reset_ipi; 1399 1400 // Get here if the task is in a read-side critical section. 1401 // Set its state so that it will update state for the grace-period 1402 // kthread upon exit from that critical section. 1403 rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS | TRC_NEED_QS_CHECKED); 1404 1405 reset_ipi: 1406 // Allow future IPIs to be sent on CPU and for task. 1407 // Also order this IPI handler against any later manipulations of 1408 // the intended task. 1409 smp_store_release(per_cpu_ptr(&trc_ipi_to_cpu, smp_processor_id()), false); // ^^^ 1410 smp_store_release(&texp->trc_ipi_to_cpu, -1); // ^^^ 1411 } 1412 1413 /* Callback function for scheduler to check locked-down task. */ 1414 static int trc_inspect_reader(struct task_struct *t, void *bhp_in) 1415 { 1416 struct list_head *bhp = bhp_in; 1417 int cpu = task_cpu(t); 1418 int nesting; 1419 bool ofl = cpu_is_offline(cpu); 1420 1421 if (task_curr(t) && !ofl) { 1422 // If no chance of heavyweight readers, do it the hard way. 1423 if (!IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB)) 1424 return -EINVAL; 1425 1426 // If heavyweight readers are enabled on the remote task, 1427 // we can inspect its state despite its currently running. 1428 // However, we cannot safely change its state. 1429 n_heavy_reader_attempts++; 1430 // Check for "running" idle tasks on offline CPUs. 1431 if (!rcu_dynticks_zero_in_eqs(cpu, &t->trc_reader_nesting)) 1432 return -EINVAL; // No quiescent state, do it the hard way. 1433 n_heavy_reader_updates++; 1434 nesting = 0; 1435 } else { 1436 // The task is not running, so C-language access is safe. 1437 nesting = t->trc_reader_nesting; 1438 WARN_ON_ONCE(ofl && task_curr(t) && !is_idle_task(t)); 1439 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) && ofl) 1440 n_heavy_reader_ofl_updates++; 1441 } 1442 1443 // If not exiting a read-side critical section, mark as checked 1444 // so that the grace-period kthread will remove it from the 1445 // holdout list. 1446 if (!nesting) { 1447 rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED); 1448 return 0; // In QS, so done. 1449 } 1450 if (nesting < 0) 1451 return -EINVAL; // Reader transitioning, try again later. 1452 1453 // The task is in a read-side critical section, so set up its 1454 // state so that it will update state upon exit from that critical 1455 // section. 1456 if (!rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS | TRC_NEED_QS_CHECKED)) 1457 trc_add_holdout(t, bhp); 1458 return 0; 1459 } 1460 1461 /* Attempt to extract the state for the specified task. */ 1462 static void trc_wait_for_one_reader(struct task_struct *t, 1463 struct list_head *bhp) 1464 { 1465 int cpu; 1466 1467 // If a previous IPI is still in flight, let it complete. 1468 if (smp_load_acquire(&t->trc_ipi_to_cpu) != -1) // Order IPI 1469 return; 1470 1471 // The current task had better be in a quiescent state. 1472 if (t == current) { 1473 rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED); 1474 WARN_ON_ONCE(READ_ONCE(t->trc_reader_nesting)); 1475 return; 1476 } 1477 1478 // Attempt to nail down the task for inspection. 1479 get_task_struct(t); 1480 if (!task_call_func(t, trc_inspect_reader, bhp)) { 1481 put_task_struct(t); 1482 return; 1483 } 1484 put_task_struct(t); 1485 1486 // If this task is not yet on the holdout list, then we are in 1487 // an RCU read-side critical section. Otherwise, the invocation of 1488 // trc_add_holdout() that added it to the list did the necessary 1489 // get_task_struct(). Either way, the task cannot be freed out 1490 // from under this code. 1491 1492 // If currently running, send an IPI, either way, add to list. 1493 trc_add_holdout(t, bhp); 1494 if (task_curr(t) && 1495 time_after(jiffies + 1, rcu_tasks_trace.gp_start + rcu_task_ipi_delay)) { 1496 // The task is currently running, so try IPIing it. 1497 cpu = task_cpu(t); 1498 1499 // If there is already an IPI outstanding, let it happen. 1500 if (per_cpu(trc_ipi_to_cpu, cpu) || t->trc_ipi_to_cpu >= 0) 1501 return; 1502 1503 per_cpu(trc_ipi_to_cpu, cpu) = true; 1504 t->trc_ipi_to_cpu = cpu; 1505 rcu_tasks_trace.n_ipis++; 1506 if (smp_call_function_single(cpu, trc_read_check_handler, t, 0)) { 1507 // Just in case there is some other reason for 1508 // failure than the target CPU being offline. 1509 WARN_ONCE(1, "%s(): smp_call_function_single() failed for CPU: %d\n", 1510 __func__, cpu); 1511 rcu_tasks_trace.n_ipis_fails++; 1512 per_cpu(trc_ipi_to_cpu, cpu) = false; 1513 t->trc_ipi_to_cpu = -1; 1514 } 1515 } 1516 } 1517 1518 /* 1519 * Initialize for first-round processing for the specified task. 1520 * Return false if task is NULL or already taken care of, true otherwise. 1521 */ 1522 static bool rcu_tasks_trace_pertask_prep(struct task_struct *t, bool notself) 1523 { 1524 // During early boot when there is only the one boot CPU, there 1525 // is no idle task for the other CPUs. Also, the grace-period 1526 // kthread is always in a quiescent state. In addition, just return 1527 // if this task is already on the list. 1528 if (unlikely(t == NULL) || (t == current && notself) || !list_empty(&t->trc_holdout_list)) 1529 return false; 1530 1531 rcu_st_need_qs(t, 0); 1532 t->trc_ipi_to_cpu = -1; 1533 return true; 1534 } 1535 1536 /* Do first-round processing for the specified task. */ 1537 static void rcu_tasks_trace_pertask(struct task_struct *t, struct list_head *hop) 1538 { 1539 if (rcu_tasks_trace_pertask_prep(t, true)) 1540 trc_wait_for_one_reader(t, hop); 1541 } 1542 1543 /* Initialize for a new RCU-tasks-trace grace period. */ 1544 static void rcu_tasks_trace_pregp_step(struct list_head *hop) 1545 { 1546 LIST_HEAD(blkd_tasks); 1547 int cpu; 1548 unsigned long flags; 1549 struct rcu_tasks_percpu *rtpcp; 1550 struct task_struct *t; 1551 1552 // There shouldn't be any old IPIs, but... 1553 for_each_possible_cpu(cpu) 1554 WARN_ON_ONCE(per_cpu(trc_ipi_to_cpu, cpu)); 1555 1556 // Disable CPU hotplug across the CPU scan for the benefit of 1557 // any IPIs that might be needed. This also waits for all readers 1558 // in CPU-hotplug code paths. 1559 cpus_read_lock(); 1560 1561 // These rcu_tasks_trace_pertask_prep() calls are serialized to 1562 // allow safe access to the hop list. 1563 for_each_online_cpu(cpu) { 1564 rcu_read_lock(); 1565 t = cpu_curr_snapshot(cpu); 1566 if (rcu_tasks_trace_pertask_prep(t, true)) 1567 trc_add_holdout(t, hop); 1568 rcu_read_unlock(); 1569 cond_resched_tasks_rcu_qs(); 1570 } 1571 1572 // Only after all running tasks have been accounted for is it 1573 // safe to take care of the tasks that have blocked within their 1574 // current RCU tasks trace read-side critical section. 1575 for_each_possible_cpu(cpu) { 1576 rtpcp = per_cpu_ptr(rcu_tasks_trace.rtpcpu, cpu); 1577 raw_spin_lock_irqsave_rcu_node(rtpcp, flags); 1578 list_splice_init(&rtpcp->rtp_blkd_tasks, &blkd_tasks); 1579 while (!list_empty(&blkd_tasks)) { 1580 rcu_read_lock(); 1581 t = list_first_entry(&blkd_tasks, struct task_struct, trc_blkd_node); 1582 list_del_init(&t->trc_blkd_node); 1583 list_add(&t->trc_blkd_node, &rtpcp->rtp_blkd_tasks); 1584 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 1585 rcu_tasks_trace_pertask(t, hop); 1586 rcu_read_unlock(); 1587 raw_spin_lock_irqsave_rcu_node(rtpcp, flags); 1588 } 1589 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 1590 cond_resched_tasks_rcu_qs(); 1591 } 1592 1593 // Re-enable CPU hotplug now that the holdout list is populated. 1594 cpus_read_unlock(); 1595 } 1596 1597 /* 1598 * Do intermediate processing between task and holdout scans. 1599 */ 1600 static void rcu_tasks_trace_postscan(struct list_head *hop) 1601 { 1602 // Wait for late-stage exiting tasks to finish exiting. 1603 // These might have passed the call to exit_tasks_rcu_finish(). 1604 1605 // If you remove the following line, update rcu_trace_implies_rcu_gp()!!! 1606 synchronize_rcu(); 1607 // Any tasks that exit after this point will set 1608 // TRC_NEED_QS_CHECKED in ->trc_reader_special.b.need_qs. 1609 } 1610 1611 /* Communicate task state back to the RCU tasks trace stall warning request. */ 1612 struct trc_stall_chk_rdr { 1613 int nesting; 1614 int ipi_to_cpu; 1615 u8 needqs; 1616 }; 1617 1618 static int trc_check_slow_task(struct task_struct *t, void *arg) 1619 { 1620 struct trc_stall_chk_rdr *trc_rdrp = arg; 1621 1622 if (task_curr(t) && cpu_online(task_cpu(t))) 1623 return false; // It is running, so decline to inspect it. 1624 trc_rdrp->nesting = READ_ONCE(t->trc_reader_nesting); 1625 trc_rdrp->ipi_to_cpu = READ_ONCE(t->trc_ipi_to_cpu); 1626 trc_rdrp->needqs = rcu_ld_need_qs(t); 1627 return true; 1628 } 1629 1630 /* Show the state of a task stalling the current RCU tasks trace GP. */ 1631 static void show_stalled_task_trace(struct task_struct *t, bool *firstreport) 1632 { 1633 int cpu; 1634 struct trc_stall_chk_rdr trc_rdr; 1635 bool is_idle_tsk = is_idle_task(t); 1636 1637 if (*firstreport) { 1638 pr_err("INFO: rcu_tasks_trace detected stalls on tasks:\n"); 1639 *firstreport = false; 1640 } 1641 cpu = task_cpu(t); 1642 if (!task_call_func(t, trc_check_slow_task, &trc_rdr)) 1643 pr_alert("P%d: %c%c\n", 1644 t->pid, 1645 ".I"[t->trc_ipi_to_cpu >= 0], 1646 ".i"[is_idle_tsk]); 1647 else 1648 pr_alert("P%d: %c%c%c%c nesting: %d%c%c cpu: %d%s\n", 1649 t->pid, 1650 ".I"[trc_rdr.ipi_to_cpu >= 0], 1651 ".i"[is_idle_tsk], 1652 ".N"[cpu >= 0 && tick_nohz_full_cpu(cpu)], 1653 ".B"[!!data_race(t->trc_reader_special.b.blocked)], 1654 trc_rdr.nesting, 1655 " !CN"[trc_rdr.needqs & 0x3], 1656 " ?"[trc_rdr.needqs > 0x3], 1657 cpu, cpu_online(cpu) ? "" : "(offline)"); 1658 sched_show_task(t); 1659 } 1660 1661 /* List stalled IPIs for RCU tasks trace. */ 1662 static void show_stalled_ipi_trace(void) 1663 { 1664 int cpu; 1665 1666 for_each_possible_cpu(cpu) 1667 if (per_cpu(trc_ipi_to_cpu, cpu)) 1668 pr_alert("\tIPI outstanding to CPU %d\n", cpu); 1669 } 1670 1671 /* Do one scan of the holdout list. */ 1672 static void check_all_holdout_tasks_trace(struct list_head *hop, 1673 bool needreport, bool *firstreport) 1674 { 1675 struct task_struct *g, *t; 1676 1677 // Disable CPU hotplug across the holdout list scan for IPIs. 1678 cpus_read_lock(); 1679 1680 list_for_each_entry_safe(t, g, hop, trc_holdout_list) { 1681 // If safe and needed, try to check the current task. 1682 if (READ_ONCE(t->trc_ipi_to_cpu) == -1 && 1683 !(rcu_ld_need_qs(t) & TRC_NEED_QS_CHECKED)) 1684 trc_wait_for_one_reader(t, hop); 1685 1686 // If check succeeded, remove this task from the list. 1687 if (smp_load_acquire(&t->trc_ipi_to_cpu) == -1 && 1688 rcu_ld_need_qs(t) == TRC_NEED_QS_CHECKED) 1689 trc_del_holdout(t); 1690 else if (needreport) 1691 show_stalled_task_trace(t, firstreport); 1692 cond_resched_tasks_rcu_qs(); 1693 } 1694 1695 // Re-enable CPU hotplug now that the holdout list scan has completed. 1696 cpus_read_unlock(); 1697 1698 if (needreport) { 1699 if (*firstreport) 1700 pr_err("INFO: rcu_tasks_trace detected stalls? (Late IPI?)\n"); 1701 show_stalled_ipi_trace(); 1702 } 1703 } 1704 1705 static void rcu_tasks_trace_empty_fn(void *unused) 1706 { 1707 } 1708 1709 /* Wait for grace period to complete and provide ordering. */ 1710 static void rcu_tasks_trace_postgp(struct rcu_tasks *rtp) 1711 { 1712 int cpu; 1713 1714 // Wait for any lingering IPI handlers to complete. Note that 1715 // if a CPU has gone offline or transitioned to userspace in the 1716 // meantime, all IPI handlers should have been drained beforehand. 1717 // Yes, this assumes that CPUs process IPIs in order. If that ever 1718 // changes, there will need to be a recheck and/or timed wait. 1719 for_each_online_cpu(cpu) 1720 if (WARN_ON_ONCE(smp_load_acquire(per_cpu_ptr(&trc_ipi_to_cpu, cpu)))) 1721 smp_call_function_single(cpu, rcu_tasks_trace_empty_fn, NULL, 1); 1722 1723 smp_mb(); // Caller's code must be ordered after wakeup. 1724 // Pairs with pretty much every ordering primitive. 1725 } 1726 1727 /* Report any needed quiescent state for this exiting task. */ 1728 static void exit_tasks_rcu_finish_trace(struct task_struct *t) 1729 { 1730 union rcu_special trs = READ_ONCE(t->trc_reader_special); 1731 1732 rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED); 1733 WARN_ON_ONCE(READ_ONCE(t->trc_reader_nesting)); 1734 if (WARN_ON_ONCE(rcu_ld_need_qs(t) & TRC_NEED_QS || trs.b.blocked)) 1735 rcu_read_unlock_trace_special(t); 1736 else 1737 WRITE_ONCE(t->trc_reader_nesting, 0); 1738 } 1739 1740 /** 1741 * call_rcu_tasks_trace() - Queue a callback trace task-based grace period 1742 * @rhp: structure to be used for queueing the RCU updates. 1743 * @func: actual callback function to be invoked after the grace period 1744 * 1745 * The callback function will be invoked some time after a trace rcu-tasks 1746 * grace period elapses, in other words after all currently executing 1747 * trace rcu-tasks read-side critical sections have completed. These 1748 * read-side critical sections are delimited by calls to rcu_read_lock_trace() 1749 * and rcu_read_unlock_trace(). 1750 * 1751 * See the description of call_rcu() for more detailed information on 1752 * memory ordering guarantees. 1753 */ 1754 void call_rcu_tasks_trace(struct rcu_head *rhp, rcu_callback_t func) 1755 { 1756 call_rcu_tasks_generic(rhp, func, &rcu_tasks_trace); 1757 } 1758 EXPORT_SYMBOL_GPL(call_rcu_tasks_trace); 1759 1760 /** 1761 * synchronize_rcu_tasks_trace - wait for a trace rcu-tasks grace period 1762 * 1763 * Control will return to the caller some time after a trace rcu-tasks 1764 * grace period has elapsed, in other words after all currently executing 1765 * trace rcu-tasks read-side critical sections have elapsed. These read-side 1766 * critical sections are delimited by calls to rcu_read_lock_trace() 1767 * and rcu_read_unlock_trace(). 1768 * 1769 * This is a very specialized primitive, intended only for a few uses in 1770 * tracing and other situations requiring manipulation of function preambles 1771 * and profiling hooks. The synchronize_rcu_tasks_trace() function is not 1772 * (yet) intended for heavy use from multiple CPUs. 1773 * 1774 * See the description of synchronize_rcu() for more detailed information 1775 * on memory ordering guarantees. 1776 */ 1777 void synchronize_rcu_tasks_trace(void) 1778 { 1779 RCU_LOCKDEP_WARN(lock_is_held(&rcu_trace_lock_map), "Illegal synchronize_rcu_tasks_trace() in RCU Tasks Trace read-side critical section"); 1780 synchronize_rcu_tasks_generic(&rcu_tasks_trace); 1781 } 1782 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_trace); 1783 1784 /** 1785 * rcu_barrier_tasks_trace - Wait for in-flight call_rcu_tasks_trace() callbacks. 1786 * 1787 * Although the current implementation is guaranteed to wait, it is not 1788 * obligated to, for example, if there are no pending callbacks. 1789 */ 1790 void rcu_barrier_tasks_trace(void) 1791 { 1792 rcu_barrier_tasks_generic(&rcu_tasks_trace); 1793 } 1794 EXPORT_SYMBOL_GPL(rcu_barrier_tasks_trace); 1795 1796 static int __init rcu_spawn_tasks_trace_kthread(void) 1797 { 1798 cblist_init_generic(&rcu_tasks_trace); 1799 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB)) { 1800 rcu_tasks_trace.gp_sleep = HZ / 10; 1801 rcu_tasks_trace.init_fract = HZ / 10; 1802 } else { 1803 rcu_tasks_trace.gp_sleep = HZ / 200; 1804 if (rcu_tasks_trace.gp_sleep <= 0) 1805 rcu_tasks_trace.gp_sleep = 1; 1806 rcu_tasks_trace.init_fract = HZ / 200; 1807 if (rcu_tasks_trace.init_fract <= 0) 1808 rcu_tasks_trace.init_fract = 1; 1809 } 1810 rcu_tasks_trace.pregp_func = rcu_tasks_trace_pregp_step; 1811 rcu_tasks_trace.postscan_func = rcu_tasks_trace_postscan; 1812 rcu_tasks_trace.holdouts_func = check_all_holdout_tasks_trace; 1813 rcu_tasks_trace.postgp_func = rcu_tasks_trace_postgp; 1814 rcu_spawn_tasks_kthread_generic(&rcu_tasks_trace); 1815 return 0; 1816 } 1817 1818 #if !defined(CONFIG_TINY_RCU) 1819 void show_rcu_tasks_trace_gp_kthread(void) 1820 { 1821 char buf[64]; 1822 1823 sprintf(buf, "N%lu h:%lu/%lu/%lu", 1824 data_race(n_trc_holdouts), 1825 data_race(n_heavy_reader_ofl_updates), 1826 data_race(n_heavy_reader_updates), 1827 data_race(n_heavy_reader_attempts)); 1828 show_rcu_tasks_generic_gp_kthread(&rcu_tasks_trace, buf); 1829 } 1830 EXPORT_SYMBOL_GPL(show_rcu_tasks_trace_gp_kthread); 1831 #endif // !defined(CONFIG_TINY_RCU) 1832 1833 #else /* #ifdef CONFIG_TASKS_TRACE_RCU */ 1834 static void exit_tasks_rcu_finish_trace(struct task_struct *t) { } 1835 #endif /* #else #ifdef CONFIG_TASKS_TRACE_RCU */ 1836 1837 #ifndef CONFIG_TINY_RCU 1838 void show_rcu_tasks_gp_kthreads(void) 1839 { 1840 show_rcu_tasks_classic_gp_kthread(); 1841 show_rcu_tasks_rude_gp_kthread(); 1842 show_rcu_tasks_trace_gp_kthread(); 1843 } 1844 #endif /* #ifndef CONFIG_TINY_RCU */ 1845 1846 #ifdef CONFIG_PROVE_RCU 1847 struct rcu_tasks_test_desc { 1848 struct rcu_head rh; 1849 const char *name; 1850 bool notrun; 1851 unsigned long runstart; 1852 }; 1853 1854 static struct rcu_tasks_test_desc tests[] = { 1855 { 1856 .name = "call_rcu_tasks()", 1857 /* If not defined, the test is skipped. */ 1858 .notrun = IS_ENABLED(CONFIG_TASKS_RCU), 1859 }, 1860 { 1861 .name = "call_rcu_tasks_rude()", 1862 /* If not defined, the test is skipped. */ 1863 .notrun = IS_ENABLED(CONFIG_TASKS_RUDE_RCU), 1864 }, 1865 { 1866 .name = "call_rcu_tasks_trace()", 1867 /* If not defined, the test is skipped. */ 1868 .notrun = IS_ENABLED(CONFIG_TASKS_TRACE_RCU) 1869 } 1870 }; 1871 1872 static void test_rcu_tasks_callback(struct rcu_head *rhp) 1873 { 1874 struct rcu_tasks_test_desc *rttd = 1875 container_of(rhp, struct rcu_tasks_test_desc, rh); 1876 1877 pr_info("Callback from %s invoked.\n", rttd->name); 1878 1879 rttd->notrun = false; 1880 } 1881 1882 static void rcu_tasks_initiate_self_tests(void) 1883 { 1884 pr_info("Running RCU-tasks wait API self tests\n"); 1885 #ifdef CONFIG_TASKS_RCU 1886 tests[0].runstart = jiffies; 1887 synchronize_rcu_tasks(); 1888 call_rcu_tasks(&tests[0].rh, test_rcu_tasks_callback); 1889 #endif 1890 1891 #ifdef CONFIG_TASKS_RUDE_RCU 1892 tests[1].runstart = jiffies; 1893 synchronize_rcu_tasks_rude(); 1894 call_rcu_tasks_rude(&tests[1].rh, test_rcu_tasks_callback); 1895 #endif 1896 1897 #ifdef CONFIG_TASKS_TRACE_RCU 1898 tests[2].runstart = jiffies; 1899 synchronize_rcu_tasks_trace(); 1900 call_rcu_tasks_trace(&tests[2].rh, test_rcu_tasks_callback); 1901 #endif 1902 } 1903 1904 /* 1905 * Return: 0 - test passed 1906 * 1 - test failed, but have not timed out yet 1907 * -1 - test failed and timed out 1908 */ 1909 static int rcu_tasks_verify_self_tests(void) 1910 { 1911 int ret = 0; 1912 int i; 1913 unsigned long bst = rcu_task_stall_timeout; 1914 1915 if (bst <= 0 || bst > RCU_TASK_BOOT_STALL_TIMEOUT) 1916 bst = RCU_TASK_BOOT_STALL_TIMEOUT; 1917 for (i = 0; i < ARRAY_SIZE(tests); i++) { 1918 while (tests[i].notrun) { // still hanging. 1919 if (time_after(jiffies, tests[i].runstart + bst)) { 1920 pr_err("%s has failed boot-time tests.\n", tests[i].name); 1921 ret = -1; 1922 break; 1923 } 1924 ret = 1; 1925 break; 1926 } 1927 } 1928 WARN_ON(ret < 0); 1929 1930 return ret; 1931 } 1932 1933 /* 1934 * Repeat the rcu_tasks_verify_self_tests() call once every second until the 1935 * test passes or has timed out. 1936 */ 1937 static struct delayed_work rcu_tasks_verify_work; 1938 static void rcu_tasks_verify_work_fn(struct work_struct *work __maybe_unused) 1939 { 1940 int ret = rcu_tasks_verify_self_tests(); 1941 1942 if (ret <= 0) 1943 return; 1944 1945 /* Test fails but not timed out yet, reschedule another check */ 1946 schedule_delayed_work(&rcu_tasks_verify_work, HZ); 1947 } 1948 1949 static int rcu_tasks_verify_schedule_work(void) 1950 { 1951 INIT_DELAYED_WORK(&rcu_tasks_verify_work, rcu_tasks_verify_work_fn); 1952 rcu_tasks_verify_work_fn(NULL); 1953 return 0; 1954 } 1955 late_initcall(rcu_tasks_verify_schedule_work); 1956 #else /* #ifdef CONFIG_PROVE_RCU */ 1957 static void rcu_tasks_initiate_self_tests(void) { } 1958 #endif /* #else #ifdef CONFIG_PROVE_RCU */ 1959 1960 void __init rcu_init_tasks_generic(void) 1961 { 1962 #ifdef CONFIG_TASKS_RCU 1963 rcu_spawn_tasks_kthread(); 1964 #endif 1965 1966 #ifdef CONFIG_TASKS_RUDE_RCU 1967 rcu_spawn_tasks_rude_kthread(); 1968 #endif 1969 1970 #ifdef CONFIG_TASKS_TRACE_RCU 1971 rcu_spawn_tasks_trace_kthread(); 1972 #endif 1973 1974 // Run the self-tests. 1975 rcu_tasks_initiate_self_tests(); 1976 } 1977 1978 #else /* #ifdef CONFIG_TASKS_RCU_GENERIC */ 1979 static inline void rcu_tasks_bootup_oddness(void) {} 1980 #endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */ 1981