xref: /linux/kernel/rcu/tasks.h (revision 0a94608f0f7de9b1135ffea3546afe68eafef57f)
1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3  * Task-based RCU implementations.
4  *
5  * Copyright (C) 2020 Paul E. McKenney
6  */
7 
8 #ifdef CONFIG_TASKS_RCU_GENERIC
9 #include "rcu_segcblist.h"
10 
11 ////////////////////////////////////////////////////////////////////////
12 //
13 // Generic data structures.
14 
15 struct rcu_tasks;
16 typedef void (*rcu_tasks_gp_func_t)(struct rcu_tasks *rtp);
17 typedef void (*pregp_func_t)(void);
18 typedef void (*pertask_func_t)(struct task_struct *t, struct list_head *hop);
19 typedef void (*postscan_func_t)(struct list_head *hop);
20 typedef void (*holdouts_func_t)(struct list_head *hop, bool ndrpt, bool *frptp);
21 typedef void (*postgp_func_t)(struct rcu_tasks *rtp);
22 
23 /**
24  * struct rcu_tasks_percpu - Per-CPU component of definition for a Tasks-RCU-like mechanism.
25  * @cblist: Callback list.
26  * @lock: Lock protecting per-CPU callback list.
27  * @rtp_jiffies: Jiffies counter value for statistics.
28  * @rtp_n_lock_retries: Rough lock-contention statistic.
29  * @rtp_work: Work queue for invoking callbacks.
30  * @rtp_irq_work: IRQ work queue for deferred wakeups.
31  * @barrier_q_head: RCU callback for barrier operation.
32  * @cpu: CPU number corresponding to this entry.
33  * @rtpp: Pointer to the rcu_tasks structure.
34  */
35 struct rcu_tasks_percpu {
36 	struct rcu_segcblist cblist;
37 	raw_spinlock_t __private lock;
38 	unsigned long rtp_jiffies;
39 	unsigned long rtp_n_lock_retries;
40 	struct work_struct rtp_work;
41 	struct irq_work rtp_irq_work;
42 	struct rcu_head barrier_q_head;
43 	int cpu;
44 	struct rcu_tasks *rtpp;
45 };
46 
47 /**
48  * struct rcu_tasks - Definition for a Tasks-RCU-like mechanism.
49  * @cbs_wq: Wait queue allowing new callback to get kthread's attention.
50  * @cbs_gbl_lock: Lock protecting callback list.
51  * @kthread_ptr: This flavor's grace-period/callback-invocation kthread.
52  * @gp_func: This flavor's grace-period-wait function.
53  * @gp_state: Grace period's most recent state transition (debugging).
54  * @gp_sleep: Per-grace-period sleep to prevent CPU-bound looping.
55  * @init_fract: Initial backoff sleep interval.
56  * @gp_jiffies: Time of last @gp_state transition.
57  * @gp_start: Most recent grace-period start in jiffies.
58  * @tasks_gp_seq: Number of grace periods completed since boot.
59  * @n_ipis: Number of IPIs sent to encourage grace periods to end.
60  * @n_ipis_fails: Number of IPI-send failures.
61  * @pregp_func: This flavor's pre-grace-period function (optional).
62  * @pertask_func: This flavor's per-task scan function (optional).
63  * @postscan_func: This flavor's post-task scan function (optional).
64  * @holdouts_func: This flavor's holdout-list scan function (optional).
65  * @postgp_func: This flavor's post-grace-period function (optional).
66  * @call_func: This flavor's call_rcu()-equivalent function.
67  * @rtpcpu: This flavor's rcu_tasks_percpu structure.
68  * @percpu_enqueue_shift: Shift down CPU ID this much when enqueuing callbacks.
69  * @percpu_enqueue_lim: Number of per-CPU callback queues in use for enqueuing.
70  * @percpu_dequeue_lim: Number of per-CPU callback queues in use for dequeuing.
71  * @percpu_dequeue_gpseq: RCU grace-period number to propagate enqueue limit to dequeuers.
72  * @barrier_q_mutex: Serialize barrier operations.
73  * @barrier_q_count: Number of queues being waited on.
74  * @barrier_q_completion: Barrier wait/wakeup mechanism.
75  * @barrier_q_seq: Sequence number for barrier operations.
76  * @name: This flavor's textual name.
77  * @kname: This flavor's kthread name.
78  */
79 struct rcu_tasks {
80 	struct wait_queue_head cbs_wq;
81 	raw_spinlock_t cbs_gbl_lock;
82 	int gp_state;
83 	int gp_sleep;
84 	int init_fract;
85 	unsigned long gp_jiffies;
86 	unsigned long gp_start;
87 	unsigned long tasks_gp_seq;
88 	unsigned long n_ipis;
89 	unsigned long n_ipis_fails;
90 	struct task_struct *kthread_ptr;
91 	rcu_tasks_gp_func_t gp_func;
92 	pregp_func_t pregp_func;
93 	pertask_func_t pertask_func;
94 	postscan_func_t postscan_func;
95 	holdouts_func_t holdouts_func;
96 	postgp_func_t postgp_func;
97 	call_rcu_func_t call_func;
98 	struct rcu_tasks_percpu __percpu *rtpcpu;
99 	int percpu_enqueue_shift;
100 	int percpu_enqueue_lim;
101 	int percpu_dequeue_lim;
102 	unsigned long percpu_dequeue_gpseq;
103 	struct mutex barrier_q_mutex;
104 	atomic_t barrier_q_count;
105 	struct completion barrier_q_completion;
106 	unsigned long barrier_q_seq;
107 	char *name;
108 	char *kname;
109 };
110 
111 static void call_rcu_tasks_iw_wakeup(struct irq_work *iwp);
112 
113 #define DEFINE_RCU_TASKS(rt_name, gp, call, n)						\
114 static DEFINE_PER_CPU(struct rcu_tasks_percpu, rt_name ## __percpu) = {			\
115 	.lock = __RAW_SPIN_LOCK_UNLOCKED(rt_name ## __percpu.cbs_pcpu_lock),		\
116 	.rtp_irq_work = IRQ_WORK_INIT(call_rcu_tasks_iw_wakeup),			\
117 };											\
118 static struct rcu_tasks rt_name =							\
119 {											\
120 	.cbs_wq = __WAIT_QUEUE_HEAD_INITIALIZER(rt_name.cbs_wq),			\
121 	.cbs_gbl_lock = __RAW_SPIN_LOCK_UNLOCKED(rt_name.cbs_gbl_lock),			\
122 	.gp_func = gp,									\
123 	.call_func = call,								\
124 	.rtpcpu = &rt_name ## __percpu,							\
125 	.name = n,									\
126 	.percpu_enqueue_shift = order_base_2(CONFIG_NR_CPUS),				\
127 	.percpu_enqueue_lim = 1,							\
128 	.percpu_dequeue_lim = 1,							\
129 	.barrier_q_mutex = __MUTEX_INITIALIZER(rt_name.barrier_q_mutex),		\
130 	.barrier_q_seq = (0UL - 50UL) << RCU_SEQ_CTR_SHIFT,				\
131 	.kname = #rt_name,								\
132 }
133 
134 /* Track exiting tasks in order to allow them to be waited for. */
135 DEFINE_STATIC_SRCU(tasks_rcu_exit_srcu);
136 
137 /* Avoid IPIing CPUs early in the grace period. */
138 #define RCU_TASK_IPI_DELAY (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) ? HZ / 2 : 0)
139 static int rcu_task_ipi_delay __read_mostly = RCU_TASK_IPI_DELAY;
140 module_param(rcu_task_ipi_delay, int, 0644);
141 
142 /* Control stall timeouts.  Disable with <= 0, otherwise jiffies till stall. */
143 #define RCU_TASK_STALL_TIMEOUT (HZ * 60 * 10)
144 static int rcu_task_stall_timeout __read_mostly = RCU_TASK_STALL_TIMEOUT;
145 module_param(rcu_task_stall_timeout, int, 0644);
146 
147 static int rcu_task_enqueue_lim __read_mostly = -1;
148 module_param(rcu_task_enqueue_lim, int, 0444);
149 
150 static bool rcu_task_cb_adjust;
151 static int rcu_task_contend_lim __read_mostly = 100;
152 module_param(rcu_task_contend_lim, int, 0444);
153 static int rcu_task_collapse_lim __read_mostly = 10;
154 module_param(rcu_task_collapse_lim, int, 0444);
155 
156 /* RCU tasks grace-period state for debugging. */
157 #define RTGS_INIT		 0
158 #define RTGS_WAIT_WAIT_CBS	 1
159 #define RTGS_WAIT_GP		 2
160 #define RTGS_PRE_WAIT_GP	 3
161 #define RTGS_SCAN_TASKLIST	 4
162 #define RTGS_POST_SCAN_TASKLIST	 5
163 #define RTGS_WAIT_SCAN_HOLDOUTS	 6
164 #define RTGS_SCAN_HOLDOUTS	 7
165 #define RTGS_POST_GP		 8
166 #define RTGS_WAIT_READERS	 9
167 #define RTGS_INVOKE_CBS		10
168 #define RTGS_WAIT_CBS		11
169 #ifndef CONFIG_TINY_RCU
170 static const char * const rcu_tasks_gp_state_names[] = {
171 	"RTGS_INIT",
172 	"RTGS_WAIT_WAIT_CBS",
173 	"RTGS_WAIT_GP",
174 	"RTGS_PRE_WAIT_GP",
175 	"RTGS_SCAN_TASKLIST",
176 	"RTGS_POST_SCAN_TASKLIST",
177 	"RTGS_WAIT_SCAN_HOLDOUTS",
178 	"RTGS_SCAN_HOLDOUTS",
179 	"RTGS_POST_GP",
180 	"RTGS_WAIT_READERS",
181 	"RTGS_INVOKE_CBS",
182 	"RTGS_WAIT_CBS",
183 };
184 #endif /* #ifndef CONFIG_TINY_RCU */
185 
186 ////////////////////////////////////////////////////////////////////////
187 //
188 // Generic code.
189 
190 static void rcu_tasks_invoke_cbs_wq(struct work_struct *wp);
191 
192 /* Record grace-period phase and time. */
193 static void set_tasks_gp_state(struct rcu_tasks *rtp, int newstate)
194 {
195 	rtp->gp_state = newstate;
196 	rtp->gp_jiffies = jiffies;
197 }
198 
199 #ifndef CONFIG_TINY_RCU
200 /* Return state name. */
201 static const char *tasks_gp_state_getname(struct rcu_tasks *rtp)
202 {
203 	int i = data_race(rtp->gp_state); // Let KCSAN detect update races
204 	int j = READ_ONCE(i); // Prevent the compiler from reading twice
205 
206 	if (j >= ARRAY_SIZE(rcu_tasks_gp_state_names))
207 		return "???";
208 	return rcu_tasks_gp_state_names[j];
209 }
210 #endif /* #ifndef CONFIG_TINY_RCU */
211 
212 // Initialize per-CPU callback lists for the specified flavor of
213 // Tasks RCU.
214 static void cblist_init_generic(struct rcu_tasks *rtp)
215 {
216 	int cpu;
217 	unsigned long flags;
218 	int lim;
219 	int shift;
220 
221 	raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags);
222 	if (rcu_task_enqueue_lim < 0) {
223 		rcu_task_enqueue_lim = 1;
224 		rcu_task_cb_adjust = true;
225 		pr_info("%s: Setting adjustable number of callback queues.\n", __func__);
226 	} else if (rcu_task_enqueue_lim == 0) {
227 		rcu_task_enqueue_lim = 1;
228 	}
229 	lim = rcu_task_enqueue_lim;
230 
231 	if (lim > nr_cpu_ids)
232 		lim = nr_cpu_ids;
233 	shift = ilog2(nr_cpu_ids / lim);
234 	if (((nr_cpu_ids - 1) >> shift) >= lim)
235 		shift++;
236 	WRITE_ONCE(rtp->percpu_enqueue_shift, shift);
237 	WRITE_ONCE(rtp->percpu_dequeue_lim, lim);
238 	smp_store_release(&rtp->percpu_enqueue_lim, lim);
239 	for_each_possible_cpu(cpu) {
240 		struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
241 
242 		WARN_ON_ONCE(!rtpcp);
243 		if (cpu)
244 			raw_spin_lock_init(&ACCESS_PRIVATE(rtpcp, lock));
245 		raw_spin_lock_rcu_node(rtpcp); // irqs already disabled.
246 		if (rcu_segcblist_empty(&rtpcp->cblist))
247 			rcu_segcblist_init(&rtpcp->cblist);
248 		INIT_WORK(&rtpcp->rtp_work, rcu_tasks_invoke_cbs_wq);
249 		rtpcp->cpu = cpu;
250 		rtpcp->rtpp = rtp;
251 		raw_spin_unlock_rcu_node(rtpcp); // irqs remain disabled.
252 	}
253 	raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags);
254 	pr_info("%s: Setting shift to %d and lim to %d.\n", __func__, data_race(rtp->percpu_enqueue_shift), data_race(rtp->percpu_enqueue_lim));
255 }
256 
257 // IRQ-work handler that does deferred wakeup for call_rcu_tasks_generic().
258 static void call_rcu_tasks_iw_wakeup(struct irq_work *iwp)
259 {
260 	struct rcu_tasks *rtp;
261 	struct rcu_tasks_percpu *rtpcp = container_of(iwp, struct rcu_tasks_percpu, rtp_irq_work);
262 
263 	rtp = rtpcp->rtpp;
264 	wake_up(&rtp->cbs_wq);
265 }
266 
267 // Enqueue a callback for the specified flavor of Tasks RCU.
268 static void call_rcu_tasks_generic(struct rcu_head *rhp, rcu_callback_t func,
269 				   struct rcu_tasks *rtp)
270 {
271 	unsigned long flags;
272 	unsigned long j;
273 	bool needadjust = false;
274 	bool needwake;
275 	struct rcu_tasks_percpu *rtpcp;
276 
277 	rhp->next = NULL;
278 	rhp->func = func;
279 	local_irq_save(flags);
280 	rcu_read_lock();
281 	rtpcp = per_cpu_ptr(rtp->rtpcpu,
282 			    smp_processor_id() >> READ_ONCE(rtp->percpu_enqueue_shift));
283 	if (!raw_spin_trylock_rcu_node(rtpcp)) { // irqs already disabled.
284 		raw_spin_lock_rcu_node(rtpcp); // irqs already disabled.
285 		j = jiffies;
286 		if (rtpcp->rtp_jiffies != j) {
287 			rtpcp->rtp_jiffies = j;
288 			rtpcp->rtp_n_lock_retries = 0;
289 		}
290 		if (rcu_task_cb_adjust && ++rtpcp->rtp_n_lock_retries > rcu_task_contend_lim &&
291 		    READ_ONCE(rtp->percpu_enqueue_lim) != nr_cpu_ids)
292 			needadjust = true;  // Defer adjustment to avoid deadlock.
293 	}
294 	if (!rcu_segcblist_is_enabled(&rtpcp->cblist)) {
295 		raw_spin_unlock_rcu_node(rtpcp); // irqs remain disabled.
296 		cblist_init_generic(rtp);
297 		raw_spin_lock_rcu_node(rtpcp); // irqs already disabled.
298 	}
299 	needwake = rcu_segcblist_empty(&rtpcp->cblist);
300 	rcu_segcblist_enqueue(&rtpcp->cblist, rhp);
301 	raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
302 	if (unlikely(needadjust)) {
303 		raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags);
304 		if (rtp->percpu_enqueue_lim != nr_cpu_ids) {
305 			WRITE_ONCE(rtp->percpu_enqueue_shift, 0);
306 			WRITE_ONCE(rtp->percpu_dequeue_lim, nr_cpu_ids);
307 			smp_store_release(&rtp->percpu_enqueue_lim, nr_cpu_ids);
308 			pr_info("Switching %s to per-CPU callback queuing.\n", rtp->name);
309 		}
310 		raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags);
311 	}
312 	rcu_read_unlock();
313 	/* We can't create the thread unless interrupts are enabled. */
314 	if (needwake && READ_ONCE(rtp->kthread_ptr))
315 		irq_work_queue(&rtpcp->rtp_irq_work);
316 }
317 
318 // Wait for a grace period for the specified flavor of Tasks RCU.
319 static void synchronize_rcu_tasks_generic(struct rcu_tasks *rtp)
320 {
321 	/* Complain if the scheduler has not started.  */
322 	RCU_LOCKDEP_WARN(rcu_scheduler_active == RCU_SCHEDULER_INACTIVE,
323 			 "synchronize_rcu_tasks called too soon");
324 
325 	/* Wait for the grace period. */
326 	wait_rcu_gp(rtp->call_func);
327 }
328 
329 // RCU callback function for rcu_barrier_tasks_generic().
330 static void rcu_barrier_tasks_generic_cb(struct rcu_head *rhp)
331 {
332 	struct rcu_tasks *rtp;
333 	struct rcu_tasks_percpu *rtpcp;
334 
335 	rtpcp = container_of(rhp, struct rcu_tasks_percpu, barrier_q_head);
336 	rtp = rtpcp->rtpp;
337 	if (atomic_dec_and_test(&rtp->barrier_q_count))
338 		complete(&rtp->barrier_q_completion);
339 }
340 
341 // Wait for all in-flight callbacks for the specified RCU Tasks flavor.
342 // Operates in a manner similar to rcu_barrier().
343 static void rcu_barrier_tasks_generic(struct rcu_tasks *rtp)
344 {
345 	int cpu;
346 	unsigned long flags;
347 	struct rcu_tasks_percpu *rtpcp;
348 	unsigned long s = rcu_seq_snap(&rtp->barrier_q_seq);
349 
350 	mutex_lock(&rtp->barrier_q_mutex);
351 	if (rcu_seq_done(&rtp->barrier_q_seq, s)) {
352 		smp_mb();
353 		mutex_unlock(&rtp->barrier_q_mutex);
354 		return;
355 	}
356 	rcu_seq_start(&rtp->barrier_q_seq);
357 	init_completion(&rtp->barrier_q_completion);
358 	atomic_set(&rtp->barrier_q_count, 2);
359 	for_each_possible_cpu(cpu) {
360 		if (cpu >= smp_load_acquire(&rtp->percpu_dequeue_lim))
361 			break;
362 		rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
363 		rtpcp->barrier_q_head.func = rcu_barrier_tasks_generic_cb;
364 		raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
365 		if (rcu_segcblist_entrain(&rtpcp->cblist, &rtpcp->barrier_q_head))
366 			atomic_inc(&rtp->barrier_q_count);
367 		raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
368 	}
369 	if (atomic_sub_and_test(2, &rtp->barrier_q_count))
370 		complete(&rtp->barrier_q_completion);
371 	wait_for_completion(&rtp->barrier_q_completion);
372 	rcu_seq_end(&rtp->barrier_q_seq);
373 	mutex_unlock(&rtp->barrier_q_mutex);
374 }
375 
376 // Advance callbacks and indicate whether either a grace period or
377 // callback invocation is needed.
378 static int rcu_tasks_need_gpcb(struct rcu_tasks *rtp)
379 {
380 	int cpu;
381 	unsigned long flags;
382 	long n;
383 	long ncbs = 0;
384 	long ncbsnz = 0;
385 	int needgpcb = 0;
386 
387 	for (cpu = 0; cpu < smp_load_acquire(&rtp->percpu_dequeue_lim); cpu++) {
388 		struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
389 
390 		/* Advance and accelerate any new callbacks. */
391 		if (!rcu_segcblist_n_cbs(&rtpcp->cblist))
392 			continue;
393 		raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
394 		// Should we shrink down to a single callback queue?
395 		n = rcu_segcblist_n_cbs(&rtpcp->cblist);
396 		if (n) {
397 			ncbs += n;
398 			if (cpu > 0)
399 				ncbsnz += n;
400 		}
401 		rcu_segcblist_advance(&rtpcp->cblist, rcu_seq_current(&rtp->tasks_gp_seq));
402 		(void)rcu_segcblist_accelerate(&rtpcp->cblist, rcu_seq_snap(&rtp->tasks_gp_seq));
403 		if (rcu_segcblist_pend_cbs(&rtpcp->cblist))
404 			needgpcb |= 0x3;
405 		if (!rcu_segcblist_empty(&rtpcp->cblist))
406 			needgpcb |= 0x1;
407 		raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
408 	}
409 
410 	// Shrink down to a single callback queue if appropriate.
411 	// This is done in two stages: (1) If there are no more than
412 	// rcu_task_collapse_lim callbacks on CPU 0 and none on any other
413 	// CPU, limit enqueueing to CPU 0.  (2) After an RCU grace period,
414 	// if there has not been an increase in callbacks, limit dequeuing
415 	// to CPU 0.  Note the matching RCU read-side critical section in
416 	// call_rcu_tasks_generic().
417 	if (rcu_task_cb_adjust && ncbs <= rcu_task_collapse_lim) {
418 		raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags);
419 		if (rtp->percpu_enqueue_lim > 1) {
420 			WRITE_ONCE(rtp->percpu_enqueue_shift, order_base_2(nr_cpu_ids));
421 			smp_store_release(&rtp->percpu_enqueue_lim, 1);
422 			rtp->percpu_dequeue_gpseq = get_state_synchronize_rcu();
423 			pr_info("Starting switch %s to CPU-0 callback queuing.\n", rtp->name);
424 		}
425 		raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags);
426 	}
427 	if (rcu_task_cb_adjust && !ncbsnz &&
428 	    poll_state_synchronize_rcu(rtp->percpu_dequeue_gpseq)) {
429 		raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags);
430 		if (rtp->percpu_enqueue_lim < rtp->percpu_dequeue_lim) {
431 			WRITE_ONCE(rtp->percpu_dequeue_lim, 1);
432 			pr_info("Completing switch %s to CPU-0 callback queuing.\n", rtp->name);
433 		}
434 		raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags);
435 	}
436 
437 	return needgpcb;
438 }
439 
440 // Advance callbacks and invoke any that are ready.
441 static void rcu_tasks_invoke_cbs(struct rcu_tasks *rtp, struct rcu_tasks_percpu *rtpcp)
442 {
443 	int cpu;
444 	int cpunext;
445 	unsigned long flags;
446 	int len;
447 	struct rcu_head *rhp;
448 	struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
449 	struct rcu_tasks_percpu *rtpcp_next;
450 
451 	cpu = rtpcp->cpu;
452 	cpunext = cpu * 2 + 1;
453 	if (cpunext < smp_load_acquire(&rtp->percpu_dequeue_lim)) {
454 		rtpcp_next = per_cpu_ptr(rtp->rtpcpu, cpunext);
455 		queue_work_on(cpunext, system_wq, &rtpcp_next->rtp_work);
456 		cpunext++;
457 		if (cpunext < smp_load_acquire(&rtp->percpu_dequeue_lim)) {
458 			rtpcp_next = per_cpu_ptr(rtp->rtpcpu, cpunext);
459 			queue_work_on(cpunext, system_wq, &rtpcp_next->rtp_work);
460 		}
461 	}
462 
463 	if (rcu_segcblist_empty(&rtpcp->cblist))
464 		return;
465 	raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
466 	rcu_segcblist_advance(&rtpcp->cblist, rcu_seq_current(&rtp->tasks_gp_seq));
467 	rcu_segcblist_extract_done_cbs(&rtpcp->cblist, &rcl);
468 	raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
469 	len = rcl.len;
470 	for (rhp = rcu_cblist_dequeue(&rcl); rhp; rhp = rcu_cblist_dequeue(&rcl)) {
471 		local_bh_disable();
472 		rhp->func(rhp);
473 		local_bh_enable();
474 		cond_resched();
475 	}
476 	raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
477 	rcu_segcblist_add_len(&rtpcp->cblist, -len);
478 	(void)rcu_segcblist_accelerate(&rtpcp->cblist, rcu_seq_snap(&rtp->tasks_gp_seq));
479 	raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
480 }
481 
482 // Workqueue flood to advance callbacks and invoke any that are ready.
483 static void rcu_tasks_invoke_cbs_wq(struct work_struct *wp)
484 {
485 	struct rcu_tasks *rtp;
486 	struct rcu_tasks_percpu *rtpcp = container_of(wp, struct rcu_tasks_percpu, rtp_work);
487 
488 	rtp = rtpcp->rtpp;
489 	rcu_tasks_invoke_cbs(rtp, rtpcp);
490 }
491 
492 /* RCU-tasks kthread that detects grace periods and invokes callbacks. */
493 static int __noreturn rcu_tasks_kthread(void *arg)
494 {
495 	int needgpcb;
496 	struct rcu_tasks *rtp = arg;
497 
498 	/* Run on housekeeping CPUs by default.  Sysadm can move if desired. */
499 	housekeeping_affine(current, HK_TYPE_RCU);
500 	WRITE_ONCE(rtp->kthread_ptr, current); // Let GPs start!
501 
502 	/*
503 	 * Each pass through the following loop makes one check for
504 	 * newly arrived callbacks, and, if there are some, waits for
505 	 * one RCU-tasks grace period and then invokes the callbacks.
506 	 * This loop is terminated by the system going down.  ;-)
507 	 */
508 	for (;;) {
509 		set_tasks_gp_state(rtp, RTGS_WAIT_CBS);
510 
511 		/* If there were none, wait a bit and start over. */
512 		wait_event_idle(rtp->cbs_wq, (needgpcb = rcu_tasks_need_gpcb(rtp)));
513 
514 		if (needgpcb & 0x2) {
515 			// Wait for one grace period.
516 			set_tasks_gp_state(rtp, RTGS_WAIT_GP);
517 			rtp->gp_start = jiffies;
518 			rcu_seq_start(&rtp->tasks_gp_seq);
519 			rtp->gp_func(rtp);
520 			rcu_seq_end(&rtp->tasks_gp_seq);
521 		}
522 
523 		/* Invoke callbacks. */
524 		set_tasks_gp_state(rtp, RTGS_INVOKE_CBS);
525 		rcu_tasks_invoke_cbs(rtp, per_cpu_ptr(rtp->rtpcpu, 0));
526 
527 		/* Paranoid sleep to keep this from entering a tight loop */
528 		schedule_timeout_idle(rtp->gp_sleep);
529 	}
530 }
531 
532 /* Spawn RCU-tasks grace-period kthread. */
533 static void __init rcu_spawn_tasks_kthread_generic(struct rcu_tasks *rtp)
534 {
535 	struct task_struct *t;
536 
537 	t = kthread_run(rcu_tasks_kthread, rtp, "%s_kthread", rtp->kname);
538 	if (WARN_ONCE(IS_ERR(t), "%s: Could not start %s grace-period kthread, OOM is now expected behavior\n", __func__, rtp->name))
539 		return;
540 	smp_mb(); /* Ensure others see full kthread. */
541 }
542 
543 #ifndef CONFIG_TINY_RCU
544 
545 /*
546  * Print any non-default Tasks RCU settings.
547  */
548 static void __init rcu_tasks_bootup_oddness(void)
549 {
550 #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU)
551 	if (rcu_task_stall_timeout != RCU_TASK_STALL_TIMEOUT)
552 		pr_info("\tTasks-RCU CPU stall warnings timeout set to %d (rcu_task_stall_timeout).\n", rcu_task_stall_timeout);
553 #endif /* #ifdef CONFIG_TASKS_RCU */
554 #ifdef CONFIG_TASKS_RCU
555 	pr_info("\tTrampoline variant of Tasks RCU enabled.\n");
556 #endif /* #ifdef CONFIG_TASKS_RCU */
557 #ifdef CONFIG_TASKS_RUDE_RCU
558 	pr_info("\tRude variant of Tasks RCU enabled.\n");
559 #endif /* #ifdef CONFIG_TASKS_RUDE_RCU */
560 #ifdef CONFIG_TASKS_TRACE_RCU
561 	pr_info("\tTracing variant of Tasks RCU enabled.\n");
562 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
563 }
564 
565 #endif /* #ifndef CONFIG_TINY_RCU */
566 
567 #ifndef CONFIG_TINY_RCU
568 /* Dump out rcutorture-relevant state common to all RCU-tasks flavors. */
569 static void show_rcu_tasks_generic_gp_kthread(struct rcu_tasks *rtp, char *s)
570 {
571 	struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, 0); // for_each...
572 	pr_info("%s: %s(%d) since %lu g:%lu i:%lu/%lu %c%c %s\n",
573 		rtp->kname,
574 		tasks_gp_state_getname(rtp), data_race(rtp->gp_state),
575 		jiffies - data_race(rtp->gp_jiffies),
576 		data_race(rcu_seq_current(&rtp->tasks_gp_seq)),
577 		data_race(rtp->n_ipis_fails), data_race(rtp->n_ipis),
578 		".k"[!!data_race(rtp->kthread_ptr)],
579 		".C"[!data_race(rcu_segcblist_empty(&rtpcp->cblist))],
580 		s);
581 }
582 #endif // #ifndef CONFIG_TINY_RCU
583 
584 static void exit_tasks_rcu_finish_trace(struct task_struct *t);
585 
586 #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU)
587 
588 ////////////////////////////////////////////////////////////////////////
589 //
590 // Shared code between task-list-scanning variants of Tasks RCU.
591 
592 /* Wait for one RCU-tasks grace period. */
593 static void rcu_tasks_wait_gp(struct rcu_tasks *rtp)
594 {
595 	struct task_struct *g, *t;
596 	unsigned long lastreport;
597 	LIST_HEAD(holdouts);
598 	int fract;
599 
600 	set_tasks_gp_state(rtp, RTGS_PRE_WAIT_GP);
601 	rtp->pregp_func();
602 
603 	/*
604 	 * There were callbacks, so we need to wait for an RCU-tasks
605 	 * grace period.  Start off by scanning the task list for tasks
606 	 * that are not already voluntarily blocked.  Mark these tasks
607 	 * and make a list of them in holdouts.
608 	 */
609 	set_tasks_gp_state(rtp, RTGS_SCAN_TASKLIST);
610 	rcu_read_lock();
611 	for_each_process_thread(g, t)
612 		rtp->pertask_func(t, &holdouts);
613 	rcu_read_unlock();
614 
615 	set_tasks_gp_state(rtp, RTGS_POST_SCAN_TASKLIST);
616 	rtp->postscan_func(&holdouts);
617 
618 	/*
619 	 * Each pass through the following loop scans the list of holdout
620 	 * tasks, removing any that are no longer holdouts.  When the list
621 	 * is empty, we are done.
622 	 */
623 	lastreport = jiffies;
624 
625 	// Start off with initial wait and slowly back off to 1 HZ wait.
626 	fract = rtp->init_fract;
627 
628 	while (!list_empty(&holdouts)) {
629 		bool firstreport;
630 		bool needreport;
631 		int rtst;
632 
633 		/* Slowly back off waiting for holdouts */
634 		set_tasks_gp_state(rtp, RTGS_WAIT_SCAN_HOLDOUTS);
635 		schedule_timeout_idle(fract);
636 
637 		if (fract < HZ)
638 			fract++;
639 
640 		rtst = READ_ONCE(rcu_task_stall_timeout);
641 		needreport = rtst > 0 && time_after(jiffies, lastreport + rtst);
642 		if (needreport)
643 			lastreport = jiffies;
644 		firstreport = true;
645 		WARN_ON(signal_pending(current));
646 		set_tasks_gp_state(rtp, RTGS_SCAN_HOLDOUTS);
647 		rtp->holdouts_func(&holdouts, needreport, &firstreport);
648 	}
649 
650 	set_tasks_gp_state(rtp, RTGS_POST_GP);
651 	rtp->postgp_func(rtp);
652 }
653 
654 #endif /* #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU) */
655 
656 #ifdef CONFIG_TASKS_RCU
657 
658 ////////////////////////////////////////////////////////////////////////
659 //
660 // Simple variant of RCU whose quiescent states are voluntary context
661 // switch, cond_resched_tasks_rcu_qs(), user-space execution, and idle.
662 // As such, grace periods can take one good long time.  There are no
663 // read-side primitives similar to rcu_read_lock() and rcu_read_unlock()
664 // because this implementation is intended to get the system into a safe
665 // state for some of the manipulations involved in tracing and the like.
666 // Finally, this implementation does not support high call_rcu_tasks()
667 // rates from multiple CPUs.  If this is required, per-CPU callback lists
668 // will be needed.
669 //
670 // The implementation uses rcu_tasks_wait_gp(), which relies on function
671 // pointers in the rcu_tasks structure.  The rcu_spawn_tasks_kthread()
672 // function sets these function pointers up so that rcu_tasks_wait_gp()
673 // invokes these functions in this order:
674 //
675 // rcu_tasks_pregp_step():
676 //	Invokes synchronize_rcu() in order to wait for all in-flight
677 //	t->on_rq and t->nvcsw transitions to complete.	This works because
678 //	all such transitions are carried out with interrupts disabled.
679 // rcu_tasks_pertask(), invoked on every non-idle task:
680 //	For every runnable non-idle task other than the current one, use
681 //	get_task_struct() to pin down that task, snapshot that task's
682 //	number of voluntary context switches, and add that task to the
683 //	holdout list.
684 // rcu_tasks_postscan():
685 //	Invoke synchronize_srcu() to ensure that all tasks that were
686 //	in the process of exiting (and which thus might not know to
687 //	synchronize with this RCU Tasks grace period) have completed
688 //	exiting.
689 // check_all_holdout_tasks(), repeatedly until holdout list is empty:
690 //	Scans the holdout list, attempting to identify a quiescent state
691 //	for each task on the list.  If there is a quiescent state, the
692 //	corresponding task is removed from the holdout list.
693 // rcu_tasks_postgp():
694 //	Invokes synchronize_rcu() in order to ensure that all prior
695 //	t->on_rq and t->nvcsw transitions are seen by all CPUs and tasks
696 //	to have happened before the end of this RCU Tasks grace period.
697 //	Again, this works because all such transitions are carried out
698 //	with interrupts disabled.
699 //
700 // For each exiting task, the exit_tasks_rcu_start() and
701 // exit_tasks_rcu_finish() functions begin and end, respectively, the SRCU
702 // read-side critical sections waited for by rcu_tasks_postscan().
703 //
704 // Pre-grace-period update-side code is ordered before the grace
705 // via the raw_spin_lock.*rcu_node().  Pre-grace-period read-side code
706 // is ordered before the grace period via synchronize_rcu() call in
707 // rcu_tasks_pregp_step() and by the scheduler's locks and interrupt
708 // disabling.
709 
710 /* Pre-grace-period preparation. */
711 static void rcu_tasks_pregp_step(void)
712 {
713 	/*
714 	 * Wait for all pre-existing t->on_rq and t->nvcsw transitions
715 	 * to complete.  Invoking synchronize_rcu() suffices because all
716 	 * these transitions occur with interrupts disabled.  Without this
717 	 * synchronize_rcu(), a read-side critical section that started
718 	 * before the grace period might be incorrectly seen as having
719 	 * started after the grace period.
720 	 *
721 	 * This synchronize_rcu() also dispenses with the need for a
722 	 * memory barrier on the first store to t->rcu_tasks_holdout,
723 	 * as it forces the store to happen after the beginning of the
724 	 * grace period.
725 	 */
726 	synchronize_rcu();
727 }
728 
729 /* Per-task initial processing. */
730 static void rcu_tasks_pertask(struct task_struct *t, struct list_head *hop)
731 {
732 	if (t != current && READ_ONCE(t->on_rq) && !is_idle_task(t)) {
733 		get_task_struct(t);
734 		t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw);
735 		WRITE_ONCE(t->rcu_tasks_holdout, true);
736 		list_add(&t->rcu_tasks_holdout_list, hop);
737 	}
738 }
739 
740 /* Processing between scanning taskslist and draining the holdout list. */
741 static void rcu_tasks_postscan(struct list_head *hop)
742 {
743 	/*
744 	 * Wait for tasks that are in the process of exiting.  This
745 	 * does only part of the job, ensuring that all tasks that were
746 	 * previously exiting reach the point where they have disabled
747 	 * preemption, allowing the later synchronize_rcu() to finish
748 	 * the job.
749 	 */
750 	synchronize_srcu(&tasks_rcu_exit_srcu);
751 }
752 
753 /* See if tasks are still holding out, complain if so. */
754 static void check_holdout_task(struct task_struct *t,
755 			       bool needreport, bool *firstreport)
756 {
757 	int cpu;
758 
759 	if (!READ_ONCE(t->rcu_tasks_holdout) ||
760 	    t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) ||
761 	    !READ_ONCE(t->on_rq) ||
762 	    (IS_ENABLED(CONFIG_NO_HZ_FULL) &&
763 	     !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) {
764 		WRITE_ONCE(t->rcu_tasks_holdout, false);
765 		list_del_init(&t->rcu_tasks_holdout_list);
766 		put_task_struct(t);
767 		return;
768 	}
769 	rcu_request_urgent_qs_task(t);
770 	if (!needreport)
771 		return;
772 	if (*firstreport) {
773 		pr_err("INFO: rcu_tasks detected stalls on tasks:\n");
774 		*firstreport = false;
775 	}
776 	cpu = task_cpu(t);
777 	pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n",
778 		 t, ".I"[is_idle_task(t)],
779 		 "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)],
780 		 t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout,
781 		 t->rcu_tasks_idle_cpu, cpu);
782 	sched_show_task(t);
783 }
784 
785 /* Scan the holdout lists for tasks no longer holding out. */
786 static void check_all_holdout_tasks(struct list_head *hop,
787 				    bool needreport, bool *firstreport)
788 {
789 	struct task_struct *t, *t1;
790 
791 	list_for_each_entry_safe(t, t1, hop, rcu_tasks_holdout_list) {
792 		check_holdout_task(t, needreport, firstreport);
793 		cond_resched();
794 	}
795 }
796 
797 /* Finish off the Tasks-RCU grace period. */
798 static void rcu_tasks_postgp(struct rcu_tasks *rtp)
799 {
800 	/*
801 	 * Because ->on_rq and ->nvcsw are not guaranteed to have a full
802 	 * memory barriers prior to them in the schedule() path, memory
803 	 * reordering on other CPUs could cause their RCU-tasks read-side
804 	 * critical sections to extend past the end of the grace period.
805 	 * However, because these ->nvcsw updates are carried out with
806 	 * interrupts disabled, we can use synchronize_rcu() to force the
807 	 * needed ordering on all such CPUs.
808 	 *
809 	 * This synchronize_rcu() also confines all ->rcu_tasks_holdout
810 	 * accesses to be within the grace period, avoiding the need for
811 	 * memory barriers for ->rcu_tasks_holdout accesses.
812 	 *
813 	 * In addition, this synchronize_rcu() waits for exiting tasks
814 	 * to complete their final preempt_disable() region of execution,
815 	 * cleaning up after the synchronize_srcu() above.
816 	 */
817 	synchronize_rcu();
818 }
819 
820 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func);
821 DEFINE_RCU_TASKS(rcu_tasks, rcu_tasks_wait_gp, call_rcu_tasks, "RCU Tasks");
822 
823 /**
824  * call_rcu_tasks() - Queue an RCU for invocation task-based grace period
825  * @rhp: structure to be used for queueing the RCU updates.
826  * @func: actual callback function to be invoked after the grace period
827  *
828  * The callback function will be invoked some time after a full grace
829  * period elapses, in other words after all currently executing RCU
830  * read-side critical sections have completed. call_rcu_tasks() assumes
831  * that the read-side critical sections end at a voluntary context
832  * switch (not a preemption!), cond_resched_tasks_rcu_qs(), entry into idle,
833  * or transition to usermode execution.  As such, there are no read-side
834  * primitives analogous to rcu_read_lock() and rcu_read_unlock() because
835  * this primitive is intended to determine that all tasks have passed
836  * through a safe state, not so much for data-structure synchronization.
837  *
838  * See the description of call_rcu() for more detailed information on
839  * memory ordering guarantees.
840  */
841 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func)
842 {
843 	call_rcu_tasks_generic(rhp, func, &rcu_tasks);
844 }
845 EXPORT_SYMBOL_GPL(call_rcu_tasks);
846 
847 /**
848  * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed.
849  *
850  * Control will return to the caller some time after a full rcu-tasks
851  * grace period has elapsed, in other words after all currently
852  * executing rcu-tasks read-side critical sections have elapsed.  These
853  * read-side critical sections are delimited by calls to schedule(),
854  * cond_resched_tasks_rcu_qs(), idle execution, userspace execution, calls
855  * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched().
856  *
857  * This is a very specialized primitive, intended only for a few uses in
858  * tracing and other situations requiring manipulation of function
859  * preambles and profiling hooks.  The synchronize_rcu_tasks() function
860  * is not (yet) intended for heavy use from multiple CPUs.
861  *
862  * See the description of synchronize_rcu() for more detailed information
863  * on memory ordering guarantees.
864  */
865 void synchronize_rcu_tasks(void)
866 {
867 	synchronize_rcu_tasks_generic(&rcu_tasks);
868 }
869 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks);
870 
871 /**
872  * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks.
873  *
874  * Although the current implementation is guaranteed to wait, it is not
875  * obligated to, for example, if there are no pending callbacks.
876  */
877 void rcu_barrier_tasks(void)
878 {
879 	rcu_barrier_tasks_generic(&rcu_tasks);
880 }
881 EXPORT_SYMBOL_GPL(rcu_barrier_tasks);
882 
883 static int __init rcu_spawn_tasks_kthread(void)
884 {
885 	cblist_init_generic(&rcu_tasks);
886 	rcu_tasks.gp_sleep = HZ / 10;
887 	rcu_tasks.init_fract = HZ / 10;
888 	rcu_tasks.pregp_func = rcu_tasks_pregp_step;
889 	rcu_tasks.pertask_func = rcu_tasks_pertask;
890 	rcu_tasks.postscan_func = rcu_tasks_postscan;
891 	rcu_tasks.holdouts_func = check_all_holdout_tasks;
892 	rcu_tasks.postgp_func = rcu_tasks_postgp;
893 	rcu_spawn_tasks_kthread_generic(&rcu_tasks);
894 	return 0;
895 }
896 
897 #if !defined(CONFIG_TINY_RCU)
898 void show_rcu_tasks_classic_gp_kthread(void)
899 {
900 	show_rcu_tasks_generic_gp_kthread(&rcu_tasks, "");
901 }
902 EXPORT_SYMBOL_GPL(show_rcu_tasks_classic_gp_kthread);
903 #endif // !defined(CONFIG_TINY_RCU)
904 
905 /* Do the srcu_read_lock() for the above synchronize_srcu().  */
906 void exit_tasks_rcu_start(void) __acquires(&tasks_rcu_exit_srcu)
907 {
908 	preempt_disable();
909 	current->rcu_tasks_idx = __srcu_read_lock(&tasks_rcu_exit_srcu);
910 	preempt_enable();
911 }
912 
913 /* Do the srcu_read_unlock() for the above synchronize_srcu().  */
914 void exit_tasks_rcu_finish(void) __releases(&tasks_rcu_exit_srcu)
915 {
916 	struct task_struct *t = current;
917 
918 	preempt_disable();
919 	__srcu_read_unlock(&tasks_rcu_exit_srcu, t->rcu_tasks_idx);
920 	preempt_enable();
921 	exit_tasks_rcu_finish_trace(t);
922 }
923 
924 #else /* #ifdef CONFIG_TASKS_RCU */
925 void exit_tasks_rcu_start(void) { }
926 void exit_tasks_rcu_finish(void) { exit_tasks_rcu_finish_trace(current); }
927 #endif /* #else #ifdef CONFIG_TASKS_RCU */
928 
929 #ifdef CONFIG_TASKS_RUDE_RCU
930 
931 ////////////////////////////////////////////////////////////////////////
932 //
933 // "Rude" variant of Tasks RCU, inspired by Steve Rostedt's trick of
934 // passing an empty function to schedule_on_each_cpu().  This approach
935 // provides an asynchronous call_rcu_tasks_rude() API and batching of
936 // concurrent calls to the synchronous synchronize_rcu_tasks_rude() API.
937 // This invokes schedule_on_each_cpu() in order to send IPIs far and wide
938 // and induces otherwise unnecessary context switches on all online CPUs,
939 // whether idle or not.
940 //
941 // Callback handling is provided by the rcu_tasks_kthread() function.
942 //
943 // Ordering is provided by the scheduler's context-switch code.
944 
945 // Empty function to allow workqueues to force a context switch.
946 static void rcu_tasks_be_rude(struct work_struct *work)
947 {
948 }
949 
950 // Wait for one rude RCU-tasks grace period.
951 static void rcu_tasks_rude_wait_gp(struct rcu_tasks *rtp)
952 {
953 	rtp->n_ipis += cpumask_weight(cpu_online_mask);
954 	schedule_on_each_cpu(rcu_tasks_be_rude);
955 }
956 
957 void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func);
958 DEFINE_RCU_TASKS(rcu_tasks_rude, rcu_tasks_rude_wait_gp, call_rcu_tasks_rude,
959 		 "RCU Tasks Rude");
960 
961 /**
962  * call_rcu_tasks_rude() - Queue a callback rude task-based grace period
963  * @rhp: structure to be used for queueing the RCU updates.
964  * @func: actual callback function to be invoked after the grace period
965  *
966  * The callback function will be invoked some time after a full grace
967  * period elapses, in other words after all currently executing RCU
968  * read-side critical sections have completed. call_rcu_tasks_rude()
969  * assumes that the read-side critical sections end at context switch,
970  * cond_resched_tasks_rcu_qs(), or transition to usermode execution (as
971  * usermode execution is schedulable). As such, there are no read-side
972  * primitives analogous to rcu_read_lock() and rcu_read_unlock() because
973  * this primitive is intended to determine that all tasks have passed
974  * through a safe state, not so much for data-structure synchronization.
975  *
976  * See the description of call_rcu() for more detailed information on
977  * memory ordering guarantees.
978  */
979 void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func)
980 {
981 	call_rcu_tasks_generic(rhp, func, &rcu_tasks_rude);
982 }
983 EXPORT_SYMBOL_GPL(call_rcu_tasks_rude);
984 
985 /**
986  * synchronize_rcu_tasks_rude - wait for a rude rcu-tasks grace period
987  *
988  * Control will return to the caller some time after a rude rcu-tasks
989  * grace period has elapsed, in other words after all currently
990  * executing rcu-tasks read-side critical sections have elapsed.  These
991  * read-side critical sections are delimited by calls to schedule(),
992  * cond_resched_tasks_rcu_qs(), userspace execution (which is a schedulable
993  * context), and (in theory, anyway) cond_resched().
994  *
995  * This is a very specialized primitive, intended only for a few uses in
996  * tracing and other situations requiring manipulation of function preambles
997  * and profiling hooks.  The synchronize_rcu_tasks_rude() function is not
998  * (yet) intended for heavy use from multiple CPUs.
999  *
1000  * See the description of synchronize_rcu() for more detailed information
1001  * on memory ordering guarantees.
1002  */
1003 void synchronize_rcu_tasks_rude(void)
1004 {
1005 	synchronize_rcu_tasks_generic(&rcu_tasks_rude);
1006 }
1007 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_rude);
1008 
1009 /**
1010  * rcu_barrier_tasks_rude - Wait for in-flight call_rcu_tasks_rude() callbacks.
1011  *
1012  * Although the current implementation is guaranteed to wait, it is not
1013  * obligated to, for example, if there are no pending callbacks.
1014  */
1015 void rcu_barrier_tasks_rude(void)
1016 {
1017 	rcu_barrier_tasks_generic(&rcu_tasks_rude);
1018 }
1019 EXPORT_SYMBOL_GPL(rcu_barrier_tasks_rude);
1020 
1021 static int __init rcu_spawn_tasks_rude_kthread(void)
1022 {
1023 	cblist_init_generic(&rcu_tasks_rude);
1024 	rcu_tasks_rude.gp_sleep = HZ / 10;
1025 	rcu_spawn_tasks_kthread_generic(&rcu_tasks_rude);
1026 	return 0;
1027 }
1028 
1029 #if !defined(CONFIG_TINY_RCU)
1030 void show_rcu_tasks_rude_gp_kthread(void)
1031 {
1032 	show_rcu_tasks_generic_gp_kthread(&rcu_tasks_rude, "");
1033 }
1034 EXPORT_SYMBOL_GPL(show_rcu_tasks_rude_gp_kthread);
1035 #endif // !defined(CONFIG_TINY_RCU)
1036 #endif /* #ifdef CONFIG_TASKS_RUDE_RCU */
1037 
1038 ////////////////////////////////////////////////////////////////////////
1039 //
1040 // Tracing variant of Tasks RCU.  This variant is designed to be used
1041 // to protect tracing hooks, including those of BPF.  This variant
1042 // therefore:
1043 //
1044 // 1.	Has explicit read-side markers to allow finite grace periods
1045 //	in the face of in-kernel loops for PREEMPT=n builds.
1046 //
1047 // 2.	Protects code in the idle loop, exception entry/exit, and
1048 //	CPU-hotplug code paths, similar to the capabilities of SRCU.
1049 //
1050 // 3.	Avoids expensive read-side instructions, having overhead similar
1051 //	to that of Preemptible RCU.
1052 //
1053 // There are of course downsides.  The grace-period code can send IPIs to
1054 // CPUs, even when those CPUs are in the idle loop or in nohz_full userspace.
1055 // It is necessary to scan the full tasklist, much as for Tasks RCU.  There
1056 // is a single callback queue guarded by a single lock, again, much as for
1057 // Tasks RCU.  If needed, these downsides can be at least partially remedied.
1058 //
1059 // Perhaps most important, this variant of RCU does not affect the vanilla
1060 // flavors, rcu_preempt and rcu_sched.  The fact that RCU Tasks Trace
1061 // readers can operate from idle, offline, and exception entry/exit in no
1062 // way allows rcu_preempt and rcu_sched readers to also do so.
1063 //
1064 // The implementation uses rcu_tasks_wait_gp(), which relies on function
1065 // pointers in the rcu_tasks structure.  The rcu_spawn_tasks_trace_kthread()
1066 // function sets these function pointers up so that rcu_tasks_wait_gp()
1067 // invokes these functions in this order:
1068 //
1069 // rcu_tasks_trace_pregp_step():
1070 //	Initialize the count of readers and block CPU-hotplug operations.
1071 // rcu_tasks_trace_pertask(), invoked on every non-idle task:
1072 //	Initialize per-task state and attempt to identify an immediate
1073 //	quiescent state for that task, or, failing that, attempt to
1074 //	set that task's .need_qs flag so that task's next outermost
1075 //	rcu_read_unlock_trace() will report the quiescent state (in which
1076 //	case the count of readers is incremented).  If both attempts fail,
1077 //	the task is added to a "holdout" list.  Note that IPIs are used
1078 //	to invoke trc_read_check_handler() in the context of running tasks
1079 //	in order to avoid ordering overhead on common-case shared-variable
1080 //	accessses.
1081 // rcu_tasks_trace_postscan():
1082 //	Initialize state and attempt to identify an immediate quiescent
1083 //	state as above (but only for idle tasks), unblock CPU-hotplug
1084 //	operations, and wait for an RCU grace period to avoid races with
1085 //	tasks that are in the process of exiting.
1086 // check_all_holdout_tasks_trace(), repeatedly until holdout list is empty:
1087 //	Scans the holdout list, attempting to identify a quiescent state
1088 //	for each task on the list.  If there is a quiescent state, the
1089 //	corresponding task is removed from the holdout list.
1090 // rcu_tasks_trace_postgp():
1091 //	Wait for the count of readers do drop to zero, reporting any stalls.
1092 //	Also execute full memory barriers to maintain ordering with code
1093 //	executing after the grace period.
1094 //
1095 // The exit_tasks_rcu_finish_trace() synchronizes with exiting tasks.
1096 //
1097 // Pre-grace-period update-side code is ordered before the grace
1098 // period via the ->cbs_lock and barriers in rcu_tasks_kthread().
1099 // Pre-grace-period read-side code is ordered before the grace period by
1100 // atomic_dec_and_test() of the count of readers (for IPIed readers) and by
1101 // scheduler context-switch ordering (for locked-down non-running readers).
1102 
1103 // The lockdep state must be outside of #ifdef to be useful.
1104 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1105 static struct lock_class_key rcu_lock_trace_key;
1106 struct lockdep_map rcu_trace_lock_map =
1107 	STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_trace", &rcu_lock_trace_key);
1108 EXPORT_SYMBOL_GPL(rcu_trace_lock_map);
1109 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
1110 
1111 #ifdef CONFIG_TASKS_TRACE_RCU
1112 
1113 static atomic_t trc_n_readers_need_end;		// Number of waited-for readers.
1114 static DECLARE_WAIT_QUEUE_HEAD(trc_wait);	// List of holdout tasks.
1115 
1116 // Record outstanding IPIs to each CPU.  No point in sending two...
1117 static DEFINE_PER_CPU(bool, trc_ipi_to_cpu);
1118 
1119 // The number of detections of task quiescent state relying on
1120 // heavyweight readers executing explicit memory barriers.
1121 static unsigned long n_heavy_reader_attempts;
1122 static unsigned long n_heavy_reader_updates;
1123 static unsigned long n_heavy_reader_ofl_updates;
1124 
1125 void call_rcu_tasks_trace(struct rcu_head *rhp, rcu_callback_t func);
1126 DEFINE_RCU_TASKS(rcu_tasks_trace, rcu_tasks_wait_gp, call_rcu_tasks_trace,
1127 		 "RCU Tasks Trace");
1128 
1129 /*
1130  * This irq_work handler allows rcu_read_unlock_trace() to be invoked
1131  * while the scheduler locks are held.
1132  */
1133 static void rcu_read_unlock_iw(struct irq_work *iwp)
1134 {
1135 	wake_up(&trc_wait);
1136 }
1137 static DEFINE_IRQ_WORK(rcu_tasks_trace_iw, rcu_read_unlock_iw);
1138 
1139 /* If we are the last reader, wake up the grace-period kthread. */
1140 void rcu_read_unlock_trace_special(struct task_struct *t)
1141 {
1142 	int nq = READ_ONCE(t->trc_reader_special.b.need_qs);
1143 
1144 	if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) &&
1145 	    t->trc_reader_special.b.need_mb)
1146 		smp_mb(); // Pairs with update-side barriers.
1147 	// Update .need_qs before ->trc_reader_nesting for irq/NMI handlers.
1148 	if (nq)
1149 		WRITE_ONCE(t->trc_reader_special.b.need_qs, false);
1150 	WRITE_ONCE(t->trc_reader_nesting, 0);
1151 	if (nq && atomic_dec_and_test(&trc_n_readers_need_end))
1152 		irq_work_queue(&rcu_tasks_trace_iw);
1153 }
1154 EXPORT_SYMBOL_GPL(rcu_read_unlock_trace_special);
1155 
1156 /* Add a task to the holdout list, if it is not already on the list. */
1157 static void trc_add_holdout(struct task_struct *t, struct list_head *bhp)
1158 {
1159 	if (list_empty(&t->trc_holdout_list)) {
1160 		get_task_struct(t);
1161 		list_add(&t->trc_holdout_list, bhp);
1162 	}
1163 }
1164 
1165 /* Remove a task from the holdout list, if it is in fact present. */
1166 static void trc_del_holdout(struct task_struct *t)
1167 {
1168 	if (!list_empty(&t->trc_holdout_list)) {
1169 		list_del_init(&t->trc_holdout_list);
1170 		put_task_struct(t);
1171 	}
1172 }
1173 
1174 /* IPI handler to check task state. */
1175 static void trc_read_check_handler(void *t_in)
1176 {
1177 	struct task_struct *t = current;
1178 	struct task_struct *texp = t_in;
1179 
1180 	// If the task is no longer running on this CPU, leave.
1181 	if (unlikely(texp != t)) {
1182 		goto reset_ipi; // Already on holdout list, so will check later.
1183 	}
1184 
1185 	// If the task is not in a read-side critical section, and
1186 	// if this is the last reader, awaken the grace-period kthread.
1187 	if (likely(!READ_ONCE(t->trc_reader_nesting))) {
1188 		WRITE_ONCE(t->trc_reader_checked, true);
1189 		goto reset_ipi;
1190 	}
1191 	// If we are racing with an rcu_read_unlock_trace(), try again later.
1192 	if (unlikely(READ_ONCE(t->trc_reader_nesting) < 0))
1193 		goto reset_ipi;
1194 	WRITE_ONCE(t->trc_reader_checked, true);
1195 
1196 	// Get here if the task is in a read-side critical section.  Set
1197 	// its state so that it will awaken the grace-period kthread upon
1198 	// exit from that critical section.
1199 	atomic_inc(&trc_n_readers_need_end); // One more to wait on.
1200 	WARN_ON_ONCE(READ_ONCE(t->trc_reader_special.b.need_qs));
1201 	WRITE_ONCE(t->trc_reader_special.b.need_qs, true);
1202 
1203 reset_ipi:
1204 	// Allow future IPIs to be sent on CPU and for task.
1205 	// Also order this IPI handler against any later manipulations of
1206 	// the intended task.
1207 	smp_store_release(per_cpu_ptr(&trc_ipi_to_cpu, smp_processor_id()), false); // ^^^
1208 	smp_store_release(&texp->trc_ipi_to_cpu, -1); // ^^^
1209 }
1210 
1211 /* Callback function for scheduler to check locked-down task.  */
1212 static int trc_inspect_reader(struct task_struct *t, void *arg)
1213 {
1214 	int cpu = task_cpu(t);
1215 	int nesting;
1216 	bool ofl = cpu_is_offline(cpu);
1217 
1218 	if (task_curr(t)) {
1219 		WARN_ON_ONCE(ofl && !is_idle_task(t));
1220 
1221 		// If no chance of heavyweight readers, do it the hard way.
1222 		if (!ofl && !IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB))
1223 			return -EINVAL;
1224 
1225 		// If heavyweight readers are enabled on the remote task,
1226 		// we can inspect its state despite its currently running.
1227 		// However, we cannot safely change its state.
1228 		n_heavy_reader_attempts++;
1229 		if (!ofl && // Check for "running" idle tasks on offline CPUs.
1230 		    !rcu_dynticks_zero_in_eqs(cpu, &t->trc_reader_nesting))
1231 			return -EINVAL; // No quiescent state, do it the hard way.
1232 		n_heavy_reader_updates++;
1233 		if (ofl)
1234 			n_heavy_reader_ofl_updates++;
1235 		nesting = 0;
1236 	} else {
1237 		// The task is not running, so C-language access is safe.
1238 		nesting = t->trc_reader_nesting;
1239 	}
1240 
1241 	// If not exiting a read-side critical section, mark as checked
1242 	// so that the grace-period kthread will remove it from the
1243 	// holdout list.
1244 	t->trc_reader_checked = nesting >= 0;
1245 	if (nesting <= 0)
1246 		return nesting ? -EINVAL : 0;  // If in QS, done, otherwise try again later.
1247 
1248 	// The task is in a read-side critical section, so set up its
1249 	// state so that it will awaken the grace-period kthread upon exit
1250 	// from that critical section.
1251 	atomic_inc(&trc_n_readers_need_end); // One more to wait on.
1252 	WARN_ON_ONCE(READ_ONCE(t->trc_reader_special.b.need_qs));
1253 	WRITE_ONCE(t->trc_reader_special.b.need_qs, true);
1254 	return 0;
1255 }
1256 
1257 /* Attempt to extract the state for the specified task. */
1258 static void trc_wait_for_one_reader(struct task_struct *t,
1259 				    struct list_head *bhp)
1260 {
1261 	int cpu;
1262 
1263 	// If a previous IPI is still in flight, let it complete.
1264 	if (smp_load_acquire(&t->trc_ipi_to_cpu) != -1) // Order IPI
1265 		return;
1266 
1267 	// The current task had better be in a quiescent state.
1268 	if (t == current) {
1269 		t->trc_reader_checked = true;
1270 		WARN_ON_ONCE(READ_ONCE(t->trc_reader_nesting));
1271 		return;
1272 	}
1273 
1274 	// Attempt to nail down the task for inspection.
1275 	get_task_struct(t);
1276 	if (!task_call_func(t, trc_inspect_reader, NULL)) {
1277 		put_task_struct(t);
1278 		return;
1279 	}
1280 	put_task_struct(t);
1281 
1282 	// If this task is not yet on the holdout list, then we are in
1283 	// an RCU read-side critical section.  Otherwise, the invocation of
1284 	// trc_add_holdout() that added it to the list did the necessary
1285 	// get_task_struct().  Either way, the task cannot be freed out
1286 	// from under this code.
1287 
1288 	// If currently running, send an IPI, either way, add to list.
1289 	trc_add_holdout(t, bhp);
1290 	if (task_curr(t) &&
1291 	    time_after(jiffies + 1, rcu_tasks_trace.gp_start + rcu_task_ipi_delay)) {
1292 		// The task is currently running, so try IPIing it.
1293 		cpu = task_cpu(t);
1294 
1295 		// If there is already an IPI outstanding, let it happen.
1296 		if (per_cpu(trc_ipi_to_cpu, cpu) || t->trc_ipi_to_cpu >= 0)
1297 			return;
1298 
1299 		per_cpu(trc_ipi_to_cpu, cpu) = true;
1300 		t->trc_ipi_to_cpu = cpu;
1301 		rcu_tasks_trace.n_ipis++;
1302 		if (smp_call_function_single(cpu, trc_read_check_handler, t, 0)) {
1303 			// Just in case there is some other reason for
1304 			// failure than the target CPU being offline.
1305 			WARN_ONCE(1, "%s():  smp_call_function_single() failed for CPU: %d\n",
1306 				  __func__, cpu);
1307 			rcu_tasks_trace.n_ipis_fails++;
1308 			per_cpu(trc_ipi_to_cpu, cpu) = false;
1309 			t->trc_ipi_to_cpu = -1;
1310 		}
1311 	}
1312 }
1313 
1314 /* Initialize for a new RCU-tasks-trace grace period. */
1315 static void rcu_tasks_trace_pregp_step(void)
1316 {
1317 	int cpu;
1318 
1319 	// Allow for fast-acting IPIs.
1320 	atomic_set(&trc_n_readers_need_end, 1);
1321 
1322 	// There shouldn't be any old IPIs, but...
1323 	for_each_possible_cpu(cpu)
1324 		WARN_ON_ONCE(per_cpu(trc_ipi_to_cpu, cpu));
1325 
1326 	// Disable CPU hotplug across the tasklist scan.
1327 	// This also waits for all readers in CPU-hotplug code paths.
1328 	cpus_read_lock();
1329 }
1330 
1331 /* Do first-round processing for the specified task. */
1332 static void rcu_tasks_trace_pertask(struct task_struct *t,
1333 				    struct list_head *hop)
1334 {
1335 	// During early boot when there is only the one boot CPU, there
1336 	// is no idle task for the other CPUs. Just return.
1337 	if (unlikely(t == NULL))
1338 		return;
1339 
1340 	WRITE_ONCE(t->trc_reader_special.b.need_qs, false);
1341 	WRITE_ONCE(t->trc_reader_checked, false);
1342 	t->trc_ipi_to_cpu = -1;
1343 	trc_wait_for_one_reader(t, hop);
1344 }
1345 
1346 /*
1347  * Do intermediate processing between task and holdout scans and
1348  * pick up the idle tasks.
1349  */
1350 static void rcu_tasks_trace_postscan(struct list_head *hop)
1351 {
1352 	int cpu;
1353 
1354 	for_each_possible_cpu(cpu)
1355 		rcu_tasks_trace_pertask(idle_task(cpu), hop);
1356 
1357 	// Re-enable CPU hotplug now that the tasklist scan has completed.
1358 	cpus_read_unlock();
1359 
1360 	// Wait for late-stage exiting tasks to finish exiting.
1361 	// These might have passed the call to exit_tasks_rcu_finish().
1362 	synchronize_rcu();
1363 	// Any tasks that exit after this point will set ->trc_reader_checked.
1364 }
1365 
1366 /* Communicate task state back to the RCU tasks trace stall warning request. */
1367 struct trc_stall_chk_rdr {
1368 	int nesting;
1369 	int ipi_to_cpu;
1370 	u8 needqs;
1371 };
1372 
1373 static int trc_check_slow_task(struct task_struct *t, void *arg)
1374 {
1375 	struct trc_stall_chk_rdr *trc_rdrp = arg;
1376 
1377 	if (task_curr(t))
1378 		return false; // It is running, so decline to inspect it.
1379 	trc_rdrp->nesting = READ_ONCE(t->trc_reader_nesting);
1380 	trc_rdrp->ipi_to_cpu = READ_ONCE(t->trc_ipi_to_cpu);
1381 	trc_rdrp->needqs = READ_ONCE(t->trc_reader_special.b.need_qs);
1382 	return true;
1383 }
1384 
1385 /* Show the state of a task stalling the current RCU tasks trace GP. */
1386 static void show_stalled_task_trace(struct task_struct *t, bool *firstreport)
1387 {
1388 	int cpu;
1389 	struct trc_stall_chk_rdr trc_rdr;
1390 	bool is_idle_tsk = is_idle_task(t);
1391 
1392 	if (*firstreport) {
1393 		pr_err("INFO: rcu_tasks_trace detected stalls on tasks:\n");
1394 		*firstreport = false;
1395 	}
1396 	cpu = task_cpu(t);
1397 	if (!task_call_func(t, trc_check_slow_task, &trc_rdr))
1398 		pr_alert("P%d: %c\n",
1399 			 t->pid,
1400 			 ".i"[is_idle_tsk]);
1401 	else
1402 		pr_alert("P%d: %c%c%c nesting: %d%c cpu: %d\n",
1403 			 t->pid,
1404 			 ".I"[trc_rdr.ipi_to_cpu >= 0],
1405 			 ".i"[is_idle_tsk],
1406 			 ".N"[cpu >= 0 && tick_nohz_full_cpu(cpu)],
1407 			 trc_rdr.nesting,
1408 			 " N"[!!trc_rdr.needqs],
1409 			 cpu);
1410 	sched_show_task(t);
1411 }
1412 
1413 /* List stalled IPIs for RCU tasks trace. */
1414 static void show_stalled_ipi_trace(void)
1415 {
1416 	int cpu;
1417 
1418 	for_each_possible_cpu(cpu)
1419 		if (per_cpu(trc_ipi_to_cpu, cpu))
1420 			pr_alert("\tIPI outstanding to CPU %d\n", cpu);
1421 }
1422 
1423 /* Do one scan of the holdout list. */
1424 static void check_all_holdout_tasks_trace(struct list_head *hop,
1425 					  bool needreport, bool *firstreport)
1426 {
1427 	struct task_struct *g, *t;
1428 
1429 	// Disable CPU hotplug across the holdout list scan.
1430 	cpus_read_lock();
1431 
1432 	list_for_each_entry_safe(t, g, hop, trc_holdout_list) {
1433 		// If safe and needed, try to check the current task.
1434 		if (READ_ONCE(t->trc_ipi_to_cpu) == -1 &&
1435 		    !READ_ONCE(t->trc_reader_checked))
1436 			trc_wait_for_one_reader(t, hop);
1437 
1438 		// If check succeeded, remove this task from the list.
1439 		if (smp_load_acquire(&t->trc_ipi_to_cpu) == -1 &&
1440 		    READ_ONCE(t->trc_reader_checked))
1441 			trc_del_holdout(t);
1442 		else if (needreport)
1443 			show_stalled_task_trace(t, firstreport);
1444 	}
1445 
1446 	// Re-enable CPU hotplug now that the holdout list scan has completed.
1447 	cpus_read_unlock();
1448 
1449 	if (needreport) {
1450 		if (*firstreport)
1451 			pr_err("INFO: rcu_tasks_trace detected stalls? (Late IPI?)\n");
1452 		show_stalled_ipi_trace();
1453 	}
1454 }
1455 
1456 static void rcu_tasks_trace_empty_fn(void *unused)
1457 {
1458 }
1459 
1460 /* Wait for grace period to complete and provide ordering. */
1461 static void rcu_tasks_trace_postgp(struct rcu_tasks *rtp)
1462 {
1463 	int cpu;
1464 	bool firstreport;
1465 	struct task_struct *g, *t;
1466 	LIST_HEAD(holdouts);
1467 	long ret;
1468 
1469 	// Wait for any lingering IPI handlers to complete.  Note that
1470 	// if a CPU has gone offline or transitioned to userspace in the
1471 	// meantime, all IPI handlers should have been drained beforehand.
1472 	// Yes, this assumes that CPUs process IPIs in order.  If that ever
1473 	// changes, there will need to be a recheck and/or timed wait.
1474 	for_each_online_cpu(cpu)
1475 		if (WARN_ON_ONCE(smp_load_acquire(per_cpu_ptr(&trc_ipi_to_cpu, cpu))))
1476 			smp_call_function_single(cpu, rcu_tasks_trace_empty_fn, NULL, 1);
1477 
1478 	// Remove the safety count.
1479 	smp_mb__before_atomic();  // Order vs. earlier atomics
1480 	atomic_dec(&trc_n_readers_need_end);
1481 	smp_mb__after_atomic();  // Order vs. later atomics
1482 
1483 	// Wait for readers.
1484 	set_tasks_gp_state(rtp, RTGS_WAIT_READERS);
1485 	for (;;) {
1486 		ret = wait_event_idle_exclusive_timeout(
1487 				trc_wait,
1488 				atomic_read(&trc_n_readers_need_end) == 0,
1489 				READ_ONCE(rcu_task_stall_timeout));
1490 		if (ret)
1491 			break;  // Count reached zero.
1492 		// Stall warning time, so make a list of the offenders.
1493 		rcu_read_lock();
1494 		for_each_process_thread(g, t)
1495 			if (READ_ONCE(t->trc_reader_special.b.need_qs))
1496 				trc_add_holdout(t, &holdouts);
1497 		rcu_read_unlock();
1498 		firstreport = true;
1499 		list_for_each_entry_safe(t, g, &holdouts, trc_holdout_list) {
1500 			if (READ_ONCE(t->trc_reader_special.b.need_qs))
1501 				show_stalled_task_trace(t, &firstreport);
1502 			trc_del_holdout(t); // Release task_struct reference.
1503 		}
1504 		if (firstreport)
1505 			pr_err("INFO: rcu_tasks_trace detected stalls? (Counter/taskslist mismatch?)\n");
1506 		show_stalled_ipi_trace();
1507 		pr_err("\t%d holdouts\n", atomic_read(&trc_n_readers_need_end));
1508 	}
1509 	smp_mb(); // Caller's code must be ordered after wakeup.
1510 		  // Pairs with pretty much every ordering primitive.
1511 }
1512 
1513 /* Report any needed quiescent state for this exiting task. */
1514 static void exit_tasks_rcu_finish_trace(struct task_struct *t)
1515 {
1516 	WRITE_ONCE(t->trc_reader_checked, true);
1517 	WARN_ON_ONCE(READ_ONCE(t->trc_reader_nesting));
1518 	WRITE_ONCE(t->trc_reader_nesting, 0);
1519 	if (WARN_ON_ONCE(READ_ONCE(t->trc_reader_special.b.need_qs)))
1520 		rcu_read_unlock_trace_special(t);
1521 }
1522 
1523 /**
1524  * call_rcu_tasks_trace() - Queue a callback trace task-based grace period
1525  * @rhp: structure to be used for queueing the RCU updates.
1526  * @func: actual callback function to be invoked after the grace period
1527  *
1528  * The callback function will be invoked some time after a trace rcu-tasks
1529  * grace period elapses, in other words after all currently executing
1530  * trace rcu-tasks read-side critical sections have completed. These
1531  * read-side critical sections are delimited by calls to rcu_read_lock_trace()
1532  * and rcu_read_unlock_trace().
1533  *
1534  * See the description of call_rcu() for more detailed information on
1535  * memory ordering guarantees.
1536  */
1537 void call_rcu_tasks_trace(struct rcu_head *rhp, rcu_callback_t func)
1538 {
1539 	call_rcu_tasks_generic(rhp, func, &rcu_tasks_trace);
1540 }
1541 EXPORT_SYMBOL_GPL(call_rcu_tasks_trace);
1542 
1543 /**
1544  * synchronize_rcu_tasks_trace - wait for a trace rcu-tasks grace period
1545  *
1546  * Control will return to the caller some time after a trace rcu-tasks
1547  * grace period has elapsed, in other words after all currently executing
1548  * trace rcu-tasks read-side critical sections have elapsed. These read-side
1549  * critical sections are delimited by calls to rcu_read_lock_trace()
1550  * and rcu_read_unlock_trace().
1551  *
1552  * This is a very specialized primitive, intended only for a few uses in
1553  * tracing and other situations requiring manipulation of function preambles
1554  * and profiling hooks.  The synchronize_rcu_tasks_trace() function is not
1555  * (yet) intended for heavy use from multiple CPUs.
1556  *
1557  * See the description of synchronize_rcu() for more detailed information
1558  * on memory ordering guarantees.
1559  */
1560 void synchronize_rcu_tasks_trace(void)
1561 {
1562 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_trace_lock_map), "Illegal synchronize_rcu_tasks_trace() in RCU Tasks Trace read-side critical section");
1563 	synchronize_rcu_tasks_generic(&rcu_tasks_trace);
1564 }
1565 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_trace);
1566 
1567 /**
1568  * rcu_barrier_tasks_trace - Wait for in-flight call_rcu_tasks_trace() callbacks.
1569  *
1570  * Although the current implementation is guaranteed to wait, it is not
1571  * obligated to, for example, if there are no pending callbacks.
1572  */
1573 void rcu_barrier_tasks_trace(void)
1574 {
1575 	rcu_barrier_tasks_generic(&rcu_tasks_trace);
1576 }
1577 EXPORT_SYMBOL_GPL(rcu_barrier_tasks_trace);
1578 
1579 static int __init rcu_spawn_tasks_trace_kthread(void)
1580 {
1581 	cblist_init_generic(&rcu_tasks_trace);
1582 	if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB)) {
1583 		rcu_tasks_trace.gp_sleep = HZ / 10;
1584 		rcu_tasks_trace.init_fract = HZ / 10;
1585 	} else {
1586 		rcu_tasks_trace.gp_sleep = HZ / 200;
1587 		if (rcu_tasks_trace.gp_sleep <= 0)
1588 			rcu_tasks_trace.gp_sleep = 1;
1589 		rcu_tasks_trace.init_fract = HZ / 200;
1590 		if (rcu_tasks_trace.init_fract <= 0)
1591 			rcu_tasks_trace.init_fract = 1;
1592 	}
1593 	rcu_tasks_trace.pregp_func = rcu_tasks_trace_pregp_step;
1594 	rcu_tasks_trace.pertask_func = rcu_tasks_trace_pertask;
1595 	rcu_tasks_trace.postscan_func = rcu_tasks_trace_postscan;
1596 	rcu_tasks_trace.holdouts_func = check_all_holdout_tasks_trace;
1597 	rcu_tasks_trace.postgp_func = rcu_tasks_trace_postgp;
1598 	rcu_spawn_tasks_kthread_generic(&rcu_tasks_trace);
1599 	return 0;
1600 }
1601 
1602 #if !defined(CONFIG_TINY_RCU)
1603 void show_rcu_tasks_trace_gp_kthread(void)
1604 {
1605 	char buf[64];
1606 
1607 	sprintf(buf, "N%d h:%lu/%lu/%lu", atomic_read(&trc_n_readers_need_end),
1608 		data_race(n_heavy_reader_ofl_updates),
1609 		data_race(n_heavy_reader_updates),
1610 		data_race(n_heavy_reader_attempts));
1611 	show_rcu_tasks_generic_gp_kthread(&rcu_tasks_trace, buf);
1612 }
1613 EXPORT_SYMBOL_GPL(show_rcu_tasks_trace_gp_kthread);
1614 #endif // !defined(CONFIG_TINY_RCU)
1615 
1616 #else /* #ifdef CONFIG_TASKS_TRACE_RCU */
1617 static void exit_tasks_rcu_finish_trace(struct task_struct *t) { }
1618 #endif /* #else #ifdef CONFIG_TASKS_TRACE_RCU */
1619 
1620 #ifndef CONFIG_TINY_RCU
1621 void show_rcu_tasks_gp_kthreads(void)
1622 {
1623 	show_rcu_tasks_classic_gp_kthread();
1624 	show_rcu_tasks_rude_gp_kthread();
1625 	show_rcu_tasks_trace_gp_kthread();
1626 }
1627 #endif /* #ifndef CONFIG_TINY_RCU */
1628 
1629 #ifdef CONFIG_PROVE_RCU
1630 struct rcu_tasks_test_desc {
1631 	struct rcu_head rh;
1632 	const char *name;
1633 	bool notrun;
1634 };
1635 
1636 static struct rcu_tasks_test_desc tests[] = {
1637 	{
1638 		.name = "call_rcu_tasks()",
1639 		/* If not defined, the test is skipped. */
1640 		.notrun = !IS_ENABLED(CONFIG_TASKS_RCU),
1641 	},
1642 	{
1643 		.name = "call_rcu_tasks_rude()",
1644 		/* If not defined, the test is skipped. */
1645 		.notrun = !IS_ENABLED(CONFIG_TASKS_RUDE_RCU),
1646 	},
1647 	{
1648 		.name = "call_rcu_tasks_trace()",
1649 		/* If not defined, the test is skipped. */
1650 		.notrun = !IS_ENABLED(CONFIG_TASKS_TRACE_RCU)
1651 	}
1652 };
1653 
1654 static void test_rcu_tasks_callback(struct rcu_head *rhp)
1655 {
1656 	struct rcu_tasks_test_desc *rttd =
1657 		container_of(rhp, struct rcu_tasks_test_desc, rh);
1658 
1659 	pr_info("Callback from %s invoked.\n", rttd->name);
1660 
1661 	rttd->notrun = true;
1662 }
1663 
1664 static void rcu_tasks_initiate_self_tests(void)
1665 {
1666 	pr_info("Running RCU-tasks wait API self tests\n");
1667 #ifdef CONFIG_TASKS_RCU
1668 	synchronize_rcu_tasks();
1669 	call_rcu_tasks(&tests[0].rh, test_rcu_tasks_callback);
1670 #endif
1671 
1672 #ifdef CONFIG_TASKS_RUDE_RCU
1673 	synchronize_rcu_tasks_rude();
1674 	call_rcu_tasks_rude(&tests[1].rh, test_rcu_tasks_callback);
1675 #endif
1676 
1677 #ifdef CONFIG_TASKS_TRACE_RCU
1678 	synchronize_rcu_tasks_trace();
1679 	call_rcu_tasks_trace(&tests[2].rh, test_rcu_tasks_callback);
1680 #endif
1681 }
1682 
1683 static int rcu_tasks_verify_self_tests(void)
1684 {
1685 	int ret = 0;
1686 	int i;
1687 
1688 	for (i = 0; i < ARRAY_SIZE(tests); i++) {
1689 		if (!tests[i].notrun) {		// still hanging.
1690 			pr_err("%s has been failed.\n", tests[i].name);
1691 			ret = -1;
1692 		}
1693 	}
1694 
1695 	if (ret)
1696 		WARN_ON(1);
1697 
1698 	return ret;
1699 }
1700 late_initcall(rcu_tasks_verify_self_tests);
1701 #else /* #ifdef CONFIG_PROVE_RCU */
1702 static void rcu_tasks_initiate_self_tests(void) { }
1703 #endif /* #else #ifdef CONFIG_PROVE_RCU */
1704 
1705 void __init rcu_init_tasks_generic(void)
1706 {
1707 #ifdef CONFIG_TASKS_RCU
1708 	rcu_spawn_tasks_kthread();
1709 #endif
1710 
1711 #ifdef CONFIG_TASKS_RUDE_RCU
1712 	rcu_spawn_tasks_rude_kthread();
1713 #endif
1714 
1715 #ifdef CONFIG_TASKS_TRACE_RCU
1716 	rcu_spawn_tasks_trace_kthread();
1717 #endif
1718 
1719 	// Run the self-tests.
1720 	rcu_tasks_initiate_self_tests();
1721 }
1722 
1723 #else /* #ifdef CONFIG_TASKS_RCU_GENERIC */
1724 static inline void rcu_tasks_bootup_oddness(void) {}
1725 #endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */
1726