xref: /linux/kernel/rcu/srcutree.c (revision e9f0878c4b2004ac19581274c1ae4c61ae3ca70e)
1 /*
2  * Sleepable Read-Copy Update mechanism for mutual exclusion.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, you can access it online at
16  * http://www.gnu.org/licenses/gpl-2.0.html.
17  *
18  * Copyright (C) IBM Corporation, 2006
19  * Copyright (C) Fujitsu, 2012
20  *
21  * Author: Paul McKenney <paulmck@us.ibm.com>
22  *	   Lai Jiangshan <laijs@cn.fujitsu.com>
23  *
24  * For detailed explanation of Read-Copy Update mechanism see -
25  *		Documentation/RCU/ *.txt
26  *
27  */
28 
29 #define pr_fmt(fmt) "rcu: " fmt
30 
31 #include <linux/export.h>
32 #include <linux/mutex.h>
33 #include <linux/percpu.h>
34 #include <linux/preempt.h>
35 #include <linux/rcupdate_wait.h>
36 #include <linux/sched.h>
37 #include <linux/smp.h>
38 #include <linux/delay.h>
39 #include <linux/module.h>
40 #include <linux/srcu.h>
41 
42 #include "rcu.h"
43 #include "rcu_segcblist.h"
44 
45 /* Holdoff in nanoseconds for auto-expediting. */
46 #define DEFAULT_SRCU_EXP_HOLDOFF (25 * 1000)
47 static ulong exp_holdoff = DEFAULT_SRCU_EXP_HOLDOFF;
48 module_param(exp_holdoff, ulong, 0444);
49 
50 /* Overflow-check frequency.  N bits roughly says every 2**N grace periods. */
51 static ulong counter_wrap_check = (ULONG_MAX >> 2);
52 module_param(counter_wrap_check, ulong, 0444);
53 
54 static void srcu_invoke_callbacks(struct work_struct *work);
55 static void srcu_reschedule(struct srcu_struct *sp, unsigned long delay);
56 static void process_srcu(struct work_struct *work);
57 
58 /* Wrappers for lock acquisition and release, see raw_spin_lock_rcu_node(). */
59 #define spin_lock_rcu_node(p)					\
60 do {									\
61 	spin_lock(&ACCESS_PRIVATE(p, lock));			\
62 	smp_mb__after_unlock_lock();					\
63 } while (0)
64 
65 #define spin_unlock_rcu_node(p) spin_unlock(&ACCESS_PRIVATE(p, lock))
66 
67 #define spin_lock_irq_rcu_node(p)					\
68 do {									\
69 	spin_lock_irq(&ACCESS_PRIVATE(p, lock));			\
70 	smp_mb__after_unlock_lock();					\
71 } while (0)
72 
73 #define spin_unlock_irq_rcu_node(p)					\
74 	spin_unlock_irq(&ACCESS_PRIVATE(p, lock))
75 
76 #define spin_lock_irqsave_rcu_node(p, flags)			\
77 do {									\
78 	spin_lock_irqsave(&ACCESS_PRIVATE(p, lock), flags);	\
79 	smp_mb__after_unlock_lock();					\
80 } while (0)
81 
82 #define spin_unlock_irqrestore_rcu_node(p, flags)			\
83 	spin_unlock_irqrestore(&ACCESS_PRIVATE(p, lock), flags)	\
84 
85 /*
86  * Initialize SRCU combining tree.  Note that statically allocated
87  * srcu_struct structures might already have srcu_read_lock() and
88  * srcu_read_unlock() running against them.  So if the is_static parameter
89  * is set, don't initialize ->srcu_lock_count[] and ->srcu_unlock_count[].
90  */
91 static void init_srcu_struct_nodes(struct srcu_struct *sp, bool is_static)
92 {
93 	int cpu;
94 	int i;
95 	int level = 0;
96 	int levelspread[RCU_NUM_LVLS];
97 	struct srcu_data *sdp;
98 	struct srcu_node *snp;
99 	struct srcu_node *snp_first;
100 
101 	/* Work out the overall tree geometry. */
102 	sp->level[0] = &sp->node[0];
103 	for (i = 1; i < rcu_num_lvls; i++)
104 		sp->level[i] = sp->level[i - 1] + num_rcu_lvl[i - 1];
105 	rcu_init_levelspread(levelspread, num_rcu_lvl);
106 
107 	/* Each pass through this loop initializes one srcu_node structure. */
108 	rcu_for_each_node_breadth_first(sp, snp) {
109 		spin_lock_init(&ACCESS_PRIVATE(snp, lock));
110 		WARN_ON_ONCE(ARRAY_SIZE(snp->srcu_have_cbs) !=
111 			     ARRAY_SIZE(snp->srcu_data_have_cbs));
112 		for (i = 0; i < ARRAY_SIZE(snp->srcu_have_cbs); i++) {
113 			snp->srcu_have_cbs[i] = 0;
114 			snp->srcu_data_have_cbs[i] = 0;
115 		}
116 		snp->srcu_gp_seq_needed_exp = 0;
117 		snp->grplo = -1;
118 		snp->grphi = -1;
119 		if (snp == &sp->node[0]) {
120 			/* Root node, special case. */
121 			snp->srcu_parent = NULL;
122 			continue;
123 		}
124 
125 		/* Non-root node. */
126 		if (snp == sp->level[level + 1])
127 			level++;
128 		snp->srcu_parent = sp->level[level - 1] +
129 				   (snp - sp->level[level]) /
130 				   levelspread[level - 1];
131 	}
132 
133 	/*
134 	 * Initialize the per-CPU srcu_data array, which feeds into the
135 	 * leaves of the srcu_node tree.
136 	 */
137 	WARN_ON_ONCE(ARRAY_SIZE(sdp->srcu_lock_count) !=
138 		     ARRAY_SIZE(sdp->srcu_unlock_count));
139 	level = rcu_num_lvls - 1;
140 	snp_first = sp->level[level];
141 	for_each_possible_cpu(cpu) {
142 		sdp = per_cpu_ptr(sp->sda, cpu);
143 		spin_lock_init(&ACCESS_PRIVATE(sdp, lock));
144 		rcu_segcblist_init(&sdp->srcu_cblist);
145 		sdp->srcu_cblist_invoking = false;
146 		sdp->srcu_gp_seq_needed = sp->srcu_gp_seq;
147 		sdp->srcu_gp_seq_needed_exp = sp->srcu_gp_seq;
148 		sdp->mynode = &snp_first[cpu / levelspread[level]];
149 		for (snp = sdp->mynode; snp != NULL; snp = snp->srcu_parent) {
150 			if (snp->grplo < 0)
151 				snp->grplo = cpu;
152 			snp->grphi = cpu;
153 		}
154 		sdp->cpu = cpu;
155 		INIT_DELAYED_WORK(&sdp->work, srcu_invoke_callbacks);
156 		sdp->sp = sp;
157 		sdp->grpmask = 1 << (cpu - sdp->mynode->grplo);
158 		if (is_static)
159 			continue;
160 
161 		/* Dynamically allocated, better be no srcu_read_locks()! */
162 		for (i = 0; i < ARRAY_SIZE(sdp->srcu_lock_count); i++) {
163 			sdp->srcu_lock_count[i] = 0;
164 			sdp->srcu_unlock_count[i] = 0;
165 		}
166 	}
167 }
168 
169 /*
170  * Initialize non-compile-time initialized fields, including the
171  * associated srcu_node and srcu_data structures.  The is_static
172  * parameter is passed through to init_srcu_struct_nodes(), and
173  * also tells us that ->sda has already been wired up to srcu_data.
174  */
175 static int init_srcu_struct_fields(struct srcu_struct *sp, bool is_static)
176 {
177 	mutex_init(&sp->srcu_cb_mutex);
178 	mutex_init(&sp->srcu_gp_mutex);
179 	sp->srcu_idx = 0;
180 	sp->srcu_gp_seq = 0;
181 	sp->srcu_barrier_seq = 0;
182 	mutex_init(&sp->srcu_barrier_mutex);
183 	atomic_set(&sp->srcu_barrier_cpu_cnt, 0);
184 	INIT_DELAYED_WORK(&sp->work, process_srcu);
185 	if (!is_static)
186 		sp->sda = alloc_percpu(struct srcu_data);
187 	init_srcu_struct_nodes(sp, is_static);
188 	sp->srcu_gp_seq_needed_exp = 0;
189 	sp->srcu_last_gp_end = ktime_get_mono_fast_ns();
190 	smp_store_release(&sp->srcu_gp_seq_needed, 0); /* Init done. */
191 	return sp->sda ? 0 : -ENOMEM;
192 }
193 
194 #ifdef CONFIG_DEBUG_LOCK_ALLOC
195 
196 int __init_srcu_struct(struct srcu_struct *sp, const char *name,
197 		       struct lock_class_key *key)
198 {
199 	/* Don't re-initialize a lock while it is held. */
200 	debug_check_no_locks_freed((void *)sp, sizeof(*sp));
201 	lockdep_init_map(&sp->dep_map, name, key, 0);
202 	spin_lock_init(&ACCESS_PRIVATE(sp, lock));
203 	return init_srcu_struct_fields(sp, false);
204 }
205 EXPORT_SYMBOL_GPL(__init_srcu_struct);
206 
207 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
208 
209 /**
210  * init_srcu_struct - initialize a sleep-RCU structure
211  * @sp: structure to initialize.
212  *
213  * Must invoke this on a given srcu_struct before passing that srcu_struct
214  * to any other function.  Each srcu_struct represents a separate domain
215  * of SRCU protection.
216  */
217 int init_srcu_struct(struct srcu_struct *sp)
218 {
219 	spin_lock_init(&ACCESS_PRIVATE(sp, lock));
220 	return init_srcu_struct_fields(sp, false);
221 }
222 EXPORT_SYMBOL_GPL(init_srcu_struct);
223 
224 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
225 
226 /*
227  * First-use initialization of statically allocated srcu_struct
228  * structure.  Wiring up the combining tree is more than can be
229  * done with compile-time initialization, so this check is added
230  * to each update-side SRCU primitive.  Use sp->lock, which -is-
231  * compile-time initialized, to resolve races involving multiple
232  * CPUs trying to garner first-use privileges.
233  */
234 static void check_init_srcu_struct(struct srcu_struct *sp)
235 {
236 	unsigned long flags;
237 
238 	WARN_ON_ONCE(rcu_scheduler_active == RCU_SCHEDULER_INIT);
239 	/* The smp_load_acquire() pairs with the smp_store_release(). */
240 	if (!rcu_seq_state(smp_load_acquire(&sp->srcu_gp_seq_needed))) /*^^^*/
241 		return; /* Already initialized. */
242 	spin_lock_irqsave_rcu_node(sp, flags);
243 	if (!rcu_seq_state(sp->srcu_gp_seq_needed)) {
244 		spin_unlock_irqrestore_rcu_node(sp, flags);
245 		return;
246 	}
247 	init_srcu_struct_fields(sp, true);
248 	spin_unlock_irqrestore_rcu_node(sp, flags);
249 }
250 
251 /*
252  * Returns approximate total of the readers' ->srcu_lock_count[] values
253  * for the rank of per-CPU counters specified by idx.
254  */
255 static unsigned long srcu_readers_lock_idx(struct srcu_struct *sp, int idx)
256 {
257 	int cpu;
258 	unsigned long sum = 0;
259 
260 	for_each_possible_cpu(cpu) {
261 		struct srcu_data *cpuc = per_cpu_ptr(sp->sda, cpu);
262 
263 		sum += READ_ONCE(cpuc->srcu_lock_count[idx]);
264 	}
265 	return sum;
266 }
267 
268 /*
269  * Returns approximate total of the readers' ->srcu_unlock_count[] values
270  * for the rank of per-CPU counters specified by idx.
271  */
272 static unsigned long srcu_readers_unlock_idx(struct srcu_struct *sp, int idx)
273 {
274 	int cpu;
275 	unsigned long sum = 0;
276 
277 	for_each_possible_cpu(cpu) {
278 		struct srcu_data *cpuc = per_cpu_ptr(sp->sda, cpu);
279 
280 		sum += READ_ONCE(cpuc->srcu_unlock_count[idx]);
281 	}
282 	return sum;
283 }
284 
285 /*
286  * Return true if the number of pre-existing readers is determined to
287  * be zero.
288  */
289 static bool srcu_readers_active_idx_check(struct srcu_struct *sp, int idx)
290 {
291 	unsigned long unlocks;
292 
293 	unlocks = srcu_readers_unlock_idx(sp, idx);
294 
295 	/*
296 	 * Make sure that a lock is always counted if the corresponding
297 	 * unlock is counted. Needs to be a smp_mb() as the read side may
298 	 * contain a read from a variable that is written to before the
299 	 * synchronize_srcu() in the write side. In this case smp_mb()s
300 	 * A and B act like the store buffering pattern.
301 	 *
302 	 * This smp_mb() also pairs with smp_mb() C to prevent accesses
303 	 * after the synchronize_srcu() from being executed before the
304 	 * grace period ends.
305 	 */
306 	smp_mb(); /* A */
307 
308 	/*
309 	 * If the locks are the same as the unlocks, then there must have
310 	 * been no readers on this index at some time in between. This does
311 	 * not mean that there are no more readers, as one could have read
312 	 * the current index but not have incremented the lock counter yet.
313 	 *
314 	 * So suppose that the updater is preempted here for so long
315 	 * that more than ULONG_MAX non-nested readers come and go in
316 	 * the meantime.  It turns out that this cannot result in overflow
317 	 * because if a reader modifies its unlock count after we read it
318 	 * above, then that reader's next load of ->srcu_idx is guaranteed
319 	 * to get the new value, which will cause it to operate on the
320 	 * other bank of counters, where it cannot contribute to the
321 	 * overflow of these counters.  This means that there is a maximum
322 	 * of 2*NR_CPUS increments, which cannot overflow given current
323 	 * systems, especially not on 64-bit systems.
324 	 *
325 	 * OK, how about nesting?  This does impose a limit on nesting
326 	 * of floor(ULONG_MAX/NR_CPUS/2), which should be sufficient,
327 	 * especially on 64-bit systems.
328 	 */
329 	return srcu_readers_lock_idx(sp, idx) == unlocks;
330 }
331 
332 /**
333  * srcu_readers_active - returns true if there are readers. and false
334  *                       otherwise
335  * @sp: which srcu_struct to count active readers (holding srcu_read_lock).
336  *
337  * Note that this is not an atomic primitive, and can therefore suffer
338  * severe errors when invoked on an active srcu_struct.  That said, it
339  * can be useful as an error check at cleanup time.
340  */
341 static bool srcu_readers_active(struct srcu_struct *sp)
342 {
343 	int cpu;
344 	unsigned long sum = 0;
345 
346 	for_each_possible_cpu(cpu) {
347 		struct srcu_data *cpuc = per_cpu_ptr(sp->sda, cpu);
348 
349 		sum += READ_ONCE(cpuc->srcu_lock_count[0]);
350 		sum += READ_ONCE(cpuc->srcu_lock_count[1]);
351 		sum -= READ_ONCE(cpuc->srcu_unlock_count[0]);
352 		sum -= READ_ONCE(cpuc->srcu_unlock_count[1]);
353 	}
354 	return sum;
355 }
356 
357 #define SRCU_INTERVAL		1
358 
359 /*
360  * Return grace-period delay, zero if there are expedited grace
361  * periods pending, SRCU_INTERVAL otherwise.
362  */
363 static unsigned long srcu_get_delay(struct srcu_struct *sp)
364 {
365 	if (ULONG_CMP_LT(READ_ONCE(sp->srcu_gp_seq),
366 			 READ_ONCE(sp->srcu_gp_seq_needed_exp)))
367 		return 0;
368 	return SRCU_INTERVAL;
369 }
370 
371 /* Helper for cleanup_srcu_struct() and cleanup_srcu_struct_quiesced(). */
372 void _cleanup_srcu_struct(struct srcu_struct *sp, bool quiesced)
373 {
374 	int cpu;
375 
376 	if (WARN_ON(!srcu_get_delay(sp)))
377 		return; /* Just leak it! */
378 	if (WARN_ON(srcu_readers_active(sp)))
379 		return; /* Just leak it! */
380 	if (quiesced) {
381 		if (WARN_ON(delayed_work_pending(&sp->work)))
382 			return; /* Just leak it! */
383 	} else {
384 		flush_delayed_work(&sp->work);
385 	}
386 	for_each_possible_cpu(cpu)
387 		if (quiesced) {
388 			if (WARN_ON(delayed_work_pending(&per_cpu_ptr(sp->sda, cpu)->work)))
389 				return; /* Just leak it! */
390 		} else {
391 			flush_delayed_work(&per_cpu_ptr(sp->sda, cpu)->work);
392 		}
393 	if (WARN_ON(rcu_seq_state(READ_ONCE(sp->srcu_gp_seq)) != SRCU_STATE_IDLE) ||
394 	    WARN_ON(srcu_readers_active(sp))) {
395 		pr_info("%s: Active srcu_struct %p state: %d\n",
396 			__func__, sp, rcu_seq_state(READ_ONCE(sp->srcu_gp_seq)));
397 		return; /* Caller forgot to stop doing call_srcu()? */
398 	}
399 	free_percpu(sp->sda);
400 	sp->sda = NULL;
401 }
402 EXPORT_SYMBOL_GPL(_cleanup_srcu_struct);
403 
404 /*
405  * Counts the new reader in the appropriate per-CPU element of the
406  * srcu_struct.
407  * Returns an index that must be passed to the matching srcu_read_unlock().
408  */
409 int __srcu_read_lock(struct srcu_struct *sp)
410 {
411 	int idx;
412 
413 	idx = READ_ONCE(sp->srcu_idx) & 0x1;
414 	this_cpu_inc(sp->sda->srcu_lock_count[idx]);
415 	smp_mb(); /* B */  /* Avoid leaking the critical section. */
416 	return idx;
417 }
418 EXPORT_SYMBOL_GPL(__srcu_read_lock);
419 
420 /*
421  * Removes the count for the old reader from the appropriate per-CPU
422  * element of the srcu_struct.  Note that this may well be a different
423  * CPU than that which was incremented by the corresponding srcu_read_lock().
424  */
425 void __srcu_read_unlock(struct srcu_struct *sp, int idx)
426 {
427 	smp_mb(); /* C */  /* Avoid leaking the critical section. */
428 	this_cpu_inc(sp->sda->srcu_unlock_count[idx]);
429 }
430 EXPORT_SYMBOL_GPL(__srcu_read_unlock);
431 
432 /*
433  * We use an adaptive strategy for synchronize_srcu() and especially for
434  * synchronize_srcu_expedited().  We spin for a fixed time period
435  * (defined below) to allow SRCU readers to exit their read-side critical
436  * sections.  If there are still some readers after a few microseconds,
437  * we repeatedly block for 1-millisecond time periods.
438  */
439 #define SRCU_RETRY_CHECK_DELAY		5
440 
441 /*
442  * Start an SRCU grace period.
443  */
444 static void srcu_gp_start(struct srcu_struct *sp)
445 {
446 	struct srcu_data *sdp = this_cpu_ptr(sp->sda);
447 	int state;
448 
449 	lockdep_assert_held(&ACCESS_PRIVATE(sp, lock));
450 	WARN_ON_ONCE(ULONG_CMP_GE(sp->srcu_gp_seq, sp->srcu_gp_seq_needed));
451 	rcu_segcblist_advance(&sdp->srcu_cblist,
452 			      rcu_seq_current(&sp->srcu_gp_seq));
453 	(void)rcu_segcblist_accelerate(&sdp->srcu_cblist,
454 				       rcu_seq_snap(&sp->srcu_gp_seq));
455 	smp_mb(); /* Order prior store to ->srcu_gp_seq_needed vs. GP start. */
456 	rcu_seq_start(&sp->srcu_gp_seq);
457 	state = rcu_seq_state(READ_ONCE(sp->srcu_gp_seq));
458 	WARN_ON_ONCE(state != SRCU_STATE_SCAN1);
459 }
460 
461 /*
462  * Track online CPUs to guide callback workqueue placement.
463  */
464 DEFINE_PER_CPU(bool, srcu_online);
465 
466 void srcu_online_cpu(unsigned int cpu)
467 {
468 	WRITE_ONCE(per_cpu(srcu_online, cpu), true);
469 }
470 
471 void srcu_offline_cpu(unsigned int cpu)
472 {
473 	WRITE_ONCE(per_cpu(srcu_online, cpu), false);
474 }
475 
476 /*
477  * Place the workqueue handler on the specified CPU if online, otherwise
478  * just run it whereever.  This is useful for placing workqueue handlers
479  * that are to invoke the specified CPU's callbacks.
480  */
481 static bool srcu_queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
482 				       struct delayed_work *dwork,
483 				       unsigned long delay)
484 {
485 	bool ret;
486 
487 	preempt_disable();
488 	if (READ_ONCE(per_cpu(srcu_online, cpu)))
489 		ret = queue_delayed_work_on(cpu, wq, dwork, delay);
490 	else
491 		ret = queue_delayed_work(wq, dwork, delay);
492 	preempt_enable();
493 	return ret;
494 }
495 
496 /*
497  * Schedule callback invocation for the specified srcu_data structure,
498  * if possible, on the corresponding CPU.
499  */
500 static void srcu_schedule_cbs_sdp(struct srcu_data *sdp, unsigned long delay)
501 {
502 	srcu_queue_delayed_work_on(sdp->cpu, rcu_gp_wq, &sdp->work, delay);
503 }
504 
505 /*
506  * Schedule callback invocation for all srcu_data structures associated
507  * with the specified srcu_node structure that have callbacks for the
508  * just-completed grace period, the one corresponding to idx.  If possible,
509  * schedule this invocation on the corresponding CPUs.
510  */
511 static void srcu_schedule_cbs_snp(struct srcu_struct *sp, struct srcu_node *snp,
512 				  unsigned long mask, unsigned long delay)
513 {
514 	int cpu;
515 
516 	for (cpu = snp->grplo; cpu <= snp->grphi; cpu++) {
517 		if (!(mask & (1 << (cpu - snp->grplo))))
518 			continue;
519 		srcu_schedule_cbs_sdp(per_cpu_ptr(sp->sda, cpu), delay);
520 	}
521 }
522 
523 /*
524  * Note the end of an SRCU grace period.  Initiates callback invocation
525  * and starts a new grace period if needed.
526  *
527  * The ->srcu_cb_mutex acquisition does not protect any data, but
528  * instead prevents more than one grace period from starting while we
529  * are initiating callback invocation.  This allows the ->srcu_have_cbs[]
530  * array to have a finite number of elements.
531  */
532 static void srcu_gp_end(struct srcu_struct *sp)
533 {
534 	unsigned long cbdelay;
535 	bool cbs;
536 	bool last_lvl;
537 	int cpu;
538 	unsigned long flags;
539 	unsigned long gpseq;
540 	int idx;
541 	unsigned long mask;
542 	struct srcu_data *sdp;
543 	struct srcu_node *snp;
544 
545 	/* Prevent more than one additional grace period. */
546 	mutex_lock(&sp->srcu_cb_mutex);
547 
548 	/* End the current grace period. */
549 	spin_lock_irq_rcu_node(sp);
550 	idx = rcu_seq_state(sp->srcu_gp_seq);
551 	WARN_ON_ONCE(idx != SRCU_STATE_SCAN2);
552 	cbdelay = srcu_get_delay(sp);
553 	sp->srcu_last_gp_end = ktime_get_mono_fast_ns();
554 	rcu_seq_end(&sp->srcu_gp_seq);
555 	gpseq = rcu_seq_current(&sp->srcu_gp_seq);
556 	if (ULONG_CMP_LT(sp->srcu_gp_seq_needed_exp, gpseq))
557 		sp->srcu_gp_seq_needed_exp = gpseq;
558 	spin_unlock_irq_rcu_node(sp);
559 	mutex_unlock(&sp->srcu_gp_mutex);
560 	/* A new grace period can start at this point.  But only one. */
561 
562 	/* Initiate callback invocation as needed. */
563 	idx = rcu_seq_ctr(gpseq) % ARRAY_SIZE(snp->srcu_have_cbs);
564 	rcu_for_each_node_breadth_first(sp, snp) {
565 		spin_lock_irq_rcu_node(snp);
566 		cbs = false;
567 		last_lvl = snp >= sp->level[rcu_num_lvls - 1];
568 		if (last_lvl)
569 			cbs = snp->srcu_have_cbs[idx] == gpseq;
570 		snp->srcu_have_cbs[idx] = gpseq;
571 		rcu_seq_set_state(&snp->srcu_have_cbs[idx], 1);
572 		if (ULONG_CMP_LT(snp->srcu_gp_seq_needed_exp, gpseq))
573 			snp->srcu_gp_seq_needed_exp = gpseq;
574 		mask = snp->srcu_data_have_cbs[idx];
575 		snp->srcu_data_have_cbs[idx] = 0;
576 		spin_unlock_irq_rcu_node(snp);
577 		if (cbs)
578 			srcu_schedule_cbs_snp(sp, snp, mask, cbdelay);
579 
580 		/* Occasionally prevent srcu_data counter wrap. */
581 		if (!(gpseq & counter_wrap_check) && last_lvl)
582 			for (cpu = snp->grplo; cpu <= snp->grphi; cpu++) {
583 				sdp = per_cpu_ptr(sp->sda, cpu);
584 				spin_lock_irqsave_rcu_node(sdp, flags);
585 				if (ULONG_CMP_GE(gpseq,
586 						 sdp->srcu_gp_seq_needed + 100))
587 					sdp->srcu_gp_seq_needed = gpseq;
588 				if (ULONG_CMP_GE(gpseq,
589 						 sdp->srcu_gp_seq_needed_exp + 100))
590 					sdp->srcu_gp_seq_needed_exp = gpseq;
591 				spin_unlock_irqrestore_rcu_node(sdp, flags);
592 			}
593 	}
594 
595 	/* Callback initiation done, allow grace periods after next. */
596 	mutex_unlock(&sp->srcu_cb_mutex);
597 
598 	/* Start a new grace period if needed. */
599 	spin_lock_irq_rcu_node(sp);
600 	gpseq = rcu_seq_current(&sp->srcu_gp_seq);
601 	if (!rcu_seq_state(gpseq) &&
602 	    ULONG_CMP_LT(gpseq, sp->srcu_gp_seq_needed)) {
603 		srcu_gp_start(sp);
604 		spin_unlock_irq_rcu_node(sp);
605 		srcu_reschedule(sp, 0);
606 	} else {
607 		spin_unlock_irq_rcu_node(sp);
608 	}
609 }
610 
611 /*
612  * Funnel-locking scheme to scalably mediate many concurrent expedited
613  * grace-period requests.  This function is invoked for the first known
614  * expedited request for a grace period that has already been requested,
615  * but without expediting.  To start a completely new grace period,
616  * whether expedited or not, use srcu_funnel_gp_start() instead.
617  */
618 static void srcu_funnel_exp_start(struct srcu_struct *sp, struct srcu_node *snp,
619 				  unsigned long s)
620 {
621 	unsigned long flags;
622 
623 	for (; snp != NULL; snp = snp->srcu_parent) {
624 		if (rcu_seq_done(&sp->srcu_gp_seq, s) ||
625 		    ULONG_CMP_GE(READ_ONCE(snp->srcu_gp_seq_needed_exp), s))
626 			return;
627 		spin_lock_irqsave_rcu_node(snp, flags);
628 		if (ULONG_CMP_GE(snp->srcu_gp_seq_needed_exp, s)) {
629 			spin_unlock_irqrestore_rcu_node(snp, flags);
630 			return;
631 		}
632 		WRITE_ONCE(snp->srcu_gp_seq_needed_exp, s);
633 		spin_unlock_irqrestore_rcu_node(snp, flags);
634 	}
635 	spin_lock_irqsave_rcu_node(sp, flags);
636 	if (ULONG_CMP_LT(sp->srcu_gp_seq_needed_exp, s))
637 		sp->srcu_gp_seq_needed_exp = s;
638 	spin_unlock_irqrestore_rcu_node(sp, flags);
639 }
640 
641 /*
642  * Funnel-locking scheme to scalably mediate many concurrent grace-period
643  * requests.  The winner has to do the work of actually starting grace
644  * period s.  Losers must either ensure that their desired grace-period
645  * number is recorded on at least their leaf srcu_node structure, or they
646  * must take steps to invoke their own callbacks.
647  *
648  * Note that this function also does the work of srcu_funnel_exp_start(),
649  * in some cases by directly invoking it.
650  */
651 static void srcu_funnel_gp_start(struct srcu_struct *sp, struct srcu_data *sdp,
652 				 unsigned long s, bool do_norm)
653 {
654 	unsigned long flags;
655 	int idx = rcu_seq_ctr(s) % ARRAY_SIZE(sdp->mynode->srcu_have_cbs);
656 	struct srcu_node *snp = sdp->mynode;
657 	unsigned long snp_seq;
658 
659 	/* Each pass through the loop does one level of the srcu_node tree. */
660 	for (; snp != NULL; snp = snp->srcu_parent) {
661 		if (rcu_seq_done(&sp->srcu_gp_seq, s) && snp != sdp->mynode)
662 			return; /* GP already done and CBs recorded. */
663 		spin_lock_irqsave_rcu_node(snp, flags);
664 		if (ULONG_CMP_GE(snp->srcu_have_cbs[idx], s)) {
665 			snp_seq = snp->srcu_have_cbs[idx];
666 			if (snp == sdp->mynode && snp_seq == s)
667 				snp->srcu_data_have_cbs[idx] |= sdp->grpmask;
668 			spin_unlock_irqrestore_rcu_node(snp, flags);
669 			if (snp == sdp->mynode && snp_seq != s) {
670 				srcu_schedule_cbs_sdp(sdp, do_norm
671 							   ? SRCU_INTERVAL
672 							   : 0);
673 				return;
674 			}
675 			if (!do_norm)
676 				srcu_funnel_exp_start(sp, snp, s);
677 			return;
678 		}
679 		snp->srcu_have_cbs[idx] = s;
680 		if (snp == sdp->mynode)
681 			snp->srcu_data_have_cbs[idx] |= sdp->grpmask;
682 		if (!do_norm && ULONG_CMP_LT(snp->srcu_gp_seq_needed_exp, s))
683 			snp->srcu_gp_seq_needed_exp = s;
684 		spin_unlock_irqrestore_rcu_node(snp, flags);
685 	}
686 
687 	/* Top of tree, must ensure the grace period will be started. */
688 	spin_lock_irqsave_rcu_node(sp, flags);
689 	if (ULONG_CMP_LT(sp->srcu_gp_seq_needed, s)) {
690 		/*
691 		 * Record need for grace period s.  Pair with load
692 		 * acquire setting up for initialization.
693 		 */
694 		smp_store_release(&sp->srcu_gp_seq_needed, s); /*^^^*/
695 	}
696 	if (!do_norm && ULONG_CMP_LT(sp->srcu_gp_seq_needed_exp, s))
697 		sp->srcu_gp_seq_needed_exp = s;
698 
699 	/* If grace period not already done and none in progress, start it. */
700 	if (!rcu_seq_done(&sp->srcu_gp_seq, s) &&
701 	    rcu_seq_state(sp->srcu_gp_seq) == SRCU_STATE_IDLE) {
702 		WARN_ON_ONCE(ULONG_CMP_GE(sp->srcu_gp_seq, sp->srcu_gp_seq_needed));
703 		srcu_gp_start(sp);
704 		queue_delayed_work(rcu_gp_wq, &sp->work, srcu_get_delay(sp));
705 	}
706 	spin_unlock_irqrestore_rcu_node(sp, flags);
707 }
708 
709 /*
710  * Wait until all readers counted by array index idx complete, but
711  * loop an additional time if there is an expedited grace period pending.
712  * The caller must ensure that ->srcu_idx is not changed while checking.
713  */
714 static bool try_check_zero(struct srcu_struct *sp, int idx, int trycount)
715 {
716 	for (;;) {
717 		if (srcu_readers_active_idx_check(sp, idx))
718 			return true;
719 		if (--trycount + !srcu_get_delay(sp) <= 0)
720 			return false;
721 		udelay(SRCU_RETRY_CHECK_DELAY);
722 	}
723 }
724 
725 /*
726  * Increment the ->srcu_idx counter so that future SRCU readers will
727  * use the other rank of the ->srcu_(un)lock_count[] arrays.  This allows
728  * us to wait for pre-existing readers in a starvation-free manner.
729  */
730 static void srcu_flip(struct srcu_struct *sp)
731 {
732 	/*
733 	 * Ensure that if this updater saw a given reader's increment
734 	 * from __srcu_read_lock(), that reader was using an old value
735 	 * of ->srcu_idx.  Also ensure that if a given reader sees the
736 	 * new value of ->srcu_idx, this updater's earlier scans cannot
737 	 * have seen that reader's increments (which is OK, because this
738 	 * grace period need not wait on that reader).
739 	 */
740 	smp_mb(); /* E */  /* Pairs with B and C. */
741 
742 	WRITE_ONCE(sp->srcu_idx, sp->srcu_idx + 1);
743 
744 	/*
745 	 * Ensure that if the updater misses an __srcu_read_unlock()
746 	 * increment, that task's next __srcu_read_lock() will see the
747 	 * above counter update.  Note that both this memory barrier
748 	 * and the one in srcu_readers_active_idx_check() provide the
749 	 * guarantee for __srcu_read_lock().
750 	 */
751 	smp_mb(); /* D */  /* Pairs with C. */
752 }
753 
754 /*
755  * If SRCU is likely idle, return true, otherwise return false.
756  *
757  * Note that it is OK for several current from-idle requests for a new
758  * grace period from idle to specify expediting because they will all end
759  * up requesting the same grace period anyhow.  So no loss.
760  *
761  * Note also that if any CPU (including the current one) is still invoking
762  * callbacks, this function will nevertheless say "idle".  This is not
763  * ideal, but the overhead of checking all CPUs' callback lists is even
764  * less ideal, especially on large systems.  Furthermore, the wakeup
765  * can happen before the callback is fully removed, so we have no choice
766  * but to accept this type of error.
767  *
768  * This function is also subject to counter-wrap errors, but let's face
769  * it, if this function was preempted for enough time for the counters
770  * to wrap, it really doesn't matter whether or not we expedite the grace
771  * period.  The extra overhead of a needlessly expedited grace period is
772  * negligible when amoritized over that time period, and the extra latency
773  * of a needlessly non-expedited grace period is similarly negligible.
774  */
775 static bool srcu_might_be_idle(struct srcu_struct *sp)
776 {
777 	unsigned long curseq;
778 	unsigned long flags;
779 	struct srcu_data *sdp;
780 	unsigned long t;
781 
782 	/* If the local srcu_data structure has callbacks, not idle.  */
783 	local_irq_save(flags);
784 	sdp = this_cpu_ptr(sp->sda);
785 	if (rcu_segcblist_pend_cbs(&sdp->srcu_cblist)) {
786 		local_irq_restore(flags);
787 		return false; /* Callbacks already present, so not idle. */
788 	}
789 	local_irq_restore(flags);
790 
791 	/*
792 	 * No local callbacks, so probabalistically probe global state.
793 	 * Exact information would require acquiring locks, which would
794 	 * kill scalability, hence the probabalistic nature of the probe.
795 	 */
796 
797 	/* First, see if enough time has passed since the last GP. */
798 	t = ktime_get_mono_fast_ns();
799 	if (exp_holdoff == 0 ||
800 	    time_in_range_open(t, sp->srcu_last_gp_end,
801 			       sp->srcu_last_gp_end + exp_holdoff))
802 		return false; /* Too soon after last GP. */
803 
804 	/* Next, check for probable idleness. */
805 	curseq = rcu_seq_current(&sp->srcu_gp_seq);
806 	smp_mb(); /* Order ->srcu_gp_seq with ->srcu_gp_seq_needed. */
807 	if (ULONG_CMP_LT(curseq, READ_ONCE(sp->srcu_gp_seq_needed)))
808 		return false; /* Grace period in progress, so not idle. */
809 	smp_mb(); /* Order ->srcu_gp_seq with prior access. */
810 	if (curseq != rcu_seq_current(&sp->srcu_gp_seq))
811 		return false; /* GP # changed, so not idle. */
812 	return true; /* With reasonable probability, idle! */
813 }
814 
815 /*
816  * SRCU callback function to leak a callback.
817  */
818 static void srcu_leak_callback(struct rcu_head *rhp)
819 {
820 }
821 
822 /*
823  * Enqueue an SRCU callback on the srcu_data structure associated with
824  * the current CPU and the specified srcu_struct structure, initiating
825  * grace-period processing if it is not already running.
826  *
827  * Note that all CPUs must agree that the grace period extended beyond
828  * all pre-existing SRCU read-side critical section.  On systems with
829  * more than one CPU, this means that when "func()" is invoked, each CPU
830  * is guaranteed to have executed a full memory barrier since the end of
831  * its last corresponding SRCU read-side critical section whose beginning
832  * preceded the call to call_srcu().  It also means that each CPU executing
833  * an SRCU read-side critical section that continues beyond the start of
834  * "func()" must have executed a memory barrier after the call_srcu()
835  * but before the beginning of that SRCU read-side critical section.
836  * Note that these guarantees include CPUs that are offline, idle, or
837  * executing in user mode, as well as CPUs that are executing in the kernel.
838  *
839  * Furthermore, if CPU A invoked call_srcu() and CPU B invoked the
840  * resulting SRCU callback function "func()", then both CPU A and CPU
841  * B are guaranteed to execute a full memory barrier during the time
842  * interval between the call to call_srcu() and the invocation of "func()".
843  * This guarantee applies even if CPU A and CPU B are the same CPU (but
844  * again only if the system has more than one CPU).
845  *
846  * Of course, these guarantees apply only for invocations of call_srcu(),
847  * srcu_read_lock(), and srcu_read_unlock() that are all passed the same
848  * srcu_struct structure.
849  */
850 void __call_srcu(struct srcu_struct *sp, struct rcu_head *rhp,
851 		 rcu_callback_t func, bool do_norm)
852 {
853 	unsigned long flags;
854 	bool needexp = false;
855 	bool needgp = false;
856 	unsigned long s;
857 	struct srcu_data *sdp;
858 
859 	check_init_srcu_struct(sp);
860 	if (debug_rcu_head_queue(rhp)) {
861 		/* Probable double call_srcu(), so leak the callback. */
862 		WRITE_ONCE(rhp->func, srcu_leak_callback);
863 		WARN_ONCE(1, "call_srcu(): Leaked duplicate callback\n");
864 		return;
865 	}
866 	rhp->func = func;
867 	local_irq_save(flags);
868 	sdp = this_cpu_ptr(sp->sda);
869 	spin_lock_rcu_node(sdp);
870 	rcu_segcblist_enqueue(&sdp->srcu_cblist, rhp, false);
871 	rcu_segcblist_advance(&sdp->srcu_cblist,
872 			      rcu_seq_current(&sp->srcu_gp_seq));
873 	s = rcu_seq_snap(&sp->srcu_gp_seq);
874 	(void)rcu_segcblist_accelerate(&sdp->srcu_cblist, s);
875 	if (ULONG_CMP_LT(sdp->srcu_gp_seq_needed, s)) {
876 		sdp->srcu_gp_seq_needed = s;
877 		needgp = true;
878 	}
879 	if (!do_norm && ULONG_CMP_LT(sdp->srcu_gp_seq_needed_exp, s)) {
880 		sdp->srcu_gp_seq_needed_exp = s;
881 		needexp = true;
882 	}
883 	spin_unlock_irqrestore_rcu_node(sdp, flags);
884 	if (needgp)
885 		srcu_funnel_gp_start(sp, sdp, s, do_norm);
886 	else if (needexp)
887 		srcu_funnel_exp_start(sp, sdp->mynode, s);
888 }
889 
890 /**
891  * call_srcu() - Queue a callback for invocation after an SRCU grace period
892  * @sp: srcu_struct in queue the callback
893  * @rhp: structure to be used for queueing the SRCU callback.
894  * @func: function to be invoked after the SRCU grace period
895  *
896  * The callback function will be invoked some time after a full SRCU
897  * grace period elapses, in other words after all pre-existing SRCU
898  * read-side critical sections have completed.  However, the callback
899  * function might well execute concurrently with other SRCU read-side
900  * critical sections that started after call_srcu() was invoked.  SRCU
901  * read-side critical sections are delimited by srcu_read_lock() and
902  * srcu_read_unlock(), and may be nested.
903  *
904  * The callback will be invoked from process context, but must nevertheless
905  * be fast and must not block.
906  */
907 void call_srcu(struct srcu_struct *sp, struct rcu_head *rhp,
908 	       rcu_callback_t func)
909 {
910 	__call_srcu(sp, rhp, func, true);
911 }
912 EXPORT_SYMBOL_GPL(call_srcu);
913 
914 /*
915  * Helper function for synchronize_srcu() and synchronize_srcu_expedited().
916  */
917 static void __synchronize_srcu(struct srcu_struct *sp, bool do_norm)
918 {
919 	struct rcu_synchronize rcu;
920 
921 	RCU_LOCKDEP_WARN(lock_is_held(&sp->dep_map) ||
922 			 lock_is_held(&rcu_bh_lock_map) ||
923 			 lock_is_held(&rcu_lock_map) ||
924 			 lock_is_held(&rcu_sched_lock_map),
925 			 "Illegal synchronize_srcu() in same-type SRCU (or in RCU) read-side critical section");
926 
927 	if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
928 		return;
929 	might_sleep();
930 	check_init_srcu_struct(sp);
931 	init_completion(&rcu.completion);
932 	init_rcu_head_on_stack(&rcu.head);
933 	__call_srcu(sp, &rcu.head, wakeme_after_rcu, do_norm);
934 	wait_for_completion(&rcu.completion);
935 	destroy_rcu_head_on_stack(&rcu.head);
936 
937 	/*
938 	 * Make sure that later code is ordered after the SRCU grace
939 	 * period.  This pairs with the spin_lock_irq_rcu_node()
940 	 * in srcu_invoke_callbacks().  Unlike Tree RCU, this is needed
941 	 * because the current CPU might have been totally uninvolved with
942 	 * (and thus unordered against) that grace period.
943 	 */
944 	smp_mb();
945 }
946 
947 /**
948  * synchronize_srcu_expedited - Brute-force SRCU grace period
949  * @sp: srcu_struct with which to synchronize.
950  *
951  * Wait for an SRCU grace period to elapse, but be more aggressive about
952  * spinning rather than blocking when waiting.
953  *
954  * Note that synchronize_srcu_expedited() has the same deadlock and
955  * memory-ordering properties as does synchronize_srcu().
956  */
957 void synchronize_srcu_expedited(struct srcu_struct *sp)
958 {
959 	__synchronize_srcu(sp, rcu_gp_is_normal());
960 }
961 EXPORT_SYMBOL_GPL(synchronize_srcu_expedited);
962 
963 /**
964  * synchronize_srcu - wait for prior SRCU read-side critical-section completion
965  * @sp: srcu_struct with which to synchronize.
966  *
967  * Wait for the count to drain to zero of both indexes. To avoid the
968  * possible starvation of synchronize_srcu(), it waits for the count of
969  * the index=((->srcu_idx & 1) ^ 1) to drain to zero at first,
970  * and then flip the srcu_idx and wait for the count of the other index.
971  *
972  * Can block; must be called from process context.
973  *
974  * Note that it is illegal to call synchronize_srcu() from the corresponding
975  * SRCU read-side critical section; doing so will result in deadlock.
976  * However, it is perfectly legal to call synchronize_srcu() on one
977  * srcu_struct from some other srcu_struct's read-side critical section,
978  * as long as the resulting graph of srcu_structs is acyclic.
979  *
980  * There are memory-ordering constraints implied by synchronize_srcu().
981  * On systems with more than one CPU, when synchronize_srcu() returns,
982  * each CPU is guaranteed to have executed a full memory barrier since
983  * the end of its last corresponding SRCU-sched read-side critical section
984  * whose beginning preceded the call to synchronize_srcu().  In addition,
985  * each CPU having an SRCU read-side critical section that extends beyond
986  * the return from synchronize_srcu() is guaranteed to have executed a
987  * full memory barrier after the beginning of synchronize_srcu() and before
988  * the beginning of that SRCU read-side critical section.  Note that these
989  * guarantees include CPUs that are offline, idle, or executing in user mode,
990  * as well as CPUs that are executing in the kernel.
991  *
992  * Furthermore, if CPU A invoked synchronize_srcu(), which returned
993  * to its caller on CPU B, then both CPU A and CPU B are guaranteed
994  * to have executed a full memory barrier during the execution of
995  * synchronize_srcu().  This guarantee applies even if CPU A and CPU B
996  * are the same CPU, but again only if the system has more than one CPU.
997  *
998  * Of course, these memory-ordering guarantees apply only when
999  * synchronize_srcu(), srcu_read_lock(), and srcu_read_unlock() are
1000  * passed the same srcu_struct structure.
1001  *
1002  * If SRCU is likely idle, expedite the first request.  This semantic
1003  * was provided by Classic SRCU, and is relied upon by its users, so TREE
1004  * SRCU must also provide it.  Note that detecting idleness is heuristic
1005  * and subject to both false positives and negatives.
1006  */
1007 void synchronize_srcu(struct srcu_struct *sp)
1008 {
1009 	if (srcu_might_be_idle(sp) || rcu_gp_is_expedited())
1010 		synchronize_srcu_expedited(sp);
1011 	else
1012 		__synchronize_srcu(sp, true);
1013 }
1014 EXPORT_SYMBOL_GPL(synchronize_srcu);
1015 
1016 /*
1017  * Callback function for srcu_barrier() use.
1018  */
1019 static void srcu_barrier_cb(struct rcu_head *rhp)
1020 {
1021 	struct srcu_data *sdp;
1022 	struct srcu_struct *sp;
1023 
1024 	sdp = container_of(rhp, struct srcu_data, srcu_barrier_head);
1025 	sp = sdp->sp;
1026 	if (atomic_dec_and_test(&sp->srcu_barrier_cpu_cnt))
1027 		complete(&sp->srcu_barrier_completion);
1028 }
1029 
1030 /**
1031  * srcu_barrier - Wait until all in-flight call_srcu() callbacks complete.
1032  * @sp: srcu_struct on which to wait for in-flight callbacks.
1033  */
1034 void srcu_barrier(struct srcu_struct *sp)
1035 {
1036 	int cpu;
1037 	struct srcu_data *sdp;
1038 	unsigned long s = rcu_seq_snap(&sp->srcu_barrier_seq);
1039 
1040 	check_init_srcu_struct(sp);
1041 	mutex_lock(&sp->srcu_barrier_mutex);
1042 	if (rcu_seq_done(&sp->srcu_barrier_seq, s)) {
1043 		smp_mb(); /* Force ordering following return. */
1044 		mutex_unlock(&sp->srcu_barrier_mutex);
1045 		return; /* Someone else did our work for us. */
1046 	}
1047 	rcu_seq_start(&sp->srcu_barrier_seq);
1048 	init_completion(&sp->srcu_barrier_completion);
1049 
1050 	/* Initial count prevents reaching zero until all CBs are posted. */
1051 	atomic_set(&sp->srcu_barrier_cpu_cnt, 1);
1052 
1053 	/*
1054 	 * Each pass through this loop enqueues a callback, but only
1055 	 * on CPUs already having callbacks enqueued.  Note that if
1056 	 * a CPU already has callbacks enqueue, it must have already
1057 	 * registered the need for a future grace period, so all we
1058 	 * need do is enqueue a callback that will use the same
1059 	 * grace period as the last callback already in the queue.
1060 	 */
1061 	for_each_possible_cpu(cpu) {
1062 		sdp = per_cpu_ptr(sp->sda, cpu);
1063 		spin_lock_irq_rcu_node(sdp);
1064 		atomic_inc(&sp->srcu_barrier_cpu_cnt);
1065 		sdp->srcu_barrier_head.func = srcu_barrier_cb;
1066 		debug_rcu_head_queue(&sdp->srcu_barrier_head);
1067 		if (!rcu_segcblist_entrain(&sdp->srcu_cblist,
1068 					   &sdp->srcu_barrier_head, 0)) {
1069 			debug_rcu_head_unqueue(&sdp->srcu_barrier_head);
1070 			atomic_dec(&sp->srcu_barrier_cpu_cnt);
1071 		}
1072 		spin_unlock_irq_rcu_node(sdp);
1073 	}
1074 
1075 	/* Remove the initial count, at which point reaching zero can happen. */
1076 	if (atomic_dec_and_test(&sp->srcu_barrier_cpu_cnt))
1077 		complete(&sp->srcu_barrier_completion);
1078 	wait_for_completion(&sp->srcu_barrier_completion);
1079 
1080 	rcu_seq_end(&sp->srcu_barrier_seq);
1081 	mutex_unlock(&sp->srcu_barrier_mutex);
1082 }
1083 EXPORT_SYMBOL_GPL(srcu_barrier);
1084 
1085 /**
1086  * srcu_batches_completed - return batches completed.
1087  * @sp: srcu_struct on which to report batch completion.
1088  *
1089  * Report the number of batches, correlated with, but not necessarily
1090  * precisely the same as, the number of grace periods that have elapsed.
1091  */
1092 unsigned long srcu_batches_completed(struct srcu_struct *sp)
1093 {
1094 	return sp->srcu_idx;
1095 }
1096 EXPORT_SYMBOL_GPL(srcu_batches_completed);
1097 
1098 /*
1099  * Core SRCU state machine.  Push state bits of ->srcu_gp_seq
1100  * to SRCU_STATE_SCAN2, and invoke srcu_gp_end() when scan has
1101  * completed in that state.
1102  */
1103 static void srcu_advance_state(struct srcu_struct *sp)
1104 {
1105 	int idx;
1106 
1107 	mutex_lock(&sp->srcu_gp_mutex);
1108 
1109 	/*
1110 	 * Because readers might be delayed for an extended period after
1111 	 * fetching ->srcu_idx for their index, at any point in time there
1112 	 * might well be readers using both idx=0 and idx=1.  We therefore
1113 	 * need to wait for readers to clear from both index values before
1114 	 * invoking a callback.
1115 	 *
1116 	 * The load-acquire ensures that we see the accesses performed
1117 	 * by the prior grace period.
1118 	 */
1119 	idx = rcu_seq_state(smp_load_acquire(&sp->srcu_gp_seq)); /* ^^^ */
1120 	if (idx == SRCU_STATE_IDLE) {
1121 		spin_lock_irq_rcu_node(sp);
1122 		if (ULONG_CMP_GE(sp->srcu_gp_seq, sp->srcu_gp_seq_needed)) {
1123 			WARN_ON_ONCE(rcu_seq_state(sp->srcu_gp_seq));
1124 			spin_unlock_irq_rcu_node(sp);
1125 			mutex_unlock(&sp->srcu_gp_mutex);
1126 			return;
1127 		}
1128 		idx = rcu_seq_state(READ_ONCE(sp->srcu_gp_seq));
1129 		if (idx == SRCU_STATE_IDLE)
1130 			srcu_gp_start(sp);
1131 		spin_unlock_irq_rcu_node(sp);
1132 		if (idx != SRCU_STATE_IDLE) {
1133 			mutex_unlock(&sp->srcu_gp_mutex);
1134 			return; /* Someone else started the grace period. */
1135 		}
1136 	}
1137 
1138 	if (rcu_seq_state(READ_ONCE(sp->srcu_gp_seq)) == SRCU_STATE_SCAN1) {
1139 		idx = 1 ^ (sp->srcu_idx & 1);
1140 		if (!try_check_zero(sp, idx, 1)) {
1141 			mutex_unlock(&sp->srcu_gp_mutex);
1142 			return; /* readers present, retry later. */
1143 		}
1144 		srcu_flip(sp);
1145 		rcu_seq_set_state(&sp->srcu_gp_seq, SRCU_STATE_SCAN2);
1146 	}
1147 
1148 	if (rcu_seq_state(READ_ONCE(sp->srcu_gp_seq)) == SRCU_STATE_SCAN2) {
1149 
1150 		/*
1151 		 * SRCU read-side critical sections are normally short,
1152 		 * so check at least twice in quick succession after a flip.
1153 		 */
1154 		idx = 1 ^ (sp->srcu_idx & 1);
1155 		if (!try_check_zero(sp, idx, 2)) {
1156 			mutex_unlock(&sp->srcu_gp_mutex);
1157 			return; /* readers present, retry later. */
1158 		}
1159 		srcu_gp_end(sp);  /* Releases ->srcu_gp_mutex. */
1160 	}
1161 }
1162 
1163 /*
1164  * Invoke a limited number of SRCU callbacks that have passed through
1165  * their grace period.  If there are more to do, SRCU will reschedule
1166  * the workqueue.  Note that needed memory barriers have been executed
1167  * in this task's context by srcu_readers_active_idx_check().
1168  */
1169 static void srcu_invoke_callbacks(struct work_struct *work)
1170 {
1171 	bool more;
1172 	struct rcu_cblist ready_cbs;
1173 	struct rcu_head *rhp;
1174 	struct srcu_data *sdp;
1175 	struct srcu_struct *sp;
1176 
1177 	sdp = container_of(work, struct srcu_data, work.work);
1178 	sp = sdp->sp;
1179 	rcu_cblist_init(&ready_cbs);
1180 	spin_lock_irq_rcu_node(sdp);
1181 	rcu_segcblist_advance(&sdp->srcu_cblist,
1182 			      rcu_seq_current(&sp->srcu_gp_seq));
1183 	if (sdp->srcu_cblist_invoking ||
1184 	    !rcu_segcblist_ready_cbs(&sdp->srcu_cblist)) {
1185 		spin_unlock_irq_rcu_node(sdp);
1186 		return;  /* Someone else on the job or nothing to do. */
1187 	}
1188 
1189 	/* We are on the job!  Extract and invoke ready callbacks. */
1190 	sdp->srcu_cblist_invoking = true;
1191 	rcu_segcblist_extract_done_cbs(&sdp->srcu_cblist, &ready_cbs);
1192 	spin_unlock_irq_rcu_node(sdp);
1193 	rhp = rcu_cblist_dequeue(&ready_cbs);
1194 	for (; rhp != NULL; rhp = rcu_cblist_dequeue(&ready_cbs)) {
1195 		debug_rcu_head_unqueue(rhp);
1196 		local_bh_disable();
1197 		rhp->func(rhp);
1198 		local_bh_enable();
1199 	}
1200 
1201 	/*
1202 	 * Update counts, accelerate new callbacks, and if needed,
1203 	 * schedule another round of callback invocation.
1204 	 */
1205 	spin_lock_irq_rcu_node(sdp);
1206 	rcu_segcblist_insert_count(&sdp->srcu_cblist, &ready_cbs);
1207 	(void)rcu_segcblist_accelerate(&sdp->srcu_cblist,
1208 				       rcu_seq_snap(&sp->srcu_gp_seq));
1209 	sdp->srcu_cblist_invoking = false;
1210 	more = rcu_segcblist_ready_cbs(&sdp->srcu_cblist);
1211 	spin_unlock_irq_rcu_node(sdp);
1212 	if (more)
1213 		srcu_schedule_cbs_sdp(sdp, 0);
1214 }
1215 
1216 /*
1217  * Finished one round of SRCU grace period.  Start another if there are
1218  * more SRCU callbacks queued, otherwise put SRCU into not-running state.
1219  */
1220 static void srcu_reschedule(struct srcu_struct *sp, unsigned long delay)
1221 {
1222 	bool pushgp = true;
1223 
1224 	spin_lock_irq_rcu_node(sp);
1225 	if (ULONG_CMP_GE(sp->srcu_gp_seq, sp->srcu_gp_seq_needed)) {
1226 		if (!WARN_ON_ONCE(rcu_seq_state(sp->srcu_gp_seq))) {
1227 			/* All requests fulfilled, time to go idle. */
1228 			pushgp = false;
1229 		}
1230 	} else if (!rcu_seq_state(sp->srcu_gp_seq)) {
1231 		/* Outstanding request and no GP.  Start one. */
1232 		srcu_gp_start(sp);
1233 	}
1234 	spin_unlock_irq_rcu_node(sp);
1235 
1236 	if (pushgp)
1237 		queue_delayed_work(rcu_gp_wq, &sp->work, delay);
1238 }
1239 
1240 /*
1241  * This is the work-queue function that handles SRCU grace periods.
1242  */
1243 static void process_srcu(struct work_struct *work)
1244 {
1245 	struct srcu_struct *sp;
1246 
1247 	sp = container_of(work, struct srcu_struct, work.work);
1248 
1249 	srcu_advance_state(sp);
1250 	srcu_reschedule(sp, srcu_get_delay(sp));
1251 }
1252 
1253 void srcutorture_get_gp_data(enum rcutorture_type test_type,
1254 			     struct srcu_struct *sp, int *flags,
1255 			     unsigned long *gp_seq)
1256 {
1257 	if (test_type != SRCU_FLAVOR)
1258 		return;
1259 	*flags = 0;
1260 	*gp_seq = rcu_seq_current(&sp->srcu_gp_seq);
1261 }
1262 EXPORT_SYMBOL_GPL(srcutorture_get_gp_data);
1263 
1264 void srcu_torture_stats_print(struct srcu_struct *sp, char *tt, char *tf)
1265 {
1266 	int cpu;
1267 	int idx;
1268 	unsigned long s0 = 0, s1 = 0;
1269 
1270 	idx = sp->srcu_idx & 0x1;
1271 	pr_alert("%s%s Tree SRCU g%ld per-CPU(idx=%d):",
1272 		 tt, tf, rcu_seq_current(&sp->srcu_gp_seq), idx);
1273 	for_each_possible_cpu(cpu) {
1274 		unsigned long l0, l1;
1275 		unsigned long u0, u1;
1276 		long c0, c1;
1277 		struct srcu_data *sdp;
1278 
1279 		sdp = per_cpu_ptr(sp->sda, cpu);
1280 		u0 = sdp->srcu_unlock_count[!idx];
1281 		u1 = sdp->srcu_unlock_count[idx];
1282 
1283 		/*
1284 		 * Make sure that a lock is always counted if the corresponding
1285 		 * unlock is counted.
1286 		 */
1287 		smp_rmb();
1288 
1289 		l0 = sdp->srcu_lock_count[!idx];
1290 		l1 = sdp->srcu_lock_count[idx];
1291 
1292 		c0 = l0 - u0;
1293 		c1 = l1 - u1;
1294 		pr_cont(" %d(%ld,%ld %1p)",
1295 			cpu, c0, c1, rcu_segcblist_head(&sdp->srcu_cblist));
1296 		s0 += c0;
1297 		s1 += c1;
1298 	}
1299 	pr_cont(" T(%ld,%ld)\n", s0, s1);
1300 }
1301 EXPORT_SYMBOL_GPL(srcu_torture_stats_print);
1302 
1303 static int __init srcu_bootup_announce(void)
1304 {
1305 	pr_info("Hierarchical SRCU implementation.\n");
1306 	if (exp_holdoff != DEFAULT_SRCU_EXP_HOLDOFF)
1307 		pr_info("\tNon-default auto-expedite holdoff of %lu ns.\n", exp_holdoff);
1308 	return 0;
1309 }
1310 early_initcall(srcu_bootup_announce);
1311