1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Sleepable Read-Copy Update mechanism for mutual exclusion. 4 * 5 * Copyright (C) IBM Corporation, 2006 6 * Copyright (C) Fujitsu, 2012 7 * 8 * Authors: Paul McKenney <paulmck@linux.ibm.com> 9 * Lai Jiangshan <laijs@cn.fujitsu.com> 10 * 11 * For detailed explanation of Read-Copy Update mechanism see - 12 * Documentation/RCU/ *.txt 13 * 14 */ 15 16 #define pr_fmt(fmt) "rcu: " fmt 17 18 #include <linux/export.h> 19 #include <linux/mutex.h> 20 #include <linux/percpu.h> 21 #include <linux/preempt.h> 22 #include <linux/rcupdate_wait.h> 23 #include <linux/sched.h> 24 #include <linux/smp.h> 25 #include <linux/delay.h> 26 #include <linux/module.h> 27 #include <linux/slab.h> 28 #include <linux/srcu.h> 29 30 #include "rcu.h" 31 #include "rcu_segcblist.h" 32 33 /* Holdoff in nanoseconds for auto-expediting. */ 34 #define DEFAULT_SRCU_EXP_HOLDOFF (25 * 1000) 35 static ulong exp_holdoff = DEFAULT_SRCU_EXP_HOLDOFF; 36 module_param(exp_holdoff, ulong, 0444); 37 38 /* Overflow-check frequency. N bits roughly says every 2**N grace periods. */ 39 static ulong counter_wrap_check = (ULONG_MAX >> 2); 40 module_param(counter_wrap_check, ulong, 0444); 41 42 /* 43 * Control conversion to SRCU_SIZE_BIG: 44 * 0: Don't convert at all. 45 * 1: Convert at init_srcu_struct() time. 46 * 2: Convert when rcutorture invokes srcu_torture_stats_print(). 47 * 3: Decide at boot time based on system shape (default). 48 * 0x1x: Convert when excessive contention encountered. 49 */ 50 #define SRCU_SIZING_NONE 0 51 #define SRCU_SIZING_INIT 1 52 #define SRCU_SIZING_TORTURE 2 53 #define SRCU_SIZING_AUTO 3 54 #define SRCU_SIZING_CONTEND 0x10 55 #define SRCU_SIZING_IS(x) ((convert_to_big & ~SRCU_SIZING_CONTEND) == x) 56 #define SRCU_SIZING_IS_NONE() (SRCU_SIZING_IS(SRCU_SIZING_NONE)) 57 #define SRCU_SIZING_IS_INIT() (SRCU_SIZING_IS(SRCU_SIZING_INIT)) 58 #define SRCU_SIZING_IS_TORTURE() (SRCU_SIZING_IS(SRCU_SIZING_TORTURE)) 59 #define SRCU_SIZING_IS_CONTEND() (convert_to_big & SRCU_SIZING_CONTEND) 60 static int convert_to_big = SRCU_SIZING_AUTO; 61 module_param(convert_to_big, int, 0444); 62 63 /* Number of CPUs to trigger init_srcu_struct()-time transition to big. */ 64 static int big_cpu_lim __read_mostly = 128; 65 module_param(big_cpu_lim, int, 0444); 66 67 /* Contention events per jiffy to initiate transition to big. */ 68 static int small_contention_lim __read_mostly = 100; 69 module_param(small_contention_lim, int, 0444); 70 71 /* Early-boot callback-management, so early that no lock is required! */ 72 static LIST_HEAD(srcu_boot_list); 73 static bool __read_mostly srcu_init_done; 74 75 static void srcu_invoke_callbacks(struct work_struct *work); 76 static void srcu_reschedule(struct srcu_struct *ssp, unsigned long delay); 77 static void process_srcu(struct work_struct *work); 78 static void srcu_delay_timer(struct timer_list *t); 79 80 /* Wrappers for lock acquisition and release, see raw_spin_lock_rcu_node(). */ 81 #define spin_lock_rcu_node(p) \ 82 do { \ 83 spin_lock(&ACCESS_PRIVATE(p, lock)); \ 84 smp_mb__after_unlock_lock(); \ 85 } while (0) 86 87 #define spin_unlock_rcu_node(p) spin_unlock(&ACCESS_PRIVATE(p, lock)) 88 89 #define spin_lock_irq_rcu_node(p) \ 90 do { \ 91 spin_lock_irq(&ACCESS_PRIVATE(p, lock)); \ 92 smp_mb__after_unlock_lock(); \ 93 } while (0) 94 95 #define spin_unlock_irq_rcu_node(p) \ 96 spin_unlock_irq(&ACCESS_PRIVATE(p, lock)) 97 98 #define spin_lock_irqsave_rcu_node(p, flags) \ 99 do { \ 100 spin_lock_irqsave(&ACCESS_PRIVATE(p, lock), flags); \ 101 smp_mb__after_unlock_lock(); \ 102 } while (0) 103 104 #define spin_trylock_irqsave_rcu_node(p, flags) \ 105 ({ \ 106 bool ___locked = spin_trylock_irqsave(&ACCESS_PRIVATE(p, lock), flags); \ 107 \ 108 if (___locked) \ 109 smp_mb__after_unlock_lock(); \ 110 ___locked; \ 111 }) 112 113 #define spin_unlock_irqrestore_rcu_node(p, flags) \ 114 spin_unlock_irqrestore(&ACCESS_PRIVATE(p, lock), flags) \ 115 116 /* 117 * Initialize SRCU per-CPU data. Note that statically allocated 118 * srcu_struct structures might already have srcu_read_lock() and 119 * srcu_read_unlock() running against them. So if the is_static parameter 120 * is set, don't initialize ->srcu_lock_count[] and ->srcu_unlock_count[]. 121 */ 122 static void init_srcu_struct_data(struct srcu_struct *ssp) 123 { 124 int cpu; 125 struct srcu_data *sdp; 126 127 /* 128 * Initialize the per-CPU srcu_data array, which feeds into the 129 * leaves of the srcu_node tree. 130 */ 131 WARN_ON_ONCE(ARRAY_SIZE(sdp->srcu_lock_count) != 132 ARRAY_SIZE(sdp->srcu_unlock_count)); 133 for_each_possible_cpu(cpu) { 134 sdp = per_cpu_ptr(ssp->sda, cpu); 135 spin_lock_init(&ACCESS_PRIVATE(sdp, lock)); 136 rcu_segcblist_init(&sdp->srcu_cblist); 137 sdp->srcu_cblist_invoking = false; 138 sdp->srcu_gp_seq_needed = ssp->srcu_sup->srcu_gp_seq; 139 sdp->srcu_gp_seq_needed_exp = ssp->srcu_sup->srcu_gp_seq; 140 sdp->mynode = NULL; 141 sdp->cpu = cpu; 142 INIT_WORK(&sdp->work, srcu_invoke_callbacks); 143 timer_setup(&sdp->delay_work, srcu_delay_timer, 0); 144 sdp->ssp = ssp; 145 } 146 } 147 148 /* Invalid seq state, used during snp node initialization */ 149 #define SRCU_SNP_INIT_SEQ 0x2 150 151 /* 152 * Check whether sequence number corresponding to snp node, 153 * is invalid. 154 */ 155 static inline bool srcu_invl_snp_seq(unsigned long s) 156 { 157 return s == SRCU_SNP_INIT_SEQ; 158 } 159 160 /* 161 * Allocated and initialize SRCU combining tree. Returns @true if 162 * allocation succeeded and @false otherwise. 163 */ 164 static bool init_srcu_struct_nodes(struct srcu_struct *ssp, gfp_t gfp_flags) 165 { 166 int cpu; 167 int i; 168 int level = 0; 169 int levelspread[RCU_NUM_LVLS]; 170 struct srcu_data *sdp; 171 struct srcu_node *snp; 172 struct srcu_node *snp_first; 173 174 /* Initialize geometry if it has not already been initialized. */ 175 rcu_init_geometry(); 176 ssp->srcu_sup->node = kcalloc(rcu_num_nodes, sizeof(*ssp->srcu_sup->node), gfp_flags); 177 if (!ssp->srcu_sup->node) 178 return false; 179 180 /* Work out the overall tree geometry. */ 181 ssp->srcu_sup->level[0] = &ssp->srcu_sup->node[0]; 182 for (i = 1; i < rcu_num_lvls; i++) 183 ssp->srcu_sup->level[i] = ssp->srcu_sup->level[i - 1] + num_rcu_lvl[i - 1]; 184 rcu_init_levelspread(levelspread, num_rcu_lvl); 185 186 /* Each pass through this loop initializes one srcu_node structure. */ 187 srcu_for_each_node_breadth_first(ssp, snp) { 188 spin_lock_init(&ACCESS_PRIVATE(snp, lock)); 189 WARN_ON_ONCE(ARRAY_SIZE(snp->srcu_have_cbs) != 190 ARRAY_SIZE(snp->srcu_data_have_cbs)); 191 for (i = 0; i < ARRAY_SIZE(snp->srcu_have_cbs); i++) { 192 snp->srcu_have_cbs[i] = SRCU_SNP_INIT_SEQ; 193 snp->srcu_data_have_cbs[i] = 0; 194 } 195 snp->srcu_gp_seq_needed_exp = SRCU_SNP_INIT_SEQ; 196 snp->grplo = -1; 197 snp->grphi = -1; 198 if (snp == &ssp->srcu_sup->node[0]) { 199 /* Root node, special case. */ 200 snp->srcu_parent = NULL; 201 continue; 202 } 203 204 /* Non-root node. */ 205 if (snp == ssp->srcu_sup->level[level + 1]) 206 level++; 207 snp->srcu_parent = ssp->srcu_sup->level[level - 1] + 208 (snp - ssp->srcu_sup->level[level]) / 209 levelspread[level - 1]; 210 } 211 212 /* 213 * Initialize the per-CPU srcu_data array, which feeds into the 214 * leaves of the srcu_node tree. 215 */ 216 level = rcu_num_lvls - 1; 217 snp_first = ssp->srcu_sup->level[level]; 218 for_each_possible_cpu(cpu) { 219 sdp = per_cpu_ptr(ssp->sda, cpu); 220 sdp->mynode = &snp_first[cpu / levelspread[level]]; 221 for (snp = sdp->mynode; snp != NULL; snp = snp->srcu_parent) { 222 if (snp->grplo < 0) 223 snp->grplo = cpu; 224 snp->grphi = cpu; 225 } 226 sdp->grpmask = 1UL << (cpu - sdp->mynode->grplo); 227 } 228 smp_store_release(&ssp->srcu_sup->srcu_size_state, SRCU_SIZE_WAIT_BARRIER); 229 return true; 230 } 231 232 /* 233 * Initialize non-compile-time initialized fields, including the 234 * associated srcu_node and srcu_data structures. The is_static parameter 235 * tells us that ->sda has already been wired up to srcu_data. 236 */ 237 static int init_srcu_struct_fields(struct srcu_struct *ssp, bool is_static) 238 { 239 if (!is_static) 240 ssp->srcu_sup = kzalloc(sizeof(*ssp->srcu_sup), GFP_KERNEL); 241 if (!ssp->srcu_sup) 242 return -ENOMEM; 243 if (!is_static) 244 spin_lock_init(&ACCESS_PRIVATE(ssp->srcu_sup, lock)); 245 ssp->srcu_sup->srcu_size_state = SRCU_SIZE_SMALL; 246 ssp->srcu_sup->node = NULL; 247 mutex_init(&ssp->srcu_sup->srcu_cb_mutex); 248 mutex_init(&ssp->srcu_sup->srcu_gp_mutex); 249 ssp->srcu_idx = 0; 250 ssp->srcu_sup->srcu_gp_seq = 0; 251 ssp->srcu_sup->srcu_barrier_seq = 0; 252 mutex_init(&ssp->srcu_sup->srcu_barrier_mutex); 253 atomic_set(&ssp->srcu_sup->srcu_barrier_cpu_cnt, 0); 254 INIT_DELAYED_WORK(&ssp->srcu_sup->work, process_srcu); 255 ssp->srcu_sup->sda_is_static = is_static; 256 if (!is_static) 257 ssp->sda = alloc_percpu(struct srcu_data); 258 if (!ssp->sda) 259 goto err_free_sup; 260 init_srcu_struct_data(ssp); 261 ssp->srcu_sup->srcu_gp_seq_needed_exp = 0; 262 ssp->srcu_sup->srcu_last_gp_end = ktime_get_mono_fast_ns(); 263 if (READ_ONCE(ssp->srcu_sup->srcu_size_state) == SRCU_SIZE_SMALL && SRCU_SIZING_IS_INIT()) { 264 if (!init_srcu_struct_nodes(ssp, GFP_ATOMIC)) 265 goto err_free_sda; 266 WRITE_ONCE(ssp->srcu_sup->srcu_size_state, SRCU_SIZE_BIG); 267 } 268 ssp->srcu_sup->srcu_ssp = ssp; 269 smp_store_release(&ssp->srcu_sup->srcu_gp_seq_needed, 0); /* Init done. */ 270 return 0; 271 272 err_free_sda: 273 if (!is_static) { 274 free_percpu(ssp->sda); 275 ssp->sda = NULL; 276 } 277 err_free_sup: 278 if (!is_static) { 279 kfree(ssp->srcu_sup); 280 ssp->srcu_sup = NULL; 281 } 282 return -ENOMEM; 283 } 284 285 #ifdef CONFIG_DEBUG_LOCK_ALLOC 286 287 int __init_srcu_struct(struct srcu_struct *ssp, const char *name, 288 struct lock_class_key *key) 289 { 290 /* Don't re-initialize a lock while it is held. */ 291 debug_check_no_locks_freed((void *)ssp, sizeof(*ssp)); 292 lockdep_init_map(&ssp->dep_map, name, key, 0); 293 return init_srcu_struct_fields(ssp, false); 294 } 295 EXPORT_SYMBOL_GPL(__init_srcu_struct); 296 297 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 298 299 /** 300 * init_srcu_struct - initialize a sleep-RCU structure 301 * @ssp: structure to initialize. 302 * 303 * Must invoke this on a given srcu_struct before passing that srcu_struct 304 * to any other function. Each srcu_struct represents a separate domain 305 * of SRCU protection. 306 */ 307 int init_srcu_struct(struct srcu_struct *ssp) 308 { 309 return init_srcu_struct_fields(ssp, false); 310 } 311 EXPORT_SYMBOL_GPL(init_srcu_struct); 312 313 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 314 315 /* 316 * Initiate a transition to SRCU_SIZE_BIG with lock held. 317 */ 318 static void __srcu_transition_to_big(struct srcu_struct *ssp) 319 { 320 lockdep_assert_held(&ACCESS_PRIVATE(ssp->srcu_sup, lock)); 321 smp_store_release(&ssp->srcu_sup->srcu_size_state, SRCU_SIZE_ALLOC); 322 } 323 324 /* 325 * Initiate an idempotent transition to SRCU_SIZE_BIG. 326 */ 327 static void srcu_transition_to_big(struct srcu_struct *ssp) 328 { 329 unsigned long flags; 330 331 /* Double-checked locking on ->srcu_size-state. */ 332 if (smp_load_acquire(&ssp->srcu_sup->srcu_size_state) != SRCU_SIZE_SMALL) 333 return; 334 spin_lock_irqsave_rcu_node(ssp->srcu_sup, flags); 335 if (smp_load_acquire(&ssp->srcu_sup->srcu_size_state) != SRCU_SIZE_SMALL) { 336 spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags); 337 return; 338 } 339 __srcu_transition_to_big(ssp); 340 spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags); 341 } 342 343 /* 344 * Check to see if the just-encountered contention event justifies 345 * a transition to SRCU_SIZE_BIG. 346 */ 347 static void spin_lock_irqsave_check_contention(struct srcu_struct *ssp) 348 { 349 unsigned long j; 350 351 if (!SRCU_SIZING_IS_CONTEND() || ssp->srcu_sup->srcu_size_state) 352 return; 353 j = jiffies; 354 if (ssp->srcu_sup->srcu_size_jiffies != j) { 355 ssp->srcu_sup->srcu_size_jiffies = j; 356 ssp->srcu_sup->srcu_n_lock_retries = 0; 357 } 358 if (++ssp->srcu_sup->srcu_n_lock_retries <= small_contention_lim) 359 return; 360 __srcu_transition_to_big(ssp); 361 } 362 363 /* 364 * Acquire the specified srcu_data structure's ->lock, but check for 365 * excessive contention, which results in initiation of a transition 366 * to SRCU_SIZE_BIG. But only if the srcutree.convert_to_big module 367 * parameter permits this. 368 */ 369 static void spin_lock_irqsave_sdp_contention(struct srcu_data *sdp, unsigned long *flags) 370 { 371 struct srcu_struct *ssp = sdp->ssp; 372 373 if (spin_trylock_irqsave_rcu_node(sdp, *flags)) 374 return; 375 spin_lock_irqsave_rcu_node(ssp->srcu_sup, *flags); 376 spin_lock_irqsave_check_contention(ssp); 377 spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, *flags); 378 spin_lock_irqsave_rcu_node(sdp, *flags); 379 } 380 381 /* 382 * Acquire the specified srcu_struct structure's ->lock, but check for 383 * excessive contention, which results in initiation of a transition 384 * to SRCU_SIZE_BIG. But only if the srcutree.convert_to_big module 385 * parameter permits this. 386 */ 387 static void spin_lock_irqsave_ssp_contention(struct srcu_struct *ssp, unsigned long *flags) 388 { 389 if (spin_trylock_irqsave_rcu_node(ssp->srcu_sup, *flags)) 390 return; 391 spin_lock_irqsave_rcu_node(ssp->srcu_sup, *flags); 392 spin_lock_irqsave_check_contention(ssp); 393 } 394 395 /* 396 * First-use initialization of statically allocated srcu_struct 397 * structure. Wiring up the combining tree is more than can be 398 * done with compile-time initialization, so this check is added 399 * to each update-side SRCU primitive. Use ssp->lock, which -is- 400 * compile-time initialized, to resolve races involving multiple 401 * CPUs trying to garner first-use privileges. 402 */ 403 static void check_init_srcu_struct(struct srcu_struct *ssp) 404 { 405 unsigned long flags; 406 407 /* The smp_load_acquire() pairs with the smp_store_release(). */ 408 if (!rcu_seq_state(smp_load_acquire(&ssp->srcu_sup->srcu_gp_seq_needed))) /*^^^*/ 409 return; /* Already initialized. */ 410 spin_lock_irqsave_rcu_node(ssp->srcu_sup, flags); 411 if (!rcu_seq_state(ssp->srcu_sup->srcu_gp_seq_needed)) { 412 spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags); 413 return; 414 } 415 init_srcu_struct_fields(ssp, true); 416 spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags); 417 } 418 419 /* 420 * Returns approximate total of the readers' ->srcu_lock_count[] values 421 * for the rank of per-CPU counters specified by idx. 422 */ 423 static unsigned long srcu_readers_lock_idx(struct srcu_struct *ssp, int idx) 424 { 425 int cpu; 426 unsigned long sum = 0; 427 428 for_each_possible_cpu(cpu) { 429 struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu); 430 431 sum += atomic_long_read(&cpuc->srcu_lock_count[idx]); 432 } 433 return sum; 434 } 435 436 /* 437 * Returns approximate total of the readers' ->srcu_unlock_count[] values 438 * for the rank of per-CPU counters specified by idx. 439 */ 440 static unsigned long srcu_readers_unlock_idx(struct srcu_struct *ssp, int idx) 441 { 442 int cpu; 443 unsigned long mask = 0; 444 unsigned long sum = 0; 445 446 for_each_possible_cpu(cpu) { 447 struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu); 448 449 sum += atomic_long_read(&cpuc->srcu_unlock_count[idx]); 450 if (IS_ENABLED(CONFIG_PROVE_RCU)) 451 mask = mask | READ_ONCE(cpuc->srcu_nmi_safety); 452 } 453 WARN_ONCE(IS_ENABLED(CONFIG_PROVE_RCU) && (mask & (mask >> 1)), 454 "Mixed NMI-safe readers for srcu_struct at %ps.\n", ssp); 455 return sum; 456 } 457 458 /* 459 * Return true if the number of pre-existing readers is determined to 460 * be zero. 461 */ 462 static bool srcu_readers_active_idx_check(struct srcu_struct *ssp, int idx) 463 { 464 unsigned long unlocks; 465 466 unlocks = srcu_readers_unlock_idx(ssp, idx); 467 468 /* 469 * Make sure that a lock is always counted if the corresponding 470 * unlock is counted. Needs to be a smp_mb() as the read side may 471 * contain a read from a variable that is written to before the 472 * synchronize_srcu() in the write side. In this case smp_mb()s 473 * A and B act like the store buffering pattern. 474 * 475 * This smp_mb() also pairs with smp_mb() C to prevent accesses 476 * after the synchronize_srcu() from being executed before the 477 * grace period ends. 478 */ 479 smp_mb(); /* A */ 480 481 /* 482 * If the locks are the same as the unlocks, then there must have 483 * been no readers on this index at some point in this function. 484 * But there might be more readers, as a task might have read 485 * the current ->srcu_idx but not yet have incremented its CPU's 486 * ->srcu_lock_count[idx] counter. In fact, it is possible 487 * that most of the tasks have been preempted between fetching 488 * ->srcu_idx and incrementing ->srcu_lock_count[idx]. And there 489 * could be almost (ULONG_MAX / sizeof(struct task_struct)) tasks 490 * in a system whose address space was fully populated with memory. 491 * Call this quantity Nt. 492 * 493 * So suppose that the updater is preempted at this point in the 494 * code for a long time. That now-preempted updater has already 495 * flipped ->srcu_idx (possibly during the preceding grace period), 496 * done an smp_mb() (again, possibly during the preceding grace 497 * period), and summed up the ->srcu_unlock_count[idx] counters. 498 * How many times can a given one of the aforementioned Nt tasks 499 * increment the old ->srcu_idx value's ->srcu_lock_count[idx] 500 * counter, in the absence of nesting? 501 * 502 * It can clearly do so once, given that it has already fetched 503 * the old value of ->srcu_idx and is just about to use that value 504 * to index its increment of ->srcu_lock_count[idx]. But as soon as 505 * it leaves that SRCU read-side critical section, it will increment 506 * ->srcu_unlock_count[idx], which must follow the updater's above 507 * read from that same value. Thus, as soon the reading task does 508 * an smp_mb() and a later fetch from ->srcu_idx, that task will be 509 * guaranteed to get the new index. Except that the increment of 510 * ->srcu_unlock_count[idx] in __srcu_read_unlock() is after the 511 * smp_mb(), and the fetch from ->srcu_idx in __srcu_read_lock() 512 * is before the smp_mb(). Thus, that task might not see the new 513 * value of ->srcu_idx until the -second- __srcu_read_lock(), 514 * which in turn means that this task might well increment 515 * ->srcu_lock_count[idx] for the old value of ->srcu_idx twice, 516 * not just once. 517 * 518 * However, it is important to note that a given smp_mb() takes 519 * effect not just for the task executing it, but also for any 520 * later task running on that same CPU. 521 * 522 * That is, there can be almost Nt + Nc further increments of 523 * ->srcu_lock_count[idx] for the old index, where Nc is the number 524 * of CPUs. But this is OK because the size of the task_struct 525 * structure limits the value of Nt and current systems limit Nc 526 * to a few thousand. 527 * 528 * OK, but what about nesting? This does impose a limit on 529 * nesting of half of the size of the task_struct structure 530 * (measured in bytes), which should be sufficient. A late 2022 531 * TREE01 rcutorture run reported this size to be no less than 532 * 9408 bytes, allowing up to 4704 levels of nesting, which is 533 * comfortably beyond excessive. Especially on 64-bit systems, 534 * which are unlikely to be configured with an address space fully 535 * populated with memory, at least not anytime soon. 536 */ 537 return srcu_readers_lock_idx(ssp, idx) == unlocks; 538 } 539 540 /** 541 * srcu_readers_active - returns true if there are readers. and false 542 * otherwise 543 * @ssp: which srcu_struct to count active readers (holding srcu_read_lock). 544 * 545 * Note that this is not an atomic primitive, and can therefore suffer 546 * severe errors when invoked on an active srcu_struct. That said, it 547 * can be useful as an error check at cleanup time. 548 */ 549 static bool srcu_readers_active(struct srcu_struct *ssp) 550 { 551 int cpu; 552 unsigned long sum = 0; 553 554 for_each_possible_cpu(cpu) { 555 struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu); 556 557 sum += atomic_long_read(&cpuc->srcu_lock_count[0]); 558 sum += atomic_long_read(&cpuc->srcu_lock_count[1]); 559 sum -= atomic_long_read(&cpuc->srcu_unlock_count[0]); 560 sum -= atomic_long_read(&cpuc->srcu_unlock_count[1]); 561 } 562 return sum; 563 } 564 565 /* 566 * We use an adaptive strategy for synchronize_srcu() and especially for 567 * synchronize_srcu_expedited(). We spin for a fixed time period 568 * (defined below, boot time configurable) to allow SRCU readers to exit 569 * their read-side critical sections. If there are still some readers 570 * after one jiffy, we repeatedly block for one jiffy time periods. 571 * The blocking time is increased as the grace-period age increases, 572 * with max blocking time capped at 10 jiffies. 573 */ 574 #define SRCU_DEFAULT_RETRY_CHECK_DELAY 5 575 576 static ulong srcu_retry_check_delay = SRCU_DEFAULT_RETRY_CHECK_DELAY; 577 module_param(srcu_retry_check_delay, ulong, 0444); 578 579 #define SRCU_INTERVAL 1 // Base delay if no expedited GPs pending. 580 #define SRCU_MAX_INTERVAL 10 // Maximum incremental delay from slow readers. 581 582 #define SRCU_DEFAULT_MAX_NODELAY_PHASE_LO 3UL // Lowmark on default per-GP-phase 583 // no-delay instances. 584 #define SRCU_DEFAULT_MAX_NODELAY_PHASE_HI 1000UL // Highmark on default per-GP-phase 585 // no-delay instances. 586 587 #define SRCU_UL_CLAMP_LO(val, low) ((val) > (low) ? (val) : (low)) 588 #define SRCU_UL_CLAMP_HI(val, high) ((val) < (high) ? (val) : (high)) 589 #define SRCU_UL_CLAMP(val, low, high) SRCU_UL_CLAMP_HI(SRCU_UL_CLAMP_LO((val), (low)), (high)) 590 // per-GP-phase no-delay instances adjusted to allow non-sleeping poll upto 591 // one jiffies time duration. Mult by 2 is done to factor in the srcu_get_delay() 592 // called from process_srcu(). 593 #define SRCU_DEFAULT_MAX_NODELAY_PHASE_ADJUSTED \ 594 (2UL * USEC_PER_SEC / HZ / SRCU_DEFAULT_RETRY_CHECK_DELAY) 595 596 // Maximum per-GP-phase consecutive no-delay instances. 597 #define SRCU_DEFAULT_MAX_NODELAY_PHASE \ 598 SRCU_UL_CLAMP(SRCU_DEFAULT_MAX_NODELAY_PHASE_ADJUSTED, \ 599 SRCU_DEFAULT_MAX_NODELAY_PHASE_LO, \ 600 SRCU_DEFAULT_MAX_NODELAY_PHASE_HI) 601 602 static ulong srcu_max_nodelay_phase = SRCU_DEFAULT_MAX_NODELAY_PHASE; 603 module_param(srcu_max_nodelay_phase, ulong, 0444); 604 605 // Maximum consecutive no-delay instances. 606 #define SRCU_DEFAULT_MAX_NODELAY (SRCU_DEFAULT_MAX_NODELAY_PHASE > 100 ? \ 607 SRCU_DEFAULT_MAX_NODELAY_PHASE : 100) 608 609 static ulong srcu_max_nodelay = SRCU_DEFAULT_MAX_NODELAY; 610 module_param(srcu_max_nodelay, ulong, 0444); 611 612 /* 613 * Return grace-period delay, zero if there are expedited grace 614 * periods pending, SRCU_INTERVAL otherwise. 615 */ 616 static unsigned long srcu_get_delay(struct srcu_struct *ssp) 617 { 618 unsigned long gpstart; 619 unsigned long j; 620 unsigned long jbase = SRCU_INTERVAL; 621 struct srcu_usage *sup = ssp->srcu_sup; 622 623 if (ULONG_CMP_LT(READ_ONCE(sup->srcu_gp_seq), READ_ONCE(sup->srcu_gp_seq_needed_exp))) 624 jbase = 0; 625 if (rcu_seq_state(READ_ONCE(sup->srcu_gp_seq))) { 626 j = jiffies - 1; 627 gpstart = READ_ONCE(sup->srcu_gp_start); 628 if (time_after(j, gpstart)) 629 jbase += j - gpstart; 630 if (!jbase) { 631 WRITE_ONCE(sup->srcu_n_exp_nodelay, READ_ONCE(sup->srcu_n_exp_nodelay) + 1); 632 if (READ_ONCE(sup->srcu_n_exp_nodelay) > srcu_max_nodelay_phase) 633 jbase = 1; 634 } 635 } 636 return jbase > SRCU_MAX_INTERVAL ? SRCU_MAX_INTERVAL : jbase; 637 } 638 639 /** 640 * cleanup_srcu_struct - deconstruct a sleep-RCU structure 641 * @ssp: structure to clean up. 642 * 643 * Must invoke this after you are finished using a given srcu_struct that 644 * was initialized via init_srcu_struct(), else you leak memory. 645 */ 646 void cleanup_srcu_struct(struct srcu_struct *ssp) 647 { 648 int cpu; 649 struct srcu_usage *sup = ssp->srcu_sup; 650 651 if (WARN_ON(!srcu_get_delay(ssp))) 652 return; /* Just leak it! */ 653 if (WARN_ON(srcu_readers_active(ssp))) 654 return; /* Just leak it! */ 655 flush_delayed_work(&sup->work); 656 for_each_possible_cpu(cpu) { 657 struct srcu_data *sdp = per_cpu_ptr(ssp->sda, cpu); 658 659 del_timer_sync(&sdp->delay_work); 660 flush_work(&sdp->work); 661 if (WARN_ON(rcu_segcblist_n_cbs(&sdp->srcu_cblist))) 662 return; /* Forgot srcu_barrier(), so just leak it! */ 663 } 664 if (WARN_ON(rcu_seq_state(READ_ONCE(sup->srcu_gp_seq)) != SRCU_STATE_IDLE) || 665 WARN_ON(rcu_seq_current(&sup->srcu_gp_seq) != sup->srcu_gp_seq_needed) || 666 WARN_ON(srcu_readers_active(ssp))) { 667 pr_info("%s: Active srcu_struct %p read state: %d gp state: %lu/%lu\n", 668 __func__, ssp, rcu_seq_state(READ_ONCE(sup->srcu_gp_seq)), 669 rcu_seq_current(&sup->srcu_gp_seq), sup->srcu_gp_seq_needed); 670 return; /* Caller forgot to stop doing call_srcu()? */ 671 } 672 kfree(sup->node); 673 sup->node = NULL; 674 sup->srcu_size_state = SRCU_SIZE_SMALL; 675 if (!sup->sda_is_static) { 676 free_percpu(ssp->sda); 677 ssp->sda = NULL; 678 kfree(sup); 679 ssp->srcu_sup = NULL; 680 } 681 } 682 EXPORT_SYMBOL_GPL(cleanup_srcu_struct); 683 684 #ifdef CONFIG_PROVE_RCU 685 /* 686 * Check for consistent NMI safety. 687 */ 688 void srcu_check_nmi_safety(struct srcu_struct *ssp, bool nmi_safe) 689 { 690 int nmi_safe_mask = 1 << nmi_safe; 691 int old_nmi_safe_mask; 692 struct srcu_data *sdp; 693 694 /* NMI-unsafe use in NMI is a bad sign */ 695 WARN_ON_ONCE(!nmi_safe && in_nmi()); 696 sdp = raw_cpu_ptr(ssp->sda); 697 old_nmi_safe_mask = READ_ONCE(sdp->srcu_nmi_safety); 698 if (!old_nmi_safe_mask) { 699 WRITE_ONCE(sdp->srcu_nmi_safety, nmi_safe_mask); 700 return; 701 } 702 WARN_ONCE(old_nmi_safe_mask != nmi_safe_mask, "CPU %d old state %d new state %d\n", sdp->cpu, old_nmi_safe_mask, nmi_safe_mask); 703 } 704 EXPORT_SYMBOL_GPL(srcu_check_nmi_safety); 705 #endif /* CONFIG_PROVE_RCU */ 706 707 /* 708 * Counts the new reader in the appropriate per-CPU element of the 709 * srcu_struct. 710 * Returns an index that must be passed to the matching srcu_read_unlock(). 711 */ 712 int __srcu_read_lock(struct srcu_struct *ssp) 713 { 714 int idx; 715 716 idx = READ_ONCE(ssp->srcu_idx) & 0x1; 717 this_cpu_inc(ssp->sda->srcu_lock_count[idx].counter); 718 smp_mb(); /* B */ /* Avoid leaking the critical section. */ 719 return idx; 720 } 721 EXPORT_SYMBOL_GPL(__srcu_read_lock); 722 723 /* 724 * Removes the count for the old reader from the appropriate per-CPU 725 * element of the srcu_struct. Note that this may well be a different 726 * CPU than that which was incremented by the corresponding srcu_read_lock(). 727 */ 728 void __srcu_read_unlock(struct srcu_struct *ssp, int idx) 729 { 730 smp_mb(); /* C */ /* Avoid leaking the critical section. */ 731 this_cpu_inc(ssp->sda->srcu_unlock_count[idx].counter); 732 } 733 EXPORT_SYMBOL_GPL(__srcu_read_unlock); 734 735 #ifdef CONFIG_NEED_SRCU_NMI_SAFE 736 737 /* 738 * Counts the new reader in the appropriate per-CPU element of the 739 * srcu_struct, but in an NMI-safe manner using RMW atomics. 740 * Returns an index that must be passed to the matching srcu_read_unlock(). 741 */ 742 int __srcu_read_lock_nmisafe(struct srcu_struct *ssp) 743 { 744 int idx; 745 struct srcu_data *sdp = raw_cpu_ptr(ssp->sda); 746 747 idx = READ_ONCE(ssp->srcu_idx) & 0x1; 748 atomic_long_inc(&sdp->srcu_lock_count[idx]); 749 smp_mb__after_atomic(); /* B */ /* Avoid leaking the critical section. */ 750 return idx; 751 } 752 EXPORT_SYMBOL_GPL(__srcu_read_lock_nmisafe); 753 754 /* 755 * Removes the count for the old reader from the appropriate per-CPU 756 * element of the srcu_struct. Note that this may well be a different 757 * CPU than that which was incremented by the corresponding srcu_read_lock(). 758 */ 759 void __srcu_read_unlock_nmisafe(struct srcu_struct *ssp, int idx) 760 { 761 struct srcu_data *sdp = raw_cpu_ptr(ssp->sda); 762 763 smp_mb__before_atomic(); /* C */ /* Avoid leaking the critical section. */ 764 atomic_long_inc(&sdp->srcu_unlock_count[idx]); 765 } 766 EXPORT_SYMBOL_GPL(__srcu_read_unlock_nmisafe); 767 768 #endif // CONFIG_NEED_SRCU_NMI_SAFE 769 770 /* 771 * Start an SRCU grace period. 772 */ 773 static void srcu_gp_start(struct srcu_struct *ssp) 774 { 775 int state; 776 777 lockdep_assert_held(&ACCESS_PRIVATE(ssp->srcu_sup, lock)); 778 WARN_ON_ONCE(ULONG_CMP_GE(ssp->srcu_sup->srcu_gp_seq, ssp->srcu_sup->srcu_gp_seq_needed)); 779 WRITE_ONCE(ssp->srcu_sup->srcu_gp_start, jiffies); 780 WRITE_ONCE(ssp->srcu_sup->srcu_n_exp_nodelay, 0); 781 smp_mb(); /* Order prior store to ->srcu_gp_seq_needed vs. GP start. */ 782 rcu_seq_start(&ssp->srcu_sup->srcu_gp_seq); 783 state = rcu_seq_state(ssp->srcu_sup->srcu_gp_seq); 784 WARN_ON_ONCE(state != SRCU_STATE_SCAN1); 785 } 786 787 788 static void srcu_delay_timer(struct timer_list *t) 789 { 790 struct srcu_data *sdp = container_of(t, struct srcu_data, delay_work); 791 792 queue_work_on(sdp->cpu, rcu_gp_wq, &sdp->work); 793 } 794 795 static void srcu_queue_delayed_work_on(struct srcu_data *sdp, 796 unsigned long delay) 797 { 798 if (!delay) { 799 queue_work_on(sdp->cpu, rcu_gp_wq, &sdp->work); 800 return; 801 } 802 803 timer_reduce(&sdp->delay_work, jiffies + delay); 804 } 805 806 /* 807 * Schedule callback invocation for the specified srcu_data structure, 808 * if possible, on the corresponding CPU. 809 */ 810 static void srcu_schedule_cbs_sdp(struct srcu_data *sdp, unsigned long delay) 811 { 812 srcu_queue_delayed_work_on(sdp, delay); 813 } 814 815 /* 816 * Schedule callback invocation for all srcu_data structures associated 817 * with the specified srcu_node structure that have callbacks for the 818 * just-completed grace period, the one corresponding to idx. If possible, 819 * schedule this invocation on the corresponding CPUs. 820 */ 821 static void srcu_schedule_cbs_snp(struct srcu_struct *ssp, struct srcu_node *snp, 822 unsigned long mask, unsigned long delay) 823 { 824 int cpu; 825 826 for (cpu = snp->grplo; cpu <= snp->grphi; cpu++) { 827 if (!(mask & (1UL << (cpu - snp->grplo)))) 828 continue; 829 srcu_schedule_cbs_sdp(per_cpu_ptr(ssp->sda, cpu), delay); 830 } 831 } 832 833 /* 834 * Note the end of an SRCU grace period. Initiates callback invocation 835 * and starts a new grace period if needed. 836 * 837 * The ->srcu_cb_mutex acquisition does not protect any data, but 838 * instead prevents more than one grace period from starting while we 839 * are initiating callback invocation. This allows the ->srcu_have_cbs[] 840 * array to have a finite number of elements. 841 */ 842 static void srcu_gp_end(struct srcu_struct *ssp) 843 { 844 unsigned long cbdelay = 1; 845 bool cbs; 846 bool last_lvl; 847 int cpu; 848 unsigned long flags; 849 unsigned long gpseq; 850 int idx; 851 unsigned long mask; 852 struct srcu_data *sdp; 853 unsigned long sgsne; 854 struct srcu_node *snp; 855 int ss_state; 856 struct srcu_usage *sup = ssp->srcu_sup; 857 858 /* Prevent more than one additional grace period. */ 859 mutex_lock(&sup->srcu_cb_mutex); 860 861 /* End the current grace period. */ 862 spin_lock_irq_rcu_node(sup); 863 idx = rcu_seq_state(sup->srcu_gp_seq); 864 WARN_ON_ONCE(idx != SRCU_STATE_SCAN2); 865 if (ULONG_CMP_LT(READ_ONCE(sup->srcu_gp_seq), READ_ONCE(sup->srcu_gp_seq_needed_exp))) 866 cbdelay = 0; 867 868 WRITE_ONCE(sup->srcu_last_gp_end, ktime_get_mono_fast_ns()); 869 rcu_seq_end(&sup->srcu_gp_seq); 870 gpseq = rcu_seq_current(&sup->srcu_gp_seq); 871 if (ULONG_CMP_LT(sup->srcu_gp_seq_needed_exp, gpseq)) 872 WRITE_ONCE(sup->srcu_gp_seq_needed_exp, gpseq); 873 spin_unlock_irq_rcu_node(sup); 874 mutex_unlock(&sup->srcu_gp_mutex); 875 /* A new grace period can start at this point. But only one. */ 876 877 /* Initiate callback invocation as needed. */ 878 ss_state = smp_load_acquire(&sup->srcu_size_state); 879 if (ss_state < SRCU_SIZE_WAIT_BARRIER) { 880 srcu_schedule_cbs_sdp(per_cpu_ptr(ssp->sda, get_boot_cpu_id()), 881 cbdelay); 882 } else { 883 idx = rcu_seq_ctr(gpseq) % ARRAY_SIZE(snp->srcu_have_cbs); 884 srcu_for_each_node_breadth_first(ssp, snp) { 885 spin_lock_irq_rcu_node(snp); 886 cbs = false; 887 last_lvl = snp >= sup->level[rcu_num_lvls - 1]; 888 if (last_lvl) 889 cbs = ss_state < SRCU_SIZE_BIG || snp->srcu_have_cbs[idx] == gpseq; 890 snp->srcu_have_cbs[idx] = gpseq; 891 rcu_seq_set_state(&snp->srcu_have_cbs[idx], 1); 892 sgsne = snp->srcu_gp_seq_needed_exp; 893 if (srcu_invl_snp_seq(sgsne) || ULONG_CMP_LT(sgsne, gpseq)) 894 WRITE_ONCE(snp->srcu_gp_seq_needed_exp, gpseq); 895 if (ss_state < SRCU_SIZE_BIG) 896 mask = ~0; 897 else 898 mask = snp->srcu_data_have_cbs[idx]; 899 snp->srcu_data_have_cbs[idx] = 0; 900 spin_unlock_irq_rcu_node(snp); 901 if (cbs) 902 srcu_schedule_cbs_snp(ssp, snp, mask, cbdelay); 903 } 904 } 905 906 /* Occasionally prevent srcu_data counter wrap. */ 907 if (!(gpseq & counter_wrap_check)) 908 for_each_possible_cpu(cpu) { 909 sdp = per_cpu_ptr(ssp->sda, cpu); 910 spin_lock_irqsave_rcu_node(sdp, flags); 911 if (ULONG_CMP_GE(gpseq, sdp->srcu_gp_seq_needed + 100)) 912 sdp->srcu_gp_seq_needed = gpseq; 913 if (ULONG_CMP_GE(gpseq, sdp->srcu_gp_seq_needed_exp + 100)) 914 sdp->srcu_gp_seq_needed_exp = gpseq; 915 spin_unlock_irqrestore_rcu_node(sdp, flags); 916 } 917 918 /* Callback initiation done, allow grace periods after next. */ 919 mutex_unlock(&sup->srcu_cb_mutex); 920 921 /* Start a new grace period if needed. */ 922 spin_lock_irq_rcu_node(sup); 923 gpseq = rcu_seq_current(&sup->srcu_gp_seq); 924 if (!rcu_seq_state(gpseq) && 925 ULONG_CMP_LT(gpseq, sup->srcu_gp_seq_needed)) { 926 srcu_gp_start(ssp); 927 spin_unlock_irq_rcu_node(sup); 928 srcu_reschedule(ssp, 0); 929 } else { 930 spin_unlock_irq_rcu_node(sup); 931 } 932 933 /* Transition to big if needed. */ 934 if (ss_state != SRCU_SIZE_SMALL && ss_state != SRCU_SIZE_BIG) { 935 if (ss_state == SRCU_SIZE_ALLOC) 936 init_srcu_struct_nodes(ssp, GFP_KERNEL); 937 else 938 smp_store_release(&sup->srcu_size_state, ss_state + 1); 939 } 940 } 941 942 /* 943 * Funnel-locking scheme to scalably mediate many concurrent expedited 944 * grace-period requests. This function is invoked for the first known 945 * expedited request for a grace period that has already been requested, 946 * but without expediting. To start a completely new grace period, 947 * whether expedited or not, use srcu_funnel_gp_start() instead. 948 */ 949 static void srcu_funnel_exp_start(struct srcu_struct *ssp, struct srcu_node *snp, 950 unsigned long s) 951 { 952 unsigned long flags; 953 unsigned long sgsne; 954 955 if (snp) 956 for (; snp != NULL; snp = snp->srcu_parent) { 957 sgsne = READ_ONCE(snp->srcu_gp_seq_needed_exp); 958 if (WARN_ON_ONCE(rcu_seq_done(&ssp->srcu_sup->srcu_gp_seq, s)) || 959 (!srcu_invl_snp_seq(sgsne) && ULONG_CMP_GE(sgsne, s))) 960 return; 961 spin_lock_irqsave_rcu_node(snp, flags); 962 sgsne = snp->srcu_gp_seq_needed_exp; 963 if (!srcu_invl_snp_seq(sgsne) && ULONG_CMP_GE(sgsne, s)) { 964 spin_unlock_irqrestore_rcu_node(snp, flags); 965 return; 966 } 967 WRITE_ONCE(snp->srcu_gp_seq_needed_exp, s); 968 spin_unlock_irqrestore_rcu_node(snp, flags); 969 } 970 spin_lock_irqsave_ssp_contention(ssp, &flags); 971 if (ULONG_CMP_LT(ssp->srcu_sup->srcu_gp_seq_needed_exp, s)) 972 WRITE_ONCE(ssp->srcu_sup->srcu_gp_seq_needed_exp, s); 973 spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags); 974 } 975 976 /* 977 * Funnel-locking scheme to scalably mediate many concurrent grace-period 978 * requests. The winner has to do the work of actually starting grace 979 * period s. Losers must either ensure that their desired grace-period 980 * number is recorded on at least their leaf srcu_node structure, or they 981 * must take steps to invoke their own callbacks. 982 * 983 * Note that this function also does the work of srcu_funnel_exp_start(), 984 * in some cases by directly invoking it. 985 * 986 * The srcu read lock should be hold around this function. And s is a seq snap 987 * after holding that lock. 988 */ 989 static void srcu_funnel_gp_start(struct srcu_struct *ssp, struct srcu_data *sdp, 990 unsigned long s, bool do_norm) 991 { 992 unsigned long flags; 993 int idx = rcu_seq_ctr(s) % ARRAY_SIZE(sdp->mynode->srcu_have_cbs); 994 unsigned long sgsne; 995 struct srcu_node *snp; 996 struct srcu_node *snp_leaf; 997 unsigned long snp_seq; 998 struct srcu_usage *sup = ssp->srcu_sup; 999 1000 /* Ensure that snp node tree is fully initialized before traversing it */ 1001 if (smp_load_acquire(&sup->srcu_size_state) < SRCU_SIZE_WAIT_BARRIER) 1002 snp_leaf = NULL; 1003 else 1004 snp_leaf = sdp->mynode; 1005 1006 if (snp_leaf) 1007 /* Each pass through the loop does one level of the srcu_node tree. */ 1008 for (snp = snp_leaf; snp != NULL; snp = snp->srcu_parent) { 1009 if (WARN_ON_ONCE(rcu_seq_done(&sup->srcu_gp_seq, s)) && snp != snp_leaf) 1010 return; /* GP already done and CBs recorded. */ 1011 spin_lock_irqsave_rcu_node(snp, flags); 1012 snp_seq = snp->srcu_have_cbs[idx]; 1013 if (!srcu_invl_snp_seq(snp_seq) && ULONG_CMP_GE(snp_seq, s)) { 1014 if (snp == snp_leaf && snp_seq == s) 1015 snp->srcu_data_have_cbs[idx] |= sdp->grpmask; 1016 spin_unlock_irqrestore_rcu_node(snp, flags); 1017 if (snp == snp_leaf && snp_seq != s) { 1018 srcu_schedule_cbs_sdp(sdp, do_norm ? SRCU_INTERVAL : 0); 1019 return; 1020 } 1021 if (!do_norm) 1022 srcu_funnel_exp_start(ssp, snp, s); 1023 return; 1024 } 1025 snp->srcu_have_cbs[idx] = s; 1026 if (snp == snp_leaf) 1027 snp->srcu_data_have_cbs[idx] |= sdp->grpmask; 1028 sgsne = snp->srcu_gp_seq_needed_exp; 1029 if (!do_norm && (srcu_invl_snp_seq(sgsne) || ULONG_CMP_LT(sgsne, s))) 1030 WRITE_ONCE(snp->srcu_gp_seq_needed_exp, s); 1031 spin_unlock_irqrestore_rcu_node(snp, flags); 1032 } 1033 1034 /* Top of tree, must ensure the grace period will be started. */ 1035 spin_lock_irqsave_ssp_contention(ssp, &flags); 1036 if (ULONG_CMP_LT(sup->srcu_gp_seq_needed, s)) { 1037 /* 1038 * Record need for grace period s. Pair with load 1039 * acquire setting up for initialization. 1040 */ 1041 smp_store_release(&sup->srcu_gp_seq_needed, s); /*^^^*/ 1042 } 1043 if (!do_norm && ULONG_CMP_LT(sup->srcu_gp_seq_needed_exp, s)) 1044 WRITE_ONCE(sup->srcu_gp_seq_needed_exp, s); 1045 1046 /* If grace period not already in progress, start it. */ 1047 if (!WARN_ON_ONCE(rcu_seq_done(&sup->srcu_gp_seq, s)) && 1048 rcu_seq_state(sup->srcu_gp_seq) == SRCU_STATE_IDLE) { 1049 WARN_ON_ONCE(ULONG_CMP_GE(sup->srcu_gp_seq, sup->srcu_gp_seq_needed)); 1050 srcu_gp_start(ssp); 1051 1052 // And how can that list_add() in the "else" clause 1053 // possibly be safe for concurrent execution? Well, 1054 // it isn't. And it does not have to be. After all, it 1055 // can only be executed during early boot when there is only 1056 // the one boot CPU running with interrupts still disabled. 1057 if (likely(srcu_init_done)) 1058 queue_delayed_work(rcu_gp_wq, &sup->work, 1059 !!srcu_get_delay(ssp)); 1060 else if (list_empty(&sup->work.work.entry)) 1061 list_add(&sup->work.work.entry, &srcu_boot_list); 1062 } 1063 spin_unlock_irqrestore_rcu_node(sup, flags); 1064 } 1065 1066 /* 1067 * Wait until all readers counted by array index idx complete, but 1068 * loop an additional time if there is an expedited grace period pending. 1069 * The caller must ensure that ->srcu_idx is not changed while checking. 1070 */ 1071 static bool try_check_zero(struct srcu_struct *ssp, int idx, int trycount) 1072 { 1073 unsigned long curdelay; 1074 1075 curdelay = !srcu_get_delay(ssp); 1076 1077 for (;;) { 1078 if (srcu_readers_active_idx_check(ssp, idx)) 1079 return true; 1080 if ((--trycount + curdelay) <= 0) 1081 return false; 1082 udelay(srcu_retry_check_delay); 1083 } 1084 } 1085 1086 /* 1087 * Increment the ->srcu_idx counter so that future SRCU readers will 1088 * use the other rank of the ->srcu_(un)lock_count[] arrays. This allows 1089 * us to wait for pre-existing readers in a starvation-free manner. 1090 */ 1091 static void srcu_flip(struct srcu_struct *ssp) 1092 { 1093 /* 1094 * Because the flip of ->srcu_idx is executed only if the 1095 * preceding call to srcu_readers_active_idx_check() found that 1096 * the ->srcu_unlock_count[] and ->srcu_lock_count[] sums matched 1097 * and because that summing uses atomic_long_read(), there is 1098 * ordering due to a control dependency between that summing and 1099 * the WRITE_ONCE() in this call to srcu_flip(). This ordering 1100 * ensures that if this updater saw a given reader's increment from 1101 * __srcu_read_lock(), that reader was using a value of ->srcu_idx 1102 * from before the previous call to srcu_flip(), which should be 1103 * quite rare. This ordering thus helps forward progress because 1104 * the grace period could otherwise be delayed by additional 1105 * calls to __srcu_read_lock() using that old (soon to be new) 1106 * value of ->srcu_idx. 1107 * 1108 * This sum-equality check and ordering also ensures that if 1109 * a given call to __srcu_read_lock() uses the new value of 1110 * ->srcu_idx, this updater's earlier scans cannot have seen 1111 * that reader's increments, which is all to the good, because 1112 * this grace period need not wait on that reader. After all, 1113 * if those earlier scans had seen that reader, there would have 1114 * been a sum mismatch and this code would not be reached. 1115 * 1116 * This means that the following smp_mb() is redundant, but 1117 * it stays until either (1) Compilers learn about this sort of 1118 * control dependency or (2) Some production workload running on 1119 * a production system is unduly delayed by this slowpath smp_mb(). 1120 */ 1121 smp_mb(); /* E */ /* Pairs with B and C. */ 1122 1123 WRITE_ONCE(ssp->srcu_idx, ssp->srcu_idx + 1); // Flip the counter. 1124 1125 /* 1126 * Ensure that if the updater misses an __srcu_read_unlock() 1127 * increment, that task's __srcu_read_lock() following its next 1128 * __srcu_read_lock() or __srcu_read_unlock() will see the above 1129 * counter update. Note that both this memory barrier and the 1130 * one in srcu_readers_active_idx_check() provide the guarantee 1131 * for __srcu_read_lock(). 1132 */ 1133 smp_mb(); /* D */ /* Pairs with C. */ 1134 } 1135 1136 /* 1137 * If SRCU is likely idle, return true, otherwise return false. 1138 * 1139 * Note that it is OK for several current from-idle requests for a new 1140 * grace period from idle to specify expediting because they will all end 1141 * up requesting the same grace period anyhow. So no loss. 1142 * 1143 * Note also that if any CPU (including the current one) is still invoking 1144 * callbacks, this function will nevertheless say "idle". This is not 1145 * ideal, but the overhead of checking all CPUs' callback lists is even 1146 * less ideal, especially on large systems. Furthermore, the wakeup 1147 * can happen before the callback is fully removed, so we have no choice 1148 * but to accept this type of error. 1149 * 1150 * This function is also subject to counter-wrap errors, but let's face 1151 * it, if this function was preempted for enough time for the counters 1152 * to wrap, it really doesn't matter whether or not we expedite the grace 1153 * period. The extra overhead of a needlessly expedited grace period is 1154 * negligible when amortized over that time period, and the extra latency 1155 * of a needlessly non-expedited grace period is similarly negligible. 1156 */ 1157 static bool srcu_might_be_idle(struct srcu_struct *ssp) 1158 { 1159 unsigned long curseq; 1160 unsigned long flags; 1161 struct srcu_data *sdp; 1162 unsigned long t; 1163 unsigned long tlast; 1164 1165 check_init_srcu_struct(ssp); 1166 /* If the local srcu_data structure has callbacks, not idle. */ 1167 sdp = raw_cpu_ptr(ssp->sda); 1168 spin_lock_irqsave_rcu_node(sdp, flags); 1169 if (rcu_segcblist_pend_cbs(&sdp->srcu_cblist)) { 1170 spin_unlock_irqrestore_rcu_node(sdp, flags); 1171 return false; /* Callbacks already present, so not idle. */ 1172 } 1173 spin_unlock_irqrestore_rcu_node(sdp, flags); 1174 1175 /* 1176 * No local callbacks, so probabilistically probe global state. 1177 * Exact information would require acquiring locks, which would 1178 * kill scalability, hence the probabilistic nature of the probe. 1179 */ 1180 1181 /* First, see if enough time has passed since the last GP. */ 1182 t = ktime_get_mono_fast_ns(); 1183 tlast = READ_ONCE(ssp->srcu_sup->srcu_last_gp_end); 1184 if (exp_holdoff == 0 || 1185 time_in_range_open(t, tlast, tlast + exp_holdoff)) 1186 return false; /* Too soon after last GP. */ 1187 1188 /* Next, check for probable idleness. */ 1189 curseq = rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq); 1190 smp_mb(); /* Order ->srcu_gp_seq with ->srcu_gp_seq_needed. */ 1191 if (ULONG_CMP_LT(curseq, READ_ONCE(ssp->srcu_sup->srcu_gp_seq_needed))) 1192 return false; /* Grace period in progress, so not idle. */ 1193 smp_mb(); /* Order ->srcu_gp_seq with prior access. */ 1194 if (curseq != rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq)) 1195 return false; /* GP # changed, so not idle. */ 1196 return true; /* With reasonable probability, idle! */ 1197 } 1198 1199 /* 1200 * SRCU callback function to leak a callback. 1201 */ 1202 static void srcu_leak_callback(struct rcu_head *rhp) 1203 { 1204 } 1205 1206 /* 1207 * Start an SRCU grace period, and also queue the callback if non-NULL. 1208 */ 1209 static unsigned long srcu_gp_start_if_needed(struct srcu_struct *ssp, 1210 struct rcu_head *rhp, bool do_norm) 1211 { 1212 unsigned long flags; 1213 int idx; 1214 bool needexp = false; 1215 bool needgp = false; 1216 unsigned long s; 1217 struct srcu_data *sdp; 1218 struct srcu_node *sdp_mynode; 1219 int ss_state; 1220 1221 check_init_srcu_struct(ssp); 1222 /* 1223 * While starting a new grace period, make sure we are in an 1224 * SRCU read-side critical section so that the grace-period 1225 * sequence number cannot wrap around in the meantime. 1226 */ 1227 idx = __srcu_read_lock_nmisafe(ssp); 1228 ss_state = smp_load_acquire(&ssp->srcu_sup->srcu_size_state); 1229 if (ss_state < SRCU_SIZE_WAIT_CALL) 1230 sdp = per_cpu_ptr(ssp->sda, get_boot_cpu_id()); 1231 else 1232 sdp = raw_cpu_ptr(ssp->sda); 1233 spin_lock_irqsave_sdp_contention(sdp, &flags); 1234 if (rhp) 1235 rcu_segcblist_enqueue(&sdp->srcu_cblist, rhp); 1236 /* 1237 * It's crucial to capture the snapshot 's' for acceleration before 1238 * reading the current gp_seq that is used for advancing. This is 1239 * essential because if the acceleration snapshot is taken after a 1240 * failed advancement attempt, there's a risk that a grace period may 1241 * conclude and a new one may start in the interim. If the snapshot is 1242 * captured after this sequence of events, the acceleration snapshot 's' 1243 * could be excessively advanced, leading to acceleration failure. 1244 * In such a scenario, an 'acceleration leak' can occur, where new 1245 * callbacks become indefinitely stuck in the RCU_NEXT_TAIL segment. 1246 * Also note that encountering advancing failures is a normal 1247 * occurrence when the grace period for RCU_WAIT_TAIL is in progress. 1248 * 1249 * To see this, consider the following events which occur if 1250 * rcu_seq_snap() were to be called after advance: 1251 * 1252 * 1) The RCU_WAIT_TAIL segment has callbacks (gp_num = X + 4) and the 1253 * RCU_NEXT_READY_TAIL also has callbacks (gp_num = X + 8). 1254 * 1255 * 2) The grace period for RCU_WAIT_TAIL is seen as started but not 1256 * completed so rcu_seq_current() returns X + SRCU_STATE_SCAN1. 1257 * 1258 * 3) This value is passed to rcu_segcblist_advance() which can't move 1259 * any segment forward and fails. 1260 * 1261 * 4) srcu_gp_start_if_needed() still proceeds with callback acceleration. 1262 * But then the call to rcu_seq_snap() observes the grace period for the 1263 * RCU_WAIT_TAIL segment as completed and the subsequent one for the 1264 * RCU_NEXT_READY_TAIL segment as started (ie: X + 4 + SRCU_STATE_SCAN1) 1265 * so it returns a snapshot of the next grace period, which is X + 12. 1266 * 1267 * 5) The value of X + 12 is passed to rcu_segcblist_accelerate() but the 1268 * freshly enqueued callback in RCU_NEXT_TAIL can't move to 1269 * RCU_NEXT_READY_TAIL which already has callbacks for a previous grace 1270 * period (gp_num = X + 8). So acceleration fails. 1271 */ 1272 s = rcu_seq_snap(&ssp->srcu_sup->srcu_gp_seq); 1273 if (rhp) { 1274 rcu_segcblist_advance(&sdp->srcu_cblist, 1275 rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq)); 1276 /* 1277 * Acceleration can never fail because the base current gp_seq 1278 * used for acceleration is <= the value of gp_seq used for 1279 * advancing. This means that RCU_NEXT_TAIL segment will 1280 * always be able to be emptied by the acceleration into the 1281 * RCU_NEXT_READY_TAIL or RCU_WAIT_TAIL segments. 1282 */ 1283 WARN_ON_ONCE(!rcu_segcblist_accelerate(&sdp->srcu_cblist, s)); 1284 } 1285 if (ULONG_CMP_LT(sdp->srcu_gp_seq_needed, s)) { 1286 sdp->srcu_gp_seq_needed = s; 1287 needgp = true; 1288 } 1289 if (!do_norm && ULONG_CMP_LT(sdp->srcu_gp_seq_needed_exp, s)) { 1290 sdp->srcu_gp_seq_needed_exp = s; 1291 needexp = true; 1292 } 1293 spin_unlock_irqrestore_rcu_node(sdp, flags); 1294 1295 /* Ensure that snp node tree is fully initialized before traversing it */ 1296 if (ss_state < SRCU_SIZE_WAIT_BARRIER) 1297 sdp_mynode = NULL; 1298 else 1299 sdp_mynode = sdp->mynode; 1300 1301 if (needgp) 1302 srcu_funnel_gp_start(ssp, sdp, s, do_norm); 1303 else if (needexp) 1304 srcu_funnel_exp_start(ssp, sdp_mynode, s); 1305 __srcu_read_unlock_nmisafe(ssp, idx); 1306 return s; 1307 } 1308 1309 /* 1310 * Enqueue an SRCU callback on the srcu_data structure associated with 1311 * the current CPU and the specified srcu_struct structure, initiating 1312 * grace-period processing if it is not already running. 1313 * 1314 * Note that all CPUs must agree that the grace period extended beyond 1315 * all pre-existing SRCU read-side critical section. On systems with 1316 * more than one CPU, this means that when "func()" is invoked, each CPU 1317 * is guaranteed to have executed a full memory barrier since the end of 1318 * its last corresponding SRCU read-side critical section whose beginning 1319 * preceded the call to call_srcu(). It also means that each CPU executing 1320 * an SRCU read-side critical section that continues beyond the start of 1321 * "func()" must have executed a memory barrier after the call_srcu() 1322 * but before the beginning of that SRCU read-side critical section. 1323 * Note that these guarantees include CPUs that are offline, idle, or 1324 * executing in user mode, as well as CPUs that are executing in the kernel. 1325 * 1326 * Furthermore, if CPU A invoked call_srcu() and CPU B invoked the 1327 * resulting SRCU callback function "func()", then both CPU A and CPU 1328 * B are guaranteed to execute a full memory barrier during the time 1329 * interval between the call to call_srcu() and the invocation of "func()". 1330 * This guarantee applies even if CPU A and CPU B are the same CPU (but 1331 * again only if the system has more than one CPU). 1332 * 1333 * Of course, these guarantees apply only for invocations of call_srcu(), 1334 * srcu_read_lock(), and srcu_read_unlock() that are all passed the same 1335 * srcu_struct structure. 1336 */ 1337 static void __call_srcu(struct srcu_struct *ssp, struct rcu_head *rhp, 1338 rcu_callback_t func, bool do_norm) 1339 { 1340 if (debug_rcu_head_queue(rhp)) { 1341 /* Probable double call_srcu(), so leak the callback. */ 1342 WRITE_ONCE(rhp->func, srcu_leak_callback); 1343 WARN_ONCE(1, "call_srcu(): Leaked duplicate callback\n"); 1344 return; 1345 } 1346 rhp->func = func; 1347 (void)srcu_gp_start_if_needed(ssp, rhp, do_norm); 1348 } 1349 1350 /** 1351 * call_srcu() - Queue a callback for invocation after an SRCU grace period 1352 * @ssp: srcu_struct in queue the callback 1353 * @rhp: structure to be used for queueing the SRCU callback. 1354 * @func: function to be invoked after the SRCU grace period 1355 * 1356 * The callback function will be invoked some time after a full SRCU 1357 * grace period elapses, in other words after all pre-existing SRCU 1358 * read-side critical sections have completed. However, the callback 1359 * function might well execute concurrently with other SRCU read-side 1360 * critical sections that started after call_srcu() was invoked. SRCU 1361 * read-side critical sections are delimited by srcu_read_lock() and 1362 * srcu_read_unlock(), and may be nested. 1363 * 1364 * The callback will be invoked from process context, but must nevertheless 1365 * be fast and must not block. 1366 */ 1367 void call_srcu(struct srcu_struct *ssp, struct rcu_head *rhp, 1368 rcu_callback_t func) 1369 { 1370 __call_srcu(ssp, rhp, func, true); 1371 } 1372 EXPORT_SYMBOL_GPL(call_srcu); 1373 1374 /* 1375 * Helper function for synchronize_srcu() and synchronize_srcu_expedited(). 1376 */ 1377 static void __synchronize_srcu(struct srcu_struct *ssp, bool do_norm) 1378 { 1379 struct rcu_synchronize rcu; 1380 1381 srcu_lock_sync(&ssp->dep_map); 1382 1383 RCU_LOCKDEP_WARN(lockdep_is_held(ssp) || 1384 lock_is_held(&rcu_bh_lock_map) || 1385 lock_is_held(&rcu_lock_map) || 1386 lock_is_held(&rcu_sched_lock_map), 1387 "Illegal synchronize_srcu() in same-type SRCU (or in RCU) read-side critical section"); 1388 1389 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE) 1390 return; 1391 might_sleep(); 1392 check_init_srcu_struct(ssp); 1393 init_completion(&rcu.completion); 1394 init_rcu_head_on_stack(&rcu.head); 1395 __call_srcu(ssp, &rcu.head, wakeme_after_rcu, do_norm); 1396 wait_for_completion(&rcu.completion); 1397 destroy_rcu_head_on_stack(&rcu.head); 1398 1399 /* 1400 * Make sure that later code is ordered after the SRCU grace 1401 * period. This pairs with the spin_lock_irq_rcu_node() 1402 * in srcu_invoke_callbacks(). Unlike Tree RCU, this is needed 1403 * because the current CPU might have been totally uninvolved with 1404 * (and thus unordered against) that grace period. 1405 */ 1406 smp_mb(); 1407 } 1408 1409 /** 1410 * synchronize_srcu_expedited - Brute-force SRCU grace period 1411 * @ssp: srcu_struct with which to synchronize. 1412 * 1413 * Wait for an SRCU grace period to elapse, but be more aggressive about 1414 * spinning rather than blocking when waiting. 1415 * 1416 * Note that synchronize_srcu_expedited() has the same deadlock and 1417 * memory-ordering properties as does synchronize_srcu(). 1418 */ 1419 void synchronize_srcu_expedited(struct srcu_struct *ssp) 1420 { 1421 __synchronize_srcu(ssp, rcu_gp_is_normal()); 1422 } 1423 EXPORT_SYMBOL_GPL(synchronize_srcu_expedited); 1424 1425 /** 1426 * synchronize_srcu - wait for prior SRCU read-side critical-section completion 1427 * @ssp: srcu_struct with which to synchronize. 1428 * 1429 * Wait for the count to drain to zero of both indexes. To avoid the 1430 * possible starvation of synchronize_srcu(), it waits for the count of 1431 * the index=((->srcu_idx & 1) ^ 1) to drain to zero at first, 1432 * and then flip the srcu_idx and wait for the count of the other index. 1433 * 1434 * Can block; must be called from process context. 1435 * 1436 * Note that it is illegal to call synchronize_srcu() from the corresponding 1437 * SRCU read-side critical section; doing so will result in deadlock. 1438 * However, it is perfectly legal to call synchronize_srcu() on one 1439 * srcu_struct from some other srcu_struct's read-side critical section, 1440 * as long as the resulting graph of srcu_structs is acyclic. 1441 * 1442 * There are memory-ordering constraints implied by synchronize_srcu(). 1443 * On systems with more than one CPU, when synchronize_srcu() returns, 1444 * each CPU is guaranteed to have executed a full memory barrier since 1445 * the end of its last corresponding SRCU read-side critical section 1446 * whose beginning preceded the call to synchronize_srcu(). In addition, 1447 * each CPU having an SRCU read-side critical section that extends beyond 1448 * the return from synchronize_srcu() is guaranteed to have executed a 1449 * full memory barrier after the beginning of synchronize_srcu() and before 1450 * the beginning of that SRCU read-side critical section. Note that these 1451 * guarantees include CPUs that are offline, idle, or executing in user mode, 1452 * as well as CPUs that are executing in the kernel. 1453 * 1454 * Furthermore, if CPU A invoked synchronize_srcu(), which returned 1455 * to its caller on CPU B, then both CPU A and CPU B are guaranteed 1456 * to have executed a full memory barrier during the execution of 1457 * synchronize_srcu(). This guarantee applies even if CPU A and CPU B 1458 * are the same CPU, but again only if the system has more than one CPU. 1459 * 1460 * Of course, these memory-ordering guarantees apply only when 1461 * synchronize_srcu(), srcu_read_lock(), and srcu_read_unlock() are 1462 * passed the same srcu_struct structure. 1463 * 1464 * Implementation of these memory-ordering guarantees is similar to 1465 * that of synchronize_rcu(). 1466 * 1467 * If SRCU is likely idle, expedite the first request. This semantic 1468 * was provided by Classic SRCU, and is relied upon by its users, so TREE 1469 * SRCU must also provide it. Note that detecting idleness is heuristic 1470 * and subject to both false positives and negatives. 1471 */ 1472 void synchronize_srcu(struct srcu_struct *ssp) 1473 { 1474 if (srcu_might_be_idle(ssp) || rcu_gp_is_expedited()) 1475 synchronize_srcu_expedited(ssp); 1476 else 1477 __synchronize_srcu(ssp, true); 1478 } 1479 EXPORT_SYMBOL_GPL(synchronize_srcu); 1480 1481 /** 1482 * get_state_synchronize_srcu - Provide an end-of-grace-period cookie 1483 * @ssp: srcu_struct to provide cookie for. 1484 * 1485 * This function returns a cookie that can be passed to 1486 * poll_state_synchronize_srcu(), which will return true if a full grace 1487 * period has elapsed in the meantime. It is the caller's responsibility 1488 * to make sure that grace period happens, for example, by invoking 1489 * call_srcu() after return from get_state_synchronize_srcu(). 1490 */ 1491 unsigned long get_state_synchronize_srcu(struct srcu_struct *ssp) 1492 { 1493 // Any prior manipulation of SRCU-protected data must happen 1494 // before the load from ->srcu_gp_seq. 1495 smp_mb(); 1496 return rcu_seq_snap(&ssp->srcu_sup->srcu_gp_seq); 1497 } 1498 EXPORT_SYMBOL_GPL(get_state_synchronize_srcu); 1499 1500 /** 1501 * start_poll_synchronize_srcu - Provide cookie and start grace period 1502 * @ssp: srcu_struct to provide cookie for. 1503 * 1504 * This function returns a cookie that can be passed to 1505 * poll_state_synchronize_srcu(), which will return true if a full grace 1506 * period has elapsed in the meantime. Unlike get_state_synchronize_srcu(), 1507 * this function also ensures that any needed SRCU grace period will be 1508 * started. This convenience does come at a cost in terms of CPU overhead. 1509 */ 1510 unsigned long start_poll_synchronize_srcu(struct srcu_struct *ssp) 1511 { 1512 return srcu_gp_start_if_needed(ssp, NULL, true); 1513 } 1514 EXPORT_SYMBOL_GPL(start_poll_synchronize_srcu); 1515 1516 /** 1517 * poll_state_synchronize_srcu - Has cookie's grace period ended? 1518 * @ssp: srcu_struct to provide cookie for. 1519 * @cookie: Return value from get_state_synchronize_srcu() or start_poll_synchronize_srcu(). 1520 * 1521 * This function takes the cookie that was returned from either 1522 * get_state_synchronize_srcu() or start_poll_synchronize_srcu(), and 1523 * returns @true if an SRCU grace period elapsed since the time that the 1524 * cookie was created. 1525 * 1526 * Because cookies are finite in size, wrapping/overflow is possible. 1527 * This is more pronounced on 32-bit systems where cookies are 32 bits, 1528 * where in theory wrapping could happen in about 14 hours assuming 1529 * 25-microsecond expedited SRCU grace periods. However, a more likely 1530 * overflow lower bound is on the order of 24 days in the case of 1531 * one-millisecond SRCU grace periods. Of course, wrapping in a 64-bit 1532 * system requires geologic timespans, as in more than seven million years 1533 * even for expedited SRCU grace periods. 1534 * 1535 * Wrapping/overflow is much more of an issue for CONFIG_SMP=n systems 1536 * that also have CONFIG_PREEMPTION=n, which selects Tiny SRCU. This uses 1537 * a 16-bit cookie, which rcutorture routinely wraps in a matter of a 1538 * few minutes. If this proves to be a problem, this counter will be 1539 * expanded to the same size as for Tree SRCU. 1540 */ 1541 bool poll_state_synchronize_srcu(struct srcu_struct *ssp, unsigned long cookie) 1542 { 1543 if (!rcu_seq_done(&ssp->srcu_sup->srcu_gp_seq, cookie)) 1544 return false; 1545 // Ensure that the end of the SRCU grace period happens before 1546 // any subsequent code that the caller might execute. 1547 smp_mb(); // ^^^ 1548 return true; 1549 } 1550 EXPORT_SYMBOL_GPL(poll_state_synchronize_srcu); 1551 1552 /* 1553 * Callback function for srcu_barrier() use. 1554 */ 1555 static void srcu_barrier_cb(struct rcu_head *rhp) 1556 { 1557 struct srcu_data *sdp; 1558 struct srcu_struct *ssp; 1559 1560 sdp = container_of(rhp, struct srcu_data, srcu_barrier_head); 1561 ssp = sdp->ssp; 1562 if (atomic_dec_and_test(&ssp->srcu_sup->srcu_barrier_cpu_cnt)) 1563 complete(&ssp->srcu_sup->srcu_barrier_completion); 1564 } 1565 1566 /* 1567 * Enqueue an srcu_barrier() callback on the specified srcu_data 1568 * structure's ->cblist. but only if that ->cblist already has at least one 1569 * callback enqueued. Note that if a CPU already has callbacks enqueue, 1570 * it must have already registered the need for a future grace period, 1571 * so all we need do is enqueue a callback that will use the same grace 1572 * period as the last callback already in the queue. 1573 */ 1574 static void srcu_barrier_one_cpu(struct srcu_struct *ssp, struct srcu_data *sdp) 1575 { 1576 spin_lock_irq_rcu_node(sdp); 1577 atomic_inc(&ssp->srcu_sup->srcu_barrier_cpu_cnt); 1578 sdp->srcu_barrier_head.func = srcu_barrier_cb; 1579 debug_rcu_head_queue(&sdp->srcu_barrier_head); 1580 if (!rcu_segcblist_entrain(&sdp->srcu_cblist, 1581 &sdp->srcu_barrier_head)) { 1582 debug_rcu_head_unqueue(&sdp->srcu_barrier_head); 1583 atomic_dec(&ssp->srcu_sup->srcu_barrier_cpu_cnt); 1584 } 1585 spin_unlock_irq_rcu_node(sdp); 1586 } 1587 1588 /** 1589 * srcu_barrier - Wait until all in-flight call_srcu() callbacks complete. 1590 * @ssp: srcu_struct on which to wait for in-flight callbacks. 1591 */ 1592 void srcu_barrier(struct srcu_struct *ssp) 1593 { 1594 int cpu; 1595 int idx; 1596 unsigned long s = rcu_seq_snap(&ssp->srcu_sup->srcu_barrier_seq); 1597 1598 check_init_srcu_struct(ssp); 1599 mutex_lock(&ssp->srcu_sup->srcu_barrier_mutex); 1600 if (rcu_seq_done(&ssp->srcu_sup->srcu_barrier_seq, s)) { 1601 smp_mb(); /* Force ordering following return. */ 1602 mutex_unlock(&ssp->srcu_sup->srcu_barrier_mutex); 1603 return; /* Someone else did our work for us. */ 1604 } 1605 rcu_seq_start(&ssp->srcu_sup->srcu_barrier_seq); 1606 init_completion(&ssp->srcu_sup->srcu_barrier_completion); 1607 1608 /* Initial count prevents reaching zero until all CBs are posted. */ 1609 atomic_set(&ssp->srcu_sup->srcu_barrier_cpu_cnt, 1); 1610 1611 idx = __srcu_read_lock_nmisafe(ssp); 1612 if (smp_load_acquire(&ssp->srcu_sup->srcu_size_state) < SRCU_SIZE_WAIT_BARRIER) 1613 srcu_barrier_one_cpu(ssp, per_cpu_ptr(ssp->sda, get_boot_cpu_id())); 1614 else 1615 for_each_possible_cpu(cpu) 1616 srcu_barrier_one_cpu(ssp, per_cpu_ptr(ssp->sda, cpu)); 1617 __srcu_read_unlock_nmisafe(ssp, idx); 1618 1619 /* Remove the initial count, at which point reaching zero can happen. */ 1620 if (atomic_dec_and_test(&ssp->srcu_sup->srcu_barrier_cpu_cnt)) 1621 complete(&ssp->srcu_sup->srcu_barrier_completion); 1622 wait_for_completion(&ssp->srcu_sup->srcu_barrier_completion); 1623 1624 rcu_seq_end(&ssp->srcu_sup->srcu_barrier_seq); 1625 mutex_unlock(&ssp->srcu_sup->srcu_barrier_mutex); 1626 } 1627 EXPORT_SYMBOL_GPL(srcu_barrier); 1628 1629 /** 1630 * srcu_batches_completed - return batches completed. 1631 * @ssp: srcu_struct on which to report batch completion. 1632 * 1633 * Report the number of batches, correlated with, but not necessarily 1634 * precisely the same as, the number of grace periods that have elapsed. 1635 */ 1636 unsigned long srcu_batches_completed(struct srcu_struct *ssp) 1637 { 1638 return READ_ONCE(ssp->srcu_idx); 1639 } 1640 EXPORT_SYMBOL_GPL(srcu_batches_completed); 1641 1642 /* 1643 * Core SRCU state machine. Push state bits of ->srcu_gp_seq 1644 * to SRCU_STATE_SCAN2, and invoke srcu_gp_end() when scan has 1645 * completed in that state. 1646 */ 1647 static void srcu_advance_state(struct srcu_struct *ssp) 1648 { 1649 int idx; 1650 1651 mutex_lock(&ssp->srcu_sup->srcu_gp_mutex); 1652 1653 /* 1654 * Because readers might be delayed for an extended period after 1655 * fetching ->srcu_idx for their index, at any point in time there 1656 * might well be readers using both idx=0 and idx=1. We therefore 1657 * need to wait for readers to clear from both index values before 1658 * invoking a callback. 1659 * 1660 * The load-acquire ensures that we see the accesses performed 1661 * by the prior grace period. 1662 */ 1663 idx = rcu_seq_state(smp_load_acquire(&ssp->srcu_sup->srcu_gp_seq)); /* ^^^ */ 1664 if (idx == SRCU_STATE_IDLE) { 1665 spin_lock_irq_rcu_node(ssp->srcu_sup); 1666 if (ULONG_CMP_GE(ssp->srcu_sup->srcu_gp_seq, ssp->srcu_sup->srcu_gp_seq_needed)) { 1667 WARN_ON_ONCE(rcu_seq_state(ssp->srcu_sup->srcu_gp_seq)); 1668 spin_unlock_irq_rcu_node(ssp->srcu_sup); 1669 mutex_unlock(&ssp->srcu_sup->srcu_gp_mutex); 1670 return; 1671 } 1672 idx = rcu_seq_state(READ_ONCE(ssp->srcu_sup->srcu_gp_seq)); 1673 if (idx == SRCU_STATE_IDLE) 1674 srcu_gp_start(ssp); 1675 spin_unlock_irq_rcu_node(ssp->srcu_sup); 1676 if (idx != SRCU_STATE_IDLE) { 1677 mutex_unlock(&ssp->srcu_sup->srcu_gp_mutex); 1678 return; /* Someone else started the grace period. */ 1679 } 1680 } 1681 1682 if (rcu_seq_state(READ_ONCE(ssp->srcu_sup->srcu_gp_seq)) == SRCU_STATE_SCAN1) { 1683 idx = 1 ^ (ssp->srcu_idx & 1); 1684 if (!try_check_zero(ssp, idx, 1)) { 1685 mutex_unlock(&ssp->srcu_sup->srcu_gp_mutex); 1686 return; /* readers present, retry later. */ 1687 } 1688 srcu_flip(ssp); 1689 spin_lock_irq_rcu_node(ssp->srcu_sup); 1690 rcu_seq_set_state(&ssp->srcu_sup->srcu_gp_seq, SRCU_STATE_SCAN2); 1691 ssp->srcu_sup->srcu_n_exp_nodelay = 0; 1692 spin_unlock_irq_rcu_node(ssp->srcu_sup); 1693 } 1694 1695 if (rcu_seq_state(READ_ONCE(ssp->srcu_sup->srcu_gp_seq)) == SRCU_STATE_SCAN2) { 1696 1697 /* 1698 * SRCU read-side critical sections are normally short, 1699 * so check at least twice in quick succession after a flip. 1700 */ 1701 idx = 1 ^ (ssp->srcu_idx & 1); 1702 if (!try_check_zero(ssp, idx, 2)) { 1703 mutex_unlock(&ssp->srcu_sup->srcu_gp_mutex); 1704 return; /* readers present, retry later. */ 1705 } 1706 ssp->srcu_sup->srcu_n_exp_nodelay = 0; 1707 srcu_gp_end(ssp); /* Releases ->srcu_gp_mutex. */ 1708 } 1709 } 1710 1711 /* 1712 * Invoke a limited number of SRCU callbacks that have passed through 1713 * their grace period. If there are more to do, SRCU will reschedule 1714 * the workqueue. Note that needed memory barriers have been executed 1715 * in this task's context by srcu_readers_active_idx_check(). 1716 */ 1717 static void srcu_invoke_callbacks(struct work_struct *work) 1718 { 1719 long len; 1720 bool more; 1721 struct rcu_cblist ready_cbs; 1722 struct rcu_head *rhp; 1723 struct srcu_data *sdp; 1724 struct srcu_struct *ssp; 1725 1726 sdp = container_of(work, struct srcu_data, work); 1727 1728 ssp = sdp->ssp; 1729 rcu_cblist_init(&ready_cbs); 1730 spin_lock_irq_rcu_node(sdp); 1731 WARN_ON_ONCE(!rcu_segcblist_segempty(&sdp->srcu_cblist, RCU_NEXT_TAIL)); 1732 rcu_segcblist_advance(&sdp->srcu_cblist, 1733 rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq)); 1734 /* 1735 * Although this function is theoretically re-entrant, concurrent 1736 * callbacks invocation is disallowed to avoid executing an SRCU barrier 1737 * too early. 1738 */ 1739 if (sdp->srcu_cblist_invoking || 1740 !rcu_segcblist_ready_cbs(&sdp->srcu_cblist)) { 1741 spin_unlock_irq_rcu_node(sdp); 1742 return; /* Someone else on the job or nothing to do. */ 1743 } 1744 1745 /* We are on the job! Extract and invoke ready callbacks. */ 1746 sdp->srcu_cblist_invoking = true; 1747 rcu_segcblist_extract_done_cbs(&sdp->srcu_cblist, &ready_cbs); 1748 len = ready_cbs.len; 1749 spin_unlock_irq_rcu_node(sdp); 1750 rhp = rcu_cblist_dequeue(&ready_cbs); 1751 for (; rhp != NULL; rhp = rcu_cblist_dequeue(&ready_cbs)) { 1752 debug_rcu_head_unqueue(rhp); 1753 debug_rcu_head_callback(rhp); 1754 local_bh_disable(); 1755 rhp->func(rhp); 1756 local_bh_enable(); 1757 } 1758 WARN_ON_ONCE(ready_cbs.len); 1759 1760 /* 1761 * Update counts, accelerate new callbacks, and if needed, 1762 * schedule another round of callback invocation. 1763 */ 1764 spin_lock_irq_rcu_node(sdp); 1765 rcu_segcblist_add_len(&sdp->srcu_cblist, -len); 1766 sdp->srcu_cblist_invoking = false; 1767 more = rcu_segcblist_ready_cbs(&sdp->srcu_cblist); 1768 spin_unlock_irq_rcu_node(sdp); 1769 /* An SRCU barrier or callbacks from previous nesting work pending */ 1770 if (more) 1771 srcu_schedule_cbs_sdp(sdp, 0); 1772 } 1773 1774 /* 1775 * Finished one round of SRCU grace period. Start another if there are 1776 * more SRCU callbacks queued, otherwise put SRCU into not-running state. 1777 */ 1778 static void srcu_reschedule(struct srcu_struct *ssp, unsigned long delay) 1779 { 1780 bool pushgp = true; 1781 1782 spin_lock_irq_rcu_node(ssp->srcu_sup); 1783 if (ULONG_CMP_GE(ssp->srcu_sup->srcu_gp_seq, ssp->srcu_sup->srcu_gp_seq_needed)) { 1784 if (!WARN_ON_ONCE(rcu_seq_state(ssp->srcu_sup->srcu_gp_seq))) { 1785 /* All requests fulfilled, time to go idle. */ 1786 pushgp = false; 1787 } 1788 } else if (!rcu_seq_state(ssp->srcu_sup->srcu_gp_seq)) { 1789 /* Outstanding request and no GP. Start one. */ 1790 srcu_gp_start(ssp); 1791 } 1792 spin_unlock_irq_rcu_node(ssp->srcu_sup); 1793 1794 if (pushgp) 1795 queue_delayed_work(rcu_gp_wq, &ssp->srcu_sup->work, delay); 1796 } 1797 1798 /* 1799 * This is the work-queue function that handles SRCU grace periods. 1800 */ 1801 static void process_srcu(struct work_struct *work) 1802 { 1803 unsigned long curdelay; 1804 unsigned long j; 1805 struct srcu_struct *ssp; 1806 struct srcu_usage *sup; 1807 1808 sup = container_of(work, struct srcu_usage, work.work); 1809 ssp = sup->srcu_ssp; 1810 1811 srcu_advance_state(ssp); 1812 curdelay = srcu_get_delay(ssp); 1813 if (curdelay) { 1814 WRITE_ONCE(sup->reschedule_count, 0); 1815 } else { 1816 j = jiffies; 1817 if (READ_ONCE(sup->reschedule_jiffies) == j) { 1818 WRITE_ONCE(sup->reschedule_count, READ_ONCE(sup->reschedule_count) + 1); 1819 if (READ_ONCE(sup->reschedule_count) > srcu_max_nodelay) 1820 curdelay = 1; 1821 } else { 1822 WRITE_ONCE(sup->reschedule_count, 1); 1823 WRITE_ONCE(sup->reschedule_jiffies, j); 1824 } 1825 } 1826 srcu_reschedule(ssp, curdelay); 1827 } 1828 1829 void srcutorture_get_gp_data(struct srcu_struct *ssp, int *flags, 1830 unsigned long *gp_seq) 1831 { 1832 *flags = 0; 1833 *gp_seq = rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq); 1834 } 1835 EXPORT_SYMBOL_GPL(srcutorture_get_gp_data); 1836 1837 static const char * const srcu_size_state_name[] = { 1838 "SRCU_SIZE_SMALL", 1839 "SRCU_SIZE_ALLOC", 1840 "SRCU_SIZE_WAIT_BARRIER", 1841 "SRCU_SIZE_WAIT_CALL", 1842 "SRCU_SIZE_WAIT_CBS1", 1843 "SRCU_SIZE_WAIT_CBS2", 1844 "SRCU_SIZE_WAIT_CBS3", 1845 "SRCU_SIZE_WAIT_CBS4", 1846 "SRCU_SIZE_BIG", 1847 "SRCU_SIZE_???", 1848 }; 1849 1850 void srcu_torture_stats_print(struct srcu_struct *ssp, char *tt, char *tf) 1851 { 1852 int cpu; 1853 int idx; 1854 unsigned long s0 = 0, s1 = 0; 1855 int ss_state = READ_ONCE(ssp->srcu_sup->srcu_size_state); 1856 int ss_state_idx = ss_state; 1857 1858 idx = ssp->srcu_idx & 0x1; 1859 if (ss_state < 0 || ss_state >= ARRAY_SIZE(srcu_size_state_name)) 1860 ss_state_idx = ARRAY_SIZE(srcu_size_state_name) - 1; 1861 pr_alert("%s%s Tree SRCU g%ld state %d (%s)", 1862 tt, tf, rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq), ss_state, 1863 srcu_size_state_name[ss_state_idx]); 1864 if (!ssp->sda) { 1865 // Called after cleanup_srcu_struct(), perhaps. 1866 pr_cont(" No per-CPU srcu_data structures (->sda == NULL).\n"); 1867 } else { 1868 pr_cont(" per-CPU(idx=%d):", idx); 1869 for_each_possible_cpu(cpu) { 1870 unsigned long l0, l1; 1871 unsigned long u0, u1; 1872 long c0, c1; 1873 struct srcu_data *sdp; 1874 1875 sdp = per_cpu_ptr(ssp->sda, cpu); 1876 u0 = data_race(atomic_long_read(&sdp->srcu_unlock_count[!idx])); 1877 u1 = data_race(atomic_long_read(&sdp->srcu_unlock_count[idx])); 1878 1879 /* 1880 * Make sure that a lock is always counted if the corresponding 1881 * unlock is counted. 1882 */ 1883 smp_rmb(); 1884 1885 l0 = data_race(atomic_long_read(&sdp->srcu_lock_count[!idx])); 1886 l1 = data_race(atomic_long_read(&sdp->srcu_lock_count[idx])); 1887 1888 c0 = l0 - u0; 1889 c1 = l1 - u1; 1890 pr_cont(" %d(%ld,%ld %c)", 1891 cpu, c0, c1, 1892 "C."[rcu_segcblist_empty(&sdp->srcu_cblist)]); 1893 s0 += c0; 1894 s1 += c1; 1895 } 1896 pr_cont(" T(%ld,%ld)\n", s0, s1); 1897 } 1898 if (SRCU_SIZING_IS_TORTURE()) 1899 srcu_transition_to_big(ssp); 1900 } 1901 EXPORT_SYMBOL_GPL(srcu_torture_stats_print); 1902 1903 static int __init srcu_bootup_announce(void) 1904 { 1905 pr_info("Hierarchical SRCU implementation.\n"); 1906 if (exp_holdoff != DEFAULT_SRCU_EXP_HOLDOFF) 1907 pr_info("\tNon-default auto-expedite holdoff of %lu ns.\n", exp_holdoff); 1908 if (srcu_retry_check_delay != SRCU_DEFAULT_RETRY_CHECK_DELAY) 1909 pr_info("\tNon-default retry check delay of %lu us.\n", srcu_retry_check_delay); 1910 if (srcu_max_nodelay != SRCU_DEFAULT_MAX_NODELAY) 1911 pr_info("\tNon-default max no-delay of %lu.\n", srcu_max_nodelay); 1912 pr_info("\tMax phase no-delay instances is %lu.\n", srcu_max_nodelay_phase); 1913 return 0; 1914 } 1915 early_initcall(srcu_bootup_announce); 1916 1917 void __init srcu_init(void) 1918 { 1919 struct srcu_usage *sup; 1920 1921 /* Decide on srcu_struct-size strategy. */ 1922 if (SRCU_SIZING_IS(SRCU_SIZING_AUTO)) { 1923 if (nr_cpu_ids >= big_cpu_lim) { 1924 convert_to_big = SRCU_SIZING_INIT; // Don't bother waiting for contention. 1925 pr_info("%s: Setting srcu_struct sizes to big.\n", __func__); 1926 } else { 1927 convert_to_big = SRCU_SIZING_NONE | SRCU_SIZING_CONTEND; 1928 pr_info("%s: Setting srcu_struct sizes based on contention.\n", __func__); 1929 } 1930 } 1931 1932 /* 1933 * Once that is set, call_srcu() can follow the normal path and 1934 * queue delayed work. This must follow RCU workqueues creation 1935 * and timers initialization. 1936 */ 1937 srcu_init_done = true; 1938 while (!list_empty(&srcu_boot_list)) { 1939 sup = list_first_entry(&srcu_boot_list, struct srcu_usage, 1940 work.work.entry); 1941 list_del_init(&sup->work.work.entry); 1942 if (SRCU_SIZING_IS(SRCU_SIZING_INIT) && 1943 sup->srcu_size_state == SRCU_SIZE_SMALL) 1944 sup->srcu_size_state = SRCU_SIZE_ALLOC; 1945 queue_work(rcu_gp_wq, &sup->work.work); 1946 } 1947 } 1948 1949 #ifdef CONFIG_MODULES 1950 1951 /* Initialize any global-scope srcu_struct structures used by this module. */ 1952 static int srcu_module_coming(struct module *mod) 1953 { 1954 int i; 1955 struct srcu_struct *ssp; 1956 struct srcu_struct **sspp = mod->srcu_struct_ptrs; 1957 1958 for (i = 0; i < mod->num_srcu_structs; i++) { 1959 ssp = *(sspp++); 1960 ssp->sda = alloc_percpu(struct srcu_data); 1961 if (WARN_ON_ONCE(!ssp->sda)) 1962 return -ENOMEM; 1963 } 1964 return 0; 1965 } 1966 1967 /* Clean up any global-scope srcu_struct structures used by this module. */ 1968 static void srcu_module_going(struct module *mod) 1969 { 1970 int i; 1971 struct srcu_struct *ssp; 1972 struct srcu_struct **sspp = mod->srcu_struct_ptrs; 1973 1974 for (i = 0; i < mod->num_srcu_structs; i++) { 1975 ssp = *(sspp++); 1976 if (!rcu_seq_state(smp_load_acquire(&ssp->srcu_sup->srcu_gp_seq_needed)) && 1977 !WARN_ON_ONCE(!ssp->srcu_sup->sda_is_static)) 1978 cleanup_srcu_struct(ssp); 1979 if (!WARN_ON(srcu_readers_active(ssp))) 1980 free_percpu(ssp->sda); 1981 } 1982 } 1983 1984 /* Handle one module, either coming or going. */ 1985 static int srcu_module_notify(struct notifier_block *self, 1986 unsigned long val, void *data) 1987 { 1988 struct module *mod = data; 1989 int ret = 0; 1990 1991 switch (val) { 1992 case MODULE_STATE_COMING: 1993 ret = srcu_module_coming(mod); 1994 break; 1995 case MODULE_STATE_GOING: 1996 srcu_module_going(mod); 1997 break; 1998 default: 1999 break; 2000 } 2001 return ret; 2002 } 2003 2004 static struct notifier_block srcu_module_nb = { 2005 .notifier_call = srcu_module_notify, 2006 .priority = 0, 2007 }; 2008 2009 static __init int init_srcu_module_notifier(void) 2010 { 2011 int ret; 2012 2013 ret = register_module_notifier(&srcu_module_nb); 2014 if (ret) 2015 pr_warn("Failed to register srcu module notifier\n"); 2016 return ret; 2017 } 2018 late_initcall(init_srcu_module_notifier); 2019 2020 #endif /* #ifdef CONFIG_MODULES */ 2021