xref: /linux/kernel/rcu/srcutree.c (revision 663a917475530feff868a4f2bda286ea4171f420)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Sleepable Read-Copy Update mechanism for mutual exclusion.
4  *
5  * Copyright (C) IBM Corporation, 2006
6  * Copyright (C) Fujitsu, 2012
7  *
8  * Authors: Paul McKenney <paulmck@linux.ibm.com>
9  *	   Lai Jiangshan <laijs@cn.fujitsu.com>
10  *
11  * For detailed explanation of Read-Copy Update mechanism see -
12  *		Documentation/RCU/ *.txt
13  *
14  */
15 
16 #define pr_fmt(fmt) "rcu: " fmt
17 
18 #include <linux/export.h>
19 #include <linux/mutex.h>
20 #include <linux/percpu.h>
21 #include <linux/preempt.h>
22 #include <linux/rcupdate_wait.h>
23 #include <linux/sched.h>
24 #include <linux/smp.h>
25 #include <linux/delay.h>
26 #include <linux/module.h>
27 #include <linux/slab.h>
28 #include <linux/srcu.h>
29 
30 #include "rcu.h"
31 #include "rcu_segcblist.h"
32 
33 /* Holdoff in nanoseconds for auto-expediting. */
34 #define DEFAULT_SRCU_EXP_HOLDOFF (25 * 1000)
35 static ulong exp_holdoff = DEFAULT_SRCU_EXP_HOLDOFF;
36 module_param(exp_holdoff, ulong, 0444);
37 
38 /* Overflow-check frequency.  N bits roughly says every 2**N grace periods. */
39 static ulong counter_wrap_check = (ULONG_MAX >> 2);
40 module_param(counter_wrap_check, ulong, 0444);
41 
42 /*
43  * Control conversion to SRCU_SIZE_BIG:
44  *    0: Don't convert at all.
45  *    1: Convert at init_srcu_struct() time.
46  *    2: Convert when rcutorture invokes srcu_torture_stats_print().
47  *    3: Decide at boot time based on system shape (default).
48  * 0x1x: Convert when excessive contention encountered.
49  */
50 #define SRCU_SIZING_NONE	0
51 #define SRCU_SIZING_INIT	1
52 #define SRCU_SIZING_TORTURE	2
53 #define SRCU_SIZING_AUTO	3
54 #define SRCU_SIZING_CONTEND	0x10
55 #define SRCU_SIZING_IS(x) ((convert_to_big & ~SRCU_SIZING_CONTEND) == x)
56 #define SRCU_SIZING_IS_NONE() (SRCU_SIZING_IS(SRCU_SIZING_NONE))
57 #define SRCU_SIZING_IS_INIT() (SRCU_SIZING_IS(SRCU_SIZING_INIT))
58 #define SRCU_SIZING_IS_TORTURE() (SRCU_SIZING_IS(SRCU_SIZING_TORTURE))
59 #define SRCU_SIZING_IS_CONTEND() (convert_to_big & SRCU_SIZING_CONTEND)
60 static int convert_to_big = SRCU_SIZING_AUTO;
61 module_param(convert_to_big, int, 0444);
62 
63 /* Number of CPUs to trigger init_srcu_struct()-time transition to big. */
64 static int big_cpu_lim __read_mostly = 128;
65 module_param(big_cpu_lim, int, 0444);
66 
67 /* Contention events per jiffy to initiate transition to big. */
68 static int small_contention_lim __read_mostly = 100;
69 module_param(small_contention_lim, int, 0444);
70 
71 /* Early-boot callback-management, so early that no lock is required! */
72 static LIST_HEAD(srcu_boot_list);
73 static bool __read_mostly srcu_init_done;
74 
75 static void srcu_invoke_callbacks(struct work_struct *work);
76 static void srcu_reschedule(struct srcu_struct *ssp, unsigned long delay);
77 static void process_srcu(struct work_struct *work);
78 static void srcu_delay_timer(struct timer_list *t);
79 
80 /* Wrappers for lock acquisition and release, see raw_spin_lock_rcu_node(). */
81 #define spin_lock_rcu_node(p)							\
82 do {										\
83 	spin_lock(&ACCESS_PRIVATE(p, lock));					\
84 	smp_mb__after_unlock_lock();						\
85 } while (0)
86 
87 #define spin_unlock_rcu_node(p) spin_unlock(&ACCESS_PRIVATE(p, lock))
88 
89 #define spin_lock_irq_rcu_node(p)						\
90 do {										\
91 	spin_lock_irq(&ACCESS_PRIVATE(p, lock));				\
92 	smp_mb__after_unlock_lock();						\
93 } while (0)
94 
95 #define spin_unlock_irq_rcu_node(p)						\
96 	spin_unlock_irq(&ACCESS_PRIVATE(p, lock))
97 
98 #define spin_lock_irqsave_rcu_node(p, flags)					\
99 do {										\
100 	spin_lock_irqsave(&ACCESS_PRIVATE(p, lock), flags);			\
101 	smp_mb__after_unlock_lock();						\
102 } while (0)
103 
104 #define spin_trylock_irqsave_rcu_node(p, flags)					\
105 ({										\
106 	bool ___locked = spin_trylock_irqsave(&ACCESS_PRIVATE(p, lock), flags); \
107 										\
108 	if (___locked)								\
109 		smp_mb__after_unlock_lock();					\
110 	___locked;								\
111 })
112 
113 #define spin_unlock_irqrestore_rcu_node(p, flags)				\
114 	spin_unlock_irqrestore(&ACCESS_PRIVATE(p, lock), flags)			\
115 
116 /*
117  * Initialize SRCU per-CPU data.  Note that statically allocated
118  * srcu_struct structures might already have srcu_read_lock() and
119  * srcu_read_unlock() running against them.  So if the is_static parameter
120  * is set, don't initialize ->srcu_lock_count[] and ->srcu_unlock_count[].
121  */
122 static void init_srcu_struct_data(struct srcu_struct *ssp)
123 {
124 	int cpu;
125 	struct srcu_data *sdp;
126 
127 	/*
128 	 * Initialize the per-CPU srcu_data array, which feeds into the
129 	 * leaves of the srcu_node tree.
130 	 */
131 	BUILD_BUG_ON(ARRAY_SIZE(sdp->srcu_lock_count) !=
132 		     ARRAY_SIZE(sdp->srcu_unlock_count));
133 	for_each_possible_cpu(cpu) {
134 		sdp = per_cpu_ptr(ssp->sda, cpu);
135 		spin_lock_init(&ACCESS_PRIVATE(sdp, lock));
136 		rcu_segcblist_init(&sdp->srcu_cblist);
137 		sdp->srcu_cblist_invoking = false;
138 		sdp->srcu_gp_seq_needed = ssp->srcu_sup->srcu_gp_seq;
139 		sdp->srcu_gp_seq_needed_exp = ssp->srcu_sup->srcu_gp_seq;
140 		sdp->srcu_barrier_head.next = &sdp->srcu_barrier_head;
141 		sdp->mynode = NULL;
142 		sdp->cpu = cpu;
143 		INIT_WORK(&sdp->work, srcu_invoke_callbacks);
144 		timer_setup(&sdp->delay_work, srcu_delay_timer, 0);
145 		sdp->ssp = ssp;
146 	}
147 }
148 
149 /* Invalid seq state, used during snp node initialization */
150 #define SRCU_SNP_INIT_SEQ		0x2
151 
152 /*
153  * Check whether sequence number corresponding to snp node,
154  * is invalid.
155  */
156 static inline bool srcu_invl_snp_seq(unsigned long s)
157 {
158 	return s == SRCU_SNP_INIT_SEQ;
159 }
160 
161 /*
162  * Allocated and initialize SRCU combining tree.  Returns @true if
163  * allocation succeeded and @false otherwise.
164  */
165 static bool init_srcu_struct_nodes(struct srcu_struct *ssp, gfp_t gfp_flags)
166 {
167 	int cpu;
168 	int i;
169 	int level = 0;
170 	int levelspread[RCU_NUM_LVLS];
171 	struct srcu_data *sdp;
172 	struct srcu_node *snp;
173 	struct srcu_node *snp_first;
174 
175 	/* Initialize geometry if it has not already been initialized. */
176 	rcu_init_geometry();
177 	ssp->srcu_sup->node = kcalloc(rcu_num_nodes, sizeof(*ssp->srcu_sup->node), gfp_flags);
178 	if (!ssp->srcu_sup->node)
179 		return false;
180 
181 	/* Work out the overall tree geometry. */
182 	ssp->srcu_sup->level[0] = &ssp->srcu_sup->node[0];
183 	for (i = 1; i < rcu_num_lvls; i++)
184 		ssp->srcu_sup->level[i] = ssp->srcu_sup->level[i - 1] + num_rcu_lvl[i - 1];
185 	rcu_init_levelspread(levelspread, num_rcu_lvl);
186 
187 	/* Each pass through this loop initializes one srcu_node structure. */
188 	srcu_for_each_node_breadth_first(ssp, snp) {
189 		spin_lock_init(&ACCESS_PRIVATE(snp, lock));
190 		BUILD_BUG_ON(ARRAY_SIZE(snp->srcu_have_cbs) !=
191 			     ARRAY_SIZE(snp->srcu_data_have_cbs));
192 		for (i = 0; i < ARRAY_SIZE(snp->srcu_have_cbs); i++) {
193 			snp->srcu_have_cbs[i] = SRCU_SNP_INIT_SEQ;
194 			snp->srcu_data_have_cbs[i] = 0;
195 		}
196 		snp->srcu_gp_seq_needed_exp = SRCU_SNP_INIT_SEQ;
197 		snp->grplo = -1;
198 		snp->grphi = -1;
199 		if (snp == &ssp->srcu_sup->node[0]) {
200 			/* Root node, special case. */
201 			snp->srcu_parent = NULL;
202 			continue;
203 		}
204 
205 		/* Non-root node. */
206 		if (snp == ssp->srcu_sup->level[level + 1])
207 			level++;
208 		snp->srcu_parent = ssp->srcu_sup->level[level - 1] +
209 				   (snp - ssp->srcu_sup->level[level]) /
210 				   levelspread[level - 1];
211 	}
212 
213 	/*
214 	 * Initialize the per-CPU srcu_data array, which feeds into the
215 	 * leaves of the srcu_node tree.
216 	 */
217 	level = rcu_num_lvls - 1;
218 	snp_first = ssp->srcu_sup->level[level];
219 	for_each_possible_cpu(cpu) {
220 		sdp = per_cpu_ptr(ssp->sda, cpu);
221 		sdp->mynode = &snp_first[cpu / levelspread[level]];
222 		for (snp = sdp->mynode; snp != NULL; snp = snp->srcu_parent) {
223 			if (snp->grplo < 0)
224 				snp->grplo = cpu;
225 			snp->grphi = cpu;
226 		}
227 		sdp->grpmask = 1UL << (cpu - sdp->mynode->grplo);
228 	}
229 	smp_store_release(&ssp->srcu_sup->srcu_size_state, SRCU_SIZE_WAIT_BARRIER);
230 	return true;
231 }
232 
233 /*
234  * Initialize non-compile-time initialized fields, including the
235  * associated srcu_node and srcu_data structures.  The is_static parameter
236  * tells us that ->sda has already been wired up to srcu_data.
237  */
238 static int init_srcu_struct_fields(struct srcu_struct *ssp, bool is_static)
239 {
240 	if (!is_static)
241 		ssp->srcu_sup = kzalloc(sizeof(*ssp->srcu_sup), GFP_KERNEL);
242 	if (!ssp->srcu_sup)
243 		return -ENOMEM;
244 	if (!is_static)
245 		spin_lock_init(&ACCESS_PRIVATE(ssp->srcu_sup, lock));
246 	ssp->srcu_sup->srcu_size_state = SRCU_SIZE_SMALL;
247 	ssp->srcu_sup->node = NULL;
248 	mutex_init(&ssp->srcu_sup->srcu_cb_mutex);
249 	mutex_init(&ssp->srcu_sup->srcu_gp_mutex);
250 	ssp->srcu_idx = 0;
251 	ssp->srcu_sup->srcu_gp_seq = SRCU_GP_SEQ_INITIAL_VAL;
252 	ssp->srcu_sup->srcu_barrier_seq = 0;
253 	mutex_init(&ssp->srcu_sup->srcu_barrier_mutex);
254 	atomic_set(&ssp->srcu_sup->srcu_barrier_cpu_cnt, 0);
255 	INIT_DELAYED_WORK(&ssp->srcu_sup->work, process_srcu);
256 	ssp->srcu_sup->sda_is_static = is_static;
257 	if (!is_static)
258 		ssp->sda = alloc_percpu(struct srcu_data);
259 	if (!ssp->sda)
260 		goto err_free_sup;
261 	init_srcu_struct_data(ssp);
262 	ssp->srcu_sup->srcu_gp_seq_needed_exp = SRCU_GP_SEQ_INITIAL_VAL;
263 	ssp->srcu_sup->srcu_last_gp_end = ktime_get_mono_fast_ns();
264 	if (READ_ONCE(ssp->srcu_sup->srcu_size_state) == SRCU_SIZE_SMALL && SRCU_SIZING_IS_INIT()) {
265 		if (!init_srcu_struct_nodes(ssp, GFP_ATOMIC))
266 			goto err_free_sda;
267 		WRITE_ONCE(ssp->srcu_sup->srcu_size_state, SRCU_SIZE_BIG);
268 	}
269 	ssp->srcu_sup->srcu_ssp = ssp;
270 	smp_store_release(&ssp->srcu_sup->srcu_gp_seq_needed,
271 			SRCU_GP_SEQ_INITIAL_VAL); /* Init done. */
272 	return 0;
273 
274 err_free_sda:
275 	if (!is_static) {
276 		free_percpu(ssp->sda);
277 		ssp->sda = NULL;
278 	}
279 err_free_sup:
280 	if (!is_static) {
281 		kfree(ssp->srcu_sup);
282 		ssp->srcu_sup = NULL;
283 	}
284 	return -ENOMEM;
285 }
286 
287 #ifdef CONFIG_DEBUG_LOCK_ALLOC
288 
289 int __init_srcu_struct(struct srcu_struct *ssp, const char *name,
290 		       struct lock_class_key *key)
291 {
292 	/* Don't re-initialize a lock while it is held. */
293 	debug_check_no_locks_freed((void *)ssp, sizeof(*ssp));
294 	lockdep_init_map(&ssp->dep_map, name, key, 0);
295 	return init_srcu_struct_fields(ssp, false);
296 }
297 EXPORT_SYMBOL_GPL(__init_srcu_struct);
298 
299 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
300 
301 /**
302  * init_srcu_struct - initialize a sleep-RCU structure
303  * @ssp: structure to initialize.
304  *
305  * Must invoke this on a given srcu_struct before passing that srcu_struct
306  * to any other function.  Each srcu_struct represents a separate domain
307  * of SRCU protection.
308  */
309 int init_srcu_struct(struct srcu_struct *ssp)
310 {
311 	return init_srcu_struct_fields(ssp, false);
312 }
313 EXPORT_SYMBOL_GPL(init_srcu_struct);
314 
315 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
316 
317 /*
318  * Initiate a transition to SRCU_SIZE_BIG with lock held.
319  */
320 static void __srcu_transition_to_big(struct srcu_struct *ssp)
321 {
322 	lockdep_assert_held(&ACCESS_PRIVATE(ssp->srcu_sup, lock));
323 	smp_store_release(&ssp->srcu_sup->srcu_size_state, SRCU_SIZE_ALLOC);
324 }
325 
326 /*
327  * Initiate an idempotent transition to SRCU_SIZE_BIG.
328  */
329 static void srcu_transition_to_big(struct srcu_struct *ssp)
330 {
331 	unsigned long flags;
332 
333 	/* Double-checked locking on ->srcu_size-state. */
334 	if (smp_load_acquire(&ssp->srcu_sup->srcu_size_state) != SRCU_SIZE_SMALL)
335 		return;
336 	spin_lock_irqsave_rcu_node(ssp->srcu_sup, flags);
337 	if (smp_load_acquire(&ssp->srcu_sup->srcu_size_state) != SRCU_SIZE_SMALL) {
338 		spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags);
339 		return;
340 	}
341 	__srcu_transition_to_big(ssp);
342 	spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags);
343 }
344 
345 /*
346  * Check to see if the just-encountered contention event justifies
347  * a transition to SRCU_SIZE_BIG.
348  */
349 static void spin_lock_irqsave_check_contention(struct srcu_struct *ssp)
350 {
351 	unsigned long j;
352 
353 	if (!SRCU_SIZING_IS_CONTEND() || ssp->srcu_sup->srcu_size_state)
354 		return;
355 	j = jiffies;
356 	if (ssp->srcu_sup->srcu_size_jiffies != j) {
357 		ssp->srcu_sup->srcu_size_jiffies = j;
358 		ssp->srcu_sup->srcu_n_lock_retries = 0;
359 	}
360 	if (++ssp->srcu_sup->srcu_n_lock_retries <= small_contention_lim)
361 		return;
362 	__srcu_transition_to_big(ssp);
363 }
364 
365 /*
366  * Acquire the specified srcu_data structure's ->lock, but check for
367  * excessive contention, which results in initiation of a transition
368  * to SRCU_SIZE_BIG.  But only if the srcutree.convert_to_big module
369  * parameter permits this.
370  */
371 static void spin_lock_irqsave_sdp_contention(struct srcu_data *sdp, unsigned long *flags)
372 {
373 	struct srcu_struct *ssp = sdp->ssp;
374 
375 	if (spin_trylock_irqsave_rcu_node(sdp, *flags))
376 		return;
377 	spin_lock_irqsave_rcu_node(ssp->srcu_sup, *flags);
378 	spin_lock_irqsave_check_contention(ssp);
379 	spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, *flags);
380 	spin_lock_irqsave_rcu_node(sdp, *flags);
381 }
382 
383 /*
384  * Acquire the specified srcu_struct structure's ->lock, but check for
385  * excessive contention, which results in initiation of a transition
386  * to SRCU_SIZE_BIG.  But only if the srcutree.convert_to_big module
387  * parameter permits this.
388  */
389 static void spin_lock_irqsave_ssp_contention(struct srcu_struct *ssp, unsigned long *flags)
390 {
391 	if (spin_trylock_irqsave_rcu_node(ssp->srcu_sup, *flags))
392 		return;
393 	spin_lock_irqsave_rcu_node(ssp->srcu_sup, *flags);
394 	spin_lock_irqsave_check_contention(ssp);
395 }
396 
397 /*
398  * First-use initialization of statically allocated srcu_struct
399  * structure.  Wiring up the combining tree is more than can be
400  * done with compile-time initialization, so this check is added
401  * to each update-side SRCU primitive.  Use ssp->lock, which -is-
402  * compile-time initialized, to resolve races involving multiple
403  * CPUs trying to garner first-use privileges.
404  */
405 static void check_init_srcu_struct(struct srcu_struct *ssp)
406 {
407 	unsigned long flags;
408 
409 	/* The smp_load_acquire() pairs with the smp_store_release(). */
410 	if (!rcu_seq_state(smp_load_acquire(&ssp->srcu_sup->srcu_gp_seq_needed))) /*^^^*/
411 		return; /* Already initialized. */
412 	spin_lock_irqsave_rcu_node(ssp->srcu_sup, flags);
413 	if (!rcu_seq_state(ssp->srcu_sup->srcu_gp_seq_needed)) {
414 		spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags);
415 		return;
416 	}
417 	init_srcu_struct_fields(ssp, true);
418 	spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags);
419 }
420 
421 /*
422  * Is the current or any upcoming grace period to be expedited?
423  */
424 static bool srcu_gp_is_expedited(struct srcu_struct *ssp)
425 {
426 	struct srcu_usage *sup = ssp->srcu_sup;
427 
428 	return ULONG_CMP_LT(READ_ONCE(sup->srcu_gp_seq), READ_ONCE(sup->srcu_gp_seq_needed_exp));
429 }
430 
431 /*
432  * Computes approximate total of the readers' ->srcu_lock_count[] values
433  * for the rank of per-CPU counters specified by idx, and returns true if
434  * the caller did the proper barrier (gp), and if the count of the locks
435  * matches that of the unlocks passed in.
436  */
437 static bool srcu_readers_lock_idx(struct srcu_struct *ssp, int idx, bool gp, unsigned long unlocks)
438 {
439 	int cpu;
440 	unsigned long mask = 0;
441 	unsigned long sum = 0;
442 
443 	for_each_possible_cpu(cpu) {
444 		struct srcu_data *sdp = per_cpu_ptr(ssp->sda, cpu);
445 
446 		sum += atomic_long_read(&sdp->srcu_lock_count[idx]);
447 		if (IS_ENABLED(CONFIG_PROVE_RCU))
448 			mask = mask | READ_ONCE(sdp->srcu_reader_flavor);
449 	}
450 	WARN_ONCE(IS_ENABLED(CONFIG_PROVE_RCU) && (mask & (mask - 1)),
451 		  "Mixed reader flavors for srcu_struct at %ps.\n", ssp);
452 	if (mask & SRCU_READ_FLAVOR_LITE && !gp)
453 		return false;
454 	return sum == unlocks;
455 }
456 
457 /*
458  * Returns approximate total of the readers' ->srcu_unlock_count[] values
459  * for the rank of per-CPU counters specified by idx.
460  */
461 static unsigned long srcu_readers_unlock_idx(struct srcu_struct *ssp, int idx, unsigned long *rdm)
462 {
463 	int cpu;
464 	unsigned long mask = 0;
465 	unsigned long sum = 0;
466 
467 	for_each_possible_cpu(cpu) {
468 		struct srcu_data *sdp = per_cpu_ptr(ssp->sda, cpu);
469 
470 		sum += atomic_long_read(&sdp->srcu_unlock_count[idx]);
471 		mask = mask | READ_ONCE(sdp->srcu_reader_flavor);
472 	}
473 	WARN_ONCE(IS_ENABLED(CONFIG_PROVE_RCU) && (mask & (mask - 1)),
474 		  "Mixed reader flavors for srcu_struct at %ps.\n", ssp);
475 	*rdm = mask;
476 	return sum;
477 }
478 
479 /*
480  * Return true if the number of pre-existing readers is determined to
481  * be zero.
482  */
483 static bool srcu_readers_active_idx_check(struct srcu_struct *ssp, int idx)
484 {
485 	bool did_gp;
486 	unsigned long rdm;
487 	unsigned long unlocks;
488 
489 	unlocks = srcu_readers_unlock_idx(ssp, idx, &rdm);
490 	did_gp = !!(rdm & SRCU_READ_FLAVOR_LITE);
491 
492 	/*
493 	 * Make sure that a lock is always counted if the corresponding
494 	 * unlock is counted. Needs to be a smp_mb() as the read side may
495 	 * contain a read from a variable that is written to before the
496 	 * synchronize_srcu() in the write side. In this case smp_mb()s
497 	 * A and B (or X and Y) act like the store buffering pattern.
498 	 *
499 	 * This smp_mb() also pairs with smp_mb() C (or, in the case of X,
500 	 * Z) to prevent accesses after the synchronize_srcu() from being
501 	 * executed before the grace period ends.
502 	 */
503 	if (!did_gp)
504 		smp_mb(); /* A */
505 	else
506 		synchronize_rcu(); /* X */
507 
508 	/*
509 	 * If the locks are the same as the unlocks, then there must have
510 	 * been no readers on this index at some point in this function.
511 	 * But there might be more readers, as a task might have read
512 	 * the current ->srcu_idx but not yet have incremented its CPU's
513 	 * ->srcu_lock_count[idx] counter.  In fact, it is possible
514 	 * that most of the tasks have been preempted between fetching
515 	 * ->srcu_idx and incrementing ->srcu_lock_count[idx].  And there
516 	 * could be almost (ULONG_MAX / sizeof(struct task_struct)) tasks
517 	 * in a system whose address space was fully populated with memory.
518 	 * Call this quantity Nt.
519 	 *
520 	 * So suppose that the updater is preempted at this point in the
521 	 * code for a long time.  That now-preempted updater has already
522 	 * flipped ->srcu_idx (possibly during the preceding grace period),
523 	 * done an smp_mb() (again, possibly during the preceding grace
524 	 * period), and summed up the ->srcu_unlock_count[idx] counters.
525 	 * How many times can a given one of the aforementioned Nt tasks
526 	 * increment the old ->srcu_idx value's ->srcu_lock_count[idx]
527 	 * counter, in the absence of nesting?
528 	 *
529 	 * It can clearly do so once, given that it has already fetched
530 	 * the old value of ->srcu_idx and is just about to use that value
531 	 * to index its increment of ->srcu_lock_count[idx].  But as soon as
532 	 * it leaves that SRCU read-side critical section, it will increment
533 	 * ->srcu_unlock_count[idx], which must follow the updater's above
534 	 * read from that same value.  Thus, as soon the reading task does
535 	 * an smp_mb() and a later fetch from ->srcu_idx, that task will be
536 	 * guaranteed to get the new index.  Except that the increment of
537 	 * ->srcu_unlock_count[idx] in __srcu_read_unlock() is after the
538 	 * smp_mb(), and the fetch from ->srcu_idx in __srcu_read_lock()
539 	 * is before the smp_mb().  Thus, that task might not see the new
540 	 * value of ->srcu_idx until the -second- __srcu_read_lock(),
541 	 * which in turn means that this task might well increment
542 	 * ->srcu_lock_count[idx] for the old value of ->srcu_idx twice,
543 	 * not just once.
544 	 *
545 	 * However, it is important to note that a given smp_mb() takes
546 	 * effect not just for the task executing it, but also for any
547 	 * later task running on that same CPU.
548 	 *
549 	 * That is, there can be almost Nt + Nc further increments of
550 	 * ->srcu_lock_count[idx] for the old index, where Nc is the number
551 	 * of CPUs.  But this is OK because the size of the task_struct
552 	 * structure limits the value of Nt and current systems limit Nc
553 	 * to a few thousand.
554 	 *
555 	 * OK, but what about nesting?  This does impose a limit on
556 	 * nesting of half of the size of the task_struct structure
557 	 * (measured in bytes), which should be sufficient.  A late 2022
558 	 * TREE01 rcutorture run reported this size to be no less than
559 	 * 9408 bytes, allowing up to 4704 levels of nesting, which is
560 	 * comfortably beyond excessive.  Especially on 64-bit systems,
561 	 * which are unlikely to be configured with an address space fully
562 	 * populated with memory, at least not anytime soon.
563 	 */
564 	return srcu_readers_lock_idx(ssp, idx, did_gp, unlocks);
565 }
566 
567 /**
568  * srcu_readers_active - returns true if there are readers. and false
569  *                       otherwise
570  * @ssp: which srcu_struct to count active readers (holding srcu_read_lock).
571  *
572  * Note that this is not an atomic primitive, and can therefore suffer
573  * severe errors when invoked on an active srcu_struct.  That said, it
574  * can be useful as an error check at cleanup time.
575  */
576 static bool srcu_readers_active(struct srcu_struct *ssp)
577 {
578 	int cpu;
579 	unsigned long sum = 0;
580 
581 	for_each_possible_cpu(cpu) {
582 		struct srcu_data *sdp = per_cpu_ptr(ssp->sda, cpu);
583 
584 		sum += atomic_long_read(&sdp->srcu_lock_count[0]);
585 		sum += atomic_long_read(&sdp->srcu_lock_count[1]);
586 		sum -= atomic_long_read(&sdp->srcu_unlock_count[0]);
587 		sum -= atomic_long_read(&sdp->srcu_unlock_count[1]);
588 	}
589 	return sum;
590 }
591 
592 /*
593  * We use an adaptive strategy for synchronize_srcu() and especially for
594  * synchronize_srcu_expedited().  We spin for a fixed time period
595  * (defined below, boot time configurable) to allow SRCU readers to exit
596  * their read-side critical sections.  If there are still some readers
597  * after one jiffy, we repeatedly block for one jiffy time periods.
598  * The blocking time is increased as the grace-period age increases,
599  * with max blocking time capped at 10 jiffies.
600  */
601 #define SRCU_DEFAULT_RETRY_CHECK_DELAY		5
602 
603 static ulong srcu_retry_check_delay = SRCU_DEFAULT_RETRY_CHECK_DELAY;
604 module_param(srcu_retry_check_delay, ulong, 0444);
605 
606 #define SRCU_INTERVAL		1		// Base delay if no expedited GPs pending.
607 #define SRCU_MAX_INTERVAL	10		// Maximum incremental delay from slow readers.
608 
609 #define SRCU_DEFAULT_MAX_NODELAY_PHASE_LO	3UL	// Lowmark on default per-GP-phase
610 							// no-delay instances.
611 #define SRCU_DEFAULT_MAX_NODELAY_PHASE_HI	1000UL	// Highmark on default per-GP-phase
612 							// no-delay instances.
613 
614 #define SRCU_UL_CLAMP_LO(val, low)	((val) > (low) ? (val) : (low))
615 #define SRCU_UL_CLAMP_HI(val, high)	((val) < (high) ? (val) : (high))
616 #define SRCU_UL_CLAMP(val, low, high)	SRCU_UL_CLAMP_HI(SRCU_UL_CLAMP_LO((val), (low)), (high))
617 // per-GP-phase no-delay instances adjusted to allow non-sleeping poll upto
618 // one jiffies time duration. Mult by 2 is done to factor in the srcu_get_delay()
619 // called from process_srcu().
620 #define SRCU_DEFAULT_MAX_NODELAY_PHASE_ADJUSTED	\
621 	(2UL * USEC_PER_SEC / HZ / SRCU_DEFAULT_RETRY_CHECK_DELAY)
622 
623 // Maximum per-GP-phase consecutive no-delay instances.
624 #define SRCU_DEFAULT_MAX_NODELAY_PHASE	\
625 	SRCU_UL_CLAMP(SRCU_DEFAULT_MAX_NODELAY_PHASE_ADJUSTED,	\
626 		      SRCU_DEFAULT_MAX_NODELAY_PHASE_LO,	\
627 		      SRCU_DEFAULT_MAX_NODELAY_PHASE_HI)
628 
629 static ulong srcu_max_nodelay_phase = SRCU_DEFAULT_MAX_NODELAY_PHASE;
630 module_param(srcu_max_nodelay_phase, ulong, 0444);
631 
632 // Maximum consecutive no-delay instances.
633 #define SRCU_DEFAULT_MAX_NODELAY	(SRCU_DEFAULT_MAX_NODELAY_PHASE > 100 ?	\
634 					 SRCU_DEFAULT_MAX_NODELAY_PHASE : 100)
635 
636 static ulong srcu_max_nodelay = SRCU_DEFAULT_MAX_NODELAY;
637 module_param(srcu_max_nodelay, ulong, 0444);
638 
639 /*
640  * Return grace-period delay, zero if there are expedited grace
641  * periods pending, SRCU_INTERVAL otherwise.
642  */
643 static unsigned long srcu_get_delay(struct srcu_struct *ssp)
644 {
645 	unsigned long gpstart;
646 	unsigned long j;
647 	unsigned long jbase = SRCU_INTERVAL;
648 	struct srcu_usage *sup = ssp->srcu_sup;
649 
650 	if (srcu_gp_is_expedited(ssp))
651 		jbase = 0;
652 	if (rcu_seq_state(READ_ONCE(sup->srcu_gp_seq))) {
653 		j = jiffies - 1;
654 		gpstart = READ_ONCE(sup->srcu_gp_start);
655 		if (time_after(j, gpstart))
656 			jbase += j - gpstart;
657 		if (!jbase) {
658 			ASSERT_EXCLUSIVE_WRITER(sup->srcu_n_exp_nodelay);
659 			WRITE_ONCE(sup->srcu_n_exp_nodelay, READ_ONCE(sup->srcu_n_exp_nodelay) + 1);
660 			if (READ_ONCE(sup->srcu_n_exp_nodelay) > srcu_max_nodelay_phase)
661 				jbase = 1;
662 		}
663 	}
664 	return jbase > SRCU_MAX_INTERVAL ? SRCU_MAX_INTERVAL : jbase;
665 }
666 
667 /**
668  * cleanup_srcu_struct - deconstruct a sleep-RCU structure
669  * @ssp: structure to clean up.
670  *
671  * Must invoke this after you are finished using a given srcu_struct that
672  * was initialized via init_srcu_struct(), else you leak memory.
673  */
674 void cleanup_srcu_struct(struct srcu_struct *ssp)
675 {
676 	int cpu;
677 	struct srcu_usage *sup = ssp->srcu_sup;
678 
679 	if (WARN_ON(!srcu_get_delay(ssp)))
680 		return; /* Just leak it! */
681 	if (WARN_ON(srcu_readers_active(ssp)))
682 		return; /* Just leak it! */
683 	flush_delayed_work(&sup->work);
684 	for_each_possible_cpu(cpu) {
685 		struct srcu_data *sdp = per_cpu_ptr(ssp->sda, cpu);
686 
687 		del_timer_sync(&sdp->delay_work);
688 		flush_work(&sdp->work);
689 		if (WARN_ON(rcu_segcblist_n_cbs(&sdp->srcu_cblist)))
690 			return; /* Forgot srcu_barrier(), so just leak it! */
691 	}
692 	if (WARN_ON(rcu_seq_state(READ_ONCE(sup->srcu_gp_seq)) != SRCU_STATE_IDLE) ||
693 	    WARN_ON(rcu_seq_current(&sup->srcu_gp_seq) != sup->srcu_gp_seq_needed) ||
694 	    WARN_ON(srcu_readers_active(ssp))) {
695 		pr_info("%s: Active srcu_struct %p read state: %d gp state: %lu/%lu\n",
696 			__func__, ssp, rcu_seq_state(READ_ONCE(sup->srcu_gp_seq)),
697 			rcu_seq_current(&sup->srcu_gp_seq), sup->srcu_gp_seq_needed);
698 		return; // Caller forgot to stop doing call_srcu()?
699 			// Or caller invoked start_poll_synchronize_srcu()
700 			// and then cleanup_srcu_struct() before that grace
701 			// period ended?
702 	}
703 	kfree(sup->node);
704 	sup->node = NULL;
705 	sup->srcu_size_state = SRCU_SIZE_SMALL;
706 	if (!sup->sda_is_static) {
707 		free_percpu(ssp->sda);
708 		ssp->sda = NULL;
709 		kfree(sup);
710 		ssp->srcu_sup = NULL;
711 	}
712 }
713 EXPORT_SYMBOL_GPL(cleanup_srcu_struct);
714 
715 /*
716  * Check for consistent reader flavor.
717  */
718 void __srcu_check_read_flavor(struct srcu_struct *ssp, int read_flavor)
719 {
720 	int old_read_flavor;
721 	struct srcu_data *sdp;
722 
723 	/* NMI-unsafe use in NMI is a bad sign, as is multi-bit read_flavor values. */
724 	WARN_ON_ONCE((read_flavor != SRCU_READ_FLAVOR_NMI) && in_nmi());
725 	WARN_ON_ONCE(read_flavor & (read_flavor - 1));
726 
727 	sdp = raw_cpu_ptr(ssp->sda);
728 	old_read_flavor = READ_ONCE(sdp->srcu_reader_flavor);
729 	if (!old_read_flavor) {
730 		old_read_flavor = cmpxchg(&sdp->srcu_reader_flavor, 0, read_flavor);
731 		if (!old_read_flavor)
732 			return;
733 	}
734 	WARN_ONCE(old_read_flavor != read_flavor, "CPU %d old state %d new state %d\n", sdp->cpu, old_read_flavor, read_flavor);
735 }
736 EXPORT_SYMBOL_GPL(__srcu_check_read_flavor);
737 
738 /*
739  * Counts the new reader in the appropriate per-CPU element of the
740  * srcu_struct.
741  * Returns an index that must be passed to the matching srcu_read_unlock().
742  */
743 int __srcu_read_lock(struct srcu_struct *ssp)
744 {
745 	int idx;
746 
747 	idx = READ_ONCE(ssp->srcu_idx) & 0x1;
748 	this_cpu_inc(ssp->sda->srcu_lock_count[idx].counter);
749 	smp_mb(); /* B */  /* Avoid leaking the critical section. */
750 	return idx;
751 }
752 EXPORT_SYMBOL_GPL(__srcu_read_lock);
753 
754 /*
755  * Removes the count for the old reader from the appropriate per-CPU
756  * element of the srcu_struct.  Note that this may well be a different
757  * CPU than that which was incremented by the corresponding srcu_read_lock().
758  */
759 void __srcu_read_unlock(struct srcu_struct *ssp, int idx)
760 {
761 	smp_mb(); /* C */  /* Avoid leaking the critical section. */
762 	this_cpu_inc(ssp->sda->srcu_unlock_count[idx].counter);
763 }
764 EXPORT_SYMBOL_GPL(__srcu_read_unlock);
765 
766 #ifdef CONFIG_NEED_SRCU_NMI_SAFE
767 
768 /*
769  * Counts the new reader in the appropriate per-CPU element of the
770  * srcu_struct, but in an NMI-safe manner using RMW atomics.
771  * Returns an index that must be passed to the matching srcu_read_unlock().
772  */
773 int __srcu_read_lock_nmisafe(struct srcu_struct *ssp)
774 {
775 	int idx;
776 	struct srcu_data *sdp = raw_cpu_ptr(ssp->sda);
777 
778 	idx = READ_ONCE(ssp->srcu_idx) & 0x1;
779 	atomic_long_inc(&sdp->srcu_lock_count[idx]);
780 	smp_mb__after_atomic(); /* B */  /* Avoid leaking the critical section. */
781 	return idx;
782 }
783 EXPORT_SYMBOL_GPL(__srcu_read_lock_nmisafe);
784 
785 /*
786  * Removes the count for the old reader from the appropriate per-CPU
787  * element of the srcu_struct.  Note that this may well be a different
788  * CPU than that which was incremented by the corresponding srcu_read_lock().
789  */
790 void __srcu_read_unlock_nmisafe(struct srcu_struct *ssp, int idx)
791 {
792 	struct srcu_data *sdp = raw_cpu_ptr(ssp->sda);
793 
794 	smp_mb__before_atomic(); /* C */  /* Avoid leaking the critical section. */
795 	atomic_long_inc(&sdp->srcu_unlock_count[idx]);
796 }
797 EXPORT_SYMBOL_GPL(__srcu_read_unlock_nmisafe);
798 
799 #endif // CONFIG_NEED_SRCU_NMI_SAFE
800 
801 /*
802  * Start an SRCU grace period.
803  */
804 static void srcu_gp_start(struct srcu_struct *ssp)
805 {
806 	int state;
807 
808 	lockdep_assert_held(&ACCESS_PRIVATE(ssp->srcu_sup, lock));
809 	WARN_ON_ONCE(ULONG_CMP_GE(ssp->srcu_sup->srcu_gp_seq, ssp->srcu_sup->srcu_gp_seq_needed));
810 	WRITE_ONCE(ssp->srcu_sup->srcu_gp_start, jiffies);
811 	WRITE_ONCE(ssp->srcu_sup->srcu_n_exp_nodelay, 0);
812 	smp_mb(); /* Order prior store to ->srcu_gp_seq_needed vs. GP start. */
813 	rcu_seq_start(&ssp->srcu_sup->srcu_gp_seq);
814 	state = rcu_seq_state(ssp->srcu_sup->srcu_gp_seq);
815 	WARN_ON_ONCE(state != SRCU_STATE_SCAN1);
816 }
817 
818 
819 static void srcu_delay_timer(struct timer_list *t)
820 {
821 	struct srcu_data *sdp = container_of(t, struct srcu_data, delay_work);
822 
823 	queue_work_on(sdp->cpu, rcu_gp_wq, &sdp->work);
824 }
825 
826 static void srcu_queue_delayed_work_on(struct srcu_data *sdp,
827 				       unsigned long delay)
828 {
829 	if (!delay) {
830 		queue_work_on(sdp->cpu, rcu_gp_wq, &sdp->work);
831 		return;
832 	}
833 
834 	timer_reduce(&sdp->delay_work, jiffies + delay);
835 }
836 
837 /*
838  * Schedule callback invocation for the specified srcu_data structure,
839  * if possible, on the corresponding CPU.
840  */
841 static void srcu_schedule_cbs_sdp(struct srcu_data *sdp, unsigned long delay)
842 {
843 	srcu_queue_delayed_work_on(sdp, delay);
844 }
845 
846 /*
847  * Schedule callback invocation for all srcu_data structures associated
848  * with the specified srcu_node structure that have callbacks for the
849  * just-completed grace period, the one corresponding to idx.  If possible,
850  * schedule this invocation on the corresponding CPUs.
851  */
852 static void srcu_schedule_cbs_snp(struct srcu_struct *ssp, struct srcu_node *snp,
853 				  unsigned long mask, unsigned long delay)
854 {
855 	int cpu;
856 
857 	for (cpu = snp->grplo; cpu <= snp->grphi; cpu++) {
858 		if (!(mask & (1UL << (cpu - snp->grplo))))
859 			continue;
860 		srcu_schedule_cbs_sdp(per_cpu_ptr(ssp->sda, cpu), delay);
861 	}
862 }
863 
864 /*
865  * Note the end of an SRCU grace period.  Initiates callback invocation
866  * and starts a new grace period if needed.
867  *
868  * The ->srcu_cb_mutex acquisition does not protect any data, but
869  * instead prevents more than one grace period from starting while we
870  * are initiating callback invocation.  This allows the ->srcu_have_cbs[]
871  * array to have a finite number of elements.
872  */
873 static void srcu_gp_end(struct srcu_struct *ssp)
874 {
875 	unsigned long cbdelay = 1;
876 	bool cbs;
877 	bool last_lvl;
878 	int cpu;
879 	unsigned long gpseq;
880 	int idx;
881 	unsigned long mask;
882 	struct srcu_data *sdp;
883 	unsigned long sgsne;
884 	struct srcu_node *snp;
885 	int ss_state;
886 	struct srcu_usage *sup = ssp->srcu_sup;
887 
888 	/* Prevent more than one additional grace period. */
889 	mutex_lock(&sup->srcu_cb_mutex);
890 
891 	/* End the current grace period. */
892 	spin_lock_irq_rcu_node(sup);
893 	idx = rcu_seq_state(sup->srcu_gp_seq);
894 	WARN_ON_ONCE(idx != SRCU_STATE_SCAN2);
895 	if (srcu_gp_is_expedited(ssp))
896 		cbdelay = 0;
897 
898 	WRITE_ONCE(sup->srcu_last_gp_end, ktime_get_mono_fast_ns());
899 	rcu_seq_end(&sup->srcu_gp_seq);
900 	gpseq = rcu_seq_current(&sup->srcu_gp_seq);
901 	if (ULONG_CMP_LT(sup->srcu_gp_seq_needed_exp, gpseq))
902 		WRITE_ONCE(sup->srcu_gp_seq_needed_exp, gpseq);
903 	spin_unlock_irq_rcu_node(sup);
904 	mutex_unlock(&sup->srcu_gp_mutex);
905 	/* A new grace period can start at this point.  But only one. */
906 
907 	/* Initiate callback invocation as needed. */
908 	ss_state = smp_load_acquire(&sup->srcu_size_state);
909 	if (ss_state < SRCU_SIZE_WAIT_BARRIER) {
910 		srcu_schedule_cbs_sdp(per_cpu_ptr(ssp->sda, get_boot_cpu_id()),
911 					cbdelay);
912 	} else {
913 		idx = rcu_seq_ctr(gpseq) % ARRAY_SIZE(snp->srcu_have_cbs);
914 		srcu_for_each_node_breadth_first(ssp, snp) {
915 			spin_lock_irq_rcu_node(snp);
916 			cbs = false;
917 			last_lvl = snp >= sup->level[rcu_num_lvls - 1];
918 			if (last_lvl)
919 				cbs = ss_state < SRCU_SIZE_BIG || snp->srcu_have_cbs[idx] == gpseq;
920 			snp->srcu_have_cbs[idx] = gpseq;
921 			rcu_seq_set_state(&snp->srcu_have_cbs[idx], 1);
922 			sgsne = snp->srcu_gp_seq_needed_exp;
923 			if (srcu_invl_snp_seq(sgsne) || ULONG_CMP_LT(sgsne, gpseq))
924 				WRITE_ONCE(snp->srcu_gp_seq_needed_exp, gpseq);
925 			if (ss_state < SRCU_SIZE_BIG)
926 				mask = ~0;
927 			else
928 				mask = snp->srcu_data_have_cbs[idx];
929 			snp->srcu_data_have_cbs[idx] = 0;
930 			spin_unlock_irq_rcu_node(snp);
931 			if (cbs)
932 				srcu_schedule_cbs_snp(ssp, snp, mask, cbdelay);
933 		}
934 	}
935 
936 	/* Occasionally prevent srcu_data counter wrap. */
937 	if (!(gpseq & counter_wrap_check))
938 		for_each_possible_cpu(cpu) {
939 			sdp = per_cpu_ptr(ssp->sda, cpu);
940 			spin_lock_irq_rcu_node(sdp);
941 			if (ULONG_CMP_GE(gpseq, sdp->srcu_gp_seq_needed + 100))
942 				sdp->srcu_gp_seq_needed = gpseq;
943 			if (ULONG_CMP_GE(gpseq, sdp->srcu_gp_seq_needed_exp + 100))
944 				sdp->srcu_gp_seq_needed_exp = gpseq;
945 			spin_unlock_irq_rcu_node(sdp);
946 		}
947 
948 	/* Callback initiation done, allow grace periods after next. */
949 	mutex_unlock(&sup->srcu_cb_mutex);
950 
951 	/* Start a new grace period if needed. */
952 	spin_lock_irq_rcu_node(sup);
953 	gpseq = rcu_seq_current(&sup->srcu_gp_seq);
954 	if (!rcu_seq_state(gpseq) &&
955 	    ULONG_CMP_LT(gpseq, sup->srcu_gp_seq_needed)) {
956 		srcu_gp_start(ssp);
957 		spin_unlock_irq_rcu_node(sup);
958 		srcu_reschedule(ssp, 0);
959 	} else {
960 		spin_unlock_irq_rcu_node(sup);
961 	}
962 
963 	/* Transition to big if needed. */
964 	if (ss_state != SRCU_SIZE_SMALL && ss_state != SRCU_SIZE_BIG) {
965 		if (ss_state == SRCU_SIZE_ALLOC)
966 			init_srcu_struct_nodes(ssp, GFP_KERNEL);
967 		else
968 			smp_store_release(&sup->srcu_size_state, ss_state + 1);
969 	}
970 }
971 
972 /*
973  * Funnel-locking scheme to scalably mediate many concurrent expedited
974  * grace-period requests.  This function is invoked for the first known
975  * expedited request for a grace period that has already been requested,
976  * but without expediting.  To start a completely new grace period,
977  * whether expedited or not, use srcu_funnel_gp_start() instead.
978  */
979 static void srcu_funnel_exp_start(struct srcu_struct *ssp, struct srcu_node *snp,
980 				  unsigned long s)
981 {
982 	unsigned long flags;
983 	unsigned long sgsne;
984 
985 	if (snp)
986 		for (; snp != NULL; snp = snp->srcu_parent) {
987 			sgsne = READ_ONCE(snp->srcu_gp_seq_needed_exp);
988 			if (WARN_ON_ONCE(rcu_seq_done(&ssp->srcu_sup->srcu_gp_seq, s)) ||
989 			    (!srcu_invl_snp_seq(sgsne) && ULONG_CMP_GE(sgsne, s)))
990 				return;
991 			spin_lock_irqsave_rcu_node(snp, flags);
992 			sgsne = snp->srcu_gp_seq_needed_exp;
993 			if (!srcu_invl_snp_seq(sgsne) && ULONG_CMP_GE(sgsne, s)) {
994 				spin_unlock_irqrestore_rcu_node(snp, flags);
995 				return;
996 			}
997 			WRITE_ONCE(snp->srcu_gp_seq_needed_exp, s);
998 			spin_unlock_irqrestore_rcu_node(snp, flags);
999 		}
1000 	spin_lock_irqsave_ssp_contention(ssp, &flags);
1001 	if (ULONG_CMP_LT(ssp->srcu_sup->srcu_gp_seq_needed_exp, s))
1002 		WRITE_ONCE(ssp->srcu_sup->srcu_gp_seq_needed_exp, s);
1003 	spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags);
1004 }
1005 
1006 /*
1007  * Funnel-locking scheme to scalably mediate many concurrent grace-period
1008  * requests.  The winner has to do the work of actually starting grace
1009  * period s.  Losers must either ensure that their desired grace-period
1010  * number is recorded on at least their leaf srcu_node structure, or they
1011  * must take steps to invoke their own callbacks.
1012  *
1013  * Note that this function also does the work of srcu_funnel_exp_start(),
1014  * in some cases by directly invoking it.
1015  *
1016  * The srcu read lock should be hold around this function. And s is a seq snap
1017  * after holding that lock.
1018  */
1019 static void srcu_funnel_gp_start(struct srcu_struct *ssp, struct srcu_data *sdp,
1020 				 unsigned long s, bool do_norm)
1021 {
1022 	unsigned long flags;
1023 	int idx = rcu_seq_ctr(s) % ARRAY_SIZE(sdp->mynode->srcu_have_cbs);
1024 	unsigned long sgsne;
1025 	struct srcu_node *snp;
1026 	struct srcu_node *snp_leaf;
1027 	unsigned long snp_seq;
1028 	struct srcu_usage *sup = ssp->srcu_sup;
1029 
1030 	/* Ensure that snp node tree is fully initialized before traversing it */
1031 	if (smp_load_acquire(&sup->srcu_size_state) < SRCU_SIZE_WAIT_BARRIER)
1032 		snp_leaf = NULL;
1033 	else
1034 		snp_leaf = sdp->mynode;
1035 
1036 	if (snp_leaf)
1037 		/* Each pass through the loop does one level of the srcu_node tree. */
1038 		for (snp = snp_leaf; snp != NULL; snp = snp->srcu_parent) {
1039 			if (WARN_ON_ONCE(rcu_seq_done(&sup->srcu_gp_seq, s)) && snp != snp_leaf)
1040 				return; /* GP already done and CBs recorded. */
1041 			spin_lock_irqsave_rcu_node(snp, flags);
1042 			snp_seq = snp->srcu_have_cbs[idx];
1043 			if (!srcu_invl_snp_seq(snp_seq) && ULONG_CMP_GE(snp_seq, s)) {
1044 				if (snp == snp_leaf && snp_seq == s)
1045 					snp->srcu_data_have_cbs[idx] |= sdp->grpmask;
1046 				spin_unlock_irqrestore_rcu_node(snp, flags);
1047 				if (snp == snp_leaf && snp_seq != s) {
1048 					srcu_schedule_cbs_sdp(sdp, do_norm ? SRCU_INTERVAL : 0);
1049 					return;
1050 				}
1051 				if (!do_norm)
1052 					srcu_funnel_exp_start(ssp, snp, s);
1053 				return;
1054 			}
1055 			snp->srcu_have_cbs[idx] = s;
1056 			if (snp == snp_leaf)
1057 				snp->srcu_data_have_cbs[idx] |= sdp->grpmask;
1058 			sgsne = snp->srcu_gp_seq_needed_exp;
1059 			if (!do_norm && (srcu_invl_snp_seq(sgsne) || ULONG_CMP_LT(sgsne, s)))
1060 				WRITE_ONCE(snp->srcu_gp_seq_needed_exp, s);
1061 			spin_unlock_irqrestore_rcu_node(snp, flags);
1062 		}
1063 
1064 	/* Top of tree, must ensure the grace period will be started. */
1065 	spin_lock_irqsave_ssp_contention(ssp, &flags);
1066 	if (ULONG_CMP_LT(sup->srcu_gp_seq_needed, s)) {
1067 		/*
1068 		 * Record need for grace period s.  Pair with load
1069 		 * acquire setting up for initialization.
1070 		 */
1071 		smp_store_release(&sup->srcu_gp_seq_needed, s); /*^^^*/
1072 	}
1073 	if (!do_norm && ULONG_CMP_LT(sup->srcu_gp_seq_needed_exp, s))
1074 		WRITE_ONCE(sup->srcu_gp_seq_needed_exp, s);
1075 
1076 	/* If grace period not already in progress, start it. */
1077 	if (!WARN_ON_ONCE(rcu_seq_done(&sup->srcu_gp_seq, s)) &&
1078 	    rcu_seq_state(sup->srcu_gp_seq) == SRCU_STATE_IDLE) {
1079 		WARN_ON_ONCE(ULONG_CMP_GE(sup->srcu_gp_seq, sup->srcu_gp_seq_needed));
1080 		srcu_gp_start(ssp);
1081 
1082 		// And how can that list_add() in the "else" clause
1083 		// possibly be safe for concurrent execution?  Well,
1084 		// it isn't.  And it does not have to be.  After all, it
1085 		// can only be executed during early boot when there is only
1086 		// the one boot CPU running with interrupts still disabled.
1087 		if (likely(srcu_init_done))
1088 			queue_delayed_work(rcu_gp_wq, &sup->work,
1089 					   !!srcu_get_delay(ssp));
1090 		else if (list_empty(&sup->work.work.entry))
1091 			list_add(&sup->work.work.entry, &srcu_boot_list);
1092 	}
1093 	spin_unlock_irqrestore_rcu_node(sup, flags);
1094 }
1095 
1096 /*
1097  * Wait until all readers counted by array index idx complete, but
1098  * loop an additional time if there is an expedited grace period pending.
1099  * The caller must ensure that ->srcu_idx is not changed while checking.
1100  */
1101 static bool try_check_zero(struct srcu_struct *ssp, int idx, int trycount)
1102 {
1103 	unsigned long curdelay;
1104 
1105 	curdelay = !srcu_get_delay(ssp);
1106 
1107 	for (;;) {
1108 		if (srcu_readers_active_idx_check(ssp, idx))
1109 			return true;
1110 		if ((--trycount + curdelay) <= 0)
1111 			return false;
1112 		udelay(srcu_retry_check_delay);
1113 	}
1114 }
1115 
1116 /*
1117  * Increment the ->srcu_idx counter so that future SRCU readers will
1118  * use the other rank of the ->srcu_(un)lock_count[] arrays.  This allows
1119  * us to wait for pre-existing readers in a starvation-free manner.
1120  */
1121 static void srcu_flip(struct srcu_struct *ssp)
1122 {
1123 	/*
1124 	 * Because the flip of ->srcu_idx is executed only if the
1125 	 * preceding call to srcu_readers_active_idx_check() found that
1126 	 * the ->srcu_unlock_count[] and ->srcu_lock_count[] sums matched
1127 	 * and because that summing uses atomic_long_read(), there is
1128 	 * ordering due to a control dependency between that summing and
1129 	 * the WRITE_ONCE() in this call to srcu_flip().  This ordering
1130 	 * ensures that if this updater saw a given reader's increment from
1131 	 * __srcu_read_lock(), that reader was using a value of ->srcu_idx
1132 	 * from before the previous call to srcu_flip(), which should be
1133 	 * quite rare.  This ordering thus helps forward progress because
1134 	 * the grace period could otherwise be delayed by additional
1135 	 * calls to __srcu_read_lock() using that old (soon to be new)
1136 	 * value of ->srcu_idx.
1137 	 *
1138 	 * This sum-equality check and ordering also ensures that if
1139 	 * a given call to __srcu_read_lock() uses the new value of
1140 	 * ->srcu_idx, this updater's earlier scans cannot have seen
1141 	 * that reader's increments, which is all to the good, because
1142 	 * this grace period need not wait on that reader.  After all,
1143 	 * if those earlier scans had seen that reader, there would have
1144 	 * been a sum mismatch and this code would not be reached.
1145 	 *
1146 	 * This means that the following smp_mb() is redundant, but
1147 	 * it stays until either (1) Compilers learn about this sort of
1148 	 * control dependency or (2) Some production workload running on
1149 	 * a production system is unduly delayed by this slowpath smp_mb().
1150 	 * Except for _lite() readers, where it is inoperative, which
1151 	 * means that it is a good thing that it is redundant.
1152 	 */
1153 	smp_mb(); /* E */  /* Pairs with B and C. */
1154 
1155 	WRITE_ONCE(ssp->srcu_idx, ssp->srcu_idx + 1); // Flip the counter.
1156 
1157 	/*
1158 	 * Ensure that if the updater misses an __srcu_read_unlock()
1159 	 * increment, that task's __srcu_read_lock() following its next
1160 	 * __srcu_read_lock() or __srcu_read_unlock() will see the above
1161 	 * counter update.  Note that both this memory barrier and the
1162 	 * one in srcu_readers_active_idx_check() provide the guarantee
1163 	 * for __srcu_read_lock().
1164 	 */
1165 	smp_mb(); /* D */  /* Pairs with C. */
1166 }
1167 
1168 /*
1169  * If SRCU is likely idle, in other words, the next SRCU grace period
1170  * should be expedited, return true, otherwise return false.  Except that
1171  * in the presence of _lite() readers, always return false.
1172  *
1173  * Note that it is OK for several current from-idle requests for a new
1174  * grace period from idle to specify expediting because they will all end
1175  * up requesting the same grace period anyhow.  So no loss.
1176  *
1177  * Note also that if any CPU (including the current one) is still invoking
1178  * callbacks, this function will nevertheless say "idle".  This is not
1179  * ideal, but the overhead of checking all CPUs' callback lists is even
1180  * less ideal, especially on large systems.  Furthermore, the wakeup
1181  * can happen before the callback is fully removed, so we have no choice
1182  * but to accept this type of error.
1183  *
1184  * This function is also subject to counter-wrap errors, but let's face
1185  * it, if this function was preempted for enough time for the counters
1186  * to wrap, it really doesn't matter whether or not we expedite the grace
1187  * period.  The extra overhead of a needlessly expedited grace period is
1188  * negligible when amortized over that time period, and the extra latency
1189  * of a needlessly non-expedited grace period is similarly negligible.
1190  */
1191 static bool srcu_should_expedite(struct srcu_struct *ssp)
1192 {
1193 	unsigned long curseq;
1194 	unsigned long flags;
1195 	struct srcu_data *sdp;
1196 	unsigned long t;
1197 	unsigned long tlast;
1198 
1199 	check_init_srcu_struct(ssp);
1200 	/* If _lite() readers, don't do unsolicited expediting. */
1201 	if (this_cpu_read(ssp->sda->srcu_reader_flavor) & SRCU_READ_FLAVOR_LITE)
1202 		return false;
1203 	/* If the local srcu_data structure has callbacks, not idle.  */
1204 	sdp = raw_cpu_ptr(ssp->sda);
1205 	spin_lock_irqsave_rcu_node(sdp, flags);
1206 	if (rcu_segcblist_pend_cbs(&sdp->srcu_cblist)) {
1207 		spin_unlock_irqrestore_rcu_node(sdp, flags);
1208 		return false; /* Callbacks already present, so not idle. */
1209 	}
1210 	spin_unlock_irqrestore_rcu_node(sdp, flags);
1211 
1212 	/*
1213 	 * No local callbacks, so probabilistically probe global state.
1214 	 * Exact information would require acquiring locks, which would
1215 	 * kill scalability, hence the probabilistic nature of the probe.
1216 	 */
1217 
1218 	/* First, see if enough time has passed since the last GP. */
1219 	t = ktime_get_mono_fast_ns();
1220 	tlast = READ_ONCE(ssp->srcu_sup->srcu_last_gp_end);
1221 	if (exp_holdoff == 0 ||
1222 	    time_in_range_open(t, tlast, tlast + exp_holdoff))
1223 		return false; /* Too soon after last GP. */
1224 
1225 	/* Next, check for probable idleness. */
1226 	curseq = rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq);
1227 	smp_mb(); /* Order ->srcu_gp_seq with ->srcu_gp_seq_needed. */
1228 	if (ULONG_CMP_LT(curseq, READ_ONCE(ssp->srcu_sup->srcu_gp_seq_needed)))
1229 		return false; /* Grace period in progress, so not idle. */
1230 	smp_mb(); /* Order ->srcu_gp_seq with prior access. */
1231 	if (curseq != rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq))
1232 		return false; /* GP # changed, so not idle. */
1233 	return true; /* With reasonable probability, idle! */
1234 }
1235 
1236 /*
1237  * SRCU callback function to leak a callback.
1238  */
1239 static void srcu_leak_callback(struct rcu_head *rhp)
1240 {
1241 }
1242 
1243 /*
1244  * Start an SRCU grace period, and also queue the callback if non-NULL.
1245  */
1246 static unsigned long srcu_gp_start_if_needed(struct srcu_struct *ssp,
1247 					     struct rcu_head *rhp, bool do_norm)
1248 {
1249 	unsigned long flags;
1250 	int idx;
1251 	bool needexp = false;
1252 	bool needgp = false;
1253 	unsigned long s;
1254 	struct srcu_data *sdp;
1255 	struct srcu_node *sdp_mynode;
1256 	int ss_state;
1257 
1258 	check_init_srcu_struct(ssp);
1259 	/*
1260 	 * While starting a new grace period, make sure we are in an
1261 	 * SRCU read-side critical section so that the grace-period
1262 	 * sequence number cannot wrap around in the meantime.
1263 	 */
1264 	idx = __srcu_read_lock_nmisafe(ssp);
1265 	ss_state = smp_load_acquire(&ssp->srcu_sup->srcu_size_state);
1266 	if (ss_state < SRCU_SIZE_WAIT_CALL)
1267 		sdp = per_cpu_ptr(ssp->sda, get_boot_cpu_id());
1268 	else
1269 		sdp = raw_cpu_ptr(ssp->sda);
1270 	spin_lock_irqsave_sdp_contention(sdp, &flags);
1271 	if (rhp)
1272 		rcu_segcblist_enqueue(&sdp->srcu_cblist, rhp);
1273 	/*
1274 	 * It's crucial to capture the snapshot 's' for acceleration before
1275 	 * reading the current gp_seq that is used for advancing. This is
1276 	 * essential because if the acceleration snapshot is taken after a
1277 	 * failed advancement attempt, there's a risk that a grace period may
1278 	 * conclude and a new one may start in the interim. If the snapshot is
1279 	 * captured after this sequence of events, the acceleration snapshot 's'
1280 	 * could be excessively advanced, leading to acceleration failure.
1281 	 * In such a scenario, an 'acceleration leak' can occur, where new
1282 	 * callbacks become indefinitely stuck in the RCU_NEXT_TAIL segment.
1283 	 * Also note that encountering advancing failures is a normal
1284 	 * occurrence when the grace period for RCU_WAIT_TAIL is in progress.
1285 	 *
1286 	 * To see this, consider the following events which occur if
1287 	 * rcu_seq_snap() were to be called after advance:
1288 	 *
1289 	 *  1) The RCU_WAIT_TAIL segment has callbacks (gp_num = X + 4) and the
1290 	 *     RCU_NEXT_READY_TAIL also has callbacks (gp_num = X + 8).
1291 	 *
1292 	 *  2) The grace period for RCU_WAIT_TAIL is seen as started but not
1293 	 *     completed so rcu_seq_current() returns X + SRCU_STATE_SCAN1.
1294 	 *
1295 	 *  3) This value is passed to rcu_segcblist_advance() which can't move
1296 	 *     any segment forward and fails.
1297 	 *
1298 	 *  4) srcu_gp_start_if_needed() still proceeds with callback acceleration.
1299 	 *     But then the call to rcu_seq_snap() observes the grace period for the
1300 	 *     RCU_WAIT_TAIL segment as completed and the subsequent one for the
1301 	 *     RCU_NEXT_READY_TAIL segment as started (ie: X + 4 + SRCU_STATE_SCAN1)
1302 	 *     so it returns a snapshot of the next grace period, which is X + 12.
1303 	 *
1304 	 *  5) The value of X + 12 is passed to rcu_segcblist_accelerate() but the
1305 	 *     freshly enqueued callback in RCU_NEXT_TAIL can't move to
1306 	 *     RCU_NEXT_READY_TAIL which already has callbacks for a previous grace
1307 	 *     period (gp_num = X + 8). So acceleration fails.
1308 	 */
1309 	s = rcu_seq_snap(&ssp->srcu_sup->srcu_gp_seq);
1310 	if (rhp) {
1311 		rcu_segcblist_advance(&sdp->srcu_cblist,
1312 				      rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq));
1313 		/*
1314 		 * Acceleration can never fail because the base current gp_seq
1315 		 * used for acceleration is <= the value of gp_seq used for
1316 		 * advancing. This means that RCU_NEXT_TAIL segment will
1317 		 * always be able to be emptied by the acceleration into the
1318 		 * RCU_NEXT_READY_TAIL or RCU_WAIT_TAIL segments.
1319 		 */
1320 		WARN_ON_ONCE(!rcu_segcblist_accelerate(&sdp->srcu_cblist, s));
1321 	}
1322 	if (ULONG_CMP_LT(sdp->srcu_gp_seq_needed, s)) {
1323 		sdp->srcu_gp_seq_needed = s;
1324 		needgp = true;
1325 	}
1326 	if (!do_norm && ULONG_CMP_LT(sdp->srcu_gp_seq_needed_exp, s)) {
1327 		sdp->srcu_gp_seq_needed_exp = s;
1328 		needexp = true;
1329 	}
1330 	spin_unlock_irqrestore_rcu_node(sdp, flags);
1331 
1332 	/* Ensure that snp node tree is fully initialized before traversing it */
1333 	if (ss_state < SRCU_SIZE_WAIT_BARRIER)
1334 		sdp_mynode = NULL;
1335 	else
1336 		sdp_mynode = sdp->mynode;
1337 
1338 	if (needgp)
1339 		srcu_funnel_gp_start(ssp, sdp, s, do_norm);
1340 	else if (needexp)
1341 		srcu_funnel_exp_start(ssp, sdp_mynode, s);
1342 	__srcu_read_unlock_nmisafe(ssp, idx);
1343 	return s;
1344 }
1345 
1346 /*
1347  * Enqueue an SRCU callback on the srcu_data structure associated with
1348  * the current CPU and the specified srcu_struct structure, initiating
1349  * grace-period processing if it is not already running.
1350  *
1351  * Note that all CPUs must agree that the grace period extended beyond
1352  * all pre-existing SRCU read-side critical section.  On systems with
1353  * more than one CPU, this means that when "func()" is invoked, each CPU
1354  * is guaranteed to have executed a full memory barrier since the end of
1355  * its last corresponding SRCU read-side critical section whose beginning
1356  * preceded the call to call_srcu().  It also means that each CPU executing
1357  * an SRCU read-side critical section that continues beyond the start of
1358  * "func()" must have executed a memory barrier after the call_srcu()
1359  * but before the beginning of that SRCU read-side critical section.
1360  * Note that these guarantees include CPUs that are offline, idle, or
1361  * executing in user mode, as well as CPUs that are executing in the kernel.
1362  *
1363  * Furthermore, if CPU A invoked call_srcu() and CPU B invoked the
1364  * resulting SRCU callback function "func()", then both CPU A and CPU
1365  * B are guaranteed to execute a full memory barrier during the time
1366  * interval between the call to call_srcu() and the invocation of "func()".
1367  * This guarantee applies even if CPU A and CPU B are the same CPU (but
1368  * again only if the system has more than one CPU).
1369  *
1370  * Of course, these guarantees apply only for invocations of call_srcu(),
1371  * srcu_read_lock(), and srcu_read_unlock() that are all passed the same
1372  * srcu_struct structure.
1373  */
1374 static void __call_srcu(struct srcu_struct *ssp, struct rcu_head *rhp,
1375 			rcu_callback_t func, bool do_norm)
1376 {
1377 	if (debug_rcu_head_queue(rhp)) {
1378 		/* Probable double call_srcu(), so leak the callback. */
1379 		WRITE_ONCE(rhp->func, srcu_leak_callback);
1380 		WARN_ONCE(1, "call_srcu(): Leaked duplicate callback\n");
1381 		return;
1382 	}
1383 	rhp->func = func;
1384 	(void)srcu_gp_start_if_needed(ssp, rhp, do_norm);
1385 }
1386 
1387 /**
1388  * call_srcu() - Queue a callback for invocation after an SRCU grace period
1389  * @ssp: srcu_struct in queue the callback
1390  * @rhp: structure to be used for queueing the SRCU callback.
1391  * @func: function to be invoked after the SRCU grace period
1392  *
1393  * The callback function will be invoked some time after a full SRCU
1394  * grace period elapses, in other words after all pre-existing SRCU
1395  * read-side critical sections have completed.  However, the callback
1396  * function might well execute concurrently with other SRCU read-side
1397  * critical sections that started after call_srcu() was invoked.  SRCU
1398  * read-side critical sections are delimited by srcu_read_lock() and
1399  * srcu_read_unlock(), and may be nested.
1400  *
1401  * The callback will be invoked from process context, but must nevertheless
1402  * be fast and must not block.
1403  */
1404 void call_srcu(struct srcu_struct *ssp, struct rcu_head *rhp,
1405 	       rcu_callback_t func)
1406 {
1407 	__call_srcu(ssp, rhp, func, true);
1408 }
1409 EXPORT_SYMBOL_GPL(call_srcu);
1410 
1411 /*
1412  * Helper function for synchronize_srcu() and synchronize_srcu_expedited().
1413  */
1414 static void __synchronize_srcu(struct srcu_struct *ssp, bool do_norm)
1415 {
1416 	struct rcu_synchronize rcu;
1417 
1418 	srcu_lock_sync(&ssp->dep_map);
1419 
1420 	RCU_LOCKDEP_WARN(lockdep_is_held(ssp) ||
1421 			 lock_is_held(&rcu_bh_lock_map) ||
1422 			 lock_is_held(&rcu_lock_map) ||
1423 			 lock_is_held(&rcu_sched_lock_map),
1424 			 "Illegal synchronize_srcu() in same-type SRCU (or in RCU) read-side critical section");
1425 
1426 	if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
1427 		return;
1428 	might_sleep();
1429 	check_init_srcu_struct(ssp);
1430 	init_completion(&rcu.completion);
1431 	init_rcu_head_on_stack(&rcu.head);
1432 	__call_srcu(ssp, &rcu.head, wakeme_after_rcu, do_norm);
1433 	wait_for_completion(&rcu.completion);
1434 	destroy_rcu_head_on_stack(&rcu.head);
1435 
1436 	/*
1437 	 * Make sure that later code is ordered after the SRCU grace
1438 	 * period.  This pairs with the spin_lock_irq_rcu_node()
1439 	 * in srcu_invoke_callbacks().  Unlike Tree RCU, this is needed
1440 	 * because the current CPU might have been totally uninvolved with
1441 	 * (and thus unordered against) that grace period.
1442 	 */
1443 	smp_mb();
1444 }
1445 
1446 /**
1447  * synchronize_srcu_expedited - Brute-force SRCU grace period
1448  * @ssp: srcu_struct with which to synchronize.
1449  *
1450  * Wait for an SRCU grace period to elapse, but be more aggressive about
1451  * spinning rather than blocking when waiting.
1452  *
1453  * Note that synchronize_srcu_expedited() has the same deadlock and
1454  * memory-ordering properties as does synchronize_srcu().
1455  */
1456 void synchronize_srcu_expedited(struct srcu_struct *ssp)
1457 {
1458 	__synchronize_srcu(ssp, rcu_gp_is_normal());
1459 }
1460 EXPORT_SYMBOL_GPL(synchronize_srcu_expedited);
1461 
1462 /**
1463  * synchronize_srcu - wait for prior SRCU read-side critical-section completion
1464  * @ssp: srcu_struct with which to synchronize.
1465  *
1466  * Wait for the count to drain to zero of both indexes. To avoid the
1467  * possible starvation of synchronize_srcu(), it waits for the count of
1468  * the index=((->srcu_idx & 1) ^ 1) to drain to zero at first,
1469  * and then flip the srcu_idx and wait for the count of the other index.
1470  *
1471  * Can block; must be called from process context.
1472  *
1473  * Note that it is illegal to call synchronize_srcu() from the corresponding
1474  * SRCU read-side critical section; doing so will result in deadlock.
1475  * However, it is perfectly legal to call synchronize_srcu() on one
1476  * srcu_struct from some other srcu_struct's read-side critical section,
1477  * as long as the resulting graph of srcu_structs is acyclic.
1478  *
1479  * There are memory-ordering constraints implied by synchronize_srcu().
1480  * On systems with more than one CPU, when synchronize_srcu() returns,
1481  * each CPU is guaranteed to have executed a full memory barrier since
1482  * the end of its last corresponding SRCU read-side critical section
1483  * whose beginning preceded the call to synchronize_srcu().  In addition,
1484  * each CPU having an SRCU read-side critical section that extends beyond
1485  * the return from synchronize_srcu() is guaranteed to have executed a
1486  * full memory barrier after the beginning of synchronize_srcu() and before
1487  * the beginning of that SRCU read-side critical section.  Note that these
1488  * guarantees include CPUs that are offline, idle, or executing in user mode,
1489  * as well as CPUs that are executing in the kernel.
1490  *
1491  * Furthermore, if CPU A invoked synchronize_srcu(), which returned
1492  * to its caller on CPU B, then both CPU A and CPU B are guaranteed
1493  * to have executed a full memory barrier during the execution of
1494  * synchronize_srcu().  This guarantee applies even if CPU A and CPU B
1495  * are the same CPU, but again only if the system has more than one CPU.
1496  *
1497  * Of course, these memory-ordering guarantees apply only when
1498  * synchronize_srcu(), srcu_read_lock(), and srcu_read_unlock() are
1499  * passed the same srcu_struct structure.
1500  *
1501  * Implementation of these memory-ordering guarantees is similar to
1502  * that of synchronize_rcu().
1503  *
1504  * If SRCU is likely idle as determined by srcu_should_expedite(),
1505  * expedite the first request.  This semantic was provided by Classic SRCU,
1506  * and is relied upon by its users, so TREE SRCU must also provide it.
1507  * Note that detecting idleness is heuristic and subject to both false
1508  * positives and negatives.
1509  */
1510 void synchronize_srcu(struct srcu_struct *ssp)
1511 {
1512 	if (srcu_should_expedite(ssp) || rcu_gp_is_expedited())
1513 		synchronize_srcu_expedited(ssp);
1514 	else
1515 		__synchronize_srcu(ssp, true);
1516 }
1517 EXPORT_SYMBOL_GPL(synchronize_srcu);
1518 
1519 /**
1520  * get_state_synchronize_srcu - Provide an end-of-grace-period cookie
1521  * @ssp: srcu_struct to provide cookie for.
1522  *
1523  * This function returns a cookie that can be passed to
1524  * poll_state_synchronize_srcu(), which will return true if a full grace
1525  * period has elapsed in the meantime.  It is the caller's responsibility
1526  * to make sure that grace period happens, for example, by invoking
1527  * call_srcu() after return from get_state_synchronize_srcu().
1528  */
1529 unsigned long get_state_synchronize_srcu(struct srcu_struct *ssp)
1530 {
1531 	// Any prior manipulation of SRCU-protected data must happen
1532 	// before the load from ->srcu_gp_seq.
1533 	smp_mb();
1534 	return rcu_seq_snap(&ssp->srcu_sup->srcu_gp_seq);
1535 }
1536 EXPORT_SYMBOL_GPL(get_state_synchronize_srcu);
1537 
1538 /**
1539  * start_poll_synchronize_srcu - Provide cookie and start grace period
1540  * @ssp: srcu_struct to provide cookie for.
1541  *
1542  * This function returns a cookie that can be passed to
1543  * poll_state_synchronize_srcu(), which will return true if a full grace
1544  * period has elapsed in the meantime.  Unlike get_state_synchronize_srcu(),
1545  * this function also ensures that any needed SRCU grace period will be
1546  * started.  This convenience does come at a cost in terms of CPU overhead.
1547  */
1548 unsigned long start_poll_synchronize_srcu(struct srcu_struct *ssp)
1549 {
1550 	return srcu_gp_start_if_needed(ssp, NULL, true);
1551 }
1552 EXPORT_SYMBOL_GPL(start_poll_synchronize_srcu);
1553 
1554 /**
1555  * poll_state_synchronize_srcu - Has cookie's grace period ended?
1556  * @ssp: srcu_struct to provide cookie for.
1557  * @cookie: Return value from get_state_synchronize_srcu() or start_poll_synchronize_srcu().
1558  *
1559  * This function takes the cookie that was returned from either
1560  * get_state_synchronize_srcu() or start_poll_synchronize_srcu(), and
1561  * returns @true if an SRCU grace period elapsed since the time that the
1562  * cookie was created.
1563  *
1564  * Because cookies are finite in size, wrapping/overflow is possible.
1565  * This is more pronounced on 32-bit systems where cookies are 32 bits,
1566  * where in theory wrapping could happen in about 14 hours assuming
1567  * 25-microsecond expedited SRCU grace periods.  However, a more likely
1568  * overflow lower bound is on the order of 24 days in the case of
1569  * one-millisecond SRCU grace periods.  Of course, wrapping in a 64-bit
1570  * system requires geologic timespans, as in more than seven million years
1571  * even for expedited SRCU grace periods.
1572  *
1573  * Wrapping/overflow is much more of an issue for CONFIG_SMP=n systems
1574  * that also have CONFIG_PREEMPTION=n, which selects Tiny SRCU.  This uses
1575  * a 16-bit cookie, which rcutorture routinely wraps in a matter of a
1576  * few minutes.  If this proves to be a problem, this counter will be
1577  * expanded to the same size as for Tree SRCU.
1578  */
1579 bool poll_state_synchronize_srcu(struct srcu_struct *ssp, unsigned long cookie)
1580 {
1581 	if (cookie != SRCU_GET_STATE_COMPLETED &&
1582 	    !rcu_seq_done(&ssp->srcu_sup->srcu_gp_seq, cookie))
1583 		return false;
1584 	// Ensure that the end of the SRCU grace period happens before
1585 	// any subsequent code that the caller might execute.
1586 	smp_mb(); // ^^^
1587 	return true;
1588 }
1589 EXPORT_SYMBOL_GPL(poll_state_synchronize_srcu);
1590 
1591 /*
1592  * Callback function for srcu_barrier() use.
1593  */
1594 static void srcu_barrier_cb(struct rcu_head *rhp)
1595 {
1596 	struct srcu_data *sdp;
1597 	struct srcu_struct *ssp;
1598 
1599 	rhp->next = rhp; // Mark the callback as having been invoked.
1600 	sdp = container_of(rhp, struct srcu_data, srcu_barrier_head);
1601 	ssp = sdp->ssp;
1602 	if (atomic_dec_and_test(&ssp->srcu_sup->srcu_barrier_cpu_cnt))
1603 		complete(&ssp->srcu_sup->srcu_barrier_completion);
1604 }
1605 
1606 /*
1607  * Enqueue an srcu_barrier() callback on the specified srcu_data
1608  * structure's ->cblist.  but only if that ->cblist already has at least one
1609  * callback enqueued.  Note that if a CPU already has callbacks enqueue,
1610  * it must have already registered the need for a future grace period,
1611  * so all we need do is enqueue a callback that will use the same grace
1612  * period as the last callback already in the queue.
1613  */
1614 static void srcu_barrier_one_cpu(struct srcu_struct *ssp, struct srcu_data *sdp)
1615 {
1616 	spin_lock_irq_rcu_node(sdp);
1617 	atomic_inc(&ssp->srcu_sup->srcu_barrier_cpu_cnt);
1618 	sdp->srcu_barrier_head.func = srcu_barrier_cb;
1619 	debug_rcu_head_queue(&sdp->srcu_barrier_head);
1620 	if (!rcu_segcblist_entrain(&sdp->srcu_cblist,
1621 				   &sdp->srcu_barrier_head)) {
1622 		debug_rcu_head_unqueue(&sdp->srcu_barrier_head);
1623 		atomic_dec(&ssp->srcu_sup->srcu_barrier_cpu_cnt);
1624 	}
1625 	spin_unlock_irq_rcu_node(sdp);
1626 }
1627 
1628 /**
1629  * srcu_barrier - Wait until all in-flight call_srcu() callbacks complete.
1630  * @ssp: srcu_struct on which to wait for in-flight callbacks.
1631  */
1632 void srcu_barrier(struct srcu_struct *ssp)
1633 {
1634 	int cpu;
1635 	int idx;
1636 	unsigned long s = rcu_seq_snap(&ssp->srcu_sup->srcu_barrier_seq);
1637 
1638 	check_init_srcu_struct(ssp);
1639 	mutex_lock(&ssp->srcu_sup->srcu_barrier_mutex);
1640 	if (rcu_seq_done(&ssp->srcu_sup->srcu_barrier_seq, s)) {
1641 		smp_mb(); /* Force ordering following return. */
1642 		mutex_unlock(&ssp->srcu_sup->srcu_barrier_mutex);
1643 		return; /* Someone else did our work for us. */
1644 	}
1645 	rcu_seq_start(&ssp->srcu_sup->srcu_barrier_seq);
1646 	init_completion(&ssp->srcu_sup->srcu_barrier_completion);
1647 
1648 	/* Initial count prevents reaching zero until all CBs are posted. */
1649 	atomic_set(&ssp->srcu_sup->srcu_barrier_cpu_cnt, 1);
1650 
1651 	idx = __srcu_read_lock_nmisafe(ssp);
1652 	if (smp_load_acquire(&ssp->srcu_sup->srcu_size_state) < SRCU_SIZE_WAIT_BARRIER)
1653 		srcu_barrier_one_cpu(ssp, per_cpu_ptr(ssp->sda,	get_boot_cpu_id()));
1654 	else
1655 		for_each_possible_cpu(cpu)
1656 			srcu_barrier_one_cpu(ssp, per_cpu_ptr(ssp->sda, cpu));
1657 	__srcu_read_unlock_nmisafe(ssp, idx);
1658 
1659 	/* Remove the initial count, at which point reaching zero can happen. */
1660 	if (atomic_dec_and_test(&ssp->srcu_sup->srcu_barrier_cpu_cnt))
1661 		complete(&ssp->srcu_sup->srcu_barrier_completion);
1662 	wait_for_completion(&ssp->srcu_sup->srcu_barrier_completion);
1663 
1664 	rcu_seq_end(&ssp->srcu_sup->srcu_barrier_seq);
1665 	mutex_unlock(&ssp->srcu_sup->srcu_barrier_mutex);
1666 }
1667 EXPORT_SYMBOL_GPL(srcu_barrier);
1668 
1669 /**
1670  * srcu_batches_completed - return batches completed.
1671  * @ssp: srcu_struct on which to report batch completion.
1672  *
1673  * Report the number of batches, correlated with, but not necessarily
1674  * precisely the same as, the number of grace periods that have elapsed.
1675  */
1676 unsigned long srcu_batches_completed(struct srcu_struct *ssp)
1677 {
1678 	return READ_ONCE(ssp->srcu_idx);
1679 }
1680 EXPORT_SYMBOL_GPL(srcu_batches_completed);
1681 
1682 /*
1683  * Core SRCU state machine.  Push state bits of ->srcu_gp_seq
1684  * to SRCU_STATE_SCAN2, and invoke srcu_gp_end() when scan has
1685  * completed in that state.
1686  */
1687 static void srcu_advance_state(struct srcu_struct *ssp)
1688 {
1689 	int idx;
1690 
1691 	mutex_lock(&ssp->srcu_sup->srcu_gp_mutex);
1692 
1693 	/*
1694 	 * Because readers might be delayed for an extended period after
1695 	 * fetching ->srcu_idx for their index, at any point in time there
1696 	 * might well be readers using both idx=0 and idx=1.  We therefore
1697 	 * need to wait for readers to clear from both index values before
1698 	 * invoking a callback.
1699 	 *
1700 	 * The load-acquire ensures that we see the accesses performed
1701 	 * by the prior grace period.
1702 	 */
1703 	idx = rcu_seq_state(smp_load_acquire(&ssp->srcu_sup->srcu_gp_seq)); /* ^^^ */
1704 	if (idx == SRCU_STATE_IDLE) {
1705 		spin_lock_irq_rcu_node(ssp->srcu_sup);
1706 		if (ULONG_CMP_GE(ssp->srcu_sup->srcu_gp_seq, ssp->srcu_sup->srcu_gp_seq_needed)) {
1707 			WARN_ON_ONCE(rcu_seq_state(ssp->srcu_sup->srcu_gp_seq));
1708 			spin_unlock_irq_rcu_node(ssp->srcu_sup);
1709 			mutex_unlock(&ssp->srcu_sup->srcu_gp_mutex);
1710 			return;
1711 		}
1712 		idx = rcu_seq_state(READ_ONCE(ssp->srcu_sup->srcu_gp_seq));
1713 		if (idx == SRCU_STATE_IDLE)
1714 			srcu_gp_start(ssp);
1715 		spin_unlock_irq_rcu_node(ssp->srcu_sup);
1716 		if (idx != SRCU_STATE_IDLE) {
1717 			mutex_unlock(&ssp->srcu_sup->srcu_gp_mutex);
1718 			return; /* Someone else started the grace period. */
1719 		}
1720 	}
1721 
1722 	if (rcu_seq_state(READ_ONCE(ssp->srcu_sup->srcu_gp_seq)) == SRCU_STATE_SCAN1) {
1723 		idx = 1 ^ (ssp->srcu_idx & 1);
1724 		if (!try_check_zero(ssp, idx, 1)) {
1725 			mutex_unlock(&ssp->srcu_sup->srcu_gp_mutex);
1726 			return; /* readers present, retry later. */
1727 		}
1728 		srcu_flip(ssp);
1729 		spin_lock_irq_rcu_node(ssp->srcu_sup);
1730 		rcu_seq_set_state(&ssp->srcu_sup->srcu_gp_seq, SRCU_STATE_SCAN2);
1731 		ssp->srcu_sup->srcu_n_exp_nodelay = 0;
1732 		spin_unlock_irq_rcu_node(ssp->srcu_sup);
1733 	}
1734 
1735 	if (rcu_seq_state(READ_ONCE(ssp->srcu_sup->srcu_gp_seq)) == SRCU_STATE_SCAN2) {
1736 
1737 		/*
1738 		 * SRCU read-side critical sections are normally short,
1739 		 * so check at least twice in quick succession after a flip.
1740 		 */
1741 		idx = 1 ^ (ssp->srcu_idx & 1);
1742 		if (!try_check_zero(ssp, idx, 2)) {
1743 			mutex_unlock(&ssp->srcu_sup->srcu_gp_mutex);
1744 			return; /* readers present, retry later. */
1745 		}
1746 		ssp->srcu_sup->srcu_n_exp_nodelay = 0;
1747 		srcu_gp_end(ssp);  /* Releases ->srcu_gp_mutex. */
1748 	}
1749 }
1750 
1751 /*
1752  * Invoke a limited number of SRCU callbacks that have passed through
1753  * their grace period.  If there are more to do, SRCU will reschedule
1754  * the workqueue.  Note that needed memory barriers have been executed
1755  * in this task's context by srcu_readers_active_idx_check().
1756  */
1757 static void srcu_invoke_callbacks(struct work_struct *work)
1758 {
1759 	long len;
1760 	bool more;
1761 	struct rcu_cblist ready_cbs;
1762 	struct rcu_head *rhp;
1763 	struct srcu_data *sdp;
1764 	struct srcu_struct *ssp;
1765 
1766 	sdp = container_of(work, struct srcu_data, work);
1767 
1768 	ssp = sdp->ssp;
1769 	rcu_cblist_init(&ready_cbs);
1770 	spin_lock_irq_rcu_node(sdp);
1771 	WARN_ON_ONCE(!rcu_segcblist_segempty(&sdp->srcu_cblist, RCU_NEXT_TAIL));
1772 	rcu_segcblist_advance(&sdp->srcu_cblist,
1773 			      rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq));
1774 	/*
1775 	 * Although this function is theoretically re-entrant, concurrent
1776 	 * callbacks invocation is disallowed to avoid executing an SRCU barrier
1777 	 * too early.
1778 	 */
1779 	if (sdp->srcu_cblist_invoking ||
1780 	    !rcu_segcblist_ready_cbs(&sdp->srcu_cblist)) {
1781 		spin_unlock_irq_rcu_node(sdp);
1782 		return;  /* Someone else on the job or nothing to do. */
1783 	}
1784 
1785 	/* We are on the job!  Extract and invoke ready callbacks. */
1786 	sdp->srcu_cblist_invoking = true;
1787 	rcu_segcblist_extract_done_cbs(&sdp->srcu_cblist, &ready_cbs);
1788 	len = ready_cbs.len;
1789 	spin_unlock_irq_rcu_node(sdp);
1790 	rhp = rcu_cblist_dequeue(&ready_cbs);
1791 	for (; rhp != NULL; rhp = rcu_cblist_dequeue(&ready_cbs)) {
1792 		debug_rcu_head_unqueue(rhp);
1793 		debug_rcu_head_callback(rhp);
1794 		local_bh_disable();
1795 		rhp->func(rhp);
1796 		local_bh_enable();
1797 	}
1798 	WARN_ON_ONCE(ready_cbs.len);
1799 
1800 	/*
1801 	 * Update counts, accelerate new callbacks, and if needed,
1802 	 * schedule another round of callback invocation.
1803 	 */
1804 	spin_lock_irq_rcu_node(sdp);
1805 	rcu_segcblist_add_len(&sdp->srcu_cblist, -len);
1806 	sdp->srcu_cblist_invoking = false;
1807 	more = rcu_segcblist_ready_cbs(&sdp->srcu_cblist);
1808 	spin_unlock_irq_rcu_node(sdp);
1809 	/* An SRCU barrier or callbacks from previous nesting work pending */
1810 	if (more)
1811 		srcu_schedule_cbs_sdp(sdp, 0);
1812 }
1813 
1814 /*
1815  * Finished one round of SRCU grace period.  Start another if there are
1816  * more SRCU callbacks queued, otherwise put SRCU into not-running state.
1817  */
1818 static void srcu_reschedule(struct srcu_struct *ssp, unsigned long delay)
1819 {
1820 	bool pushgp = true;
1821 
1822 	spin_lock_irq_rcu_node(ssp->srcu_sup);
1823 	if (ULONG_CMP_GE(ssp->srcu_sup->srcu_gp_seq, ssp->srcu_sup->srcu_gp_seq_needed)) {
1824 		if (!WARN_ON_ONCE(rcu_seq_state(ssp->srcu_sup->srcu_gp_seq))) {
1825 			/* All requests fulfilled, time to go idle. */
1826 			pushgp = false;
1827 		}
1828 	} else if (!rcu_seq_state(ssp->srcu_sup->srcu_gp_seq)) {
1829 		/* Outstanding request and no GP.  Start one. */
1830 		srcu_gp_start(ssp);
1831 	}
1832 	spin_unlock_irq_rcu_node(ssp->srcu_sup);
1833 
1834 	if (pushgp)
1835 		queue_delayed_work(rcu_gp_wq, &ssp->srcu_sup->work, delay);
1836 }
1837 
1838 /*
1839  * This is the work-queue function that handles SRCU grace periods.
1840  */
1841 static void process_srcu(struct work_struct *work)
1842 {
1843 	unsigned long curdelay;
1844 	unsigned long j;
1845 	struct srcu_struct *ssp;
1846 	struct srcu_usage *sup;
1847 
1848 	sup = container_of(work, struct srcu_usage, work.work);
1849 	ssp = sup->srcu_ssp;
1850 
1851 	srcu_advance_state(ssp);
1852 	curdelay = srcu_get_delay(ssp);
1853 	if (curdelay) {
1854 		WRITE_ONCE(sup->reschedule_count, 0);
1855 	} else {
1856 		j = jiffies;
1857 		if (READ_ONCE(sup->reschedule_jiffies) == j) {
1858 			ASSERT_EXCLUSIVE_WRITER(sup->reschedule_count);
1859 			WRITE_ONCE(sup->reschedule_count, READ_ONCE(sup->reschedule_count) + 1);
1860 			if (READ_ONCE(sup->reschedule_count) > srcu_max_nodelay)
1861 				curdelay = 1;
1862 		} else {
1863 			WRITE_ONCE(sup->reschedule_count, 1);
1864 			WRITE_ONCE(sup->reschedule_jiffies, j);
1865 		}
1866 	}
1867 	srcu_reschedule(ssp, curdelay);
1868 }
1869 
1870 void srcutorture_get_gp_data(struct srcu_struct *ssp, int *flags,
1871 			     unsigned long *gp_seq)
1872 {
1873 	*flags = 0;
1874 	*gp_seq = rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq);
1875 }
1876 EXPORT_SYMBOL_GPL(srcutorture_get_gp_data);
1877 
1878 static const char * const srcu_size_state_name[] = {
1879 	"SRCU_SIZE_SMALL",
1880 	"SRCU_SIZE_ALLOC",
1881 	"SRCU_SIZE_WAIT_BARRIER",
1882 	"SRCU_SIZE_WAIT_CALL",
1883 	"SRCU_SIZE_WAIT_CBS1",
1884 	"SRCU_SIZE_WAIT_CBS2",
1885 	"SRCU_SIZE_WAIT_CBS3",
1886 	"SRCU_SIZE_WAIT_CBS4",
1887 	"SRCU_SIZE_BIG",
1888 	"SRCU_SIZE_???",
1889 };
1890 
1891 void srcu_torture_stats_print(struct srcu_struct *ssp, char *tt, char *tf)
1892 {
1893 	int cpu;
1894 	int idx;
1895 	unsigned long s0 = 0, s1 = 0;
1896 	int ss_state = READ_ONCE(ssp->srcu_sup->srcu_size_state);
1897 	int ss_state_idx = ss_state;
1898 
1899 	idx = ssp->srcu_idx & 0x1;
1900 	if (ss_state < 0 || ss_state >= ARRAY_SIZE(srcu_size_state_name))
1901 		ss_state_idx = ARRAY_SIZE(srcu_size_state_name) - 1;
1902 	pr_alert("%s%s Tree SRCU g%ld state %d (%s)",
1903 		 tt, tf, rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq), ss_state,
1904 		 srcu_size_state_name[ss_state_idx]);
1905 	if (!ssp->sda) {
1906 		// Called after cleanup_srcu_struct(), perhaps.
1907 		pr_cont(" No per-CPU srcu_data structures (->sda == NULL).\n");
1908 	} else {
1909 		pr_cont(" per-CPU(idx=%d):", idx);
1910 		for_each_possible_cpu(cpu) {
1911 			unsigned long l0, l1;
1912 			unsigned long u0, u1;
1913 			long c0, c1;
1914 			struct srcu_data *sdp;
1915 
1916 			sdp = per_cpu_ptr(ssp->sda, cpu);
1917 			u0 = data_race(atomic_long_read(&sdp->srcu_unlock_count[!idx]));
1918 			u1 = data_race(atomic_long_read(&sdp->srcu_unlock_count[idx]));
1919 
1920 			/*
1921 			 * Make sure that a lock is always counted if the corresponding
1922 			 * unlock is counted.
1923 			 */
1924 			smp_rmb();
1925 
1926 			l0 = data_race(atomic_long_read(&sdp->srcu_lock_count[!idx]));
1927 			l1 = data_race(atomic_long_read(&sdp->srcu_lock_count[idx]));
1928 
1929 			c0 = l0 - u0;
1930 			c1 = l1 - u1;
1931 			pr_cont(" %d(%ld,%ld %c)",
1932 				cpu, c0, c1,
1933 				"C."[rcu_segcblist_empty(&sdp->srcu_cblist)]);
1934 			s0 += c0;
1935 			s1 += c1;
1936 		}
1937 		pr_cont(" T(%ld,%ld)\n", s0, s1);
1938 	}
1939 	if (SRCU_SIZING_IS_TORTURE())
1940 		srcu_transition_to_big(ssp);
1941 }
1942 EXPORT_SYMBOL_GPL(srcu_torture_stats_print);
1943 
1944 static int __init srcu_bootup_announce(void)
1945 {
1946 	pr_info("Hierarchical SRCU implementation.\n");
1947 	if (exp_holdoff != DEFAULT_SRCU_EXP_HOLDOFF)
1948 		pr_info("\tNon-default auto-expedite holdoff of %lu ns.\n", exp_holdoff);
1949 	if (srcu_retry_check_delay != SRCU_DEFAULT_RETRY_CHECK_DELAY)
1950 		pr_info("\tNon-default retry check delay of %lu us.\n", srcu_retry_check_delay);
1951 	if (srcu_max_nodelay != SRCU_DEFAULT_MAX_NODELAY)
1952 		pr_info("\tNon-default max no-delay of %lu.\n", srcu_max_nodelay);
1953 	pr_info("\tMax phase no-delay instances is %lu.\n", srcu_max_nodelay_phase);
1954 	return 0;
1955 }
1956 early_initcall(srcu_bootup_announce);
1957 
1958 void __init srcu_init(void)
1959 {
1960 	struct srcu_usage *sup;
1961 
1962 	/* Decide on srcu_struct-size strategy. */
1963 	if (SRCU_SIZING_IS(SRCU_SIZING_AUTO)) {
1964 		if (nr_cpu_ids >= big_cpu_lim) {
1965 			convert_to_big = SRCU_SIZING_INIT; // Don't bother waiting for contention.
1966 			pr_info("%s: Setting srcu_struct sizes to big.\n", __func__);
1967 		} else {
1968 			convert_to_big = SRCU_SIZING_NONE | SRCU_SIZING_CONTEND;
1969 			pr_info("%s: Setting srcu_struct sizes based on contention.\n", __func__);
1970 		}
1971 	}
1972 
1973 	/*
1974 	 * Once that is set, call_srcu() can follow the normal path and
1975 	 * queue delayed work. This must follow RCU workqueues creation
1976 	 * and timers initialization.
1977 	 */
1978 	srcu_init_done = true;
1979 	while (!list_empty(&srcu_boot_list)) {
1980 		sup = list_first_entry(&srcu_boot_list, struct srcu_usage,
1981 				      work.work.entry);
1982 		list_del_init(&sup->work.work.entry);
1983 		if (SRCU_SIZING_IS(SRCU_SIZING_INIT) &&
1984 		    sup->srcu_size_state == SRCU_SIZE_SMALL)
1985 			sup->srcu_size_state = SRCU_SIZE_ALLOC;
1986 		queue_work(rcu_gp_wq, &sup->work.work);
1987 	}
1988 }
1989 
1990 #ifdef CONFIG_MODULES
1991 
1992 /* Initialize any global-scope srcu_struct structures used by this module. */
1993 static int srcu_module_coming(struct module *mod)
1994 {
1995 	int i;
1996 	struct srcu_struct *ssp;
1997 	struct srcu_struct **sspp = mod->srcu_struct_ptrs;
1998 
1999 	for (i = 0; i < mod->num_srcu_structs; i++) {
2000 		ssp = *(sspp++);
2001 		ssp->sda = alloc_percpu(struct srcu_data);
2002 		if (WARN_ON_ONCE(!ssp->sda))
2003 			return -ENOMEM;
2004 	}
2005 	return 0;
2006 }
2007 
2008 /* Clean up any global-scope srcu_struct structures used by this module. */
2009 static void srcu_module_going(struct module *mod)
2010 {
2011 	int i;
2012 	struct srcu_struct *ssp;
2013 	struct srcu_struct **sspp = mod->srcu_struct_ptrs;
2014 
2015 	for (i = 0; i < mod->num_srcu_structs; i++) {
2016 		ssp = *(sspp++);
2017 		if (!rcu_seq_state(smp_load_acquire(&ssp->srcu_sup->srcu_gp_seq_needed)) &&
2018 		    !WARN_ON_ONCE(!ssp->srcu_sup->sda_is_static))
2019 			cleanup_srcu_struct(ssp);
2020 		if (!WARN_ON(srcu_readers_active(ssp)))
2021 			free_percpu(ssp->sda);
2022 	}
2023 }
2024 
2025 /* Handle one module, either coming or going. */
2026 static int srcu_module_notify(struct notifier_block *self,
2027 			      unsigned long val, void *data)
2028 {
2029 	struct module *mod = data;
2030 	int ret = 0;
2031 
2032 	switch (val) {
2033 	case MODULE_STATE_COMING:
2034 		ret = srcu_module_coming(mod);
2035 		break;
2036 	case MODULE_STATE_GOING:
2037 		srcu_module_going(mod);
2038 		break;
2039 	default:
2040 		break;
2041 	}
2042 	return ret;
2043 }
2044 
2045 static struct notifier_block srcu_module_nb = {
2046 	.notifier_call = srcu_module_notify,
2047 	.priority = 0,
2048 };
2049 
2050 static __init int init_srcu_module_notifier(void)
2051 {
2052 	int ret;
2053 
2054 	ret = register_module_notifier(&srcu_module_nb);
2055 	if (ret)
2056 		pr_warn("Failed to register srcu module notifier\n");
2057 	return ret;
2058 }
2059 late_initcall(init_srcu_module_notifier);
2060 
2061 #endif /* #ifdef CONFIG_MODULES */
2062