xref: /linux/kernel/rcu/srcutree.c (revision 51a8f9d7f587290944d6fc733d1f897091c63159)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Sleepable Read-Copy Update mechanism for mutual exclusion.
4  *
5  * Copyright (C) IBM Corporation, 2006
6  * Copyright (C) Fujitsu, 2012
7  *
8  * Authors: Paul McKenney <paulmck@linux.ibm.com>
9  *	   Lai Jiangshan <laijs@cn.fujitsu.com>
10  *
11  * For detailed explanation of Read-Copy Update mechanism see -
12  *		Documentation/RCU/ *.txt
13  *
14  */
15 
16 #define pr_fmt(fmt) "rcu: " fmt
17 
18 #include <linux/export.h>
19 #include <linux/mutex.h>
20 #include <linux/percpu.h>
21 #include <linux/preempt.h>
22 #include <linux/rcupdate_wait.h>
23 #include <linux/sched.h>
24 #include <linux/smp.h>
25 #include <linux/delay.h>
26 #include <linux/module.h>
27 #include <linux/slab.h>
28 #include <linux/srcu.h>
29 
30 #include "rcu.h"
31 #include "rcu_segcblist.h"
32 
33 /* Holdoff in nanoseconds for auto-expediting. */
34 #define DEFAULT_SRCU_EXP_HOLDOFF (25 * 1000)
35 static ulong exp_holdoff = DEFAULT_SRCU_EXP_HOLDOFF;
36 module_param(exp_holdoff, ulong, 0444);
37 
38 /* Overflow-check frequency.  N bits roughly says every 2**N grace periods. */
39 static ulong counter_wrap_check = (ULONG_MAX >> 2);
40 module_param(counter_wrap_check, ulong, 0444);
41 
42 /*
43  * Control conversion to SRCU_SIZE_BIG:
44  *    0: Don't convert at all.
45  *    1: Convert at init_srcu_struct() time.
46  *    2: Convert when rcutorture invokes srcu_torture_stats_print().
47  *    3: Decide at boot time based on system shape (default).
48  * 0x1x: Convert when excessive contention encountered.
49  */
50 #define SRCU_SIZING_NONE	0
51 #define SRCU_SIZING_INIT	1
52 #define SRCU_SIZING_TORTURE	2
53 #define SRCU_SIZING_AUTO	3
54 #define SRCU_SIZING_CONTEND	0x10
55 #define SRCU_SIZING_IS(x) ((convert_to_big & ~SRCU_SIZING_CONTEND) == x)
56 #define SRCU_SIZING_IS_NONE() (SRCU_SIZING_IS(SRCU_SIZING_NONE))
57 #define SRCU_SIZING_IS_INIT() (SRCU_SIZING_IS(SRCU_SIZING_INIT))
58 #define SRCU_SIZING_IS_TORTURE() (SRCU_SIZING_IS(SRCU_SIZING_TORTURE))
59 #define SRCU_SIZING_IS_CONTEND() (convert_to_big & SRCU_SIZING_CONTEND)
60 static int convert_to_big = SRCU_SIZING_AUTO;
61 module_param(convert_to_big, int, 0444);
62 
63 /* Number of CPUs to trigger init_srcu_struct()-time transition to big. */
64 static int big_cpu_lim __read_mostly = 128;
65 module_param(big_cpu_lim, int, 0444);
66 
67 /* Contention events per jiffy to initiate transition to big. */
68 static int small_contention_lim __read_mostly = 100;
69 module_param(small_contention_lim, int, 0444);
70 
71 /* Early-boot callback-management, so early that no lock is required! */
72 static LIST_HEAD(srcu_boot_list);
73 static bool __read_mostly srcu_init_done;
74 
75 static void srcu_invoke_callbacks(struct work_struct *work);
76 static void srcu_reschedule(struct srcu_struct *ssp, unsigned long delay);
77 static void process_srcu(struct work_struct *work);
78 static void srcu_delay_timer(struct timer_list *t);
79 
80 /* Wrappers for lock acquisition and release, see raw_spin_lock_rcu_node(). */
81 #define spin_lock_rcu_node(p)							\
82 do {										\
83 	spin_lock(&ACCESS_PRIVATE(p, lock));					\
84 	smp_mb__after_unlock_lock();						\
85 } while (0)
86 
87 #define spin_unlock_rcu_node(p) spin_unlock(&ACCESS_PRIVATE(p, lock))
88 
89 #define spin_lock_irq_rcu_node(p)						\
90 do {										\
91 	spin_lock_irq(&ACCESS_PRIVATE(p, lock));				\
92 	smp_mb__after_unlock_lock();						\
93 } while (0)
94 
95 #define spin_unlock_irq_rcu_node(p)						\
96 	spin_unlock_irq(&ACCESS_PRIVATE(p, lock))
97 
98 #define spin_lock_irqsave_rcu_node(p, flags)					\
99 do {										\
100 	spin_lock_irqsave(&ACCESS_PRIVATE(p, lock), flags);			\
101 	smp_mb__after_unlock_lock();						\
102 } while (0)
103 
104 #define spin_trylock_irqsave_rcu_node(p, flags)					\
105 ({										\
106 	bool ___locked = spin_trylock_irqsave(&ACCESS_PRIVATE(p, lock), flags);	\
107 										\
108 	if (___locked)								\
109 		smp_mb__after_unlock_lock();					\
110 	___locked;								\
111 })
112 
113 #define spin_unlock_irqrestore_rcu_node(p, flags)				\
114 	spin_unlock_irqrestore(&ACCESS_PRIVATE(p, lock), flags)			\
115 
116 /*
117  * Initialize SRCU per-CPU data.  Note that statically allocated
118  * srcu_struct structures might already have srcu_read_lock() and
119  * srcu_read_unlock() running against them.  So if the is_static parameter
120  * is set, don't initialize ->srcu_lock_count[] and ->srcu_unlock_count[].
121  */
122 static void init_srcu_struct_data(struct srcu_struct *ssp)
123 {
124 	int cpu;
125 	struct srcu_data *sdp;
126 
127 	/*
128 	 * Initialize the per-CPU srcu_data array, which feeds into the
129 	 * leaves of the srcu_node tree.
130 	 */
131 	WARN_ON_ONCE(ARRAY_SIZE(sdp->srcu_lock_count) !=
132 		     ARRAY_SIZE(sdp->srcu_unlock_count));
133 	for_each_possible_cpu(cpu) {
134 		sdp = per_cpu_ptr(ssp->sda, cpu);
135 		spin_lock_init(&ACCESS_PRIVATE(sdp, lock));
136 		rcu_segcblist_init(&sdp->srcu_cblist);
137 		sdp->srcu_cblist_invoking = false;
138 		sdp->srcu_gp_seq_needed = ssp->srcu_gp_seq;
139 		sdp->srcu_gp_seq_needed_exp = ssp->srcu_gp_seq;
140 		sdp->mynode = NULL;
141 		sdp->cpu = cpu;
142 		INIT_WORK(&sdp->work, srcu_invoke_callbacks);
143 		timer_setup(&sdp->delay_work, srcu_delay_timer, 0);
144 		sdp->ssp = ssp;
145 	}
146 }
147 
148 /* Invalid seq state, used during snp node initialization */
149 #define SRCU_SNP_INIT_SEQ		0x2
150 
151 /*
152  * Check whether sequence number corresponding to snp node,
153  * is invalid.
154  */
155 static inline bool srcu_invl_snp_seq(unsigned long s)
156 {
157 	return rcu_seq_state(s) == SRCU_SNP_INIT_SEQ;
158 }
159 
160 /*
161  * Allocated and initialize SRCU combining tree.  Returns @true if
162  * allocation succeeded and @false otherwise.
163  */
164 static bool init_srcu_struct_nodes(struct srcu_struct *ssp, gfp_t gfp_flags)
165 {
166 	int cpu;
167 	int i;
168 	int level = 0;
169 	int levelspread[RCU_NUM_LVLS];
170 	struct srcu_data *sdp;
171 	struct srcu_node *snp;
172 	struct srcu_node *snp_first;
173 
174 	/* Initialize geometry if it has not already been initialized. */
175 	rcu_init_geometry();
176 	ssp->node = kcalloc(rcu_num_nodes, sizeof(*ssp->node), gfp_flags);
177 	if (!ssp->node)
178 		return false;
179 
180 	/* Work out the overall tree geometry. */
181 	ssp->level[0] = &ssp->node[0];
182 	for (i = 1; i < rcu_num_lvls; i++)
183 		ssp->level[i] = ssp->level[i - 1] + num_rcu_lvl[i - 1];
184 	rcu_init_levelspread(levelspread, num_rcu_lvl);
185 
186 	/* Each pass through this loop initializes one srcu_node structure. */
187 	srcu_for_each_node_breadth_first(ssp, snp) {
188 		spin_lock_init(&ACCESS_PRIVATE(snp, lock));
189 		WARN_ON_ONCE(ARRAY_SIZE(snp->srcu_have_cbs) !=
190 			     ARRAY_SIZE(snp->srcu_data_have_cbs));
191 		for (i = 0; i < ARRAY_SIZE(snp->srcu_have_cbs); i++) {
192 			snp->srcu_have_cbs[i] = SRCU_SNP_INIT_SEQ;
193 			snp->srcu_data_have_cbs[i] = 0;
194 		}
195 		snp->srcu_gp_seq_needed_exp = SRCU_SNP_INIT_SEQ;
196 		snp->grplo = -1;
197 		snp->grphi = -1;
198 		if (snp == &ssp->node[0]) {
199 			/* Root node, special case. */
200 			snp->srcu_parent = NULL;
201 			continue;
202 		}
203 
204 		/* Non-root node. */
205 		if (snp == ssp->level[level + 1])
206 			level++;
207 		snp->srcu_parent = ssp->level[level - 1] +
208 				   (snp - ssp->level[level]) /
209 				   levelspread[level - 1];
210 	}
211 
212 	/*
213 	 * Initialize the per-CPU srcu_data array, which feeds into the
214 	 * leaves of the srcu_node tree.
215 	 */
216 	level = rcu_num_lvls - 1;
217 	snp_first = ssp->level[level];
218 	for_each_possible_cpu(cpu) {
219 		sdp = per_cpu_ptr(ssp->sda, cpu);
220 		sdp->mynode = &snp_first[cpu / levelspread[level]];
221 		for (snp = sdp->mynode; snp != NULL; snp = snp->srcu_parent) {
222 			if (snp->grplo < 0)
223 				snp->grplo = cpu;
224 			snp->grphi = cpu;
225 		}
226 		sdp->grpmask = 1 << (cpu - sdp->mynode->grplo);
227 	}
228 	smp_store_release(&ssp->srcu_size_state, SRCU_SIZE_WAIT_BARRIER);
229 	return true;
230 }
231 
232 /*
233  * Initialize non-compile-time initialized fields, including the
234  * associated srcu_node and srcu_data structures.  The is_static parameter
235  * tells us that ->sda has already been wired up to srcu_data.
236  */
237 static int init_srcu_struct_fields(struct srcu_struct *ssp, bool is_static)
238 {
239 	ssp->srcu_size_state = SRCU_SIZE_SMALL;
240 	ssp->node = NULL;
241 	mutex_init(&ssp->srcu_cb_mutex);
242 	mutex_init(&ssp->srcu_gp_mutex);
243 	ssp->srcu_idx = 0;
244 	ssp->srcu_gp_seq = 0;
245 	ssp->srcu_barrier_seq = 0;
246 	mutex_init(&ssp->srcu_barrier_mutex);
247 	atomic_set(&ssp->srcu_barrier_cpu_cnt, 0);
248 	INIT_DELAYED_WORK(&ssp->work, process_srcu);
249 	ssp->sda_is_static = is_static;
250 	if (!is_static)
251 		ssp->sda = alloc_percpu(struct srcu_data);
252 	if (!ssp->sda)
253 		return -ENOMEM;
254 	init_srcu_struct_data(ssp);
255 	ssp->srcu_gp_seq_needed_exp = 0;
256 	ssp->srcu_last_gp_end = ktime_get_mono_fast_ns();
257 	if (READ_ONCE(ssp->srcu_size_state) == SRCU_SIZE_SMALL && SRCU_SIZING_IS_INIT()) {
258 		if (!init_srcu_struct_nodes(ssp, GFP_ATOMIC)) {
259 			if (!ssp->sda_is_static) {
260 				free_percpu(ssp->sda);
261 				ssp->sda = NULL;
262 				return -ENOMEM;
263 			}
264 		} else {
265 			WRITE_ONCE(ssp->srcu_size_state, SRCU_SIZE_BIG);
266 		}
267 	}
268 	smp_store_release(&ssp->srcu_gp_seq_needed, 0); /* Init done. */
269 	return 0;
270 }
271 
272 #ifdef CONFIG_DEBUG_LOCK_ALLOC
273 
274 int __init_srcu_struct(struct srcu_struct *ssp, const char *name,
275 		       struct lock_class_key *key)
276 {
277 	/* Don't re-initialize a lock while it is held. */
278 	debug_check_no_locks_freed((void *)ssp, sizeof(*ssp));
279 	lockdep_init_map(&ssp->dep_map, name, key, 0);
280 	spin_lock_init(&ACCESS_PRIVATE(ssp, lock));
281 	return init_srcu_struct_fields(ssp, false);
282 }
283 EXPORT_SYMBOL_GPL(__init_srcu_struct);
284 
285 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
286 
287 /**
288  * init_srcu_struct - initialize a sleep-RCU structure
289  * @ssp: structure to initialize.
290  *
291  * Must invoke this on a given srcu_struct before passing that srcu_struct
292  * to any other function.  Each srcu_struct represents a separate domain
293  * of SRCU protection.
294  */
295 int init_srcu_struct(struct srcu_struct *ssp)
296 {
297 	spin_lock_init(&ACCESS_PRIVATE(ssp, lock));
298 	return init_srcu_struct_fields(ssp, false);
299 }
300 EXPORT_SYMBOL_GPL(init_srcu_struct);
301 
302 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
303 
304 /*
305  * Initiate a transition to SRCU_SIZE_BIG with lock held.
306  */
307 static void __srcu_transition_to_big(struct srcu_struct *ssp)
308 {
309 	lockdep_assert_held(&ACCESS_PRIVATE(ssp, lock));
310 	smp_store_release(&ssp->srcu_size_state, SRCU_SIZE_ALLOC);
311 }
312 
313 /*
314  * Initiate an idempotent transition to SRCU_SIZE_BIG.
315  */
316 static void srcu_transition_to_big(struct srcu_struct *ssp)
317 {
318 	unsigned long flags;
319 
320 	/* Double-checked locking on ->srcu_size-state. */
321 	if (smp_load_acquire(&ssp->srcu_size_state) != SRCU_SIZE_SMALL)
322 		return;
323 	spin_lock_irqsave_rcu_node(ssp, flags);
324 	if (smp_load_acquire(&ssp->srcu_size_state) != SRCU_SIZE_SMALL) {
325 		spin_unlock_irqrestore_rcu_node(ssp, flags);
326 		return;
327 	}
328 	__srcu_transition_to_big(ssp);
329 	spin_unlock_irqrestore_rcu_node(ssp, flags);
330 }
331 
332 /*
333  * Check to see if the just-encountered contention event justifies
334  * a transition to SRCU_SIZE_BIG.
335  */
336 static void spin_lock_irqsave_check_contention(struct srcu_struct *ssp)
337 {
338 	unsigned long j;
339 
340 	if (!SRCU_SIZING_IS_CONTEND() || ssp->srcu_size_state)
341 		return;
342 	j = jiffies;
343 	if (ssp->srcu_size_jiffies != j) {
344 		ssp->srcu_size_jiffies = j;
345 		ssp->srcu_n_lock_retries = 0;
346 	}
347 	if (++ssp->srcu_n_lock_retries <= small_contention_lim)
348 		return;
349 	__srcu_transition_to_big(ssp);
350 }
351 
352 /*
353  * Acquire the specified srcu_data structure's ->lock, but check for
354  * excessive contention, which results in initiation of a transition
355  * to SRCU_SIZE_BIG.  But only if the srcutree.convert_to_big module
356  * parameter permits this.
357  */
358 static void spin_lock_irqsave_sdp_contention(struct srcu_data *sdp, unsigned long *flags)
359 {
360 	struct srcu_struct *ssp = sdp->ssp;
361 
362 	if (spin_trylock_irqsave_rcu_node(sdp, *flags))
363 		return;
364 	spin_lock_irqsave_rcu_node(ssp, *flags);
365 	spin_lock_irqsave_check_contention(ssp);
366 	spin_unlock_irqrestore_rcu_node(ssp, *flags);
367 	spin_lock_irqsave_rcu_node(sdp, *flags);
368 }
369 
370 /*
371  * Acquire the specified srcu_struct structure's ->lock, but check for
372  * excessive contention, which results in initiation of a transition
373  * to SRCU_SIZE_BIG.  But only if the srcutree.convert_to_big module
374  * parameter permits this.
375  */
376 static void spin_lock_irqsave_ssp_contention(struct srcu_struct *ssp, unsigned long *flags)
377 {
378 	if (spin_trylock_irqsave_rcu_node(ssp, *flags))
379 		return;
380 	spin_lock_irqsave_rcu_node(ssp, *flags);
381 	spin_lock_irqsave_check_contention(ssp);
382 }
383 
384 /*
385  * First-use initialization of statically allocated srcu_struct
386  * structure.  Wiring up the combining tree is more than can be
387  * done with compile-time initialization, so this check is added
388  * to each update-side SRCU primitive.  Use ssp->lock, which -is-
389  * compile-time initialized, to resolve races involving multiple
390  * CPUs trying to garner first-use privileges.
391  */
392 static void check_init_srcu_struct(struct srcu_struct *ssp)
393 {
394 	unsigned long flags;
395 
396 	/* The smp_load_acquire() pairs with the smp_store_release(). */
397 	if (!rcu_seq_state(smp_load_acquire(&ssp->srcu_gp_seq_needed))) /*^^^*/
398 		return; /* Already initialized. */
399 	spin_lock_irqsave_rcu_node(ssp, flags);
400 	if (!rcu_seq_state(ssp->srcu_gp_seq_needed)) {
401 		spin_unlock_irqrestore_rcu_node(ssp, flags);
402 		return;
403 	}
404 	init_srcu_struct_fields(ssp, true);
405 	spin_unlock_irqrestore_rcu_node(ssp, flags);
406 }
407 
408 /*
409  * Returns approximate total of the readers' ->srcu_lock_count[] values
410  * for the rank of per-CPU counters specified by idx.
411  */
412 static unsigned long srcu_readers_lock_idx(struct srcu_struct *ssp, int idx)
413 {
414 	int cpu;
415 	unsigned long sum = 0;
416 
417 	for_each_possible_cpu(cpu) {
418 		struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu);
419 
420 		sum += atomic_long_read(&cpuc->srcu_lock_count[idx]);
421 	}
422 	return sum;
423 }
424 
425 /*
426  * Returns approximate total of the readers' ->srcu_unlock_count[] values
427  * for the rank of per-CPU counters specified by idx.
428  */
429 static unsigned long srcu_readers_unlock_idx(struct srcu_struct *ssp, int idx)
430 {
431 	int cpu;
432 	unsigned long mask = 0;
433 	unsigned long sum = 0;
434 
435 	for_each_possible_cpu(cpu) {
436 		struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu);
437 
438 		sum += atomic_long_read(&cpuc->srcu_unlock_count[idx]);
439 		if (IS_ENABLED(CONFIG_PROVE_RCU))
440 			mask = mask | READ_ONCE(cpuc->srcu_nmi_safety);
441 	}
442 	WARN_ONCE(IS_ENABLED(CONFIG_PROVE_RCU) && (mask & (mask >> 1)),
443 		  "Mixed NMI-safe readers for srcu_struct at %ps.\n", ssp);
444 	return sum;
445 }
446 
447 /*
448  * Return true if the number of pre-existing readers is determined to
449  * be zero.
450  */
451 static bool srcu_readers_active_idx_check(struct srcu_struct *ssp, int idx)
452 {
453 	unsigned long unlocks;
454 
455 	unlocks = srcu_readers_unlock_idx(ssp, idx);
456 
457 	/*
458 	 * Make sure that a lock is always counted if the corresponding
459 	 * unlock is counted. Needs to be a smp_mb() as the read side may
460 	 * contain a read from a variable that is written to before the
461 	 * synchronize_srcu() in the write side. In this case smp_mb()s
462 	 * A and B act like the store buffering pattern.
463 	 *
464 	 * This smp_mb() also pairs with smp_mb() C to prevent accesses
465 	 * after the synchronize_srcu() from being executed before the
466 	 * grace period ends.
467 	 */
468 	smp_mb(); /* A */
469 
470 	/*
471 	 * If the locks are the same as the unlocks, then there must have
472 	 * been no readers on this index at some time in between. This does
473 	 * not mean that there are no more readers, as one could have read
474 	 * the current index but not have incremented the lock counter yet.
475 	 *
476 	 * So suppose that the updater is preempted here for so long
477 	 * that more than ULONG_MAX non-nested readers come and go in
478 	 * the meantime.  It turns out that this cannot result in overflow
479 	 * because if a reader modifies its unlock count after we read it
480 	 * above, then that reader's next load of ->srcu_idx is guaranteed
481 	 * to get the new value, which will cause it to operate on the
482 	 * other bank of counters, where it cannot contribute to the
483 	 * overflow of these counters.  This means that there is a maximum
484 	 * of 2*NR_CPUS increments, which cannot overflow given current
485 	 * systems, especially not on 64-bit systems.
486 	 *
487 	 * OK, how about nesting?  This does impose a limit on nesting
488 	 * of floor(ULONG_MAX/NR_CPUS/2), which should be sufficient,
489 	 * especially on 64-bit systems.
490 	 */
491 	return srcu_readers_lock_idx(ssp, idx) == unlocks;
492 }
493 
494 /**
495  * srcu_readers_active - returns true if there are readers. and false
496  *                       otherwise
497  * @ssp: which srcu_struct to count active readers (holding srcu_read_lock).
498  *
499  * Note that this is not an atomic primitive, and can therefore suffer
500  * severe errors when invoked on an active srcu_struct.  That said, it
501  * can be useful as an error check at cleanup time.
502  */
503 static bool srcu_readers_active(struct srcu_struct *ssp)
504 {
505 	int cpu;
506 	unsigned long sum = 0;
507 
508 	for_each_possible_cpu(cpu) {
509 		struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu);
510 
511 		sum += atomic_long_read(&cpuc->srcu_lock_count[0]);
512 		sum += atomic_long_read(&cpuc->srcu_lock_count[1]);
513 		sum -= atomic_long_read(&cpuc->srcu_unlock_count[0]);
514 		sum -= atomic_long_read(&cpuc->srcu_unlock_count[1]);
515 	}
516 	return sum;
517 }
518 
519 /*
520  * We use an adaptive strategy for synchronize_srcu() and especially for
521  * synchronize_srcu_expedited().  We spin for a fixed time period
522  * (defined below, boot time configurable) to allow SRCU readers to exit
523  * their read-side critical sections.  If there are still some readers
524  * after one jiffy, we repeatedly block for one jiffy time periods.
525  * The blocking time is increased as the grace-period age increases,
526  * with max blocking time capped at 10 jiffies.
527  */
528 #define SRCU_DEFAULT_RETRY_CHECK_DELAY		5
529 
530 static ulong srcu_retry_check_delay = SRCU_DEFAULT_RETRY_CHECK_DELAY;
531 module_param(srcu_retry_check_delay, ulong, 0444);
532 
533 #define SRCU_INTERVAL		1		// Base delay if no expedited GPs pending.
534 #define SRCU_MAX_INTERVAL	10		// Maximum incremental delay from slow readers.
535 
536 #define SRCU_DEFAULT_MAX_NODELAY_PHASE_LO	3UL	// Lowmark on default per-GP-phase
537 							// no-delay instances.
538 #define SRCU_DEFAULT_MAX_NODELAY_PHASE_HI	1000UL	// Highmark on default per-GP-phase
539 							// no-delay instances.
540 
541 #define SRCU_UL_CLAMP_LO(val, low)	((val) > (low) ? (val) : (low))
542 #define SRCU_UL_CLAMP_HI(val, high)	((val) < (high) ? (val) : (high))
543 #define SRCU_UL_CLAMP(val, low, high)	SRCU_UL_CLAMP_HI(SRCU_UL_CLAMP_LO((val), (low)), (high))
544 // per-GP-phase no-delay instances adjusted to allow non-sleeping poll upto
545 // one jiffies time duration. Mult by 2 is done to factor in the srcu_get_delay()
546 // called from process_srcu().
547 #define SRCU_DEFAULT_MAX_NODELAY_PHASE_ADJUSTED	\
548 	(2UL * USEC_PER_SEC / HZ / SRCU_DEFAULT_RETRY_CHECK_DELAY)
549 
550 // Maximum per-GP-phase consecutive no-delay instances.
551 #define SRCU_DEFAULT_MAX_NODELAY_PHASE	\
552 	SRCU_UL_CLAMP(SRCU_DEFAULT_MAX_NODELAY_PHASE_ADJUSTED,	\
553 		      SRCU_DEFAULT_MAX_NODELAY_PHASE_LO,	\
554 		      SRCU_DEFAULT_MAX_NODELAY_PHASE_HI)
555 
556 static ulong srcu_max_nodelay_phase = SRCU_DEFAULT_MAX_NODELAY_PHASE;
557 module_param(srcu_max_nodelay_phase, ulong, 0444);
558 
559 // Maximum consecutive no-delay instances.
560 #define SRCU_DEFAULT_MAX_NODELAY	(SRCU_DEFAULT_MAX_NODELAY_PHASE > 100 ?	\
561 					 SRCU_DEFAULT_MAX_NODELAY_PHASE : 100)
562 
563 static ulong srcu_max_nodelay = SRCU_DEFAULT_MAX_NODELAY;
564 module_param(srcu_max_nodelay, ulong, 0444);
565 
566 /*
567  * Return grace-period delay, zero if there are expedited grace
568  * periods pending, SRCU_INTERVAL otherwise.
569  */
570 static unsigned long srcu_get_delay(struct srcu_struct *ssp)
571 {
572 	unsigned long gpstart;
573 	unsigned long j;
574 	unsigned long jbase = SRCU_INTERVAL;
575 
576 	if (ULONG_CMP_LT(READ_ONCE(ssp->srcu_gp_seq), READ_ONCE(ssp->srcu_gp_seq_needed_exp)))
577 		jbase = 0;
578 	if (rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq))) {
579 		j = jiffies - 1;
580 		gpstart = READ_ONCE(ssp->srcu_gp_start);
581 		if (time_after(j, gpstart))
582 			jbase += j - gpstart;
583 		if (!jbase) {
584 			WRITE_ONCE(ssp->srcu_n_exp_nodelay, READ_ONCE(ssp->srcu_n_exp_nodelay) + 1);
585 			if (READ_ONCE(ssp->srcu_n_exp_nodelay) > srcu_max_nodelay_phase)
586 				jbase = 1;
587 		}
588 	}
589 	return jbase > SRCU_MAX_INTERVAL ? SRCU_MAX_INTERVAL : jbase;
590 }
591 
592 /**
593  * cleanup_srcu_struct - deconstruct a sleep-RCU structure
594  * @ssp: structure to clean up.
595  *
596  * Must invoke this after you are finished using a given srcu_struct that
597  * was initialized via init_srcu_struct(), else you leak memory.
598  */
599 void cleanup_srcu_struct(struct srcu_struct *ssp)
600 {
601 	int cpu;
602 
603 	if (WARN_ON(!srcu_get_delay(ssp)))
604 		return; /* Just leak it! */
605 	if (WARN_ON(srcu_readers_active(ssp)))
606 		return; /* Just leak it! */
607 	flush_delayed_work(&ssp->work);
608 	for_each_possible_cpu(cpu) {
609 		struct srcu_data *sdp = per_cpu_ptr(ssp->sda, cpu);
610 
611 		del_timer_sync(&sdp->delay_work);
612 		flush_work(&sdp->work);
613 		if (WARN_ON(rcu_segcblist_n_cbs(&sdp->srcu_cblist)))
614 			return; /* Forgot srcu_barrier(), so just leak it! */
615 	}
616 	if (WARN_ON(rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq)) != SRCU_STATE_IDLE) ||
617 	    WARN_ON(rcu_seq_current(&ssp->srcu_gp_seq) != ssp->srcu_gp_seq_needed) ||
618 	    WARN_ON(srcu_readers_active(ssp))) {
619 		pr_info("%s: Active srcu_struct %p read state: %d gp state: %lu/%lu\n",
620 			__func__, ssp, rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq)),
621 			rcu_seq_current(&ssp->srcu_gp_seq), ssp->srcu_gp_seq_needed);
622 		return; /* Caller forgot to stop doing call_srcu()? */
623 	}
624 	if (!ssp->sda_is_static) {
625 		free_percpu(ssp->sda);
626 		ssp->sda = NULL;
627 	}
628 	kfree(ssp->node);
629 	ssp->node = NULL;
630 	ssp->srcu_size_state = SRCU_SIZE_SMALL;
631 }
632 EXPORT_SYMBOL_GPL(cleanup_srcu_struct);
633 
634 #ifdef CONFIG_PROVE_RCU
635 /*
636  * Check for consistent NMI safety.
637  */
638 void srcu_check_nmi_safety(struct srcu_struct *ssp, bool nmi_safe)
639 {
640 	int nmi_safe_mask = 1 << nmi_safe;
641 	int old_nmi_safe_mask;
642 	struct srcu_data *sdp;
643 
644 	/* NMI-unsafe use in NMI is a bad sign */
645 	WARN_ON_ONCE(!nmi_safe && in_nmi());
646 	sdp = raw_cpu_ptr(ssp->sda);
647 	old_nmi_safe_mask = READ_ONCE(sdp->srcu_nmi_safety);
648 	if (!old_nmi_safe_mask) {
649 		WRITE_ONCE(sdp->srcu_nmi_safety, nmi_safe_mask);
650 		return;
651 	}
652 	WARN_ONCE(old_nmi_safe_mask != nmi_safe_mask, "CPU %d old state %d new state %d\n", sdp->cpu, old_nmi_safe_mask, nmi_safe_mask);
653 }
654 EXPORT_SYMBOL_GPL(srcu_check_nmi_safety);
655 #endif /* CONFIG_PROVE_RCU */
656 
657 /*
658  * Counts the new reader in the appropriate per-CPU element of the
659  * srcu_struct.
660  * Returns an index that must be passed to the matching srcu_read_unlock().
661  */
662 int __srcu_read_lock(struct srcu_struct *ssp)
663 {
664 	int idx;
665 
666 	idx = READ_ONCE(ssp->srcu_idx) & 0x1;
667 	this_cpu_inc(ssp->sda->srcu_lock_count[idx].counter);
668 	smp_mb(); /* B */  /* Avoid leaking the critical section. */
669 	return idx;
670 }
671 EXPORT_SYMBOL_GPL(__srcu_read_lock);
672 
673 /*
674  * Removes the count for the old reader from the appropriate per-CPU
675  * element of the srcu_struct.  Note that this may well be a different
676  * CPU than that which was incremented by the corresponding srcu_read_lock().
677  */
678 void __srcu_read_unlock(struct srcu_struct *ssp, int idx)
679 {
680 	smp_mb(); /* C */  /* Avoid leaking the critical section. */
681 	this_cpu_inc(ssp->sda->srcu_unlock_count[idx].counter);
682 }
683 EXPORT_SYMBOL_GPL(__srcu_read_unlock);
684 
685 #ifdef CONFIG_NEED_SRCU_NMI_SAFE
686 
687 /*
688  * Counts the new reader in the appropriate per-CPU element of the
689  * srcu_struct, but in an NMI-safe manner using RMW atomics.
690  * Returns an index that must be passed to the matching srcu_read_unlock().
691  */
692 int __srcu_read_lock_nmisafe(struct srcu_struct *ssp)
693 {
694 	int idx;
695 	struct srcu_data *sdp = raw_cpu_ptr(ssp->sda);
696 
697 	idx = READ_ONCE(ssp->srcu_idx) & 0x1;
698 	atomic_long_inc(&sdp->srcu_lock_count[idx]);
699 	smp_mb__after_atomic(); /* B */  /* Avoid leaking the critical section. */
700 	return idx;
701 }
702 EXPORT_SYMBOL_GPL(__srcu_read_lock_nmisafe);
703 
704 /*
705  * Removes the count for the old reader from the appropriate per-CPU
706  * element of the srcu_struct.  Note that this may well be a different
707  * CPU than that which was incremented by the corresponding srcu_read_lock().
708  */
709 void __srcu_read_unlock_nmisafe(struct srcu_struct *ssp, int idx)
710 {
711 	struct srcu_data *sdp = raw_cpu_ptr(ssp->sda);
712 
713 	smp_mb__before_atomic(); /* C */  /* Avoid leaking the critical section. */
714 	atomic_long_inc(&sdp->srcu_unlock_count[idx]);
715 }
716 EXPORT_SYMBOL_GPL(__srcu_read_unlock_nmisafe);
717 
718 #endif // CONFIG_NEED_SRCU_NMI_SAFE
719 
720 /*
721  * Start an SRCU grace period.
722  */
723 static void srcu_gp_start(struct srcu_struct *ssp)
724 {
725 	struct srcu_data *sdp;
726 	int state;
727 
728 	if (smp_load_acquire(&ssp->srcu_size_state) < SRCU_SIZE_WAIT_BARRIER)
729 		sdp = per_cpu_ptr(ssp->sda, 0);
730 	else
731 		sdp = this_cpu_ptr(ssp->sda);
732 	lockdep_assert_held(&ACCESS_PRIVATE(ssp, lock));
733 	WARN_ON_ONCE(ULONG_CMP_GE(ssp->srcu_gp_seq, ssp->srcu_gp_seq_needed));
734 	spin_lock_rcu_node(sdp);  /* Interrupts already disabled. */
735 	rcu_segcblist_advance(&sdp->srcu_cblist,
736 			      rcu_seq_current(&ssp->srcu_gp_seq));
737 	(void)rcu_segcblist_accelerate(&sdp->srcu_cblist,
738 				       rcu_seq_snap(&ssp->srcu_gp_seq));
739 	spin_unlock_rcu_node(sdp);  /* Interrupts remain disabled. */
740 	WRITE_ONCE(ssp->srcu_gp_start, jiffies);
741 	WRITE_ONCE(ssp->srcu_n_exp_nodelay, 0);
742 	smp_mb(); /* Order prior store to ->srcu_gp_seq_needed vs. GP start. */
743 	rcu_seq_start(&ssp->srcu_gp_seq);
744 	state = rcu_seq_state(ssp->srcu_gp_seq);
745 	WARN_ON_ONCE(state != SRCU_STATE_SCAN1);
746 }
747 
748 
749 static void srcu_delay_timer(struct timer_list *t)
750 {
751 	struct srcu_data *sdp = container_of(t, struct srcu_data, delay_work);
752 
753 	queue_work_on(sdp->cpu, rcu_gp_wq, &sdp->work);
754 }
755 
756 static void srcu_queue_delayed_work_on(struct srcu_data *sdp,
757 				       unsigned long delay)
758 {
759 	if (!delay) {
760 		queue_work_on(sdp->cpu, rcu_gp_wq, &sdp->work);
761 		return;
762 	}
763 
764 	timer_reduce(&sdp->delay_work, jiffies + delay);
765 }
766 
767 /*
768  * Schedule callback invocation for the specified srcu_data structure,
769  * if possible, on the corresponding CPU.
770  */
771 static void srcu_schedule_cbs_sdp(struct srcu_data *sdp, unsigned long delay)
772 {
773 	srcu_queue_delayed_work_on(sdp, delay);
774 }
775 
776 /*
777  * Schedule callback invocation for all srcu_data structures associated
778  * with the specified srcu_node structure that have callbacks for the
779  * just-completed grace period, the one corresponding to idx.  If possible,
780  * schedule this invocation on the corresponding CPUs.
781  */
782 static void srcu_schedule_cbs_snp(struct srcu_struct *ssp, struct srcu_node *snp,
783 				  unsigned long mask, unsigned long delay)
784 {
785 	int cpu;
786 
787 	for (cpu = snp->grplo; cpu <= snp->grphi; cpu++) {
788 		if (!(mask & (1 << (cpu - snp->grplo))))
789 			continue;
790 		srcu_schedule_cbs_sdp(per_cpu_ptr(ssp->sda, cpu), delay);
791 	}
792 }
793 
794 /*
795  * Note the end of an SRCU grace period.  Initiates callback invocation
796  * and starts a new grace period if needed.
797  *
798  * The ->srcu_cb_mutex acquisition does not protect any data, but
799  * instead prevents more than one grace period from starting while we
800  * are initiating callback invocation.  This allows the ->srcu_have_cbs[]
801  * array to have a finite number of elements.
802  */
803 static void srcu_gp_end(struct srcu_struct *ssp)
804 {
805 	unsigned long cbdelay = 1;
806 	bool cbs;
807 	bool last_lvl;
808 	int cpu;
809 	unsigned long flags;
810 	unsigned long gpseq;
811 	int idx;
812 	unsigned long mask;
813 	struct srcu_data *sdp;
814 	unsigned long sgsne;
815 	struct srcu_node *snp;
816 	int ss_state;
817 
818 	/* Prevent more than one additional grace period. */
819 	mutex_lock(&ssp->srcu_cb_mutex);
820 
821 	/* End the current grace period. */
822 	spin_lock_irq_rcu_node(ssp);
823 	idx = rcu_seq_state(ssp->srcu_gp_seq);
824 	WARN_ON_ONCE(idx != SRCU_STATE_SCAN2);
825 	if (ULONG_CMP_LT(READ_ONCE(ssp->srcu_gp_seq), READ_ONCE(ssp->srcu_gp_seq_needed_exp)))
826 		cbdelay = 0;
827 
828 	WRITE_ONCE(ssp->srcu_last_gp_end, ktime_get_mono_fast_ns());
829 	rcu_seq_end(&ssp->srcu_gp_seq);
830 	gpseq = rcu_seq_current(&ssp->srcu_gp_seq);
831 	if (ULONG_CMP_LT(ssp->srcu_gp_seq_needed_exp, gpseq))
832 		WRITE_ONCE(ssp->srcu_gp_seq_needed_exp, gpseq);
833 	spin_unlock_irq_rcu_node(ssp);
834 	mutex_unlock(&ssp->srcu_gp_mutex);
835 	/* A new grace period can start at this point.  But only one. */
836 
837 	/* Initiate callback invocation as needed. */
838 	ss_state = smp_load_acquire(&ssp->srcu_size_state);
839 	if (ss_state < SRCU_SIZE_WAIT_BARRIER) {
840 		srcu_schedule_cbs_sdp(per_cpu_ptr(ssp->sda, 0), cbdelay);
841 	} else {
842 		idx = rcu_seq_ctr(gpseq) % ARRAY_SIZE(snp->srcu_have_cbs);
843 		srcu_for_each_node_breadth_first(ssp, snp) {
844 			spin_lock_irq_rcu_node(snp);
845 			cbs = false;
846 			last_lvl = snp >= ssp->level[rcu_num_lvls - 1];
847 			if (last_lvl)
848 				cbs = ss_state < SRCU_SIZE_BIG || snp->srcu_have_cbs[idx] == gpseq;
849 			snp->srcu_have_cbs[idx] = gpseq;
850 			rcu_seq_set_state(&snp->srcu_have_cbs[idx], 1);
851 			sgsne = snp->srcu_gp_seq_needed_exp;
852 			if (srcu_invl_snp_seq(sgsne) || ULONG_CMP_LT(sgsne, gpseq))
853 				WRITE_ONCE(snp->srcu_gp_seq_needed_exp, gpseq);
854 			if (ss_state < SRCU_SIZE_BIG)
855 				mask = ~0;
856 			else
857 				mask = snp->srcu_data_have_cbs[idx];
858 			snp->srcu_data_have_cbs[idx] = 0;
859 			spin_unlock_irq_rcu_node(snp);
860 			if (cbs)
861 				srcu_schedule_cbs_snp(ssp, snp, mask, cbdelay);
862 		}
863 	}
864 
865 	/* Occasionally prevent srcu_data counter wrap. */
866 	if (!(gpseq & counter_wrap_check))
867 		for_each_possible_cpu(cpu) {
868 			sdp = per_cpu_ptr(ssp->sda, cpu);
869 			spin_lock_irqsave_rcu_node(sdp, flags);
870 			if (ULONG_CMP_GE(gpseq, sdp->srcu_gp_seq_needed + 100))
871 				sdp->srcu_gp_seq_needed = gpseq;
872 			if (ULONG_CMP_GE(gpseq, sdp->srcu_gp_seq_needed_exp + 100))
873 				sdp->srcu_gp_seq_needed_exp = gpseq;
874 			spin_unlock_irqrestore_rcu_node(sdp, flags);
875 		}
876 
877 	/* Callback initiation done, allow grace periods after next. */
878 	mutex_unlock(&ssp->srcu_cb_mutex);
879 
880 	/* Start a new grace period if needed. */
881 	spin_lock_irq_rcu_node(ssp);
882 	gpseq = rcu_seq_current(&ssp->srcu_gp_seq);
883 	if (!rcu_seq_state(gpseq) &&
884 	    ULONG_CMP_LT(gpseq, ssp->srcu_gp_seq_needed)) {
885 		srcu_gp_start(ssp);
886 		spin_unlock_irq_rcu_node(ssp);
887 		srcu_reschedule(ssp, 0);
888 	} else {
889 		spin_unlock_irq_rcu_node(ssp);
890 	}
891 
892 	/* Transition to big if needed. */
893 	if (ss_state != SRCU_SIZE_SMALL && ss_state != SRCU_SIZE_BIG) {
894 		if (ss_state == SRCU_SIZE_ALLOC)
895 			init_srcu_struct_nodes(ssp, GFP_KERNEL);
896 		else
897 			smp_store_release(&ssp->srcu_size_state, ss_state + 1);
898 	}
899 }
900 
901 /*
902  * Funnel-locking scheme to scalably mediate many concurrent expedited
903  * grace-period requests.  This function is invoked for the first known
904  * expedited request for a grace period that has already been requested,
905  * but without expediting.  To start a completely new grace period,
906  * whether expedited or not, use srcu_funnel_gp_start() instead.
907  */
908 static void srcu_funnel_exp_start(struct srcu_struct *ssp, struct srcu_node *snp,
909 				  unsigned long s)
910 {
911 	unsigned long flags;
912 	unsigned long sgsne;
913 
914 	if (snp)
915 		for (; snp != NULL; snp = snp->srcu_parent) {
916 			sgsne = READ_ONCE(snp->srcu_gp_seq_needed_exp);
917 			if (rcu_seq_done(&ssp->srcu_gp_seq, s) ||
918 			    (!srcu_invl_snp_seq(sgsne) && ULONG_CMP_GE(sgsne, s)))
919 				return;
920 			spin_lock_irqsave_rcu_node(snp, flags);
921 			sgsne = snp->srcu_gp_seq_needed_exp;
922 			if (!srcu_invl_snp_seq(sgsne) && ULONG_CMP_GE(sgsne, s)) {
923 				spin_unlock_irqrestore_rcu_node(snp, flags);
924 				return;
925 			}
926 			WRITE_ONCE(snp->srcu_gp_seq_needed_exp, s);
927 			spin_unlock_irqrestore_rcu_node(snp, flags);
928 		}
929 	spin_lock_irqsave_ssp_contention(ssp, &flags);
930 	if (ULONG_CMP_LT(ssp->srcu_gp_seq_needed_exp, s))
931 		WRITE_ONCE(ssp->srcu_gp_seq_needed_exp, s);
932 	spin_unlock_irqrestore_rcu_node(ssp, flags);
933 }
934 
935 /*
936  * Funnel-locking scheme to scalably mediate many concurrent grace-period
937  * requests.  The winner has to do the work of actually starting grace
938  * period s.  Losers must either ensure that their desired grace-period
939  * number is recorded on at least their leaf srcu_node structure, or they
940  * must take steps to invoke their own callbacks.
941  *
942  * Note that this function also does the work of srcu_funnel_exp_start(),
943  * in some cases by directly invoking it.
944  */
945 static void srcu_funnel_gp_start(struct srcu_struct *ssp, struct srcu_data *sdp,
946 				 unsigned long s, bool do_norm)
947 {
948 	unsigned long flags;
949 	int idx = rcu_seq_ctr(s) % ARRAY_SIZE(sdp->mynode->srcu_have_cbs);
950 	unsigned long sgsne;
951 	struct srcu_node *snp;
952 	struct srcu_node *snp_leaf;
953 	unsigned long snp_seq;
954 
955 	/* Ensure that snp node tree is fully initialized before traversing it */
956 	if (smp_load_acquire(&ssp->srcu_size_state) < SRCU_SIZE_WAIT_BARRIER)
957 		snp_leaf = NULL;
958 	else
959 		snp_leaf = sdp->mynode;
960 
961 	if (snp_leaf)
962 		/* Each pass through the loop does one level of the srcu_node tree. */
963 		for (snp = snp_leaf; snp != NULL; snp = snp->srcu_parent) {
964 			if (rcu_seq_done(&ssp->srcu_gp_seq, s) && snp != snp_leaf)
965 				return; /* GP already done and CBs recorded. */
966 			spin_lock_irqsave_rcu_node(snp, flags);
967 			snp_seq = snp->srcu_have_cbs[idx];
968 			if (!srcu_invl_snp_seq(snp_seq) && ULONG_CMP_GE(snp_seq, s)) {
969 				if (snp == snp_leaf && snp_seq == s)
970 					snp->srcu_data_have_cbs[idx] |= sdp->grpmask;
971 				spin_unlock_irqrestore_rcu_node(snp, flags);
972 				if (snp == snp_leaf && snp_seq != s) {
973 					srcu_schedule_cbs_sdp(sdp, do_norm ? SRCU_INTERVAL : 0);
974 					return;
975 				}
976 				if (!do_norm)
977 					srcu_funnel_exp_start(ssp, snp, s);
978 				return;
979 			}
980 			snp->srcu_have_cbs[idx] = s;
981 			if (snp == snp_leaf)
982 				snp->srcu_data_have_cbs[idx] |= sdp->grpmask;
983 			sgsne = snp->srcu_gp_seq_needed_exp;
984 			if (!do_norm && (srcu_invl_snp_seq(sgsne) || ULONG_CMP_LT(sgsne, s)))
985 				WRITE_ONCE(snp->srcu_gp_seq_needed_exp, s);
986 			spin_unlock_irqrestore_rcu_node(snp, flags);
987 		}
988 
989 	/* Top of tree, must ensure the grace period will be started. */
990 	spin_lock_irqsave_ssp_contention(ssp, &flags);
991 	if (ULONG_CMP_LT(ssp->srcu_gp_seq_needed, s)) {
992 		/*
993 		 * Record need for grace period s.  Pair with load
994 		 * acquire setting up for initialization.
995 		 */
996 		smp_store_release(&ssp->srcu_gp_seq_needed, s); /*^^^*/
997 	}
998 	if (!do_norm && ULONG_CMP_LT(ssp->srcu_gp_seq_needed_exp, s))
999 		WRITE_ONCE(ssp->srcu_gp_seq_needed_exp, s);
1000 
1001 	/* If grace period not already done and none in progress, start it. */
1002 	if (!rcu_seq_done(&ssp->srcu_gp_seq, s) &&
1003 	    rcu_seq_state(ssp->srcu_gp_seq) == SRCU_STATE_IDLE) {
1004 		WARN_ON_ONCE(ULONG_CMP_GE(ssp->srcu_gp_seq, ssp->srcu_gp_seq_needed));
1005 		srcu_gp_start(ssp);
1006 
1007 		// And how can that list_add() in the "else" clause
1008 		// possibly be safe for concurrent execution?  Well,
1009 		// it isn't.  And it does not have to be.  After all, it
1010 		// can only be executed during early boot when there is only
1011 		// the one boot CPU running with interrupts still disabled.
1012 		if (likely(srcu_init_done))
1013 			queue_delayed_work(rcu_gp_wq, &ssp->work,
1014 					   !!srcu_get_delay(ssp));
1015 		else if (list_empty(&ssp->work.work.entry))
1016 			list_add(&ssp->work.work.entry, &srcu_boot_list);
1017 	}
1018 	spin_unlock_irqrestore_rcu_node(ssp, flags);
1019 }
1020 
1021 /*
1022  * Wait until all readers counted by array index idx complete, but
1023  * loop an additional time if there is an expedited grace period pending.
1024  * The caller must ensure that ->srcu_idx is not changed while checking.
1025  */
1026 static bool try_check_zero(struct srcu_struct *ssp, int idx, int trycount)
1027 {
1028 	unsigned long curdelay;
1029 
1030 	curdelay = !srcu_get_delay(ssp);
1031 
1032 	for (;;) {
1033 		if (srcu_readers_active_idx_check(ssp, idx))
1034 			return true;
1035 		if ((--trycount + curdelay) <= 0)
1036 			return false;
1037 		udelay(srcu_retry_check_delay);
1038 	}
1039 }
1040 
1041 /*
1042  * Increment the ->srcu_idx counter so that future SRCU readers will
1043  * use the other rank of the ->srcu_(un)lock_count[] arrays.  This allows
1044  * us to wait for pre-existing readers in a starvation-free manner.
1045  */
1046 static void srcu_flip(struct srcu_struct *ssp)
1047 {
1048 	/*
1049 	 * Ensure that if this updater saw a given reader's increment
1050 	 * from __srcu_read_lock(), that reader was using an old value
1051 	 * of ->srcu_idx.  Also ensure that if a given reader sees the
1052 	 * new value of ->srcu_idx, this updater's earlier scans cannot
1053 	 * have seen that reader's increments (which is OK, because this
1054 	 * grace period need not wait on that reader).
1055 	 */
1056 	smp_mb(); /* E */  /* Pairs with B and C. */
1057 
1058 	WRITE_ONCE(ssp->srcu_idx, ssp->srcu_idx + 1);
1059 
1060 	/*
1061 	 * Ensure that if the updater misses an __srcu_read_unlock()
1062 	 * increment, that task's next __srcu_read_lock() will see the
1063 	 * above counter update.  Note that both this memory barrier
1064 	 * and the one in srcu_readers_active_idx_check() provide the
1065 	 * guarantee for __srcu_read_lock().
1066 	 */
1067 	smp_mb(); /* D */  /* Pairs with C. */
1068 }
1069 
1070 /*
1071  * If SRCU is likely idle, return true, otherwise return false.
1072  *
1073  * Note that it is OK for several current from-idle requests for a new
1074  * grace period from idle to specify expediting because they will all end
1075  * up requesting the same grace period anyhow.  So no loss.
1076  *
1077  * Note also that if any CPU (including the current one) is still invoking
1078  * callbacks, this function will nevertheless say "idle".  This is not
1079  * ideal, but the overhead of checking all CPUs' callback lists is even
1080  * less ideal, especially on large systems.  Furthermore, the wakeup
1081  * can happen before the callback is fully removed, so we have no choice
1082  * but to accept this type of error.
1083  *
1084  * This function is also subject to counter-wrap errors, but let's face
1085  * it, if this function was preempted for enough time for the counters
1086  * to wrap, it really doesn't matter whether or not we expedite the grace
1087  * period.  The extra overhead of a needlessly expedited grace period is
1088  * negligible when amortized over that time period, and the extra latency
1089  * of a needlessly non-expedited grace period is similarly negligible.
1090  */
1091 static bool srcu_might_be_idle(struct srcu_struct *ssp)
1092 {
1093 	unsigned long curseq;
1094 	unsigned long flags;
1095 	struct srcu_data *sdp;
1096 	unsigned long t;
1097 	unsigned long tlast;
1098 
1099 	check_init_srcu_struct(ssp);
1100 	/* If the local srcu_data structure has callbacks, not idle.  */
1101 	sdp = raw_cpu_ptr(ssp->sda);
1102 	spin_lock_irqsave_rcu_node(sdp, flags);
1103 	if (rcu_segcblist_pend_cbs(&sdp->srcu_cblist)) {
1104 		spin_unlock_irqrestore_rcu_node(sdp, flags);
1105 		return false; /* Callbacks already present, so not idle. */
1106 	}
1107 	spin_unlock_irqrestore_rcu_node(sdp, flags);
1108 
1109 	/*
1110 	 * No local callbacks, so probabilistically probe global state.
1111 	 * Exact information would require acquiring locks, which would
1112 	 * kill scalability, hence the probabilistic nature of the probe.
1113 	 */
1114 
1115 	/* First, see if enough time has passed since the last GP. */
1116 	t = ktime_get_mono_fast_ns();
1117 	tlast = READ_ONCE(ssp->srcu_last_gp_end);
1118 	if (exp_holdoff == 0 ||
1119 	    time_in_range_open(t, tlast, tlast + exp_holdoff))
1120 		return false; /* Too soon after last GP. */
1121 
1122 	/* Next, check for probable idleness. */
1123 	curseq = rcu_seq_current(&ssp->srcu_gp_seq);
1124 	smp_mb(); /* Order ->srcu_gp_seq with ->srcu_gp_seq_needed. */
1125 	if (ULONG_CMP_LT(curseq, READ_ONCE(ssp->srcu_gp_seq_needed)))
1126 		return false; /* Grace period in progress, so not idle. */
1127 	smp_mb(); /* Order ->srcu_gp_seq with prior access. */
1128 	if (curseq != rcu_seq_current(&ssp->srcu_gp_seq))
1129 		return false; /* GP # changed, so not idle. */
1130 	return true; /* With reasonable probability, idle! */
1131 }
1132 
1133 /*
1134  * SRCU callback function to leak a callback.
1135  */
1136 static void srcu_leak_callback(struct rcu_head *rhp)
1137 {
1138 }
1139 
1140 /*
1141  * Start an SRCU grace period, and also queue the callback if non-NULL.
1142  */
1143 static unsigned long srcu_gp_start_if_needed(struct srcu_struct *ssp,
1144 					     struct rcu_head *rhp, bool do_norm)
1145 {
1146 	unsigned long flags;
1147 	int idx;
1148 	bool needexp = false;
1149 	bool needgp = false;
1150 	unsigned long s;
1151 	struct srcu_data *sdp;
1152 	struct srcu_node *sdp_mynode;
1153 	int ss_state;
1154 
1155 	check_init_srcu_struct(ssp);
1156 	/*
1157 	 * While starting a new grace period, make sure we are in an
1158 	 * SRCU read-side critical section so that the grace-period
1159 	 * sequence number cannot wrap around in the meantime.
1160 	 */
1161 	idx = __srcu_read_lock_nmisafe(ssp);
1162 	ss_state = smp_load_acquire(&ssp->srcu_size_state);
1163 	if (ss_state < SRCU_SIZE_WAIT_CALL)
1164 		sdp = per_cpu_ptr(ssp->sda, 0);
1165 	else
1166 		sdp = raw_cpu_ptr(ssp->sda);
1167 	spin_lock_irqsave_sdp_contention(sdp, &flags);
1168 	if (rhp)
1169 		rcu_segcblist_enqueue(&sdp->srcu_cblist, rhp);
1170 	rcu_segcblist_advance(&sdp->srcu_cblist,
1171 			      rcu_seq_current(&ssp->srcu_gp_seq));
1172 	s = rcu_seq_snap(&ssp->srcu_gp_seq);
1173 	(void)rcu_segcblist_accelerate(&sdp->srcu_cblist, s);
1174 	if (ULONG_CMP_LT(sdp->srcu_gp_seq_needed, s)) {
1175 		sdp->srcu_gp_seq_needed = s;
1176 		needgp = true;
1177 	}
1178 	if (!do_norm && ULONG_CMP_LT(sdp->srcu_gp_seq_needed_exp, s)) {
1179 		sdp->srcu_gp_seq_needed_exp = s;
1180 		needexp = true;
1181 	}
1182 	spin_unlock_irqrestore_rcu_node(sdp, flags);
1183 
1184 	/* Ensure that snp node tree is fully initialized before traversing it */
1185 	if (ss_state < SRCU_SIZE_WAIT_BARRIER)
1186 		sdp_mynode = NULL;
1187 	else
1188 		sdp_mynode = sdp->mynode;
1189 
1190 	if (needgp)
1191 		srcu_funnel_gp_start(ssp, sdp, s, do_norm);
1192 	else if (needexp)
1193 		srcu_funnel_exp_start(ssp, sdp_mynode, s);
1194 	__srcu_read_unlock_nmisafe(ssp, idx);
1195 	return s;
1196 }
1197 
1198 /*
1199  * Enqueue an SRCU callback on the srcu_data structure associated with
1200  * the current CPU and the specified srcu_struct structure, initiating
1201  * grace-period processing if it is not already running.
1202  *
1203  * Note that all CPUs must agree that the grace period extended beyond
1204  * all pre-existing SRCU read-side critical section.  On systems with
1205  * more than one CPU, this means that when "func()" is invoked, each CPU
1206  * is guaranteed to have executed a full memory barrier since the end of
1207  * its last corresponding SRCU read-side critical section whose beginning
1208  * preceded the call to call_srcu().  It also means that each CPU executing
1209  * an SRCU read-side critical section that continues beyond the start of
1210  * "func()" must have executed a memory barrier after the call_srcu()
1211  * but before the beginning of that SRCU read-side critical section.
1212  * Note that these guarantees include CPUs that are offline, idle, or
1213  * executing in user mode, as well as CPUs that are executing in the kernel.
1214  *
1215  * Furthermore, if CPU A invoked call_srcu() and CPU B invoked the
1216  * resulting SRCU callback function "func()", then both CPU A and CPU
1217  * B are guaranteed to execute a full memory barrier during the time
1218  * interval between the call to call_srcu() and the invocation of "func()".
1219  * This guarantee applies even if CPU A and CPU B are the same CPU (but
1220  * again only if the system has more than one CPU).
1221  *
1222  * Of course, these guarantees apply only for invocations of call_srcu(),
1223  * srcu_read_lock(), and srcu_read_unlock() that are all passed the same
1224  * srcu_struct structure.
1225  */
1226 static void __call_srcu(struct srcu_struct *ssp, struct rcu_head *rhp,
1227 			rcu_callback_t func, bool do_norm)
1228 {
1229 	if (debug_rcu_head_queue(rhp)) {
1230 		/* Probable double call_srcu(), so leak the callback. */
1231 		WRITE_ONCE(rhp->func, srcu_leak_callback);
1232 		WARN_ONCE(1, "call_srcu(): Leaked duplicate callback\n");
1233 		return;
1234 	}
1235 	rhp->func = func;
1236 	(void)srcu_gp_start_if_needed(ssp, rhp, do_norm);
1237 }
1238 
1239 /**
1240  * call_srcu() - Queue a callback for invocation after an SRCU grace period
1241  * @ssp: srcu_struct in queue the callback
1242  * @rhp: structure to be used for queueing the SRCU callback.
1243  * @func: function to be invoked after the SRCU grace period
1244  *
1245  * The callback function will be invoked some time after a full SRCU
1246  * grace period elapses, in other words after all pre-existing SRCU
1247  * read-side critical sections have completed.  However, the callback
1248  * function might well execute concurrently with other SRCU read-side
1249  * critical sections that started after call_srcu() was invoked.  SRCU
1250  * read-side critical sections are delimited by srcu_read_lock() and
1251  * srcu_read_unlock(), and may be nested.
1252  *
1253  * The callback will be invoked from process context, but must nevertheless
1254  * be fast and must not block.
1255  */
1256 void call_srcu(struct srcu_struct *ssp, struct rcu_head *rhp,
1257 	       rcu_callback_t func)
1258 {
1259 	__call_srcu(ssp, rhp, func, true);
1260 }
1261 EXPORT_SYMBOL_GPL(call_srcu);
1262 
1263 /*
1264  * Helper function for synchronize_srcu() and synchronize_srcu_expedited().
1265  */
1266 static void __synchronize_srcu(struct srcu_struct *ssp, bool do_norm)
1267 {
1268 	struct rcu_synchronize rcu;
1269 
1270 	RCU_LOCKDEP_WARN(lockdep_is_held(ssp) ||
1271 			 lock_is_held(&rcu_bh_lock_map) ||
1272 			 lock_is_held(&rcu_lock_map) ||
1273 			 lock_is_held(&rcu_sched_lock_map),
1274 			 "Illegal synchronize_srcu() in same-type SRCU (or in RCU) read-side critical section");
1275 
1276 	if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
1277 		return;
1278 	might_sleep();
1279 	check_init_srcu_struct(ssp);
1280 	init_completion(&rcu.completion);
1281 	init_rcu_head_on_stack(&rcu.head);
1282 	__call_srcu(ssp, &rcu.head, wakeme_after_rcu, do_norm);
1283 	wait_for_completion(&rcu.completion);
1284 	destroy_rcu_head_on_stack(&rcu.head);
1285 
1286 	/*
1287 	 * Make sure that later code is ordered after the SRCU grace
1288 	 * period.  This pairs with the spin_lock_irq_rcu_node()
1289 	 * in srcu_invoke_callbacks().  Unlike Tree RCU, this is needed
1290 	 * because the current CPU might have been totally uninvolved with
1291 	 * (and thus unordered against) that grace period.
1292 	 */
1293 	smp_mb();
1294 }
1295 
1296 /**
1297  * synchronize_srcu_expedited - Brute-force SRCU grace period
1298  * @ssp: srcu_struct with which to synchronize.
1299  *
1300  * Wait for an SRCU grace period to elapse, but be more aggressive about
1301  * spinning rather than blocking when waiting.
1302  *
1303  * Note that synchronize_srcu_expedited() has the same deadlock and
1304  * memory-ordering properties as does synchronize_srcu().
1305  */
1306 void synchronize_srcu_expedited(struct srcu_struct *ssp)
1307 {
1308 	__synchronize_srcu(ssp, rcu_gp_is_normal());
1309 }
1310 EXPORT_SYMBOL_GPL(synchronize_srcu_expedited);
1311 
1312 /**
1313  * synchronize_srcu - wait for prior SRCU read-side critical-section completion
1314  * @ssp: srcu_struct with which to synchronize.
1315  *
1316  * Wait for the count to drain to zero of both indexes. To avoid the
1317  * possible starvation of synchronize_srcu(), it waits for the count of
1318  * the index=((->srcu_idx & 1) ^ 1) to drain to zero at first,
1319  * and then flip the srcu_idx and wait for the count of the other index.
1320  *
1321  * Can block; must be called from process context.
1322  *
1323  * Note that it is illegal to call synchronize_srcu() from the corresponding
1324  * SRCU read-side critical section; doing so will result in deadlock.
1325  * However, it is perfectly legal to call synchronize_srcu() on one
1326  * srcu_struct from some other srcu_struct's read-side critical section,
1327  * as long as the resulting graph of srcu_structs is acyclic.
1328  *
1329  * There are memory-ordering constraints implied by synchronize_srcu().
1330  * On systems with more than one CPU, when synchronize_srcu() returns,
1331  * each CPU is guaranteed to have executed a full memory barrier since
1332  * the end of its last corresponding SRCU read-side critical section
1333  * whose beginning preceded the call to synchronize_srcu().  In addition,
1334  * each CPU having an SRCU read-side critical section that extends beyond
1335  * the return from synchronize_srcu() is guaranteed to have executed a
1336  * full memory barrier after the beginning of synchronize_srcu() and before
1337  * the beginning of that SRCU read-side critical section.  Note that these
1338  * guarantees include CPUs that are offline, idle, or executing in user mode,
1339  * as well as CPUs that are executing in the kernel.
1340  *
1341  * Furthermore, if CPU A invoked synchronize_srcu(), which returned
1342  * to its caller on CPU B, then both CPU A and CPU B are guaranteed
1343  * to have executed a full memory barrier during the execution of
1344  * synchronize_srcu().  This guarantee applies even if CPU A and CPU B
1345  * are the same CPU, but again only if the system has more than one CPU.
1346  *
1347  * Of course, these memory-ordering guarantees apply only when
1348  * synchronize_srcu(), srcu_read_lock(), and srcu_read_unlock() are
1349  * passed the same srcu_struct structure.
1350  *
1351  * Implementation of these memory-ordering guarantees is similar to
1352  * that of synchronize_rcu().
1353  *
1354  * If SRCU is likely idle, expedite the first request.  This semantic
1355  * was provided by Classic SRCU, and is relied upon by its users, so TREE
1356  * SRCU must also provide it.  Note that detecting idleness is heuristic
1357  * and subject to both false positives and negatives.
1358  */
1359 void synchronize_srcu(struct srcu_struct *ssp)
1360 {
1361 	if (srcu_might_be_idle(ssp) || rcu_gp_is_expedited())
1362 		synchronize_srcu_expedited(ssp);
1363 	else
1364 		__synchronize_srcu(ssp, true);
1365 }
1366 EXPORT_SYMBOL_GPL(synchronize_srcu);
1367 
1368 /**
1369  * get_state_synchronize_srcu - Provide an end-of-grace-period cookie
1370  * @ssp: srcu_struct to provide cookie for.
1371  *
1372  * This function returns a cookie that can be passed to
1373  * poll_state_synchronize_srcu(), which will return true if a full grace
1374  * period has elapsed in the meantime.  It is the caller's responsibility
1375  * to make sure that grace period happens, for example, by invoking
1376  * call_srcu() after return from get_state_synchronize_srcu().
1377  */
1378 unsigned long get_state_synchronize_srcu(struct srcu_struct *ssp)
1379 {
1380 	// Any prior manipulation of SRCU-protected data must happen
1381 	// before the load from ->srcu_gp_seq.
1382 	smp_mb();
1383 	return rcu_seq_snap(&ssp->srcu_gp_seq);
1384 }
1385 EXPORT_SYMBOL_GPL(get_state_synchronize_srcu);
1386 
1387 /**
1388  * start_poll_synchronize_srcu - Provide cookie and start grace period
1389  * @ssp: srcu_struct to provide cookie for.
1390  *
1391  * This function returns a cookie that can be passed to
1392  * poll_state_synchronize_srcu(), which will return true if a full grace
1393  * period has elapsed in the meantime.  Unlike get_state_synchronize_srcu(),
1394  * this function also ensures that any needed SRCU grace period will be
1395  * started.  This convenience does come at a cost in terms of CPU overhead.
1396  */
1397 unsigned long start_poll_synchronize_srcu(struct srcu_struct *ssp)
1398 {
1399 	return srcu_gp_start_if_needed(ssp, NULL, true);
1400 }
1401 EXPORT_SYMBOL_GPL(start_poll_synchronize_srcu);
1402 
1403 /**
1404  * poll_state_synchronize_srcu - Has cookie's grace period ended?
1405  * @ssp: srcu_struct to provide cookie for.
1406  * @cookie: Return value from get_state_synchronize_srcu() or start_poll_synchronize_srcu().
1407  *
1408  * This function takes the cookie that was returned from either
1409  * get_state_synchronize_srcu() or start_poll_synchronize_srcu(), and
1410  * returns @true if an SRCU grace period elapsed since the time that the
1411  * cookie was created.
1412  *
1413  * Because cookies are finite in size, wrapping/overflow is possible.
1414  * This is more pronounced on 32-bit systems where cookies are 32 bits,
1415  * where in theory wrapping could happen in about 14 hours assuming
1416  * 25-microsecond expedited SRCU grace periods.  However, a more likely
1417  * overflow lower bound is on the order of 24 days in the case of
1418  * one-millisecond SRCU grace periods.  Of course, wrapping in a 64-bit
1419  * system requires geologic timespans, as in more than seven million years
1420  * even for expedited SRCU grace periods.
1421  *
1422  * Wrapping/overflow is much more of an issue for CONFIG_SMP=n systems
1423  * that also have CONFIG_PREEMPTION=n, which selects Tiny SRCU.  This uses
1424  * a 16-bit cookie, which rcutorture routinely wraps in a matter of a
1425  * few minutes.  If this proves to be a problem, this counter will be
1426  * expanded to the same size as for Tree SRCU.
1427  */
1428 bool poll_state_synchronize_srcu(struct srcu_struct *ssp, unsigned long cookie)
1429 {
1430 	if (!rcu_seq_done(&ssp->srcu_gp_seq, cookie))
1431 		return false;
1432 	// Ensure that the end of the SRCU grace period happens before
1433 	// any subsequent code that the caller might execute.
1434 	smp_mb(); // ^^^
1435 	return true;
1436 }
1437 EXPORT_SYMBOL_GPL(poll_state_synchronize_srcu);
1438 
1439 /*
1440  * Callback function for srcu_barrier() use.
1441  */
1442 static void srcu_barrier_cb(struct rcu_head *rhp)
1443 {
1444 	struct srcu_data *sdp;
1445 	struct srcu_struct *ssp;
1446 
1447 	sdp = container_of(rhp, struct srcu_data, srcu_barrier_head);
1448 	ssp = sdp->ssp;
1449 	if (atomic_dec_and_test(&ssp->srcu_barrier_cpu_cnt))
1450 		complete(&ssp->srcu_barrier_completion);
1451 }
1452 
1453 /*
1454  * Enqueue an srcu_barrier() callback on the specified srcu_data
1455  * structure's ->cblist.  but only if that ->cblist already has at least one
1456  * callback enqueued.  Note that if a CPU already has callbacks enqueue,
1457  * it must have already registered the need for a future grace period,
1458  * so all we need do is enqueue a callback that will use the same grace
1459  * period as the last callback already in the queue.
1460  */
1461 static void srcu_barrier_one_cpu(struct srcu_struct *ssp, struct srcu_data *sdp)
1462 {
1463 	spin_lock_irq_rcu_node(sdp);
1464 	atomic_inc(&ssp->srcu_barrier_cpu_cnt);
1465 	sdp->srcu_barrier_head.func = srcu_barrier_cb;
1466 	debug_rcu_head_queue(&sdp->srcu_barrier_head);
1467 	if (!rcu_segcblist_entrain(&sdp->srcu_cblist,
1468 				   &sdp->srcu_barrier_head)) {
1469 		debug_rcu_head_unqueue(&sdp->srcu_barrier_head);
1470 		atomic_dec(&ssp->srcu_barrier_cpu_cnt);
1471 	}
1472 	spin_unlock_irq_rcu_node(sdp);
1473 }
1474 
1475 /**
1476  * srcu_barrier - Wait until all in-flight call_srcu() callbacks complete.
1477  * @ssp: srcu_struct on which to wait for in-flight callbacks.
1478  */
1479 void srcu_barrier(struct srcu_struct *ssp)
1480 {
1481 	int cpu;
1482 	int idx;
1483 	unsigned long s = rcu_seq_snap(&ssp->srcu_barrier_seq);
1484 
1485 	check_init_srcu_struct(ssp);
1486 	mutex_lock(&ssp->srcu_barrier_mutex);
1487 	if (rcu_seq_done(&ssp->srcu_barrier_seq, s)) {
1488 		smp_mb(); /* Force ordering following return. */
1489 		mutex_unlock(&ssp->srcu_barrier_mutex);
1490 		return; /* Someone else did our work for us. */
1491 	}
1492 	rcu_seq_start(&ssp->srcu_barrier_seq);
1493 	init_completion(&ssp->srcu_barrier_completion);
1494 
1495 	/* Initial count prevents reaching zero until all CBs are posted. */
1496 	atomic_set(&ssp->srcu_barrier_cpu_cnt, 1);
1497 
1498 	idx = __srcu_read_lock_nmisafe(ssp);
1499 	if (smp_load_acquire(&ssp->srcu_size_state) < SRCU_SIZE_WAIT_BARRIER)
1500 		srcu_barrier_one_cpu(ssp, per_cpu_ptr(ssp->sda, 0));
1501 	else
1502 		for_each_possible_cpu(cpu)
1503 			srcu_barrier_one_cpu(ssp, per_cpu_ptr(ssp->sda, cpu));
1504 	__srcu_read_unlock_nmisafe(ssp, idx);
1505 
1506 	/* Remove the initial count, at which point reaching zero can happen. */
1507 	if (atomic_dec_and_test(&ssp->srcu_barrier_cpu_cnt))
1508 		complete(&ssp->srcu_barrier_completion);
1509 	wait_for_completion(&ssp->srcu_barrier_completion);
1510 
1511 	rcu_seq_end(&ssp->srcu_barrier_seq);
1512 	mutex_unlock(&ssp->srcu_barrier_mutex);
1513 }
1514 EXPORT_SYMBOL_GPL(srcu_barrier);
1515 
1516 /**
1517  * srcu_batches_completed - return batches completed.
1518  * @ssp: srcu_struct on which to report batch completion.
1519  *
1520  * Report the number of batches, correlated with, but not necessarily
1521  * precisely the same as, the number of grace periods that have elapsed.
1522  */
1523 unsigned long srcu_batches_completed(struct srcu_struct *ssp)
1524 {
1525 	return READ_ONCE(ssp->srcu_idx);
1526 }
1527 EXPORT_SYMBOL_GPL(srcu_batches_completed);
1528 
1529 /*
1530  * Core SRCU state machine.  Push state bits of ->srcu_gp_seq
1531  * to SRCU_STATE_SCAN2, and invoke srcu_gp_end() when scan has
1532  * completed in that state.
1533  */
1534 static void srcu_advance_state(struct srcu_struct *ssp)
1535 {
1536 	int idx;
1537 
1538 	mutex_lock(&ssp->srcu_gp_mutex);
1539 
1540 	/*
1541 	 * Because readers might be delayed for an extended period after
1542 	 * fetching ->srcu_idx for their index, at any point in time there
1543 	 * might well be readers using both idx=0 and idx=1.  We therefore
1544 	 * need to wait for readers to clear from both index values before
1545 	 * invoking a callback.
1546 	 *
1547 	 * The load-acquire ensures that we see the accesses performed
1548 	 * by the prior grace period.
1549 	 */
1550 	idx = rcu_seq_state(smp_load_acquire(&ssp->srcu_gp_seq)); /* ^^^ */
1551 	if (idx == SRCU_STATE_IDLE) {
1552 		spin_lock_irq_rcu_node(ssp);
1553 		if (ULONG_CMP_GE(ssp->srcu_gp_seq, ssp->srcu_gp_seq_needed)) {
1554 			WARN_ON_ONCE(rcu_seq_state(ssp->srcu_gp_seq));
1555 			spin_unlock_irq_rcu_node(ssp);
1556 			mutex_unlock(&ssp->srcu_gp_mutex);
1557 			return;
1558 		}
1559 		idx = rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq));
1560 		if (idx == SRCU_STATE_IDLE)
1561 			srcu_gp_start(ssp);
1562 		spin_unlock_irq_rcu_node(ssp);
1563 		if (idx != SRCU_STATE_IDLE) {
1564 			mutex_unlock(&ssp->srcu_gp_mutex);
1565 			return; /* Someone else started the grace period. */
1566 		}
1567 	}
1568 
1569 	if (rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq)) == SRCU_STATE_SCAN1) {
1570 		idx = 1 ^ (ssp->srcu_idx & 1);
1571 		if (!try_check_zero(ssp, idx, 1)) {
1572 			mutex_unlock(&ssp->srcu_gp_mutex);
1573 			return; /* readers present, retry later. */
1574 		}
1575 		srcu_flip(ssp);
1576 		spin_lock_irq_rcu_node(ssp);
1577 		rcu_seq_set_state(&ssp->srcu_gp_seq, SRCU_STATE_SCAN2);
1578 		ssp->srcu_n_exp_nodelay = 0;
1579 		spin_unlock_irq_rcu_node(ssp);
1580 	}
1581 
1582 	if (rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq)) == SRCU_STATE_SCAN2) {
1583 
1584 		/*
1585 		 * SRCU read-side critical sections are normally short,
1586 		 * so check at least twice in quick succession after a flip.
1587 		 */
1588 		idx = 1 ^ (ssp->srcu_idx & 1);
1589 		if (!try_check_zero(ssp, idx, 2)) {
1590 			mutex_unlock(&ssp->srcu_gp_mutex);
1591 			return; /* readers present, retry later. */
1592 		}
1593 		ssp->srcu_n_exp_nodelay = 0;
1594 		srcu_gp_end(ssp);  /* Releases ->srcu_gp_mutex. */
1595 	}
1596 }
1597 
1598 /*
1599  * Invoke a limited number of SRCU callbacks that have passed through
1600  * their grace period.  If there are more to do, SRCU will reschedule
1601  * the workqueue.  Note that needed memory barriers have been executed
1602  * in this task's context by srcu_readers_active_idx_check().
1603  */
1604 static void srcu_invoke_callbacks(struct work_struct *work)
1605 {
1606 	long len;
1607 	bool more;
1608 	struct rcu_cblist ready_cbs;
1609 	struct rcu_head *rhp;
1610 	struct srcu_data *sdp;
1611 	struct srcu_struct *ssp;
1612 
1613 	sdp = container_of(work, struct srcu_data, work);
1614 
1615 	ssp = sdp->ssp;
1616 	rcu_cblist_init(&ready_cbs);
1617 	spin_lock_irq_rcu_node(sdp);
1618 	rcu_segcblist_advance(&sdp->srcu_cblist,
1619 			      rcu_seq_current(&ssp->srcu_gp_seq));
1620 	if (sdp->srcu_cblist_invoking ||
1621 	    !rcu_segcblist_ready_cbs(&sdp->srcu_cblist)) {
1622 		spin_unlock_irq_rcu_node(sdp);
1623 		return;  /* Someone else on the job or nothing to do. */
1624 	}
1625 
1626 	/* We are on the job!  Extract and invoke ready callbacks. */
1627 	sdp->srcu_cblist_invoking = true;
1628 	rcu_segcblist_extract_done_cbs(&sdp->srcu_cblist, &ready_cbs);
1629 	len = ready_cbs.len;
1630 	spin_unlock_irq_rcu_node(sdp);
1631 	rhp = rcu_cblist_dequeue(&ready_cbs);
1632 	for (; rhp != NULL; rhp = rcu_cblist_dequeue(&ready_cbs)) {
1633 		debug_rcu_head_unqueue(rhp);
1634 		local_bh_disable();
1635 		rhp->func(rhp);
1636 		local_bh_enable();
1637 	}
1638 	WARN_ON_ONCE(ready_cbs.len);
1639 
1640 	/*
1641 	 * Update counts, accelerate new callbacks, and if needed,
1642 	 * schedule another round of callback invocation.
1643 	 */
1644 	spin_lock_irq_rcu_node(sdp);
1645 	rcu_segcblist_add_len(&sdp->srcu_cblist, -len);
1646 	(void)rcu_segcblist_accelerate(&sdp->srcu_cblist,
1647 				       rcu_seq_snap(&ssp->srcu_gp_seq));
1648 	sdp->srcu_cblist_invoking = false;
1649 	more = rcu_segcblist_ready_cbs(&sdp->srcu_cblist);
1650 	spin_unlock_irq_rcu_node(sdp);
1651 	if (more)
1652 		srcu_schedule_cbs_sdp(sdp, 0);
1653 }
1654 
1655 /*
1656  * Finished one round of SRCU grace period.  Start another if there are
1657  * more SRCU callbacks queued, otherwise put SRCU into not-running state.
1658  */
1659 static void srcu_reschedule(struct srcu_struct *ssp, unsigned long delay)
1660 {
1661 	bool pushgp = true;
1662 
1663 	spin_lock_irq_rcu_node(ssp);
1664 	if (ULONG_CMP_GE(ssp->srcu_gp_seq, ssp->srcu_gp_seq_needed)) {
1665 		if (!WARN_ON_ONCE(rcu_seq_state(ssp->srcu_gp_seq))) {
1666 			/* All requests fulfilled, time to go idle. */
1667 			pushgp = false;
1668 		}
1669 	} else if (!rcu_seq_state(ssp->srcu_gp_seq)) {
1670 		/* Outstanding request and no GP.  Start one. */
1671 		srcu_gp_start(ssp);
1672 	}
1673 	spin_unlock_irq_rcu_node(ssp);
1674 
1675 	if (pushgp)
1676 		queue_delayed_work(rcu_gp_wq, &ssp->work, delay);
1677 }
1678 
1679 /*
1680  * This is the work-queue function that handles SRCU grace periods.
1681  */
1682 static void process_srcu(struct work_struct *work)
1683 {
1684 	unsigned long curdelay;
1685 	unsigned long j;
1686 	struct srcu_struct *ssp;
1687 
1688 	ssp = container_of(work, struct srcu_struct, work.work);
1689 
1690 	srcu_advance_state(ssp);
1691 	curdelay = srcu_get_delay(ssp);
1692 	if (curdelay) {
1693 		WRITE_ONCE(ssp->reschedule_count, 0);
1694 	} else {
1695 		j = jiffies;
1696 		if (READ_ONCE(ssp->reschedule_jiffies) == j) {
1697 			WRITE_ONCE(ssp->reschedule_count, READ_ONCE(ssp->reschedule_count) + 1);
1698 			if (READ_ONCE(ssp->reschedule_count) > srcu_max_nodelay)
1699 				curdelay = 1;
1700 		} else {
1701 			WRITE_ONCE(ssp->reschedule_count, 1);
1702 			WRITE_ONCE(ssp->reschedule_jiffies, j);
1703 		}
1704 	}
1705 	srcu_reschedule(ssp, curdelay);
1706 }
1707 
1708 void srcutorture_get_gp_data(enum rcutorture_type test_type,
1709 			     struct srcu_struct *ssp, int *flags,
1710 			     unsigned long *gp_seq)
1711 {
1712 	if (test_type != SRCU_FLAVOR)
1713 		return;
1714 	*flags = 0;
1715 	*gp_seq = rcu_seq_current(&ssp->srcu_gp_seq);
1716 }
1717 EXPORT_SYMBOL_GPL(srcutorture_get_gp_data);
1718 
1719 static const char * const srcu_size_state_name[] = {
1720 	"SRCU_SIZE_SMALL",
1721 	"SRCU_SIZE_ALLOC",
1722 	"SRCU_SIZE_WAIT_BARRIER",
1723 	"SRCU_SIZE_WAIT_CALL",
1724 	"SRCU_SIZE_WAIT_CBS1",
1725 	"SRCU_SIZE_WAIT_CBS2",
1726 	"SRCU_SIZE_WAIT_CBS3",
1727 	"SRCU_SIZE_WAIT_CBS4",
1728 	"SRCU_SIZE_BIG",
1729 	"SRCU_SIZE_???",
1730 };
1731 
1732 void srcu_torture_stats_print(struct srcu_struct *ssp, char *tt, char *tf)
1733 {
1734 	int cpu;
1735 	int idx;
1736 	unsigned long s0 = 0, s1 = 0;
1737 	int ss_state = READ_ONCE(ssp->srcu_size_state);
1738 	int ss_state_idx = ss_state;
1739 
1740 	idx = ssp->srcu_idx & 0x1;
1741 	if (ss_state < 0 || ss_state >= ARRAY_SIZE(srcu_size_state_name))
1742 		ss_state_idx = ARRAY_SIZE(srcu_size_state_name) - 1;
1743 	pr_alert("%s%s Tree SRCU g%ld state %d (%s)",
1744 		 tt, tf, rcu_seq_current(&ssp->srcu_gp_seq), ss_state,
1745 		 srcu_size_state_name[ss_state_idx]);
1746 	if (!ssp->sda) {
1747 		// Called after cleanup_srcu_struct(), perhaps.
1748 		pr_cont(" No per-CPU srcu_data structures (->sda == NULL).\n");
1749 	} else {
1750 		pr_cont(" per-CPU(idx=%d):", idx);
1751 		for_each_possible_cpu(cpu) {
1752 			unsigned long l0, l1;
1753 			unsigned long u0, u1;
1754 			long c0, c1;
1755 			struct srcu_data *sdp;
1756 
1757 			sdp = per_cpu_ptr(ssp->sda, cpu);
1758 			u0 = data_race(atomic_long_read(&sdp->srcu_unlock_count[!idx]));
1759 			u1 = data_race(atomic_long_read(&sdp->srcu_unlock_count[idx]));
1760 
1761 			/*
1762 			 * Make sure that a lock is always counted if the corresponding
1763 			 * unlock is counted.
1764 			 */
1765 			smp_rmb();
1766 
1767 			l0 = data_race(atomic_long_read(&sdp->srcu_lock_count[!idx]));
1768 			l1 = data_race(atomic_long_read(&sdp->srcu_lock_count[idx]));
1769 
1770 			c0 = l0 - u0;
1771 			c1 = l1 - u1;
1772 			pr_cont(" %d(%ld,%ld %c)",
1773 				cpu, c0, c1,
1774 				"C."[rcu_segcblist_empty(&sdp->srcu_cblist)]);
1775 			s0 += c0;
1776 			s1 += c1;
1777 		}
1778 		pr_cont(" T(%ld,%ld)\n", s0, s1);
1779 	}
1780 	if (SRCU_SIZING_IS_TORTURE())
1781 		srcu_transition_to_big(ssp);
1782 }
1783 EXPORT_SYMBOL_GPL(srcu_torture_stats_print);
1784 
1785 static int __init srcu_bootup_announce(void)
1786 {
1787 	pr_info("Hierarchical SRCU implementation.\n");
1788 	if (exp_holdoff != DEFAULT_SRCU_EXP_HOLDOFF)
1789 		pr_info("\tNon-default auto-expedite holdoff of %lu ns.\n", exp_holdoff);
1790 	if (srcu_retry_check_delay != SRCU_DEFAULT_RETRY_CHECK_DELAY)
1791 		pr_info("\tNon-default retry check delay of %lu us.\n", srcu_retry_check_delay);
1792 	if (srcu_max_nodelay != SRCU_DEFAULT_MAX_NODELAY)
1793 		pr_info("\tNon-default max no-delay of %lu.\n", srcu_max_nodelay);
1794 	pr_info("\tMax phase no-delay instances is %lu.\n", srcu_max_nodelay_phase);
1795 	return 0;
1796 }
1797 early_initcall(srcu_bootup_announce);
1798 
1799 void __init srcu_init(void)
1800 {
1801 	struct srcu_struct *ssp;
1802 
1803 	/* Decide on srcu_struct-size strategy. */
1804 	if (SRCU_SIZING_IS(SRCU_SIZING_AUTO)) {
1805 		if (nr_cpu_ids >= big_cpu_lim) {
1806 			convert_to_big = SRCU_SIZING_INIT; // Don't bother waiting for contention.
1807 			pr_info("%s: Setting srcu_struct sizes to big.\n", __func__);
1808 		} else {
1809 			convert_to_big = SRCU_SIZING_NONE | SRCU_SIZING_CONTEND;
1810 			pr_info("%s: Setting srcu_struct sizes based on contention.\n", __func__);
1811 		}
1812 	}
1813 
1814 	/*
1815 	 * Once that is set, call_srcu() can follow the normal path and
1816 	 * queue delayed work. This must follow RCU workqueues creation
1817 	 * and timers initialization.
1818 	 */
1819 	srcu_init_done = true;
1820 	while (!list_empty(&srcu_boot_list)) {
1821 		ssp = list_first_entry(&srcu_boot_list, struct srcu_struct,
1822 				      work.work.entry);
1823 		list_del_init(&ssp->work.work.entry);
1824 		if (SRCU_SIZING_IS(SRCU_SIZING_INIT) && ssp->srcu_size_state == SRCU_SIZE_SMALL)
1825 			ssp->srcu_size_state = SRCU_SIZE_ALLOC;
1826 		queue_work(rcu_gp_wq, &ssp->work.work);
1827 	}
1828 }
1829 
1830 #ifdef CONFIG_MODULES
1831 
1832 /* Initialize any global-scope srcu_struct structures used by this module. */
1833 static int srcu_module_coming(struct module *mod)
1834 {
1835 	int i;
1836 	struct srcu_struct **sspp = mod->srcu_struct_ptrs;
1837 	int ret;
1838 
1839 	for (i = 0; i < mod->num_srcu_structs; i++) {
1840 		ret = init_srcu_struct(*(sspp++));
1841 		if (WARN_ON_ONCE(ret))
1842 			return ret;
1843 	}
1844 	return 0;
1845 }
1846 
1847 /* Clean up any global-scope srcu_struct structures used by this module. */
1848 static void srcu_module_going(struct module *mod)
1849 {
1850 	int i;
1851 	struct srcu_struct **sspp = mod->srcu_struct_ptrs;
1852 
1853 	for (i = 0; i < mod->num_srcu_structs; i++)
1854 		cleanup_srcu_struct(*(sspp++));
1855 }
1856 
1857 /* Handle one module, either coming or going. */
1858 static int srcu_module_notify(struct notifier_block *self,
1859 			      unsigned long val, void *data)
1860 {
1861 	struct module *mod = data;
1862 	int ret = 0;
1863 
1864 	switch (val) {
1865 	case MODULE_STATE_COMING:
1866 		ret = srcu_module_coming(mod);
1867 		break;
1868 	case MODULE_STATE_GOING:
1869 		srcu_module_going(mod);
1870 		break;
1871 	default:
1872 		break;
1873 	}
1874 	return ret;
1875 }
1876 
1877 static struct notifier_block srcu_module_nb = {
1878 	.notifier_call = srcu_module_notify,
1879 	.priority = 0,
1880 };
1881 
1882 static __init int init_srcu_module_notifier(void)
1883 {
1884 	int ret;
1885 
1886 	ret = register_module_notifier(&srcu_module_nb);
1887 	if (ret)
1888 		pr_warn("Failed to register srcu module notifier\n");
1889 	return ret;
1890 }
1891 late_initcall(init_srcu_module_notifier);
1892 
1893 #endif /* #ifdef CONFIG_MODULES */
1894