1 /* 2 * Sleepable Read-Copy Update mechanism for mutual exclusion. 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, you can access it online at 16 * http://www.gnu.org/licenses/gpl-2.0.html. 17 * 18 * Copyright (C) IBM Corporation, 2006 19 * Copyright (C) Fujitsu, 2012 20 * 21 * Author: Paul McKenney <paulmck@us.ibm.com> 22 * Lai Jiangshan <laijs@cn.fujitsu.com> 23 * 24 * For detailed explanation of Read-Copy Update mechanism see - 25 * Documentation/RCU/ *.txt 26 * 27 */ 28 29 #include <linux/export.h> 30 #include <linux/mutex.h> 31 #include <linux/percpu.h> 32 #include <linux/preempt.h> 33 #include <linux/rcupdate_wait.h> 34 #include <linux/sched.h> 35 #include <linux/smp.h> 36 #include <linux/delay.h> 37 #include <linux/module.h> 38 #include <linux/srcu.h> 39 40 #include "rcu.h" 41 #include "rcu_segcblist.h" 42 43 /* Holdoff in nanoseconds for auto-expediting. */ 44 #define DEFAULT_SRCU_EXP_HOLDOFF (25 * 1000) 45 static ulong exp_holdoff = DEFAULT_SRCU_EXP_HOLDOFF; 46 module_param(exp_holdoff, ulong, 0444); 47 48 /* Overflow-check frequency. N bits roughly says every 2**N grace periods. */ 49 static ulong counter_wrap_check = (ULONG_MAX >> 2); 50 module_param(counter_wrap_check, ulong, 0444); 51 52 static void srcu_invoke_callbacks(struct work_struct *work); 53 static void srcu_reschedule(struct srcu_struct *sp, unsigned long delay); 54 static void process_srcu(struct work_struct *work); 55 56 /* 57 * Initialize SRCU combining tree. Note that statically allocated 58 * srcu_struct structures might already have srcu_read_lock() and 59 * srcu_read_unlock() running against them. So if the is_static parameter 60 * is set, don't initialize ->srcu_lock_count[] and ->srcu_unlock_count[]. 61 */ 62 static void init_srcu_struct_nodes(struct srcu_struct *sp, bool is_static) 63 { 64 int cpu; 65 int i; 66 int level = 0; 67 int levelspread[RCU_NUM_LVLS]; 68 struct srcu_data *sdp; 69 struct srcu_node *snp; 70 struct srcu_node *snp_first; 71 72 /* Work out the overall tree geometry. */ 73 sp->level[0] = &sp->node[0]; 74 for (i = 1; i < rcu_num_lvls; i++) 75 sp->level[i] = sp->level[i - 1] + num_rcu_lvl[i - 1]; 76 rcu_init_levelspread(levelspread, num_rcu_lvl); 77 78 /* Each pass through this loop initializes one srcu_node structure. */ 79 rcu_for_each_node_breadth_first(sp, snp) { 80 raw_spin_lock_init(&ACCESS_PRIVATE(snp, lock)); 81 WARN_ON_ONCE(ARRAY_SIZE(snp->srcu_have_cbs) != 82 ARRAY_SIZE(snp->srcu_data_have_cbs)); 83 for (i = 0; i < ARRAY_SIZE(snp->srcu_have_cbs); i++) { 84 snp->srcu_have_cbs[i] = 0; 85 snp->srcu_data_have_cbs[i] = 0; 86 } 87 snp->srcu_gp_seq_needed_exp = 0; 88 snp->grplo = -1; 89 snp->grphi = -1; 90 if (snp == &sp->node[0]) { 91 /* Root node, special case. */ 92 snp->srcu_parent = NULL; 93 continue; 94 } 95 96 /* Non-root node. */ 97 if (snp == sp->level[level + 1]) 98 level++; 99 snp->srcu_parent = sp->level[level - 1] + 100 (snp - sp->level[level]) / 101 levelspread[level - 1]; 102 } 103 104 /* 105 * Initialize the per-CPU srcu_data array, which feeds into the 106 * leaves of the srcu_node tree. 107 */ 108 WARN_ON_ONCE(ARRAY_SIZE(sdp->srcu_lock_count) != 109 ARRAY_SIZE(sdp->srcu_unlock_count)); 110 level = rcu_num_lvls - 1; 111 snp_first = sp->level[level]; 112 for_each_possible_cpu(cpu) { 113 sdp = per_cpu_ptr(sp->sda, cpu); 114 raw_spin_lock_init(&ACCESS_PRIVATE(sdp, lock)); 115 rcu_segcblist_init(&sdp->srcu_cblist); 116 sdp->srcu_cblist_invoking = false; 117 sdp->srcu_gp_seq_needed = sp->srcu_gp_seq; 118 sdp->srcu_gp_seq_needed_exp = sp->srcu_gp_seq; 119 sdp->mynode = &snp_first[cpu / levelspread[level]]; 120 for (snp = sdp->mynode; snp != NULL; snp = snp->srcu_parent) { 121 if (snp->grplo < 0) 122 snp->grplo = cpu; 123 snp->grphi = cpu; 124 } 125 sdp->cpu = cpu; 126 INIT_DELAYED_WORK(&sdp->work, srcu_invoke_callbacks); 127 sdp->sp = sp; 128 sdp->grpmask = 1 << (cpu - sdp->mynode->grplo); 129 if (is_static) 130 continue; 131 132 /* Dynamically allocated, better be no srcu_read_locks()! */ 133 for (i = 0; i < ARRAY_SIZE(sdp->srcu_lock_count); i++) { 134 sdp->srcu_lock_count[i] = 0; 135 sdp->srcu_unlock_count[i] = 0; 136 } 137 } 138 } 139 140 /* 141 * Initialize non-compile-time initialized fields, including the 142 * associated srcu_node and srcu_data structures. The is_static 143 * parameter is passed through to init_srcu_struct_nodes(), and 144 * also tells us that ->sda has already been wired up to srcu_data. 145 */ 146 static int init_srcu_struct_fields(struct srcu_struct *sp, bool is_static) 147 { 148 mutex_init(&sp->srcu_cb_mutex); 149 mutex_init(&sp->srcu_gp_mutex); 150 sp->srcu_idx = 0; 151 sp->srcu_gp_seq = 0; 152 sp->srcu_barrier_seq = 0; 153 mutex_init(&sp->srcu_barrier_mutex); 154 atomic_set(&sp->srcu_barrier_cpu_cnt, 0); 155 INIT_DELAYED_WORK(&sp->work, process_srcu); 156 if (!is_static) 157 sp->sda = alloc_percpu(struct srcu_data); 158 init_srcu_struct_nodes(sp, is_static); 159 sp->srcu_gp_seq_needed_exp = 0; 160 sp->srcu_last_gp_end = ktime_get_mono_fast_ns(); 161 smp_store_release(&sp->srcu_gp_seq_needed, 0); /* Init done. */ 162 return sp->sda ? 0 : -ENOMEM; 163 } 164 165 #ifdef CONFIG_DEBUG_LOCK_ALLOC 166 167 int __init_srcu_struct(struct srcu_struct *sp, const char *name, 168 struct lock_class_key *key) 169 { 170 /* Don't re-initialize a lock while it is held. */ 171 debug_check_no_locks_freed((void *)sp, sizeof(*sp)); 172 lockdep_init_map(&sp->dep_map, name, key, 0); 173 raw_spin_lock_init(&ACCESS_PRIVATE(sp, lock)); 174 return init_srcu_struct_fields(sp, false); 175 } 176 EXPORT_SYMBOL_GPL(__init_srcu_struct); 177 178 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 179 180 /** 181 * init_srcu_struct - initialize a sleep-RCU structure 182 * @sp: structure to initialize. 183 * 184 * Must invoke this on a given srcu_struct before passing that srcu_struct 185 * to any other function. Each srcu_struct represents a separate domain 186 * of SRCU protection. 187 */ 188 int init_srcu_struct(struct srcu_struct *sp) 189 { 190 raw_spin_lock_init(&ACCESS_PRIVATE(sp, lock)); 191 return init_srcu_struct_fields(sp, false); 192 } 193 EXPORT_SYMBOL_GPL(init_srcu_struct); 194 195 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 196 197 /* 198 * First-use initialization of statically allocated srcu_struct 199 * structure. Wiring up the combining tree is more than can be 200 * done with compile-time initialization, so this check is added 201 * to each update-side SRCU primitive. Use sp->lock, which -is- 202 * compile-time initialized, to resolve races involving multiple 203 * CPUs trying to garner first-use privileges. 204 */ 205 static void check_init_srcu_struct(struct srcu_struct *sp) 206 { 207 unsigned long flags; 208 209 WARN_ON_ONCE(rcu_scheduler_active == RCU_SCHEDULER_INIT); 210 /* The smp_load_acquire() pairs with the smp_store_release(). */ 211 if (!rcu_seq_state(smp_load_acquire(&sp->srcu_gp_seq_needed))) /*^^^*/ 212 return; /* Already initialized. */ 213 raw_spin_lock_irqsave_rcu_node(sp, flags); 214 if (!rcu_seq_state(sp->srcu_gp_seq_needed)) { 215 raw_spin_unlock_irqrestore_rcu_node(sp, flags); 216 return; 217 } 218 init_srcu_struct_fields(sp, true); 219 raw_spin_unlock_irqrestore_rcu_node(sp, flags); 220 } 221 222 /* 223 * Returns approximate total of the readers' ->srcu_lock_count[] values 224 * for the rank of per-CPU counters specified by idx. 225 */ 226 static unsigned long srcu_readers_lock_idx(struct srcu_struct *sp, int idx) 227 { 228 int cpu; 229 unsigned long sum = 0; 230 231 for_each_possible_cpu(cpu) { 232 struct srcu_data *cpuc = per_cpu_ptr(sp->sda, cpu); 233 234 sum += READ_ONCE(cpuc->srcu_lock_count[idx]); 235 } 236 return sum; 237 } 238 239 /* 240 * Returns approximate total of the readers' ->srcu_unlock_count[] values 241 * for the rank of per-CPU counters specified by idx. 242 */ 243 static unsigned long srcu_readers_unlock_idx(struct srcu_struct *sp, int idx) 244 { 245 int cpu; 246 unsigned long sum = 0; 247 248 for_each_possible_cpu(cpu) { 249 struct srcu_data *cpuc = per_cpu_ptr(sp->sda, cpu); 250 251 sum += READ_ONCE(cpuc->srcu_unlock_count[idx]); 252 } 253 return sum; 254 } 255 256 /* 257 * Return true if the number of pre-existing readers is determined to 258 * be zero. 259 */ 260 static bool srcu_readers_active_idx_check(struct srcu_struct *sp, int idx) 261 { 262 unsigned long unlocks; 263 264 unlocks = srcu_readers_unlock_idx(sp, idx); 265 266 /* 267 * Make sure that a lock is always counted if the corresponding 268 * unlock is counted. Needs to be a smp_mb() as the read side may 269 * contain a read from a variable that is written to before the 270 * synchronize_srcu() in the write side. In this case smp_mb()s 271 * A and B act like the store buffering pattern. 272 * 273 * This smp_mb() also pairs with smp_mb() C to prevent accesses 274 * after the synchronize_srcu() from being executed before the 275 * grace period ends. 276 */ 277 smp_mb(); /* A */ 278 279 /* 280 * If the locks are the same as the unlocks, then there must have 281 * been no readers on this index at some time in between. This does 282 * not mean that there are no more readers, as one could have read 283 * the current index but not have incremented the lock counter yet. 284 * 285 * So suppose that the updater is preempted here for so long 286 * that more than ULONG_MAX non-nested readers come and go in 287 * the meantime. It turns out that this cannot result in overflow 288 * because if a reader modifies its unlock count after we read it 289 * above, then that reader's next load of ->srcu_idx is guaranteed 290 * to get the new value, which will cause it to operate on the 291 * other bank of counters, where it cannot contribute to the 292 * overflow of these counters. This means that there is a maximum 293 * of 2*NR_CPUS increments, which cannot overflow given current 294 * systems, especially not on 64-bit systems. 295 * 296 * OK, how about nesting? This does impose a limit on nesting 297 * of floor(ULONG_MAX/NR_CPUS/2), which should be sufficient, 298 * especially on 64-bit systems. 299 */ 300 return srcu_readers_lock_idx(sp, idx) == unlocks; 301 } 302 303 /** 304 * srcu_readers_active - returns true if there are readers. and false 305 * otherwise 306 * @sp: which srcu_struct to count active readers (holding srcu_read_lock). 307 * 308 * Note that this is not an atomic primitive, and can therefore suffer 309 * severe errors when invoked on an active srcu_struct. That said, it 310 * can be useful as an error check at cleanup time. 311 */ 312 static bool srcu_readers_active(struct srcu_struct *sp) 313 { 314 int cpu; 315 unsigned long sum = 0; 316 317 for_each_possible_cpu(cpu) { 318 struct srcu_data *cpuc = per_cpu_ptr(sp->sda, cpu); 319 320 sum += READ_ONCE(cpuc->srcu_lock_count[0]); 321 sum += READ_ONCE(cpuc->srcu_lock_count[1]); 322 sum -= READ_ONCE(cpuc->srcu_unlock_count[0]); 323 sum -= READ_ONCE(cpuc->srcu_unlock_count[1]); 324 } 325 return sum; 326 } 327 328 #define SRCU_INTERVAL 1 329 330 /* 331 * Return grace-period delay, zero if there are expedited grace 332 * periods pending, SRCU_INTERVAL otherwise. 333 */ 334 static unsigned long srcu_get_delay(struct srcu_struct *sp) 335 { 336 if (ULONG_CMP_LT(READ_ONCE(sp->srcu_gp_seq), 337 READ_ONCE(sp->srcu_gp_seq_needed_exp))) 338 return 0; 339 return SRCU_INTERVAL; 340 } 341 342 /** 343 * cleanup_srcu_struct - deconstruct a sleep-RCU structure 344 * @sp: structure to clean up. 345 * 346 * Must invoke this after you are finished using a given srcu_struct that 347 * was initialized via init_srcu_struct(), else you leak memory. 348 */ 349 void cleanup_srcu_struct(struct srcu_struct *sp) 350 { 351 int cpu; 352 353 if (WARN_ON(!srcu_get_delay(sp))) 354 return; /* Leakage unless caller handles error. */ 355 if (WARN_ON(srcu_readers_active(sp))) 356 return; /* Leakage unless caller handles error. */ 357 flush_delayed_work(&sp->work); 358 for_each_possible_cpu(cpu) 359 flush_delayed_work(&per_cpu_ptr(sp->sda, cpu)->work); 360 if (WARN_ON(rcu_seq_state(READ_ONCE(sp->srcu_gp_seq)) != SRCU_STATE_IDLE) || 361 WARN_ON(srcu_readers_active(sp))) { 362 pr_info("cleanup_srcu_struct: Active srcu_struct %p state: %d\n", sp, rcu_seq_state(READ_ONCE(sp->srcu_gp_seq))); 363 return; /* Caller forgot to stop doing call_srcu()? */ 364 } 365 free_percpu(sp->sda); 366 sp->sda = NULL; 367 } 368 EXPORT_SYMBOL_GPL(cleanup_srcu_struct); 369 370 /* 371 * Counts the new reader in the appropriate per-CPU element of the 372 * srcu_struct. 373 * Returns an index that must be passed to the matching srcu_read_unlock(). 374 */ 375 int __srcu_read_lock(struct srcu_struct *sp) 376 { 377 int idx; 378 379 idx = READ_ONCE(sp->srcu_idx) & 0x1; 380 this_cpu_inc(sp->sda->srcu_lock_count[idx]); 381 smp_mb(); /* B */ /* Avoid leaking the critical section. */ 382 return idx; 383 } 384 EXPORT_SYMBOL_GPL(__srcu_read_lock); 385 386 /* 387 * Removes the count for the old reader from the appropriate per-CPU 388 * element of the srcu_struct. Note that this may well be a different 389 * CPU than that which was incremented by the corresponding srcu_read_lock(). 390 */ 391 void __srcu_read_unlock(struct srcu_struct *sp, int idx) 392 { 393 smp_mb(); /* C */ /* Avoid leaking the critical section. */ 394 this_cpu_inc(sp->sda->srcu_unlock_count[idx]); 395 } 396 EXPORT_SYMBOL_GPL(__srcu_read_unlock); 397 398 /* 399 * We use an adaptive strategy for synchronize_srcu() and especially for 400 * synchronize_srcu_expedited(). We spin for a fixed time period 401 * (defined below) to allow SRCU readers to exit their read-side critical 402 * sections. If there are still some readers after a few microseconds, 403 * we repeatedly block for 1-millisecond time periods. 404 */ 405 #define SRCU_RETRY_CHECK_DELAY 5 406 407 /* 408 * Start an SRCU grace period. 409 */ 410 static void srcu_gp_start(struct srcu_struct *sp) 411 { 412 struct srcu_data *sdp = this_cpu_ptr(sp->sda); 413 int state; 414 415 lockdep_assert_held(&sp->lock); 416 WARN_ON_ONCE(ULONG_CMP_GE(sp->srcu_gp_seq, sp->srcu_gp_seq_needed)); 417 rcu_segcblist_advance(&sdp->srcu_cblist, 418 rcu_seq_current(&sp->srcu_gp_seq)); 419 (void)rcu_segcblist_accelerate(&sdp->srcu_cblist, 420 rcu_seq_snap(&sp->srcu_gp_seq)); 421 smp_mb(); /* Order prior store to ->srcu_gp_seq_needed vs. GP start. */ 422 rcu_seq_start(&sp->srcu_gp_seq); 423 state = rcu_seq_state(READ_ONCE(sp->srcu_gp_seq)); 424 WARN_ON_ONCE(state != SRCU_STATE_SCAN1); 425 } 426 427 /* 428 * Track online CPUs to guide callback workqueue placement. 429 */ 430 DEFINE_PER_CPU(bool, srcu_online); 431 432 void srcu_online_cpu(unsigned int cpu) 433 { 434 WRITE_ONCE(per_cpu(srcu_online, cpu), true); 435 } 436 437 void srcu_offline_cpu(unsigned int cpu) 438 { 439 WRITE_ONCE(per_cpu(srcu_online, cpu), false); 440 } 441 442 /* 443 * Place the workqueue handler on the specified CPU if online, otherwise 444 * just run it whereever. This is useful for placing workqueue handlers 445 * that are to invoke the specified CPU's callbacks. 446 */ 447 static bool srcu_queue_delayed_work_on(int cpu, struct workqueue_struct *wq, 448 struct delayed_work *dwork, 449 unsigned long delay) 450 { 451 bool ret; 452 453 preempt_disable(); 454 if (READ_ONCE(per_cpu(srcu_online, cpu))) 455 ret = queue_delayed_work_on(cpu, wq, dwork, delay); 456 else 457 ret = queue_delayed_work(wq, dwork, delay); 458 preempt_enable(); 459 return ret; 460 } 461 462 /* 463 * Schedule callback invocation for the specified srcu_data structure, 464 * if possible, on the corresponding CPU. 465 */ 466 static void srcu_schedule_cbs_sdp(struct srcu_data *sdp, unsigned long delay) 467 { 468 srcu_queue_delayed_work_on(sdp->cpu, system_power_efficient_wq, 469 &sdp->work, delay); 470 } 471 472 /* 473 * Schedule callback invocation for all srcu_data structures associated 474 * with the specified srcu_node structure that have callbacks for the 475 * just-completed grace period, the one corresponding to idx. If possible, 476 * schedule this invocation on the corresponding CPUs. 477 */ 478 static void srcu_schedule_cbs_snp(struct srcu_struct *sp, struct srcu_node *snp, 479 unsigned long mask, unsigned long delay) 480 { 481 int cpu; 482 483 for (cpu = snp->grplo; cpu <= snp->grphi; cpu++) { 484 if (!(mask & (1 << (cpu - snp->grplo)))) 485 continue; 486 srcu_schedule_cbs_sdp(per_cpu_ptr(sp->sda, cpu), delay); 487 } 488 } 489 490 /* 491 * Note the end of an SRCU grace period. Initiates callback invocation 492 * and starts a new grace period if needed. 493 * 494 * The ->srcu_cb_mutex acquisition does not protect any data, but 495 * instead prevents more than one grace period from starting while we 496 * are initiating callback invocation. This allows the ->srcu_have_cbs[] 497 * array to have a finite number of elements. 498 */ 499 static void srcu_gp_end(struct srcu_struct *sp) 500 { 501 unsigned long cbdelay; 502 bool cbs; 503 int cpu; 504 unsigned long flags; 505 unsigned long gpseq; 506 int idx; 507 int idxnext; 508 unsigned long mask; 509 struct srcu_data *sdp; 510 struct srcu_node *snp; 511 512 /* Prevent more than one additional grace period. */ 513 mutex_lock(&sp->srcu_cb_mutex); 514 515 /* End the current grace period. */ 516 raw_spin_lock_irq_rcu_node(sp); 517 idx = rcu_seq_state(sp->srcu_gp_seq); 518 WARN_ON_ONCE(idx != SRCU_STATE_SCAN2); 519 cbdelay = srcu_get_delay(sp); 520 sp->srcu_last_gp_end = ktime_get_mono_fast_ns(); 521 rcu_seq_end(&sp->srcu_gp_seq); 522 gpseq = rcu_seq_current(&sp->srcu_gp_seq); 523 if (ULONG_CMP_LT(sp->srcu_gp_seq_needed_exp, gpseq)) 524 sp->srcu_gp_seq_needed_exp = gpseq; 525 raw_spin_unlock_irq_rcu_node(sp); 526 mutex_unlock(&sp->srcu_gp_mutex); 527 /* A new grace period can start at this point. But only one. */ 528 529 /* Initiate callback invocation as needed. */ 530 idx = rcu_seq_ctr(gpseq) % ARRAY_SIZE(snp->srcu_have_cbs); 531 idxnext = (idx + 1) % ARRAY_SIZE(snp->srcu_have_cbs); 532 rcu_for_each_node_breadth_first(sp, snp) { 533 raw_spin_lock_irq_rcu_node(snp); 534 cbs = false; 535 if (snp >= sp->level[rcu_num_lvls - 1]) 536 cbs = snp->srcu_have_cbs[idx] == gpseq; 537 snp->srcu_have_cbs[idx] = gpseq; 538 rcu_seq_set_state(&snp->srcu_have_cbs[idx], 1); 539 if (ULONG_CMP_LT(snp->srcu_gp_seq_needed_exp, gpseq)) 540 snp->srcu_gp_seq_needed_exp = gpseq; 541 mask = snp->srcu_data_have_cbs[idx]; 542 snp->srcu_data_have_cbs[idx] = 0; 543 raw_spin_unlock_irq_rcu_node(snp); 544 if (cbs) 545 srcu_schedule_cbs_snp(sp, snp, mask, cbdelay); 546 547 /* Occasionally prevent srcu_data counter wrap. */ 548 if (!(gpseq & counter_wrap_check)) 549 for (cpu = snp->grplo; cpu <= snp->grphi; cpu++) { 550 sdp = per_cpu_ptr(sp->sda, cpu); 551 raw_spin_lock_irqsave_rcu_node(sdp, flags); 552 if (ULONG_CMP_GE(gpseq, 553 sdp->srcu_gp_seq_needed + 100)) 554 sdp->srcu_gp_seq_needed = gpseq; 555 raw_spin_unlock_irqrestore_rcu_node(sdp, flags); 556 } 557 } 558 559 /* Callback initiation done, allow grace periods after next. */ 560 mutex_unlock(&sp->srcu_cb_mutex); 561 562 /* Start a new grace period if needed. */ 563 raw_spin_lock_irq_rcu_node(sp); 564 gpseq = rcu_seq_current(&sp->srcu_gp_seq); 565 if (!rcu_seq_state(gpseq) && 566 ULONG_CMP_LT(gpseq, sp->srcu_gp_seq_needed)) { 567 srcu_gp_start(sp); 568 raw_spin_unlock_irq_rcu_node(sp); 569 /* Throttle expedited grace periods: Should be rare! */ 570 srcu_reschedule(sp, rcu_seq_ctr(gpseq) & 0x3ff 571 ? 0 : SRCU_INTERVAL); 572 } else { 573 raw_spin_unlock_irq_rcu_node(sp); 574 } 575 } 576 577 /* 578 * Funnel-locking scheme to scalably mediate many concurrent expedited 579 * grace-period requests. This function is invoked for the first known 580 * expedited request for a grace period that has already been requested, 581 * but without expediting. To start a completely new grace period, 582 * whether expedited or not, use srcu_funnel_gp_start() instead. 583 */ 584 static void srcu_funnel_exp_start(struct srcu_struct *sp, struct srcu_node *snp, 585 unsigned long s) 586 { 587 unsigned long flags; 588 589 for (; snp != NULL; snp = snp->srcu_parent) { 590 if (rcu_seq_done(&sp->srcu_gp_seq, s) || 591 ULONG_CMP_GE(READ_ONCE(snp->srcu_gp_seq_needed_exp), s)) 592 return; 593 raw_spin_lock_irqsave_rcu_node(snp, flags); 594 if (ULONG_CMP_GE(snp->srcu_gp_seq_needed_exp, s)) { 595 raw_spin_unlock_irqrestore_rcu_node(snp, flags); 596 return; 597 } 598 WRITE_ONCE(snp->srcu_gp_seq_needed_exp, s); 599 raw_spin_unlock_irqrestore_rcu_node(snp, flags); 600 } 601 raw_spin_lock_irqsave_rcu_node(sp, flags); 602 if (!ULONG_CMP_LT(sp->srcu_gp_seq_needed_exp, s)) 603 sp->srcu_gp_seq_needed_exp = s; 604 raw_spin_unlock_irqrestore_rcu_node(sp, flags); 605 } 606 607 /* 608 * Funnel-locking scheme to scalably mediate many concurrent grace-period 609 * requests. The winner has to do the work of actually starting grace 610 * period s. Losers must either ensure that their desired grace-period 611 * number is recorded on at least their leaf srcu_node structure, or they 612 * must take steps to invoke their own callbacks. 613 */ 614 static void srcu_funnel_gp_start(struct srcu_struct *sp, struct srcu_data *sdp, 615 unsigned long s, bool do_norm) 616 { 617 unsigned long flags; 618 int idx = rcu_seq_ctr(s) % ARRAY_SIZE(sdp->mynode->srcu_have_cbs); 619 struct srcu_node *snp = sdp->mynode; 620 unsigned long snp_seq; 621 622 /* Each pass through the loop does one level of the srcu_node tree. */ 623 for (; snp != NULL; snp = snp->srcu_parent) { 624 if (rcu_seq_done(&sp->srcu_gp_seq, s) && snp != sdp->mynode) 625 return; /* GP already done and CBs recorded. */ 626 raw_spin_lock_irqsave_rcu_node(snp, flags); 627 if (ULONG_CMP_GE(snp->srcu_have_cbs[idx], s)) { 628 snp_seq = snp->srcu_have_cbs[idx]; 629 if (snp == sdp->mynode && snp_seq == s) 630 snp->srcu_data_have_cbs[idx] |= sdp->grpmask; 631 raw_spin_unlock_irqrestore_rcu_node(snp, flags); 632 if (snp == sdp->mynode && snp_seq != s) { 633 srcu_schedule_cbs_sdp(sdp, do_norm 634 ? SRCU_INTERVAL 635 : 0); 636 return; 637 } 638 if (!do_norm) 639 srcu_funnel_exp_start(sp, snp, s); 640 return; 641 } 642 snp->srcu_have_cbs[idx] = s; 643 if (snp == sdp->mynode) 644 snp->srcu_data_have_cbs[idx] |= sdp->grpmask; 645 if (!do_norm && ULONG_CMP_LT(snp->srcu_gp_seq_needed_exp, s)) 646 snp->srcu_gp_seq_needed_exp = s; 647 raw_spin_unlock_irqrestore_rcu_node(snp, flags); 648 } 649 650 /* Top of tree, must ensure the grace period will be started. */ 651 raw_spin_lock_irqsave_rcu_node(sp, flags); 652 if (ULONG_CMP_LT(sp->srcu_gp_seq_needed, s)) { 653 /* 654 * Record need for grace period s. Pair with load 655 * acquire setting up for initialization. 656 */ 657 smp_store_release(&sp->srcu_gp_seq_needed, s); /*^^^*/ 658 } 659 if (!do_norm && ULONG_CMP_LT(sp->srcu_gp_seq_needed_exp, s)) 660 sp->srcu_gp_seq_needed_exp = s; 661 662 /* If grace period not already done and none in progress, start it. */ 663 if (!rcu_seq_done(&sp->srcu_gp_seq, s) && 664 rcu_seq_state(sp->srcu_gp_seq) == SRCU_STATE_IDLE) { 665 WARN_ON_ONCE(ULONG_CMP_GE(sp->srcu_gp_seq, sp->srcu_gp_seq_needed)); 666 srcu_gp_start(sp); 667 queue_delayed_work(system_power_efficient_wq, &sp->work, 668 srcu_get_delay(sp)); 669 } 670 raw_spin_unlock_irqrestore_rcu_node(sp, flags); 671 } 672 673 /* 674 * Wait until all readers counted by array index idx complete, but 675 * loop an additional time if there is an expedited grace period pending. 676 * The caller must ensure that ->srcu_idx is not changed while checking. 677 */ 678 static bool try_check_zero(struct srcu_struct *sp, int idx, int trycount) 679 { 680 for (;;) { 681 if (srcu_readers_active_idx_check(sp, idx)) 682 return true; 683 if (--trycount + !srcu_get_delay(sp) <= 0) 684 return false; 685 udelay(SRCU_RETRY_CHECK_DELAY); 686 } 687 } 688 689 /* 690 * Increment the ->srcu_idx counter so that future SRCU readers will 691 * use the other rank of the ->srcu_(un)lock_count[] arrays. This allows 692 * us to wait for pre-existing readers in a starvation-free manner. 693 */ 694 static void srcu_flip(struct srcu_struct *sp) 695 { 696 /* 697 * Ensure that if this updater saw a given reader's increment 698 * from __srcu_read_lock(), that reader was using an old value 699 * of ->srcu_idx. Also ensure that if a given reader sees the 700 * new value of ->srcu_idx, this updater's earlier scans cannot 701 * have seen that reader's increments (which is OK, because this 702 * grace period need not wait on that reader). 703 */ 704 smp_mb(); /* E */ /* Pairs with B and C. */ 705 706 WRITE_ONCE(sp->srcu_idx, sp->srcu_idx + 1); 707 708 /* 709 * Ensure that if the updater misses an __srcu_read_unlock() 710 * increment, that task's next __srcu_read_lock() will see the 711 * above counter update. Note that both this memory barrier 712 * and the one in srcu_readers_active_idx_check() provide the 713 * guarantee for __srcu_read_lock(). 714 */ 715 smp_mb(); /* D */ /* Pairs with C. */ 716 } 717 718 /* 719 * If SRCU is likely idle, return true, otherwise return false. 720 * 721 * Note that it is OK for several current from-idle requests for a new 722 * grace period from idle to specify expediting because they will all end 723 * up requesting the same grace period anyhow. So no loss. 724 * 725 * Note also that if any CPU (including the current one) is still invoking 726 * callbacks, this function will nevertheless say "idle". This is not 727 * ideal, but the overhead of checking all CPUs' callback lists is even 728 * less ideal, especially on large systems. Furthermore, the wakeup 729 * can happen before the callback is fully removed, so we have no choice 730 * but to accept this type of error. 731 * 732 * This function is also subject to counter-wrap errors, but let's face 733 * it, if this function was preempted for enough time for the counters 734 * to wrap, it really doesn't matter whether or not we expedite the grace 735 * period. The extra overhead of a needlessly expedited grace period is 736 * negligible when amoritized over that time period, and the extra latency 737 * of a needlessly non-expedited grace period is similarly negligible. 738 */ 739 static bool srcu_might_be_idle(struct srcu_struct *sp) 740 { 741 unsigned long curseq; 742 unsigned long flags; 743 struct srcu_data *sdp; 744 unsigned long t; 745 746 /* If the local srcu_data structure has callbacks, not idle. */ 747 local_irq_save(flags); 748 sdp = this_cpu_ptr(sp->sda); 749 if (rcu_segcblist_pend_cbs(&sdp->srcu_cblist)) { 750 local_irq_restore(flags); 751 return false; /* Callbacks already present, so not idle. */ 752 } 753 local_irq_restore(flags); 754 755 /* 756 * No local callbacks, so probabalistically probe global state. 757 * Exact information would require acquiring locks, which would 758 * kill scalability, hence the probabalistic nature of the probe. 759 */ 760 761 /* First, see if enough time has passed since the last GP. */ 762 t = ktime_get_mono_fast_ns(); 763 if (exp_holdoff == 0 || 764 time_in_range_open(t, sp->srcu_last_gp_end, 765 sp->srcu_last_gp_end + exp_holdoff)) 766 return false; /* Too soon after last GP. */ 767 768 /* Next, check for probable idleness. */ 769 curseq = rcu_seq_current(&sp->srcu_gp_seq); 770 smp_mb(); /* Order ->srcu_gp_seq with ->srcu_gp_seq_needed. */ 771 if (ULONG_CMP_LT(curseq, READ_ONCE(sp->srcu_gp_seq_needed))) 772 return false; /* Grace period in progress, so not idle. */ 773 smp_mb(); /* Order ->srcu_gp_seq with prior access. */ 774 if (curseq != rcu_seq_current(&sp->srcu_gp_seq)) 775 return false; /* GP # changed, so not idle. */ 776 return true; /* With reasonable probability, idle! */ 777 } 778 779 /* 780 * SRCU callback function to leak a callback. 781 */ 782 static void srcu_leak_callback(struct rcu_head *rhp) 783 { 784 } 785 786 /* 787 * Enqueue an SRCU callback on the srcu_data structure associated with 788 * the current CPU and the specified srcu_struct structure, initiating 789 * grace-period processing if it is not already running. 790 * 791 * Note that all CPUs must agree that the grace period extended beyond 792 * all pre-existing SRCU read-side critical section. On systems with 793 * more than one CPU, this means that when "func()" is invoked, each CPU 794 * is guaranteed to have executed a full memory barrier since the end of 795 * its last corresponding SRCU read-side critical section whose beginning 796 * preceded the call to call_rcu(). It also means that each CPU executing 797 * an SRCU read-side critical section that continues beyond the start of 798 * "func()" must have executed a memory barrier after the call_rcu() 799 * but before the beginning of that SRCU read-side critical section. 800 * Note that these guarantees include CPUs that are offline, idle, or 801 * executing in user mode, as well as CPUs that are executing in the kernel. 802 * 803 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the 804 * resulting SRCU callback function "func()", then both CPU A and CPU 805 * B are guaranteed to execute a full memory barrier during the time 806 * interval between the call to call_rcu() and the invocation of "func()". 807 * This guarantee applies even if CPU A and CPU B are the same CPU (but 808 * again only if the system has more than one CPU). 809 * 810 * Of course, these guarantees apply only for invocations of call_srcu(), 811 * srcu_read_lock(), and srcu_read_unlock() that are all passed the same 812 * srcu_struct structure. 813 */ 814 void __call_srcu(struct srcu_struct *sp, struct rcu_head *rhp, 815 rcu_callback_t func, bool do_norm) 816 { 817 unsigned long flags; 818 bool needexp = false; 819 bool needgp = false; 820 unsigned long s; 821 struct srcu_data *sdp; 822 823 check_init_srcu_struct(sp); 824 if (debug_rcu_head_queue(rhp)) { 825 /* Probable double call_srcu(), so leak the callback. */ 826 WRITE_ONCE(rhp->func, srcu_leak_callback); 827 WARN_ONCE(1, "call_srcu(): Leaked duplicate callback\n"); 828 return; 829 } 830 rhp->func = func; 831 local_irq_save(flags); 832 sdp = this_cpu_ptr(sp->sda); 833 raw_spin_lock_rcu_node(sdp); 834 rcu_segcblist_enqueue(&sdp->srcu_cblist, rhp, false); 835 rcu_segcblist_advance(&sdp->srcu_cblist, 836 rcu_seq_current(&sp->srcu_gp_seq)); 837 s = rcu_seq_snap(&sp->srcu_gp_seq); 838 (void)rcu_segcblist_accelerate(&sdp->srcu_cblist, s); 839 if (ULONG_CMP_LT(sdp->srcu_gp_seq_needed, s)) { 840 sdp->srcu_gp_seq_needed = s; 841 needgp = true; 842 } 843 if (!do_norm && ULONG_CMP_LT(sdp->srcu_gp_seq_needed_exp, s)) { 844 sdp->srcu_gp_seq_needed_exp = s; 845 needexp = true; 846 } 847 raw_spin_unlock_irqrestore_rcu_node(sdp, flags); 848 if (needgp) 849 srcu_funnel_gp_start(sp, sdp, s, do_norm); 850 else if (needexp) 851 srcu_funnel_exp_start(sp, sdp->mynode, s); 852 } 853 854 /** 855 * call_srcu() - Queue a callback for invocation after an SRCU grace period 856 * @sp: srcu_struct in queue the callback 857 * @rhp: structure to be used for queueing the SRCU callback. 858 * @func: function to be invoked after the SRCU grace period 859 * 860 * The callback function will be invoked some time after a full SRCU 861 * grace period elapses, in other words after all pre-existing SRCU 862 * read-side critical sections have completed. However, the callback 863 * function might well execute concurrently with other SRCU read-side 864 * critical sections that started after call_srcu() was invoked. SRCU 865 * read-side critical sections are delimited by srcu_read_lock() and 866 * srcu_read_unlock(), and may be nested. 867 * 868 * The callback will be invoked from process context, but must nevertheless 869 * be fast and must not block. 870 */ 871 void call_srcu(struct srcu_struct *sp, struct rcu_head *rhp, 872 rcu_callback_t func) 873 { 874 __call_srcu(sp, rhp, func, true); 875 } 876 EXPORT_SYMBOL_GPL(call_srcu); 877 878 /* 879 * Helper function for synchronize_srcu() and synchronize_srcu_expedited(). 880 */ 881 static void __synchronize_srcu(struct srcu_struct *sp, bool do_norm) 882 { 883 struct rcu_synchronize rcu; 884 885 RCU_LOCKDEP_WARN(lock_is_held(&sp->dep_map) || 886 lock_is_held(&rcu_bh_lock_map) || 887 lock_is_held(&rcu_lock_map) || 888 lock_is_held(&rcu_sched_lock_map), 889 "Illegal synchronize_srcu() in same-type SRCU (or in RCU) read-side critical section"); 890 891 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE) 892 return; 893 might_sleep(); 894 check_init_srcu_struct(sp); 895 init_completion(&rcu.completion); 896 init_rcu_head_on_stack(&rcu.head); 897 __call_srcu(sp, &rcu.head, wakeme_after_rcu, do_norm); 898 wait_for_completion(&rcu.completion); 899 destroy_rcu_head_on_stack(&rcu.head); 900 901 /* 902 * Make sure that later code is ordered after the SRCU grace 903 * period. This pairs with the raw_spin_lock_irq_rcu_node() 904 * in srcu_invoke_callbacks(). Unlike Tree RCU, this is needed 905 * because the current CPU might have been totally uninvolved with 906 * (and thus unordered against) that grace period. 907 */ 908 smp_mb(); 909 } 910 911 /** 912 * synchronize_srcu_expedited - Brute-force SRCU grace period 913 * @sp: srcu_struct with which to synchronize. 914 * 915 * Wait for an SRCU grace period to elapse, but be more aggressive about 916 * spinning rather than blocking when waiting. 917 * 918 * Note that synchronize_srcu_expedited() has the same deadlock and 919 * memory-ordering properties as does synchronize_srcu(). 920 */ 921 void synchronize_srcu_expedited(struct srcu_struct *sp) 922 { 923 __synchronize_srcu(sp, rcu_gp_is_normal()); 924 } 925 EXPORT_SYMBOL_GPL(synchronize_srcu_expedited); 926 927 /** 928 * synchronize_srcu - wait for prior SRCU read-side critical-section completion 929 * @sp: srcu_struct with which to synchronize. 930 * 931 * Wait for the count to drain to zero of both indexes. To avoid the 932 * possible starvation of synchronize_srcu(), it waits for the count of 933 * the index=((->srcu_idx & 1) ^ 1) to drain to zero at first, 934 * and then flip the srcu_idx and wait for the count of the other index. 935 * 936 * Can block; must be called from process context. 937 * 938 * Note that it is illegal to call synchronize_srcu() from the corresponding 939 * SRCU read-side critical section; doing so will result in deadlock. 940 * However, it is perfectly legal to call synchronize_srcu() on one 941 * srcu_struct from some other srcu_struct's read-side critical section, 942 * as long as the resulting graph of srcu_structs is acyclic. 943 * 944 * There are memory-ordering constraints implied by synchronize_srcu(). 945 * On systems with more than one CPU, when synchronize_srcu() returns, 946 * each CPU is guaranteed to have executed a full memory barrier since 947 * the end of its last corresponding SRCU-sched read-side critical section 948 * whose beginning preceded the call to synchronize_srcu(). In addition, 949 * each CPU having an SRCU read-side critical section that extends beyond 950 * the return from synchronize_srcu() is guaranteed to have executed a 951 * full memory barrier after the beginning of synchronize_srcu() and before 952 * the beginning of that SRCU read-side critical section. Note that these 953 * guarantees include CPUs that are offline, idle, or executing in user mode, 954 * as well as CPUs that are executing in the kernel. 955 * 956 * Furthermore, if CPU A invoked synchronize_srcu(), which returned 957 * to its caller on CPU B, then both CPU A and CPU B are guaranteed 958 * to have executed a full memory barrier during the execution of 959 * synchronize_srcu(). This guarantee applies even if CPU A and CPU B 960 * are the same CPU, but again only if the system has more than one CPU. 961 * 962 * Of course, these memory-ordering guarantees apply only when 963 * synchronize_srcu(), srcu_read_lock(), and srcu_read_unlock() are 964 * passed the same srcu_struct structure. 965 * 966 * If SRCU is likely idle, expedite the first request. This semantic 967 * was provided by Classic SRCU, and is relied upon by its users, so TREE 968 * SRCU must also provide it. Note that detecting idleness is heuristic 969 * and subject to both false positives and negatives. 970 */ 971 void synchronize_srcu(struct srcu_struct *sp) 972 { 973 if (srcu_might_be_idle(sp) || rcu_gp_is_expedited()) 974 synchronize_srcu_expedited(sp); 975 else 976 __synchronize_srcu(sp, true); 977 } 978 EXPORT_SYMBOL_GPL(synchronize_srcu); 979 980 /* 981 * Callback function for srcu_barrier() use. 982 */ 983 static void srcu_barrier_cb(struct rcu_head *rhp) 984 { 985 struct srcu_data *sdp; 986 struct srcu_struct *sp; 987 988 sdp = container_of(rhp, struct srcu_data, srcu_barrier_head); 989 sp = sdp->sp; 990 if (atomic_dec_and_test(&sp->srcu_barrier_cpu_cnt)) 991 complete(&sp->srcu_barrier_completion); 992 } 993 994 /** 995 * srcu_barrier - Wait until all in-flight call_srcu() callbacks complete. 996 * @sp: srcu_struct on which to wait for in-flight callbacks. 997 */ 998 void srcu_barrier(struct srcu_struct *sp) 999 { 1000 int cpu; 1001 struct srcu_data *sdp; 1002 unsigned long s = rcu_seq_snap(&sp->srcu_barrier_seq); 1003 1004 check_init_srcu_struct(sp); 1005 mutex_lock(&sp->srcu_barrier_mutex); 1006 if (rcu_seq_done(&sp->srcu_barrier_seq, s)) { 1007 smp_mb(); /* Force ordering following return. */ 1008 mutex_unlock(&sp->srcu_barrier_mutex); 1009 return; /* Someone else did our work for us. */ 1010 } 1011 rcu_seq_start(&sp->srcu_barrier_seq); 1012 init_completion(&sp->srcu_barrier_completion); 1013 1014 /* Initial count prevents reaching zero until all CBs are posted. */ 1015 atomic_set(&sp->srcu_barrier_cpu_cnt, 1); 1016 1017 /* 1018 * Each pass through this loop enqueues a callback, but only 1019 * on CPUs already having callbacks enqueued. Note that if 1020 * a CPU already has callbacks enqueue, it must have already 1021 * registered the need for a future grace period, so all we 1022 * need do is enqueue a callback that will use the same 1023 * grace period as the last callback already in the queue. 1024 */ 1025 for_each_possible_cpu(cpu) { 1026 sdp = per_cpu_ptr(sp->sda, cpu); 1027 raw_spin_lock_irq_rcu_node(sdp); 1028 atomic_inc(&sp->srcu_barrier_cpu_cnt); 1029 sdp->srcu_barrier_head.func = srcu_barrier_cb; 1030 debug_rcu_head_queue(&sdp->srcu_barrier_head); 1031 if (!rcu_segcblist_entrain(&sdp->srcu_cblist, 1032 &sdp->srcu_barrier_head, 0)) { 1033 debug_rcu_head_unqueue(&sdp->srcu_barrier_head); 1034 atomic_dec(&sp->srcu_barrier_cpu_cnt); 1035 } 1036 raw_spin_unlock_irq_rcu_node(sdp); 1037 } 1038 1039 /* Remove the initial count, at which point reaching zero can happen. */ 1040 if (atomic_dec_and_test(&sp->srcu_barrier_cpu_cnt)) 1041 complete(&sp->srcu_barrier_completion); 1042 wait_for_completion(&sp->srcu_barrier_completion); 1043 1044 rcu_seq_end(&sp->srcu_barrier_seq); 1045 mutex_unlock(&sp->srcu_barrier_mutex); 1046 } 1047 EXPORT_SYMBOL_GPL(srcu_barrier); 1048 1049 /** 1050 * srcu_batches_completed - return batches completed. 1051 * @sp: srcu_struct on which to report batch completion. 1052 * 1053 * Report the number of batches, correlated with, but not necessarily 1054 * precisely the same as, the number of grace periods that have elapsed. 1055 */ 1056 unsigned long srcu_batches_completed(struct srcu_struct *sp) 1057 { 1058 return sp->srcu_idx; 1059 } 1060 EXPORT_SYMBOL_GPL(srcu_batches_completed); 1061 1062 /* 1063 * Core SRCU state machine. Push state bits of ->srcu_gp_seq 1064 * to SRCU_STATE_SCAN2, and invoke srcu_gp_end() when scan has 1065 * completed in that state. 1066 */ 1067 static void srcu_advance_state(struct srcu_struct *sp) 1068 { 1069 int idx; 1070 1071 mutex_lock(&sp->srcu_gp_mutex); 1072 1073 /* 1074 * Because readers might be delayed for an extended period after 1075 * fetching ->srcu_idx for their index, at any point in time there 1076 * might well be readers using both idx=0 and idx=1. We therefore 1077 * need to wait for readers to clear from both index values before 1078 * invoking a callback. 1079 * 1080 * The load-acquire ensures that we see the accesses performed 1081 * by the prior grace period. 1082 */ 1083 idx = rcu_seq_state(smp_load_acquire(&sp->srcu_gp_seq)); /* ^^^ */ 1084 if (idx == SRCU_STATE_IDLE) { 1085 raw_spin_lock_irq_rcu_node(sp); 1086 if (ULONG_CMP_GE(sp->srcu_gp_seq, sp->srcu_gp_seq_needed)) { 1087 WARN_ON_ONCE(rcu_seq_state(sp->srcu_gp_seq)); 1088 raw_spin_unlock_irq_rcu_node(sp); 1089 mutex_unlock(&sp->srcu_gp_mutex); 1090 return; 1091 } 1092 idx = rcu_seq_state(READ_ONCE(sp->srcu_gp_seq)); 1093 if (idx == SRCU_STATE_IDLE) 1094 srcu_gp_start(sp); 1095 raw_spin_unlock_irq_rcu_node(sp); 1096 if (idx != SRCU_STATE_IDLE) { 1097 mutex_unlock(&sp->srcu_gp_mutex); 1098 return; /* Someone else started the grace period. */ 1099 } 1100 } 1101 1102 if (rcu_seq_state(READ_ONCE(sp->srcu_gp_seq)) == SRCU_STATE_SCAN1) { 1103 idx = 1 ^ (sp->srcu_idx & 1); 1104 if (!try_check_zero(sp, idx, 1)) { 1105 mutex_unlock(&sp->srcu_gp_mutex); 1106 return; /* readers present, retry later. */ 1107 } 1108 srcu_flip(sp); 1109 rcu_seq_set_state(&sp->srcu_gp_seq, SRCU_STATE_SCAN2); 1110 } 1111 1112 if (rcu_seq_state(READ_ONCE(sp->srcu_gp_seq)) == SRCU_STATE_SCAN2) { 1113 1114 /* 1115 * SRCU read-side critical sections are normally short, 1116 * so check at least twice in quick succession after a flip. 1117 */ 1118 idx = 1 ^ (sp->srcu_idx & 1); 1119 if (!try_check_zero(sp, idx, 2)) { 1120 mutex_unlock(&sp->srcu_gp_mutex); 1121 return; /* readers present, retry later. */ 1122 } 1123 srcu_gp_end(sp); /* Releases ->srcu_gp_mutex. */ 1124 } 1125 } 1126 1127 /* 1128 * Invoke a limited number of SRCU callbacks that have passed through 1129 * their grace period. If there are more to do, SRCU will reschedule 1130 * the workqueue. Note that needed memory barriers have been executed 1131 * in this task's context by srcu_readers_active_idx_check(). 1132 */ 1133 static void srcu_invoke_callbacks(struct work_struct *work) 1134 { 1135 bool more; 1136 struct rcu_cblist ready_cbs; 1137 struct rcu_head *rhp; 1138 struct srcu_data *sdp; 1139 struct srcu_struct *sp; 1140 1141 sdp = container_of(work, struct srcu_data, work.work); 1142 sp = sdp->sp; 1143 rcu_cblist_init(&ready_cbs); 1144 raw_spin_lock_irq_rcu_node(sdp); 1145 rcu_segcblist_advance(&sdp->srcu_cblist, 1146 rcu_seq_current(&sp->srcu_gp_seq)); 1147 if (sdp->srcu_cblist_invoking || 1148 !rcu_segcblist_ready_cbs(&sdp->srcu_cblist)) { 1149 raw_spin_unlock_irq_rcu_node(sdp); 1150 return; /* Someone else on the job or nothing to do. */ 1151 } 1152 1153 /* We are on the job! Extract and invoke ready callbacks. */ 1154 sdp->srcu_cblist_invoking = true; 1155 rcu_segcblist_extract_done_cbs(&sdp->srcu_cblist, &ready_cbs); 1156 raw_spin_unlock_irq_rcu_node(sdp); 1157 rhp = rcu_cblist_dequeue(&ready_cbs); 1158 for (; rhp != NULL; rhp = rcu_cblist_dequeue(&ready_cbs)) { 1159 debug_rcu_head_unqueue(rhp); 1160 local_bh_disable(); 1161 rhp->func(rhp); 1162 local_bh_enable(); 1163 } 1164 1165 /* 1166 * Update counts, accelerate new callbacks, and if needed, 1167 * schedule another round of callback invocation. 1168 */ 1169 raw_spin_lock_irq_rcu_node(sdp); 1170 rcu_segcblist_insert_count(&sdp->srcu_cblist, &ready_cbs); 1171 (void)rcu_segcblist_accelerate(&sdp->srcu_cblist, 1172 rcu_seq_snap(&sp->srcu_gp_seq)); 1173 sdp->srcu_cblist_invoking = false; 1174 more = rcu_segcblist_ready_cbs(&sdp->srcu_cblist); 1175 raw_spin_unlock_irq_rcu_node(sdp); 1176 if (more) 1177 srcu_schedule_cbs_sdp(sdp, 0); 1178 } 1179 1180 /* 1181 * Finished one round of SRCU grace period. Start another if there are 1182 * more SRCU callbacks queued, otherwise put SRCU into not-running state. 1183 */ 1184 static void srcu_reschedule(struct srcu_struct *sp, unsigned long delay) 1185 { 1186 bool pushgp = true; 1187 1188 raw_spin_lock_irq_rcu_node(sp); 1189 if (ULONG_CMP_GE(sp->srcu_gp_seq, sp->srcu_gp_seq_needed)) { 1190 if (!WARN_ON_ONCE(rcu_seq_state(sp->srcu_gp_seq))) { 1191 /* All requests fulfilled, time to go idle. */ 1192 pushgp = false; 1193 } 1194 } else if (!rcu_seq_state(sp->srcu_gp_seq)) { 1195 /* Outstanding request and no GP. Start one. */ 1196 srcu_gp_start(sp); 1197 } 1198 raw_spin_unlock_irq_rcu_node(sp); 1199 1200 if (pushgp) 1201 queue_delayed_work(system_power_efficient_wq, &sp->work, delay); 1202 } 1203 1204 /* 1205 * This is the work-queue function that handles SRCU grace periods. 1206 */ 1207 static void process_srcu(struct work_struct *work) 1208 { 1209 struct srcu_struct *sp; 1210 1211 sp = container_of(work, struct srcu_struct, work.work); 1212 1213 srcu_advance_state(sp); 1214 srcu_reschedule(sp, srcu_get_delay(sp)); 1215 } 1216 1217 void srcutorture_get_gp_data(enum rcutorture_type test_type, 1218 struct srcu_struct *sp, int *flags, 1219 unsigned long *gpnum, unsigned long *completed) 1220 { 1221 if (test_type != SRCU_FLAVOR) 1222 return; 1223 *flags = 0; 1224 *completed = rcu_seq_ctr(sp->srcu_gp_seq); 1225 *gpnum = rcu_seq_ctr(sp->srcu_gp_seq_needed); 1226 } 1227 EXPORT_SYMBOL_GPL(srcutorture_get_gp_data); 1228 1229 void srcu_torture_stats_print(struct srcu_struct *sp, char *tt, char *tf) 1230 { 1231 int cpu; 1232 int idx; 1233 unsigned long s0 = 0, s1 = 0; 1234 1235 idx = sp->srcu_idx & 0x1; 1236 pr_alert("%s%s Tree SRCU per-CPU(idx=%d):", tt, tf, idx); 1237 for_each_possible_cpu(cpu) { 1238 unsigned long l0, l1; 1239 unsigned long u0, u1; 1240 long c0, c1; 1241 struct srcu_data *counts; 1242 1243 counts = per_cpu_ptr(sp->sda, cpu); 1244 u0 = counts->srcu_unlock_count[!idx]; 1245 u1 = counts->srcu_unlock_count[idx]; 1246 1247 /* 1248 * Make sure that a lock is always counted if the corresponding 1249 * unlock is counted. 1250 */ 1251 smp_rmb(); 1252 1253 l0 = counts->srcu_lock_count[!idx]; 1254 l1 = counts->srcu_lock_count[idx]; 1255 1256 c0 = l0 - u0; 1257 c1 = l1 - u1; 1258 pr_cont(" %d(%ld,%ld)", cpu, c0, c1); 1259 s0 += c0; 1260 s1 += c1; 1261 } 1262 pr_cont(" T(%ld,%ld)\n", s0, s1); 1263 } 1264 EXPORT_SYMBOL_GPL(srcu_torture_stats_print); 1265 1266 static int __init srcu_bootup_announce(void) 1267 { 1268 pr_info("Hierarchical SRCU implementation.\n"); 1269 if (exp_holdoff != DEFAULT_SRCU_EXP_HOLDOFF) 1270 pr_info("\tNon-default auto-expedite holdoff of %lu ns.\n", exp_holdoff); 1271 return 0; 1272 } 1273 early_initcall(srcu_bootup_announce); 1274