1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Sleepable Read-Copy Update mechanism for mutual exclusion. 4 * 5 * Copyright (C) IBM Corporation, 2006 6 * Copyright (C) Fujitsu, 2012 7 * 8 * Authors: Paul McKenney <paulmck@linux.ibm.com> 9 * Lai Jiangshan <laijs@cn.fujitsu.com> 10 * 11 * For detailed explanation of Read-Copy Update mechanism see - 12 * Documentation/RCU/ *.txt 13 * 14 */ 15 16 #define pr_fmt(fmt) "rcu: " fmt 17 18 #include <linux/export.h> 19 #include <linux/mutex.h> 20 #include <linux/percpu.h> 21 #include <linux/preempt.h> 22 #include <linux/rcupdate_wait.h> 23 #include <linux/sched.h> 24 #include <linux/smp.h> 25 #include <linux/delay.h> 26 #include <linux/module.h> 27 #include <linux/srcu.h> 28 29 #include "rcu.h" 30 #include "rcu_segcblist.h" 31 32 /* Holdoff in nanoseconds for auto-expediting. */ 33 #define DEFAULT_SRCU_EXP_HOLDOFF (25 * 1000) 34 static ulong exp_holdoff = DEFAULT_SRCU_EXP_HOLDOFF; 35 module_param(exp_holdoff, ulong, 0444); 36 37 /* Overflow-check frequency. N bits roughly says every 2**N grace periods. */ 38 static ulong counter_wrap_check = (ULONG_MAX >> 2); 39 module_param(counter_wrap_check, ulong, 0444); 40 41 /* Early-boot callback-management, so early that no lock is required! */ 42 static LIST_HEAD(srcu_boot_list); 43 static bool __read_mostly srcu_init_done; 44 45 static void srcu_invoke_callbacks(struct work_struct *work); 46 static void srcu_reschedule(struct srcu_struct *ssp, unsigned long delay); 47 static void process_srcu(struct work_struct *work); 48 static void srcu_delay_timer(struct timer_list *t); 49 50 /* Wrappers for lock acquisition and release, see raw_spin_lock_rcu_node(). */ 51 #define spin_lock_rcu_node(p) \ 52 do { \ 53 spin_lock(&ACCESS_PRIVATE(p, lock)); \ 54 smp_mb__after_unlock_lock(); \ 55 } while (0) 56 57 #define spin_unlock_rcu_node(p) spin_unlock(&ACCESS_PRIVATE(p, lock)) 58 59 #define spin_lock_irq_rcu_node(p) \ 60 do { \ 61 spin_lock_irq(&ACCESS_PRIVATE(p, lock)); \ 62 smp_mb__after_unlock_lock(); \ 63 } while (0) 64 65 #define spin_unlock_irq_rcu_node(p) \ 66 spin_unlock_irq(&ACCESS_PRIVATE(p, lock)) 67 68 #define spin_lock_irqsave_rcu_node(p, flags) \ 69 do { \ 70 spin_lock_irqsave(&ACCESS_PRIVATE(p, lock), flags); \ 71 smp_mb__after_unlock_lock(); \ 72 } while (0) 73 74 #define spin_unlock_irqrestore_rcu_node(p, flags) \ 75 spin_unlock_irqrestore(&ACCESS_PRIVATE(p, lock), flags) \ 76 77 /* 78 * Initialize SRCU combining tree. Note that statically allocated 79 * srcu_struct structures might already have srcu_read_lock() and 80 * srcu_read_unlock() running against them. So if the is_static parameter 81 * is set, don't initialize ->srcu_lock_count[] and ->srcu_unlock_count[]. 82 */ 83 static void init_srcu_struct_nodes(struct srcu_struct *ssp) 84 { 85 int cpu; 86 int i; 87 int level = 0; 88 int levelspread[RCU_NUM_LVLS]; 89 struct srcu_data *sdp; 90 struct srcu_node *snp; 91 struct srcu_node *snp_first; 92 93 /* Initialize geometry if it has not already been initialized. */ 94 rcu_init_geometry(); 95 96 /* Work out the overall tree geometry. */ 97 ssp->level[0] = &ssp->node[0]; 98 for (i = 1; i < rcu_num_lvls; i++) 99 ssp->level[i] = ssp->level[i - 1] + num_rcu_lvl[i - 1]; 100 rcu_init_levelspread(levelspread, num_rcu_lvl); 101 102 /* Each pass through this loop initializes one srcu_node structure. */ 103 srcu_for_each_node_breadth_first(ssp, snp) { 104 spin_lock_init(&ACCESS_PRIVATE(snp, lock)); 105 WARN_ON_ONCE(ARRAY_SIZE(snp->srcu_have_cbs) != 106 ARRAY_SIZE(snp->srcu_data_have_cbs)); 107 for (i = 0; i < ARRAY_SIZE(snp->srcu_have_cbs); i++) { 108 snp->srcu_have_cbs[i] = 0; 109 snp->srcu_data_have_cbs[i] = 0; 110 } 111 snp->srcu_gp_seq_needed_exp = 0; 112 snp->grplo = -1; 113 snp->grphi = -1; 114 if (snp == &ssp->node[0]) { 115 /* Root node, special case. */ 116 snp->srcu_parent = NULL; 117 continue; 118 } 119 120 /* Non-root node. */ 121 if (snp == ssp->level[level + 1]) 122 level++; 123 snp->srcu_parent = ssp->level[level - 1] + 124 (snp - ssp->level[level]) / 125 levelspread[level - 1]; 126 } 127 128 /* 129 * Initialize the per-CPU srcu_data array, which feeds into the 130 * leaves of the srcu_node tree. 131 */ 132 WARN_ON_ONCE(ARRAY_SIZE(sdp->srcu_lock_count) != 133 ARRAY_SIZE(sdp->srcu_unlock_count)); 134 level = rcu_num_lvls - 1; 135 snp_first = ssp->level[level]; 136 for_each_possible_cpu(cpu) { 137 sdp = per_cpu_ptr(ssp->sda, cpu); 138 spin_lock_init(&ACCESS_PRIVATE(sdp, lock)); 139 rcu_segcblist_init(&sdp->srcu_cblist); 140 sdp->srcu_cblist_invoking = false; 141 sdp->srcu_gp_seq_needed = ssp->srcu_gp_seq; 142 sdp->srcu_gp_seq_needed_exp = ssp->srcu_gp_seq; 143 sdp->mynode = &snp_first[cpu / levelspread[level]]; 144 for (snp = sdp->mynode; snp != NULL; snp = snp->srcu_parent) { 145 if (snp->grplo < 0) 146 snp->grplo = cpu; 147 snp->grphi = cpu; 148 } 149 sdp->cpu = cpu; 150 INIT_WORK(&sdp->work, srcu_invoke_callbacks); 151 timer_setup(&sdp->delay_work, srcu_delay_timer, 0); 152 sdp->ssp = ssp; 153 sdp->grpmask = 1 << (cpu - sdp->mynode->grplo); 154 } 155 } 156 157 /* 158 * Initialize non-compile-time initialized fields, including the 159 * associated srcu_node and srcu_data structures. The is_static 160 * parameter is passed through to init_srcu_struct_nodes(), and 161 * also tells us that ->sda has already been wired up to srcu_data. 162 */ 163 static int init_srcu_struct_fields(struct srcu_struct *ssp, bool is_static) 164 { 165 mutex_init(&ssp->srcu_cb_mutex); 166 mutex_init(&ssp->srcu_gp_mutex); 167 ssp->srcu_idx = 0; 168 ssp->srcu_gp_seq = 0; 169 ssp->srcu_barrier_seq = 0; 170 mutex_init(&ssp->srcu_barrier_mutex); 171 atomic_set(&ssp->srcu_barrier_cpu_cnt, 0); 172 INIT_DELAYED_WORK(&ssp->work, process_srcu); 173 if (!is_static) 174 ssp->sda = alloc_percpu(struct srcu_data); 175 if (!ssp->sda) 176 return -ENOMEM; 177 init_srcu_struct_nodes(ssp); 178 ssp->srcu_gp_seq_needed_exp = 0; 179 ssp->srcu_last_gp_end = ktime_get_mono_fast_ns(); 180 smp_store_release(&ssp->srcu_gp_seq_needed, 0); /* Init done. */ 181 return 0; 182 } 183 184 #ifdef CONFIG_DEBUG_LOCK_ALLOC 185 186 int __init_srcu_struct(struct srcu_struct *ssp, const char *name, 187 struct lock_class_key *key) 188 { 189 /* Don't re-initialize a lock while it is held. */ 190 debug_check_no_locks_freed((void *)ssp, sizeof(*ssp)); 191 lockdep_init_map(&ssp->dep_map, name, key, 0); 192 spin_lock_init(&ACCESS_PRIVATE(ssp, lock)); 193 return init_srcu_struct_fields(ssp, false); 194 } 195 EXPORT_SYMBOL_GPL(__init_srcu_struct); 196 197 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 198 199 /** 200 * init_srcu_struct - initialize a sleep-RCU structure 201 * @ssp: structure to initialize. 202 * 203 * Must invoke this on a given srcu_struct before passing that srcu_struct 204 * to any other function. Each srcu_struct represents a separate domain 205 * of SRCU protection. 206 */ 207 int init_srcu_struct(struct srcu_struct *ssp) 208 { 209 spin_lock_init(&ACCESS_PRIVATE(ssp, lock)); 210 return init_srcu_struct_fields(ssp, false); 211 } 212 EXPORT_SYMBOL_GPL(init_srcu_struct); 213 214 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 215 216 /* 217 * First-use initialization of statically allocated srcu_struct 218 * structure. Wiring up the combining tree is more than can be 219 * done with compile-time initialization, so this check is added 220 * to each update-side SRCU primitive. Use ssp->lock, which -is- 221 * compile-time initialized, to resolve races involving multiple 222 * CPUs trying to garner first-use privileges. 223 */ 224 static void check_init_srcu_struct(struct srcu_struct *ssp) 225 { 226 unsigned long flags; 227 228 /* The smp_load_acquire() pairs with the smp_store_release(). */ 229 if (!rcu_seq_state(smp_load_acquire(&ssp->srcu_gp_seq_needed))) /*^^^*/ 230 return; /* Already initialized. */ 231 spin_lock_irqsave_rcu_node(ssp, flags); 232 if (!rcu_seq_state(ssp->srcu_gp_seq_needed)) { 233 spin_unlock_irqrestore_rcu_node(ssp, flags); 234 return; 235 } 236 init_srcu_struct_fields(ssp, true); 237 spin_unlock_irqrestore_rcu_node(ssp, flags); 238 } 239 240 /* 241 * Returns approximate total of the readers' ->srcu_lock_count[] values 242 * for the rank of per-CPU counters specified by idx. 243 */ 244 static unsigned long srcu_readers_lock_idx(struct srcu_struct *ssp, int idx) 245 { 246 int cpu; 247 unsigned long sum = 0; 248 249 for_each_possible_cpu(cpu) { 250 struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu); 251 252 sum += READ_ONCE(cpuc->srcu_lock_count[idx]); 253 } 254 return sum; 255 } 256 257 /* 258 * Returns approximate total of the readers' ->srcu_unlock_count[] values 259 * for the rank of per-CPU counters specified by idx. 260 */ 261 static unsigned long srcu_readers_unlock_idx(struct srcu_struct *ssp, int idx) 262 { 263 int cpu; 264 unsigned long sum = 0; 265 266 for_each_possible_cpu(cpu) { 267 struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu); 268 269 sum += READ_ONCE(cpuc->srcu_unlock_count[idx]); 270 } 271 return sum; 272 } 273 274 /* 275 * Return true if the number of pre-existing readers is determined to 276 * be zero. 277 */ 278 static bool srcu_readers_active_idx_check(struct srcu_struct *ssp, int idx) 279 { 280 unsigned long unlocks; 281 282 unlocks = srcu_readers_unlock_idx(ssp, idx); 283 284 /* 285 * Make sure that a lock is always counted if the corresponding 286 * unlock is counted. Needs to be a smp_mb() as the read side may 287 * contain a read from a variable that is written to before the 288 * synchronize_srcu() in the write side. In this case smp_mb()s 289 * A and B act like the store buffering pattern. 290 * 291 * This smp_mb() also pairs with smp_mb() C to prevent accesses 292 * after the synchronize_srcu() from being executed before the 293 * grace period ends. 294 */ 295 smp_mb(); /* A */ 296 297 /* 298 * If the locks are the same as the unlocks, then there must have 299 * been no readers on this index at some time in between. This does 300 * not mean that there are no more readers, as one could have read 301 * the current index but not have incremented the lock counter yet. 302 * 303 * So suppose that the updater is preempted here for so long 304 * that more than ULONG_MAX non-nested readers come and go in 305 * the meantime. It turns out that this cannot result in overflow 306 * because if a reader modifies its unlock count after we read it 307 * above, then that reader's next load of ->srcu_idx is guaranteed 308 * to get the new value, which will cause it to operate on the 309 * other bank of counters, where it cannot contribute to the 310 * overflow of these counters. This means that there is a maximum 311 * of 2*NR_CPUS increments, which cannot overflow given current 312 * systems, especially not on 64-bit systems. 313 * 314 * OK, how about nesting? This does impose a limit on nesting 315 * of floor(ULONG_MAX/NR_CPUS/2), which should be sufficient, 316 * especially on 64-bit systems. 317 */ 318 return srcu_readers_lock_idx(ssp, idx) == unlocks; 319 } 320 321 /** 322 * srcu_readers_active - returns true if there are readers. and false 323 * otherwise 324 * @ssp: which srcu_struct to count active readers (holding srcu_read_lock). 325 * 326 * Note that this is not an atomic primitive, and can therefore suffer 327 * severe errors when invoked on an active srcu_struct. That said, it 328 * can be useful as an error check at cleanup time. 329 */ 330 static bool srcu_readers_active(struct srcu_struct *ssp) 331 { 332 int cpu; 333 unsigned long sum = 0; 334 335 for_each_possible_cpu(cpu) { 336 struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu); 337 338 sum += READ_ONCE(cpuc->srcu_lock_count[0]); 339 sum += READ_ONCE(cpuc->srcu_lock_count[1]); 340 sum -= READ_ONCE(cpuc->srcu_unlock_count[0]); 341 sum -= READ_ONCE(cpuc->srcu_unlock_count[1]); 342 } 343 return sum; 344 } 345 346 #define SRCU_INTERVAL 1 347 348 /* 349 * Return grace-period delay, zero if there are expedited grace 350 * periods pending, SRCU_INTERVAL otherwise. 351 */ 352 static unsigned long srcu_get_delay(struct srcu_struct *ssp) 353 { 354 if (ULONG_CMP_LT(READ_ONCE(ssp->srcu_gp_seq), 355 READ_ONCE(ssp->srcu_gp_seq_needed_exp))) 356 return 0; 357 return SRCU_INTERVAL; 358 } 359 360 /** 361 * cleanup_srcu_struct - deconstruct a sleep-RCU structure 362 * @ssp: structure to clean up. 363 * 364 * Must invoke this after you are finished using a given srcu_struct that 365 * was initialized via init_srcu_struct(), else you leak memory. 366 */ 367 void cleanup_srcu_struct(struct srcu_struct *ssp) 368 { 369 int cpu; 370 371 if (WARN_ON(!srcu_get_delay(ssp))) 372 return; /* Just leak it! */ 373 if (WARN_ON(srcu_readers_active(ssp))) 374 return; /* Just leak it! */ 375 flush_delayed_work(&ssp->work); 376 for_each_possible_cpu(cpu) { 377 struct srcu_data *sdp = per_cpu_ptr(ssp->sda, cpu); 378 379 del_timer_sync(&sdp->delay_work); 380 flush_work(&sdp->work); 381 if (WARN_ON(rcu_segcblist_n_cbs(&sdp->srcu_cblist))) 382 return; /* Forgot srcu_barrier(), so just leak it! */ 383 } 384 if (WARN_ON(rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq)) != SRCU_STATE_IDLE) || 385 WARN_ON(srcu_readers_active(ssp))) { 386 pr_info("%s: Active srcu_struct %p state: %d\n", 387 __func__, ssp, rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq))); 388 return; /* Caller forgot to stop doing call_srcu()? */ 389 } 390 free_percpu(ssp->sda); 391 ssp->sda = NULL; 392 } 393 EXPORT_SYMBOL_GPL(cleanup_srcu_struct); 394 395 /* 396 * Counts the new reader in the appropriate per-CPU element of the 397 * srcu_struct. 398 * Returns an index that must be passed to the matching srcu_read_unlock(). 399 */ 400 int __srcu_read_lock(struct srcu_struct *ssp) 401 { 402 int idx; 403 404 idx = READ_ONCE(ssp->srcu_idx) & 0x1; 405 this_cpu_inc(ssp->sda->srcu_lock_count[idx]); 406 smp_mb(); /* B */ /* Avoid leaking the critical section. */ 407 return idx; 408 } 409 EXPORT_SYMBOL_GPL(__srcu_read_lock); 410 411 /* 412 * Removes the count for the old reader from the appropriate per-CPU 413 * element of the srcu_struct. Note that this may well be a different 414 * CPU than that which was incremented by the corresponding srcu_read_lock(). 415 */ 416 void __srcu_read_unlock(struct srcu_struct *ssp, int idx) 417 { 418 smp_mb(); /* C */ /* Avoid leaking the critical section. */ 419 this_cpu_inc(ssp->sda->srcu_unlock_count[idx]); 420 } 421 EXPORT_SYMBOL_GPL(__srcu_read_unlock); 422 423 /* 424 * We use an adaptive strategy for synchronize_srcu() and especially for 425 * synchronize_srcu_expedited(). We spin for a fixed time period 426 * (defined below) to allow SRCU readers to exit their read-side critical 427 * sections. If there are still some readers after a few microseconds, 428 * we repeatedly block for 1-millisecond time periods. 429 */ 430 #define SRCU_RETRY_CHECK_DELAY 5 431 432 /* 433 * Start an SRCU grace period. 434 */ 435 static void srcu_gp_start(struct srcu_struct *ssp) 436 { 437 struct srcu_data *sdp = this_cpu_ptr(ssp->sda); 438 int state; 439 440 lockdep_assert_held(&ACCESS_PRIVATE(ssp, lock)); 441 WARN_ON_ONCE(ULONG_CMP_GE(ssp->srcu_gp_seq, ssp->srcu_gp_seq_needed)); 442 spin_lock_rcu_node(sdp); /* Interrupts already disabled. */ 443 rcu_segcblist_advance(&sdp->srcu_cblist, 444 rcu_seq_current(&ssp->srcu_gp_seq)); 445 (void)rcu_segcblist_accelerate(&sdp->srcu_cblist, 446 rcu_seq_snap(&ssp->srcu_gp_seq)); 447 spin_unlock_rcu_node(sdp); /* Interrupts remain disabled. */ 448 smp_mb(); /* Order prior store to ->srcu_gp_seq_needed vs. GP start. */ 449 rcu_seq_start(&ssp->srcu_gp_seq); 450 state = rcu_seq_state(ssp->srcu_gp_seq); 451 WARN_ON_ONCE(state != SRCU_STATE_SCAN1); 452 } 453 454 455 static void srcu_delay_timer(struct timer_list *t) 456 { 457 struct srcu_data *sdp = container_of(t, struct srcu_data, delay_work); 458 459 queue_work_on(sdp->cpu, rcu_gp_wq, &sdp->work); 460 } 461 462 static void srcu_queue_delayed_work_on(struct srcu_data *sdp, 463 unsigned long delay) 464 { 465 if (!delay) { 466 queue_work_on(sdp->cpu, rcu_gp_wq, &sdp->work); 467 return; 468 } 469 470 timer_reduce(&sdp->delay_work, jiffies + delay); 471 } 472 473 /* 474 * Schedule callback invocation for the specified srcu_data structure, 475 * if possible, on the corresponding CPU. 476 */ 477 static void srcu_schedule_cbs_sdp(struct srcu_data *sdp, unsigned long delay) 478 { 479 srcu_queue_delayed_work_on(sdp, delay); 480 } 481 482 /* 483 * Schedule callback invocation for all srcu_data structures associated 484 * with the specified srcu_node structure that have callbacks for the 485 * just-completed grace period, the one corresponding to idx. If possible, 486 * schedule this invocation on the corresponding CPUs. 487 */ 488 static void srcu_schedule_cbs_snp(struct srcu_struct *ssp, struct srcu_node *snp, 489 unsigned long mask, unsigned long delay) 490 { 491 int cpu; 492 493 for (cpu = snp->grplo; cpu <= snp->grphi; cpu++) { 494 if (!(mask & (1 << (cpu - snp->grplo)))) 495 continue; 496 srcu_schedule_cbs_sdp(per_cpu_ptr(ssp->sda, cpu), delay); 497 } 498 } 499 500 /* 501 * Note the end of an SRCU grace period. Initiates callback invocation 502 * and starts a new grace period if needed. 503 * 504 * The ->srcu_cb_mutex acquisition does not protect any data, but 505 * instead prevents more than one grace period from starting while we 506 * are initiating callback invocation. This allows the ->srcu_have_cbs[] 507 * array to have a finite number of elements. 508 */ 509 static void srcu_gp_end(struct srcu_struct *ssp) 510 { 511 unsigned long cbdelay; 512 bool cbs; 513 bool last_lvl; 514 int cpu; 515 unsigned long flags; 516 unsigned long gpseq; 517 int idx; 518 unsigned long mask; 519 struct srcu_data *sdp; 520 struct srcu_node *snp; 521 522 /* Prevent more than one additional grace period. */ 523 mutex_lock(&ssp->srcu_cb_mutex); 524 525 /* End the current grace period. */ 526 spin_lock_irq_rcu_node(ssp); 527 idx = rcu_seq_state(ssp->srcu_gp_seq); 528 WARN_ON_ONCE(idx != SRCU_STATE_SCAN2); 529 cbdelay = srcu_get_delay(ssp); 530 WRITE_ONCE(ssp->srcu_last_gp_end, ktime_get_mono_fast_ns()); 531 rcu_seq_end(&ssp->srcu_gp_seq); 532 gpseq = rcu_seq_current(&ssp->srcu_gp_seq); 533 if (ULONG_CMP_LT(ssp->srcu_gp_seq_needed_exp, gpseq)) 534 WRITE_ONCE(ssp->srcu_gp_seq_needed_exp, gpseq); 535 spin_unlock_irq_rcu_node(ssp); 536 mutex_unlock(&ssp->srcu_gp_mutex); 537 /* A new grace period can start at this point. But only one. */ 538 539 /* Initiate callback invocation as needed. */ 540 idx = rcu_seq_ctr(gpseq) % ARRAY_SIZE(snp->srcu_have_cbs); 541 srcu_for_each_node_breadth_first(ssp, snp) { 542 spin_lock_irq_rcu_node(snp); 543 cbs = false; 544 last_lvl = snp >= ssp->level[rcu_num_lvls - 1]; 545 if (last_lvl) 546 cbs = snp->srcu_have_cbs[idx] == gpseq; 547 snp->srcu_have_cbs[idx] = gpseq; 548 rcu_seq_set_state(&snp->srcu_have_cbs[idx], 1); 549 if (ULONG_CMP_LT(snp->srcu_gp_seq_needed_exp, gpseq)) 550 WRITE_ONCE(snp->srcu_gp_seq_needed_exp, gpseq); 551 mask = snp->srcu_data_have_cbs[idx]; 552 snp->srcu_data_have_cbs[idx] = 0; 553 spin_unlock_irq_rcu_node(snp); 554 if (cbs) 555 srcu_schedule_cbs_snp(ssp, snp, mask, cbdelay); 556 557 /* Occasionally prevent srcu_data counter wrap. */ 558 if (!(gpseq & counter_wrap_check) && last_lvl) 559 for (cpu = snp->grplo; cpu <= snp->grphi; cpu++) { 560 sdp = per_cpu_ptr(ssp->sda, cpu); 561 spin_lock_irqsave_rcu_node(sdp, flags); 562 if (ULONG_CMP_GE(gpseq, 563 sdp->srcu_gp_seq_needed + 100)) 564 sdp->srcu_gp_seq_needed = gpseq; 565 if (ULONG_CMP_GE(gpseq, 566 sdp->srcu_gp_seq_needed_exp + 100)) 567 sdp->srcu_gp_seq_needed_exp = gpseq; 568 spin_unlock_irqrestore_rcu_node(sdp, flags); 569 } 570 } 571 572 /* Callback initiation done, allow grace periods after next. */ 573 mutex_unlock(&ssp->srcu_cb_mutex); 574 575 /* Start a new grace period if needed. */ 576 spin_lock_irq_rcu_node(ssp); 577 gpseq = rcu_seq_current(&ssp->srcu_gp_seq); 578 if (!rcu_seq_state(gpseq) && 579 ULONG_CMP_LT(gpseq, ssp->srcu_gp_seq_needed)) { 580 srcu_gp_start(ssp); 581 spin_unlock_irq_rcu_node(ssp); 582 srcu_reschedule(ssp, 0); 583 } else { 584 spin_unlock_irq_rcu_node(ssp); 585 } 586 } 587 588 /* 589 * Funnel-locking scheme to scalably mediate many concurrent expedited 590 * grace-period requests. This function is invoked for the first known 591 * expedited request for a grace period that has already been requested, 592 * but without expediting. To start a completely new grace period, 593 * whether expedited or not, use srcu_funnel_gp_start() instead. 594 */ 595 static void srcu_funnel_exp_start(struct srcu_struct *ssp, struct srcu_node *snp, 596 unsigned long s) 597 { 598 unsigned long flags; 599 600 for (; snp != NULL; snp = snp->srcu_parent) { 601 if (rcu_seq_done(&ssp->srcu_gp_seq, s) || 602 ULONG_CMP_GE(READ_ONCE(snp->srcu_gp_seq_needed_exp), s)) 603 return; 604 spin_lock_irqsave_rcu_node(snp, flags); 605 if (ULONG_CMP_GE(snp->srcu_gp_seq_needed_exp, s)) { 606 spin_unlock_irqrestore_rcu_node(snp, flags); 607 return; 608 } 609 WRITE_ONCE(snp->srcu_gp_seq_needed_exp, s); 610 spin_unlock_irqrestore_rcu_node(snp, flags); 611 } 612 spin_lock_irqsave_rcu_node(ssp, flags); 613 if (ULONG_CMP_LT(ssp->srcu_gp_seq_needed_exp, s)) 614 WRITE_ONCE(ssp->srcu_gp_seq_needed_exp, s); 615 spin_unlock_irqrestore_rcu_node(ssp, flags); 616 } 617 618 /* 619 * Funnel-locking scheme to scalably mediate many concurrent grace-period 620 * requests. The winner has to do the work of actually starting grace 621 * period s. Losers must either ensure that their desired grace-period 622 * number is recorded on at least their leaf srcu_node structure, or they 623 * must take steps to invoke their own callbacks. 624 * 625 * Note that this function also does the work of srcu_funnel_exp_start(), 626 * in some cases by directly invoking it. 627 */ 628 static void srcu_funnel_gp_start(struct srcu_struct *ssp, struct srcu_data *sdp, 629 unsigned long s, bool do_norm) 630 { 631 unsigned long flags; 632 int idx = rcu_seq_ctr(s) % ARRAY_SIZE(sdp->mynode->srcu_have_cbs); 633 struct srcu_node *snp = sdp->mynode; 634 unsigned long snp_seq; 635 636 /* Each pass through the loop does one level of the srcu_node tree. */ 637 for (; snp != NULL; snp = snp->srcu_parent) { 638 if (rcu_seq_done(&ssp->srcu_gp_seq, s) && snp != sdp->mynode) 639 return; /* GP already done and CBs recorded. */ 640 spin_lock_irqsave_rcu_node(snp, flags); 641 if (ULONG_CMP_GE(snp->srcu_have_cbs[idx], s)) { 642 snp_seq = snp->srcu_have_cbs[idx]; 643 if (snp == sdp->mynode && snp_seq == s) 644 snp->srcu_data_have_cbs[idx] |= sdp->grpmask; 645 spin_unlock_irqrestore_rcu_node(snp, flags); 646 if (snp == sdp->mynode && snp_seq != s) { 647 srcu_schedule_cbs_sdp(sdp, do_norm 648 ? SRCU_INTERVAL 649 : 0); 650 return; 651 } 652 if (!do_norm) 653 srcu_funnel_exp_start(ssp, snp, s); 654 return; 655 } 656 snp->srcu_have_cbs[idx] = s; 657 if (snp == sdp->mynode) 658 snp->srcu_data_have_cbs[idx] |= sdp->grpmask; 659 if (!do_norm && ULONG_CMP_LT(snp->srcu_gp_seq_needed_exp, s)) 660 WRITE_ONCE(snp->srcu_gp_seq_needed_exp, s); 661 spin_unlock_irqrestore_rcu_node(snp, flags); 662 } 663 664 /* Top of tree, must ensure the grace period will be started. */ 665 spin_lock_irqsave_rcu_node(ssp, flags); 666 if (ULONG_CMP_LT(ssp->srcu_gp_seq_needed, s)) { 667 /* 668 * Record need for grace period s. Pair with load 669 * acquire setting up for initialization. 670 */ 671 smp_store_release(&ssp->srcu_gp_seq_needed, s); /*^^^*/ 672 } 673 if (!do_norm && ULONG_CMP_LT(ssp->srcu_gp_seq_needed_exp, s)) 674 WRITE_ONCE(ssp->srcu_gp_seq_needed_exp, s); 675 676 /* If grace period not already done and none in progress, start it. */ 677 if (!rcu_seq_done(&ssp->srcu_gp_seq, s) && 678 rcu_seq_state(ssp->srcu_gp_seq) == SRCU_STATE_IDLE) { 679 WARN_ON_ONCE(ULONG_CMP_GE(ssp->srcu_gp_seq, ssp->srcu_gp_seq_needed)); 680 srcu_gp_start(ssp); 681 if (likely(srcu_init_done)) 682 queue_delayed_work(rcu_gp_wq, &ssp->work, 683 srcu_get_delay(ssp)); 684 else if (list_empty(&ssp->work.work.entry)) 685 list_add(&ssp->work.work.entry, &srcu_boot_list); 686 } 687 spin_unlock_irqrestore_rcu_node(ssp, flags); 688 } 689 690 /* 691 * Wait until all readers counted by array index idx complete, but 692 * loop an additional time if there is an expedited grace period pending. 693 * The caller must ensure that ->srcu_idx is not changed while checking. 694 */ 695 static bool try_check_zero(struct srcu_struct *ssp, int idx, int trycount) 696 { 697 for (;;) { 698 if (srcu_readers_active_idx_check(ssp, idx)) 699 return true; 700 if (--trycount + !srcu_get_delay(ssp) <= 0) 701 return false; 702 udelay(SRCU_RETRY_CHECK_DELAY); 703 } 704 } 705 706 /* 707 * Increment the ->srcu_idx counter so that future SRCU readers will 708 * use the other rank of the ->srcu_(un)lock_count[] arrays. This allows 709 * us to wait for pre-existing readers in a starvation-free manner. 710 */ 711 static void srcu_flip(struct srcu_struct *ssp) 712 { 713 /* 714 * Ensure that if this updater saw a given reader's increment 715 * from __srcu_read_lock(), that reader was using an old value 716 * of ->srcu_idx. Also ensure that if a given reader sees the 717 * new value of ->srcu_idx, this updater's earlier scans cannot 718 * have seen that reader's increments (which is OK, because this 719 * grace period need not wait on that reader). 720 */ 721 smp_mb(); /* E */ /* Pairs with B and C. */ 722 723 WRITE_ONCE(ssp->srcu_idx, ssp->srcu_idx + 1); 724 725 /* 726 * Ensure that if the updater misses an __srcu_read_unlock() 727 * increment, that task's next __srcu_read_lock() will see the 728 * above counter update. Note that both this memory barrier 729 * and the one in srcu_readers_active_idx_check() provide the 730 * guarantee for __srcu_read_lock(). 731 */ 732 smp_mb(); /* D */ /* Pairs with C. */ 733 } 734 735 /* 736 * If SRCU is likely idle, return true, otherwise return false. 737 * 738 * Note that it is OK for several current from-idle requests for a new 739 * grace period from idle to specify expediting because they will all end 740 * up requesting the same grace period anyhow. So no loss. 741 * 742 * Note also that if any CPU (including the current one) is still invoking 743 * callbacks, this function will nevertheless say "idle". This is not 744 * ideal, but the overhead of checking all CPUs' callback lists is even 745 * less ideal, especially on large systems. Furthermore, the wakeup 746 * can happen before the callback is fully removed, so we have no choice 747 * but to accept this type of error. 748 * 749 * This function is also subject to counter-wrap errors, but let's face 750 * it, if this function was preempted for enough time for the counters 751 * to wrap, it really doesn't matter whether or not we expedite the grace 752 * period. The extra overhead of a needlessly expedited grace period is 753 * negligible when amortized over that time period, and the extra latency 754 * of a needlessly non-expedited grace period is similarly negligible. 755 */ 756 static bool srcu_might_be_idle(struct srcu_struct *ssp) 757 { 758 unsigned long curseq; 759 unsigned long flags; 760 struct srcu_data *sdp; 761 unsigned long t; 762 unsigned long tlast; 763 764 check_init_srcu_struct(ssp); 765 /* If the local srcu_data structure has callbacks, not idle. */ 766 sdp = raw_cpu_ptr(ssp->sda); 767 spin_lock_irqsave_rcu_node(sdp, flags); 768 if (rcu_segcblist_pend_cbs(&sdp->srcu_cblist)) { 769 spin_unlock_irqrestore_rcu_node(sdp, flags); 770 return false; /* Callbacks already present, so not idle. */ 771 } 772 spin_unlock_irqrestore_rcu_node(sdp, flags); 773 774 /* 775 * No local callbacks, so probabilistically probe global state. 776 * Exact information would require acquiring locks, which would 777 * kill scalability, hence the probabilistic nature of the probe. 778 */ 779 780 /* First, see if enough time has passed since the last GP. */ 781 t = ktime_get_mono_fast_ns(); 782 tlast = READ_ONCE(ssp->srcu_last_gp_end); 783 if (exp_holdoff == 0 || 784 time_in_range_open(t, tlast, tlast + exp_holdoff)) 785 return false; /* Too soon after last GP. */ 786 787 /* Next, check for probable idleness. */ 788 curseq = rcu_seq_current(&ssp->srcu_gp_seq); 789 smp_mb(); /* Order ->srcu_gp_seq with ->srcu_gp_seq_needed. */ 790 if (ULONG_CMP_LT(curseq, READ_ONCE(ssp->srcu_gp_seq_needed))) 791 return false; /* Grace period in progress, so not idle. */ 792 smp_mb(); /* Order ->srcu_gp_seq with prior access. */ 793 if (curseq != rcu_seq_current(&ssp->srcu_gp_seq)) 794 return false; /* GP # changed, so not idle. */ 795 return true; /* With reasonable probability, idle! */ 796 } 797 798 /* 799 * SRCU callback function to leak a callback. 800 */ 801 static void srcu_leak_callback(struct rcu_head *rhp) 802 { 803 } 804 805 /* 806 * Start an SRCU grace period, and also queue the callback if non-NULL. 807 */ 808 static unsigned long srcu_gp_start_if_needed(struct srcu_struct *ssp, 809 struct rcu_head *rhp, bool do_norm) 810 { 811 unsigned long flags; 812 int idx; 813 bool needexp = false; 814 bool needgp = false; 815 unsigned long s; 816 struct srcu_data *sdp; 817 818 check_init_srcu_struct(ssp); 819 idx = srcu_read_lock(ssp); 820 sdp = raw_cpu_ptr(ssp->sda); 821 spin_lock_irqsave_rcu_node(sdp, flags); 822 if (rhp) 823 rcu_segcblist_enqueue(&sdp->srcu_cblist, rhp); 824 rcu_segcblist_advance(&sdp->srcu_cblist, 825 rcu_seq_current(&ssp->srcu_gp_seq)); 826 s = rcu_seq_snap(&ssp->srcu_gp_seq); 827 (void)rcu_segcblist_accelerate(&sdp->srcu_cblist, s); 828 if (ULONG_CMP_LT(sdp->srcu_gp_seq_needed, s)) { 829 sdp->srcu_gp_seq_needed = s; 830 needgp = true; 831 } 832 if (!do_norm && ULONG_CMP_LT(sdp->srcu_gp_seq_needed_exp, s)) { 833 sdp->srcu_gp_seq_needed_exp = s; 834 needexp = true; 835 } 836 spin_unlock_irqrestore_rcu_node(sdp, flags); 837 if (needgp) 838 srcu_funnel_gp_start(ssp, sdp, s, do_norm); 839 else if (needexp) 840 srcu_funnel_exp_start(ssp, sdp->mynode, s); 841 srcu_read_unlock(ssp, idx); 842 return s; 843 } 844 845 /* 846 * Enqueue an SRCU callback on the srcu_data structure associated with 847 * the current CPU and the specified srcu_struct structure, initiating 848 * grace-period processing if it is not already running. 849 * 850 * Note that all CPUs must agree that the grace period extended beyond 851 * all pre-existing SRCU read-side critical section. On systems with 852 * more than one CPU, this means that when "func()" is invoked, each CPU 853 * is guaranteed to have executed a full memory barrier since the end of 854 * its last corresponding SRCU read-side critical section whose beginning 855 * preceded the call to call_srcu(). It also means that each CPU executing 856 * an SRCU read-side critical section that continues beyond the start of 857 * "func()" must have executed a memory barrier after the call_srcu() 858 * but before the beginning of that SRCU read-side critical section. 859 * Note that these guarantees include CPUs that are offline, idle, or 860 * executing in user mode, as well as CPUs that are executing in the kernel. 861 * 862 * Furthermore, if CPU A invoked call_srcu() and CPU B invoked the 863 * resulting SRCU callback function "func()", then both CPU A and CPU 864 * B are guaranteed to execute a full memory barrier during the time 865 * interval between the call to call_srcu() and the invocation of "func()". 866 * This guarantee applies even if CPU A and CPU B are the same CPU (but 867 * again only if the system has more than one CPU). 868 * 869 * Of course, these guarantees apply only for invocations of call_srcu(), 870 * srcu_read_lock(), and srcu_read_unlock() that are all passed the same 871 * srcu_struct structure. 872 */ 873 static void __call_srcu(struct srcu_struct *ssp, struct rcu_head *rhp, 874 rcu_callback_t func, bool do_norm) 875 { 876 if (debug_rcu_head_queue(rhp)) { 877 /* Probable double call_srcu(), so leak the callback. */ 878 WRITE_ONCE(rhp->func, srcu_leak_callback); 879 WARN_ONCE(1, "call_srcu(): Leaked duplicate callback\n"); 880 return; 881 } 882 rhp->func = func; 883 (void)srcu_gp_start_if_needed(ssp, rhp, do_norm); 884 } 885 886 /** 887 * call_srcu() - Queue a callback for invocation after an SRCU grace period 888 * @ssp: srcu_struct in queue the callback 889 * @rhp: structure to be used for queueing the SRCU callback. 890 * @func: function to be invoked after the SRCU grace period 891 * 892 * The callback function will be invoked some time after a full SRCU 893 * grace period elapses, in other words after all pre-existing SRCU 894 * read-side critical sections have completed. However, the callback 895 * function might well execute concurrently with other SRCU read-side 896 * critical sections that started after call_srcu() was invoked. SRCU 897 * read-side critical sections are delimited by srcu_read_lock() and 898 * srcu_read_unlock(), and may be nested. 899 * 900 * The callback will be invoked from process context, but must nevertheless 901 * be fast and must not block. 902 */ 903 void call_srcu(struct srcu_struct *ssp, struct rcu_head *rhp, 904 rcu_callback_t func) 905 { 906 __call_srcu(ssp, rhp, func, true); 907 } 908 EXPORT_SYMBOL_GPL(call_srcu); 909 910 /* 911 * Helper function for synchronize_srcu() and synchronize_srcu_expedited(). 912 */ 913 static void __synchronize_srcu(struct srcu_struct *ssp, bool do_norm) 914 { 915 struct rcu_synchronize rcu; 916 917 RCU_LOCKDEP_WARN(lockdep_is_held(ssp) || 918 lock_is_held(&rcu_bh_lock_map) || 919 lock_is_held(&rcu_lock_map) || 920 lock_is_held(&rcu_sched_lock_map), 921 "Illegal synchronize_srcu() in same-type SRCU (or in RCU) read-side critical section"); 922 923 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE) 924 return; 925 might_sleep(); 926 check_init_srcu_struct(ssp); 927 init_completion(&rcu.completion); 928 init_rcu_head_on_stack(&rcu.head); 929 __call_srcu(ssp, &rcu.head, wakeme_after_rcu, do_norm); 930 wait_for_completion(&rcu.completion); 931 destroy_rcu_head_on_stack(&rcu.head); 932 933 /* 934 * Make sure that later code is ordered after the SRCU grace 935 * period. This pairs with the spin_lock_irq_rcu_node() 936 * in srcu_invoke_callbacks(). Unlike Tree RCU, this is needed 937 * because the current CPU might have been totally uninvolved with 938 * (and thus unordered against) that grace period. 939 */ 940 smp_mb(); 941 } 942 943 /** 944 * synchronize_srcu_expedited - Brute-force SRCU grace period 945 * @ssp: srcu_struct with which to synchronize. 946 * 947 * Wait for an SRCU grace period to elapse, but be more aggressive about 948 * spinning rather than blocking when waiting. 949 * 950 * Note that synchronize_srcu_expedited() has the same deadlock and 951 * memory-ordering properties as does synchronize_srcu(). 952 */ 953 void synchronize_srcu_expedited(struct srcu_struct *ssp) 954 { 955 __synchronize_srcu(ssp, rcu_gp_is_normal()); 956 } 957 EXPORT_SYMBOL_GPL(synchronize_srcu_expedited); 958 959 /** 960 * synchronize_srcu - wait for prior SRCU read-side critical-section completion 961 * @ssp: srcu_struct with which to synchronize. 962 * 963 * Wait for the count to drain to zero of both indexes. To avoid the 964 * possible starvation of synchronize_srcu(), it waits for the count of 965 * the index=((->srcu_idx & 1) ^ 1) to drain to zero at first, 966 * and then flip the srcu_idx and wait for the count of the other index. 967 * 968 * Can block; must be called from process context. 969 * 970 * Note that it is illegal to call synchronize_srcu() from the corresponding 971 * SRCU read-side critical section; doing so will result in deadlock. 972 * However, it is perfectly legal to call synchronize_srcu() on one 973 * srcu_struct from some other srcu_struct's read-side critical section, 974 * as long as the resulting graph of srcu_structs is acyclic. 975 * 976 * There are memory-ordering constraints implied by synchronize_srcu(). 977 * On systems with more than one CPU, when synchronize_srcu() returns, 978 * each CPU is guaranteed to have executed a full memory barrier since 979 * the end of its last corresponding SRCU read-side critical section 980 * whose beginning preceded the call to synchronize_srcu(). In addition, 981 * each CPU having an SRCU read-side critical section that extends beyond 982 * the return from synchronize_srcu() is guaranteed to have executed a 983 * full memory barrier after the beginning of synchronize_srcu() and before 984 * the beginning of that SRCU read-side critical section. Note that these 985 * guarantees include CPUs that are offline, idle, or executing in user mode, 986 * as well as CPUs that are executing in the kernel. 987 * 988 * Furthermore, if CPU A invoked synchronize_srcu(), which returned 989 * to its caller on CPU B, then both CPU A and CPU B are guaranteed 990 * to have executed a full memory barrier during the execution of 991 * synchronize_srcu(). This guarantee applies even if CPU A and CPU B 992 * are the same CPU, but again only if the system has more than one CPU. 993 * 994 * Of course, these memory-ordering guarantees apply only when 995 * synchronize_srcu(), srcu_read_lock(), and srcu_read_unlock() are 996 * passed the same srcu_struct structure. 997 * 998 * Implementation of these memory-ordering guarantees is similar to 999 * that of synchronize_rcu(). 1000 * 1001 * If SRCU is likely idle, expedite the first request. This semantic 1002 * was provided by Classic SRCU, and is relied upon by its users, so TREE 1003 * SRCU must also provide it. Note that detecting idleness is heuristic 1004 * and subject to both false positives and negatives. 1005 */ 1006 void synchronize_srcu(struct srcu_struct *ssp) 1007 { 1008 if (srcu_might_be_idle(ssp) || rcu_gp_is_expedited()) 1009 synchronize_srcu_expedited(ssp); 1010 else 1011 __synchronize_srcu(ssp, true); 1012 } 1013 EXPORT_SYMBOL_GPL(synchronize_srcu); 1014 1015 /** 1016 * get_state_synchronize_srcu - Provide an end-of-grace-period cookie 1017 * @ssp: srcu_struct to provide cookie for. 1018 * 1019 * This function returns a cookie that can be passed to 1020 * poll_state_synchronize_srcu(), which will return true if a full grace 1021 * period has elapsed in the meantime. It is the caller's responsibility 1022 * to make sure that grace period happens, for example, by invoking 1023 * call_srcu() after return from get_state_synchronize_srcu(). 1024 */ 1025 unsigned long get_state_synchronize_srcu(struct srcu_struct *ssp) 1026 { 1027 // Any prior manipulation of SRCU-protected data must happen 1028 // before the load from ->srcu_gp_seq. 1029 smp_mb(); 1030 return rcu_seq_snap(&ssp->srcu_gp_seq); 1031 } 1032 EXPORT_SYMBOL_GPL(get_state_synchronize_srcu); 1033 1034 /** 1035 * start_poll_synchronize_srcu - Provide cookie and start grace period 1036 * @ssp: srcu_struct to provide cookie for. 1037 * 1038 * This function returns a cookie that can be passed to 1039 * poll_state_synchronize_srcu(), which will return true if a full grace 1040 * period has elapsed in the meantime. Unlike get_state_synchronize_srcu(), 1041 * this function also ensures that any needed SRCU grace period will be 1042 * started. This convenience does come at a cost in terms of CPU overhead. 1043 */ 1044 unsigned long start_poll_synchronize_srcu(struct srcu_struct *ssp) 1045 { 1046 return srcu_gp_start_if_needed(ssp, NULL, true); 1047 } 1048 EXPORT_SYMBOL_GPL(start_poll_synchronize_srcu); 1049 1050 /** 1051 * poll_state_synchronize_srcu - Has cookie's grace period ended? 1052 * @ssp: srcu_struct to provide cookie for. 1053 * @cookie: Return value from get_state_synchronize_srcu() or start_poll_synchronize_srcu(). 1054 * 1055 * This function takes the cookie that was returned from either 1056 * get_state_synchronize_srcu() or start_poll_synchronize_srcu(), and 1057 * returns @true if an SRCU grace period elapsed since the time that the 1058 * cookie was created. 1059 * 1060 * Because cookies are finite in size, wrapping/overflow is possible. 1061 * This is more pronounced on 32-bit systems where cookies are 32 bits, 1062 * where in theory wrapping could happen in about 14 hours assuming 1063 * 25-microsecond expedited SRCU grace periods. However, a more likely 1064 * overflow lower bound is on the order of 24 days in the case of 1065 * one-millisecond SRCU grace periods. Of course, wrapping in a 64-bit 1066 * system requires geologic timespans, as in more than seven million years 1067 * even for expedited SRCU grace periods. 1068 * 1069 * Wrapping/overflow is much more of an issue for CONFIG_SMP=n systems 1070 * that also have CONFIG_PREEMPTION=n, which selects Tiny SRCU. This uses 1071 * a 16-bit cookie, which rcutorture routinely wraps in a matter of a 1072 * few minutes. If this proves to be a problem, this counter will be 1073 * expanded to the same size as for Tree SRCU. 1074 */ 1075 bool poll_state_synchronize_srcu(struct srcu_struct *ssp, unsigned long cookie) 1076 { 1077 if (!rcu_seq_done(&ssp->srcu_gp_seq, cookie)) 1078 return false; 1079 // Ensure that the end of the SRCU grace period happens before 1080 // any subsequent code that the caller might execute. 1081 smp_mb(); // ^^^ 1082 return true; 1083 } 1084 EXPORT_SYMBOL_GPL(poll_state_synchronize_srcu); 1085 1086 /* 1087 * Callback function for srcu_barrier() use. 1088 */ 1089 static void srcu_barrier_cb(struct rcu_head *rhp) 1090 { 1091 struct srcu_data *sdp; 1092 struct srcu_struct *ssp; 1093 1094 sdp = container_of(rhp, struct srcu_data, srcu_barrier_head); 1095 ssp = sdp->ssp; 1096 if (atomic_dec_and_test(&ssp->srcu_barrier_cpu_cnt)) 1097 complete(&ssp->srcu_barrier_completion); 1098 } 1099 1100 /** 1101 * srcu_barrier - Wait until all in-flight call_srcu() callbacks complete. 1102 * @ssp: srcu_struct on which to wait for in-flight callbacks. 1103 */ 1104 void srcu_barrier(struct srcu_struct *ssp) 1105 { 1106 int cpu; 1107 struct srcu_data *sdp; 1108 unsigned long s = rcu_seq_snap(&ssp->srcu_barrier_seq); 1109 1110 check_init_srcu_struct(ssp); 1111 mutex_lock(&ssp->srcu_barrier_mutex); 1112 if (rcu_seq_done(&ssp->srcu_barrier_seq, s)) { 1113 smp_mb(); /* Force ordering following return. */ 1114 mutex_unlock(&ssp->srcu_barrier_mutex); 1115 return; /* Someone else did our work for us. */ 1116 } 1117 rcu_seq_start(&ssp->srcu_barrier_seq); 1118 init_completion(&ssp->srcu_barrier_completion); 1119 1120 /* Initial count prevents reaching zero until all CBs are posted. */ 1121 atomic_set(&ssp->srcu_barrier_cpu_cnt, 1); 1122 1123 /* 1124 * Each pass through this loop enqueues a callback, but only 1125 * on CPUs already having callbacks enqueued. Note that if 1126 * a CPU already has callbacks enqueue, it must have already 1127 * registered the need for a future grace period, so all we 1128 * need do is enqueue a callback that will use the same 1129 * grace period as the last callback already in the queue. 1130 */ 1131 for_each_possible_cpu(cpu) { 1132 sdp = per_cpu_ptr(ssp->sda, cpu); 1133 spin_lock_irq_rcu_node(sdp); 1134 atomic_inc(&ssp->srcu_barrier_cpu_cnt); 1135 sdp->srcu_barrier_head.func = srcu_barrier_cb; 1136 debug_rcu_head_queue(&sdp->srcu_barrier_head); 1137 if (!rcu_segcblist_entrain(&sdp->srcu_cblist, 1138 &sdp->srcu_barrier_head)) { 1139 debug_rcu_head_unqueue(&sdp->srcu_barrier_head); 1140 atomic_dec(&ssp->srcu_barrier_cpu_cnt); 1141 } 1142 spin_unlock_irq_rcu_node(sdp); 1143 } 1144 1145 /* Remove the initial count, at which point reaching zero can happen. */ 1146 if (atomic_dec_and_test(&ssp->srcu_barrier_cpu_cnt)) 1147 complete(&ssp->srcu_barrier_completion); 1148 wait_for_completion(&ssp->srcu_barrier_completion); 1149 1150 rcu_seq_end(&ssp->srcu_barrier_seq); 1151 mutex_unlock(&ssp->srcu_barrier_mutex); 1152 } 1153 EXPORT_SYMBOL_GPL(srcu_barrier); 1154 1155 /** 1156 * srcu_batches_completed - return batches completed. 1157 * @ssp: srcu_struct on which to report batch completion. 1158 * 1159 * Report the number of batches, correlated with, but not necessarily 1160 * precisely the same as, the number of grace periods that have elapsed. 1161 */ 1162 unsigned long srcu_batches_completed(struct srcu_struct *ssp) 1163 { 1164 return READ_ONCE(ssp->srcu_idx); 1165 } 1166 EXPORT_SYMBOL_GPL(srcu_batches_completed); 1167 1168 /* 1169 * Core SRCU state machine. Push state bits of ->srcu_gp_seq 1170 * to SRCU_STATE_SCAN2, and invoke srcu_gp_end() when scan has 1171 * completed in that state. 1172 */ 1173 static void srcu_advance_state(struct srcu_struct *ssp) 1174 { 1175 int idx; 1176 1177 mutex_lock(&ssp->srcu_gp_mutex); 1178 1179 /* 1180 * Because readers might be delayed for an extended period after 1181 * fetching ->srcu_idx for their index, at any point in time there 1182 * might well be readers using both idx=0 and idx=1. We therefore 1183 * need to wait for readers to clear from both index values before 1184 * invoking a callback. 1185 * 1186 * The load-acquire ensures that we see the accesses performed 1187 * by the prior grace period. 1188 */ 1189 idx = rcu_seq_state(smp_load_acquire(&ssp->srcu_gp_seq)); /* ^^^ */ 1190 if (idx == SRCU_STATE_IDLE) { 1191 spin_lock_irq_rcu_node(ssp); 1192 if (ULONG_CMP_GE(ssp->srcu_gp_seq, ssp->srcu_gp_seq_needed)) { 1193 WARN_ON_ONCE(rcu_seq_state(ssp->srcu_gp_seq)); 1194 spin_unlock_irq_rcu_node(ssp); 1195 mutex_unlock(&ssp->srcu_gp_mutex); 1196 return; 1197 } 1198 idx = rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq)); 1199 if (idx == SRCU_STATE_IDLE) 1200 srcu_gp_start(ssp); 1201 spin_unlock_irq_rcu_node(ssp); 1202 if (idx != SRCU_STATE_IDLE) { 1203 mutex_unlock(&ssp->srcu_gp_mutex); 1204 return; /* Someone else started the grace period. */ 1205 } 1206 } 1207 1208 if (rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq)) == SRCU_STATE_SCAN1) { 1209 idx = 1 ^ (ssp->srcu_idx & 1); 1210 if (!try_check_zero(ssp, idx, 1)) { 1211 mutex_unlock(&ssp->srcu_gp_mutex); 1212 return; /* readers present, retry later. */ 1213 } 1214 srcu_flip(ssp); 1215 spin_lock_irq_rcu_node(ssp); 1216 rcu_seq_set_state(&ssp->srcu_gp_seq, SRCU_STATE_SCAN2); 1217 spin_unlock_irq_rcu_node(ssp); 1218 } 1219 1220 if (rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq)) == SRCU_STATE_SCAN2) { 1221 1222 /* 1223 * SRCU read-side critical sections are normally short, 1224 * so check at least twice in quick succession after a flip. 1225 */ 1226 idx = 1 ^ (ssp->srcu_idx & 1); 1227 if (!try_check_zero(ssp, idx, 2)) { 1228 mutex_unlock(&ssp->srcu_gp_mutex); 1229 return; /* readers present, retry later. */ 1230 } 1231 srcu_gp_end(ssp); /* Releases ->srcu_gp_mutex. */ 1232 } 1233 } 1234 1235 /* 1236 * Invoke a limited number of SRCU callbacks that have passed through 1237 * their grace period. If there are more to do, SRCU will reschedule 1238 * the workqueue. Note that needed memory barriers have been executed 1239 * in this task's context by srcu_readers_active_idx_check(). 1240 */ 1241 static void srcu_invoke_callbacks(struct work_struct *work) 1242 { 1243 long len; 1244 bool more; 1245 struct rcu_cblist ready_cbs; 1246 struct rcu_head *rhp; 1247 struct srcu_data *sdp; 1248 struct srcu_struct *ssp; 1249 1250 sdp = container_of(work, struct srcu_data, work); 1251 1252 ssp = sdp->ssp; 1253 rcu_cblist_init(&ready_cbs); 1254 spin_lock_irq_rcu_node(sdp); 1255 rcu_segcblist_advance(&sdp->srcu_cblist, 1256 rcu_seq_current(&ssp->srcu_gp_seq)); 1257 if (sdp->srcu_cblist_invoking || 1258 !rcu_segcblist_ready_cbs(&sdp->srcu_cblist)) { 1259 spin_unlock_irq_rcu_node(sdp); 1260 return; /* Someone else on the job or nothing to do. */ 1261 } 1262 1263 /* We are on the job! Extract and invoke ready callbacks. */ 1264 sdp->srcu_cblist_invoking = true; 1265 rcu_segcblist_extract_done_cbs(&sdp->srcu_cblist, &ready_cbs); 1266 len = ready_cbs.len; 1267 spin_unlock_irq_rcu_node(sdp); 1268 rhp = rcu_cblist_dequeue(&ready_cbs); 1269 for (; rhp != NULL; rhp = rcu_cblist_dequeue(&ready_cbs)) { 1270 debug_rcu_head_unqueue(rhp); 1271 local_bh_disable(); 1272 rhp->func(rhp); 1273 local_bh_enable(); 1274 } 1275 WARN_ON_ONCE(ready_cbs.len); 1276 1277 /* 1278 * Update counts, accelerate new callbacks, and if needed, 1279 * schedule another round of callback invocation. 1280 */ 1281 spin_lock_irq_rcu_node(sdp); 1282 rcu_segcblist_add_len(&sdp->srcu_cblist, -len); 1283 (void)rcu_segcblist_accelerate(&sdp->srcu_cblist, 1284 rcu_seq_snap(&ssp->srcu_gp_seq)); 1285 sdp->srcu_cblist_invoking = false; 1286 more = rcu_segcblist_ready_cbs(&sdp->srcu_cblist); 1287 spin_unlock_irq_rcu_node(sdp); 1288 if (more) 1289 srcu_schedule_cbs_sdp(sdp, 0); 1290 } 1291 1292 /* 1293 * Finished one round of SRCU grace period. Start another if there are 1294 * more SRCU callbacks queued, otherwise put SRCU into not-running state. 1295 */ 1296 static void srcu_reschedule(struct srcu_struct *ssp, unsigned long delay) 1297 { 1298 bool pushgp = true; 1299 1300 spin_lock_irq_rcu_node(ssp); 1301 if (ULONG_CMP_GE(ssp->srcu_gp_seq, ssp->srcu_gp_seq_needed)) { 1302 if (!WARN_ON_ONCE(rcu_seq_state(ssp->srcu_gp_seq))) { 1303 /* All requests fulfilled, time to go idle. */ 1304 pushgp = false; 1305 } 1306 } else if (!rcu_seq_state(ssp->srcu_gp_seq)) { 1307 /* Outstanding request and no GP. Start one. */ 1308 srcu_gp_start(ssp); 1309 } 1310 spin_unlock_irq_rcu_node(ssp); 1311 1312 if (pushgp) 1313 queue_delayed_work(rcu_gp_wq, &ssp->work, delay); 1314 } 1315 1316 /* 1317 * This is the work-queue function that handles SRCU grace periods. 1318 */ 1319 static void process_srcu(struct work_struct *work) 1320 { 1321 struct srcu_struct *ssp; 1322 1323 ssp = container_of(work, struct srcu_struct, work.work); 1324 1325 srcu_advance_state(ssp); 1326 srcu_reschedule(ssp, srcu_get_delay(ssp)); 1327 } 1328 1329 void srcutorture_get_gp_data(enum rcutorture_type test_type, 1330 struct srcu_struct *ssp, int *flags, 1331 unsigned long *gp_seq) 1332 { 1333 if (test_type != SRCU_FLAVOR) 1334 return; 1335 *flags = 0; 1336 *gp_seq = rcu_seq_current(&ssp->srcu_gp_seq); 1337 } 1338 EXPORT_SYMBOL_GPL(srcutorture_get_gp_data); 1339 1340 void srcu_torture_stats_print(struct srcu_struct *ssp, char *tt, char *tf) 1341 { 1342 int cpu; 1343 int idx; 1344 unsigned long s0 = 0, s1 = 0; 1345 1346 idx = ssp->srcu_idx & 0x1; 1347 pr_alert("%s%s Tree SRCU g%ld per-CPU(idx=%d):", 1348 tt, tf, rcu_seq_current(&ssp->srcu_gp_seq), idx); 1349 for_each_possible_cpu(cpu) { 1350 unsigned long l0, l1; 1351 unsigned long u0, u1; 1352 long c0, c1; 1353 struct srcu_data *sdp; 1354 1355 sdp = per_cpu_ptr(ssp->sda, cpu); 1356 u0 = data_race(sdp->srcu_unlock_count[!idx]); 1357 u1 = data_race(sdp->srcu_unlock_count[idx]); 1358 1359 /* 1360 * Make sure that a lock is always counted if the corresponding 1361 * unlock is counted. 1362 */ 1363 smp_rmb(); 1364 1365 l0 = data_race(sdp->srcu_lock_count[!idx]); 1366 l1 = data_race(sdp->srcu_lock_count[idx]); 1367 1368 c0 = l0 - u0; 1369 c1 = l1 - u1; 1370 pr_cont(" %d(%ld,%ld %c)", 1371 cpu, c0, c1, 1372 "C."[rcu_segcblist_empty(&sdp->srcu_cblist)]); 1373 s0 += c0; 1374 s1 += c1; 1375 } 1376 pr_cont(" T(%ld,%ld)\n", s0, s1); 1377 } 1378 EXPORT_SYMBOL_GPL(srcu_torture_stats_print); 1379 1380 static int __init srcu_bootup_announce(void) 1381 { 1382 pr_info("Hierarchical SRCU implementation.\n"); 1383 if (exp_holdoff != DEFAULT_SRCU_EXP_HOLDOFF) 1384 pr_info("\tNon-default auto-expedite holdoff of %lu ns.\n", exp_holdoff); 1385 return 0; 1386 } 1387 early_initcall(srcu_bootup_announce); 1388 1389 void __init srcu_init(void) 1390 { 1391 struct srcu_struct *ssp; 1392 1393 /* 1394 * Once that is set, call_srcu() can follow the normal path and 1395 * queue delayed work. This must follow RCU workqueues creation 1396 * and timers initialization. 1397 */ 1398 srcu_init_done = true; 1399 while (!list_empty(&srcu_boot_list)) { 1400 ssp = list_first_entry(&srcu_boot_list, struct srcu_struct, 1401 work.work.entry); 1402 list_del_init(&ssp->work.work.entry); 1403 queue_work(rcu_gp_wq, &ssp->work.work); 1404 } 1405 } 1406 1407 #ifdef CONFIG_MODULES 1408 1409 /* Initialize any global-scope srcu_struct structures used by this module. */ 1410 static int srcu_module_coming(struct module *mod) 1411 { 1412 int i; 1413 struct srcu_struct **sspp = mod->srcu_struct_ptrs; 1414 int ret; 1415 1416 for (i = 0; i < mod->num_srcu_structs; i++) { 1417 ret = init_srcu_struct(*(sspp++)); 1418 if (WARN_ON_ONCE(ret)) 1419 return ret; 1420 } 1421 return 0; 1422 } 1423 1424 /* Clean up any global-scope srcu_struct structures used by this module. */ 1425 static void srcu_module_going(struct module *mod) 1426 { 1427 int i; 1428 struct srcu_struct **sspp = mod->srcu_struct_ptrs; 1429 1430 for (i = 0; i < mod->num_srcu_structs; i++) 1431 cleanup_srcu_struct(*(sspp++)); 1432 } 1433 1434 /* Handle one module, either coming or going. */ 1435 static int srcu_module_notify(struct notifier_block *self, 1436 unsigned long val, void *data) 1437 { 1438 struct module *mod = data; 1439 int ret = 0; 1440 1441 switch (val) { 1442 case MODULE_STATE_COMING: 1443 ret = srcu_module_coming(mod); 1444 break; 1445 case MODULE_STATE_GOING: 1446 srcu_module_going(mod); 1447 break; 1448 default: 1449 break; 1450 } 1451 return ret; 1452 } 1453 1454 static struct notifier_block srcu_module_nb = { 1455 .notifier_call = srcu_module_notify, 1456 .priority = 0, 1457 }; 1458 1459 static __init int init_srcu_module_notifier(void) 1460 { 1461 int ret; 1462 1463 ret = register_module_notifier(&srcu_module_nb); 1464 if (ret) 1465 pr_warn("Failed to register srcu module notifier\n"); 1466 return ret; 1467 } 1468 late_initcall(init_srcu_module_notifier); 1469 1470 #endif /* #ifdef CONFIG_MODULES */ 1471