1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Sleepable Read-Copy Update mechanism for mutual exclusion. 4 * 5 * Copyright (C) IBM Corporation, 2006 6 * Copyright (C) Fujitsu, 2012 7 * 8 * Authors: Paul McKenney <paulmck@linux.ibm.com> 9 * Lai Jiangshan <laijs@cn.fujitsu.com> 10 * 11 * For detailed explanation of Read-Copy Update mechanism see - 12 * Documentation/RCU/ *.txt 13 * 14 */ 15 16 #define pr_fmt(fmt) "rcu: " fmt 17 18 #include <linux/export.h> 19 #include <linux/mutex.h> 20 #include <linux/percpu.h> 21 #include <linux/preempt.h> 22 #include <linux/rcupdate_wait.h> 23 #include <linux/sched.h> 24 #include <linux/smp.h> 25 #include <linux/delay.h> 26 #include <linux/module.h> 27 #include <linux/slab.h> 28 #include <linux/srcu.h> 29 30 #include "rcu.h" 31 #include "rcu_segcblist.h" 32 33 /* Holdoff in nanoseconds for auto-expediting. */ 34 #define DEFAULT_SRCU_EXP_HOLDOFF (25 * 1000) 35 static ulong exp_holdoff = DEFAULT_SRCU_EXP_HOLDOFF; 36 module_param(exp_holdoff, ulong, 0444); 37 38 /* Overflow-check frequency. N bits roughly says every 2**N grace periods. */ 39 static ulong counter_wrap_check = (ULONG_MAX >> 2); 40 module_param(counter_wrap_check, ulong, 0444); 41 42 /* 43 * Control conversion to SRCU_SIZE_BIG: 44 * 0: Don't convert at all. 45 * 1: Convert at init_srcu_struct() time. 46 * 2: Convert when rcutorture invokes srcu_torture_stats_print(). 47 * 3: Decide at boot time based on system shape (default). 48 * 0x1x: Convert when excessive contention encountered. 49 */ 50 #define SRCU_SIZING_NONE 0 51 #define SRCU_SIZING_INIT 1 52 #define SRCU_SIZING_TORTURE 2 53 #define SRCU_SIZING_AUTO 3 54 #define SRCU_SIZING_CONTEND 0x10 55 #define SRCU_SIZING_IS(x) ((convert_to_big & ~SRCU_SIZING_CONTEND) == x) 56 #define SRCU_SIZING_IS_NONE() (SRCU_SIZING_IS(SRCU_SIZING_NONE)) 57 #define SRCU_SIZING_IS_INIT() (SRCU_SIZING_IS(SRCU_SIZING_INIT)) 58 #define SRCU_SIZING_IS_TORTURE() (SRCU_SIZING_IS(SRCU_SIZING_TORTURE)) 59 #define SRCU_SIZING_IS_CONTEND() (convert_to_big & SRCU_SIZING_CONTEND) 60 static int convert_to_big = SRCU_SIZING_AUTO; 61 module_param(convert_to_big, int, 0444); 62 63 /* Number of CPUs to trigger init_srcu_struct()-time transition to big. */ 64 static int big_cpu_lim __read_mostly = 128; 65 module_param(big_cpu_lim, int, 0444); 66 67 /* Contention events per jiffy to initiate transition to big. */ 68 static int small_contention_lim __read_mostly = 100; 69 module_param(small_contention_lim, int, 0444); 70 71 /* Early-boot callback-management, so early that no lock is required! */ 72 static LIST_HEAD(srcu_boot_list); 73 static bool __read_mostly srcu_init_done; 74 75 static void srcu_invoke_callbacks(struct work_struct *work); 76 static void srcu_reschedule(struct srcu_struct *ssp, unsigned long delay); 77 static void process_srcu(struct work_struct *work); 78 static void srcu_delay_timer(struct timer_list *t); 79 80 /* Wrappers for lock acquisition and release, see raw_spin_lock_rcu_node(). */ 81 #define spin_lock_rcu_node(p) \ 82 do { \ 83 spin_lock(&ACCESS_PRIVATE(p, lock)); \ 84 smp_mb__after_unlock_lock(); \ 85 } while (0) 86 87 #define spin_unlock_rcu_node(p) spin_unlock(&ACCESS_PRIVATE(p, lock)) 88 89 #define spin_lock_irq_rcu_node(p) \ 90 do { \ 91 spin_lock_irq(&ACCESS_PRIVATE(p, lock)); \ 92 smp_mb__after_unlock_lock(); \ 93 } while (0) 94 95 #define spin_unlock_irq_rcu_node(p) \ 96 spin_unlock_irq(&ACCESS_PRIVATE(p, lock)) 97 98 #define spin_lock_irqsave_rcu_node(p, flags) \ 99 do { \ 100 spin_lock_irqsave(&ACCESS_PRIVATE(p, lock), flags); \ 101 smp_mb__after_unlock_lock(); \ 102 } while (0) 103 104 #define spin_trylock_irqsave_rcu_node(p, flags) \ 105 ({ \ 106 bool ___locked = spin_trylock_irqsave(&ACCESS_PRIVATE(p, lock), flags); \ 107 \ 108 if (___locked) \ 109 smp_mb__after_unlock_lock(); \ 110 ___locked; \ 111 }) 112 113 #define spin_unlock_irqrestore_rcu_node(p, flags) \ 114 spin_unlock_irqrestore(&ACCESS_PRIVATE(p, lock), flags) \ 115 116 /* 117 * Initialize SRCU per-CPU data. Note that statically allocated 118 * srcu_struct structures might already have srcu_read_lock() and 119 * srcu_read_unlock() running against them. So if the is_static parameter 120 * is set, don't initialize ->srcu_lock_count[] and ->srcu_unlock_count[]. 121 */ 122 static void init_srcu_struct_data(struct srcu_struct *ssp) 123 { 124 int cpu; 125 struct srcu_data *sdp; 126 127 /* 128 * Initialize the per-CPU srcu_data array, which feeds into the 129 * leaves of the srcu_node tree. 130 */ 131 WARN_ON_ONCE(ARRAY_SIZE(sdp->srcu_lock_count) != 132 ARRAY_SIZE(sdp->srcu_unlock_count)); 133 for_each_possible_cpu(cpu) { 134 sdp = per_cpu_ptr(ssp->sda, cpu); 135 spin_lock_init(&ACCESS_PRIVATE(sdp, lock)); 136 rcu_segcblist_init(&sdp->srcu_cblist); 137 sdp->srcu_cblist_invoking = false; 138 sdp->srcu_gp_seq_needed = ssp->srcu_gp_seq; 139 sdp->srcu_gp_seq_needed_exp = ssp->srcu_gp_seq; 140 sdp->mynode = NULL; 141 sdp->cpu = cpu; 142 INIT_WORK(&sdp->work, srcu_invoke_callbacks); 143 timer_setup(&sdp->delay_work, srcu_delay_timer, 0); 144 sdp->ssp = ssp; 145 } 146 } 147 148 /* Invalid seq state, used during snp node initialization */ 149 #define SRCU_SNP_INIT_SEQ 0x2 150 151 /* 152 * Check whether sequence number corresponding to snp node, 153 * is invalid. 154 */ 155 static inline bool srcu_invl_snp_seq(unsigned long s) 156 { 157 return rcu_seq_state(s) == SRCU_SNP_INIT_SEQ; 158 } 159 160 /* 161 * Allocated and initialize SRCU combining tree. Returns @true if 162 * allocation succeeded and @false otherwise. 163 */ 164 static bool init_srcu_struct_nodes(struct srcu_struct *ssp, gfp_t gfp_flags) 165 { 166 int cpu; 167 int i; 168 int level = 0; 169 int levelspread[RCU_NUM_LVLS]; 170 struct srcu_data *sdp; 171 struct srcu_node *snp; 172 struct srcu_node *snp_first; 173 174 /* Initialize geometry if it has not already been initialized. */ 175 rcu_init_geometry(); 176 ssp->node = kcalloc(rcu_num_nodes, sizeof(*ssp->node), gfp_flags); 177 if (!ssp->node) 178 return false; 179 180 /* Work out the overall tree geometry. */ 181 ssp->level[0] = &ssp->node[0]; 182 for (i = 1; i < rcu_num_lvls; i++) 183 ssp->level[i] = ssp->level[i - 1] + num_rcu_lvl[i - 1]; 184 rcu_init_levelspread(levelspread, num_rcu_lvl); 185 186 /* Each pass through this loop initializes one srcu_node structure. */ 187 srcu_for_each_node_breadth_first(ssp, snp) { 188 spin_lock_init(&ACCESS_PRIVATE(snp, lock)); 189 WARN_ON_ONCE(ARRAY_SIZE(snp->srcu_have_cbs) != 190 ARRAY_SIZE(snp->srcu_data_have_cbs)); 191 for (i = 0; i < ARRAY_SIZE(snp->srcu_have_cbs); i++) { 192 snp->srcu_have_cbs[i] = SRCU_SNP_INIT_SEQ; 193 snp->srcu_data_have_cbs[i] = 0; 194 } 195 snp->srcu_gp_seq_needed_exp = SRCU_SNP_INIT_SEQ; 196 snp->grplo = -1; 197 snp->grphi = -1; 198 if (snp == &ssp->node[0]) { 199 /* Root node, special case. */ 200 snp->srcu_parent = NULL; 201 continue; 202 } 203 204 /* Non-root node. */ 205 if (snp == ssp->level[level + 1]) 206 level++; 207 snp->srcu_parent = ssp->level[level - 1] + 208 (snp - ssp->level[level]) / 209 levelspread[level - 1]; 210 } 211 212 /* 213 * Initialize the per-CPU srcu_data array, which feeds into the 214 * leaves of the srcu_node tree. 215 */ 216 level = rcu_num_lvls - 1; 217 snp_first = ssp->level[level]; 218 for_each_possible_cpu(cpu) { 219 sdp = per_cpu_ptr(ssp->sda, cpu); 220 sdp->mynode = &snp_first[cpu / levelspread[level]]; 221 for (snp = sdp->mynode; snp != NULL; snp = snp->srcu_parent) { 222 if (snp->grplo < 0) 223 snp->grplo = cpu; 224 snp->grphi = cpu; 225 } 226 sdp->grpmask = 1 << (cpu - sdp->mynode->grplo); 227 } 228 smp_store_release(&ssp->srcu_size_state, SRCU_SIZE_WAIT_BARRIER); 229 return true; 230 } 231 232 /* 233 * Initialize non-compile-time initialized fields, including the 234 * associated srcu_node and srcu_data structures. The is_static parameter 235 * tells us that ->sda has already been wired up to srcu_data. 236 */ 237 static int init_srcu_struct_fields(struct srcu_struct *ssp, bool is_static) 238 { 239 ssp->srcu_size_state = SRCU_SIZE_SMALL; 240 ssp->node = NULL; 241 mutex_init(&ssp->srcu_cb_mutex); 242 mutex_init(&ssp->srcu_gp_mutex); 243 ssp->srcu_idx = 0; 244 ssp->srcu_gp_seq = 0; 245 ssp->srcu_barrier_seq = 0; 246 mutex_init(&ssp->srcu_barrier_mutex); 247 atomic_set(&ssp->srcu_barrier_cpu_cnt, 0); 248 INIT_DELAYED_WORK(&ssp->work, process_srcu); 249 ssp->sda_is_static = is_static; 250 if (!is_static) 251 ssp->sda = alloc_percpu(struct srcu_data); 252 if (!ssp->sda) 253 return -ENOMEM; 254 init_srcu_struct_data(ssp); 255 ssp->srcu_gp_seq_needed_exp = 0; 256 ssp->srcu_last_gp_end = ktime_get_mono_fast_ns(); 257 if (READ_ONCE(ssp->srcu_size_state) == SRCU_SIZE_SMALL && SRCU_SIZING_IS_INIT()) { 258 if (!init_srcu_struct_nodes(ssp, GFP_ATOMIC)) { 259 if (!ssp->sda_is_static) { 260 free_percpu(ssp->sda); 261 ssp->sda = NULL; 262 return -ENOMEM; 263 } 264 } else { 265 WRITE_ONCE(ssp->srcu_size_state, SRCU_SIZE_BIG); 266 } 267 } 268 smp_store_release(&ssp->srcu_gp_seq_needed, 0); /* Init done. */ 269 return 0; 270 } 271 272 #ifdef CONFIG_DEBUG_LOCK_ALLOC 273 274 int __init_srcu_struct(struct srcu_struct *ssp, const char *name, 275 struct lock_class_key *key) 276 { 277 /* Don't re-initialize a lock while it is held. */ 278 debug_check_no_locks_freed((void *)ssp, sizeof(*ssp)); 279 lockdep_init_map(&ssp->dep_map, name, key, 0); 280 spin_lock_init(&ACCESS_PRIVATE(ssp, lock)); 281 return init_srcu_struct_fields(ssp, false); 282 } 283 EXPORT_SYMBOL_GPL(__init_srcu_struct); 284 285 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 286 287 /** 288 * init_srcu_struct - initialize a sleep-RCU structure 289 * @ssp: structure to initialize. 290 * 291 * Must invoke this on a given srcu_struct before passing that srcu_struct 292 * to any other function. Each srcu_struct represents a separate domain 293 * of SRCU protection. 294 */ 295 int init_srcu_struct(struct srcu_struct *ssp) 296 { 297 spin_lock_init(&ACCESS_PRIVATE(ssp, lock)); 298 return init_srcu_struct_fields(ssp, false); 299 } 300 EXPORT_SYMBOL_GPL(init_srcu_struct); 301 302 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 303 304 /* 305 * Initiate a transition to SRCU_SIZE_BIG with lock held. 306 */ 307 static void __srcu_transition_to_big(struct srcu_struct *ssp) 308 { 309 lockdep_assert_held(&ACCESS_PRIVATE(ssp, lock)); 310 smp_store_release(&ssp->srcu_size_state, SRCU_SIZE_ALLOC); 311 } 312 313 /* 314 * Initiate an idempotent transition to SRCU_SIZE_BIG. 315 */ 316 static void srcu_transition_to_big(struct srcu_struct *ssp) 317 { 318 unsigned long flags; 319 320 /* Double-checked locking on ->srcu_size-state. */ 321 if (smp_load_acquire(&ssp->srcu_size_state) != SRCU_SIZE_SMALL) 322 return; 323 spin_lock_irqsave_rcu_node(ssp, flags); 324 if (smp_load_acquire(&ssp->srcu_size_state) != SRCU_SIZE_SMALL) { 325 spin_unlock_irqrestore_rcu_node(ssp, flags); 326 return; 327 } 328 __srcu_transition_to_big(ssp); 329 spin_unlock_irqrestore_rcu_node(ssp, flags); 330 } 331 332 /* 333 * Check to see if the just-encountered contention event justifies 334 * a transition to SRCU_SIZE_BIG. 335 */ 336 static void spin_lock_irqsave_check_contention(struct srcu_struct *ssp) 337 { 338 unsigned long j; 339 340 if (!SRCU_SIZING_IS_CONTEND() || ssp->srcu_size_state) 341 return; 342 j = jiffies; 343 if (ssp->srcu_size_jiffies != j) { 344 ssp->srcu_size_jiffies = j; 345 ssp->srcu_n_lock_retries = 0; 346 } 347 if (++ssp->srcu_n_lock_retries <= small_contention_lim) 348 return; 349 __srcu_transition_to_big(ssp); 350 } 351 352 /* 353 * Acquire the specified srcu_data structure's ->lock, but check for 354 * excessive contention, which results in initiation of a transition 355 * to SRCU_SIZE_BIG. But only if the srcutree.convert_to_big module 356 * parameter permits this. 357 */ 358 static void spin_lock_irqsave_sdp_contention(struct srcu_data *sdp, unsigned long *flags) 359 { 360 struct srcu_struct *ssp = sdp->ssp; 361 362 if (spin_trylock_irqsave_rcu_node(sdp, *flags)) 363 return; 364 spin_lock_irqsave_rcu_node(ssp, *flags); 365 spin_lock_irqsave_check_contention(ssp); 366 spin_unlock_irqrestore_rcu_node(ssp, *flags); 367 spin_lock_irqsave_rcu_node(sdp, *flags); 368 } 369 370 /* 371 * Acquire the specified srcu_struct structure's ->lock, but check for 372 * excessive contention, which results in initiation of a transition 373 * to SRCU_SIZE_BIG. But only if the srcutree.convert_to_big module 374 * parameter permits this. 375 */ 376 static void spin_lock_irqsave_ssp_contention(struct srcu_struct *ssp, unsigned long *flags) 377 { 378 if (spin_trylock_irqsave_rcu_node(ssp, *flags)) 379 return; 380 spin_lock_irqsave_rcu_node(ssp, *flags); 381 spin_lock_irqsave_check_contention(ssp); 382 } 383 384 /* 385 * First-use initialization of statically allocated srcu_struct 386 * structure. Wiring up the combining tree is more than can be 387 * done with compile-time initialization, so this check is added 388 * to each update-side SRCU primitive. Use ssp->lock, which -is- 389 * compile-time initialized, to resolve races involving multiple 390 * CPUs trying to garner first-use privileges. 391 */ 392 static void check_init_srcu_struct(struct srcu_struct *ssp) 393 { 394 unsigned long flags; 395 396 /* The smp_load_acquire() pairs with the smp_store_release(). */ 397 if (!rcu_seq_state(smp_load_acquire(&ssp->srcu_gp_seq_needed))) /*^^^*/ 398 return; /* Already initialized. */ 399 spin_lock_irqsave_rcu_node(ssp, flags); 400 if (!rcu_seq_state(ssp->srcu_gp_seq_needed)) { 401 spin_unlock_irqrestore_rcu_node(ssp, flags); 402 return; 403 } 404 init_srcu_struct_fields(ssp, true); 405 spin_unlock_irqrestore_rcu_node(ssp, flags); 406 } 407 408 /* 409 * Returns approximate total of the readers' ->srcu_lock_count[] values 410 * for the rank of per-CPU counters specified by idx. 411 */ 412 static unsigned long srcu_readers_lock_idx(struct srcu_struct *ssp, int idx) 413 { 414 int cpu; 415 unsigned long sum = 0; 416 417 for_each_possible_cpu(cpu) { 418 struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu); 419 420 sum += READ_ONCE(cpuc->srcu_lock_count[idx]); 421 } 422 return sum; 423 } 424 425 /* 426 * Returns approximate total of the readers' ->srcu_unlock_count[] values 427 * for the rank of per-CPU counters specified by idx. 428 */ 429 static unsigned long srcu_readers_unlock_idx(struct srcu_struct *ssp, int idx) 430 { 431 int cpu; 432 unsigned long sum = 0; 433 434 for_each_possible_cpu(cpu) { 435 struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu); 436 437 sum += READ_ONCE(cpuc->srcu_unlock_count[idx]); 438 } 439 return sum; 440 } 441 442 /* 443 * Return true if the number of pre-existing readers is determined to 444 * be zero. 445 */ 446 static bool srcu_readers_active_idx_check(struct srcu_struct *ssp, int idx) 447 { 448 unsigned long unlocks; 449 450 unlocks = srcu_readers_unlock_idx(ssp, idx); 451 452 /* 453 * Make sure that a lock is always counted if the corresponding 454 * unlock is counted. Needs to be a smp_mb() as the read side may 455 * contain a read from a variable that is written to before the 456 * synchronize_srcu() in the write side. In this case smp_mb()s 457 * A and B act like the store buffering pattern. 458 * 459 * This smp_mb() also pairs with smp_mb() C to prevent accesses 460 * after the synchronize_srcu() from being executed before the 461 * grace period ends. 462 */ 463 smp_mb(); /* A */ 464 465 /* 466 * If the locks are the same as the unlocks, then there must have 467 * been no readers on this index at some time in between. This does 468 * not mean that there are no more readers, as one could have read 469 * the current index but not have incremented the lock counter yet. 470 * 471 * So suppose that the updater is preempted here for so long 472 * that more than ULONG_MAX non-nested readers come and go in 473 * the meantime. It turns out that this cannot result in overflow 474 * because if a reader modifies its unlock count after we read it 475 * above, then that reader's next load of ->srcu_idx is guaranteed 476 * to get the new value, which will cause it to operate on the 477 * other bank of counters, where it cannot contribute to the 478 * overflow of these counters. This means that there is a maximum 479 * of 2*NR_CPUS increments, which cannot overflow given current 480 * systems, especially not on 64-bit systems. 481 * 482 * OK, how about nesting? This does impose a limit on nesting 483 * of floor(ULONG_MAX/NR_CPUS/2), which should be sufficient, 484 * especially on 64-bit systems. 485 */ 486 return srcu_readers_lock_idx(ssp, idx) == unlocks; 487 } 488 489 /** 490 * srcu_readers_active - returns true if there are readers. and false 491 * otherwise 492 * @ssp: which srcu_struct to count active readers (holding srcu_read_lock). 493 * 494 * Note that this is not an atomic primitive, and can therefore suffer 495 * severe errors when invoked on an active srcu_struct. That said, it 496 * can be useful as an error check at cleanup time. 497 */ 498 static bool srcu_readers_active(struct srcu_struct *ssp) 499 { 500 int cpu; 501 unsigned long sum = 0; 502 503 for_each_possible_cpu(cpu) { 504 struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu); 505 506 sum += READ_ONCE(cpuc->srcu_lock_count[0]); 507 sum += READ_ONCE(cpuc->srcu_lock_count[1]); 508 sum -= READ_ONCE(cpuc->srcu_unlock_count[0]); 509 sum -= READ_ONCE(cpuc->srcu_unlock_count[1]); 510 } 511 return sum; 512 } 513 514 /* 515 * We use an adaptive strategy for synchronize_srcu() and especially for 516 * synchronize_srcu_expedited(). We spin for a fixed time period 517 * (defined below, boot time configurable) to allow SRCU readers to exit 518 * their read-side critical sections. If there are still some readers 519 * after one jiffy, we repeatedly block for one jiffy time periods. 520 * The blocking time is increased as the grace-period age increases, 521 * with max blocking time capped at 10 jiffies. 522 */ 523 #define SRCU_DEFAULT_RETRY_CHECK_DELAY 5 524 525 static ulong srcu_retry_check_delay = SRCU_DEFAULT_RETRY_CHECK_DELAY; 526 module_param(srcu_retry_check_delay, ulong, 0444); 527 528 #define SRCU_INTERVAL 1 // Base delay if no expedited GPs pending. 529 #define SRCU_MAX_INTERVAL 10 // Maximum incremental delay from slow readers. 530 531 #define SRCU_DEFAULT_MAX_NODELAY_PHASE_LO 3UL // Lowmark on default per-GP-phase 532 // no-delay instances. 533 #define SRCU_DEFAULT_MAX_NODELAY_PHASE_HI 1000UL // Highmark on default per-GP-phase 534 // no-delay instances. 535 536 #define SRCU_UL_CLAMP_LO(val, low) ((val) > (low) ? (val) : (low)) 537 #define SRCU_UL_CLAMP_HI(val, high) ((val) < (high) ? (val) : (high)) 538 #define SRCU_UL_CLAMP(val, low, high) SRCU_UL_CLAMP_HI(SRCU_UL_CLAMP_LO((val), (low)), (high)) 539 // per-GP-phase no-delay instances adjusted to allow non-sleeping poll upto 540 // one jiffies time duration. Mult by 2 is done to factor in the srcu_get_delay() 541 // called from process_srcu(). 542 #define SRCU_DEFAULT_MAX_NODELAY_PHASE_ADJUSTED \ 543 (2UL * USEC_PER_SEC / HZ / SRCU_DEFAULT_RETRY_CHECK_DELAY) 544 545 // Maximum per-GP-phase consecutive no-delay instances. 546 #define SRCU_DEFAULT_MAX_NODELAY_PHASE \ 547 SRCU_UL_CLAMP(SRCU_DEFAULT_MAX_NODELAY_PHASE_ADJUSTED, \ 548 SRCU_DEFAULT_MAX_NODELAY_PHASE_LO, \ 549 SRCU_DEFAULT_MAX_NODELAY_PHASE_HI) 550 551 static ulong srcu_max_nodelay_phase = SRCU_DEFAULT_MAX_NODELAY_PHASE; 552 module_param(srcu_max_nodelay_phase, ulong, 0444); 553 554 // Maximum consecutive no-delay instances. 555 #define SRCU_DEFAULT_MAX_NODELAY (SRCU_DEFAULT_MAX_NODELAY_PHASE > 100 ? \ 556 SRCU_DEFAULT_MAX_NODELAY_PHASE : 100) 557 558 static ulong srcu_max_nodelay = SRCU_DEFAULT_MAX_NODELAY; 559 module_param(srcu_max_nodelay, ulong, 0444); 560 561 /* 562 * Return grace-period delay, zero if there are expedited grace 563 * periods pending, SRCU_INTERVAL otherwise. 564 */ 565 static unsigned long srcu_get_delay(struct srcu_struct *ssp) 566 { 567 unsigned long gpstart; 568 unsigned long j; 569 unsigned long jbase = SRCU_INTERVAL; 570 571 if (ULONG_CMP_LT(READ_ONCE(ssp->srcu_gp_seq), READ_ONCE(ssp->srcu_gp_seq_needed_exp))) 572 jbase = 0; 573 if (rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq))) { 574 j = jiffies - 1; 575 gpstart = READ_ONCE(ssp->srcu_gp_start); 576 if (time_after(j, gpstart)) 577 jbase += j - gpstart; 578 if (!jbase) { 579 WRITE_ONCE(ssp->srcu_n_exp_nodelay, READ_ONCE(ssp->srcu_n_exp_nodelay) + 1); 580 if (READ_ONCE(ssp->srcu_n_exp_nodelay) > srcu_max_nodelay_phase) 581 jbase = 1; 582 } 583 } 584 return jbase > SRCU_MAX_INTERVAL ? SRCU_MAX_INTERVAL : jbase; 585 } 586 587 /** 588 * cleanup_srcu_struct - deconstruct a sleep-RCU structure 589 * @ssp: structure to clean up. 590 * 591 * Must invoke this after you are finished using a given srcu_struct that 592 * was initialized via init_srcu_struct(), else you leak memory. 593 */ 594 void cleanup_srcu_struct(struct srcu_struct *ssp) 595 { 596 int cpu; 597 598 if (WARN_ON(!srcu_get_delay(ssp))) 599 return; /* Just leak it! */ 600 if (WARN_ON(srcu_readers_active(ssp))) 601 return; /* Just leak it! */ 602 flush_delayed_work(&ssp->work); 603 for_each_possible_cpu(cpu) { 604 struct srcu_data *sdp = per_cpu_ptr(ssp->sda, cpu); 605 606 del_timer_sync(&sdp->delay_work); 607 flush_work(&sdp->work); 608 if (WARN_ON(rcu_segcblist_n_cbs(&sdp->srcu_cblist))) 609 return; /* Forgot srcu_barrier(), so just leak it! */ 610 } 611 if (WARN_ON(rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq)) != SRCU_STATE_IDLE) || 612 WARN_ON(rcu_seq_current(&ssp->srcu_gp_seq) != ssp->srcu_gp_seq_needed) || 613 WARN_ON(srcu_readers_active(ssp))) { 614 pr_info("%s: Active srcu_struct %p read state: %d gp state: %lu/%lu\n", 615 __func__, ssp, rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq)), 616 rcu_seq_current(&ssp->srcu_gp_seq), ssp->srcu_gp_seq_needed); 617 return; /* Caller forgot to stop doing call_srcu()? */ 618 } 619 if (!ssp->sda_is_static) { 620 free_percpu(ssp->sda); 621 ssp->sda = NULL; 622 } 623 kfree(ssp->node); 624 ssp->node = NULL; 625 ssp->srcu_size_state = SRCU_SIZE_SMALL; 626 } 627 EXPORT_SYMBOL_GPL(cleanup_srcu_struct); 628 629 /* 630 * Counts the new reader in the appropriate per-CPU element of the 631 * srcu_struct. 632 * Returns an index that must be passed to the matching srcu_read_unlock(). 633 */ 634 int __srcu_read_lock(struct srcu_struct *ssp) 635 { 636 int idx; 637 638 idx = READ_ONCE(ssp->srcu_idx) & 0x1; 639 this_cpu_inc(ssp->sda->srcu_lock_count[idx]); 640 smp_mb(); /* B */ /* Avoid leaking the critical section. */ 641 return idx; 642 } 643 EXPORT_SYMBOL_GPL(__srcu_read_lock); 644 645 /* 646 * Removes the count for the old reader from the appropriate per-CPU 647 * element of the srcu_struct. Note that this may well be a different 648 * CPU than that which was incremented by the corresponding srcu_read_lock(). 649 */ 650 void __srcu_read_unlock(struct srcu_struct *ssp, int idx) 651 { 652 smp_mb(); /* C */ /* Avoid leaking the critical section. */ 653 this_cpu_inc(ssp->sda->srcu_unlock_count[idx]); 654 } 655 EXPORT_SYMBOL_GPL(__srcu_read_unlock); 656 657 /* 658 * Start an SRCU grace period. 659 */ 660 static void srcu_gp_start(struct srcu_struct *ssp) 661 { 662 struct srcu_data *sdp; 663 int state; 664 665 if (smp_load_acquire(&ssp->srcu_size_state) < SRCU_SIZE_WAIT_BARRIER) 666 sdp = per_cpu_ptr(ssp->sda, 0); 667 else 668 sdp = this_cpu_ptr(ssp->sda); 669 lockdep_assert_held(&ACCESS_PRIVATE(ssp, lock)); 670 WARN_ON_ONCE(ULONG_CMP_GE(ssp->srcu_gp_seq, ssp->srcu_gp_seq_needed)); 671 spin_lock_rcu_node(sdp); /* Interrupts already disabled. */ 672 rcu_segcblist_advance(&sdp->srcu_cblist, 673 rcu_seq_current(&ssp->srcu_gp_seq)); 674 (void)rcu_segcblist_accelerate(&sdp->srcu_cblist, 675 rcu_seq_snap(&ssp->srcu_gp_seq)); 676 spin_unlock_rcu_node(sdp); /* Interrupts remain disabled. */ 677 WRITE_ONCE(ssp->srcu_gp_start, jiffies); 678 WRITE_ONCE(ssp->srcu_n_exp_nodelay, 0); 679 smp_mb(); /* Order prior store to ->srcu_gp_seq_needed vs. GP start. */ 680 rcu_seq_start(&ssp->srcu_gp_seq); 681 state = rcu_seq_state(ssp->srcu_gp_seq); 682 WARN_ON_ONCE(state != SRCU_STATE_SCAN1); 683 } 684 685 686 static void srcu_delay_timer(struct timer_list *t) 687 { 688 struct srcu_data *sdp = container_of(t, struct srcu_data, delay_work); 689 690 queue_work_on(sdp->cpu, rcu_gp_wq, &sdp->work); 691 } 692 693 static void srcu_queue_delayed_work_on(struct srcu_data *sdp, 694 unsigned long delay) 695 { 696 if (!delay) { 697 queue_work_on(sdp->cpu, rcu_gp_wq, &sdp->work); 698 return; 699 } 700 701 timer_reduce(&sdp->delay_work, jiffies + delay); 702 } 703 704 /* 705 * Schedule callback invocation for the specified srcu_data structure, 706 * if possible, on the corresponding CPU. 707 */ 708 static void srcu_schedule_cbs_sdp(struct srcu_data *sdp, unsigned long delay) 709 { 710 srcu_queue_delayed_work_on(sdp, delay); 711 } 712 713 /* 714 * Schedule callback invocation for all srcu_data structures associated 715 * with the specified srcu_node structure that have callbacks for the 716 * just-completed grace period, the one corresponding to idx. If possible, 717 * schedule this invocation on the corresponding CPUs. 718 */ 719 static void srcu_schedule_cbs_snp(struct srcu_struct *ssp, struct srcu_node *snp, 720 unsigned long mask, unsigned long delay) 721 { 722 int cpu; 723 724 for (cpu = snp->grplo; cpu <= snp->grphi; cpu++) { 725 if (!(mask & (1 << (cpu - snp->grplo)))) 726 continue; 727 srcu_schedule_cbs_sdp(per_cpu_ptr(ssp->sda, cpu), delay); 728 } 729 } 730 731 /* 732 * Note the end of an SRCU grace period. Initiates callback invocation 733 * and starts a new grace period if needed. 734 * 735 * The ->srcu_cb_mutex acquisition does not protect any data, but 736 * instead prevents more than one grace period from starting while we 737 * are initiating callback invocation. This allows the ->srcu_have_cbs[] 738 * array to have a finite number of elements. 739 */ 740 static void srcu_gp_end(struct srcu_struct *ssp) 741 { 742 unsigned long cbdelay = 1; 743 bool cbs; 744 bool last_lvl; 745 int cpu; 746 unsigned long flags; 747 unsigned long gpseq; 748 int idx; 749 unsigned long mask; 750 struct srcu_data *sdp; 751 unsigned long sgsne; 752 struct srcu_node *snp; 753 int ss_state; 754 755 /* Prevent more than one additional grace period. */ 756 mutex_lock(&ssp->srcu_cb_mutex); 757 758 /* End the current grace period. */ 759 spin_lock_irq_rcu_node(ssp); 760 idx = rcu_seq_state(ssp->srcu_gp_seq); 761 WARN_ON_ONCE(idx != SRCU_STATE_SCAN2); 762 if (ULONG_CMP_LT(READ_ONCE(ssp->srcu_gp_seq), READ_ONCE(ssp->srcu_gp_seq_needed_exp))) 763 cbdelay = 0; 764 765 WRITE_ONCE(ssp->srcu_last_gp_end, ktime_get_mono_fast_ns()); 766 rcu_seq_end(&ssp->srcu_gp_seq); 767 gpseq = rcu_seq_current(&ssp->srcu_gp_seq); 768 if (ULONG_CMP_LT(ssp->srcu_gp_seq_needed_exp, gpseq)) 769 WRITE_ONCE(ssp->srcu_gp_seq_needed_exp, gpseq); 770 spin_unlock_irq_rcu_node(ssp); 771 mutex_unlock(&ssp->srcu_gp_mutex); 772 /* A new grace period can start at this point. But only one. */ 773 774 /* Initiate callback invocation as needed. */ 775 ss_state = smp_load_acquire(&ssp->srcu_size_state); 776 if (ss_state < SRCU_SIZE_WAIT_BARRIER) { 777 srcu_schedule_cbs_sdp(per_cpu_ptr(ssp->sda, 0), cbdelay); 778 } else { 779 idx = rcu_seq_ctr(gpseq) % ARRAY_SIZE(snp->srcu_have_cbs); 780 srcu_for_each_node_breadth_first(ssp, snp) { 781 spin_lock_irq_rcu_node(snp); 782 cbs = false; 783 last_lvl = snp >= ssp->level[rcu_num_lvls - 1]; 784 if (last_lvl) 785 cbs = ss_state < SRCU_SIZE_BIG || snp->srcu_have_cbs[idx] == gpseq; 786 snp->srcu_have_cbs[idx] = gpseq; 787 rcu_seq_set_state(&snp->srcu_have_cbs[idx], 1); 788 sgsne = snp->srcu_gp_seq_needed_exp; 789 if (srcu_invl_snp_seq(sgsne) || ULONG_CMP_LT(sgsne, gpseq)) 790 WRITE_ONCE(snp->srcu_gp_seq_needed_exp, gpseq); 791 if (ss_state < SRCU_SIZE_BIG) 792 mask = ~0; 793 else 794 mask = snp->srcu_data_have_cbs[idx]; 795 snp->srcu_data_have_cbs[idx] = 0; 796 spin_unlock_irq_rcu_node(snp); 797 if (cbs) 798 srcu_schedule_cbs_snp(ssp, snp, mask, cbdelay); 799 } 800 } 801 802 /* Occasionally prevent srcu_data counter wrap. */ 803 if (!(gpseq & counter_wrap_check)) 804 for_each_possible_cpu(cpu) { 805 sdp = per_cpu_ptr(ssp->sda, cpu); 806 spin_lock_irqsave_rcu_node(sdp, flags); 807 if (ULONG_CMP_GE(gpseq, sdp->srcu_gp_seq_needed + 100)) 808 sdp->srcu_gp_seq_needed = gpseq; 809 if (ULONG_CMP_GE(gpseq, sdp->srcu_gp_seq_needed_exp + 100)) 810 sdp->srcu_gp_seq_needed_exp = gpseq; 811 spin_unlock_irqrestore_rcu_node(sdp, flags); 812 } 813 814 /* Callback initiation done, allow grace periods after next. */ 815 mutex_unlock(&ssp->srcu_cb_mutex); 816 817 /* Start a new grace period if needed. */ 818 spin_lock_irq_rcu_node(ssp); 819 gpseq = rcu_seq_current(&ssp->srcu_gp_seq); 820 if (!rcu_seq_state(gpseq) && 821 ULONG_CMP_LT(gpseq, ssp->srcu_gp_seq_needed)) { 822 srcu_gp_start(ssp); 823 spin_unlock_irq_rcu_node(ssp); 824 srcu_reschedule(ssp, 0); 825 } else { 826 spin_unlock_irq_rcu_node(ssp); 827 } 828 829 /* Transition to big if needed. */ 830 if (ss_state != SRCU_SIZE_SMALL && ss_state != SRCU_SIZE_BIG) { 831 if (ss_state == SRCU_SIZE_ALLOC) 832 init_srcu_struct_nodes(ssp, GFP_KERNEL); 833 else 834 smp_store_release(&ssp->srcu_size_state, ss_state + 1); 835 } 836 } 837 838 /* 839 * Funnel-locking scheme to scalably mediate many concurrent expedited 840 * grace-period requests. This function is invoked for the first known 841 * expedited request for a grace period that has already been requested, 842 * but without expediting. To start a completely new grace period, 843 * whether expedited or not, use srcu_funnel_gp_start() instead. 844 */ 845 static void srcu_funnel_exp_start(struct srcu_struct *ssp, struct srcu_node *snp, 846 unsigned long s) 847 { 848 unsigned long flags; 849 unsigned long sgsne; 850 851 if (snp) 852 for (; snp != NULL; snp = snp->srcu_parent) { 853 sgsne = READ_ONCE(snp->srcu_gp_seq_needed_exp); 854 if (rcu_seq_done(&ssp->srcu_gp_seq, s) || 855 (!srcu_invl_snp_seq(sgsne) && ULONG_CMP_GE(sgsne, s))) 856 return; 857 spin_lock_irqsave_rcu_node(snp, flags); 858 sgsne = snp->srcu_gp_seq_needed_exp; 859 if (!srcu_invl_snp_seq(sgsne) && ULONG_CMP_GE(sgsne, s)) { 860 spin_unlock_irqrestore_rcu_node(snp, flags); 861 return; 862 } 863 WRITE_ONCE(snp->srcu_gp_seq_needed_exp, s); 864 spin_unlock_irqrestore_rcu_node(snp, flags); 865 } 866 spin_lock_irqsave_ssp_contention(ssp, &flags); 867 if (ULONG_CMP_LT(ssp->srcu_gp_seq_needed_exp, s)) 868 WRITE_ONCE(ssp->srcu_gp_seq_needed_exp, s); 869 spin_unlock_irqrestore_rcu_node(ssp, flags); 870 } 871 872 /* 873 * Funnel-locking scheme to scalably mediate many concurrent grace-period 874 * requests. The winner has to do the work of actually starting grace 875 * period s. Losers must either ensure that their desired grace-period 876 * number is recorded on at least their leaf srcu_node structure, or they 877 * must take steps to invoke their own callbacks. 878 * 879 * Note that this function also does the work of srcu_funnel_exp_start(), 880 * in some cases by directly invoking it. 881 */ 882 static void srcu_funnel_gp_start(struct srcu_struct *ssp, struct srcu_data *sdp, 883 unsigned long s, bool do_norm) 884 { 885 unsigned long flags; 886 int idx = rcu_seq_ctr(s) % ARRAY_SIZE(sdp->mynode->srcu_have_cbs); 887 unsigned long sgsne; 888 struct srcu_node *snp; 889 struct srcu_node *snp_leaf; 890 unsigned long snp_seq; 891 892 /* Ensure that snp node tree is fully initialized before traversing it */ 893 if (smp_load_acquire(&ssp->srcu_size_state) < SRCU_SIZE_WAIT_BARRIER) 894 snp_leaf = NULL; 895 else 896 snp_leaf = sdp->mynode; 897 898 if (snp_leaf) 899 /* Each pass through the loop does one level of the srcu_node tree. */ 900 for (snp = snp_leaf; snp != NULL; snp = snp->srcu_parent) { 901 if (rcu_seq_done(&ssp->srcu_gp_seq, s) && snp != snp_leaf) 902 return; /* GP already done and CBs recorded. */ 903 spin_lock_irqsave_rcu_node(snp, flags); 904 snp_seq = snp->srcu_have_cbs[idx]; 905 if (!srcu_invl_snp_seq(snp_seq) && ULONG_CMP_GE(snp_seq, s)) { 906 if (snp == snp_leaf && snp_seq == s) 907 snp->srcu_data_have_cbs[idx] |= sdp->grpmask; 908 spin_unlock_irqrestore_rcu_node(snp, flags); 909 if (snp == snp_leaf && snp_seq != s) { 910 srcu_schedule_cbs_sdp(sdp, do_norm ? SRCU_INTERVAL : 0); 911 return; 912 } 913 if (!do_norm) 914 srcu_funnel_exp_start(ssp, snp, s); 915 return; 916 } 917 snp->srcu_have_cbs[idx] = s; 918 if (snp == snp_leaf) 919 snp->srcu_data_have_cbs[idx] |= sdp->grpmask; 920 sgsne = snp->srcu_gp_seq_needed_exp; 921 if (!do_norm && (srcu_invl_snp_seq(sgsne) || ULONG_CMP_LT(sgsne, s))) 922 WRITE_ONCE(snp->srcu_gp_seq_needed_exp, s); 923 spin_unlock_irqrestore_rcu_node(snp, flags); 924 } 925 926 /* Top of tree, must ensure the grace period will be started. */ 927 spin_lock_irqsave_ssp_contention(ssp, &flags); 928 if (ULONG_CMP_LT(ssp->srcu_gp_seq_needed, s)) { 929 /* 930 * Record need for grace period s. Pair with load 931 * acquire setting up for initialization. 932 */ 933 smp_store_release(&ssp->srcu_gp_seq_needed, s); /*^^^*/ 934 } 935 if (!do_norm && ULONG_CMP_LT(ssp->srcu_gp_seq_needed_exp, s)) 936 WRITE_ONCE(ssp->srcu_gp_seq_needed_exp, s); 937 938 /* If grace period not already done and none in progress, start it. */ 939 if (!rcu_seq_done(&ssp->srcu_gp_seq, s) && 940 rcu_seq_state(ssp->srcu_gp_seq) == SRCU_STATE_IDLE) { 941 WARN_ON_ONCE(ULONG_CMP_GE(ssp->srcu_gp_seq, ssp->srcu_gp_seq_needed)); 942 srcu_gp_start(ssp); 943 944 // And how can that list_add() in the "else" clause 945 // possibly be safe for concurrent execution? Well, 946 // it isn't. And it does not have to be. After all, it 947 // can only be executed during early boot when there is only 948 // the one boot CPU running with interrupts still disabled. 949 if (likely(srcu_init_done)) 950 queue_delayed_work(rcu_gp_wq, &ssp->work, 951 !!srcu_get_delay(ssp)); 952 else if (list_empty(&ssp->work.work.entry)) 953 list_add(&ssp->work.work.entry, &srcu_boot_list); 954 } 955 spin_unlock_irqrestore_rcu_node(ssp, flags); 956 } 957 958 /* 959 * Wait until all readers counted by array index idx complete, but 960 * loop an additional time if there is an expedited grace period pending. 961 * The caller must ensure that ->srcu_idx is not changed while checking. 962 */ 963 static bool try_check_zero(struct srcu_struct *ssp, int idx, int trycount) 964 { 965 unsigned long curdelay; 966 967 curdelay = !srcu_get_delay(ssp); 968 969 for (;;) { 970 if (srcu_readers_active_idx_check(ssp, idx)) 971 return true; 972 if ((--trycount + curdelay) <= 0) 973 return false; 974 udelay(srcu_retry_check_delay); 975 } 976 } 977 978 /* 979 * Increment the ->srcu_idx counter so that future SRCU readers will 980 * use the other rank of the ->srcu_(un)lock_count[] arrays. This allows 981 * us to wait for pre-existing readers in a starvation-free manner. 982 */ 983 static void srcu_flip(struct srcu_struct *ssp) 984 { 985 /* 986 * Ensure that if this updater saw a given reader's increment 987 * from __srcu_read_lock(), that reader was using an old value 988 * of ->srcu_idx. Also ensure that if a given reader sees the 989 * new value of ->srcu_idx, this updater's earlier scans cannot 990 * have seen that reader's increments (which is OK, because this 991 * grace period need not wait on that reader). 992 */ 993 smp_mb(); /* E */ /* Pairs with B and C. */ 994 995 WRITE_ONCE(ssp->srcu_idx, ssp->srcu_idx + 1); 996 997 /* 998 * Ensure that if the updater misses an __srcu_read_unlock() 999 * increment, that task's next __srcu_read_lock() will see the 1000 * above counter update. Note that both this memory barrier 1001 * and the one in srcu_readers_active_idx_check() provide the 1002 * guarantee for __srcu_read_lock(). 1003 */ 1004 smp_mb(); /* D */ /* Pairs with C. */ 1005 } 1006 1007 /* 1008 * If SRCU is likely idle, return true, otherwise return false. 1009 * 1010 * Note that it is OK for several current from-idle requests for a new 1011 * grace period from idle to specify expediting because they will all end 1012 * up requesting the same grace period anyhow. So no loss. 1013 * 1014 * Note also that if any CPU (including the current one) is still invoking 1015 * callbacks, this function will nevertheless say "idle". This is not 1016 * ideal, but the overhead of checking all CPUs' callback lists is even 1017 * less ideal, especially on large systems. Furthermore, the wakeup 1018 * can happen before the callback is fully removed, so we have no choice 1019 * but to accept this type of error. 1020 * 1021 * This function is also subject to counter-wrap errors, but let's face 1022 * it, if this function was preempted for enough time for the counters 1023 * to wrap, it really doesn't matter whether or not we expedite the grace 1024 * period. The extra overhead of a needlessly expedited grace period is 1025 * negligible when amortized over that time period, and the extra latency 1026 * of a needlessly non-expedited grace period is similarly negligible. 1027 */ 1028 static bool srcu_might_be_idle(struct srcu_struct *ssp) 1029 { 1030 unsigned long curseq; 1031 unsigned long flags; 1032 struct srcu_data *sdp; 1033 unsigned long t; 1034 unsigned long tlast; 1035 1036 check_init_srcu_struct(ssp); 1037 /* If the local srcu_data structure has callbacks, not idle. */ 1038 sdp = raw_cpu_ptr(ssp->sda); 1039 spin_lock_irqsave_rcu_node(sdp, flags); 1040 if (rcu_segcblist_pend_cbs(&sdp->srcu_cblist)) { 1041 spin_unlock_irqrestore_rcu_node(sdp, flags); 1042 return false; /* Callbacks already present, so not idle. */ 1043 } 1044 spin_unlock_irqrestore_rcu_node(sdp, flags); 1045 1046 /* 1047 * No local callbacks, so probabilistically probe global state. 1048 * Exact information would require acquiring locks, which would 1049 * kill scalability, hence the probabilistic nature of the probe. 1050 */ 1051 1052 /* First, see if enough time has passed since the last GP. */ 1053 t = ktime_get_mono_fast_ns(); 1054 tlast = READ_ONCE(ssp->srcu_last_gp_end); 1055 if (exp_holdoff == 0 || 1056 time_in_range_open(t, tlast, tlast + exp_holdoff)) 1057 return false; /* Too soon after last GP. */ 1058 1059 /* Next, check for probable idleness. */ 1060 curseq = rcu_seq_current(&ssp->srcu_gp_seq); 1061 smp_mb(); /* Order ->srcu_gp_seq with ->srcu_gp_seq_needed. */ 1062 if (ULONG_CMP_LT(curseq, READ_ONCE(ssp->srcu_gp_seq_needed))) 1063 return false; /* Grace period in progress, so not idle. */ 1064 smp_mb(); /* Order ->srcu_gp_seq with prior access. */ 1065 if (curseq != rcu_seq_current(&ssp->srcu_gp_seq)) 1066 return false; /* GP # changed, so not idle. */ 1067 return true; /* With reasonable probability, idle! */ 1068 } 1069 1070 /* 1071 * SRCU callback function to leak a callback. 1072 */ 1073 static void srcu_leak_callback(struct rcu_head *rhp) 1074 { 1075 } 1076 1077 /* 1078 * Start an SRCU grace period, and also queue the callback if non-NULL. 1079 */ 1080 static unsigned long srcu_gp_start_if_needed(struct srcu_struct *ssp, 1081 struct rcu_head *rhp, bool do_norm) 1082 { 1083 unsigned long flags; 1084 int idx; 1085 bool needexp = false; 1086 bool needgp = false; 1087 unsigned long s; 1088 struct srcu_data *sdp; 1089 struct srcu_node *sdp_mynode; 1090 int ss_state; 1091 1092 check_init_srcu_struct(ssp); 1093 idx = srcu_read_lock(ssp); 1094 ss_state = smp_load_acquire(&ssp->srcu_size_state); 1095 if (ss_state < SRCU_SIZE_WAIT_CALL) 1096 sdp = per_cpu_ptr(ssp->sda, 0); 1097 else 1098 sdp = raw_cpu_ptr(ssp->sda); 1099 spin_lock_irqsave_sdp_contention(sdp, &flags); 1100 if (rhp) 1101 rcu_segcblist_enqueue(&sdp->srcu_cblist, rhp); 1102 rcu_segcblist_advance(&sdp->srcu_cblist, 1103 rcu_seq_current(&ssp->srcu_gp_seq)); 1104 s = rcu_seq_snap(&ssp->srcu_gp_seq); 1105 (void)rcu_segcblist_accelerate(&sdp->srcu_cblist, s); 1106 if (ULONG_CMP_LT(sdp->srcu_gp_seq_needed, s)) { 1107 sdp->srcu_gp_seq_needed = s; 1108 needgp = true; 1109 } 1110 if (!do_norm && ULONG_CMP_LT(sdp->srcu_gp_seq_needed_exp, s)) { 1111 sdp->srcu_gp_seq_needed_exp = s; 1112 needexp = true; 1113 } 1114 spin_unlock_irqrestore_rcu_node(sdp, flags); 1115 1116 /* Ensure that snp node tree is fully initialized before traversing it */ 1117 if (ss_state < SRCU_SIZE_WAIT_BARRIER) 1118 sdp_mynode = NULL; 1119 else 1120 sdp_mynode = sdp->mynode; 1121 1122 if (needgp) 1123 srcu_funnel_gp_start(ssp, sdp, s, do_norm); 1124 else if (needexp) 1125 srcu_funnel_exp_start(ssp, sdp_mynode, s); 1126 srcu_read_unlock(ssp, idx); 1127 return s; 1128 } 1129 1130 /* 1131 * Enqueue an SRCU callback on the srcu_data structure associated with 1132 * the current CPU and the specified srcu_struct structure, initiating 1133 * grace-period processing if it is not already running. 1134 * 1135 * Note that all CPUs must agree that the grace period extended beyond 1136 * all pre-existing SRCU read-side critical section. On systems with 1137 * more than one CPU, this means that when "func()" is invoked, each CPU 1138 * is guaranteed to have executed a full memory barrier since the end of 1139 * its last corresponding SRCU read-side critical section whose beginning 1140 * preceded the call to call_srcu(). It also means that each CPU executing 1141 * an SRCU read-side critical section that continues beyond the start of 1142 * "func()" must have executed a memory barrier after the call_srcu() 1143 * but before the beginning of that SRCU read-side critical section. 1144 * Note that these guarantees include CPUs that are offline, idle, or 1145 * executing in user mode, as well as CPUs that are executing in the kernel. 1146 * 1147 * Furthermore, if CPU A invoked call_srcu() and CPU B invoked the 1148 * resulting SRCU callback function "func()", then both CPU A and CPU 1149 * B are guaranteed to execute a full memory barrier during the time 1150 * interval between the call to call_srcu() and the invocation of "func()". 1151 * This guarantee applies even if CPU A and CPU B are the same CPU (but 1152 * again only if the system has more than one CPU). 1153 * 1154 * Of course, these guarantees apply only for invocations of call_srcu(), 1155 * srcu_read_lock(), and srcu_read_unlock() that are all passed the same 1156 * srcu_struct structure. 1157 */ 1158 static void __call_srcu(struct srcu_struct *ssp, struct rcu_head *rhp, 1159 rcu_callback_t func, bool do_norm) 1160 { 1161 if (debug_rcu_head_queue(rhp)) { 1162 /* Probable double call_srcu(), so leak the callback. */ 1163 WRITE_ONCE(rhp->func, srcu_leak_callback); 1164 WARN_ONCE(1, "call_srcu(): Leaked duplicate callback\n"); 1165 return; 1166 } 1167 rhp->func = func; 1168 (void)srcu_gp_start_if_needed(ssp, rhp, do_norm); 1169 } 1170 1171 /** 1172 * call_srcu() - Queue a callback for invocation after an SRCU grace period 1173 * @ssp: srcu_struct in queue the callback 1174 * @rhp: structure to be used for queueing the SRCU callback. 1175 * @func: function to be invoked after the SRCU grace period 1176 * 1177 * The callback function will be invoked some time after a full SRCU 1178 * grace period elapses, in other words after all pre-existing SRCU 1179 * read-side critical sections have completed. However, the callback 1180 * function might well execute concurrently with other SRCU read-side 1181 * critical sections that started after call_srcu() was invoked. SRCU 1182 * read-side critical sections are delimited by srcu_read_lock() and 1183 * srcu_read_unlock(), and may be nested. 1184 * 1185 * The callback will be invoked from process context, but must nevertheless 1186 * be fast and must not block. 1187 */ 1188 void call_srcu(struct srcu_struct *ssp, struct rcu_head *rhp, 1189 rcu_callback_t func) 1190 { 1191 __call_srcu(ssp, rhp, func, true); 1192 } 1193 EXPORT_SYMBOL_GPL(call_srcu); 1194 1195 /* 1196 * Helper function for synchronize_srcu() and synchronize_srcu_expedited(). 1197 */ 1198 static void __synchronize_srcu(struct srcu_struct *ssp, bool do_norm) 1199 { 1200 struct rcu_synchronize rcu; 1201 1202 RCU_LOCKDEP_WARN(lockdep_is_held(ssp) || 1203 lock_is_held(&rcu_bh_lock_map) || 1204 lock_is_held(&rcu_lock_map) || 1205 lock_is_held(&rcu_sched_lock_map), 1206 "Illegal synchronize_srcu() in same-type SRCU (or in RCU) read-side critical section"); 1207 1208 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE) 1209 return; 1210 might_sleep(); 1211 check_init_srcu_struct(ssp); 1212 init_completion(&rcu.completion); 1213 init_rcu_head_on_stack(&rcu.head); 1214 __call_srcu(ssp, &rcu.head, wakeme_after_rcu, do_norm); 1215 wait_for_completion(&rcu.completion); 1216 destroy_rcu_head_on_stack(&rcu.head); 1217 1218 /* 1219 * Make sure that later code is ordered after the SRCU grace 1220 * period. This pairs with the spin_lock_irq_rcu_node() 1221 * in srcu_invoke_callbacks(). Unlike Tree RCU, this is needed 1222 * because the current CPU might have been totally uninvolved with 1223 * (and thus unordered against) that grace period. 1224 */ 1225 smp_mb(); 1226 } 1227 1228 /** 1229 * synchronize_srcu_expedited - Brute-force SRCU grace period 1230 * @ssp: srcu_struct with which to synchronize. 1231 * 1232 * Wait for an SRCU grace period to elapse, but be more aggressive about 1233 * spinning rather than blocking when waiting. 1234 * 1235 * Note that synchronize_srcu_expedited() has the same deadlock and 1236 * memory-ordering properties as does synchronize_srcu(). 1237 */ 1238 void synchronize_srcu_expedited(struct srcu_struct *ssp) 1239 { 1240 __synchronize_srcu(ssp, rcu_gp_is_normal()); 1241 } 1242 EXPORT_SYMBOL_GPL(synchronize_srcu_expedited); 1243 1244 /** 1245 * synchronize_srcu - wait for prior SRCU read-side critical-section completion 1246 * @ssp: srcu_struct with which to synchronize. 1247 * 1248 * Wait for the count to drain to zero of both indexes. To avoid the 1249 * possible starvation of synchronize_srcu(), it waits for the count of 1250 * the index=((->srcu_idx & 1) ^ 1) to drain to zero at first, 1251 * and then flip the srcu_idx and wait for the count of the other index. 1252 * 1253 * Can block; must be called from process context. 1254 * 1255 * Note that it is illegal to call synchronize_srcu() from the corresponding 1256 * SRCU read-side critical section; doing so will result in deadlock. 1257 * However, it is perfectly legal to call synchronize_srcu() on one 1258 * srcu_struct from some other srcu_struct's read-side critical section, 1259 * as long as the resulting graph of srcu_structs is acyclic. 1260 * 1261 * There are memory-ordering constraints implied by synchronize_srcu(). 1262 * On systems with more than one CPU, when synchronize_srcu() returns, 1263 * each CPU is guaranteed to have executed a full memory barrier since 1264 * the end of its last corresponding SRCU read-side critical section 1265 * whose beginning preceded the call to synchronize_srcu(). In addition, 1266 * each CPU having an SRCU read-side critical section that extends beyond 1267 * the return from synchronize_srcu() is guaranteed to have executed a 1268 * full memory barrier after the beginning of synchronize_srcu() and before 1269 * the beginning of that SRCU read-side critical section. Note that these 1270 * guarantees include CPUs that are offline, idle, or executing in user mode, 1271 * as well as CPUs that are executing in the kernel. 1272 * 1273 * Furthermore, if CPU A invoked synchronize_srcu(), which returned 1274 * to its caller on CPU B, then both CPU A and CPU B are guaranteed 1275 * to have executed a full memory barrier during the execution of 1276 * synchronize_srcu(). This guarantee applies even if CPU A and CPU B 1277 * are the same CPU, but again only if the system has more than one CPU. 1278 * 1279 * Of course, these memory-ordering guarantees apply only when 1280 * synchronize_srcu(), srcu_read_lock(), and srcu_read_unlock() are 1281 * passed the same srcu_struct structure. 1282 * 1283 * Implementation of these memory-ordering guarantees is similar to 1284 * that of synchronize_rcu(). 1285 * 1286 * If SRCU is likely idle, expedite the first request. This semantic 1287 * was provided by Classic SRCU, and is relied upon by its users, so TREE 1288 * SRCU must also provide it. Note that detecting idleness is heuristic 1289 * and subject to both false positives and negatives. 1290 */ 1291 void synchronize_srcu(struct srcu_struct *ssp) 1292 { 1293 if (srcu_might_be_idle(ssp) || rcu_gp_is_expedited()) 1294 synchronize_srcu_expedited(ssp); 1295 else 1296 __synchronize_srcu(ssp, true); 1297 } 1298 EXPORT_SYMBOL_GPL(synchronize_srcu); 1299 1300 /** 1301 * get_state_synchronize_srcu - Provide an end-of-grace-period cookie 1302 * @ssp: srcu_struct to provide cookie for. 1303 * 1304 * This function returns a cookie that can be passed to 1305 * poll_state_synchronize_srcu(), which will return true if a full grace 1306 * period has elapsed in the meantime. It is the caller's responsibility 1307 * to make sure that grace period happens, for example, by invoking 1308 * call_srcu() after return from get_state_synchronize_srcu(). 1309 */ 1310 unsigned long get_state_synchronize_srcu(struct srcu_struct *ssp) 1311 { 1312 // Any prior manipulation of SRCU-protected data must happen 1313 // before the load from ->srcu_gp_seq. 1314 smp_mb(); 1315 return rcu_seq_snap(&ssp->srcu_gp_seq); 1316 } 1317 EXPORT_SYMBOL_GPL(get_state_synchronize_srcu); 1318 1319 /** 1320 * start_poll_synchronize_srcu - Provide cookie and start grace period 1321 * @ssp: srcu_struct to provide cookie for. 1322 * 1323 * This function returns a cookie that can be passed to 1324 * poll_state_synchronize_srcu(), which will return true if a full grace 1325 * period has elapsed in the meantime. Unlike get_state_synchronize_srcu(), 1326 * this function also ensures that any needed SRCU grace period will be 1327 * started. This convenience does come at a cost in terms of CPU overhead. 1328 */ 1329 unsigned long start_poll_synchronize_srcu(struct srcu_struct *ssp) 1330 { 1331 return srcu_gp_start_if_needed(ssp, NULL, true); 1332 } 1333 EXPORT_SYMBOL_GPL(start_poll_synchronize_srcu); 1334 1335 /** 1336 * poll_state_synchronize_srcu - Has cookie's grace period ended? 1337 * @ssp: srcu_struct to provide cookie for. 1338 * @cookie: Return value from get_state_synchronize_srcu() or start_poll_synchronize_srcu(). 1339 * 1340 * This function takes the cookie that was returned from either 1341 * get_state_synchronize_srcu() or start_poll_synchronize_srcu(), and 1342 * returns @true if an SRCU grace period elapsed since the time that the 1343 * cookie was created. 1344 * 1345 * Because cookies are finite in size, wrapping/overflow is possible. 1346 * This is more pronounced on 32-bit systems where cookies are 32 bits, 1347 * where in theory wrapping could happen in about 14 hours assuming 1348 * 25-microsecond expedited SRCU grace periods. However, a more likely 1349 * overflow lower bound is on the order of 24 days in the case of 1350 * one-millisecond SRCU grace periods. Of course, wrapping in a 64-bit 1351 * system requires geologic timespans, as in more than seven million years 1352 * even for expedited SRCU grace periods. 1353 * 1354 * Wrapping/overflow is much more of an issue for CONFIG_SMP=n systems 1355 * that also have CONFIG_PREEMPTION=n, which selects Tiny SRCU. This uses 1356 * a 16-bit cookie, which rcutorture routinely wraps in a matter of a 1357 * few minutes. If this proves to be a problem, this counter will be 1358 * expanded to the same size as for Tree SRCU. 1359 */ 1360 bool poll_state_synchronize_srcu(struct srcu_struct *ssp, unsigned long cookie) 1361 { 1362 if (!rcu_seq_done(&ssp->srcu_gp_seq, cookie)) 1363 return false; 1364 // Ensure that the end of the SRCU grace period happens before 1365 // any subsequent code that the caller might execute. 1366 smp_mb(); // ^^^ 1367 return true; 1368 } 1369 EXPORT_SYMBOL_GPL(poll_state_synchronize_srcu); 1370 1371 /* 1372 * Callback function for srcu_barrier() use. 1373 */ 1374 static void srcu_barrier_cb(struct rcu_head *rhp) 1375 { 1376 struct srcu_data *sdp; 1377 struct srcu_struct *ssp; 1378 1379 sdp = container_of(rhp, struct srcu_data, srcu_barrier_head); 1380 ssp = sdp->ssp; 1381 if (atomic_dec_and_test(&ssp->srcu_barrier_cpu_cnt)) 1382 complete(&ssp->srcu_barrier_completion); 1383 } 1384 1385 /* 1386 * Enqueue an srcu_barrier() callback on the specified srcu_data 1387 * structure's ->cblist. but only if that ->cblist already has at least one 1388 * callback enqueued. Note that if a CPU already has callbacks enqueue, 1389 * it must have already registered the need for a future grace period, 1390 * so all we need do is enqueue a callback that will use the same grace 1391 * period as the last callback already in the queue. 1392 */ 1393 static void srcu_barrier_one_cpu(struct srcu_struct *ssp, struct srcu_data *sdp) 1394 { 1395 spin_lock_irq_rcu_node(sdp); 1396 atomic_inc(&ssp->srcu_barrier_cpu_cnt); 1397 sdp->srcu_barrier_head.func = srcu_barrier_cb; 1398 debug_rcu_head_queue(&sdp->srcu_barrier_head); 1399 if (!rcu_segcblist_entrain(&sdp->srcu_cblist, 1400 &sdp->srcu_barrier_head)) { 1401 debug_rcu_head_unqueue(&sdp->srcu_barrier_head); 1402 atomic_dec(&ssp->srcu_barrier_cpu_cnt); 1403 } 1404 spin_unlock_irq_rcu_node(sdp); 1405 } 1406 1407 /** 1408 * srcu_barrier - Wait until all in-flight call_srcu() callbacks complete. 1409 * @ssp: srcu_struct on which to wait for in-flight callbacks. 1410 */ 1411 void srcu_barrier(struct srcu_struct *ssp) 1412 { 1413 int cpu; 1414 int idx; 1415 unsigned long s = rcu_seq_snap(&ssp->srcu_barrier_seq); 1416 1417 check_init_srcu_struct(ssp); 1418 mutex_lock(&ssp->srcu_barrier_mutex); 1419 if (rcu_seq_done(&ssp->srcu_barrier_seq, s)) { 1420 smp_mb(); /* Force ordering following return. */ 1421 mutex_unlock(&ssp->srcu_barrier_mutex); 1422 return; /* Someone else did our work for us. */ 1423 } 1424 rcu_seq_start(&ssp->srcu_barrier_seq); 1425 init_completion(&ssp->srcu_barrier_completion); 1426 1427 /* Initial count prevents reaching zero until all CBs are posted. */ 1428 atomic_set(&ssp->srcu_barrier_cpu_cnt, 1); 1429 1430 idx = srcu_read_lock(ssp); 1431 if (smp_load_acquire(&ssp->srcu_size_state) < SRCU_SIZE_WAIT_BARRIER) 1432 srcu_barrier_one_cpu(ssp, per_cpu_ptr(ssp->sda, 0)); 1433 else 1434 for_each_possible_cpu(cpu) 1435 srcu_barrier_one_cpu(ssp, per_cpu_ptr(ssp->sda, cpu)); 1436 srcu_read_unlock(ssp, idx); 1437 1438 /* Remove the initial count, at which point reaching zero can happen. */ 1439 if (atomic_dec_and_test(&ssp->srcu_barrier_cpu_cnt)) 1440 complete(&ssp->srcu_barrier_completion); 1441 wait_for_completion(&ssp->srcu_barrier_completion); 1442 1443 rcu_seq_end(&ssp->srcu_barrier_seq); 1444 mutex_unlock(&ssp->srcu_barrier_mutex); 1445 } 1446 EXPORT_SYMBOL_GPL(srcu_barrier); 1447 1448 /** 1449 * srcu_batches_completed - return batches completed. 1450 * @ssp: srcu_struct on which to report batch completion. 1451 * 1452 * Report the number of batches, correlated with, but not necessarily 1453 * precisely the same as, the number of grace periods that have elapsed. 1454 */ 1455 unsigned long srcu_batches_completed(struct srcu_struct *ssp) 1456 { 1457 return READ_ONCE(ssp->srcu_idx); 1458 } 1459 EXPORT_SYMBOL_GPL(srcu_batches_completed); 1460 1461 /* 1462 * Core SRCU state machine. Push state bits of ->srcu_gp_seq 1463 * to SRCU_STATE_SCAN2, and invoke srcu_gp_end() when scan has 1464 * completed in that state. 1465 */ 1466 static void srcu_advance_state(struct srcu_struct *ssp) 1467 { 1468 int idx; 1469 1470 mutex_lock(&ssp->srcu_gp_mutex); 1471 1472 /* 1473 * Because readers might be delayed for an extended period after 1474 * fetching ->srcu_idx for their index, at any point in time there 1475 * might well be readers using both idx=0 and idx=1. We therefore 1476 * need to wait for readers to clear from both index values before 1477 * invoking a callback. 1478 * 1479 * The load-acquire ensures that we see the accesses performed 1480 * by the prior grace period. 1481 */ 1482 idx = rcu_seq_state(smp_load_acquire(&ssp->srcu_gp_seq)); /* ^^^ */ 1483 if (idx == SRCU_STATE_IDLE) { 1484 spin_lock_irq_rcu_node(ssp); 1485 if (ULONG_CMP_GE(ssp->srcu_gp_seq, ssp->srcu_gp_seq_needed)) { 1486 WARN_ON_ONCE(rcu_seq_state(ssp->srcu_gp_seq)); 1487 spin_unlock_irq_rcu_node(ssp); 1488 mutex_unlock(&ssp->srcu_gp_mutex); 1489 return; 1490 } 1491 idx = rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq)); 1492 if (idx == SRCU_STATE_IDLE) 1493 srcu_gp_start(ssp); 1494 spin_unlock_irq_rcu_node(ssp); 1495 if (idx != SRCU_STATE_IDLE) { 1496 mutex_unlock(&ssp->srcu_gp_mutex); 1497 return; /* Someone else started the grace period. */ 1498 } 1499 } 1500 1501 if (rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq)) == SRCU_STATE_SCAN1) { 1502 idx = 1 ^ (ssp->srcu_idx & 1); 1503 if (!try_check_zero(ssp, idx, 1)) { 1504 mutex_unlock(&ssp->srcu_gp_mutex); 1505 return; /* readers present, retry later. */ 1506 } 1507 srcu_flip(ssp); 1508 spin_lock_irq_rcu_node(ssp); 1509 rcu_seq_set_state(&ssp->srcu_gp_seq, SRCU_STATE_SCAN2); 1510 ssp->srcu_n_exp_nodelay = 0; 1511 spin_unlock_irq_rcu_node(ssp); 1512 } 1513 1514 if (rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq)) == SRCU_STATE_SCAN2) { 1515 1516 /* 1517 * SRCU read-side critical sections are normally short, 1518 * so check at least twice in quick succession after a flip. 1519 */ 1520 idx = 1 ^ (ssp->srcu_idx & 1); 1521 if (!try_check_zero(ssp, idx, 2)) { 1522 mutex_unlock(&ssp->srcu_gp_mutex); 1523 return; /* readers present, retry later. */ 1524 } 1525 ssp->srcu_n_exp_nodelay = 0; 1526 srcu_gp_end(ssp); /* Releases ->srcu_gp_mutex. */ 1527 } 1528 } 1529 1530 /* 1531 * Invoke a limited number of SRCU callbacks that have passed through 1532 * their grace period. If there are more to do, SRCU will reschedule 1533 * the workqueue. Note that needed memory barriers have been executed 1534 * in this task's context by srcu_readers_active_idx_check(). 1535 */ 1536 static void srcu_invoke_callbacks(struct work_struct *work) 1537 { 1538 long len; 1539 bool more; 1540 struct rcu_cblist ready_cbs; 1541 struct rcu_head *rhp; 1542 struct srcu_data *sdp; 1543 struct srcu_struct *ssp; 1544 1545 sdp = container_of(work, struct srcu_data, work); 1546 1547 ssp = sdp->ssp; 1548 rcu_cblist_init(&ready_cbs); 1549 spin_lock_irq_rcu_node(sdp); 1550 rcu_segcblist_advance(&sdp->srcu_cblist, 1551 rcu_seq_current(&ssp->srcu_gp_seq)); 1552 if (sdp->srcu_cblist_invoking || 1553 !rcu_segcblist_ready_cbs(&sdp->srcu_cblist)) { 1554 spin_unlock_irq_rcu_node(sdp); 1555 return; /* Someone else on the job or nothing to do. */ 1556 } 1557 1558 /* We are on the job! Extract and invoke ready callbacks. */ 1559 sdp->srcu_cblist_invoking = true; 1560 rcu_segcblist_extract_done_cbs(&sdp->srcu_cblist, &ready_cbs); 1561 len = ready_cbs.len; 1562 spin_unlock_irq_rcu_node(sdp); 1563 rhp = rcu_cblist_dequeue(&ready_cbs); 1564 for (; rhp != NULL; rhp = rcu_cblist_dequeue(&ready_cbs)) { 1565 debug_rcu_head_unqueue(rhp); 1566 local_bh_disable(); 1567 rhp->func(rhp); 1568 local_bh_enable(); 1569 } 1570 WARN_ON_ONCE(ready_cbs.len); 1571 1572 /* 1573 * Update counts, accelerate new callbacks, and if needed, 1574 * schedule another round of callback invocation. 1575 */ 1576 spin_lock_irq_rcu_node(sdp); 1577 rcu_segcblist_add_len(&sdp->srcu_cblist, -len); 1578 (void)rcu_segcblist_accelerate(&sdp->srcu_cblist, 1579 rcu_seq_snap(&ssp->srcu_gp_seq)); 1580 sdp->srcu_cblist_invoking = false; 1581 more = rcu_segcblist_ready_cbs(&sdp->srcu_cblist); 1582 spin_unlock_irq_rcu_node(sdp); 1583 if (more) 1584 srcu_schedule_cbs_sdp(sdp, 0); 1585 } 1586 1587 /* 1588 * Finished one round of SRCU grace period. Start another if there are 1589 * more SRCU callbacks queued, otherwise put SRCU into not-running state. 1590 */ 1591 static void srcu_reschedule(struct srcu_struct *ssp, unsigned long delay) 1592 { 1593 bool pushgp = true; 1594 1595 spin_lock_irq_rcu_node(ssp); 1596 if (ULONG_CMP_GE(ssp->srcu_gp_seq, ssp->srcu_gp_seq_needed)) { 1597 if (!WARN_ON_ONCE(rcu_seq_state(ssp->srcu_gp_seq))) { 1598 /* All requests fulfilled, time to go idle. */ 1599 pushgp = false; 1600 } 1601 } else if (!rcu_seq_state(ssp->srcu_gp_seq)) { 1602 /* Outstanding request and no GP. Start one. */ 1603 srcu_gp_start(ssp); 1604 } 1605 spin_unlock_irq_rcu_node(ssp); 1606 1607 if (pushgp) 1608 queue_delayed_work(rcu_gp_wq, &ssp->work, delay); 1609 } 1610 1611 /* 1612 * This is the work-queue function that handles SRCU grace periods. 1613 */ 1614 static void process_srcu(struct work_struct *work) 1615 { 1616 unsigned long curdelay; 1617 unsigned long j; 1618 struct srcu_struct *ssp; 1619 1620 ssp = container_of(work, struct srcu_struct, work.work); 1621 1622 srcu_advance_state(ssp); 1623 curdelay = srcu_get_delay(ssp); 1624 if (curdelay) { 1625 WRITE_ONCE(ssp->reschedule_count, 0); 1626 } else { 1627 j = jiffies; 1628 if (READ_ONCE(ssp->reschedule_jiffies) == j) { 1629 WRITE_ONCE(ssp->reschedule_count, READ_ONCE(ssp->reschedule_count) + 1); 1630 if (READ_ONCE(ssp->reschedule_count) > srcu_max_nodelay) 1631 curdelay = 1; 1632 } else { 1633 WRITE_ONCE(ssp->reschedule_count, 1); 1634 WRITE_ONCE(ssp->reschedule_jiffies, j); 1635 } 1636 } 1637 srcu_reschedule(ssp, curdelay); 1638 } 1639 1640 void srcutorture_get_gp_data(enum rcutorture_type test_type, 1641 struct srcu_struct *ssp, int *flags, 1642 unsigned long *gp_seq) 1643 { 1644 if (test_type != SRCU_FLAVOR) 1645 return; 1646 *flags = 0; 1647 *gp_seq = rcu_seq_current(&ssp->srcu_gp_seq); 1648 } 1649 EXPORT_SYMBOL_GPL(srcutorture_get_gp_data); 1650 1651 static const char * const srcu_size_state_name[] = { 1652 "SRCU_SIZE_SMALL", 1653 "SRCU_SIZE_ALLOC", 1654 "SRCU_SIZE_WAIT_BARRIER", 1655 "SRCU_SIZE_WAIT_CALL", 1656 "SRCU_SIZE_WAIT_CBS1", 1657 "SRCU_SIZE_WAIT_CBS2", 1658 "SRCU_SIZE_WAIT_CBS3", 1659 "SRCU_SIZE_WAIT_CBS4", 1660 "SRCU_SIZE_BIG", 1661 "SRCU_SIZE_???", 1662 }; 1663 1664 void srcu_torture_stats_print(struct srcu_struct *ssp, char *tt, char *tf) 1665 { 1666 int cpu; 1667 int idx; 1668 unsigned long s0 = 0, s1 = 0; 1669 int ss_state = READ_ONCE(ssp->srcu_size_state); 1670 int ss_state_idx = ss_state; 1671 1672 idx = ssp->srcu_idx & 0x1; 1673 if (ss_state < 0 || ss_state >= ARRAY_SIZE(srcu_size_state_name)) 1674 ss_state_idx = ARRAY_SIZE(srcu_size_state_name) - 1; 1675 pr_alert("%s%s Tree SRCU g%ld state %d (%s)", 1676 tt, tf, rcu_seq_current(&ssp->srcu_gp_seq), ss_state, 1677 srcu_size_state_name[ss_state_idx]); 1678 if (!ssp->sda) { 1679 // Called after cleanup_srcu_struct(), perhaps. 1680 pr_cont(" No per-CPU srcu_data structures (->sda == NULL).\n"); 1681 } else { 1682 pr_cont(" per-CPU(idx=%d):", idx); 1683 for_each_possible_cpu(cpu) { 1684 unsigned long l0, l1; 1685 unsigned long u0, u1; 1686 long c0, c1; 1687 struct srcu_data *sdp; 1688 1689 sdp = per_cpu_ptr(ssp->sda, cpu); 1690 u0 = data_race(sdp->srcu_unlock_count[!idx]); 1691 u1 = data_race(sdp->srcu_unlock_count[idx]); 1692 1693 /* 1694 * Make sure that a lock is always counted if the corresponding 1695 * unlock is counted. 1696 */ 1697 smp_rmb(); 1698 1699 l0 = data_race(sdp->srcu_lock_count[!idx]); 1700 l1 = data_race(sdp->srcu_lock_count[idx]); 1701 1702 c0 = l0 - u0; 1703 c1 = l1 - u1; 1704 pr_cont(" %d(%ld,%ld %c)", 1705 cpu, c0, c1, 1706 "C."[rcu_segcblist_empty(&sdp->srcu_cblist)]); 1707 s0 += c0; 1708 s1 += c1; 1709 } 1710 pr_cont(" T(%ld,%ld)\n", s0, s1); 1711 } 1712 if (SRCU_SIZING_IS_TORTURE()) 1713 srcu_transition_to_big(ssp); 1714 } 1715 EXPORT_SYMBOL_GPL(srcu_torture_stats_print); 1716 1717 static int __init srcu_bootup_announce(void) 1718 { 1719 pr_info("Hierarchical SRCU implementation.\n"); 1720 if (exp_holdoff != DEFAULT_SRCU_EXP_HOLDOFF) 1721 pr_info("\tNon-default auto-expedite holdoff of %lu ns.\n", exp_holdoff); 1722 if (srcu_retry_check_delay != SRCU_DEFAULT_RETRY_CHECK_DELAY) 1723 pr_info("\tNon-default retry check delay of %lu us.\n", srcu_retry_check_delay); 1724 if (srcu_max_nodelay != SRCU_DEFAULT_MAX_NODELAY) 1725 pr_info("\tNon-default max no-delay of %lu.\n", srcu_max_nodelay); 1726 pr_info("\tMax phase no-delay instances is %lu.\n", srcu_max_nodelay_phase); 1727 return 0; 1728 } 1729 early_initcall(srcu_bootup_announce); 1730 1731 void __init srcu_init(void) 1732 { 1733 struct srcu_struct *ssp; 1734 1735 /* Decide on srcu_struct-size strategy. */ 1736 if (SRCU_SIZING_IS(SRCU_SIZING_AUTO)) { 1737 if (nr_cpu_ids >= big_cpu_lim) { 1738 convert_to_big = SRCU_SIZING_INIT; // Don't bother waiting for contention. 1739 pr_info("%s: Setting srcu_struct sizes to big.\n", __func__); 1740 } else { 1741 convert_to_big = SRCU_SIZING_NONE | SRCU_SIZING_CONTEND; 1742 pr_info("%s: Setting srcu_struct sizes based on contention.\n", __func__); 1743 } 1744 } 1745 1746 /* 1747 * Once that is set, call_srcu() can follow the normal path and 1748 * queue delayed work. This must follow RCU workqueues creation 1749 * and timers initialization. 1750 */ 1751 srcu_init_done = true; 1752 while (!list_empty(&srcu_boot_list)) { 1753 ssp = list_first_entry(&srcu_boot_list, struct srcu_struct, 1754 work.work.entry); 1755 list_del_init(&ssp->work.work.entry); 1756 if (SRCU_SIZING_IS(SRCU_SIZING_INIT) && ssp->srcu_size_state == SRCU_SIZE_SMALL) 1757 ssp->srcu_size_state = SRCU_SIZE_ALLOC; 1758 queue_work(rcu_gp_wq, &ssp->work.work); 1759 } 1760 } 1761 1762 #ifdef CONFIG_MODULES 1763 1764 /* Initialize any global-scope srcu_struct structures used by this module. */ 1765 static int srcu_module_coming(struct module *mod) 1766 { 1767 int i; 1768 struct srcu_struct **sspp = mod->srcu_struct_ptrs; 1769 int ret; 1770 1771 for (i = 0; i < mod->num_srcu_structs; i++) { 1772 ret = init_srcu_struct(*(sspp++)); 1773 if (WARN_ON_ONCE(ret)) 1774 return ret; 1775 } 1776 return 0; 1777 } 1778 1779 /* Clean up any global-scope srcu_struct structures used by this module. */ 1780 static void srcu_module_going(struct module *mod) 1781 { 1782 int i; 1783 struct srcu_struct **sspp = mod->srcu_struct_ptrs; 1784 1785 for (i = 0; i < mod->num_srcu_structs; i++) 1786 cleanup_srcu_struct(*(sspp++)); 1787 } 1788 1789 /* Handle one module, either coming or going. */ 1790 static int srcu_module_notify(struct notifier_block *self, 1791 unsigned long val, void *data) 1792 { 1793 struct module *mod = data; 1794 int ret = 0; 1795 1796 switch (val) { 1797 case MODULE_STATE_COMING: 1798 ret = srcu_module_coming(mod); 1799 break; 1800 case MODULE_STATE_GOING: 1801 srcu_module_going(mod); 1802 break; 1803 default: 1804 break; 1805 } 1806 return ret; 1807 } 1808 1809 static struct notifier_block srcu_module_nb = { 1810 .notifier_call = srcu_module_notify, 1811 .priority = 0, 1812 }; 1813 1814 static __init int init_srcu_module_notifier(void) 1815 { 1816 int ret; 1817 1818 ret = register_module_notifier(&srcu_module_nb); 1819 if (ret) 1820 pr_warn("Failed to register srcu module notifier\n"); 1821 return ret; 1822 } 1823 late_initcall(init_srcu_module_notifier); 1824 1825 #endif /* #ifdef CONFIG_MODULES */ 1826