1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Sleepable Read-Copy Update mechanism for mutual exclusion. 4 * 5 * Copyright (C) IBM Corporation, 2006 6 * Copyright (C) Fujitsu, 2012 7 * 8 * Authors: Paul McKenney <paulmck@linux.ibm.com> 9 * Lai Jiangshan <laijs@cn.fujitsu.com> 10 * 11 * For detailed explanation of Read-Copy Update mechanism see - 12 * Documentation/RCU/ *.txt 13 * 14 */ 15 16 #define pr_fmt(fmt) "rcu: " fmt 17 18 #include <linux/export.h> 19 #include <linux/mutex.h> 20 #include <linux/percpu.h> 21 #include <linux/preempt.h> 22 #include <linux/rcupdate_wait.h> 23 #include <linux/sched.h> 24 #include <linux/smp.h> 25 #include <linux/delay.h> 26 #include <linux/module.h> 27 #include <linux/slab.h> 28 #include <linux/srcu.h> 29 30 #include "rcu.h" 31 #include "rcu_segcblist.h" 32 33 /* Holdoff in nanoseconds for auto-expediting. */ 34 #define DEFAULT_SRCU_EXP_HOLDOFF (25 * 1000) 35 static ulong exp_holdoff = DEFAULT_SRCU_EXP_HOLDOFF; 36 module_param(exp_holdoff, ulong, 0444); 37 38 /* Overflow-check frequency. N bits roughly says every 2**N grace periods. */ 39 static ulong counter_wrap_check = (ULONG_MAX >> 2); 40 module_param(counter_wrap_check, ulong, 0444); 41 42 /* 43 * Control conversion to SRCU_SIZE_BIG: 44 * 0: Don't convert at all. 45 * 1: Convert at init_srcu_struct() time. 46 * 2: Convert when rcutorture invokes srcu_torture_stats_print(). 47 * 3: Decide at boot time based on system shape (default). 48 * 0x1x: Convert when excessive contention encountered. 49 */ 50 #define SRCU_SIZING_NONE 0 51 #define SRCU_SIZING_INIT 1 52 #define SRCU_SIZING_TORTURE 2 53 #define SRCU_SIZING_AUTO 3 54 #define SRCU_SIZING_CONTEND 0x10 55 #define SRCU_SIZING_IS(x) ((convert_to_big & ~SRCU_SIZING_CONTEND) == x) 56 #define SRCU_SIZING_IS_NONE() (SRCU_SIZING_IS(SRCU_SIZING_NONE)) 57 #define SRCU_SIZING_IS_INIT() (SRCU_SIZING_IS(SRCU_SIZING_INIT)) 58 #define SRCU_SIZING_IS_TORTURE() (SRCU_SIZING_IS(SRCU_SIZING_TORTURE)) 59 #define SRCU_SIZING_IS_CONTEND() (convert_to_big & SRCU_SIZING_CONTEND) 60 static int convert_to_big = SRCU_SIZING_AUTO; 61 module_param(convert_to_big, int, 0444); 62 63 /* Number of CPUs to trigger init_srcu_struct()-time transition to big. */ 64 static int big_cpu_lim __read_mostly = 128; 65 module_param(big_cpu_lim, int, 0444); 66 67 /* Contention events per jiffy to initiate transition to big. */ 68 static int small_contention_lim __read_mostly = 100; 69 module_param(small_contention_lim, int, 0444); 70 71 /* Early-boot callback-management, so early that no lock is required! */ 72 static LIST_HEAD(srcu_boot_list); 73 static bool __read_mostly srcu_init_done; 74 75 static void srcu_invoke_callbacks(struct work_struct *work); 76 static void srcu_reschedule(struct srcu_struct *ssp, unsigned long delay); 77 static void process_srcu(struct work_struct *work); 78 static void srcu_delay_timer(struct timer_list *t); 79 80 /* Wrappers for lock acquisition and release, see raw_spin_lock_rcu_node(). */ 81 #define spin_lock_rcu_node(p) \ 82 do { \ 83 spin_lock(&ACCESS_PRIVATE(p, lock)); \ 84 smp_mb__after_unlock_lock(); \ 85 } while (0) 86 87 #define spin_unlock_rcu_node(p) spin_unlock(&ACCESS_PRIVATE(p, lock)) 88 89 #define spin_lock_irq_rcu_node(p) \ 90 do { \ 91 spin_lock_irq(&ACCESS_PRIVATE(p, lock)); \ 92 smp_mb__after_unlock_lock(); \ 93 } while (0) 94 95 #define spin_unlock_irq_rcu_node(p) \ 96 spin_unlock_irq(&ACCESS_PRIVATE(p, lock)) 97 98 #define spin_lock_irqsave_rcu_node(p, flags) \ 99 do { \ 100 spin_lock_irqsave(&ACCESS_PRIVATE(p, lock), flags); \ 101 smp_mb__after_unlock_lock(); \ 102 } while (0) 103 104 #define spin_trylock_irqsave_rcu_node(p, flags) \ 105 ({ \ 106 bool ___locked = spin_trylock_irqsave(&ACCESS_PRIVATE(p, lock), flags); \ 107 \ 108 if (___locked) \ 109 smp_mb__after_unlock_lock(); \ 110 ___locked; \ 111 }) 112 113 #define spin_unlock_irqrestore_rcu_node(p, flags) \ 114 spin_unlock_irqrestore(&ACCESS_PRIVATE(p, lock), flags) \ 115 116 /* 117 * Initialize SRCU per-CPU data. Note that statically allocated 118 * srcu_struct structures might already have srcu_read_lock() and 119 * srcu_read_unlock() running against them. So if the is_static parameter 120 * is set, don't initialize ->srcu_lock_count[] and ->srcu_unlock_count[]. 121 */ 122 static void init_srcu_struct_data(struct srcu_struct *ssp) 123 { 124 int cpu; 125 struct srcu_data *sdp; 126 127 /* 128 * Initialize the per-CPU srcu_data array, which feeds into the 129 * leaves of the srcu_node tree. 130 */ 131 WARN_ON_ONCE(ARRAY_SIZE(sdp->srcu_lock_count) != 132 ARRAY_SIZE(sdp->srcu_unlock_count)); 133 for_each_possible_cpu(cpu) { 134 sdp = per_cpu_ptr(ssp->sda, cpu); 135 spin_lock_init(&ACCESS_PRIVATE(sdp, lock)); 136 rcu_segcblist_init(&sdp->srcu_cblist); 137 sdp->srcu_cblist_invoking = false; 138 sdp->srcu_gp_seq_needed = ssp->srcu_sup->srcu_gp_seq; 139 sdp->srcu_gp_seq_needed_exp = ssp->srcu_sup->srcu_gp_seq; 140 sdp->mynode = NULL; 141 sdp->cpu = cpu; 142 INIT_WORK(&sdp->work, srcu_invoke_callbacks); 143 timer_setup(&sdp->delay_work, srcu_delay_timer, 0); 144 sdp->ssp = ssp; 145 } 146 } 147 148 /* Invalid seq state, used during snp node initialization */ 149 #define SRCU_SNP_INIT_SEQ 0x2 150 151 /* 152 * Check whether sequence number corresponding to snp node, 153 * is invalid. 154 */ 155 static inline bool srcu_invl_snp_seq(unsigned long s) 156 { 157 return s == SRCU_SNP_INIT_SEQ; 158 } 159 160 /* 161 * Allocated and initialize SRCU combining tree. Returns @true if 162 * allocation succeeded and @false otherwise. 163 */ 164 static bool init_srcu_struct_nodes(struct srcu_struct *ssp, gfp_t gfp_flags) 165 { 166 int cpu; 167 int i; 168 int level = 0; 169 int levelspread[RCU_NUM_LVLS]; 170 struct srcu_data *sdp; 171 struct srcu_node *snp; 172 struct srcu_node *snp_first; 173 174 /* Initialize geometry if it has not already been initialized. */ 175 rcu_init_geometry(); 176 ssp->srcu_sup->node = kcalloc(rcu_num_nodes, sizeof(*ssp->srcu_sup->node), gfp_flags); 177 if (!ssp->srcu_sup->node) 178 return false; 179 180 /* Work out the overall tree geometry. */ 181 ssp->srcu_sup->level[0] = &ssp->srcu_sup->node[0]; 182 for (i = 1; i < rcu_num_lvls; i++) 183 ssp->srcu_sup->level[i] = ssp->srcu_sup->level[i - 1] + num_rcu_lvl[i - 1]; 184 rcu_init_levelspread(levelspread, num_rcu_lvl); 185 186 /* Each pass through this loop initializes one srcu_node structure. */ 187 srcu_for_each_node_breadth_first(ssp, snp) { 188 spin_lock_init(&ACCESS_PRIVATE(snp, lock)); 189 WARN_ON_ONCE(ARRAY_SIZE(snp->srcu_have_cbs) != 190 ARRAY_SIZE(snp->srcu_data_have_cbs)); 191 for (i = 0; i < ARRAY_SIZE(snp->srcu_have_cbs); i++) { 192 snp->srcu_have_cbs[i] = SRCU_SNP_INIT_SEQ; 193 snp->srcu_data_have_cbs[i] = 0; 194 } 195 snp->srcu_gp_seq_needed_exp = SRCU_SNP_INIT_SEQ; 196 snp->grplo = -1; 197 snp->grphi = -1; 198 if (snp == &ssp->srcu_sup->node[0]) { 199 /* Root node, special case. */ 200 snp->srcu_parent = NULL; 201 continue; 202 } 203 204 /* Non-root node. */ 205 if (snp == ssp->srcu_sup->level[level + 1]) 206 level++; 207 snp->srcu_parent = ssp->srcu_sup->level[level - 1] + 208 (snp - ssp->srcu_sup->level[level]) / 209 levelspread[level - 1]; 210 } 211 212 /* 213 * Initialize the per-CPU srcu_data array, which feeds into the 214 * leaves of the srcu_node tree. 215 */ 216 level = rcu_num_lvls - 1; 217 snp_first = ssp->srcu_sup->level[level]; 218 for_each_possible_cpu(cpu) { 219 sdp = per_cpu_ptr(ssp->sda, cpu); 220 sdp->mynode = &snp_first[cpu / levelspread[level]]; 221 for (snp = sdp->mynode; snp != NULL; snp = snp->srcu_parent) { 222 if (snp->grplo < 0) 223 snp->grplo = cpu; 224 snp->grphi = cpu; 225 } 226 sdp->grpmask = 1 << (cpu - sdp->mynode->grplo); 227 } 228 smp_store_release(&ssp->srcu_sup->srcu_size_state, SRCU_SIZE_WAIT_BARRIER); 229 return true; 230 } 231 232 /* 233 * Initialize non-compile-time initialized fields, including the 234 * associated srcu_node and srcu_data structures. The is_static parameter 235 * tells us that ->sda has already been wired up to srcu_data. 236 */ 237 static int init_srcu_struct_fields(struct srcu_struct *ssp, bool is_static) 238 { 239 if (!is_static) 240 ssp->srcu_sup = kzalloc(sizeof(*ssp->srcu_sup), GFP_KERNEL); 241 if (!ssp->srcu_sup) 242 return -ENOMEM; 243 if (!is_static) 244 spin_lock_init(&ACCESS_PRIVATE(ssp->srcu_sup, lock)); 245 ssp->srcu_sup->srcu_size_state = SRCU_SIZE_SMALL; 246 ssp->srcu_sup->node = NULL; 247 mutex_init(&ssp->srcu_sup->srcu_cb_mutex); 248 mutex_init(&ssp->srcu_sup->srcu_gp_mutex); 249 ssp->srcu_idx = 0; 250 ssp->srcu_sup->srcu_gp_seq = 0; 251 ssp->srcu_sup->srcu_barrier_seq = 0; 252 mutex_init(&ssp->srcu_sup->srcu_barrier_mutex); 253 atomic_set(&ssp->srcu_sup->srcu_barrier_cpu_cnt, 0); 254 INIT_DELAYED_WORK(&ssp->srcu_sup->work, process_srcu); 255 ssp->srcu_sup->sda_is_static = is_static; 256 if (!is_static) 257 ssp->sda = alloc_percpu(struct srcu_data); 258 if (!ssp->sda) { 259 if (!is_static) 260 kfree(ssp->srcu_sup); 261 return -ENOMEM; 262 } 263 init_srcu_struct_data(ssp); 264 ssp->srcu_sup->srcu_gp_seq_needed_exp = 0; 265 ssp->srcu_sup->srcu_last_gp_end = ktime_get_mono_fast_ns(); 266 if (READ_ONCE(ssp->srcu_sup->srcu_size_state) == SRCU_SIZE_SMALL && SRCU_SIZING_IS_INIT()) { 267 if (!init_srcu_struct_nodes(ssp, GFP_ATOMIC)) { 268 if (!ssp->srcu_sup->sda_is_static) { 269 free_percpu(ssp->sda); 270 ssp->sda = NULL; 271 kfree(ssp->srcu_sup); 272 return -ENOMEM; 273 } 274 } else { 275 WRITE_ONCE(ssp->srcu_sup->srcu_size_state, SRCU_SIZE_BIG); 276 } 277 } 278 ssp->srcu_sup->srcu_ssp = ssp; 279 smp_store_release(&ssp->srcu_sup->srcu_gp_seq_needed, 0); /* Init done. */ 280 return 0; 281 } 282 283 #ifdef CONFIG_DEBUG_LOCK_ALLOC 284 285 int __init_srcu_struct(struct srcu_struct *ssp, const char *name, 286 struct lock_class_key *key) 287 { 288 /* Don't re-initialize a lock while it is held. */ 289 debug_check_no_locks_freed((void *)ssp, sizeof(*ssp)); 290 lockdep_init_map(&ssp->dep_map, name, key, 0); 291 return init_srcu_struct_fields(ssp, false); 292 } 293 EXPORT_SYMBOL_GPL(__init_srcu_struct); 294 295 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 296 297 /** 298 * init_srcu_struct - initialize a sleep-RCU structure 299 * @ssp: structure to initialize. 300 * 301 * Must invoke this on a given srcu_struct before passing that srcu_struct 302 * to any other function. Each srcu_struct represents a separate domain 303 * of SRCU protection. 304 */ 305 int init_srcu_struct(struct srcu_struct *ssp) 306 { 307 return init_srcu_struct_fields(ssp, false); 308 } 309 EXPORT_SYMBOL_GPL(init_srcu_struct); 310 311 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 312 313 /* 314 * Initiate a transition to SRCU_SIZE_BIG with lock held. 315 */ 316 static void __srcu_transition_to_big(struct srcu_struct *ssp) 317 { 318 lockdep_assert_held(&ACCESS_PRIVATE(ssp->srcu_sup, lock)); 319 smp_store_release(&ssp->srcu_sup->srcu_size_state, SRCU_SIZE_ALLOC); 320 } 321 322 /* 323 * Initiate an idempotent transition to SRCU_SIZE_BIG. 324 */ 325 static void srcu_transition_to_big(struct srcu_struct *ssp) 326 { 327 unsigned long flags; 328 329 /* Double-checked locking on ->srcu_size-state. */ 330 if (smp_load_acquire(&ssp->srcu_sup->srcu_size_state) != SRCU_SIZE_SMALL) 331 return; 332 spin_lock_irqsave_rcu_node(ssp->srcu_sup, flags); 333 if (smp_load_acquire(&ssp->srcu_sup->srcu_size_state) != SRCU_SIZE_SMALL) { 334 spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags); 335 return; 336 } 337 __srcu_transition_to_big(ssp); 338 spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags); 339 } 340 341 /* 342 * Check to see if the just-encountered contention event justifies 343 * a transition to SRCU_SIZE_BIG. 344 */ 345 static void spin_lock_irqsave_check_contention(struct srcu_struct *ssp) 346 { 347 unsigned long j; 348 349 if (!SRCU_SIZING_IS_CONTEND() || ssp->srcu_sup->srcu_size_state) 350 return; 351 j = jiffies; 352 if (ssp->srcu_sup->srcu_size_jiffies != j) { 353 ssp->srcu_sup->srcu_size_jiffies = j; 354 ssp->srcu_sup->srcu_n_lock_retries = 0; 355 } 356 if (++ssp->srcu_sup->srcu_n_lock_retries <= small_contention_lim) 357 return; 358 __srcu_transition_to_big(ssp); 359 } 360 361 /* 362 * Acquire the specified srcu_data structure's ->lock, but check for 363 * excessive contention, which results in initiation of a transition 364 * to SRCU_SIZE_BIG. But only if the srcutree.convert_to_big module 365 * parameter permits this. 366 */ 367 static void spin_lock_irqsave_sdp_contention(struct srcu_data *sdp, unsigned long *flags) 368 { 369 struct srcu_struct *ssp = sdp->ssp; 370 371 if (spin_trylock_irqsave_rcu_node(sdp, *flags)) 372 return; 373 spin_lock_irqsave_rcu_node(ssp->srcu_sup, *flags); 374 spin_lock_irqsave_check_contention(ssp); 375 spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, *flags); 376 spin_lock_irqsave_rcu_node(sdp, *flags); 377 } 378 379 /* 380 * Acquire the specified srcu_struct structure's ->lock, but check for 381 * excessive contention, which results in initiation of a transition 382 * to SRCU_SIZE_BIG. But only if the srcutree.convert_to_big module 383 * parameter permits this. 384 */ 385 static void spin_lock_irqsave_ssp_contention(struct srcu_struct *ssp, unsigned long *flags) 386 { 387 if (spin_trylock_irqsave_rcu_node(ssp->srcu_sup, *flags)) 388 return; 389 spin_lock_irqsave_rcu_node(ssp->srcu_sup, *flags); 390 spin_lock_irqsave_check_contention(ssp); 391 } 392 393 /* 394 * First-use initialization of statically allocated srcu_struct 395 * structure. Wiring up the combining tree is more than can be 396 * done with compile-time initialization, so this check is added 397 * to each update-side SRCU primitive. Use ssp->lock, which -is- 398 * compile-time initialized, to resolve races involving multiple 399 * CPUs trying to garner first-use privileges. 400 */ 401 static void check_init_srcu_struct(struct srcu_struct *ssp) 402 { 403 unsigned long flags; 404 405 /* The smp_load_acquire() pairs with the smp_store_release(). */ 406 if (!rcu_seq_state(smp_load_acquire(&ssp->srcu_sup->srcu_gp_seq_needed))) /*^^^*/ 407 return; /* Already initialized. */ 408 spin_lock_irqsave_rcu_node(ssp->srcu_sup, flags); 409 if (!rcu_seq_state(ssp->srcu_sup->srcu_gp_seq_needed)) { 410 spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags); 411 return; 412 } 413 init_srcu_struct_fields(ssp, true); 414 spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags); 415 } 416 417 /* 418 * Returns approximate total of the readers' ->srcu_lock_count[] values 419 * for the rank of per-CPU counters specified by idx. 420 */ 421 static unsigned long srcu_readers_lock_idx(struct srcu_struct *ssp, int idx) 422 { 423 int cpu; 424 unsigned long sum = 0; 425 426 for_each_possible_cpu(cpu) { 427 struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu); 428 429 sum += atomic_long_read(&cpuc->srcu_lock_count[idx]); 430 } 431 return sum; 432 } 433 434 /* 435 * Returns approximate total of the readers' ->srcu_unlock_count[] values 436 * for the rank of per-CPU counters specified by idx. 437 */ 438 static unsigned long srcu_readers_unlock_idx(struct srcu_struct *ssp, int idx) 439 { 440 int cpu; 441 unsigned long mask = 0; 442 unsigned long sum = 0; 443 444 for_each_possible_cpu(cpu) { 445 struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu); 446 447 sum += atomic_long_read(&cpuc->srcu_unlock_count[idx]); 448 if (IS_ENABLED(CONFIG_PROVE_RCU)) 449 mask = mask | READ_ONCE(cpuc->srcu_nmi_safety); 450 } 451 WARN_ONCE(IS_ENABLED(CONFIG_PROVE_RCU) && (mask & (mask >> 1)), 452 "Mixed NMI-safe readers for srcu_struct at %ps.\n", ssp); 453 return sum; 454 } 455 456 /* 457 * Return true if the number of pre-existing readers is determined to 458 * be zero. 459 */ 460 static bool srcu_readers_active_idx_check(struct srcu_struct *ssp, int idx) 461 { 462 unsigned long unlocks; 463 464 unlocks = srcu_readers_unlock_idx(ssp, idx); 465 466 /* 467 * Make sure that a lock is always counted if the corresponding 468 * unlock is counted. Needs to be a smp_mb() as the read side may 469 * contain a read from a variable that is written to before the 470 * synchronize_srcu() in the write side. In this case smp_mb()s 471 * A and B act like the store buffering pattern. 472 * 473 * This smp_mb() also pairs with smp_mb() C to prevent accesses 474 * after the synchronize_srcu() from being executed before the 475 * grace period ends. 476 */ 477 smp_mb(); /* A */ 478 479 /* 480 * If the locks are the same as the unlocks, then there must have 481 * been no readers on this index at some point in this function. 482 * But there might be more readers, as a task might have read 483 * the current ->srcu_idx but not yet have incremented its CPU's 484 * ->srcu_lock_count[idx] counter. In fact, it is possible 485 * that most of the tasks have been preempted between fetching 486 * ->srcu_idx and incrementing ->srcu_lock_count[idx]. And there 487 * could be almost (ULONG_MAX / sizeof(struct task_struct)) tasks 488 * in a system whose address space was fully populated with memory. 489 * Call this quantity Nt. 490 * 491 * So suppose that the updater is preempted at this point in the 492 * code for a long time. That now-preempted updater has already 493 * flipped ->srcu_idx (possibly during the preceding grace period), 494 * done an smp_mb() (again, possibly during the preceding grace 495 * period), and summed up the ->srcu_unlock_count[idx] counters. 496 * How many times can a given one of the aforementioned Nt tasks 497 * increment the old ->srcu_idx value's ->srcu_lock_count[idx] 498 * counter, in the absence of nesting? 499 * 500 * It can clearly do so once, given that it has already fetched 501 * the old value of ->srcu_idx and is just about to use that value 502 * to index its increment of ->srcu_lock_count[idx]. But as soon as 503 * it leaves that SRCU read-side critical section, it will increment 504 * ->srcu_unlock_count[idx], which must follow the updater's above 505 * read from that same value. Thus, as soon the reading task does 506 * an smp_mb() and a later fetch from ->srcu_idx, that task will be 507 * guaranteed to get the new index. Except that the increment of 508 * ->srcu_unlock_count[idx] in __srcu_read_unlock() is after the 509 * smp_mb(), and the fetch from ->srcu_idx in __srcu_read_lock() 510 * is before the smp_mb(). Thus, that task might not see the new 511 * value of ->srcu_idx until the -second- __srcu_read_lock(), 512 * which in turn means that this task might well increment 513 * ->srcu_lock_count[idx] for the old value of ->srcu_idx twice, 514 * not just once. 515 * 516 * However, it is important to note that a given smp_mb() takes 517 * effect not just for the task executing it, but also for any 518 * later task running on that same CPU. 519 * 520 * That is, there can be almost Nt + Nc further increments of 521 * ->srcu_lock_count[idx] for the old index, where Nc is the number 522 * of CPUs. But this is OK because the size of the task_struct 523 * structure limits the value of Nt and current systems limit Nc 524 * to a few thousand. 525 * 526 * OK, but what about nesting? This does impose a limit on 527 * nesting of half of the size of the task_struct structure 528 * (measured in bytes), which should be sufficient. A late 2022 529 * TREE01 rcutorture run reported this size to be no less than 530 * 9408 bytes, allowing up to 4704 levels of nesting, which is 531 * comfortably beyond excessive. Especially on 64-bit systems, 532 * which are unlikely to be configured with an address space fully 533 * populated with memory, at least not anytime soon. 534 */ 535 return srcu_readers_lock_idx(ssp, idx) == unlocks; 536 } 537 538 /** 539 * srcu_readers_active - returns true if there are readers. and false 540 * otherwise 541 * @ssp: which srcu_struct to count active readers (holding srcu_read_lock). 542 * 543 * Note that this is not an atomic primitive, and can therefore suffer 544 * severe errors when invoked on an active srcu_struct. That said, it 545 * can be useful as an error check at cleanup time. 546 */ 547 static bool srcu_readers_active(struct srcu_struct *ssp) 548 { 549 int cpu; 550 unsigned long sum = 0; 551 552 for_each_possible_cpu(cpu) { 553 struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu); 554 555 sum += atomic_long_read(&cpuc->srcu_lock_count[0]); 556 sum += atomic_long_read(&cpuc->srcu_lock_count[1]); 557 sum -= atomic_long_read(&cpuc->srcu_unlock_count[0]); 558 sum -= atomic_long_read(&cpuc->srcu_unlock_count[1]); 559 } 560 return sum; 561 } 562 563 /* 564 * We use an adaptive strategy for synchronize_srcu() and especially for 565 * synchronize_srcu_expedited(). We spin for a fixed time period 566 * (defined below, boot time configurable) to allow SRCU readers to exit 567 * their read-side critical sections. If there are still some readers 568 * after one jiffy, we repeatedly block for one jiffy time periods. 569 * The blocking time is increased as the grace-period age increases, 570 * with max blocking time capped at 10 jiffies. 571 */ 572 #define SRCU_DEFAULT_RETRY_CHECK_DELAY 5 573 574 static ulong srcu_retry_check_delay = SRCU_DEFAULT_RETRY_CHECK_DELAY; 575 module_param(srcu_retry_check_delay, ulong, 0444); 576 577 #define SRCU_INTERVAL 1 // Base delay if no expedited GPs pending. 578 #define SRCU_MAX_INTERVAL 10 // Maximum incremental delay from slow readers. 579 580 #define SRCU_DEFAULT_MAX_NODELAY_PHASE_LO 3UL // Lowmark on default per-GP-phase 581 // no-delay instances. 582 #define SRCU_DEFAULT_MAX_NODELAY_PHASE_HI 1000UL // Highmark on default per-GP-phase 583 // no-delay instances. 584 585 #define SRCU_UL_CLAMP_LO(val, low) ((val) > (low) ? (val) : (low)) 586 #define SRCU_UL_CLAMP_HI(val, high) ((val) < (high) ? (val) : (high)) 587 #define SRCU_UL_CLAMP(val, low, high) SRCU_UL_CLAMP_HI(SRCU_UL_CLAMP_LO((val), (low)), (high)) 588 // per-GP-phase no-delay instances adjusted to allow non-sleeping poll upto 589 // one jiffies time duration. Mult by 2 is done to factor in the srcu_get_delay() 590 // called from process_srcu(). 591 #define SRCU_DEFAULT_MAX_NODELAY_PHASE_ADJUSTED \ 592 (2UL * USEC_PER_SEC / HZ / SRCU_DEFAULT_RETRY_CHECK_DELAY) 593 594 // Maximum per-GP-phase consecutive no-delay instances. 595 #define SRCU_DEFAULT_MAX_NODELAY_PHASE \ 596 SRCU_UL_CLAMP(SRCU_DEFAULT_MAX_NODELAY_PHASE_ADJUSTED, \ 597 SRCU_DEFAULT_MAX_NODELAY_PHASE_LO, \ 598 SRCU_DEFAULT_MAX_NODELAY_PHASE_HI) 599 600 static ulong srcu_max_nodelay_phase = SRCU_DEFAULT_MAX_NODELAY_PHASE; 601 module_param(srcu_max_nodelay_phase, ulong, 0444); 602 603 // Maximum consecutive no-delay instances. 604 #define SRCU_DEFAULT_MAX_NODELAY (SRCU_DEFAULT_MAX_NODELAY_PHASE > 100 ? \ 605 SRCU_DEFAULT_MAX_NODELAY_PHASE : 100) 606 607 static ulong srcu_max_nodelay = SRCU_DEFAULT_MAX_NODELAY; 608 module_param(srcu_max_nodelay, ulong, 0444); 609 610 /* 611 * Return grace-period delay, zero if there are expedited grace 612 * periods pending, SRCU_INTERVAL otherwise. 613 */ 614 static unsigned long srcu_get_delay(struct srcu_struct *ssp) 615 { 616 unsigned long gpstart; 617 unsigned long j; 618 unsigned long jbase = SRCU_INTERVAL; 619 struct srcu_usage *sup = ssp->srcu_sup; 620 621 if (ULONG_CMP_LT(READ_ONCE(sup->srcu_gp_seq), READ_ONCE(sup->srcu_gp_seq_needed_exp))) 622 jbase = 0; 623 if (rcu_seq_state(READ_ONCE(sup->srcu_gp_seq))) { 624 j = jiffies - 1; 625 gpstart = READ_ONCE(sup->srcu_gp_start); 626 if (time_after(j, gpstart)) 627 jbase += j - gpstart; 628 if (!jbase) { 629 WRITE_ONCE(sup->srcu_n_exp_nodelay, READ_ONCE(sup->srcu_n_exp_nodelay) + 1); 630 if (READ_ONCE(sup->srcu_n_exp_nodelay) > srcu_max_nodelay_phase) 631 jbase = 1; 632 } 633 } 634 return jbase > SRCU_MAX_INTERVAL ? SRCU_MAX_INTERVAL : jbase; 635 } 636 637 /** 638 * cleanup_srcu_struct - deconstruct a sleep-RCU structure 639 * @ssp: structure to clean up. 640 * 641 * Must invoke this after you are finished using a given srcu_struct that 642 * was initialized via init_srcu_struct(), else you leak memory. 643 */ 644 void cleanup_srcu_struct(struct srcu_struct *ssp) 645 { 646 int cpu; 647 struct srcu_usage *sup = ssp->srcu_sup; 648 649 if (WARN_ON(!srcu_get_delay(ssp))) 650 return; /* Just leak it! */ 651 if (WARN_ON(srcu_readers_active(ssp))) 652 return; /* Just leak it! */ 653 flush_delayed_work(&sup->work); 654 for_each_possible_cpu(cpu) { 655 struct srcu_data *sdp = per_cpu_ptr(ssp->sda, cpu); 656 657 del_timer_sync(&sdp->delay_work); 658 flush_work(&sdp->work); 659 if (WARN_ON(rcu_segcblist_n_cbs(&sdp->srcu_cblist))) 660 return; /* Forgot srcu_barrier(), so just leak it! */ 661 } 662 if (WARN_ON(rcu_seq_state(READ_ONCE(sup->srcu_gp_seq)) != SRCU_STATE_IDLE) || 663 WARN_ON(rcu_seq_current(&sup->srcu_gp_seq) != sup->srcu_gp_seq_needed) || 664 WARN_ON(srcu_readers_active(ssp))) { 665 pr_info("%s: Active srcu_struct %p read state: %d gp state: %lu/%lu\n", 666 __func__, ssp, rcu_seq_state(READ_ONCE(sup->srcu_gp_seq)), 667 rcu_seq_current(&sup->srcu_gp_seq), sup->srcu_gp_seq_needed); 668 return; /* Caller forgot to stop doing call_srcu()? */ 669 } 670 kfree(sup->node); 671 sup->node = NULL; 672 sup->srcu_size_state = SRCU_SIZE_SMALL; 673 if (!sup->sda_is_static) { 674 free_percpu(ssp->sda); 675 ssp->sda = NULL; 676 kfree(sup); 677 ssp->srcu_sup = NULL; 678 } 679 } 680 EXPORT_SYMBOL_GPL(cleanup_srcu_struct); 681 682 #ifdef CONFIG_PROVE_RCU 683 /* 684 * Check for consistent NMI safety. 685 */ 686 void srcu_check_nmi_safety(struct srcu_struct *ssp, bool nmi_safe) 687 { 688 int nmi_safe_mask = 1 << nmi_safe; 689 int old_nmi_safe_mask; 690 struct srcu_data *sdp; 691 692 /* NMI-unsafe use in NMI is a bad sign */ 693 WARN_ON_ONCE(!nmi_safe && in_nmi()); 694 sdp = raw_cpu_ptr(ssp->sda); 695 old_nmi_safe_mask = READ_ONCE(sdp->srcu_nmi_safety); 696 if (!old_nmi_safe_mask) { 697 WRITE_ONCE(sdp->srcu_nmi_safety, nmi_safe_mask); 698 return; 699 } 700 WARN_ONCE(old_nmi_safe_mask != nmi_safe_mask, "CPU %d old state %d new state %d\n", sdp->cpu, old_nmi_safe_mask, nmi_safe_mask); 701 } 702 EXPORT_SYMBOL_GPL(srcu_check_nmi_safety); 703 #endif /* CONFIG_PROVE_RCU */ 704 705 /* 706 * Counts the new reader in the appropriate per-CPU element of the 707 * srcu_struct. 708 * Returns an index that must be passed to the matching srcu_read_unlock(). 709 */ 710 int __srcu_read_lock(struct srcu_struct *ssp) 711 { 712 int idx; 713 714 idx = READ_ONCE(ssp->srcu_idx) & 0x1; 715 this_cpu_inc(ssp->sda->srcu_lock_count[idx].counter); 716 smp_mb(); /* B */ /* Avoid leaking the critical section. */ 717 return idx; 718 } 719 EXPORT_SYMBOL_GPL(__srcu_read_lock); 720 721 /* 722 * Removes the count for the old reader from the appropriate per-CPU 723 * element of the srcu_struct. Note that this may well be a different 724 * CPU than that which was incremented by the corresponding srcu_read_lock(). 725 */ 726 void __srcu_read_unlock(struct srcu_struct *ssp, int idx) 727 { 728 smp_mb(); /* C */ /* Avoid leaking the critical section. */ 729 this_cpu_inc(ssp->sda->srcu_unlock_count[idx].counter); 730 } 731 EXPORT_SYMBOL_GPL(__srcu_read_unlock); 732 733 #ifdef CONFIG_NEED_SRCU_NMI_SAFE 734 735 /* 736 * Counts the new reader in the appropriate per-CPU element of the 737 * srcu_struct, but in an NMI-safe manner using RMW atomics. 738 * Returns an index that must be passed to the matching srcu_read_unlock(). 739 */ 740 int __srcu_read_lock_nmisafe(struct srcu_struct *ssp) 741 { 742 int idx; 743 struct srcu_data *sdp = raw_cpu_ptr(ssp->sda); 744 745 idx = READ_ONCE(ssp->srcu_idx) & 0x1; 746 atomic_long_inc(&sdp->srcu_lock_count[idx]); 747 smp_mb__after_atomic(); /* B */ /* Avoid leaking the critical section. */ 748 return idx; 749 } 750 EXPORT_SYMBOL_GPL(__srcu_read_lock_nmisafe); 751 752 /* 753 * Removes the count for the old reader from the appropriate per-CPU 754 * element of the srcu_struct. Note that this may well be a different 755 * CPU than that which was incremented by the corresponding srcu_read_lock(). 756 */ 757 void __srcu_read_unlock_nmisafe(struct srcu_struct *ssp, int idx) 758 { 759 struct srcu_data *sdp = raw_cpu_ptr(ssp->sda); 760 761 smp_mb__before_atomic(); /* C */ /* Avoid leaking the critical section. */ 762 atomic_long_inc(&sdp->srcu_unlock_count[idx]); 763 } 764 EXPORT_SYMBOL_GPL(__srcu_read_unlock_nmisafe); 765 766 #endif // CONFIG_NEED_SRCU_NMI_SAFE 767 768 /* 769 * Start an SRCU grace period. 770 */ 771 static void srcu_gp_start(struct srcu_struct *ssp) 772 { 773 struct srcu_data *sdp; 774 int state; 775 776 if (smp_load_acquire(&ssp->srcu_sup->srcu_size_state) < SRCU_SIZE_WAIT_BARRIER) 777 sdp = per_cpu_ptr(ssp->sda, get_boot_cpu_id()); 778 else 779 sdp = this_cpu_ptr(ssp->sda); 780 lockdep_assert_held(&ACCESS_PRIVATE(ssp->srcu_sup, lock)); 781 WARN_ON_ONCE(ULONG_CMP_GE(ssp->srcu_sup->srcu_gp_seq, ssp->srcu_sup->srcu_gp_seq_needed)); 782 spin_lock_rcu_node(sdp); /* Interrupts already disabled. */ 783 rcu_segcblist_advance(&sdp->srcu_cblist, 784 rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq)); 785 (void)rcu_segcblist_accelerate(&sdp->srcu_cblist, 786 rcu_seq_snap(&ssp->srcu_sup->srcu_gp_seq)); 787 spin_unlock_rcu_node(sdp); /* Interrupts remain disabled. */ 788 WRITE_ONCE(ssp->srcu_sup->srcu_gp_start, jiffies); 789 WRITE_ONCE(ssp->srcu_sup->srcu_n_exp_nodelay, 0); 790 smp_mb(); /* Order prior store to ->srcu_gp_seq_needed vs. GP start. */ 791 rcu_seq_start(&ssp->srcu_sup->srcu_gp_seq); 792 state = rcu_seq_state(ssp->srcu_sup->srcu_gp_seq); 793 WARN_ON_ONCE(state != SRCU_STATE_SCAN1); 794 } 795 796 797 static void srcu_delay_timer(struct timer_list *t) 798 { 799 struct srcu_data *sdp = container_of(t, struct srcu_data, delay_work); 800 801 queue_work_on(sdp->cpu, rcu_gp_wq, &sdp->work); 802 } 803 804 static void srcu_queue_delayed_work_on(struct srcu_data *sdp, 805 unsigned long delay) 806 { 807 if (!delay) { 808 queue_work_on(sdp->cpu, rcu_gp_wq, &sdp->work); 809 return; 810 } 811 812 timer_reduce(&sdp->delay_work, jiffies + delay); 813 } 814 815 /* 816 * Schedule callback invocation for the specified srcu_data structure, 817 * if possible, on the corresponding CPU. 818 */ 819 static void srcu_schedule_cbs_sdp(struct srcu_data *sdp, unsigned long delay) 820 { 821 srcu_queue_delayed_work_on(sdp, delay); 822 } 823 824 /* 825 * Schedule callback invocation for all srcu_data structures associated 826 * with the specified srcu_node structure that have callbacks for the 827 * just-completed grace period, the one corresponding to idx. If possible, 828 * schedule this invocation on the corresponding CPUs. 829 */ 830 static void srcu_schedule_cbs_snp(struct srcu_struct *ssp, struct srcu_node *snp, 831 unsigned long mask, unsigned long delay) 832 { 833 int cpu; 834 835 for (cpu = snp->grplo; cpu <= snp->grphi; cpu++) { 836 if (!(mask & (1 << (cpu - snp->grplo)))) 837 continue; 838 srcu_schedule_cbs_sdp(per_cpu_ptr(ssp->sda, cpu), delay); 839 } 840 } 841 842 /* 843 * Note the end of an SRCU grace period. Initiates callback invocation 844 * and starts a new grace period if needed. 845 * 846 * The ->srcu_cb_mutex acquisition does not protect any data, but 847 * instead prevents more than one grace period from starting while we 848 * are initiating callback invocation. This allows the ->srcu_have_cbs[] 849 * array to have a finite number of elements. 850 */ 851 static void srcu_gp_end(struct srcu_struct *ssp) 852 { 853 unsigned long cbdelay = 1; 854 bool cbs; 855 bool last_lvl; 856 int cpu; 857 unsigned long flags; 858 unsigned long gpseq; 859 int idx; 860 unsigned long mask; 861 struct srcu_data *sdp; 862 unsigned long sgsne; 863 struct srcu_node *snp; 864 int ss_state; 865 struct srcu_usage *sup = ssp->srcu_sup; 866 867 /* Prevent more than one additional grace period. */ 868 mutex_lock(&sup->srcu_cb_mutex); 869 870 /* End the current grace period. */ 871 spin_lock_irq_rcu_node(sup); 872 idx = rcu_seq_state(sup->srcu_gp_seq); 873 WARN_ON_ONCE(idx != SRCU_STATE_SCAN2); 874 if (ULONG_CMP_LT(READ_ONCE(sup->srcu_gp_seq), READ_ONCE(sup->srcu_gp_seq_needed_exp))) 875 cbdelay = 0; 876 877 WRITE_ONCE(sup->srcu_last_gp_end, ktime_get_mono_fast_ns()); 878 rcu_seq_end(&sup->srcu_gp_seq); 879 gpseq = rcu_seq_current(&sup->srcu_gp_seq); 880 if (ULONG_CMP_LT(sup->srcu_gp_seq_needed_exp, gpseq)) 881 WRITE_ONCE(sup->srcu_gp_seq_needed_exp, gpseq); 882 spin_unlock_irq_rcu_node(sup); 883 mutex_unlock(&sup->srcu_gp_mutex); 884 /* A new grace period can start at this point. But only one. */ 885 886 /* Initiate callback invocation as needed. */ 887 ss_state = smp_load_acquire(&sup->srcu_size_state); 888 if (ss_state < SRCU_SIZE_WAIT_BARRIER) { 889 srcu_schedule_cbs_sdp(per_cpu_ptr(ssp->sda, get_boot_cpu_id()), 890 cbdelay); 891 } else { 892 idx = rcu_seq_ctr(gpseq) % ARRAY_SIZE(snp->srcu_have_cbs); 893 srcu_for_each_node_breadth_first(ssp, snp) { 894 spin_lock_irq_rcu_node(snp); 895 cbs = false; 896 last_lvl = snp >= sup->level[rcu_num_lvls - 1]; 897 if (last_lvl) 898 cbs = ss_state < SRCU_SIZE_BIG || snp->srcu_have_cbs[idx] == gpseq; 899 snp->srcu_have_cbs[idx] = gpseq; 900 rcu_seq_set_state(&snp->srcu_have_cbs[idx], 1); 901 sgsne = snp->srcu_gp_seq_needed_exp; 902 if (srcu_invl_snp_seq(sgsne) || ULONG_CMP_LT(sgsne, gpseq)) 903 WRITE_ONCE(snp->srcu_gp_seq_needed_exp, gpseq); 904 if (ss_state < SRCU_SIZE_BIG) 905 mask = ~0; 906 else 907 mask = snp->srcu_data_have_cbs[idx]; 908 snp->srcu_data_have_cbs[idx] = 0; 909 spin_unlock_irq_rcu_node(snp); 910 if (cbs) 911 srcu_schedule_cbs_snp(ssp, snp, mask, cbdelay); 912 } 913 } 914 915 /* Occasionally prevent srcu_data counter wrap. */ 916 if (!(gpseq & counter_wrap_check)) 917 for_each_possible_cpu(cpu) { 918 sdp = per_cpu_ptr(ssp->sda, cpu); 919 spin_lock_irqsave_rcu_node(sdp, flags); 920 if (ULONG_CMP_GE(gpseq, sdp->srcu_gp_seq_needed + 100)) 921 sdp->srcu_gp_seq_needed = gpseq; 922 if (ULONG_CMP_GE(gpseq, sdp->srcu_gp_seq_needed_exp + 100)) 923 sdp->srcu_gp_seq_needed_exp = gpseq; 924 spin_unlock_irqrestore_rcu_node(sdp, flags); 925 } 926 927 /* Callback initiation done, allow grace periods after next. */ 928 mutex_unlock(&sup->srcu_cb_mutex); 929 930 /* Start a new grace period if needed. */ 931 spin_lock_irq_rcu_node(sup); 932 gpseq = rcu_seq_current(&sup->srcu_gp_seq); 933 if (!rcu_seq_state(gpseq) && 934 ULONG_CMP_LT(gpseq, sup->srcu_gp_seq_needed)) { 935 srcu_gp_start(ssp); 936 spin_unlock_irq_rcu_node(sup); 937 srcu_reschedule(ssp, 0); 938 } else { 939 spin_unlock_irq_rcu_node(sup); 940 } 941 942 /* Transition to big if needed. */ 943 if (ss_state != SRCU_SIZE_SMALL && ss_state != SRCU_SIZE_BIG) { 944 if (ss_state == SRCU_SIZE_ALLOC) 945 init_srcu_struct_nodes(ssp, GFP_KERNEL); 946 else 947 smp_store_release(&sup->srcu_size_state, ss_state + 1); 948 } 949 } 950 951 /* 952 * Funnel-locking scheme to scalably mediate many concurrent expedited 953 * grace-period requests. This function is invoked for the first known 954 * expedited request for a grace period that has already been requested, 955 * but without expediting. To start a completely new grace period, 956 * whether expedited or not, use srcu_funnel_gp_start() instead. 957 */ 958 static void srcu_funnel_exp_start(struct srcu_struct *ssp, struct srcu_node *snp, 959 unsigned long s) 960 { 961 unsigned long flags; 962 unsigned long sgsne; 963 964 if (snp) 965 for (; snp != NULL; snp = snp->srcu_parent) { 966 sgsne = READ_ONCE(snp->srcu_gp_seq_needed_exp); 967 if (WARN_ON_ONCE(rcu_seq_done(&ssp->srcu_sup->srcu_gp_seq, s)) || 968 (!srcu_invl_snp_seq(sgsne) && ULONG_CMP_GE(sgsne, s))) 969 return; 970 spin_lock_irqsave_rcu_node(snp, flags); 971 sgsne = snp->srcu_gp_seq_needed_exp; 972 if (!srcu_invl_snp_seq(sgsne) && ULONG_CMP_GE(sgsne, s)) { 973 spin_unlock_irqrestore_rcu_node(snp, flags); 974 return; 975 } 976 WRITE_ONCE(snp->srcu_gp_seq_needed_exp, s); 977 spin_unlock_irqrestore_rcu_node(snp, flags); 978 } 979 spin_lock_irqsave_ssp_contention(ssp, &flags); 980 if (ULONG_CMP_LT(ssp->srcu_sup->srcu_gp_seq_needed_exp, s)) 981 WRITE_ONCE(ssp->srcu_sup->srcu_gp_seq_needed_exp, s); 982 spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags); 983 } 984 985 /* 986 * Funnel-locking scheme to scalably mediate many concurrent grace-period 987 * requests. The winner has to do the work of actually starting grace 988 * period s. Losers must either ensure that their desired grace-period 989 * number is recorded on at least their leaf srcu_node structure, or they 990 * must take steps to invoke their own callbacks. 991 * 992 * Note that this function also does the work of srcu_funnel_exp_start(), 993 * in some cases by directly invoking it. 994 * 995 * The srcu read lock should be hold around this function. And s is a seq snap 996 * after holding that lock. 997 */ 998 static void srcu_funnel_gp_start(struct srcu_struct *ssp, struct srcu_data *sdp, 999 unsigned long s, bool do_norm) 1000 { 1001 unsigned long flags; 1002 int idx = rcu_seq_ctr(s) % ARRAY_SIZE(sdp->mynode->srcu_have_cbs); 1003 unsigned long sgsne; 1004 struct srcu_node *snp; 1005 struct srcu_node *snp_leaf; 1006 unsigned long snp_seq; 1007 struct srcu_usage *sup = ssp->srcu_sup; 1008 1009 /* Ensure that snp node tree is fully initialized before traversing it */ 1010 if (smp_load_acquire(&sup->srcu_size_state) < SRCU_SIZE_WAIT_BARRIER) 1011 snp_leaf = NULL; 1012 else 1013 snp_leaf = sdp->mynode; 1014 1015 if (snp_leaf) 1016 /* Each pass through the loop does one level of the srcu_node tree. */ 1017 for (snp = snp_leaf; snp != NULL; snp = snp->srcu_parent) { 1018 if (WARN_ON_ONCE(rcu_seq_done(&sup->srcu_gp_seq, s)) && snp != snp_leaf) 1019 return; /* GP already done and CBs recorded. */ 1020 spin_lock_irqsave_rcu_node(snp, flags); 1021 snp_seq = snp->srcu_have_cbs[idx]; 1022 if (!srcu_invl_snp_seq(snp_seq) && ULONG_CMP_GE(snp_seq, s)) { 1023 if (snp == snp_leaf && snp_seq == s) 1024 snp->srcu_data_have_cbs[idx] |= sdp->grpmask; 1025 spin_unlock_irqrestore_rcu_node(snp, flags); 1026 if (snp == snp_leaf && snp_seq != s) { 1027 srcu_schedule_cbs_sdp(sdp, do_norm ? SRCU_INTERVAL : 0); 1028 return; 1029 } 1030 if (!do_norm) 1031 srcu_funnel_exp_start(ssp, snp, s); 1032 return; 1033 } 1034 snp->srcu_have_cbs[idx] = s; 1035 if (snp == snp_leaf) 1036 snp->srcu_data_have_cbs[idx] |= sdp->grpmask; 1037 sgsne = snp->srcu_gp_seq_needed_exp; 1038 if (!do_norm && (srcu_invl_snp_seq(sgsne) || ULONG_CMP_LT(sgsne, s))) 1039 WRITE_ONCE(snp->srcu_gp_seq_needed_exp, s); 1040 spin_unlock_irqrestore_rcu_node(snp, flags); 1041 } 1042 1043 /* Top of tree, must ensure the grace period will be started. */ 1044 spin_lock_irqsave_ssp_contention(ssp, &flags); 1045 if (ULONG_CMP_LT(sup->srcu_gp_seq_needed, s)) { 1046 /* 1047 * Record need for grace period s. Pair with load 1048 * acquire setting up for initialization. 1049 */ 1050 smp_store_release(&sup->srcu_gp_seq_needed, s); /*^^^*/ 1051 } 1052 if (!do_norm && ULONG_CMP_LT(sup->srcu_gp_seq_needed_exp, s)) 1053 WRITE_ONCE(sup->srcu_gp_seq_needed_exp, s); 1054 1055 /* If grace period not already in progress, start it. */ 1056 if (!WARN_ON_ONCE(rcu_seq_done(&sup->srcu_gp_seq, s)) && 1057 rcu_seq_state(sup->srcu_gp_seq) == SRCU_STATE_IDLE) { 1058 WARN_ON_ONCE(ULONG_CMP_GE(sup->srcu_gp_seq, sup->srcu_gp_seq_needed)); 1059 srcu_gp_start(ssp); 1060 1061 // And how can that list_add() in the "else" clause 1062 // possibly be safe for concurrent execution? Well, 1063 // it isn't. And it does not have to be. After all, it 1064 // can only be executed during early boot when there is only 1065 // the one boot CPU running with interrupts still disabled. 1066 if (likely(srcu_init_done)) 1067 queue_delayed_work(rcu_gp_wq, &sup->work, 1068 !!srcu_get_delay(ssp)); 1069 else if (list_empty(&sup->work.work.entry)) 1070 list_add(&sup->work.work.entry, &srcu_boot_list); 1071 } 1072 spin_unlock_irqrestore_rcu_node(sup, flags); 1073 } 1074 1075 /* 1076 * Wait until all readers counted by array index idx complete, but 1077 * loop an additional time if there is an expedited grace period pending. 1078 * The caller must ensure that ->srcu_idx is not changed while checking. 1079 */ 1080 static bool try_check_zero(struct srcu_struct *ssp, int idx, int trycount) 1081 { 1082 unsigned long curdelay; 1083 1084 curdelay = !srcu_get_delay(ssp); 1085 1086 for (;;) { 1087 if (srcu_readers_active_idx_check(ssp, idx)) 1088 return true; 1089 if ((--trycount + curdelay) <= 0) 1090 return false; 1091 udelay(srcu_retry_check_delay); 1092 } 1093 } 1094 1095 /* 1096 * Increment the ->srcu_idx counter so that future SRCU readers will 1097 * use the other rank of the ->srcu_(un)lock_count[] arrays. This allows 1098 * us to wait for pre-existing readers in a starvation-free manner. 1099 */ 1100 static void srcu_flip(struct srcu_struct *ssp) 1101 { 1102 /* 1103 * Because the flip of ->srcu_idx is executed only if the 1104 * preceding call to srcu_readers_active_idx_check() found that 1105 * the ->srcu_unlock_count[] and ->srcu_lock_count[] sums matched 1106 * and because that summing uses atomic_long_read(), there is 1107 * ordering due to a control dependency between that summing and 1108 * the WRITE_ONCE() in this call to srcu_flip(). This ordering 1109 * ensures that if this updater saw a given reader's increment from 1110 * __srcu_read_lock(), that reader was using a value of ->srcu_idx 1111 * from before the previous call to srcu_flip(), which should be 1112 * quite rare. This ordering thus helps forward progress because 1113 * the grace period could otherwise be delayed by additional 1114 * calls to __srcu_read_lock() using that old (soon to be new) 1115 * value of ->srcu_idx. 1116 * 1117 * This sum-equality check and ordering also ensures that if 1118 * a given call to __srcu_read_lock() uses the new value of 1119 * ->srcu_idx, this updater's earlier scans cannot have seen 1120 * that reader's increments, which is all to the good, because 1121 * this grace period need not wait on that reader. After all, 1122 * if those earlier scans had seen that reader, there would have 1123 * been a sum mismatch and this code would not be reached. 1124 * 1125 * This means that the following smp_mb() is redundant, but 1126 * it stays until either (1) Compilers learn about this sort of 1127 * control dependency or (2) Some production workload running on 1128 * a production system is unduly delayed by this slowpath smp_mb(). 1129 */ 1130 smp_mb(); /* E */ /* Pairs with B and C. */ 1131 1132 WRITE_ONCE(ssp->srcu_idx, ssp->srcu_idx + 1); // Flip the counter. 1133 1134 /* 1135 * Ensure that if the updater misses an __srcu_read_unlock() 1136 * increment, that task's __srcu_read_lock() following its next 1137 * __srcu_read_lock() or __srcu_read_unlock() will see the above 1138 * counter update. Note that both this memory barrier and the 1139 * one in srcu_readers_active_idx_check() provide the guarantee 1140 * for __srcu_read_lock(). 1141 */ 1142 smp_mb(); /* D */ /* Pairs with C. */ 1143 } 1144 1145 /* 1146 * If SRCU is likely idle, return true, otherwise return false. 1147 * 1148 * Note that it is OK for several current from-idle requests for a new 1149 * grace period from idle to specify expediting because they will all end 1150 * up requesting the same grace period anyhow. So no loss. 1151 * 1152 * Note also that if any CPU (including the current one) is still invoking 1153 * callbacks, this function will nevertheless say "idle". This is not 1154 * ideal, but the overhead of checking all CPUs' callback lists is even 1155 * less ideal, especially on large systems. Furthermore, the wakeup 1156 * can happen before the callback is fully removed, so we have no choice 1157 * but to accept this type of error. 1158 * 1159 * This function is also subject to counter-wrap errors, but let's face 1160 * it, if this function was preempted for enough time for the counters 1161 * to wrap, it really doesn't matter whether or not we expedite the grace 1162 * period. The extra overhead of a needlessly expedited grace period is 1163 * negligible when amortized over that time period, and the extra latency 1164 * of a needlessly non-expedited grace period is similarly negligible. 1165 */ 1166 static bool srcu_might_be_idle(struct srcu_struct *ssp) 1167 { 1168 unsigned long curseq; 1169 unsigned long flags; 1170 struct srcu_data *sdp; 1171 unsigned long t; 1172 unsigned long tlast; 1173 1174 check_init_srcu_struct(ssp); 1175 /* If the local srcu_data structure has callbacks, not idle. */ 1176 sdp = raw_cpu_ptr(ssp->sda); 1177 spin_lock_irqsave_rcu_node(sdp, flags); 1178 if (rcu_segcblist_pend_cbs(&sdp->srcu_cblist)) { 1179 spin_unlock_irqrestore_rcu_node(sdp, flags); 1180 return false; /* Callbacks already present, so not idle. */ 1181 } 1182 spin_unlock_irqrestore_rcu_node(sdp, flags); 1183 1184 /* 1185 * No local callbacks, so probabilistically probe global state. 1186 * Exact information would require acquiring locks, which would 1187 * kill scalability, hence the probabilistic nature of the probe. 1188 */ 1189 1190 /* First, see if enough time has passed since the last GP. */ 1191 t = ktime_get_mono_fast_ns(); 1192 tlast = READ_ONCE(ssp->srcu_sup->srcu_last_gp_end); 1193 if (exp_holdoff == 0 || 1194 time_in_range_open(t, tlast, tlast + exp_holdoff)) 1195 return false; /* Too soon after last GP. */ 1196 1197 /* Next, check for probable idleness. */ 1198 curseq = rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq); 1199 smp_mb(); /* Order ->srcu_gp_seq with ->srcu_gp_seq_needed. */ 1200 if (ULONG_CMP_LT(curseq, READ_ONCE(ssp->srcu_sup->srcu_gp_seq_needed))) 1201 return false; /* Grace period in progress, so not idle. */ 1202 smp_mb(); /* Order ->srcu_gp_seq with prior access. */ 1203 if (curseq != rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq)) 1204 return false; /* GP # changed, so not idle. */ 1205 return true; /* With reasonable probability, idle! */ 1206 } 1207 1208 /* 1209 * SRCU callback function to leak a callback. 1210 */ 1211 static void srcu_leak_callback(struct rcu_head *rhp) 1212 { 1213 } 1214 1215 /* 1216 * Start an SRCU grace period, and also queue the callback if non-NULL. 1217 */ 1218 static unsigned long srcu_gp_start_if_needed(struct srcu_struct *ssp, 1219 struct rcu_head *rhp, bool do_norm) 1220 { 1221 unsigned long flags; 1222 int idx; 1223 bool needexp = false; 1224 bool needgp = false; 1225 unsigned long s; 1226 struct srcu_data *sdp; 1227 struct srcu_node *sdp_mynode; 1228 int ss_state; 1229 1230 check_init_srcu_struct(ssp); 1231 /* 1232 * While starting a new grace period, make sure we are in an 1233 * SRCU read-side critical section so that the grace-period 1234 * sequence number cannot wrap around in the meantime. 1235 */ 1236 idx = __srcu_read_lock_nmisafe(ssp); 1237 ss_state = smp_load_acquire(&ssp->srcu_sup->srcu_size_state); 1238 if (ss_state < SRCU_SIZE_WAIT_CALL) 1239 sdp = per_cpu_ptr(ssp->sda, get_boot_cpu_id()); 1240 else 1241 sdp = raw_cpu_ptr(ssp->sda); 1242 spin_lock_irqsave_sdp_contention(sdp, &flags); 1243 if (rhp) 1244 rcu_segcblist_enqueue(&sdp->srcu_cblist, rhp); 1245 rcu_segcblist_advance(&sdp->srcu_cblist, 1246 rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq)); 1247 s = rcu_seq_snap(&ssp->srcu_sup->srcu_gp_seq); 1248 (void)rcu_segcblist_accelerate(&sdp->srcu_cblist, s); 1249 if (ULONG_CMP_LT(sdp->srcu_gp_seq_needed, s)) { 1250 sdp->srcu_gp_seq_needed = s; 1251 needgp = true; 1252 } 1253 if (!do_norm && ULONG_CMP_LT(sdp->srcu_gp_seq_needed_exp, s)) { 1254 sdp->srcu_gp_seq_needed_exp = s; 1255 needexp = true; 1256 } 1257 spin_unlock_irqrestore_rcu_node(sdp, flags); 1258 1259 /* Ensure that snp node tree is fully initialized before traversing it */ 1260 if (ss_state < SRCU_SIZE_WAIT_BARRIER) 1261 sdp_mynode = NULL; 1262 else 1263 sdp_mynode = sdp->mynode; 1264 1265 if (needgp) 1266 srcu_funnel_gp_start(ssp, sdp, s, do_norm); 1267 else if (needexp) 1268 srcu_funnel_exp_start(ssp, sdp_mynode, s); 1269 __srcu_read_unlock_nmisafe(ssp, idx); 1270 return s; 1271 } 1272 1273 /* 1274 * Enqueue an SRCU callback on the srcu_data structure associated with 1275 * the current CPU and the specified srcu_struct structure, initiating 1276 * grace-period processing if it is not already running. 1277 * 1278 * Note that all CPUs must agree that the grace period extended beyond 1279 * all pre-existing SRCU read-side critical section. On systems with 1280 * more than one CPU, this means that when "func()" is invoked, each CPU 1281 * is guaranteed to have executed a full memory barrier since the end of 1282 * its last corresponding SRCU read-side critical section whose beginning 1283 * preceded the call to call_srcu(). It also means that each CPU executing 1284 * an SRCU read-side critical section that continues beyond the start of 1285 * "func()" must have executed a memory barrier after the call_srcu() 1286 * but before the beginning of that SRCU read-side critical section. 1287 * Note that these guarantees include CPUs that are offline, idle, or 1288 * executing in user mode, as well as CPUs that are executing in the kernel. 1289 * 1290 * Furthermore, if CPU A invoked call_srcu() and CPU B invoked the 1291 * resulting SRCU callback function "func()", then both CPU A and CPU 1292 * B are guaranteed to execute a full memory barrier during the time 1293 * interval between the call to call_srcu() and the invocation of "func()". 1294 * This guarantee applies even if CPU A and CPU B are the same CPU (but 1295 * again only if the system has more than one CPU). 1296 * 1297 * Of course, these guarantees apply only for invocations of call_srcu(), 1298 * srcu_read_lock(), and srcu_read_unlock() that are all passed the same 1299 * srcu_struct structure. 1300 */ 1301 static void __call_srcu(struct srcu_struct *ssp, struct rcu_head *rhp, 1302 rcu_callback_t func, bool do_norm) 1303 { 1304 if (debug_rcu_head_queue(rhp)) { 1305 /* Probable double call_srcu(), so leak the callback. */ 1306 WRITE_ONCE(rhp->func, srcu_leak_callback); 1307 WARN_ONCE(1, "call_srcu(): Leaked duplicate callback\n"); 1308 return; 1309 } 1310 rhp->func = func; 1311 (void)srcu_gp_start_if_needed(ssp, rhp, do_norm); 1312 } 1313 1314 /** 1315 * call_srcu() - Queue a callback for invocation after an SRCU grace period 1316 * @ssp: srcu_struct in queue the callback 1317 * @rhp: structure to be used for queueing the SRCU callback. 1318 * @func: function to be invoked after the SRCU grace period 1319 * 1320 * The callback function will be invoked some time after a full SRCU 1321 * grace period elapses, in other words after all pre-existing SRCU 1322 * read-side critical sections have completed. However, the callback 1323 * function might well execute concurrently with other SRCU read-side 1324 * critical sections that started after call_srcu() was invoked. SRCU 1325 * read-side critical sections are delimited by srcu_read_lock() and 1326 * srcu_read_unlock(), and may be nested. 1327 * 1328 * The callback will be invoked from process context, but must nevertheless 1329 * be fast and must not block. 1330 */ 1331 void call_srcu(struct srcu_struct *ssp, struct rcu_head *rhp, 1332 rcu_callback_t func) 1333 { 1334 __call_srcu(ssp, rhp, func, true); 1335 } 1336 EXPORT_SYMBOL_GPL(call_srcu); 1337 1338 /* 1339 * Helper function for synchronize_srcu() and synchronize_srcu_expedited(). 1340 */ 1341 static void __synchronize_srcu(struct srcu_struct *ssp, bool do_norm) 1342 { 1343 struct rcu_synchronize rcu; 1344 1345 srcu_lock_sync(&ssp->dep_map); 1346 1347 RCU_LOCKDEP_WARN(lockdep_is_held(ssp) || 1348 lock_is_held(&rcu_bh_lock_map) || 1349 lock_is_held(&rcu_lock_map) || 1350 lock_is_held(&rcu_sched_lock_map), 1351 "Illegal synchronize_srcu() in same-type SRCU (or in RCU) read-side critical section"); 1352 1353 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE) 1354 return; 1355 might_sleep(); 1356 check_init_srcu_struct(ssp); 1357 init_completion(&rcu.completion); 1358 init_rcu_head_on_stack(&rcu.head); 1359 __call_srcu(ssp, &rcu.head, wakeme_after_rcu, do_norm); 1360 wait_for_completion(&rcu.completion); 1361 destroy_rcu_head_on_stack(&rcu.head); 1362 1363 /* 1364 * Make sure that later code is ordered after the SRCU grace 1365 * period. This pairs with the spin_lock_irq_rcu_node() 1366 * in srcu_invoke_callbacks(). Unlike Tree RCU, this is needed 1367 * because the current CPU might have been totally uninvolved with 1368 * (and thus unordered against) that grace period. 1369 */ 1370 smp_mb(); 1371 } 1372 1373 /** 1374 * synchronize_srcu_expedited - Brute-force SRCU grace period 1375 * @ssp: srcu_struct with which to synchronize. 1376 * 1377 * Wait for an SRCU grace period to elapse, but be more aggressive about 1378 * spinning rather than blocking when waiting. 1379 * 1380 * Note that synchronize_srcu_expedited() has the same deadlock and 1381 * memory-ordering properties as does synchronize_srcu(). 1382 */ 1383 void synchronize_srcu_expedited(struct srcu_struct *ssp) 1384 { 1385 __synchronize_srcu(ssp, rcu_gp_is_normal()); 1386 } 1387 EXPORT_SYMBOL_GPL(synchronize_srcu_expedited); 1388 1389 /** 1390 * synchronize_srcu - wait for prior SRCU read-side critical-section completion 1391 * @ssp: srcu_struct with which to synchronize. 1392 * 1393 * Wait for the count to drain to zero of both indexes. To avoid the 1394 * possible starvation of synchronize_srcu(), it waits for the count of 1395 * the index=((->srcu_idx & 1) ^ 1) to drain to zero at first, 1396 * and then flip the srcu_idx and wait for the count of the other index. 1397 * 1398 * Can block; must be called from process context. 1399 * 1400 * Note that it is illegal to call synchronize_srcu() from the corresponding 1401 * SRCU read-side critical section; doing so will result in deadlock. 1402 * However, it is perfectly legal to call synchronize_srcu() on one 1403 * srcu_struct from some other srcu_struct's read-side critical section, 1404 * as long as the resulting graph of srcu_structs is acyclic. 1405 * 1406 * There are memory-ordering constraints implied by synchronize_srcu(). 1407 * On systems with more than one CPU, when synchronize_srcu() returns, 1408 * each CPU is guaranteed to have executed a full memory barrier since 1409 * the end of its last corresponding SRCU read-side critical section 1410 * whose beginning preceded the call to synchronize_srcu(). In addition, 1411 * each CPU having an SRCU read-side critical section that extends beyond 1412 * the return from synchronize_srcu() is guaranteed to have executed a 1413 * full memory barrier after the beginning of synchronize_srcu() and before 1414 * the beginning of that SRCU read-side critical section. Note that these 1415 * guarantees include CPUs that are offline, idle, or executing in user mode, 1416 * as well as CPUs that are executing in the kernel. 1417 * 1418 * Furthermore, if CPU A invoked synchronize_srcu(), which returned 1419 * to its caller on CPU B, then both CPU A and CPU B are guaranteed 1420 * to have executed a full memory barrier during the execution of 1421 * synchronize_srcu(). This guarantee applies even if CPU A and CPU B 1422 * are the same CPU, but again only if the system has more than one CPU. 1423 * 1424 * Of course, these memory-ordering guarantees apply only when 1425 * synchronize_srcu(), srcu_read_lock(), and srcu_read_unlock() are 1426 * passed the same srcu_struct structure. 1427 * 1428 * Implementation of these memory-ordering guarantees is similar to 1429 * that of synchronize_rcu(). 1430 * 1431 * If SRCU is likely idle, expedite the first request. This semantic 1432 * was provided by Classic SRCU, and is relied upon by its users, so TREE 1433 * SRCU must also provide it. Note that detecting idleness is heuristic 1434 * and subject to both false positives and negatives. 1435 */ 1436 void synchronize_srcu(struct srcu_struct *ssp) 1437 { 1438 if (srcu_might_be_idle(ssp) || rcu_gp_is_expedited()) 1439 synchronize_srcu_expedited(ssp); 1440 else 1441 __synchronize_srcu(ssp, true); 1442 } 1443 EXPORT_SYMBOL_GPL(synchronize_srcu); 1444 1445 /** 1446 * get_state_synchronize_srcu - Provide an end-of-grace-period cookie 1447 * @ssp: srcu_struct to provide cookie for. 1448 * 1449 * This function returns a cookie that can be passed to 1450 * poll_state_synchronize_srcu(), which will return true if a full grace 1451 * period has elapsed in the meantime. It is the caller's responsibility 1452 * to make sure that grace period happens, for example, by invoking 1453 * call_srcu() after return from get_state_synchronize_srcu(). 1454 */ 1455 unsigned long get_state_synchronize_srcu(struct srcu_struct *ssp) 1456 { 1457 // Any prior manipulation of SRCU-protected data must happen 1458 // before the load from ->srcu_gp_seq. 1459 smp_mb(); 1460 return rcu_seq_snap(&ssp->srcu_sup->srcu_gp_seq); 1461 } 1462 EXPORT_SYMBOL_GPL(get_state_synchronize_srcu); 1463 1464 /** 1465 * start_poll_synchronize_srcu - Provide cookie and start grace period 1466 * @ssp: srcu_struct to provide cookie for. 1467 * 1468 * This function returns a cookie that can be passed to 1469 * poll_state_synchronize_srcu(), which will return true if a full grace 1470 * period has elapsed in the meantime. Unlike get_state_synchronize_srcu(), 1471 * this function also ensures that any needed SRCU grace period will be 1472 * started. This convenience does come at a cost in terms of CPU overhead. 1473 */ 1474 unsigned long start_poll_synchronize_srcu(struct srcu_struct *ssp) 1475 { 1476 return srcu_gp_start_if_needed(ssp, NULL, true); 1477 } 1478 EXPORT_SYMBOL_GPL(start_poll_synchronize_srcu); 1479 1480 /** 1481 * poll_state_synchronize_srcu - Has cookie's grace period ended? 1482 * @ssp: srcu_struct to provide cookie for. 1483 * @cookie: Return value from get_state_synchronize_srcu() or start_poll_synchronize_srcu(). 1484 * 1485 * This function takes the cookie that was returned from either 1486 * get_state_synchronize_srcu() or start_poll_synchronize_srcu(), and 1487 * returns @true if an SRCU grace period elapsed since the time that the 1488 * cookie was created. 1489 * 1490 * Because cookies are finite in size, wrapping/overflow is possible. 1491 * This is more pronounced on 32-bit systems where cookies are 32 bits, 1492 * where in theory wrapping could happen in about 14 hours assuming 1493 * 25-microsecond expedited SRCU grace periods. However, a more likely 1494 * overflow lower bound is on the order of 24 days in the case of 1495 * one-millisecond SRCU grace periods. Of course, wrapping in a 64-bit 1496 * system requires geologic timespans, as in more than seven million years 1497 * even for expedited SRCU grace periods. 1498 * 1499 * Wrapping/overflow is much more of an issue for CONFIG_SMP=n systems 1500 * that also have CONFIG_PREEMPTION=n, which selects Tiny SRCU. This uses 1501 * a 16-bit cookie, which rcutorture routinely wraps in a matter of a 1502 * few minutes. If this proves to be a problem, this counter will be 1503 * expanded to the same size as for Tree SRCU. 1504 */ 1505 bool poll_state_synchronize_srcu(struct srcu_struct *ssp, unsigned long cookie) 1506 { 1507 if (!rcu_seq_done(&ssp->srcu_sup->srcu_gp_seq, cookie)) 1508 return false; 1509 // Ensure that the end of the SRCU grace period happens before 1510 // any subsequent code that the caller might execute. 1511 smp_mb(); // ^^^ 1512 return true; 1513 } 1514 EXPORT_SYMBOL_GPL(poll_state_synchronize_srcu); 1515 1516 /* 1517 * Callback function for srcu_barrier() use. 1518 */ 1519 static void srcu_barrier_cb(struct rcu_head *rhp) 1520 { 1521 struct srcu_data *sdp; 1522 struct srcu_struct *ssp; 1523 1524 sdp = container_of(rhp, struct srcu_data, srcu_barrier_head); 1525 ssp = sdp->ssp; 1526 if (atomic_dec_and_test(&ssp->srcu_sup->srcu_barrier_cpu_cnt)) 1527 complete(&ssp->srcu_sup->srcu_barrier_completion); 1528 } 1529 1530 /* 1531 * Enqueue an srcu_barrier() callback on the specified srcu_data 1532 * structure's ->cblist. but only if that ->cblist already has at least one 1533 * callback enqueued. Note that if a CPU already has callbacks enqueue, 1534 * it must have already registered the need for a future grace period, 1535 * so all we need do is enqueue a callback that will use the same grace 1536 * period as the last callback already in the queue. 1537 */ 1538 static void srcu_barrier_one_cpu(struct srcu_struct *ssp, struct srcu_data *sdp) 1539 { 1540 spin_lock_irq_rcu_node(sdp); 1541 atomic_inc(&ssp->srcu_sup->srcu_barrier_cpu_cnt); 1542 sdp->srcu_barrier_head.func = srcu_barrier_cb; 1543 debug_rcu_head_queue(&sdp->srcu_barrier_head); 1544 if (!rcu_segcblist_entrain(&sdp->srcu_cblist, 1545 &sdp->srcu_barrier_head)) { 1546 debug_rcu_head_unqueue(&sdp->srcu_barrier_head); 1547 atomic_dec(&ssp->srcu_sup->srcu_barrier_cpu_cnt); 1548 } 1549 spin_unlock_irq_rcu_node(sdp); 1550 } 1551 1552 /** 1553 * srcu_barrier - Wait until all in-flight call_srcu() callbacks complete. 1554 * @ssp: srcu_struct on which to wait for in-flight callbacks. 1555 */ 1556 void srcu_barrier(struct srcu_struct *ssp) 1557 { 1558 int cpu; 1559 int idx; 1560 unsigned long s = rcu_seq_snap(&ssp->srcu_sup->srcu_barrier_seq); 1561 1562 check_init_srcu_struct(ssp); 1563 mutex_lock(&ssp->srcu_sup->srcu_barrier_mutex); 1564 if (rcu_seq_done(&ssp->srcu_sup->srcu_barrier_seq, s)) { 1565 smp_mb(); /* Force ordering following return. */ 1566 mutex_unlock(&ssp->srcu_sup->srcu_barrier_mutex); 1567 return; /* Someone else did our work for us. */ 1568 } 1569 rcu_seq_start(&ssp->srcu_sup->srcu_barrier_seq); 1570 init_completion(&ssp->srcu_sup->srcu_barrier_completion); 1571 1572 /* Initial count prevents reaching zero until all CBs are posted. */ 1573 atomic_set(&ssp->srcu_sup->srcu_barrier_cpu_cnt, 1); 1574 1575 idx = __srcu_read_lock_nmisafe(ssp); 1576 if (smp_load_acquire(&ssp->srcu_sup->srcu_size_state) < SRCU_SIZE_WAIT_BARRIER) 1577 srcu_barrier_one_cpu(ssp, per_cpu_ptr(ssp->sda, get_boot_cpu_id())); 1578 else 1579 for_each_possible_cpu(cpu) 1580 srcu_barrier_one_cpu(ssp, per_cpu_ptr(ssp->sda, cpu)); 1581 __srcu_read_unlock_nmisafe(ssp, idx); 1582 1583 /* Remove the initial count, at which point reaching zero can happen. */ 1584 if (atomic_dec_and_test(&ssp->srcu_sup->srcu_barrier_cpu_cnt)) 1585 complete(&ssp->srcu_sup->srcu_barrier_completion); 1586 wait_for_completion(&ssp->srcu_sup->srcu_barrier_completion); 1587 1588 rcu_seq_end(&ssp->srcu_sup->srcu_barrier_seq); 1589 mutex_unlock(&ssp->srcu_sup->srcu_barrier_mutex); 1590 } 1591 EXPORT_SYMBOL_GPL(srcu_barrier); 1592 1593 /** 1594 * srcu_batches_completed - return batches completed. 1595 * @ssp: srcu_struct on which to report batch completion. 1596 * 1597 * Report the number of batches, correlated with, but not necessarily 1598 * precisely the same as, the number of grace periods that have elapsed. 1599 */ 1600 unsigned long srcu_batches_completed(struct srcu_struct *ssp) 1601 { 1602 return READ_ONCE(ssp->srcu_idx); 1603 } 1604 EXPORT_SYMBOL_GPL(srcu_batches_completed); 1605 1606 /* 1607 * Core SRCU state machine. Push state bits of ->srcu_gp_seq 1608 * to SRCU_STATE_SCAN2, and invoke srcu_gp_end() when scan has 1609 * completed in that state. 1610 */ 1611 static void srcu_advance_state(struct srcu_struct *ssp) 1612 { 1613 int idx; 1614 1615 mutex_lock(&ssp->srcu_sup->srcu_gp_mutex); 1616 1617 /* 1618 * Because readers might be delayed for an extended period after 1619 * fetching ->srcu_idx for their index, at any point in time there 1620 * might well be readers using both idx=0 and idx=1. We therefore 1621 * need to wait for readers to clear from both index values before 1622 * invoking a callback. 1623 * 1624 * The load-acquire ensures that we see the accesses performed 1625 * by the prior grace period. 1626 */ 1627 idx = rcu_seq_state(smp_load_acquire(&ssp->srcu_sup->srcu_gp_seq)); /* ^^^ */ 1628 if (idx == SRCU_STATE_IDLE) { 1629 spin_lock_irq_rcu_node(ssp->srcu_sup); 1630 if (ULONG_CMP_GE(ssp->srcu_sup->srcu_gp_seq, ssp->srcu_sup->srcu_gp_seq_needed)) { 1631 WARN_ON_ONCE(rcu_seq_state(ssp->srcu_sup->srcu_gp_seq)); 1632 spin_unlock_irq_rcu_node(ssp->srcu_sup); 1633 mutex_unlock(&ssp->srcu_sup->srcu_gp_mutex); 1634 return; 1635 } 1636 idx = rcu_seq_state(READ_ONCE(ssp->srcu_sup->srcu_gp_seq)); 1637 if (idx == SRCU_STATE_IDLE) 1638 srcu_gp_start(ssp); 1639 spin_unlock_irq_rcu_node(ssp->srcu_sup); 1640 if (idx != SRCU_STATE_IDLE) { 1641 mutex_unlock(&ssp->srcu_sup->srcu_gp_mutex); 1642 return; /* Someone else started the grace period. */ 1643 } 1644 } 1645 1646 if (rcu_seq_state(READ_ONCE(ssp->srcu_sup->srcu_gp_seq)) == SRCU_STATE_SCAN1) { 1647 idx = 1 ^ (ssp->srcu_idx & 1); 1648 if (!try_check_zero(ssp, idx, 1)) { 1649 mutex_unlock(&ssp->srcu_sup->srcu_gp_mutex); 1650 return; /* readers present, retry later. */ 1651 } 1652 srcu_flip(ssp); 1653 spin_lock_irq_rcu_node(ssp->srcu_sup); 1654 rcu_seq_set_state(&ssp->srcu_sup->srcu_gp_seq, SRCU_STATE_SCAN2); 1655 ssp->srcu_sup->srcu_n_exp_nodelay = 0; 1656 spin_unlock_irq_rcu_node(ssp->srcu_sup); 1657 } 1658 1659 if (rcu_seq_state(READ_ONCE(ssp->srcu_sup->srcu_gp_seq)) == SRCU_STATE_SCAN2) { 1660 1661 /* 1662 * SRCU read-side critical sections are normally short, 1663 * so check at least twice in quick succession after a flip. 1664 */ 1665 idx = 1 ^ (ssp->srcu_idx & 1); 1666 if (!try_check_zero(ssp, idx, 2)) { 1667 mutex_unlock(&ssp->srcu_sup->srcu_gp_mutex); 1668 return; /* readers present, retry later. */ 1669 } 1670 ssp->srcu_sup->srcu_n_exp_nodelay = 0; 1671 srcu_gp_end(ssp); /* Releases ->srcu_gp_mutex. */ 1672 } 1673 } 1674 1675 /* 1676 * Invoke a limited number of SRCU callbacks that have passed through 1677 * their grace period. If there are more to do, SRCU will reschedule 1678 * the workqueue. Note that needed memory barriers have been executed 1679 * in this task's context by srcu_readers_active_idx_check(). 1680 */ 1681 static void srcu_invoke_callbacks(struct work_struct *work) 1682 { 1683 long len; 1684 bool more; 1685 struct rcu_cblist ready_cbs; 1686 struct rcu_head *rhp; 1687 struct srcu_data *sdp; 1688 struct srcu_struct *ssp; 1689 1690 sdp = container_of(work, struct srcu_data, work); 1691 1692 ssp = sdp->ssp; 1693 rcu_cblist_init(&ready_cbs); 1694 spin_lock_irq_rcu_node(sdp); 1695 rcu_segcblist_advance(&sdp->srcu_cblist, 1696 rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq)); 1697 if (sdp->srcu_cblist_invoking || 1698 !rcu_segcblist_ready_cbs(&sdp->srcu_cblist)) { 1699 spin_unlock_irq_rcu_node(sdp); 1700 return; /* Someone else on the job or nothing to do. */ 1701 } 1702 1703 /* We are on the job! Extract and invoke ready callbacks. */ 1704 sdp->srcu_cblist_invoking = true; 1705 rcu_segcblist_extract_done_cbs(&sdp->srcu_cblist, &ready_cbs); 1706 len = ready_cbs.len; 1707 spin_unlock_irq_rcu_node(sdp); 1708 rhp = rcu_cblist_dequeue(&ready_cbs); 1709 for (; rhp != NULL; rhp = rcu_cblist_dequeue(&ready_cbs)) { 1710 debug_rcu_head_unqueue(rhp); 1711 local_bh_disable(); 1712 rhp->func(rhp); 1713 local_bh_enable(); 1714 } 1715 WARN_ON_ONCE(ready_cbs.len); 1716 1717 /* 1718 * Update counts, accelerate new callbacks, and if needed, 1719 * schedule another round of callback invocation. 1720 */ 1721 spin_lock_irq_rcu_node(sdp); 1722 rcu_segcblist_add_len(&sdp->srcu_cblist, -len); 1723 (void)rcu_segcblist_accelerate(&sdp->srcu_cblist, 1724 rcu_seq_snap(&ssp->srcu_sup->srcu_gp_seq)); 1725 sdp->srcu_cblist_invoking = false; 1726 more = rcu_segcblist_ready_cbs(&sdp->srcu_cblist); 1727 spin_unlock_irq_rcu_node(sdp); 1728 if (more) 1729 srcu_schedule_cbs_sdp(sdp, 0); 1730 } 1731 1732 /* 1733 * Finished one round of SRCU grace period. Start another if there are 1734 * more SRCU callbacks queued, otherwise put SRCU into not-running state. 1735 */ 1736 static void srcu_reschedule(struct srcu_struct *ssp, unsigned long delay) 1737 { 1738 bool pushgp = true; 1739 1740 spin_lock_irq_rcu_node(ssp->srcu_sup); 1741 if (ULONG_CMP_GE(ssp->srcu_sup->srcu_gp_seq, ssp->srcu_sup->srcu_gp_seq_needed)) { 1742 if (!WARN_ON_ONCE(rcu_seq_state(ssp->srcu_sup->srcu_gp_seq))) { 1743 /* All requests fulfilled, time to go idle. */ 1744 pushgp = false; 1745 } 1746 } else if (!rcu_seq_state(ssp->srcu_sup->srcu_gp_seq)) { 1747 /* Outstanding request and no GP. Start one. */ 1748 srcu_gp_start(ssp); 1749 } 1750 spin_unlock_irq_rcu_node(ssp->srcu_sup); 1751 1752 if (pushgp) 1753 queue_delayed_work(rcu_gp_wq, &ssp->srcu_sup->work, delay); 1754 } 1755 1756 /* 1757 * This is the work-queue function that handles SRCU grace periods. 1758 */ 1759 static void process_srcu(struct work_struct *work) 1760 { 1761 unsigned long curdelay; 1762 unsigned long j; 1763 struct srcu_struct *ssp; 1764 struct srcu_usage *sup; 1765 1766 sup = container_of(work, struct srcu_usage, work.work); 1767 ssp = sup->srcu_ssp; 1768 1769 srcu_advance_state(ssp); 1770 curdelay = srcu_get_delay(ssp); 1771 if (curdelay) { 1772 WRITE_ONCE(sup->reschedule_count, 0); 1773 } else { 1774 j = jiffies; 1775 if (READ_ONCE(sup->reschedule_jiffies) == j) { 1776 WRITE_ONCE(sup->reschedule_count, READ_ONCE(sup->reschedule_count) + 1); 1777 if (READ_ONCE(sup->reschedule_count) > srcu_max_nodelay) 1778 curdelay = 1; 1779 } else { 1780 WRITE_ONCE(sup->reschedule_count, 1); 1781 WRITE_ONCE(sup->reschedule_jiffies, j); 1782 } 1783 } 1784 srcu_reschedule(ssp, curdelay); 1785 } 1786 1787 void srcutorture_get_gp_data(enum rcutorture_type test_type, 1788 struct srcu_struct *ssp, int *flags, 1789 unsigned long *gp_seq) 1790 { 1791 if (test_type != SRCU_FLAVOR) 1792 return; 1793 *flags = 0; 1794 *gp_seq = rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq); 1795 } 1796 EXPORT_SYMBOL_GPL(srcutorture_get_gp_data); 1797 1798 static const char * const srcu_size_state_name[] = { 1799 "SRCU_SIZE_SMALL", 1800 "SRCU_SIZE_ALLOC", 1801 "SRCU_SIZE_WAIT_BARRIER", 1802 "SRCU_SIZE_WAIT_CALL", 1803 "SRCU_SIZE_WAIT_CBS1", 1804 "SRCU_SIZE_WAIT_CBS2", 1805 "SRCU_SIZE_WAIT_CBS3", 1806 "SRCU_SIZE_WAIT_CBS4", 1807 "SRCU_SIZE_BIG", 1808 "SRCU_SIZE_???", 1809 }; 1810 1811 void srcu_torture_stats_print(struct srcu_struct *ssp, char *tt, char *tf) 1812 { 1813 int cpu; 1814 int idx; 1815 unsigned long s0 = 0, s1 = 0; 1816 int ss_state = READ_ONCE(ssp->srcu_sup->srcu_size_state); 1817 int ss_state_idx = ss_state; 1818 1819 idx = ssp->srcu_idx & 0x1; 1820 if (ss_state < 0 || ss_state >= ARRAY_SIZE(srcu_size_state_name)) 1821 ss_state_idx = ARRAY_SIZE(srcu_size_state_name) - 1; 1822 pr_alert("%s%s Tree SRCU g%ld state %d (%s)", 1823 tt, tf, rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq), ss_state, 1824 srcu_size_state_name[ss_state_idx]); 1825 if (!ssp->sda) { 1826 // Called after cleanup_srcu_struct(), perhaps. 1827 pr_cont(" No per-CPU srcu_data structures (->sda == NULL).\n"); 1828 } else { 1829 pr_cont(" per-CPU(idx=%d):", idx); 1830 for_each_possible_cpu(cpu) { 1831 unsigned long l0, l1; 1832 unsigned long u0, u1; 1833 long c0, c1; 1834 struct srcu_data *sdp; 1835 1836 sdp = per_cpu_ptr(ssp->sda, cpu); 1837 u0 = data_race(atomic_long_read(&sdp->srcu_unlock_count[!idx])); 1838 u1 = data_race(atomic_long_read(&sdp->srcu_unlock_count[idx])); 1839 1840 /* 1841 * Make sure that a lock is always counted if the corresponding 1842 * unlock is counted. 1843 */ 1844 smp_rmb(); 1845 1846 l0 = data_race(atomic_long_read(&sdp->srcu_lock_count[!idx])); 1847 l1 = data_race(atomic_long_read(&sdp->srcu_lock_count[idx])); 1848 1849 c0 = l0 - u0; 1850 c1 = l1 - u1; 1851 pr_cont(" %d(%ld,%ld %c)", 1852 cpu, c0, c1, 1853 "C."[rcu_segcblist_empty(&sdp->srcu_cblist)]); 1854 s0 += c0; 1855 s1 += c1; 1856 } 1857 pr_cont(" T(%ld,%ld)\n", s0, s1); 1858 } 1859 if (SRCU_SIZING_IS_TORTURE()) 1860 srcu_transition_to_big(ssp); 1861 } 1862 EXPORT_SYMBOL_GPL(srcu_torture_stats_print); 1863 1864 static int __init srcu_bootup_announce(void) 1865 { 1866 pr_info("Hierarchical SRCU implementation.\n"); 1867 if (exp_holdoff != DEFAULT_SRCU_EXP_HOLDOFF) 1868 pr_info("\tNon-default auto-expedite holdoff of %lu ns.\n", exp_holdoff); 1869 if (srcu_retry_check_delay != SRCU_DEFAULT_RETRY_CHECK_DELAY) 1870 pr_info("\tNon-default retry check delay of %lu us.\n", srcu_retry_check_delay); 1871 if (srcu_max_nodelay != SRCU_DEFAULT_MAX_NODELAY) 1872 pr_info("\tNon-default max no-delay of %lu.\n", srcu_max_nodelay); 1873 pr_info("\tMax phase no-delay instances is %lu.\n", srcu_max_nodelay_phase); 1874 return 0; 1875 } 1876 early_initcall(srcu_bootup_announce); 1877 1878 void __init srcu_init(void) 1879 { 1880 struct srcu_usage *sup; 1881 1882 /* Decide on srcu_struct-size strategy. */ 1883 if (SRCU_SIZING_IS(SRCU_SIZING_AUTO)) { 1884 if (nr_cpu_ids >= big_cpu_lim) { 1885 convert_to_big = SRCU_SIZING_INIT; // Don't bother waiting for contention. 1886 pr_info("%s: Setting srcu_struct sizes to big.\n", __func__); 1887 } else { 1888 convert_to_big = SRCU_SIZING_NONE | SRCU_SIZING_CONTEND; 1889 pr_info("%s: Setting srcu_struct sizes based on contention.\n", __func__); 1890 } 1891 } 1892 1893 /* 1894 * Once that is set, call_srcu() can follow the normal path and 1895 * queue delayed work. This must follow RCU workqueues creation 1896 * and timers initialization. 1897 */ 1898 srcu_init_done = true; 1899 while (!list_empty(&srcu_boot_list)) { 1900 sup = list_first_entry(&srcu_boot_list, struct srcu_usage, 1901 work.work.entry); 1902 list_del_init(&sup->work.work.entry); 1903 if (SRCU_SIZING_IS(SRCU_SIZING_INIT) && 1904 sup->srcu_size_state == SRCU_SIZE_SMALL) 1905 sup->srcu_size_state = SRCU_SIZE_ALLOC; 1906 queue_work(rcu_gp_wq, &sup->work.work); 1907 } 1908 } 1909 1910 #ifdef CONFIG_MODULES 1911 1912 /* Initialize any global-scope srcu_struct structures used by this module. */ 1913 static int srcu_module_coming(struct module *mod) 1914 { 1915 int i; 1916 struct srcu_struct *ssp; 1917 struct srcu_struct **sspp = mod->srcu_struct_ptrs; 1918 1919 for (i = 0; i < mod->num_srcu_structs; i++) { 1920 ssp = *(sspp++); 1921 ssp->sda = alloc_percpu(struct srcu_data); 1922 if (WARN_ON_ONCE(!ssp->sda)) 1923 return -ENOMEM; 1924 } 1925 return 0; 1926 } 1927 1928 /* Clean up any global-scope srcu_struct structures used by this module. */ 1929 static void srcu_module_going(struct module *mod) 1930 { 1931 int i; 1932 struct srcu_struct *ssp; 1933 struct srcu_struct **sspp = mod->srcu_struct_ptrs; 1934 1935 for (i = 0; i < mod->num_srcu_structs; i++) { 1936 ssp = *(sspp++); 1937 if (!rcu_seq_state(smp_load_acquire(&ssp->srcu_sup->srcu_gp_seq_needed)) && 1938 !WARN_ON_ONCE(!ssp->srcu_sup->sda_is_static)) 1939 cleanup_srcu_struct(ssp); 1940 if (!WARN_ON(srcu_readers_active(ssp))) 1941 free_percpu(ssp->sda); 1942 } 1943 } 1944 1945 /* Handle one module, either coming or going. */ 1946 static int srcu_module_notify(struct notifier_block *self, 1947 unsigned long val, void *data) 1948 { 1949 struct module *mod = data; 1950 int ret = 0; 1951 1952 switch (val) { 1953 case MODULE_STATE_COMING: 1954 ret = srcu_module_coming(mod); 1955 break; 1956 case MODULE_STATE_GOING: 1957 srcu_module_going(mod); 1958 break; 1959 default: 1960 break; 1961 } 1962 return ret; 1963 } 1964 1965 static struct notifier_block srcu_module_nb = { 1966 .notifier_call = srcu_module_notify, 1967 .priority = 0, 1968 }; 1969 1970 static __init int init_srcu_module_notifier(void) 1971 { 1972 int ret; 1973 1974 ret = register_module_notifier(&srcu_module_nb); 1975 if (ret) 1976 pr_warn("Failed to register srcu module notifier\n"); 1977 return ret; 1978 } 1979 late_initcall(init_srcu_module_notifier); 1980 1981 #endif /* #ifdef CONFIG_MODULES */ 1982