1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Sleepable Read-Copy Update mechanism for mutual exclusion.
4 *
5 * Copyright (C) IBM Corporation, 2006
6 * Copyright (C) Fujitsu, 2012
7 *
8 * Authors: Paul McKenney <paulmck@linux.ibm.com>
9 * Lai Jiangshan <laijs@cn.fujitsu.com>
10 *
11 * For detailed explanation of Read-Copy Update mechanism see -
12 * Documentation/RCU/ *.txt
13 *
14 */
15
16 #define pr_fmt(fmt) "rcu: " fmt
17
18 #include <linux/export.h>
19 #include <linux/mutex.h>
20 #include <linux/percpu.h>
21 #include <linux/preempt.h>
22 #include <linux/rcupdate_wait.h>
23 #include <linux/sched.h>
24 #include <linux/smp.h>
25 #include <linux/delay.h>
26 #include <linux/module.h>
27 #include <linux/slab.h>
28 #include <linux/srcu.h>
29
30 #include "rcu.h"
31 #include "rcu_segcblist.h"
32
33 /* Holdoff in nanoseconds for auto-expediting. */
34 #define DEFAULT_SRCU_EXP_HOLDOFF (25 * 1000)
35 static ulong exp_holdoff = DEFAULT_SRCU_EXP_HOLDOFF;
36 module_param(exp_holdoff, ulong, 0444);
37
38 /* Overflow-check frequency. N bits roughly says every 2**N grace periods. */
39 static ulong counter_wrap_check = (ULONG_MAX >> 2);
40 module_param(counter_wrap_check, ulong, 0444);
41
42 /*
43 * Control conversion to SRCU_SIZE_BIG:
44 * 0: Don't convert at all.
45 * 1: Convert at init_srcu_struct() time.
46 * 2: Convert when rcutorture invokes srcu_torture_stats_print().
47 * 3: Decide at boot time based on system shape (default).
48 * 0x1x: Convert when excessive contention encountered.
49 */
50 #define SRCU_SIZING_NONE 0
51 #define SRCU_SIZING_INIT 1
52 #define SRCU_SIZING_TORTURE 2
53 #define SRCU_SIZING_AUTO 3
54 #define SRCU_SIZING_CONTEND 0x10
55 #define SRCU_SIZING_IS(x) ((convert_to_big & ~SRCU_SIZING_CONTEND) == x)
56 #define SRCU_SIZING_IS_NONE() (SRCU_SIZING_IS(SRCU_SIZING_NONE))
57 #define SRCU_SIZING_IS_INIT() (SRCU_SIZING_IS(SRCU_SIZING_INIT))
58 #define SRCU_SIZING_IS_TORTURE() (SRCU_SIZING_IS(SRCU_SIZING_TORTURE))
59 #define SRCU_SIZING_IS_CONTEND() (convert_to_big & SRCU_SIZING_CONTEND)
60 static int convert_to_big = SRCU_SIZING_AUTO;
61 module_param(convert_to_big, int, 0444);
62
63 /* Number of CPUs to trigger init_srcu_struct()-time transition to big. */
64 static int big_cpu_lim __read_mostly = 128;
65 module_param(big_cpu_lim, int, 0444);
66
67 /* Contention events per jiffy to initiate transition to big. */
68 static int small_contention_lim __read_mostly = 100;
69 module_param(small_contention_lim, int, 0444);
70
71 /* Early-boot callback-management, so early that no lock is required! */
72 static LIST_HEAD(srcu_boot_list);
73 static bool __read_mostly srcu_init_done;
74
75 static void srcu_invoke_callbacks(struct work_struct *work);
76 static void srcu_reschedule(struct srcu_struct *ssp, unsigned long delay);
77 static void process_srcu(struct work_struct *work);
78 static void srcu_delay_timer(struct timer_list *t);
79
80 /* Wrappers for lock acquisition and release, see raw_spin_lock_rcu_node(). */
81 #define spin_lock_rcu_node(p) \
82 do { \
83 spin_lock(&ACCESS_PRIVATE(p, lock)); \
84 smp_mb__after_unlock_lock(); \
85 } while (0)
86
87 #define spin_unlock_rcu_node(p) spin_unlock(&ACCESS_PRIVATE(p, lock))
88
89 #define spin_lock_irq_rcu_node(p) \
90 do { \
91 spin_lock_irq(&ACCESS_PRIVATE(p, lock)); \
92 smp_mb__after_unlock_lock(); \
93 } while (0)
94
95 #define spin_unlock_irq_rcu_node(p) \
96 spin_unlock_irq(&ACCESS_PRIVATE(p, lock))
97
98 #define spin_lock_irqsave_rcu_node(p, flags) \
99 do { \
100 spin_lock_irqsave(&ACCESS_PRIVATE(p, lock), flags); \
101 smp_mb__after_unlock_lock(); \
102 } while (0)
103
104 #define spin_trylock_irqsave_rcu_node(p, flags) \
105 ({ \
106 bool ___locked = spin_trylock_irqsave(&ACCESS_PRIVATE(p, lock), flags); \
107 \
108 if (___locked) \
109 smp_mb__after_unlock_lock(); \
110 ___locked; \
111 })
112
113 #define spin_unlock_irqrestore_rcu_node(p, flags) \
114 spin_unlock_irqrestore(&ACCESS_PRIVATE(p, lock), flags) \
115
116 /*
117 * Initialize SRCU per-CPU data. Note that statically allocated
118 * srcu_struct structures might already have srcu_read_lock() and
119 * srcu_read_unlock() running against them. So if the is_static
120 * parameter is set, don't initialize ->srcu_ctrs[].srcu_locks and
121 * ->srcu_ctrs[].srcu_unlocks.
122 */
init_srcu_struct_data(struct srcu_struct * ssp)123 static void init_srcu_struct_data(struct srcu_struct *ssp)
124 {
125 int cpu;
126 struct srcu_data *sdp;
127
128 /*
129 * Initialize the per-CPU srcu_data array, which feeds into the
130 * leaves of the srcu_node tree.
131 */
132 for_each_possible_cpu(cpu) {
133 sdp = per_cpu_ptr(ssp->sda, cpu);
134 spin_lock_init(&ACCESS_PRIVATE(sdp, lock));
135 rcu_segcblist_init(&sdp->srcu_cblist);
136 sdp->srcu_cblist_invoking = false;
137 sdp->srcu_gp_seq_needed = ssp->srcu_sup->srcu_gp_seq;
138 sdp->srcu_gp_seq_needed_exp = ssp->srcu_sup->srcu_gp_seq;
139 sdp->srcu_barrier_head.next = &sdp->srcu_barrier_head;
140 sdp->mynode = NULL;
141 sdp->cpu = cpu;
142 INIT_WORK(&sdp->work, srcu_invoke_callbacks);
143 timer_setup(&sdp->delay_work, srcu_delay_timer, 0);
144 sdp->ssp = ssp;
145 }
146 }
147
148 /* Invalid seq state, used during snp node initialization */
149 #define SRCU_SNP_INIT_SEQ 0x2
150
151 /*
152 * Check whether sequence number corresponding to snp node,
153 * is invalid.
154 */
srcu_invl_snp_seq(unsigned long s)155 static inline bool srcu_invl_snp_seq(unsigned long s)
156 {
157 return s == SRCU_SNP_INIT_SEQ;
158 }
159
160 /*
161 * Allocated and initialize SRCU combining tree. Returns @true if
162 * allocation succeeded and @false otherwise.
163 */
init_srcu_struct_nodes(struct srcu_struct * ssp,gfp_t gfp_flags)164 static bool init_srcu_struct_nodes(struct srcu_struct *ssp, gfp_t gfp_flags)
165 {
166 int cpu;
167 int i;
168 int level = 0;
169 int levelspread[RCU_NUM_LVLS];
170 struct srcu_data *sdp;
171 struct srcu_node *snp;
172 struct srcu_node *snp_first;
173
174 /* Initialize geometry if it has not already been initialized. */
175 rcu_init_geometry();
176 ssp->srcu_sup->node = kcalloc(rcu_num_nodes, sizeof(*ssp->srcu_sup->node), gfp_flags);
177 if (!ssp->srcu_sup->node)
178 return false;
179
180 /* Work out the overall tree geometry. */
181 ssp->srcu_sup->level[0] = &ssp->srcu_sup->node[0];
182 for (i = 1; i < rcu_num_lvls; i++)
183 ssp->srcu_sup->level[i] = ssp->srcu_sup->level[i - 1] + num_rcu_lvl[i - 1];
184 rcu_init_levelspread(levelspread, num_rcu_lvl);
185
186 /* Each pass through this loop initializes one srcu_node structure. */
187 srcu_for_each_node_breadth_first(ssp, snp) {
188 spin_lock_init(&ACCESS_PRIVATE(snp, lock));
189 BUILD_BUG_ON(ARRAY_SIZE(snp->srcu_have_cbs) !=
190 ARRAY_SIZE(snp->srcu_data_have_cbs));
191 for (i = 0; i < ARRAY_SIZE(snp->srcu_have_cbs); i++) {
192 snp->srcu_have_cbs[i] = SRCU_SNP_INIT_SEQ;
193 snp->srcu_data_have_cbs[i] = 0;
194 }
195 snp->srcu_gp_seq_needed_exp = SRCU_SNP_INIT_SEQ;
196 snp->grplo = -1;
197 snp->grphi = -1;
198 if (snp == &ssp->srcu_sup->node[0]) {
199 /* Root node, special case. */
200 snp->srcu_parent = NULL;
201 continue;
202 }
203
204 /* Non-root node. */
205 if (snp == ssp->srcu_sup->level[level + 1])
206 level++;
207 snp->srcu_parent = ssp->srcu_sup->level[level - 1] +
208 (snp - ssp->srcu_sup->level[level]) /
209 levelspread[level - 1];
210 }
211
212 /*
213 * Initialize the per-CPU srcu_data array, which feeds into the
214 * leaves of the srcu_node tree.
215 */
216 level = rcu_num_lvls - 1;
217 snp_first = ssp->srcu_sup->level[level];
218 for_each_possible_cpu(cpu) {
219 sdp = per_cpu_ptr(ssp->sda, cpu);
220 sdp->mynode = &snp_first[cpu / levelspread[level]];
221 for (snp = sdp->mynode; snp != NULL; snp = snp->srcu_parent) {
222 if (snp->grplo < 0)
223 snp->grplo = cpu;
224 snp->grphi = cpu;
225 }
226 sdp->grpmask = 1UL << (cpu - sdp->mynode->grplo);
227 }
228 smp_store_release(&ssp->srcu_sup->srcu_size_state, SRCU_SIZE_WAIT_BARRIER);
229 return true;
230 }
231
232 /*
233 * Initialize non-compile-time initialized fields, including the
234 * associated srcu_node and srcu_data structures. The is_static parameter
235 * tells us that ->sda has already been wired up to srcu_data.
236 */
init_srcu_struct_fields(struct srcu_struct * ssp,bool is_static)237 static int init_srcu_struct_fields(struct srcu_struct *ssp, bool is_static)
238 {
239 if (!is_static)
240 ssp->srcu_sup = kzalloc(sizeof(*ssp->srcu_sup), GFP_KERNEL);
241 if (!ssp->srcu_sup)
242 return -ENOMEM;
243 if (!is_static)
244 spin_lock_init(&ACCESS_PRIVATE(ssp->srcu_sup, lock));
245 ssp->srcu_sup->srcu_size_state = SRCU_SIZE_SMALL;
246 ssp->srcu_sup->node = NULL;
247 mutex_init(&ssp->srcu_sup->srcu_cb_mutex);
248 mutex_init(&ssp->srcu_sup->srcu_gp_mutex);
249 ssp->srcu_sup->srcu_gp_seq = SRCU_GP_SEQ_INITIAL_VAL;
250 ssp->srcu_sup->srcu_barrier_seq = 0;
251 mutex_init(&ssp->srcu_sup->srcu_barrier_mutex);
252 atomic_set(&ssp->srcu_sup->srcu_barrier_cpu_cnt, 0);
253 INIT_DELAYED_WORK(&ssp->srcu_sup->work, process_srcu);
254 ssp->srcu_sup->sda_is_static = is_static;
255 if (!is_static) {
256 ssp->sda = alloc_percpu(struct srcu_data);
257 ssp->srcu_ctrp = &ssp->sda->srcu_ctrs[0];
258 }
259 if (!ssp->sda)
260 goto err_free_sup;
261 init_srcu_struct_data(ssp);
262 ssp->srcu_sup->srcu_gp_seq_needed_exp = SRCU_GP_SEQ_INITIAL_VAL;
263 ssp->srcu_sup->srcu_last_gp_end = ktime_get_mono_fast_ns();
264 if (READ_ONCE(ssp->srcu_sup->srcu_size_state) == SRCU_SIZE_SMALL && SRCU_SIZING_IS_INIT()) {
265 if (!init_srcu_struct_nodes(ssp, GFP_ATOMIC))
266 goto err_free_sda;
267 WRITE_ONCE(ssp->srcu_sup->srcu_size_state, SRCU_SIZE_BIG);
268 }
269 ssp->srcu_sup->srcu_ssp = ssp;
270 smp_store_release(&ssp->srcu_sup->srcu_gp_seq_needed,
271 SRCU_GP_SEQ_INITIAL_VAL); /* Init done. */
272 return 0;
273
274 err_free_sda:
275 if (!is_static) {
276 free_percpu(ssp->sda);
277 ssp->sda = NULL;
278 }
279 err_free_sup:
280 if (!is_static) {
281 kfree(ssp->srcu_sup);
282 ssp->srcu_sup = NULL;
283 }
284 return -ENOMEM;
285 }
286
287 #ifdef CONFIG_DEBUG_LOCK_ALLOC
288
289 static int
__init_srcu_struct_common(struct srcu_struct * ssp,const char * name,struct lock_class_key * key)290 __init_srcu_struct_common(struct srcu_struct *ssp, const char *name, struct lock_class_key *key)
291 {
292 /* Don't re-initialize a lock while it is held. */
293 debug_check_no_locks_freed((void *)ssp, sizeof(*ssp));
294 lockdep_init_map(&ssp->dep_map, name, key, 0);
295 return init_srcu_struct_fields(ssp, false);
296 }
297
__init_srcu_struct(struct srcu_struct * ssp,const char * name,struct lock_class_key * key)298 int __init_srcu_struct(struct srcu_struct *ssp, const char *name, struct lock_class_key *key)
299 {
300 ssp->srcu_reader_flavor = 0;
301 return __init_srcu_struct_common(ssp, name, key);
302 }
303 EXPORT_SYMBOL_GPL(__init_srcu_struct);
304
__init_srcu_struct_fast(struct srcu_struct * ssp,const char * name,struct lock_class_key * key)305 int __init_srcu_struct_fast(struct srcu_struct *ssp, const char *name, struct lock_class_key *key)
306 {
307 ssp->srcu_reader_flavor = SRCU_READ_FLAVOR_FAST;
308 return __init_srcu_struct_common(ssp, name, key);
309 }
310 EXPORT_SYMBOL_GPL(__init_srcu_struct_fast);
311
__init_srcu_struct_fast_updown(struct srcu_struct * ssp,const char * name,struct lock_class_key * key)312 int __init_srcu_struct_fast_updown(struct srcu_struct *ssp, const char *name,
313 struct lock_class_key *key)
314 {
315 ssp->srcu_reader_flavor = SRCU_READ_FLAVOR_FAST_UPDOWN;
316 return __init_srcu_struct_common(ssp, name, key);
317 }
318 EXPORT_SYMBOL_GPL(__init_srcu_struct_fast_updown);
319
320 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
321
322 /**
323 * init_srcu_struct - initialize a sleep-RCU structure
324 * @ssp: structure to initialize.
325 *
326 * Use this in place of DEFINE_SRCU() and DEFINE_STATIC_SRCU()
327 * for non-static srcu_struct structures that are to be passed to
328 * srcu_read_lock(), srcu_read_lock_nmisafe(), and friends. It is necessary
329 * to invoke this on a given srcu_struct before passing that srcu_struct
330 * to any other function. Each srcu_struct represents a separate domain
331 * of SRCU protection.
332 */
init_srcu_struct(struct srcu_struct * ssp)333 int init_srcu_struct(struct srcu_struct *ssp)
334 {
335 ssp->srcu_reader_flavor = 0;
336 return init_srcu_struct_fields(ssp, false);
337 }
338 EXPORT_SYMBOL_GPL(init_srcu_struct);
339
340 /**
341 * init_srcu_struct_fast - initialize a fast-reader sleep-RCU structure
342 * @ssp: structure to initialize.
343 *
344 * Use this in place of DEFINE_SRCU_FAST() and DEFINE_STATIC_SRCU_FAST()
345 * for non-static srcu_struct structures that are to be passed to
346 * srcu_read_lock_fast() and friends. It is necessary to invoke this on a
347 * given srcu_struct before passing that srcu_struct to any other function.
348 * Each srcu_struct represents a separate domain of SRCU protection.
349 */
init_srcu_struct_fast(struct srcu_struct * ssp)350 int init_srcu_struct_fast(struct srcu_struct *ssp)
351 {
352 ssp->srcu_reader_flavor = SRCU_READ_FLAVOR_FAST;
353 return init_srcu_struct_fields(ssp, false);
354 }
355 EXPORT_SYMBOL_GPL(init_srcu_struct_fast);
356
357 /**
358 * init_srcu_struct_fast_updown - initialize a fast-reader up/down sleep-RCU structure
359 * @ssp: structure to initialize.
360 *
361 * Use this function in place of DEFINE_SRCU_FAST_UPDOWN() and
362 * DEFINE_STATIC_SRCU_FAST_UPDOWN() for non-static srcu_struct
363 * structures that are to be passed to srcu_read_lock_fast_updown(),
364 * srcu_down_read_fast(), and friends. It is necessary to invoke this on a
365 * given srcu_struct before passing that srcu_struct to any other function.
366 * Each srcu_struct represents a separate domain of SRCU protection.
367 */
init_srcu_struct_fast_updown(struct srcu_struct * ssp)368 int init_srcu_struct_fast_updown(struct srcu_struct *ssp)
369 {
370 ssp->srcu_reader_flavor = SRCU_READ_FLAVOR_FAST_UPDOWN;
371 return init_srcu_struct_fields(ssp, false);
372 }
373 EXPORT_SYMBOL_GPL(init_srcu_struct_fast_updown);
374
375 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
376
377 /*
378 * Initiate a transition to SRCU_SIZE_BIG with lock held.
379 */
__srcu_transition_to_big(struct srcu_struct * ssp)380 static void __srcu_transition_to_big(struct srcu_struct *ssp)
381 {
382 lockdep_assert_held(&ACCESS_PRIVATE(ssp->srcu_sup, lock));
383 smp_store_release(&ssp->srcu_sup->srcu_size_state, SRCU_SIZE_ALLOC);
384 }
385
386 /*
387 * Initiate an idempotent transition to SRCU_SIZE_BIG.
388 */
srcu_transition_to_big(struct srcu_struct * ssp)389 static void srcu_transition_to_big(struct srcu_struct *ssp)
390 {
391 unsigned long flags;
392
393 /* Double-checked locking on ->srcu_size-state. */
394 if (smp_load_acquire(&ssp->srcu_sup->srcu_size_state) != SRCU_SIZE_SMALL)
395 return;
396 spin_lock_irqsave_rcu_node(ssp->srcu_sup, flags);
397 if (smp_load_acquire(&ssp->srcu_sup->srcu_size_state) != SRCU_SIZE_SMALL) {
398 spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags);
399 return;
400 }
401 __srcu_transition_to_big(ssp);
402 spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags);
403 }
404
405 /*
406 * Check to see if the just-encountered contention event justifies
407 * a transition to SRCU_SIZE_BIG.
408 */
spin_lock_irqsave_check_contention(struct srcu_struct * ssp)409 static void spin_lock_irqsave_check_contention(struct srcu_struct *ssp)
410 {
411 unsigned long j;
412
413 if (!SRCU_SIZING_IS_CONTEND() || ssp->srcu_sup->srcu_size_state)
414 return;
415 j = jiffies;
416 if (ssp->srcu_sup->srcu_size_jiffies != j) {
417 ssp->srcu_sup->srcu_size_jiffies = j;
418 ssp->srcu_sup->srcu_n_lock_retries = 0;
419 }
420 if (++ssp->srcu_sup->srcu_n_lock_retries <= small_contention_lim)
421 return;
422 __srcu_transition_to_big(ssp);
423 }
424
425 /*
426 * Acquire the specified srcu_data structure's ->lock, but check for
427 * excessive contention, which results in initiation of a transition
428 * to SRCU_SIZE_BIG. But only if the srcutree.convert_to_big module
429 * parameter permits this.
430 */
spin_lock_irqsave_sdp_contention(struct srcu_data * sdp,unsigned long * flags)431 static void spin_lock_irqsave_sdp_contention(struct srcu_data *sdp, unsigned long *flags)
432 {
433 struct srcu_struct *ssp = sdp->ssp;
434
435 if (spin_trylock_irqsave_rcu_node(sdp, *flags))
436 return;
437 spin_lock_irqsave_rcu_node(ssp->srcu_sup, *flags);
438 spin_lock_irqsave_check_contention(ssp);
439 spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, *flags);
440 spin_lock_irqsave_rcu_node(sdp, *flags);
441 }
442
443 /*
444 * Acquire the specified srcu_struct structure's ->lock, but check for
445 * excessive contention, which results in initiation of a transition
446 * to SRCU_SIZE_BIG. But only if the srcutree.convert_to_big module
447 * parameter permits this.
448 */
spin_lock_irqsave_ssp_contention(struct srcu_struct * ssp,unsigned long * flags)449 static void spin_lock_irqsave_ssp_contention(struct srcu_struct *ssp, unsigned long *flags)
450 {
451 if (spin_trylock_irqsave_rcu_node(ssp->srcu_sup, *flags))
452 return;
453 spin_lock_irqsave_rcu_node(ssp->srcu_sup, *flags);
454 spin_lock_irqsave_check_contention(ssp);
455 }
456
457 /*
458 * First-use initialization of statically allocated srcu_struct
459 * structure. Wiring up the combining tree is more than can be
460 * done with compile-time initialization, so this check is added
461 * to each update-side SRCU primitive. Use ssp->lock, which -is-
462 * compile-time initialized, to resolve races involving multiple
463 * CPUs trying to garner first-use privileges.
464 */
check_init_srcu_struct(struct srcu_struct * ssp)465 static void check_init_srcu_struct(struct srcu_struct *ssp)
466 {
467 unsigned long flags;
468
469 /* The smp_load_acquire() pairs with the smp_store_release(). */
470 if (!rcu_seq_state(smp_load_acquire(&ssp->srcu_sup->srcu_gp_seq_needed))) /*^^^*/
471 return; /* Already initialized. */
472 spin_lock_irqsave_rcu_node(ssp->srcu_sup, flags);
473 if (!rcu_seq_state(ssp->srcu_sup->srcu_gp_seq_needed)) {
474 spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags);
475 return;
476 }
477 init_srcu_struct_fields(ssp, true);
478 spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags);
479 }
480
481 /*
482 * Is the current or any upcoming grace period to be expedited?
483 */
srcu_gp_is_expedited(struct srcu_struct * ssp)484 static bool srcu_gp_is_expedited(struct srcu_struct *ssp)
485 {
486 struct srcu_usage *sup = ssp->srcu_sup;
487
488 return ULONG_CMP_LT(READ_ONCE(sup->srcu_gp_seq), READ_ONCE(sup->srcu_gp_seq_needed_exp));
489 }
490
491 /*
492 * Computes approximate total of the readers' ->srcu_ctrs[].srcu_locks
493 * values for the rank of per-CPU counters specified by idx, and returns
494 * true if the caller did the proper barrier (gp), and if the count of
495 * the locks matches that of the unlocks passed in.
496 */
srcu_readers_lock_idx(struct srcu_struct * ssp,int idx,bool gp,unsigned long unlocks)497 static bool srcu_readers_lock_idx(struct srcu_struct *ssp, int idx, bool gp, unsigned long unlocks)
498 {
499 int cpu;
500 unsigned long mask = 0;
501 unsigned long sum = 0;
502
503 for_each_possible_cpu(cpu) {
504 struct srcu_data *sdp = per_cpu_ptr(ssp->sda, cpu);
505
506 sum += atomic_long_read(&sdp->srcu_ctrs[idx].srcu_locks);
507 if (IS_ENABLED(CONFIG_PROVE_RCU))
508 mask = mask | READ_ONCE(sdp->srcu_reader_flavor);
509 }
510 WARN_ONCE(IS_ENABLED(CONFIG_PROVE_RCU) && (mask & (mask - 1)),
511 "Mixed reader flavors for srcu_struct at %ps.\n", ssp);
512 if (mask & SRCU_READ_FLAVOR_SLOWGP && !gp)
513 return false;
514 return sum == unlocks;
515 }
516
517 /*
518 * Returns approximate total of the readers' ->srcu_ctrs[].srcu_unlocks
519 * values for the rank of per-CPU counters specified by idx.
520 */
srcu_readers_unlock_idx(struct srcu_struct * ssp,int idx,unsigned long * rdm)521 static unsigned long srcu_readers_unlock_idx(struct srcu_struct *ssp, int idx, unsigned long *rdm)
522 {
523 int cpu;
524 unsigned long mask = ssp->srcu_reader_flavor;
525 unsigned long sum = 0;
526
527 for_each_possible_cpu(cpu) {
528 struct srcu_data *sdp = per_cpu_ptr(ssp->sda, cpu);
529
530 sum += atomic_long_read(&sdp->srcu_ctrs[idx].srcu_unlocks);
531 mask = mask | READ_ONCE(sdp->srcu_reader_flavor);
532 }
533 WARN_ONCE(IS_ENABLED(CONFIG_PROVE_RCU) && (mask & (mask - 1)),
534 "Mixed reader flavors for srcu_struct at %ps.\n", ssp);
535 *rdm = mask;
536 return sum;
537 }
538
539 /*
540 * Return true if the number of pre-existing readers is determined to
541 * be zero.
542 */
srcu_readers_active_idx_check(struct srcu_struct * ssp,int idx)543 static bool srcu_readers_active_idx_check(struct srcu_struct *ssp, int idx)
544 {
545 bool did_gp;
546 unsigned long rdm;
547 unsigned long unlocks;
548
549 unlocks = srcu_readers_unlock_idx(ssp, idx, &rdm);
550 did_gp = !!(rdm & SRCU_READ_FLAVOR_SLOWGP);
551
552 /*
553 * Make sure that a lock is always counted if the corresponding
554 * unlock is counted. Needs to be a smp_mb() as the read side may
555 * contain a read from a variable that is written to before the
556 * synchronize_srcu() in the write side. In this case smp_mb()s
557 * A and B (or X and Y) act like the store buffering pattern.
558 *
559 * This smp_mb() also pairs with smp_mb() C (or, in the case of X,
560 * Z) to prevent accesses after the synchronize_srcu() from being
561 * executed before the grace period ends.
562 */
563 if (!did_gp)
564 smp_mb(); /* A */
565 else if (srcu_gp_is_expedited(ssp))
566 synchronize_rcu_expedited(); /* X */
567 else
568 synchronize_rcu(); /* X */
569
570 /*
571 * If the locks are the same as the unlocks, then there must have
572 * been no readers on this index at some point in this function.
573 * But there might be more readers, as a task might have read
574 * the current ->srcu_ctrp but not yet have incremented its CPU's
575 * ->srcu_ctrs[idx].srcu_locks counter. In fact, it is possible
576 * that most of the tasks have been preempted between fetching
577 * ->srcu_ctrp and incrementing ->srcu_ctrs[idx].srcu_locks. And
578 * there could be almost (ULONG_MAX / sizeof(struct task_struct))
579 * tasks in a system whose address space was fully populated
580 * with memory. Call this quantity Nt.
581 *
582 * So suppose that the updater is preempted at this
583 * point in the code for a long time. That now-preempted
584 * updater has already flipped ->srcu_ctrp (possibly during
585 * the preceding grace period), done an smp_mb() (again,
586 * possibly during the preceding grace period), and summed up
587 * the ->srcu_ctrs[idx].srcu_unlocks counters. How many times
588 * can a given one of the aforementioned Nt tasks increment the
589 * old ->srcu_ctrp value's ->srcu_ctrs[idx].srcu_locks counter,
590 * in the absence of nesting?
591 *
592 * It can clearly do so once, given that it has already fetched
593 * the old value of ->srcu_ctrp and is just about to use that
594 * value to index its increment of ->srcu_ctrs[idx].srcu_locks.
595 * But as soon as it leaves that SRCU read-side critical section,
596 * it will increment ->srcu_ctrs[idx].srcu_unlocks, which must
597 * follow the updater's above read from that same value. Thus,
598 as soon the reading task does an smp_mb() and a later fetch from
599 * ->srcu_ctrp, that task will be guaranteed to get the new index.
600 * Except that the increment of ->srcu_ctrs[idx].srcu_unlocks
601 * in __srcu_read_unlock() is after the smp_mb(), and the fetch
602 * from ->srcu_ctrp in __srcu_read_lock() is before the smp_mb().
603 * Thus, that task might not see the new value of ->srcu_ctrp until
604 * the -second- __srcu_read_lock(), which in turn means that this
605 * task might well increment ->srcu_ctrs[idx].srcu_locks for the
606 * old value of ->srcu_ctrp twice, not just once.
607 *
608 * However, it is important to note that a given smp_mb() takes
609 * effect not just for the task executing it, but also for any
610 * later task running on that same CPU.
611 *
612 * That is, there can be almost Nt + Nc further increments
613 * of ->srcu_ctrs[idx].srcu_locks for the old index, where Nc
614 * is the number of CPUs. But this is OK because the size of
615 * the task_struct structure limits the value of Nt and current
616 * systems limit Nc to a few thousand.
617 *
618 * OK, but what about nesting? This does impose a limit on
619 * nesting of half of the size of the task_struct structure
620 * (measured in bytes), which should be sufficient. A late 2022
621 * TREE01 rcutorture run reported this size to be no less than
622 * 9408 bytes, allowing up to 4704 levels of nesting, which is
623 * comfortably beyond excessive. Especially on 64-bit systems,
624 * which are unlikely to be configured with an address space fully
625 * populated with memory, at least not anytime soon.
626 */
627 return srcu_readers_lock_idx(ssp, idx, did_gp, unlocks);
628 }
629
630 /**
631 * srcu_readers_active - returns true if there are readers. and false
632 * otherwise
633 * @ssp: which srcu_struct to count active readers (holding srcu_read_lock).
634 *
635 * Note that this is not an atomic primitive, and can therefore suffer
636 * severe errors when invoked on an active srcu_struct. That said, it
637 * can be useful as an error check at cleanup time.
638 */
srcu_readers_active(struct srcu_struct * ssp)639 static bool srcu_readers_active(struct srcu_struct *ssp)
640 {
641 int cpu;
642 unsigned long sum = 0;
643
644 for_each_possible_cpu(cpu) {
645 struct srcu_data *sdp = per_cpu_ptr(ssp->sda, cpu);
646
647 sum += atomic_long_read(&sdp->srcu_ctrs[0].srcu_locks);
648 sum += atomic_long_read(&sdp->srcu_ctrs[1].srcu_locks);
649 sum -= atomic_long_read(&sdp->srcu_ctrs[0].srcu_unlocks);
650 sum -= atomic_long_read(&sdp->srcu_ctrs[1].srcu_unlocks);
651 }
652 return sum;
653 }
654
655 /*
656 * We use an adaptive strategy for synchronize_srcu() and especially for
657 * synchronize_srcu_expedited(). We spin for a fixed time period
658 * (defined below, boot time configurable) to allow SRCU readers to exit
659 * their read-side critical sections. If there are still some readers
660 * after one jiffy, we repeatedly block for one jiffy time periods.
661 * The blocking time is increased as the grace-period age increases,
662 * with max blocking time capped at 10 jiffies.
663 */
664 #define SRCU_DEFAULT_RETRY_CHECK_DELAY 5
665
666 static ulong srcu_retry_check_delay = SRCU_DEFAULT_RETRY_CHECK_DELAY;
667 module_param(srcu_retry_check_delay, ulong, 0444);
668
669 #define SRCU_INTERVAL 1 // Base delay if no expedited GPs pending.
670 #define SRCU_MAX_INTERVAL 10 // Maximum incremental delay from slow readers.
671
672 #define SRCU_DEFAULT_MAX_NODELAY_PHASE_LO 3UL // Lowmark on default per-GP-phase
673 // no-delay instances.
674 #define SRCU_DEFAULT_MAX_NODELAY_PHASE_HI 1000UL // Highmark on default per-GP-phase
675 // no-delay instances.
676
677 #define SRCU_UL_CLAMP_LO(val, low) ((val) > (low) ? (val) : (low))
678 #define SRCU_UL_CLAMP_HI(val, high) ((val) < (high) ? (val) : (high))
679 #define SRCU_UL_CLAMP(val, low, high) SRCU_UL_CLAMP_HI(SRCU_UL_CLAMP_LO((val), (low)), (high))
680 // per-GP-phase no-delay instances adjusted to allow non-sleeping poll upto
681 // one jiffies time duration. Mult by 2 is done to factor in the srcu_get_delay()
682 // called from process_srcu().
683 #define SRCU_DEFAULT_MAX_NODELAY_PHASE_ADJUSTED \
684 (2UL * USEC_PER_SEC / HZ / SRCU_DEFAULT_RETRY_CHECK_DELAY)
685
686 // Maximum per-GP-phase consecutive no-delay instances.
687 #define SRCU_DEFAULT_MAX_NODELAY_PHASE \
688 SRCU_UL_CLAMP(SRCU_DEFAULT_MAX_NODELAY_PHASE_ADJUSTED, \
689 SRCU_DEFAULT_MAX_NODELAY_PHASE_LO, \
690 SRCU_DEFAULT_MAX_NODELAY_PHASE_HI)
691
692 static ulong srcu_max_nodelay_phase = SRCU_DEFAULT_MAX_NODELAY_PHASE;
693 module_param(srcu_max_nodelay_phase, ulong, 0444);
694
695 // Maximum consecutive no-delay instances.
696 #define SRCU_DEFAULT_MAX_NODELAY (SRCU_DEFAULT_MAX_NODELAY_PHASE > 100 ? \
697 SRCU_DEFAULT_MAX_NODELAY_PHASE : 100)
698
699 static ulong srcu_max_nodelay = SRCU_DEFAULT_MAX_NODELAY;
700 module_param(srcu_max_nodelay, ulong, 0444);
701
702 /*
703 * Return grace-period delay, zero if there are expedited grace
704 * periods pending, SRCU_INTERVAL otherwise.
705 */
srcu_get_delay(struct srcu_struct * ssp)706 static unsigned long srcu_get_delay(struct srcu_struct *ssp)
707 {
708 unsigned long gpstart;
709 unsigned long j;
710 unsigned long jbase = SRCU_INTERVAL;
711 struct srcu_usage *sup = ssp->srcu_sup;
712
713 lockdep_assert_held(&ACCESS_PRIVATE(ssp->srcu_sup, lock));
714 if (srcu_gp_is_expedited(ssp))
715 jbase = 0;
716 if (rcu_seq_state(READ_ONCE(sup->srcu_gp_seq))) {
717 j = jiffies - 1;
718 gpstart = READ_ONCE(sup->srcu_gp_start);
719 if (time_after(j, gpstart))
720 jbase += j - gpstart;
721 if (!jbase) {
722 ASSERT_EXCLUSIVE_WRITER(sup->srcu_n_exp_nodelay);
723 WRITE_ONCE(sup->srcu_n_exp_nodelay, READ_ONCE(sup->srcu_n_exp_nodelay) + 1);
724 if (READ_ONCE(sup->srcu_n_exp_nodelay) > srcu_max_nodelay_phase)
725 jbase = 1;
726 }
727 }
728 return jbase > SRCU_MAX_INTERVAL ? SRCU_MAX_INTERVAL : jbase;
729 }
730
731 /**
732 * cleanup_srcu_struct - deconstruct a sleep-RCU structure
733 * @ssp: structure to clean up.
734 *
735 * Must invoke this after you are finished using a given srcu_struct that
736 * was initialized via init_srcu_struct(), else you leak memory.
737 */
cleanup_srcu_struct(struct srcu_struct * ssp)738 void cleanup_srcu_struct(struct srcu_struct *ssp)
739 {
740 int cpu;
741 unsigned long delay;
742 struct srcu_usage *sup = ssp->srcu_sup;
743
744 spin_lock_irq_rcu_node(ssp->srcu_sup);
745 delay = srcu_get_delay(ssp);
746 spin_unlock_irq_rcu_node(ssp->srcu_sup);
747 if (WARN_ON(!delay))
748 return; /* Just leak it! */
749 if (WARN_ON(srcu_readers_active(ssp)))
750 return; /* Just leak it! */
751 flush_delayed_work(&sup->work);
752 for_each_possible_cpu(cpu) {
753 struct srcu_data *sdp = per_cpu_ptr(ssp->sda, cpu);
754
755 timer_delete_sync(&sdp->delay_work);
756 flush_work(&sdp->work);
757 if (WARN_ON(rcu_segcblist_n_cbs(&sdp->srcu_cblist)))
758 return; /* Forgot srcu_barrier(), so just leak it! */
759 }
760 if (WARN_ON(rcu_seq_state(READ_ONCE(sup->srcu_gp_seq)) != SRCU_STATE_IDLE) ||
761 WARN_ON(rcu_seq_current(&sup->srcu_gp_seq) != sup->srcu_gp_seq_needed) ||
762 WARN_ON(srcu_readers_active(ssp))) {
763 pr_info("%s: Active srcu_struct %p read state: %d gp state: %lu/%lu\n",
764 __func__, ssp, rcu_seq_state(READ_ONCE(sup->srcu_gp_seq)),
765 rcu_seq_current(&sup->srcu_gp_seq), sup->srcu_gp_seq_needed);
766 return; // Caller forgot to stop doing call_srcu()?
767 // Or caller invoked start_poll_synchronize_srcu()
768 // and then cleanup_srcu_struct() before that grace
769 // period ended?
770 }
771 kfree(sup->node);
772 sup->node = NULL;
773 sup->srcu_size_state = SRCU_SIZE_SMALL;
774 if (!sup->sda_is_static) {
775 free_percpu(ssp->sda);
776 ssp->sda = NULL;
777 kfree(sup);
778 ssp->srcu_sup = NULL;
779 }
780 }
781 EXPORT_SYMBOL_GPL(cleanup_srcu_struct);
782
783 /*
784 * Check for consistent reader flavor.
785 */
__srcu_check_read_flavor(struct srcu_struct * ssp,int read_flavor)786 void __srcu_check_read_flavor(struct srcu_struct *ssp, int read_flavor)
787 {
788 int old_read_flavor;
789 struct srcu_data *sdp;
790
791 /* NMI-unsafe use in NMI is a bad sign, as is multi-bit read_flavor values. */
792 WARN_ON_ONCE((read_flavor != SRCU_READ_FLAVOR_NMI) && in_nmi());
793 WARN_ON_ONCE(read_flavor & (read_flavor - 1));
794
795 sdp = raw_cpu_ptr(ssp->sda);
796 old_read_flavor = READ_ONCE(sdp->srcu_reader_flavor);
797 WARN_ON_ONCE(ssp->srcu_reader_flavor && read_flavor != ssp->srcu_reader_flavor);
798 WARN_ON_ONCE(old_read_flavor && ssp->srcu_reader_flavor &&
799 old_read_flavor != ssp->srcu_reader_flavor);
800 WARN_ON_ONCE(read_flavor == SRCU_READ_FLAVOR_FAST && !ssp->srcu_reader_flavor);
801 if (!old_read_flavor) {
802 old_read_flavor = cmpxchg(&sdp->srcu_reader_flavor, 0, read_flavor);
803 if (!old_read_flavor)
804 return;
805 }
806 WARN_ONCE(old_read_flavor != read_flavor, "CPU %d old state %d new state %d\n", sdp->cpu, old_read_flavor, read_flavor);
807 }
808 EXPORT_SYMBOL_GPL(__srcu_check_read_flavor);
809
810 /*
811 * Counts the new reader in the appropriate per-CPU element of the
812 * srcu_struct.
813 * Returns a guaranteed non-negative index that must be passed to the
814 * matching __srcu_read_unlock().
815 */
__srcu_read_lock(struct srcu_struct * ssp)816 int __srcu_read_lock(struct srcu_struct *ssp)
817 {
818 struct srcu_ctr __percpu *scp = READ_ONCE(ssp->srcu_ctrp);
819
820 this_cpu_inc(scp->srcu_locks.counter);
821 smp_mb(); /* B */ /* Avoid leaking the critical section. */
822 return __srcu_ptr_to_ctr(ssp, scp);
823 }
824 EXPORT_SYMBOL_GPL(__srcu_read_lock);
825
826 /*
827 * Removes the count for the old reader from the appropriate per-CPU
828 * element of the srcu_struct. Note that this may well be a different
829 * CPU than that which was incremented by the corresponding srcu_read_lock().
830 */
__srcu_read_unlock(struct srcu_struct * ssp,int idx)831 void __srcu_read_unlock(struct srcu_struct *ssp, int idx)
832 {
833 smp_mb(); /* C */ /* Avoid leaking the critical section. */
834 this_cpu_inc(__srcu_ctr_to_ptr(ssp, idx)->srcu_unlocks.counter);
835 }
836 EXPORT_SYMBOL_GPL(__srcu_read_unlock);
837
838 #ifdef CONFIG_NEED_SRCU_NMI_SAFE
839
840 /*
841 * Counts the new reader in the appropriate per-CPU element of the
842 * srcu_struct, but in an NMI-safe manner using RMW atomics.
843 * Returns an index that must be passed to the matching srcu_read_unlock().
844 */
__srcu_read_lock_nmisafe(struct srcu_struct * ssp)845 int __srcu_read_lock_nmisafe(struct srcu_struct *ssp)
846 {
847 struct srcu_ctr __percpu *scpp = READ_ONCE(ssp->srcu_ctrp);
848 struct srcu_ctr *scp = raw_cpu_ptr(scpp);
849
850 atomic_long_inc(&scp->srcu_locks);
851 smp_mb__after_atomic(); /* B */ /* Avoid leaking the critical section. */
852 return __srcu_ptr_to_ctr(ssp, scpp);
853 }
854 EXPORT_SYMBOL_GPL(__srcu_read_lock_nmisafe);
855
856 /*
857 * Removes the count for the old reader from the appropriate per-CPU
858 * element of the srcu_struct. Note that this may well be a different
859 * CPU than that which was incremented by the corresponding srcu_read_lock().
860 */
__srcu_read_unlock_nmisafe(struct srcu_struct * ssp,int idx)861 void __srcu_read_unlock_nmisafe(struct srcu_struct *ssp, int idx)
862 {
863 smp_mb__before_atomic(); /* C */ /* Avoid leaking the critical section. */
864 atomic_long_inc(&raw_cpu_ptr(__srcu_ctr_to_ptr(ssp, idx))->srcu_unlocks);
865 }
866 EXPORT_SYMBOL_GPL(__srcu_read_unlock_nmisafe);
867
868 #endif // CONFIG_NEED_SRCU_NMI_SAFE
869
870 /*
871 * Start an SRCU grace period.
872 */
srcu_gp_start(struct srcu_struct * ssp)873 static void srcu_gp_start(struct srcu_struct *ssp)
874 {
875 int state;
876
877 lockdep_assert_held(&ACCESS_PRIVATE(ssp->srcu_sup, lock));
878 WARN_ON_ONCE(ULONG_CMP_GE(ssp->srcu_sup->srcu_gp_seq, ssp->srcu_sup->srcu_gp_seq_needed));
879 WRITE_ONCE(ssp->srcu_sup->srcu_gp_start, jiffies);
880 WRITE_ONCE(ssp->srcu_sup->srcu_n_exp_nodelay, 0);
881 smp_mb(); /* Order prior store to ->srcu_gp_seq_needed vs. GP start. */
882 rcu_seq_start(&ssp->srcu_sup->srcu_gp_seq);
883 state = rcu_seq_state(ssp->srcu_sup->srcu_gp_seq);
884 WARN_ON_ONCE(state != SRCU_STATE_SCAN1);
885 }
886
887
srcu_delay_timer(struct timer_list * t)888 static void srcu_delay_timer(struct timer_list *t)
889 {
890 struct srcu_data *sdp = container_of(t, struct srcu_data, delay_work);
891
892 queue_work_on(sdp->cpu, rcu_gp_wq, &sdp->work);
893 }
894
srcu_queue_delayed_work_on(struct srcu_data * sdp,unsigned long delay)895 static void srcu_queue_delayed_work_on(struct srcu_data *sdp,
896 unsigned long delay)
897 {
898 if (!delay) {
899 queue_work_on(sdp->cpu, rcu_gp_wq, &sdp->work);
900 return;
901 }
902
903 timer_reduce(&sdp->delay_work, jiffies + delay);
904 }
905
906 /*
907 * Schedule callback invocation for the specified srcu_data structure,
908 * if possible, on the corresponding CPU.
909 */
srcu_schedule_cbs_sdp(struct srcu_data * sdp,unsigned long delay)910 static void srcu_schedule_cbs_sdp(struct srcu_data *sdp, unsigned long delay)
911 {
912 srcu_queue_delayed_work_on(sdp, delay);
913 }
914
915 /*
916 * Schedule callback invocation for all srcu_data structures associated
917 * with the specified srcu_node structure that have callbacks for the
918 * just-completed grace period, the one corresponding to idx. If possible,
919 * schedule this invocation on the corresponding CPUs.
920 */
srcu_schedule_cbs_snp(struct srcu_struct * ssp,struct srcu_node * snp,unsigned long mask,unsigned long delay)921 static void srcu_schedule_cbs_snp(struct srcu_struct *ssp, struct srcu_node *snp,
922 unsigned long mask, unsigned long delay)
923 {
924 int cpu;
925
926 for (cpu = snp->grplo; cpu <= snp->grphi; cpu++) {
927 if (!(mask & (1UL << (cpu - snp->grplo))))
928 continue;
929 srcu_schedule_cbs_sdp(per_cpu_ptr(ssp->sda, cpu), delay);
930 }
931 }
932
933 /*
934 * Note the end of an SRCU grace period. Initiates callback invocation
935 * and starts a new grace period if needed.
936 *
937 * The ->srcu_cb_mutex acquisition does not protect any data, but
938 * instead prevents more than one grace period from starting while we
939 * are initiating callback invocation. This allows the ->srcu_have_cbs[]
940 * array to have a finite number of elements.
941 */
srcu_gp_end(struct srcu_struct * ssp)942 static void srcu_gp_end(struct srcu_struct *ssp)
943 {
944 unsigned long cbdelay = 1;
945 bool cbs;
946 bool last_lvl;
947 int cpu;
948 unsigned long gpseq;
949 int idx;
950 unsigned long mask;
951 struct srcu_data *sdp;
952 unsigned long sgsne;
953 struct srcu_node *snp;
954 int ss_state;
955 struct srcu_usage *sup = ssp->srcu_sup;
956
957 /* Prevent more than one additional grace period. */
958 mutex_lock(&sup->srcu_cb_mutex);
959
960 /* End the current grace period. */
961 spin_lock_irq_rcu_node(sup);
962 idx = rcu_seq_state(sup->srcu_gp_seq);
963 WARN_ON_ONCE(idx != SRCU_STATE_SCAN2);
964 if (srcu_gp_is_expedited(ssp))
965 cbdelay = 0;
966
967 WRITE_ONCE(sup->srcu_last_gp_end, ktime_get_mono_fast_ns());
968 rcu_seq_end(&sup->srcu_gp_seq);
969 gpseq = rcu_seq_current(&sup->srcu_gp_seq);
970 if (ULONG_CMP_LT(sup->srcu_gp_seq_needed_exp, gpseq))
971 WRITE_ONCE(sup->srcu_gp_seq_needed_exp, gpseq);
972 spin_unlock_irq_rcu_node(sup);
973 mutex_unlock(&sup->srcu_gp_mutex);
974 /* A new grace period can start at this point. But only one. */
975
976 /* Initiate callback invocation as needed. */
977 ss_state = smp_load_acquire(&sup->srcu_size_state);
978 if (ss_state < SRCU_SIZE_WAIT_BARRIER) {
979 srcu_schedule_cbs_sdp(per_cpu_ptr(ssp->sda, get_boot_cpu_id()),
980 cbdelay);
981 } else {
982 idx = rcu_seq_ctr(gpseq) % ARRAY_SIZE(snp->srcu_have_cbs);
983 srcu_for_each_node_breadth_first(ssp, snp) {
984 spin_lock_irq_rcu_node(snp);
985 cbs = false;
986 last_lvl = snp >= sup->level[rcu_num_lvls - 1];
987 if (last_lvl)
988 cbs = ss_state < SRCU_SIZE_BIG || snp->srcu_have_cbs[idx] == gpseq;
989 snp->srcu_have_cbs[idx] = gpseq;
990 rcu_seq_set_state(&snp->srcu_have_cbs[idx], 1);
991 sgsne = snp->srcu_gp_seq_needed_exp;
992 if (srcu_invl_snp_seq(sgsne) || ULONG_CMP_LT(sgsne, gpseq))
993 WRITE_ONCE(snp->srcu_gp_seq_needed_exp, gpseq);
994 if (ss_state < SRCU_SIZE_BIG)
995 mask = ~0;
996 else
997 mask = snp->srcu_data_have_cbs[idx];
998 snp->srcu_data_have_cbs[idx] = 0;
999 spin_unlock_irq_rcu_node(snp);
1000 if (cbs)
1001 srcu_schedule_cbs_snp(ssp, snp, mask, cbdelay);
1002 }
1003 }
1004
1005 /* Occasionally prevent srcu_data counter wrap. */
1006 if (!(gpseq & counter_wrap_check))
1007 for_each_possible_cpu(cpu) {
1008 sdp = per_cpu_ptr(ssp->sda, cpu);
1009 spin_lock_irq_rcu_node(sdp);
1010 if (ULONG_CMP_GE(gpseq, sdp->srcu_gp_seq_needed + 100))
1011 sdp->srcu_gp_seq_needed = gpseq;
1012 if (ULONG_CMP_GE(gpseq, sdp->srcu_gp_seq_needed_exp + 100))
1013 sdp->srcu_gp_seq_needed_exp = gpseq;
1014 spin_unlock_irq_rcu_node(sdp);
1015 }
1016
1017 /* Callback initiation done, allow grace periods after next. */
1018 mutex_unlock(&sup->srcu_cb_mutex);
1019
1020 /* Start a new grace period if needed. */
1021 spin_lock_irq_rcu_node(sup);
1022 gpseq = rcu_seq_current(&sup->srcu_gp_seq);
1023 if (!rcu_seq_state(gpseq) &&
1024 ULONG_CMP_LT(gpseq, sup->srcu_gp_seq_needed)) {
1025 srcu_gp_start(ssp);
1026 spin_unlock_irq_rcu_node(sup);
1027 srcu_reschedule(ssp, 0);
1028 } else {
1029 spin_unlock_irq_rcu_node(sup);
1030 }
1031
1032 /* Transition to big if needed. */
1033 if (ss_state != SRCU_SIZE_SMALL && ss_state != SRCU_SIZE_BIG) {
1034 if (ss_state == SRCU_SIZE_ALLOC)
1035 init_srcu_struct_nodes(ssp, GFP_KERNEL);
1036 else
1037 smp_store_release(&sup->srcu_size_state, ss_state + 1);
1038 }
1039 }
1040
1041 /*
1042 * Funnel-locking scheme to scalably mediate many concurrent expedited
1043 * grace-period requests. This function is invoked for the first known
1044 * expedited request for a grace period that has already been requested,
1045 * but without expediting. To start a completely new grace period,
1046 * whether expedited or not, use srcu_funnel_gp_start() instead.
1047 */
srcu_funnel_exp_start(struct srcu_struct * ssp,struct srcu_node * snp,unsigned long s)1048 static void srcu_funnel_exp_start(struct srcu_struct *ssp, struct srcu_node *snp,
1049 unsigned long s)
1050 {
1051 unsigned long flags;
1052 unsigned long sgsne;
1053
1054 if (snp)
1055 for (; snp != NULL; snp = snp->srcu_parent) {
1056 sgsne = READ_ONCE(snp->srcu_gp_seq_needed_exp);
1057 if (WARN_ON_ONCE(rcu_seq_done(&ssp->srcu_sup->srcu_gp_seq, s)) ||
1058 (!srcu_invl_snp_seq(sgsne) && ULONG_CMP_GE(sgsne, s)))
1059 return;
1060 spin_lock_irqsave_rcu_node(snp, flags);
1061 sgsne = snp->srcu_gp_seq_needed_exp;
1062 if (!srcu_invl_snp_seq(sgsne) && ULONG_CMP_GE(sgsne, s)) {
1063 spin_unlock_irqrestore_rcu_node(snp, flags);
1064 return;
1065 }
1066 WRITE_ONCE(snp->srcu_gp_seq_needed_exp, s);
1067 spin_unlock_irqrestore_rcu_node(snp, flags);
1068 }
1069 spin_lock_irqsave_ssp_contention(ssp, &flags);
1070 if (ULONG_CMP_LT(ssp->srcu_sup->srcu_gp_seq_needed_exp, s))
1071 WRITE_ONCE(ssp->srcu_sup->srcu_gp_seq_needed_exp, s);
1072 spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags);
1073 }
1074
1075 /*
1076 * Funnel-locking scheme to scalably mediate many concurrent grace-period
1077 * requests. The winner has to do the work of actually starting grace
1078 * period s. Losers must either ensure that their desired grace-period
1079 * number is recorded on at least their leaf srcu_node structure, or they
1080 * must take steps to invoke their own callbacks.
1081 *
1082 * Note that this function also does the work of srcu_funnel_exp_start(),
1083 * in some cases by directly invoking it.
1084 *
1085 * The srcu read lock should be hold around this function. And s is a seq snap
1086 * after holding that lock.
1087 */
srcu_funnel_gp_start(struct srcu_struct * ssp,struct srcu_data * sdp,unsigned long s,bool do_norm)1088 static void srcu_funnel_gp_start(struct srcu_struct *ssp, struct srcu_data *sdp,
1089 unsigned long s, bool do_norm)
1090 {
1091 unsigned long flags;
1092 int idx = rcu_seq_ctr(s) % ARRAY_SIZE(sdp->mynode->srcu_have_cbs);
1093 unsigned long sgsne;
1094 struct srcu_node *snp;
1095 struct srcu_node *snp_leaf;
1096 unsigned long snp_seq;
1097 struct srcu_usage *sup = ssp->srcu_sup;
1098
1099 /* Ensure that snp node tree is fully initialized before traversing it */
1100 if (smp_load_acquire(&sup->srcu_size_state) < SRCU_SIZE_WAIT_BARRIER)
1101 snp_leaf = NULL;
1102 else
1103 snp_leaf = sdp->mynode;
1104
1105 if (snp_leaf)
1106 /* Each pass through the loop does one level of the srcu_node tree. */
1107 for (snp = snp_leaf; snp != NULL; snp = snp->srcu_parent) {
1108 if (WARN_ON_ONCE(rcu_seq_done(&sup->srcu_gp_seq, s)) && snp != snp_leaf)
1109 return; /* GP already done and CBs recorded. */
1110 spin_lock_irqsave_rcu_node(snp, flags);
1111 snp_seq = snp->srcu_have_cbs[idx];
1112 if (!srcu_invl_snp_seq(snp_seq) && ULONG_CMP_GE(snp_seq, s)) {
1113 if (snp == snp_leaf && snp_seq == s)
1114 snp->srcu_data_have_cbs[idx] |= sdp->grpmask;
1115 spin_unlock_irqrestore_rcu_node(snp, flags);
1116 if (snp == snp_leaf && snp_seq != s) {
1117 srcu_schedule_cbs_sdp(sdp, do_norm ? SRCU_INTERVAL : 0);
1118 return;
1119 }
1120 if (!do_norm)
1121 srcu_funnel_exp_start(ssp, snp, s);
1122 return;
1123 }
1124 snp->srcu_have_cbs[idx] = s;
1125 if (snp == snp_leaf)
1126 snp->srcu_data_have_cbs[idx] |= sdp->grpmask;
1127 sgsne = snp->srcu_gp_seq_needed_exp;
1128 if (!do_norm && (srcu_invl_snp_seq(sgsne) || ULONG_CMP_LT(sgsne, s)))
1129 WRITE_ONCE(snp->srcu_gp_seq_needed_exp, s);
1130 spin_unlock_irqrestore_rcu_node(snp, flags);
1131 }
1132
1133 /* Top of tree, must ensure the grace period will be started. */
1134 spin_lock_irqsave_ssp_contention(ssp, &flags);
1135 if (ULONG_CMP_LT(sup->srcu_gp_seq_needed, s)) {
1136 /*
1137 * Record need for grace period s. Pair with load
1138 * acquire setting up for initialization.
1139 */
1140 smp_store_release(&sup->srcu_gp_seq_needed, s); /*^^^*/
1141 }
1142 if (!do_norm && ULONG_CMP_LT(sup->srcu_gp_seq_needed_exp, s))
1143 WRITE_ONCE(sup->srcu_gp_seq_needed_exp, s);
1144
1145 /* If grace period not already in progress, start it. */
1146 if (!WARN_ON_ONCE(rcu_seq_done(&sup->srcu_gp_seq, s)) &&
1147 rcu_seq_state(sup->srcu_gp_seq) == SRCU_STATE_IDLE) {
1148 srcu_gp_start(ssp);
1149
1150 // And how can that list_add() in the "else" clause
1151 // possibly be safe for concurrent execution? Well,
1152 // it isn't. And it does not have to be. After all, it
1153 // can only be executed during early boot when there is only
1154 // the one boot CPU running with interrupts still disabled.
1155 if (likely(srcu_init_done))
1156 queue_delayed_work(rcu_gp_wq, &sup->work,
1157 !!srcu_get_delay(ssp));
1158 else if (list_empty(&sup->work.work.entry))
1159 list_add(&sup->work.work.entry, &srcu_boot_list);
1160 }
1161 spin_unlock_irqrestore_rcu_node(sup, flags);
1162 }
1163
1164 /*
1165 * Wait until all readers counted by array index idx complete, but
1166 * loop an additional time if there is an expedited grace period pending.
1167 * The caller must ensure that ->srcu_ctrp is not changed while checking.
1168 */
try_check_zero(struct srcu_struct * ssp,int idx,int trycount)1169 static bool try_check_zero(struct srcu_struct *ssp, int idx, int trycount)
1170 {
1171 unsigned long curdelay;
1172
1173 spin_lock_irq_rcu_node(ssp->srcu_sup);
1174 curdelay = !srcu_get_delay(ssp);
1175 spin_unlock_irq_rcu_node(ssp->srcu_sup);
1176
1177 for (;;) {
1178 if (srcu_readers_active_idx_check(ssp, idx))
1179 return true;
1180 if ((--trycount + curdelay) <= 0)
1181 return false;
1182 udelay(srcu_retry_check_delay);
1183 }
1184 }
1185
1186 /*
1187 * Increment the ->srcu_ctrp counter so that future SRCU readers will
1188 * use the other rank of the ->srcu_(un)lock_count[] arrays. This allows
1189 * us to wait for pre-existing readers in a starvation-free manner.
1190 */
srcu_flip(struct srcu_struct * ssp)1191 static void srcu_flip(struct srcu_struct *ssp)
1192 {
1193 /*
1194 * Because the flip of ->srcu_ctrp is executed only if the
1195 * preceding call to srcu_readers_active_idx_check() found that
1196 * the ->srcu_ctrs[].srcu_unlocks and ->srcu_ctrs[].srcu_locks sums
1197 * matched and because that summing uses atomic_long_read(),
1198 * there is ordering due to a control dependency between that
1199 * summing and the WRITE_ONCE() in this call to srcu_flip().
1200 * This ordering ensures that if this updater saw a given reader's
1201 * increment from __srcu_read_lock(), that reader was using a value
1202 * of ->srcu_ctrp from before the previous call to srcu_flip(),
1203 * which should be quite rare. This ordering thus helps forward
1204 * progress because the grace period could otherwise be delayed
1205 * by additional calls to __srcu_read_lock() using that old (soon
1206 * to be new) value of ->srcu_ctrp.
1207 *
1208 * This sum-equality check and ordering also ensures that if
1209 * a given call to __srcu_read_lock() uses the new value of
1210 * ->srcu_ctrp, this updater's earlier scans cannot have seen
1211 * that reader's increments, which is all to the good, because
1212 * this grace period need not wait on that reader. After all,
1213 * if those earlier scans had seen that reader, there would have
1214 * been a sum mismatch and this code would not be reached.
1215 *
1216 * This means that the following smp_mb() is redundant, but
1217 * it stays until either (1) Compilers learn about this sort of
1218 * control dependency or (2) Some production workload running on
1219 * a production system is unduly delayed by this slowpath smp_mb().
1220 * Except for _lite() readers, where it is inoperative, which
1221 * means that it is a good thing that it is redundant.
1222 */
1223 smp_mb(); /* E */ /* Pairs with B and C. */
1224
1225 WRITE_ONCE(ssp->srcu_ctrp,
1226 &ssp->sda->srcu_ctrs[!(ssp->srcu_ctrp - &ssp->sda->srcu_ctrs[0])]);
1227
1228 /*
1229 * Ensure that if the updater misses an __srcu_read_unlock()
1230 * increment, that task's __srcu_read_lock() following its next
1231 * __srcu_read_lock() or __srcu_read_unlock() will see the above
1232 * counter update. Note that both this memory barrier and the
1233 * one in srcu_readers_active_idx_check() provide the guarantee
1234 * for __srcu_read_lock().
1235 *
1236 * Note that this is a performance optimization, in which we spend
1237 * an otherwise unnecessary smp_mb() in order to reduce the number
1238 * of full per-CPU-variable scans in srcu_readers_lock_idx() and
1239 * srcu_readers_unlock_idx(). But this performance optimization
1240 * is not so optimal for SRCU-fast, where we would be spending
1241 * not smp_mb(), but rather synchronize_rcu(). At the same time,
1242 * the overhead of the smp_mb() is in the noise, so there is no
1243 * point in omitting it in the SRCU-fast case. So the same code
1244 * is executed either way.
1245 */
1246 smp_mb(); /* D */ /* Pairs with C. */
1247 }
1248
1249 /*
1250 * If SRCU is likely idle, in other words, the next SRCU grace period
1251 * should be expedited, return true, otherwise return false. Except that
1252 * in the presence of _lite() readers, always return false.
1253 *
1254 * Note that it is OK for several current from-idle requests for a new
1255 * grace period from idle to specify expediting because they will all end
1256 * up requesting the same grace period anyhow. So no loss.
1257 *
1258 * Note also that if any CPU (including the current one) is still invoking
1259 * callbacks, this function will nevertheless say "idle". This is not
1260 * ideal, but the overhead of checking all CPUs' callback lists is even
1261 * less ideal, especially on large systems. Furthermore, the wakeup
1262 * can happen before the callback is fully removed, so we have no choice
1263 * but to accept this type of error.
1264 *
1265 * This function is also subject to counter-wrap errors, but let's face
1266 * it, if this function was preempted for enough time for the counters
1267 * to wrap, it really doesn't matter whether or not we expedite the grace
1268 * period. The extra overhead of a needlessly expedited grace period is
1269 * negligible when amortized over that time period, and the extra latency
1270 * of a needlessly non-expedited grace period is similarly negligible.
1271 */
srcu_should_expedite(struct srcu_struct * ssp)1272 static bool srcu_should_expedite(struct srcu_struct *ssp)
1273 {
1274 unsigned long curseq;
1275 unsigned long flags;
1276 struct srcu_data *sdp;
1277 unsigned long t;
1278 unsigned long tlast;
1279
1280 check_init_srcu_struct(ssp);
1281 /* If _lite() readers, don't do unsolicited expediting. */
1282 if (this_cpu_read(ssp->sda->srcu_reader_flavor) & SRCU_READ_FLAVOR_SLOWGP)
1283 return false;
1284 /* If the local srcu_data structure has callbacks, not idle. */
1285 sdp = raw_cpu_ptr(ssp->sda);
1286 spin_lock_irqsave_rcu_node(sdp, flags);
1287 if (rcu_segcblist_pend_cbs(&sdp->srcu_cblist)) {
1288 spin_unlock_irqrestore_rcu_node(sdp, flags);
1289 return false; /* Callbacks already present, so not idle. */
1290 }
1291 spin_unlock_irqrestore_rcu_node(sdp, flags);
1292
1293 /*
1294 * No local callbacks, so probabilistically probe global state.
1295 * Exact information would require acquiring locks, which would
1296 * kill scalability, hence the probabilistic nature of the probe.
1297 */
1298
1299 /* First, see if enough time has passed since the last GP. */
1300 t = ktime_get_mono_fast_ns();
1301 tlast = READ_ONCE(ssp->srcu_sup->srcu_last_gp_end);
1302 if (exp_holdoff == 0 ||
1303 time_in_range_open(t, tlast, tlast + exp_holdoff))
1304 return false; /* Too soon after last GP. */
1305
1306 /* Next, check for probable idleness. */
1307 curseq = rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq);
1308 smp_mb(); /* Order ->srcu_gp_seq with ->srcu_gp_seq_needed. */
1309 if (ULONG_CMP_LT(curseq, READ_ONCE(ssp->srcu_sup->srcu_gp_seq_needed)))
1310 return false; /* Grace period in progress, so not idle. */
1311 smp_mb(); /* Order ->srcu_gp_seq with prior access. */
1312 if (curseq != rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq))
1313 return false; /* GP # changed, so not idle. */
1314 return true; /* With reasonable probability, idle! */
1315 }
1316
1317 /*
1318 * SRCU callback function to leak a callback.
1319 */
srcu_leak_callback(struct rcu_head * rhp)1320 static void srcu_leak_callback(struct rcu_head *rhp)
1321 {
1322 }
1323
1324 /*
1325 * Start an SRCU grace period, and also queue the callback if non-NULL.
1326 */
srcu_gp_start_if_needed(struct srcu_struct * ssp,struct rcu_head * rhp,bool do_norm)1327 static unsigned long srcu_gp_start_if_needed(struct srcu_struct *ssp,
1328 struct rcu_head *rhp, bool do_norm)
1329 {
1330 unsigned long flags;
1331 int idx;
1332 bool needexp = false;
1333 bool needgp = false;
1334 unsigned long s;
1335 struct srcu_data *sdp;
1336 struct srcu_node *sdp_mynode;
1337 int ss_state;
1338
1339 check_init_srcu_struct(ssp);
1340 /*
1341 * While starting a new grace period, make sure we are in an
1342 * SRCU read-side critical section so that the grace-period
1343 * sequence number cannot wrap around in the meantime.
1344 */
1345 idx = __srcu_read_lock_nmisafe(ssp);
1346 ss_state = smp_load_acquire(&ssp->srcu_sup->srcu_size_state);
1347 if (ss_state < SRCU_SIZE_WAIT_CALL)
1348 sdp = per_cpu_ptr(ssp->sda, get_boot_cpu_id());
1349 else
1350 sdp = raw_cpu_ptr(ssp->sda);
1351 spin_lock_irqsave_sdp_contention(sdp, &flags);
1352 if (rhp)
1353 rcu_segcblist_enqueue(&sdp->srcu_cblist, rhp);
1354 /*
1355 * It's crucial to capture the snapshot 's' for acceleration before
1356 * reading the current gp_seq that is used for advancing. This is
1357 * essential because if the acceleration snapshot is taken after a
1358 * failed advancement attempt, there's a risk that a grace period may
1359 * conclude and a new one may start in the interim. If the snapshot is
1360 * captured after this sequence of events, the acceleration snapshot 's'
1361 * could be excessively advanced, leading to acceleration failure.
1362 * In such a scenario, an 'acceleration leak' can occur, where new
1363 * callbacks become indefinitely stuck in the RCU_NEXT_TAIL segment.
1364 * Also note that encountering advancing failures is a normal
1365 * occurrence when the grace period for RCU_WAIT_TAIL is in progress.
1366 *
1367 * To see this, consider the following events which occur if
1368 * rcu_seq_snap() were to be called after advance:
1369 *
1370 * 1) The RCU_WAIT_TAIL segment has callbacks (gp_num = X + 4) and the
1371 * RCU_NEXT_READY_TAIL also has callbacks (gp_num = X + 8).
1372 *
1373 * 2) The grace period for RCU_WAIT_TAIL is seen as started but not
1374 * completed so rcu_seq_current() returns X + SRCU_STATE_SCAN1.
1375 *
1376 * 3) This value is passed to rcu_segcblist_advance() which can't move
1377 * any segment forward and fails.
1378 *
1379 * 4) srcu_gp_start_if_needed() still proceeds with callback acceleration.
1380 * But then the call to rcu_seq_snap() observes the grace period for the
1381 * RCU_WAIT_TAIL segment as completed and the subsequent one for the
1382 * RCU_NEXT_READY_TAIL segment as started (ie: X + 4 + SRCU_STATE_SCAN1)
1383 * so it returns a snapshot of the next grace period, which is X + 12.
1384 *
1385 * 5) The value of X + 12 is passed to rcu_segcblist_accelerate() but the
1386 * freshly enqueued callback in RCU_NEXT_TAIL can't move to
1387 * RCU_NEXT_READY_TAIL which already has callbacks for a previous grace
1388 * period (gp_num = X + 8). So acceleration fails.
1389 */
1390 s = rcu_seq_snap(&ssp->srcu_sup->srcu_gp_seq);
1391 if (rhp) {
1392 rcu_segcblist_advance(&sdp->srcu_cblist,
1393 rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq));
1394 /*
1395 * Acceleration can never fail because the base current gp_seq
1396 * used for acceleration is <= the value of gp_seq used for
1397 * advancing. This means that RCU_NEXT_TAIL segment will
1398 * always be able to be emptied by the acceleration into the
1399 * RCU_NEXT_READY_TAIL or RCU_WAIT_TAIL segments.
1400 */
1401 WARN_ON_ONCE(!rcu_segcblist_accelerate(&sdp->srcu_cblist, s));
1402 }
1403 if (ULONG_CMP_LT(sdp->srcu_gp_seq_needed, s)) {
1404 sdp->srcu_gp_seq_needed = s;
1405 needgp = true;
1406 }
1407 if (!do_norm && ULONG_CMP_LT(sdp->srcu_gp_seq_needed_exp, s)) {
1408 sdp->srcu_gp_seq_needed_exp = s;
1409 needexp = true;
1410 }
1411 spin_unlock_irqrestore_rcu_node(sdp, flags);
1412
1413 /* Ensure that snp node tree is fully initialized before traversing it */
1414 if (ss_state < SRCU_SIZE_WAIT_BARRIER)
1415 sdp_mynode = NULL;
1416 else
1417 sdp_mynode = sdp->mynode;
1418
1419 if (needgp)
1420 srcu_funnel_gp_start(ssp, sdp, s, do_norm);
1421 else if (needexp)
1422 srcu_funnel_exp_start(ssp, sdp_mynode, s);
1423 __srcu_read_unlock_nmisafe(ssp, idx);
1424 return s;
1425 }
1426
1427 /*
1428 * Enqueue an SRCU callback on the srcu_data structure associated with
1429 * the current CPU and the specified srcu_struct structure, initiating
1430 * grace-period processing if it is not already running.
1431 *
1432 * Note that all CPUs must agree that the grace period extended beyond
1433 * all pre-existing SRCU read-side critical section. On systems with
1434 * more than one CPU, this means that when "func()" is invoked, each CPU
1435 * is guaranteed to have executed a full memory barrier since the end of
1436 * its last corresponding SRCU read-side critical section whose beginning
1437 * preceded the call to call_srcu(). It also means that each CPU executing
1438 * an SRCU read-side critical section that continues beyond the start of
1439 * "func()" must have executed a memory barrier after the call_srcu()
1440 * but before the beginning of that SRCU read-side critical section.
1441 * Note that these guarantees include CPUs that are offline, idle, or
1442 * executing in user mode, as well as CPUs that are executing in the kernel.
1443 *
1444 * Furthermore, if CPU A invoked call_srcu() and CPU B invoked the
1445 * resulting SRCU callback function "func()", then both CPU A and CPU
1446 * B are guaranteed to execute a full memory barrier during the time
1447 * interval between the call to call_srcu() and the invocation of "func()".
1448 * This guarantee applies even if CPU A and CPU B are the same CPU (but
1449 * again only if the system has more than one CPU).
1450 *
1451 * Of course, these guarantees apply only for invocations of call_srcu(),
1452 * srcu_read_lock(), and srcu_read_unlock() that are all passed the same
1453 * srcu_struct structure.
1454 */
__call_srcu(struct srcu_struct * ssp,struct rcu_head * rhp,rcu_callback_t func,bool do_norm)1455 static void __call_srcu(struct srcu_struct *ssp, struct rcu_head *rhp,
1456 rcu_callback_t func, bool do_norm)
1457 {
1458 if (debug_rcu_head_queue(rhp)) {
1459 /* Probable double call_srcu(), so leak the callback. */
1460 WRITE_ONCE(rhp->func, srcu_leak_callback);
1461 WARN_ONCE(1, "call_srcu(): Leaked duplicate callback\n");
1462 return;
1463 }
1464 rhp->func = func;
1465 (void)srcu_gp_start_if_needed(ssp, rhp, do_norm);
1466 }
1467
1468 /**
1469 * call_srcu() - Queue a callback for invocation after an SRCU grace period
1470 * @ssp: srcu_struct in queue the callback
1471 * @rhp: structure to be used for queueing the SRCU callback.
1472 * @func: function to be invoked after the SRCU grace period
1473 *
1474 * The callback function will be invoked some time after a full SRCU
1475 * grace period elapses, in other words after all pre-existing SRCU
1476 * read-side critical sections have completed. However, the callback
1477 * function might well execute concurrently with other SRCU read-side
1478 * critical sections that started after call_srcu() was invoked. SRCU
1479 * read-side critical sections are delimited by srcu_read_lock() and
1480 * srcu_read_unlock(), and may be nested.
1481 *
1482 * The callback will be invoked from process context, but with bh
1483 * disabled. The callback function must therefore be fast and must
1484 * not block.
1485 *
1486 * See the description of call_rcu() for more detailed information on
1487 * memory ordering guarantees.
1488 */
call_srcu(struct srcu_struct * ssp,struct rcu_head * rhp,rcu_callback_t func)1489 void call_srcu(struct srcu_struct *ssp, struct rcu_head *rhp,
1490 rcu_callback_t func)
1491 {
1492 __call_srcu(ssp, rhp, func, true);
1493 }
1494 EXPORT_SYMBOL_GPL(call_srcu);
1495
1496 /*
1497 * Helper function for synchronize_srcu() and synchronize_srcu_expedited().
1498 */
__synchronize_srcu(struct srcu_struct * ssp,bool do_norm)1499 static void __synchronize_srcu(struct srcu_struct *ssp, bool do_norm)
1500 {
1501 struct rcu_synchronize rcu;
1502
1503 srcu_lock_sync(&ssp->dep_map);
1504
1505 RCU_LOCKDEP_WARN(lockdep_is_held(ssp) ||
1506 lock_is_held(&rcu_bh_lock_map) ||
1507 lock_is_held(&rcu_lock_map) ||
1508 lock_is_held(&rcu_sched_lock_map),
1509 "Illegal synchronize_srcu() in same-type SRCU (or in RCU) read-side critical section");
1510
1511 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
1512 return;
1513 might_sleep();
1514 check_init_srcu_struct(ssp);
1515 init_completion(&rcu.completion);
1516 init_rcu_head_on_stack(&rcu.head);
1517 __call_srcu(ssp, &rcu.head, wakeme_after_rcu, do_norm);
1518 wait_for_completion(&rcu.completion);
1519 destroy_rcu_head_on_stack(&rcu.head);
1520
1521 /*
1522 * Make sure that later code is ordered after the SRCU grace
1523 * period. This pairs with the spin_lock_irq_rcu_node()
1524 * in srcu_invoke_callbacks(). Unlike Tree RCU, this is needed
1525 * because the current CPU might have been totally uninvolved with
1526 * (and thus unordered against) that grace period.
1527 */
1528 smp_mb();
1529 }
1530
1531 /**
1532 * synchronize_srcu_expedited - Brute-force SRCU grace period
1533 * @ssp: srcu_struct with which to synchronize.
1534 *
1535 * Wait for an SRCU grace period to elapse, but be more aggressive about
1536 * spinning rather than blocking when waiting.
1537 *
1538 * Note that synchronize_srcu_expedited() has the same deadlock and
1539 * memory-ordering properties as does synchronize_srcu().
1540 */
synchronize_srcu_expedited(struct srcu_struct * ssp)1541 void synchronize_srcu_expedited(struct srcu_struct *ssp)
1542 {
1543 __synchronize_srcu(ssp, rcu_gp_is_normal());
1544 }
1545 EXPORT_SYMBOL_GPL(synchronize_srcu_expedited);
1546
1547 /**
1548 * synchronize_srcu - wait for prior SRCU read-side critical-section completion
1549 * @ssp: srcu_struct with which to synchronize.
1550 *
1551 * Wait for the count to drain to zero of both indexes. To avoid the
1552 * possible starvation of synchronize_srcu(), it waits for the count of
1553 * the index=!(ssp->srcu_ctrp - &ssp->sda->srcu_ctrs[0]) to drain to zero
1554 * at first, and then flip the ->srcu_ctrp and wait for the count of the
1555 * other index.
1556 *
1557 * Can block; must be called from process context.
1558 *
1559 * Note that it is illegal to call synchronize_srcu() from the corresponding
1560 * SRCU read-side critical section; doing so will result in deadlock.
1561 * However, it is perfectly legal to call synchronize_srcu() on one
1562 * srcu_struct from some other srcu_struct's read-side critical section,
1563 * as long as the resulting graph of srcu_structs is acyclic.
1564 *
1565 * There are memory-ordering constraints implied by synchronize_srcu().
1566 * On systems with more than one CPU, when synchronize_srcu() returns,
1567 * each CPU is guaranteed to have executed a full memory barrier since
1568 * the end of its last corresponding SRCU read-side critical section
1569 * whose beginning preceded the call to synchronize_srcu(). In addition,
1570 * each CPU having an SRCU read-side critical section that extends beyond
1571 * the return from synchronize_srcu() is guaranteed to have executed a
1572 * full memory barrier after the beginning of synchronize_srcu() and before
1573 * the beginning of that SRCU read-side critical section. Note that these
1574 * guarantees include CPUs that are offline, idle, or executing in user mode,
1575 * as well as CPUs that are executing in the kernel.
1576 *
1577 * Furthermore, if CPU A invoked synchronize_srcu(), which returned
1578 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
1579 * to have executed a full memory barrier during the execution of
1580 * synchronize_srcu(). This guarantee applies even if CPU A and CPU B
1581 * are the same CPU, but again only if the system has more than one CPU.
1582 *
1583 * Of course, these memory-ordering guarantees apply only when
1584 * synchronize_srcu(), srcu_read_lock(), and srcu_read_unlock() are
1585 * passed the same srcu_struct structure.
1586 *
1587 * Implementation of these memory-ordering guarantees is similar to
1588 * that of synchronize_rcu().
1589 *
1590 * If SRCU is likely idle as determined by srcu_should_expedite(),
1591 * expedite the first request. This semantic was provided by Classic SRCU,
1592 * and is relied upon by its users, so TREE SRCU must also provide it.
1593 * Note that detecting idleness is heuristic and subject to both false
1594 * positives and negatives.
1595 */
synchronize_srcu(struct srcu_struct * ssp)1596 void synchronize_srcu(struct srcu_struct *ssp)
1597 {
1598 if (srcu_should_expedite(ssp) || rcu_gp_is_expedited())
1599 synchronize_srcu_expedited(ssp);
1600 else
1601 __synchronize_srcu(ssp, true);
1602 }
1603 EXPORT_SYMBOL_GPL(synchronize_srcu);
1604
1605 /**
1606 * get_state_synchronize_srcu - Provide an end-of-grace-period cookie
1607 * @ssp: srcu_struct to provide cookie for.
1608 *
1609 * This function returns a cookie that can be passed to
1610 * poll_state_synchronize_srcu(), which will return true if a full grace
1611 * period has elapsed in the meantime. It is the caller's responsibility
1612 * to make sure that grace period happens, for example, by invoking
1613 * call_srcu() after return from get_state_synchronize_srcu().
1614 */
get_state_synchronize_srcu(struct srcu_struct * ssp)1615 unsigned long get_state_synchronize_srcu(struct srcu_struct *ssp)
1616 {
1617 // Any prior manipulation of SRCU-protected data must happen
1618 // before the load from ->srcu_gp_seq.
1619 smp_mb();
1620 return rcu_seq_snap(&ssp->srcu_sup->srcu_gp_seq);
1621 }
1622 EXPORT_SYMBOL_GPL(get_state_synchronize_srcu);
1623
1624 /**
1625 * start_poll_synchronize_srcu - Provide cookie and start grace period
1626 * @ssp: srcu_struct to provide cookie for.
1627 *
1628 * This function returns a cookie that can be passed to
1629 * poll_state_synchronize_srcu(), which will return true if a full grace
1630 * period has elapsed in the meantime. Unlike get_state_synchronize_srcu(),
1631 * this function also ensures that any needed SRCU grace period will be
1632 * started. This convenience does come at a cost in terms of CPU overhead.
1633 */
start_poll_synchronize_srcu(struct srcu_struct * ssp)1634 unsigned long start_poll_synchronize_srcu(struct srcu_struct *ssp)
1635 {
1636 return srcu_gp_start_if_needed(ssp, NULL, true);
1637 }
1638 EXPORT_SYMBOL_GPL(start_poll_synchronize_srcu);
1639
1640 /**
1641 * poll_state_synchronize_srcu - Has cookie's grace period ended?
1642 * @ssp: srcu_struct to provide cookie for.
1643 * @cookie: Return value from get_state_synchronize_srcu() or start_poll_synchronize_srcu().
1644 *
1645 * This function takes the cookie that was returned from either
1646 * get_state_synchronize_srcu() or start_poll_synchronize_srcu(), and
1647 * returns @true if an SRCU grace period elapsed since the time that the
1648 * cookie was created.
1649 *
1650 * Because cookies are finite in size, wrapping/overflow is possible.
1651 * This is more pronounced on 32-bit systems where cookies are 32 bits,
1652 * where in theory wrapping could happen in about 14 hours assuming
1653 * 25-microsecond expedited SRCU grace periods. However, a more likely
1654 * overflow lower bound is on the order of 24 days in the case of
1655 * one-millisecond SRCU grace periods. Of course, wrapping in a 64-bit
1656 * system requires geologic timespans, as in more than seven million years
1657 * even for expedited SRCU grace periods.
1658 *
1659 * Wrapping/overflow is much more of an issue for CONFIG_SMP=n systems
1660 * that also have CONFIG_PREEMPTION=n, which selects Tiny SRCU. This uses
1661 * a 16-bit cookie, which rcutorture routinely wraps in a matter of a
1662 * few minutes. If this proves to be a problem, this counter will be
1663 * expanded to the same size as for Tree SRCU.
1664 */
poll_state_synchronize_srcu(struct srcu_struct * ssp,unsigned long cookie)1665 bool poll_state_synchronize_srcu(struct srcu_struct *ssp, unsigned long cookie)
1666 {
1667 if (cookie != SRCU_GET_STATE_COMPLETED &&
1668 !rcu_seq_done_exact(&ssp->srcu_sup->srcu_gp_seq, cookie))
1669 return false;
1670 // Ensure that the end of the SRCU grace period happens before
1671 // any subsequent code that the caller might execute.
1672 smp_mb(); // ^^^
1673 return true;
1674 }
1675 EXPORT_SYMBOL_GPL(poll_state_synchronize_srcu);
1676
1677 /*
1678 * Callback function for srcu_barrier() use.
1679 */
srcu_barrier_cb(struct rcu_head * rhp)1680 static void srcu_barrier_cb(struct rcu_head *rhp)
1681 {
1682 struct srcu_data *sdp;
1683 struct srcu_struct *ssp;
1684
1685 rhp->next = rhp; // Mark the callback as having been invoked.
1686 sdp = container_of(rhp, struct srcu_data, srcu_barrier_head);
1687 ssp = sdp->ssp;
1688 if (atomic_dec_and_test(&ssp->srcu_sup->srcu_barrier_cpu_cnt))
1689 complete(&ssp->srcu_sup->srcu_barrier_completion);
1690 }
1691
1692 /*
1693 * Enqueue an srcu_barrier() callback on the specified srcu_data
1694 * structure's ->cblist. but only if that ->cblist already has at least one
1695 * callback enqueued. Note that if a CPU already has callbacks enqueue,
1696 * it must have already registered the need for a future grace period,
1697 * so all we need do is enqueue a callback that will use the same grace
1698 * period as the last callback already in the queue.
1699 */
srcu_barrier_one_cpu(struct srcu_struct * ssp,struct srcu_data * sdp)1700 static void srcu_barrier_one_cpu(struct srcu_struct *ssp, struct srcu_data *sdp)
1701 {
1702 spin_lock_irq_rcu_node(sdp);
1703 atomic_inc(&ssp->srcu_sup->srcu_barrier_cpu_cnt);
1704 sdp->srcu_barrier_head.func = srcu_barrier_cb;
1705 debug_rcu_head_queue(&sdp->srcu_barrier_head);
1706 if (!rcu_segcblist_entrain(&sdp->srcu_cblist,
1707 &sdp->srcu_barrier_head)) {
1708 debug_rcu_head_unqueue(&sdp->srcu_barrier_head);
1709 atomic_dec(&ssp->srcu_sup->srcu_barrier_cpu_cnt);
1710 }
1711 spin_unlock_irq_rcu_node(sdp);
1712 }
1713
1714 /**
1715 * srcu_barrier - Wait until all in-flight call_srcu() callbacks complete.
1716 * @ssp: srcu_struct on which to wait for in-flight callbacks.
1717 */
srcu_barrier(struct srcu_struct * ssp)1718 void srcu_barrier(struct srcu_struct *ssp)
1719 {
1720 int cpu;
1721 int idx;
1722 unsigned long s = rcu_seq_snap(&ssp->srcu_sup->srcu_barrier_seq);
1723
1724 check_init_srcu_struct(ssp);
1725 mutex_lock(&ssp->srcu_sup->srcu_barrier_mutex);
1726 if (rcu_seq_done(&ssp->srcu_sup->srcu_barrier_seq, s)) {
1727 smp_mb(); /* Force ordering following return. */
1728 mutex_unlock(&ssp->srcu_sup->srcu_barrier_mutex);
1729 return; /* Someone else did our work for us. */
1730 }
1731 rcu_seq_start(&ssp->srcu_sup->srcu_barrier_seq);
1732 init_completion(&ssp->srcu_sup->srcu_barrier_completion);
1733
1734 /* Initial count prevents reaching zero until all CBs are posted. */
1735 atomic_set(&ssp->srcu_sup->srcu_barrier_cpu_cnt, 1);
1736
1737 idx = __srcu_read_lock_nmisafe(ssp);
1738 if (smp_load_acquire(&ssp->srcu_sup->srcu_size_state) < SRCU_SIZE_WAIT_BARRIER)
1739 srcu_barrier_one_cpu(ssp, per_cpu_ptr(ssp->sda, get_boot_cpu_id()));
1740 else
1741 for_each_possible_cpu(cpu)
1742 srcu_barrier_one_cpu(ssp, per_cpu_ptr(ssp->sda, cpu));
1743 __srcu_read_unlock_nmisafe(ssp, idx);
1744
1745 /* Remove the initial count, at which point reaching zero can happen. */
1746 if (atomic_dec_and_test(&ssp->srcu_sup->srcu_barrier_cpu_cnt))
1747 complete(&ssp->srcu_sup->srcu_barrier_completion);
1748 wait_for_completion(&ssp->srcu_sup->srcu_barrier_completion);
1749
1750 rcu_seq_end(&ssp->srcu_sup->srcu_barrier_seq);
1751 mutex_unlock(&ssp->srcu_sup->srcu_barrier_mutex);
1752 }
1753 EXPORT_SYMBOL_GPL(srcu_barrier);
1754
1755 /* Callback for srcu_expedite_current() usage. */
srcu_expedite_current_cb(struct rcu_head * rhp)1756 static void srcu_expedite_current_cb(struct rcu_head *rhp)
1757 {
1758 unsigned long flags;
1759 bool needcb = false;
1760 struct srcu_data *sdp = container_of(rhp, struct srcu_data, srcu_ec_head);
1761
1762 spin_lock_irqsave_sdp_contention(sdp, &flags);
1763 if (sdp->srcu_ec_state == SRCU_EC_IDLE) {
1764 WARN_ON_ONCE(1);
1765 } else if (sdp->srcu_ec_state == SRCU_EC_PENDING) {
1766 sdp->srcu_ec_state = SRCU_EC_IDLE;
1767 } else {
1768 WARN_ON_ONCE(sdp->srcu_ec_state != SRCU_EC_REPOST);
1769 sdp->srcu_ec_state = SRCU_EC_PENDING;
1770 needcb = true;
1771 }
1772 spin_unlock_irqrestore_rcu_node(sdp, flags);
1773 // If needed, requeue ourselves as an expedited SRCU callback.
1774 if (needcb)
1775 __call_srcu(sdp->ssp, &sdp->srcu_ec_head, srcu_expedite_current_cb, false);
1776 }
1777
1778 /**
1779 * srcu_expedite_current - Expedite the current SRCU grace period
1780 * @ssp: srcu_struct to expedite.
1781 *
1782 * Cause the current SRCU grace period to become expedited. The grace
1783 * period following the current one might also be expedited. If there is
1784 * no current grace period, one might be created. If the current grace
1785 * period is currently sleeping, that sleep will complete before expediting
1786 * will take effect.
1787 */
srcu_expedite_current(struct srcu_struct * ssp)1788 void srcu_expedite_current(struct srcu_struct *ssp)
1789 {
1790 unsigned long flags;
1791 bool needcb = false;
1792 struct srcu_data *sdp;
1793
1794 migrate_disable();
1795 sdp = this_cpu_ptr(ssp->sda);
1796 spin_lock_irqsave_sdp_contention(sdp, &flags);
1797 if (sdp->srcu_ec_state == SRCU_EC_IDLE) {
1798 sdp->srcu_ec_state = SRCU_EC_PENDING;
1799 needcb = true;
1800 } else if (sdp->srcu_ec_state == SRCU_EC_PENDING) {
1801 sdp->srcu_ec_state = SRCU_EC_REPOST;
1802 } else {
1803 WARN_ON_ONCE(sdp->srcu_ec_state != SRCU_EC_REPOST);
1804 }
1805 spin_unlock_irqrestore_rcu_node(sdp, flags);
1806 // If needed, queue an expedited SRCU callback.
1807 if (needcb)
1808 __call_srcu(ssp, &sdp->srcu_ec_head, srcu_expedite_current_cb, false);
1809 migrate_enable();
1810 }
1811 EXPORT_SYMBOL_GPL(srcu_expedite_current);
1812
1813 /**
1814 * srcu_batches_completed - return batches completed.
1815 * @ssp: srcu_struct on which to report batch completion.
1816 *
1817 * Report the number of batches, correlated with, but not necessarily
1818 * precisely the same as, the number of grace periods that have elapsed.
1819 */
srcu_batches_completed(struct srcu_struct * ssp)1820 unsigned long srcu_batches_completed(struct srcu_struct *ssp)
1821 {
1822 return READ_ONCE(ssp->srcu_sup->srcu_gp_seq);
1823 }
1824 EXPORT_SYMBOL_GPL(srcu_batches_completed);
1825
1826 /*
1827 * Core SRCU state machine. Push state bits of ->srcu_gp_seq
1828 * to SRCU_STATE_SCAN2, and invoke srcu_gp_end() when scan has
1829 * completed in that state.
1830 */
srcu_advance_state(struct srcu_struct * ssp)1831 static void srcu_advance_state(struct srcu_struct *ssp)
1832 {
1833 int idx;
1834
1835 mutex_lock(&ssp->srcu_sup->srcu_gp_mutex);
1836
1837 /*
1838 * Because readers might be delayed for an extended period after
1839 * fetching ->srcu_ctrp for their index, at any point in time there
1840 * might well be readers using both idx=0 and idx=1. We therefore
1841 * need to wait for readers to clear from both index values before
1842 * invoking a callback.
1843 *
1844 * The load-acquire ensures that we see the accesses performed
1845 * by the prior grace period.
1846 */
1847 idx = rcu_seq_state(smp_load_acquire(&ssp->srcu_sup->srcu_gp_seq)); /* ^^^ */
1848 if (idx == SRCU_STATE_IDLE) {
1849 spin_lock_irq_rcu_node(ssp->srcu_sup);
1850 if (ULONG_CMP_GE(ssp->srcu_sup->srcu_gp_seq, ssp->srcu_sup->srcu_gp_seq_needed)) {
1851 WARN_ON_ONCE(rcu_seq_state(ssp->srcu_sup->srcu_gp_seq));
1852 spin_unlock_irq_rcu_node(ssp->srcu_sup);
1853 mutex_unlock(&ssp->srcu_sup->srcu_gp_mutex);
1854 return;
1855 }
1856 idx = rcu_seq_state(READ_ONCE(ssp->srcu_sup->srcu_gp_seq));
1857 if (idx == SRCU_STATE_IDLE)
1858 srcu_gp_start(ssp);
1859 spin_unlock_irq_rcu_node(ssp->srcu_sup);
1860 if (idx != SRCU_STATE_IDLE) {
1861 mutex_unlock(&ssp->srcu_sup->srcu_gp_mutex);
1862 return; /* Someone else started the grace period. */
1863 }
1864 }
1865
1866 if (rcu_seq_state(READ_ONCE(ssp->srcu_sup->srcu_gp_seq)) == SRCU_STATE_SCAN1) {
1867 idx = !(ssp->srcu_ctrp - &ssp->sda->srcu_ctrs[0]);
1868 if (!try_check_zero(ssp, idx, 1)) {
1869 mutex_unlock(&ssp->srcu_sup->srcu_gp_mutex);
1870 return; /* readers present, retry later. */
1871 }
1872 srcu_flip(ssp);
1873 spin_lock_irq_rcu_node(ssp->srcu_sup);
1874 rcu_seq_set_state(&ssp->srcu_sup->srcu_gp_seq, SRCU_STATE_SCAN2);
1875 ssp->srcu_sup->srcu_n_exp_nodelay = 0;
1876 spin_unlock_irq_rcu_node(ssp->srcu_sup);
1877 }
1878
1879 if (rcu_seq_state(READ_ONCE(ssp->srcu_sup->srcu_gp_seq)) == SRCU_STATE_SCAN2) {
1880
1881 /*
1882 * SRCU read-side critical sections are normally short,
1883 * so check at least twice in quick succession after a flip.
1884 */
1885 idx = !(ssp->srcu_ctrp - &ssp->sda->srcu_ctrs[0]);
1886 if (!try_check_zero(ssp, idx, 2)) {
1887 mutex_unlock(&ssp->srcu_sup->srcu_gp_mutex);
1888 return; /* readers present, retry later. */
1889 }
1890 ssp->srcu_sup->srcu_n_exp_nodelay = 0;
1891 srcu_gp_end(ssp); /* Releases ->srcu_gp_mutex. */
1892 }
1893 }
1894
1895 /*
1896 * Invoke a limited number of SRCU callbacks that have passed through
1897 * their grace period. If there are more to do, SRCU will reschedule
1898 * the workqueue. Note that needed memory barriers have been executed
1899 * in this task's context by srcu_readers_active_idx_check().
1900 */
srcu_invoke_callbacks(struct work_struct * work)1901 static void srcu_invoke_callbacks(struct work_struct *work)
1902 {
1903 long len;
1904 bool more;
1905 struct rcu_cblist ready_cbs;
1906 struct rcu_head *rhp;
1907 struct srcu_data *sdp;
1908 struct srcu_struct *ssp;
1909
1910 sdp = container_of(work, struct srcu_data, work);
1911
1912 ssp = sdp->ssp;
1913 rcu_cblist_init(&ready_cbs);
1914 spin_lock_irq_rcu_node(sdp);
1915 WARN_ON_ONCE(!rcu_segcblist_segempty(&sdp->srcu_cblist, RCU_NEXT_TAIL));
1916 rcu_segcblist_advance(&sdp->srcu_cblist,
1917 rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq));
1918 /*
1919 * Although this function is theoretically re-entrant, concurrent
1920 * callbacks invocation is disallowed to avoid executing an SRCU barrier
1921 * too early.
1922 */
1923 if (sdp->srcu_cblist_invoking ||
1924 !rcu_segcblist_ready_cbs(&sdp->srcu_cblist)) {
1925 spin_unlock_irq_rcu_node(sdp);
1926 return; /* Someone else on the job or nothing to do. */
1927 }
1928
1929 /* We are on the job! Extract and invoke ready callbacks. */
1930 sdp->srcu_cblist_invoking = true;
1931 rcu_segcblist_extract_done_cbs(&sdp->srcu_cblist, &ready_cbs);
1932 len = ready_cbs.len;
1933 spin_unlock_irq_rcu_node(sdp);
1934 rhp = rcu_cblist_dequeue(&ready_cbs);
1935 for (; rhp != NULL; rhp = rcu_cblist_dequeue(&ready_cbs)) {
1936 debug_rcu_head_unqueue(rhp);
1937 debug_rcu_head_callback(rhp);
1938 local_bh_disable();
1939 rhp->func(rhp);
1940 local_bh_enable();
1941 }
1942 WARN_ON_ONCE(ready_cbs.len);
1943
1944 /*
1945 * Update counts, accelerate new callbacks, and if needed,
1946 * schedule another round of callback invocation.
1947 */
1948 spin_lock_irq_rcu_node(sdp);
1949 rcu_segcblist_add_len(&sdp->srcu_cblist, -len);
1950 sdp->srcu_cblist_invoking = false;
1951 more = rcu_segcblist_ready_cbs(&sdp->srcu_cblist);
1952 spin_unlock_irq_rcu_node(sdp);
1953 /* An SRCU barrier or callbacks from previous nesting work pending */
1954 if (more)
1955 srcu_schedule_cbs_sdp(sdp, 0);
1956 }
1957
1958 /*
1959 * Finished one round of SRCU grace period. Start another if there are
1960 * more SRCU callbacks queued, otherwise put SRCU into not-running state.
1961 */
srcu_reschedule(struct srcu_struct * ssp,unsigned long delay)1962 static void srcu_reschedule(struct srcu_struct *ssp, unsigned long delay)
1963 {
1964 bool pushgp = true;
1965
1966 spin_lock_irq_rcu_node(ssp->srcu_sup);
1967 if (ULONG_CMP_GE(ssp->srcu_sup->srcu_gp_seq, ssp->srcu_sup->srcu_gp_seq_needed)) {
1968 if (!WARN_ON_ONCE(rcu_seq_state(ssp->srcu_sup->srcu_gp_seq))) {
1969 /* All requests fulfilled, time to go idle. */
1970 pushgp = false;
1971 }
1972 } else if (!rcu_seq_state(ssp->srcu_sup->srcu_gp_seq)) {
1973 /* Outstanding request and no GP. Start one. */
1974 srcu_gp_start(ssp);
1975 }
1976 spin_unlock_irq_rcu_node(ssp->srcu_sup);
1977
1978 if (pushgp)
1979 queue_delayed_work(rcu_gp_wq, &ssp->srcu_sup->work, delay);
1980 }
1981
1982 /*
1983 * This is the work-queue function that handles SRCU grace periods.
1984 */
process_srcu(struct work_struct * work)1985 static void process_srcu(struct work_struct *work)
1986 {
1987 unsigned long curdelay;
1988 unsigned long j;
1989 struct srcu_struct *ssp;
1990 struct srcu_usage *sup;
1991
1992 sup = container_of(work, struct srcu_usage, work.work);
1993 ssp = sup->srcu_ssp;
1994
1995 srcu_advance_state(ssp);
1996 spin_lock_irq_rcu_node(ssp->srcu_sup);
1997 curdelay = srcu_get_delay(ssp);
1998 spin_unlock_irq_rcu_node(ssp->srcu_sup);
1999 if (curdelay) {
2000 WRITE_ONCE(sup->reschedule_count, 0);
2001 } else {
2002 j = jiffies;
2003 if (READ_ONCE(sup->reschedule_jiffies) == j) {
2004 ASSERT_EXCLUSIVE_WRITER(sup->reschedule_count);
2005 WRITE_ONCE(sup->reschedule_count, READ_ONCE(sup->reschedule_count) + 1);
2006 if (READ_ONCE(sup->reschedule_count) > srcu_max_nodelay)
2007 curdelay = 1;
2008 } else {
2009 WRITE_ONCE(sup->reschedule_count, 1);
2010 WRITE_ONCE(sup->reschedule_jiffies, j);
2011 }
2012 }
2013 srcu_reschedule(ssp, curdelay);
2014 }
2015
srcutorture_get_gp_data(struct srcu_struct * ssp,int * flags,unsigned long * gp_seq)2016 void srcutorture_get_gp_data(struct srcu_struct *ssp, int *flags,
2017 unsigned long *gp_seq)
2018 {
2019 *flags = 0;
2020 *gp_seq = rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq);
2021 }
2022 EXPORT_SYMBOL_GPL(srcutorture_get_gp_data);
2023
2024 static const char * const srcu_size_state_name[] = {
2025 "SRCU_SIZE_SMALL",
2026 "SRCU_SIZE_ALLOC",
2027 "SRCU_SIZE_WAIT_BARRIER",
2028 "SRCU_SIZE_WAIT_CALL",
2029 "SRCU_SIZE_WAIT_CBS1",
2030 "SRCU_SIZE_WAIT_CBS2",
2031 "SRCU_SIZE_WAIT_CBS3",
2032 "SRCU_SIZE_WAIT_CBS4",
2033 "SRCU_SIZE_BIG",
2034 "SRCU_SIZE_???",
2035 };
2036
srcu_torture_stats_print(struct srcu_struct * ssp,char * tt,char * tf)2037 void srcu_torture_stats_print(struct srcu_struct *ssp, char *tt, char *tf)
2038 {
2039 int cpu;
2040 int idx;
2041 unsigned long s0 = 0, s1 = 0;
2042 int ss_state = READ_ONCE(ssp->srcu_sup->srcu_size_state);
2043 int ss_state_idx = ss_state;
2044
2045 idx = ssp->srcu_ctrp - &ssp->sda->srcu_ctrs[0];
2046 if (ss_state < 0 || ss_state >= ARRAY_SIZE(srcu_size_state_name))
2047 ss_state_idx = ARRAY_SIZE(srcu_size_state_name) - 1;
2048 pr_alert("%s%s Tree SRCU g%ld state %d (%s)",
2049 tt, tf, rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq), ss_state,
2050 srcu_size_state_name[ss_state_idx]);
2051 if (!ssp->sda) {
2052 // Called after cleanup_srcu_struct(), perhaps.
2053 pr_cont(" No per-CPU srcu_data structures (->sda == NULL).\n");
2054 } else {
2055 pr_cont(" per-CPU(idx=%d):", idx);
2056 for_each_possible_cpu(cpu) {
2057 unsigned long l0, l1;
2058 unsigned long u0, u1;
2059 long c0, c1;
2060 struct srcu_data *sdp;
2061
2062 sdp = per_cpu_ptr(ssp->sda, cpu);
2063 u0 = data_race(atomic_long_read(&sdp->srcu_ctrs[!idx].srcu_unlocks));
2064 u1 = data_race(atomic_long_read(&sdp->srcu_ctrs[idx].srcu_unlocks));
2065
2066 /*
2067 * Make sure that a lock is always counted if the corresponding
2068 * unlock is counted.
2069 */
2070 smp_rmb();
2071
2072 l0 = data_race(atomic_long_read(&sdp->srcu_ctrs[!idx].srcu_locks));
2073 l1 = data_race(atomic_long_read(&sdp->srcu_ctrs[idx].srcu_locks));
2074
2075 c0 = l0 - u0;
2076 c1 = l1 - u1;
2077 pr_cont(" %d(%ld,%ld %c)",
2078 cpu, c0, c1,
2079 "C."[rcu_segcblist_empty(&sdp->srcu_cblist)]);
2080 s0 += c0;
2081 s1 += c1;
2082 }
2083 pr_cont(" T(%ld,%ld)\n", s0, s1);
2084 }
2085 if (SRCU_SIZING_IS_TORTURE())
2086 srcu_transition_to_big(ssp);
2087 }
2088 EXPORT_SYMBOL_GPL(srcu_torture_stats_print);
2089
srcu_bootup_announce(void)2090 static int __init srcu_bootup_announce(void)
2091 {
2092 pr_info("Hierarchical SRCU implementation.\n");
2093 if (exp_holdoff != DEFAULT_SRCU_EXP_HOLDOFF)
2094 pr_info("\tNon-default auto-expedite holdoff of %lu ns.\n", exp_holdoff);
2095 if (srcu_retry_check_delay != SRCU_DEFAULT_RETRY_CHECK_DELAY)
2096 pr_info("\tNon-default retry check delay of %lu us.\n", srcu_retry_check_delay);
2097 if (srcu_max_nodelay != SRCU_DEFAULT_MAX_NODELAY)
2098 pr_info("\tNon-default max no-delay of %lu.\n", srcu_max_nodelay);
2099 pr_info("\tMax phase no-delay instances is %lu.\n", srcu_max_nodelay_phase);
2100 return 0;
2101 }
2102 early_initcall(srcu_bootup_announce);
2103
srcu_init(void)2104 void __init srcu_init(void)
2105 {
2106 struct srcu_usage *sup;
2107
2108 /* Decide on srcu_struct-size strategy. */
2109 if (SRCU_SIZING_IS(SRCU_SIZING_AUTO)) {
2110 if (nr_cpu_ids >= big_cpu_lim) {
2111 convert_to_big = SRCU_SIZING_INIT; // Don't bother waiting for contention.
2112 pr_info("%s: Setting srcu_struct sizes to big.\n", __func__);
2113 } else {
2114 convert_to_big = SRCU_SIZING_NONE | SRCU_SIZING_CONTEND;
2115 pr_info("%s: Setting srcu_struct sizes based on contention.\n", __func__);
2116 }
2117 }
2118
2119 /*
2120 * Once that is set, call_srcu() can follow the normal path and
2121 * queue delayed work. This must follow RCU workqueues creation
2122 * and timers initialization.
2123 */
2124 srcu_init_done = true;
2125 while (!list_empty(&srcu_boot_list)) {
2126 sup = list_first_entry(&srcu_boot_list, struct srcu_usage,
2127 work.work.entry);
2128 list_del_init(&sup->work.work.entry);
2129 if (SRCU_SIZING_IS(SRCU_SIZING_INIT) &&
2130 sup->srcu_size_state == SRCU_SIZE_SMALL)
2131 sup->srcu_size_state = SRCU_SIZE_ALLOC;
2132 queue_work(rcu_gp_wq, &sup->work.work);
2133 }
2134 }
2135
2136 #ifdef CONFIG_MODULES
2137
2138 /* Initialize any global-scope srcu_struct structures used by this module. */
srcu_module_coming(struct module * mod)2139 static int srcu_module_coming(struct module *mod)
2140 {
2141 int i;
2142 struct srcu_struct *ssp;
2143 struct srcu_struct **sspp = mod->srcu_struct_ptrs;
2144
2145 for (i = 0; i < mod->num_srcu_structs; i++) {
2146 ssp = *(sspp++);
2147 ssp->sda = alloc_percpu(struct srcu_data);
2148 if (WARN_ON_ONCE(!ssp->sda))
2149 return -ENOMEM;
2150 ssp->srcu_ctrp = &ssp->sda->srcu_ctrs[0];
2151 }
2152 return 0;
2153 }
2154
2155 /* Clean up any global-scope srcu_struct structures used by this module. */
srcu_module_going(struct module * mod)2156 static void srcu_module_going(struct module *mod)
2157 {
2158 int i;
2159 struct srcu_struct *ssp;
2160 struct srcu_struct **sspp = mod->srcu_struct_ptrs;
2161
2162 for (i = 0; i < mod->num_srcu_structs; i++) {
2163 ssp = *(sspp++);
2164 if (!rcu_seq_state(smp_load_acquire(&ssp->srcu_sup->srcu_gp_seq_needed)) &&
2165 !WARN_ON_ONCE(!ssp->srcu_sup->sda_is_static))
2166 cleanup_srcu_struct(ssp);
2167 if (!WARN_ON(srcu_readers_active(ssp)))
2168 free_percpu(ssp->sda);
2169 }
2170 }
2171
2172 /* Handle one module, either coming or going. */
srcu_module_notify(struct notifier_block * self,unsigned long val,void * data)2173 static int srcu_module_notify(struct notifier_block *self,
2174 unsigned long val, void *data)
2175 {
2176 struct module *mod = data;
2177 int ret = 0;
2178
2179 switch (val) {
2180 case MODULE_STATE_COMING:
2181 ret = srcu_module_coming(mod);
2182 break;
2183 case MODULE_STATE_GOING:
2184 srcu_module_going(mod);
2185 break;
2186 default:
2187 break;
2188 }
2189 return ret;
2190 }
2191
2192 static struct notifier_block srcu_module_nb = {
2193 .notifier_call = srcu_module_notify,
2194 .priority = 0,
2195 };
2196
init_srcu_module_notifier(void)2197 static __init int init_srcu_module_notifier(void)
2198 {
2199 int ret;
2200
2201 ret = register_module_notifier(&srcu_module_nb);
2202 if (ret)
2203 pr_warn("Failed to register srcu module notifier\n");
2204 return ret;
2205 }
2206 late_initcall(init_srcu_module_notifier);
2207
2208 #endif /* #ifdef CONFIG_MODULES */
2209