xref: /linux/kernel/rcu/refscale.c (revision ab475966455ce285c2c9978a3e3bfe97d75ff8d4)
1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // Scalability test comparing RCU vs other mechanisms
4 // for acquiring references on objects.
5 //
6 // Copyright (C) Google, 2020.
7 //
8 // Author: Joel Fernandes <joel@joelfernandes.org>
9 
10 #define pr_fmt(fmt) fmt
11 
12 #include <linux/atomic.h>
13 #include <linux/bitops.h>
14 #include <linux/completion.h>
15 #include <linux/cpu.h>
16 #include <linux/delay.h>
17 #include <linux/err.h>
18 #include <linux/init.h>
19 #include <linux/interrupt.h>
20 #include <linux/kthread.h>
21 #include <linux/kernel.h>
22 #include <linux/mm.h>
23 #include <linux/module.h>
24 #include <linux/moduleparam.h>
25 #include <linux/notifier.h>
26 #include <linux/percpu.h>
27 #include <linux/rcupdate.h>
28 #include <linux/rcupdate_trace.h>
29 #include <linux/reboot.h>
30 #include <linux/sched.h>
31 #include <linux/spinlock.h>
32 #include <linux/smp.h>
33 #include <linux/stat.h>
34 #include <linux/srcu.h>
35 #include <linux/slab.h>
36 #include <linux/torture.h>
37 #include <linux/types.h>
38 
39 #include "rcu.h"
40 
41 #define SCALE_FLAG "-ref-scale: "
42 
43 #define SCALEOUT(s, x...) \
44 	pr_alert("%s" SCALE_FLAG s, scale_type, ## x)
45 
46 #define VERBOSE_SCALEOUT(s, x...) \
47 	do { \
48 		if (verbose) \
49 			pr_alert("%s" SCALE_FLAG s "\n", scale_type, ## x); \
50 	} while (0)
51 
52 static atomic_t verbose_batch_ctr;
53 
54 #define VERBOSE_SCALEOUT_BATCH(s, x...)							\
55 do {											\
56 	if (verbose &&									\
57 	    (verbose_batched <= 0 ||							\
58 	     !(atomic_inc_return(&verbose_batch_ctr) % verbose_batched))) {		\
59 		schedule_timeout_uninterruptible(1);					\
60 		pr_alert("%s" SCALE_FLAG s "\n", scale_type, ## x);			\
61 	}										\
62 } while (0)
63 
64 #define SCALEOUT_ERRSTRING(s, x...) pr_alert("%s" SCALE_FLAG "!!! " s "\n", scale_type, ## x)
65 
66 MODULE_LICENSE("GPL");
67 MODULE_AUTHOR("Joel Fernandes (Google) <joel@joelfernandes.org>");
68 
69 static char *scale_type = "rcu";
70 module_param(scale_type, charp, 0444);
71 MODULE_PARM_DESC(scale_type, "Type of test (rcu, srcu, refcnt, rwsem, rwlock.");
72 
73 torture_param(int, verbose, 0, "Enable verbose debugging printk()s");
74 torture_param(int, verbose_batched, 0, "Batch verbose debugging printk()s");
75 
76 // Wait until there are multiple CPUs before starting test.
77 torture_param(int, holdoff, IS_BUILTIN(CONFIG_RCU_REF_SCALE_TEST) ? 10 : 0,
78 	      "Holdoff time before test start (s)");
79 // Number of typesafe_lookup structures, that is, the degree of concurrency.
80 torture_param(long, lookup_instances, 0, "Number of typesafe_lookup structures.");
81 // Number of loops per experiment, all readers execute operations concurrently.
82 torture_param(long, loops, 10000, "Number of loops per experiment.");
83 // Number of readers, with -1 defaulting to about 75% of the CPUs.
84 torture_param(int, nreaders, -1, "Number of readers, -1 for 75% of CPUs.");
85 // Number of runs.
86 torture_param(int, nruns, 30, "Number of experiments to run.");
87 // Reader delay in nanoseconds, 0 for no delay.
88 torture_param(int, readdelay, 0, "Read-side delay in nanoseconds.");
89 
90 #ifdef MODULE
91 # define REFSCALE_SHUTDOWN 0
92 #else
93 # define REFSCALE_SHUTDOWN 1
94 #endif
95 
96 torture_param(bool, shutdown, REFSCALE_SHUTDOWN,
97 	      "Shutdown at end of scalability tests.");
98 
99 struct reader_task {
100 	struct task_struct *task;
101 	int start_reader;
102 	wait_queue_head_t wq;
103 	u64 last_duration_ns;
104 };
105 
106 static struct task_struct *shutdown_task;
107 static wait_queue_head_t shutdown_wq;
108 
109 static struct task_struct *main_task;
110 static wait_queue_head_t main_wq;
111 static int shutdown_start;
112 
113 static struct reader_task *reader_tasks;
114 
115 // Number of readers that are part of the current experiment.
116 static atomic_t nreaders_exp;
117 
118 // Use to wait for all threads to start.
119 static atomic_t n_init;
120 static atomic_t n_started;
121 static atomic_t n_warmedup;
122 static atomic_t n_cooleddown;
123 
124 // Track which experiment is currently running.
125 static int exp_idx;
126 
127 // Operations vector for selecting different types of tests.
128 struct ref_scale_ops {
129 	bool (*init)(void);
130 	void (*cleanup)(void);
131 	void (*readsection)(const int nloops);
132 	void (*delaysection)(const int nloops, const int udl, const int ndl);
133 	const char *name;
134 };
135 
136 static struct ref_scale_ops *cur_ops;
137 
138 static void un_delay(const int udl, const int ndl)
139 {
140 	if (udl)
141 		udelay(udl);
142 	if (ndl)
143 		ndelay(ndl);
144 }
145 
146 static void ref_rcu_read_section(const int nloops)
147 {
148 	int i;
149 
150 	for (i = nloops; i >= 0; i--) {
151 		rcu_read_lock();
152 		rcu_read_unlock();
153 	}
154 }
155 
156 static void ref_rcu_delay_section(const int nloops, const int udl, const int ndl)
157 {
158 	int i;
159 
160 	for (i = nloops; i >= 0; i--) {
161 		rcu_read_lock();
162 		un_delay(udl, ndl);
163 		rcu_read_unlock();
164 	}
165 }
166 
167 static bool rcu_sync_scale_init(void)
168 {
169 	return true;
170 }
171 
172 static struct ref_scale_ops rcu_ops = {
173 	.init		= rcu_sync_scale_init,
174 	.readsection	= ref_rcu_read_section,
175 	.delaysection	= ref_rcu_delay_section,
176 	.name		= "rcu"
177 };
178 
179 // Definitions for SRCU ref scale testing.
180 DEFINE_STATIC_SRCU(srcu_refctl_scale);
181 static struct srcu_struct *srcu_ctlp = &srcu_refctl_scale;
182 
183 static void srcu_ref_scale_read_section(const int nloops)
184 {
185 	int i;
186 	int idx;
187 
188 	for (i = nloops; i >= 0; i--) {
189 		idx = srcu_read_lock(srcu_ctlp);
190 		srcu_read_unlock(srcu_ctlp, idx);
191 	}
192 }
193 
194 static void srcu_ref_scale_delay_section(const int nloops, const int udl, const int ndl)
195 {
196 	int i;
197 	int idx;
198 
199 	for (i = nloops; i >= 0; i--) {
200 		idx = srcu_read_lock(srcu_ctlp);
201 		un_delay(udl, ndl);
202 		srcu_read_unlock(srcu_ctlp, idx);
203 	}
204 }
205 
206 static struct ref_scale_ops srcu_ops = {
207 	.init		= rcu_sync_scale_init,
208 	.readsection	= srcu_ref_scale_read_section,
209 	.delaysection	= srcu_ref_scale_delay_section,
210 	.name		= "srcu"
211 };
212 
213 #ifdef CONFIG_TASKS_RCU
214 
215 // Definitions for RCU Tasks ref scale testing: Empty read markers.
216 // These definitions also work for RCU Rude readers.
217 static void rcu_tasks_ref_scale_read_section(const int nloops)
218 {
219 	int i;
220 
221 	for (i = nloops; i >= 0; i--)
222 		continue;
223 }
224 
225 static void rcu_tasks_ref_scale_delay_section(const int nloops, const int udl, const int ndl)
226 {
227 	int i;
228 
229 	for (i = nloops; i >= 0; i--)
230 		un_delay(udl, ndl);
231 }
232 
233 static struct ref_scale_ops rcu_tasks_ops = {
234 	.init		= rcu_sync_scale_init,
235 	.readsection	= rcu_tasks_ref_scale_read_section,
236 	.delaysection	= rcu_tasks_ref_scale_delay_section,
237 	.name		= "rcu-tasks"
238 };
239 
240 #define RCU_TASKS_OPS &rcu_tasks_ops,
241 
242 #else // #ifdef CONFIG_TASKS_RCU
243 
244 #define RCU_TASKS_OPS
245 
246 #endif // #else // #ifdef CONFIG_TASKS_RCU
247 
248 #ifdef CONFIG_TASKS_TRACE_RCU
249 
250 // Definitions for RCU Tasks Trace ref scale testing.
251 static void rcu_trace_ref_scale_read_section(const int nloops)
252 {
253 	int i;
254 
255 	for (i = nloops; i >= 0; i--) {
256 		rcu_read_lock_trace();
257 		rcu_read_unlock_trace();
258 	}
259 }
260 
261 static void rcu_trace_ref_scale_delay_section(const int nloops, const int udl, const int ndl)
262 {
263 	int i;
264 
265 	for (i = nloops; i >= 0; i--) {
266 		rcu_read_lock_trace();
267 		un_delay(udl, ndl);
268 		rcu_read_unlock_trace();
269 	}
270 }
271 
272 static struct ref_scale_ops rcu_trace_ops = {
273 	.init		= rcu_sync_scale_init,
274 	.readsection	= rcu_trace_ref_scale_read_section,
275 	.delaysection	= rcu_trace_ref_scale_delay_section,
276 	.name		= "rcu-trace"
277 };
278 
279 #define RCU_TRACE_OPS &rcu_trace_ops,
280 
281 #else // #ifdef CONFIG_TASKS_TRACE_RCU
282 
283 #define RCU_TRACE_OPS
284 
285 #endif // #else // #ifdef CONFIG_TASKS_TRACE_RCU
286 
287 // Definitions for reference count
288 static atomic_t refcnt;
289 
290 static void ref_refcnt_section(const int nloops)
291 {
292 	int i;
293 
294 	for (i = nloops; i >= 0; i--) {
295 		atomic_inc(&refcnt);
296 		atomic_dec(&refcnt);
297 	}
298 }
299 
300 static void ref_refcnt_delay_section(const int nloops, const int udl, const int ndl)
301 {
302 	int i;
303 
304 	for (i = nloops; i >= 0; i--) {
305 		atomic_inc(&refcnt);
306 		un_delay(udl, ndl);
307 		atomic_dec(&refcnt);
308 	}
309 }
310 
311 static struct ref_scale_ops refcnt_ops = {
312 	.init		= rcu_sync_scale_init,
313 	.readsection	= ref_refcnt_section,
314 	.delaysection	= ref_refcnt_delay_section,
315 	.name		= "refcnt"
316 };
317 
318 // Definitions for rwlock
319 static rwlock_t test_rwlock;
320 
321 static bool ref_rwlock_init(void)
322 {
323 	rwlock_init(&test_rwlock);
324 	return true;
325 }
326 
327 static void ref_rwlock_section(const int nloops)
328 {
329 	int i;
330 
331 	for (i = nloops; i >= 0; i--) {
332 		read_lock(&test_rwlock);
333 		read_unlock(&test_rwlock);
334 	}
335 }
336 
337 static void ref_rwlock_delay_section(const int nloops, const int udl, const int ndl)
338 {
339 	int i;
340 
341 	for (i = nloops; i >= 0; i--) {
342 		read_lock(&test_rwlock);
343 		un_delay(udl, ndl);
344 		read_unlock(&test_rwlock);
345 	}
346 }
347 
348 static struct ref_scale_ops rwlock_ops = {
349 	.init		= ref_rwlock_init,
350 	.readsection	= ref_rwlock_section,
351 	.delaysection	= ref_rwlock_delay_section,
352 	.name		= "rwlock"
353 };
354 
355 // Definitions for rwsem
356 static struct rw_semaphore test_rwsem;
357 
358 static bool ref_rwsem_init(void)
359 {
360 	init_rwsem(&test_rwsem);
361 	return true;
362 }
363 
364 static void ref_rwsem_section(const int nloops)
365 {
366 	int i;
367 
368 	for (i = nloops; i >= 0; i--) {
369 		down_read(&test_rwsem);
370 		up_read(&test_rwsem);
371 	}
372 }
373 
374 static void ref_rwsem_delay_section(const int nloops, const int udl, const int ndl)
375 {
376 	int i;
377 
378 	for (i = nloops; i >= 0; i--) {
379 		down_read(&test_rwsem);
380 		un_delay(udl, ndl);
381 		up_read(&test_rwsem);
382 	}
383 }
384 
385 static struct ref_scale_ops rwsem_ops = {
386 	.init		= ref_rwsem_init,
387 	.readsection	= ref_rwsem_section,
388 	.delaysection	= ref_rwsem_delay_section,
389 	.name		= "rwsem"
390 };
391 
392 // Definitions for global spinlock
393 static DEFINE_RAW_SPINLOCK(test_lock);
394 
395 static void ref_lock_section(const int nloops)
396 {
397 	int i;
398 
399 	preempt_disable();
400 	for (i = nloops; i >= 0; i--) {
401 		raw_spin_lock(&test_lock);
402 		raw_spin_unlock(&test_lock);
403 	}
404 	preempt_enable();
405 }
406 
407 static void ref_lock_delay_section(const int nloops, const int udl, const int ndl)
408 {
409 	int i;
410 
411 	preempt_disable();
412 	for (i = nloops; i >= 0; i--) {
413 		raw_spin_lock(&test_lock);
414 		un_delay(udl, ndl);
415 		raw_spin_unlock(&test_lock);
416 	}
417 	preempt_enable();
418 }
419 
420 static struct ref_scale_ops lock_ops = {
421 	.readsection	= ref_lock_section,
422 	.delaysection	= ref_lock_delay_section,
423 	.name		= "lock"
424 };
425 
426 // Definitions for global irq-save spinlock
427 
428 static void ref_lock_irq_section(const int nloops)
429 {
430 	unsigned long flags;
431 	int i;
432 
433 	preempt_disable();
434 	for (i = nloops; i >= 0; i--) {
435 		raw_spin_lock_irqsave(&test_lock, flags);
436 		raw_spin_unlock_irqrestore(&test_lock, flags);
437 	}
438 	preempt_enable();
439 }
440 
441 static void ref_lock_irq_delay_section(const int nloops, const int udl, const int ndl)
442 {
443 	unsigned long flags;
444 	int i;
445 
446 	preempt_disable();
447 	for (i = nloops; i >= 0; i--) {
448 		raw_spin_lock_irqsave(&test_lock, flags);
449 		un_delay(udl, ndl);
450 		raw_spin_unlock_irqrestore(&test_lock, flags);
451 	}
452 	preempt_enable();
453 }
454 
455 static struct ref_scale_ops lock_irq_ops = {
456 	.readsection	= ref_lock_irq_section,
457 	.delaysection	= ref_lock_irq_delay_section,
458 	.name		= "lock-irq"
459 };
460 
461 // Definitions acquire-release.
462 static DEFINE_PER_CPU(unsigned long, test_acqrel);
463 
464 static void ref_acqrel_section(const int nloops)
465 {
466 	unsigned long x;
467 	int i;
468 
469 	preempt_disable();
470 	for (i = nloops; i >= 0; i--) {
471 		x = smp_load_acquire(this_cpu_ptr(&test_acqrel));
472 		smp_store_release(this_cpu_ptr(&test_acqrel), x + 1);
473 	}
474 	preempt_enable();
475 }
476 
477 static void ref_acqrel_delay_section(const int nloops, const int udl, const int ndl)
478 {
479 	unsigned long x;
480 	int i;
481 
482 	preempt_disable();
483 	for (i = nloops; i >= 0; i--) {
484 		x = smp_load_acquire(this_cpu_ptr(&test_acqrel));
485 		un_delay(udl, ndl);
486 		smp_store_release(this_cpu_ptr(&test_acqrel), x + 1);
487 	}
488 	preempt_enable();
489 }
490 
491 static struct ref_scale_ops acqrel_ops = {
492 	.readsection	= ref_acqrel_section,
493 	.delaysection	= ref_acqrel_delay_section,
494 	.name		= "acqrel"
495 };
496 
497 static volatile u64 stopopts;
498 
499 static void ref_clock_section(const int nloops)
500 {
501 	u64 x = 0;
502 	int i;
503 
504 	preempt_disable();
505 	for (i = nloops; i >= 0; i--)
506 		x += ktime_get_real_fast_ns();
507 	preempt_enable();
508 	stopopts = x;
509 }
510 
511 static void ref_clock_delay_section(const int nloops, const int udl, const int ndl)
512 {
513 	u64 x = 0;
514 	int i;
515 
516 	preempt_disable();
517 	for (i = nloops; i >= 0; i--) {
518 		x += ktime_get_real_fast_ns();
519 		un_delay(udl, ndl);
520 	}
521 	preempt_enable();
522 	stopopts = x;
523 }
524 
525 static struct ref_scale_ops clock_ops = {
526 	.readsection	= ref_clock_section,
527 	.delaysection	= ref_clock_delay_section,
528 	.name		= "clock"
529 };
530 
531 static void ref_jiffies_section(const int nloops)
532 {
533 	u64 x = 0;
534 	int i;
535 
536 	preempt_disable();
537 	for (i = nloops; i >= 0; i--)
538 		x += jiffies;
539 	preempt_enable();
540 	stopopts = x;
541 }
542 
543 static void ref_jiffies_delay_section(const int nloops, const int udl, const int ndl)
544 {
545 	u64 x = 0;
546 	int i;
547 
548 	preempt_disable();
549 	for (i = nloops; i >= 0; i--) {
550 		x += jiffies;
551 		un_delay(udl, ndl);
552 	}
553 	preempt_enable();
554 	stopopts = x;
555 }
556 
557 static struct ref_scale_ops jiffies_ops = {
558 	.readsection	= ref_jiffies_section,
559 	.delaysection	= ref_jiffies_delay_section,
560 	.name		= "jiffies"
561 };
562 
563 ////////////////////////////////////////////////////////////////////////
564 //
565 // Methods leveraging SLAB_TYPESAFE_BY_RCU.
566 //
567 
568 // Item to look up in a typesafe manner.  Array of pointers to these.
569 struct refscale_typesafe {
570 	atomic_t rts_refctr;  // Used by all flavors
571 	spinlock_t rts_lock;
572 	seqlock_t rts_seqlock;
573 	unsigned int a;
574 	unsigned int b;
575 };
576 
577 static struct kmem_cache *typesafe_kmem_cachep;
578 static struct refscale_typesafe **rtsarray;
579 static long rtsarray_size;
580 static DEFINE_TORTURE_RANDOM_PERCPU(refscale_rand);
581 static bool (*rts_acquire)(struct refscale_typesafe *rtsp, unsigned int *start);
582 static bool (*rts_release)(struct refscale_typesafe *rtsp, unsigned int start);
583 
584 // Conditionally acquire an explicit in-structure reference count.
585 static bool typesafe_ref_acquire(struct refscale_typesafe *rtsp, unsigned int *start)
586 {
587 	return atomic_inc_not_zero(&rtsp->rts_refctr);
588 }
589 
590 // Unconditionally release an explicit in-structure reference count.
591 static bool typesafe_ref_release(struct refscale_typesafe *rtsp, unsigned int start)
592 {
593 	if (!atomic_dec_return(&rtsp->rts_refctr)) {
594 		WRITE_ONCE(rtsp->a, rtsp->a + 1);
595 		kmem_cache_free(typesafe_kmem_cachep, rtsp);
596 	}
597 	return true;
598 }
599 
600 // Unconditionally acquire an explicit in-structure spinlock.
601 static bool typesafe_lock_acquire(struct refscale_typesafe *rtsp, unsigned int *start)
602 {
603 	spin_lock(&rtsp->rts_lock);
604 	return true;
605 }
606 
607 // Unconditionally release an explicit in-structure spinlock.
608 static bool typesafe_lock_release(struct refscale_typesafe *rtsp, unsigned int start)
609 {
610 	spin_unlock(&rtsp->rts_lock);
611 	return true;
612 }
613 
614 // Unconditionally acquire an explicit in-structure sequence lock.
615 static bool typesafe_seqlock_acquire(struct refscale_typesafe *rtsp, unsigned int *start)
616 {
617 	*start = read_seqbegin(&rtsp->rts_seqlock);
618 	return true;
619 }
620 
621 // Conditionally release an explicit in-structure sequence lock.  Return
622 // true if this release was successful, that is, if no retry is required.
623 static bool typesafe_seqlock_release(struct refscale_typesafe *rtsp, unsigned int start)
624 {
625 	return !read_seqretry(&rtsp->rts_seqlock, start);
626 }
627 
628 // Do a read-side critical section with the specified delay in
629 // microseconds and nanoseconds inserted so as to increase probability
630 // of failure.
631 static void typesafe_delay_section(const int nloops, const int udl, const int ndl)
632 {
633 	unsigned int a;
634 	unsigned int b;
635 	int i;
636 	long idx;
637 	struct refscale_typesafe *rtsp;
638 	unsigned int start;
639 
640 	for (i = nloops; i >= 0; i--) {
641 		preempt_disable();
642 		idx = torture_random(this_cpu_ptr(&refscale_rand)) % rtsarray_size;
643 		preempt_enable();
644 retry:
645 		rcu_read_lock();
646 		rtsp = rcu_dereference(rtsarray[idx]);
647 		a = READ_ONCE(rtsp->a);
648 		if (!rts_acquire(rtsp, &start)) {
649 			rcu_read_unlock();
650 			goto retry;
651 		}
652 		if (a != READ_ONCE(rtsp->a)) {
653 			(void)rts_release(rtsp, start);
654 			rcu_read_unlock();
655 			goto retry;
656 		}
657 		un_delay(udl, ndl);
658 		b = READ_ONCE(rtsp->a);
659 		// Remember, seqlock read-side release can fail.
660 		if (!rts_release(rtsp, start)) {
661 			rcu_read_unlock();
662 			goto retry;
663 		}
664 		WARN_ONCE(a != b, "Re-read of ->a changed from %u to %u.\n", a, b);
665 		b = rtsp->b;
666 		rcu_read_unlock();
667 		WARN_ON_ONCE(a * a != b);
668 	}
669 }
670 
671 // Because the acquisition and release methods are expensive, there
672 // is no point in optimizing away the un_delay() function's two checks.
673 // Thus simply define typesafe_read_section() as a simple wrapper around
674 // typesafe_delay_section().
675 static void typesafe_read_section(const int nloops)
676 {
677 	typesafe_delay_section(nloops, 0, 0);
678 }
679 
680 // Allocate and initialize one refscale_typesafe structure.
681 static struct refscale_typesafe *typesafe_alloc_one(void)
682 {
683 	struct refscale_typesafe *rtsp;
684 
685 	rtsp = kmem_cache_alloc(typesafe_kmem_cachep, GFP_KERNEL);
686 	if (!rtsp)
687 		return NULL;
688 	atomic_set(&rtsp->rts_refctr, 1);
689 	WRITE_ONCE(rtsp->a, rtsp->a + 1);
690 	WRITE_ONCE(rtsp->b, rtsp->a * rtsp->a);
691 	return rtsp;
692 }
693 
694 // Slab-allocator constructor for refscale_typesafe structures created
695 // out of a new slab of system memory.
696 static void refscale_typesafe_ctor(void *rtsp_in)
697 {
698 	struct refscale_typesafe *rtsp = rtsp_in;
699 
700 	spin_lock_init(&rtsp->rts_lock);
701 	seqlock_init(&rtsp->rts_seqlock);
702 	preempt_disable();
703 	rtsp->a = torture_random(this_cpu_ptr(&refscale_rand));
704 	preempt_enable();
705 }
706 
707 static struct ref_scale_ops typesafe_ref_ops;
708 static struct ref_scale_ops typesafe_lock_ops;
709 static struct ref_scale_ops typesafe_seqlock_ops;
710 
711 // Initialize for a typesafe test.
712 static bool typesafe_init(void)
713 {
714 	long idx;
715 	long si = lookup_instances;
716 
717 	typesafe_kmem_cachep = kmem_cache_create("refscale_typesafe",
718 						 sizeof(struct refscale_typesafe), sizeof(void *),
719 						 SLAB_TYPESAFE_BY_RCU, refscale_typesafe_ctor);
720 	if (!typesafe_kmem_cachep)
721 		return false;
722 	if (si < 0)
723 		si = -si * nr_cpu_ids;
724 	else if (si == 0)
725 		si = nr_cpu_ids;
726 	rtsarray_size = si;
727 	rtsarray = kcalloc(si, sizeof(*rtsarray), GFP_KERNEL);
728 	if (!rtsarray)
729 		return false;
730 	for (idx = 0; idx < rtsarray_size; idx++) {
731 		rtsarray[idx] = typesafe_alloc_one();
732 		if (!rtsarray[idx])
733 			return false;
734 	}
735 	if (cur_ops == &typesafe_ref_ops) {
736 		rts_acquire = typesafe_ref_acquire;
737 		rts_release = typesafe_ref_release;
738 	} else if (cur_ops == &typesafe_lock_ops) {
739 		rts_acquire = typesafe_lock_acquire;
740 		rts_release = typesafe_lock_release;
741 	} else if (cur_ops == &typesafe_seqlock_ops) {
742 		rts_acquire = typesafe_seqlock_acquire;
743 		rts_release = typesafe_seqlock_release;
744 	} else {
745 		WARN_ON_ONCE(1);
746 		return false;
747 	}
748 	return true;
749 }
750 
751 // Clean up after a typesafe test.
752 static void typesafe_cleanup(void)
753 {
754 	long idx;
755 
756 	if (rtsarray) {
757 		for (idx = 0; idx < rtsarray_size; idx++)
758 			kmem_cache_free(typesafe_kmem_cachep, rtsarray[idx]);
759 		kfree(rtsarray);
760 		rtsarray = NULL;
761 		rtsarray_size = 0;
762 	}
763 	kmem_cache_destroy(typesafe_kmem_cachep);
764 	typesafe_kmem_cachep = NULL;
765 	rts_acquire = NULL;
766 	rts_release = NULL;
767 }
768 
769 // The typesafe_init() function distinguishes these structures by address.
770 static struct ref_scale_ops typesafe_ref_ops = {
771 	.init		= typesafe_init,
772 	.cleanup	= typesafe_cleanup,
773 	.readsection	= typesafe_read_section,
774 	.delaysection	= typesafe_delay_section,
775 	.name		= "typesafe_ref"
776 };
777 
778 static struct ref_scale_ops typesafe_lock_ops = {
779 	.init		= typesafe_init,
780 	.cleanup	= typesafe_cleanup,
781 	.readsection	= typesafe_read_section,
782 	.delaysection	= typesafe_delay_section,
783 	.name		= "typesafe_lock"
784 };
785 
786 static struct ref_scale_ops typesafe_seqlock_ops = {
787 	.init		= typesafe_init,
788 	.cleanup	= typesafe_cleanup,
789 	.readsection	= typesafe_read_section,
790 	.delaysection	= typesafe_delay_section,
791 	.name		= "typesafe_seqlock"
792 };
793 
794 static void rcu_scale_one_reader(void)
795 {
796 	if (readdelay <= 0)
797 		cur_ops->readsection(loops);
798 	else
799 		cur_ops->delaysection(loops, readdelay / 1000, readdelay % 1000);
800 }
801 
802 // Reader kthread.  Repeatedly does empty RCU read-side
803 // critical section, minimizing update-side interference.
804 static int
805 ref_scale_reader(void *arg)
806 {
807 	unsigned long flags;
808 	long me = (long)arg;
809 	struct reader_task *rt = &(reader_tasks[me]);
810 	u64 start;
811 	s64 duration;
812 
813 	VERBOSE_SCALEOUT_BATCH("ref_scale_reader %ld: task started", me);
814 	WARN_ON_ONCE(set_cpus_allowed_ptr(current, cpumask_of(me % nr_cpu_ids)));
815 	set_user_nice(current, MAX_NICE);
816 	atomic_inc(&n_init);
817 	if (holdoff)
818 		schedule_timeout_interruptible(holdoff * HZ);
819 repeat:
820 	VERBOSE_SCALEOUT_BATCH("ref_scale_reader %ld: waiting to start next experiment on cpu %d", me, raw_smp_processor_id());
821 
822 	// Wait for signal that this reader can start.
823 	wait_event(rt->wq, (atomic_read(&nreaders_exp) && smp_load_acquire(&rt->start_reader)) ||
824 			   torture_must_stop());
825 
826 	if (torture_must_stop())
827 		goto end;
828 
829 	// Make sure that the CPU is affinitized appropriately during testing.
830 	WARN_ON_ONCE(raw_smp_processor_id() != me);
831 
832 	WRITE_ONCE(rt->start_reader, 0);
833 	if (!atomic_dec_return(&n_started))
834 		while (atomic_read_acquire(&n_started))
835 			cpu_relax();
836 
837 	VERBOSE_SCALEOUT_BATCH("ref_scale_reader %ld: experiment %d started", me, exp_idx);
838 
839 
840 	// To reduce noise, do an initial cache-warming invocation, check
841 	// in, and then keep warming until everyone has checked in.
842 	rcu_scale_one_reader();
843 	if (!atomic_dec_return(&n_warmedup))
844 		while (atomic_read_acquire(&n_warmedup))
845 			rcu_scale_one_reader();
846 	// Also keep interrupts disabled.  This also has the effect
847 	// of preventing entries into slow path for rcu_read_unlock().
848 	local_irq_save(flags);
849 	start = ktime_get_mono_fast_ns();
850 
851 	rcu_scale_one_reader();
852 
853 	duration = ktime_get_mono_fast_ns() - start;
854 	local_irq_restore(flags);
855 
856 	rt->last_duration_ns = WARN_ON_ONCE(duration < 0) ? 0 : duration;
857 	// To reduce runtime-skew noise, do maintain-load invocations until
858 	// everyone is done.
859 	if (!atomic_dec_return(&n_cooleddown))
860 		while (atomic_read_acquire(&n_cooleddown))
861 			rcu_scale_one_reader();
862 
863 	if (atomic_dec_and_test(&nreaders_exp))
864 		wake_up(&main_wq);
865 
866 	VERBOSE_SCALEOUT_BATCH("ref_scale_reader %ld: experiment %d ended, (readers remaining=%d)",
867 				me, exp_idx, atomic_read(&nreaders_exp));
868 
869 	if (!torture_must_stop())
870 		goto repeat;
871 end:
872 	torture_kthread_stopping("ref_scale_reader");
873 	return 0;
874 }
875 
876 static void reset_readers(void)
877 {
878 	int i;
879 	struct reader_task *rt;
880 
881 	for (i = 0; i < nreaders; i++) {
882 		rt = &(reader_tasks[i]);
883 
884 		rt->last_duration_ns = 0;
885 	}
886 }
887 
888 // Print the results of each reader and return the sum of all their durations.
889 static u64 process_durations(int n)
890 {
891 	int i;
892 	struct reader_task *rt;
893 	char buf1[64];
894 	char *buf;
895 	u64 sum = 0;
896 
897 	buf = kmalloc(800 + 64, GFP_KERNEL);
898 	if (!buf)
899 		return 0;
900 	buf[0] = 0;
901 	sprintf(buf, "Experiment #%d (Format: <THREAD-NUM>:<Total loop time in ns>)",
902 		exp_idx);
903 
904 	for (i = 0; i < n && !torture_must_stop(); i++) {
905 		rt = &(reader_tasks[i]);
906 		sprintf(buf1, "%d: %llu\t", i, rt->last_duration_ns);
907 
908 		if (i % 5 == 0)
909 			strcat(buf, "\n");
910 		if (strlen(buf) >= 800) {
911 			pr_alert("%s", buf);
912 			buf[0] = 0;
913 		}
914 		strcat(buf, buf1);
915 
916 		sum += rt->last_duration_ns;
917 	}
918 	pr_alert("%s\n", buf);
919 
920 	kfree(buf);
921 	return sum;
922 }
923 
924 // The main_func is the main orchestrator, it performs a bunch of
925 // experiments.  For every experiment, it orders all the readers
926 // involved to start and waits for them to finish the experiment. It
927 // then reads their timestamps and starts the next experiment. Each
928 // experiment progresses from 1 concurrent reader to N of them at which
929 // point all the timestamps are printed.
930 static int main_func(void *arg)
931 {
932 	int exp, r;
933 	char buf1[64];
934 	char *buf;
935 	u64 *result_avg;
936 
937 	set_cpus_allowed_ptr(current, cpumask_of(nreaders % nr_cpu_ids));
938 	set_user_nice(current, MAX_NICE);
939 
940 	VERBOSE_SCALEOUT("main_func task started");
941 	result_avg = kzalloc(nruns * sizeof(*result_avg), GFP_KERNEL);
942 	buf = kzalloc(800 + 64, GFP_KERNEL);
943 	if (!result_avg || !buf) {
944 		SCALEOUT_ERRSTRING("out of memory");
945 		goto oom_exit;
946 	}
947 	if (holdoff)
948 		schedule_timeout_interruptible(holdoff * HZ);
949 
950 	// Wait for all threads to start.
951 	atomic_inc(&n_init);
952 	while (atomic_read(&n_init) < nreaders + 1)
953 		schedule_timeout_uninterruptible(1);
954 
955 	// Start exp readers up per experiment
956 	for (exp = 0; exp < nruns && !torture_must_stop(); exp++) {
957 		if (torture_must_stop())
958 			goto end;
959 
960 		reset_readers();
961 		atomic_set(&nreaders_exp, nreaders);
962 		atomic_set(&n_started, nreaders);
963 		atomic_set(&n_warmedup, nreaders);
964 		atomic_set(&n_cooleddown, nreaders);
965 
966 		exp_idx = exp;
967 
968 		for (r = 0; r < nreaders; r++) {
969 			smp_store_release(&reader_tasks[r].start_reader, 1);
970 			wake_up(&reader_tasks[r].wq);
971 		}
972 
973 		VERBOSE_SCALEOUT("main_func: experiment started, waiting for %d readers",
974 				nreaders);
975 
976 		wait_event(main_wq,
977 			   !atomic_read(&nreaders_exp) || torture_must_stop());
978 
979 		VERBOSE_SCALEOUT("main_func: experiment ended");
980 
981 		if (torture_must_stop())
982 			goto end;
983 
984 		result_avg[exp] = div_u64(1000 * process_durations(nreaders), nreaders * loops);
985 	}
986 
987 	// Print the average of all experiments
988 	SCALEOUT("END OF TEST. Calculating average duration per loop (nanoseconds)...\n");
989 
990 	pr_alert("Runs\tTime(ns)\n");
991 	for (exp = 0; exp < nruns; exp++) {
992 		u64 avg;
993 		u32 rem;
994 
995 		avg = div_u64_rem(result_avg[exp], 1000, &rem);
996 		sprintf(buf1, "%d\t%llu.%03u\n", exp + 1, avg, rem);
997 		strcat(buf, buf1);
998 		if (strlen(buf) >= 800) {
999 			pr_alert("%s", buf);
1000 			buf[0] = 0;
1001 		}
1002 	}
1003 
1004 	pr_alert("%s", buf);
1005 
1006 oom_exit:
1007 	// This will shutdown everything including us.
1008 	if (shutdown) {
1009 		shutdown_start = 1;
1010 		wake_up(&shutdown_wq);
1011 	}
1012 
1013 	// Wait for torture to stop us
1014 	while (!torture_must_stop())
1015 		schedule_timeout_uninterruptible(1);
1016 
1017 end:
1018 	torture_kthread_stopping("main_func");
1019 	kfree(result_avg);
1020 	kfree(buf);
1021 	return 0;
1022 }
1023 
1024 static void
1025 ref_scale_print_module_parms(struct ref_scale_ops *cur_ops, const char *tag)
1026 {
1027 	pr_alert("%s" SCALE_FLAG
1028 		 "--- %s:  verbose=%d verbose_batched=%d shutdown=%d holdoff=%d lookup_instances=%ld loops=%ld nreaders=%d nruns=%d readdelay=%d\n", scale_type, tag,
1029 		 verbose, verbose_batched, shutdown, holdoff, lookup_instances, loops, nreaders, nruns, readdelay);
1030 }
1031 
1032 static void
1033 ref_scale_cleanup(void)
1034 {
1035 	int i;
1036 
1037 	if (torture_cleanup_begin())
1038 		return;
1039 
1040 	if (!cur_ops) {
1041 		torture_cleanup_end();
1042 		return;
1043 	}
1044 
1045 	if (reader_tasks) {
1046 		for (i = 0; i < nreaders; i++)
1047 			torture_stop_kthread("ref_scale_reader",
1048 					     reader_tasks[i].task);
1049 	}
1050 	kfree(reader_tasks);
1051 
1052 	torture_stop_kthread("main_task", main_task);
1053 	kfree(main_task);
1054 
1055 	// Do scale-type-specific cleanup operations.
1056 	if (cur_ops->cleanup != NULL)
1057 		cur_ops->cleanup();
1058 
1059 	torture_cleanup_end();
1060 }
1061 
1062 // Shutdown kthread.  Just waits to be awakened, then shuts down system.
1063 static int
1064 ref_scale_shutdown(void *arg)
1065 {
1066 	wait_event_idle(shutdown_wq, shutdown_start);
1067 
1068 	smp_mb(); // Wake before output.
1069 	ref_scale_cleanup();
1070 	kernel_power_off();
1071 
1072 	return -EINVAL;
1073 }
1074 
1075 static int __init
1076 ref_scale_init(void)
1077 {
1078 	long i;
1079 	int firsterr = 0;
1080 	static struct ref_scale_ops *scale_ops[] = {
1081 		&rcu_ops, &srcu_ops, RCU_TRACE_OPS RCU_TASKS_OPS &refcnt_ops, &rwlock_ops,
1082 		&rwsem_ops, &lock_ops, &lock_irq_ops, &acqrel_ops, &clock_ops, &jiffies_ops,
1083 		&typesafe_ref_ops, &typesafe_lock_ops, &typesafe_seqlock_ops,
1084 	};
1085 
1086 	if (!torture_init_begin(scale_type, verbose))
1087 		return -EBUSY;
1088 
1089 	for (i = 0; i < ARRAY_SIZE(scale_ops); i++) {
1090 		cur_ops = scale_ops[i];
1091 		if (strcmp(scale_type, cur_ops->name) == 0)
1092 			break;
1093 	}
1094 	if (i == ARRAY_SIZE(scale_ops)) {
1095 		pr_alert("rcu-scale: invalid scale type: \"%s\"\n", scale_type);
1096 		pr_alert("rcu-scale types:");
1097 		for (i = 0; i < ARRAY_SIZE(scale_ops); i++)
1098 			pr_cont(" %s", scale_ops[i]->name);
1099 		pr_cont("\n");
1100 		firsterr = -EINVAL;
1101 		cur_ops = NULL;
1102 		goto unwind;
1103 	}
1104 	if (cur_ops->init)
1105 		if (!cur_ops->init()) {
1106 			firsterr = -EUCLEAN;
1107 			goto unwind;
1108 		}
1109 
1110 	ref_scale_print_module_parms(cur_ops, "Start of test");
1111 
1112 	// Shutdown task
1113 	if (shutdown) {
1114 		init_waitqueue_head(&shutdown_wq);
1115 		firsterr = torture_create_kthread(ref_scale_shutdown, NULL,
1116 						  shutdown_task);
1117 		if (torture_init_error(firsterr))
1118 			goto unwind;
1119 		schedule_timeout_uninterruptible(1);
1120 	}
1121 
1122 	// Reader tasks (default to ~75% of online CPUs).
1123 	if (nreaders < 0)
1124 		nreaders = (num_online_cpus() >> 1) + (num_online_cpus() >> 2);
1125 	if (WARN_ONCE(loops <= 0, "%s: loops = %ld, adjusted to 1\n", __func__, loops))
1126 		loops = 1;
1127 	if (WARN_ONCE(nreaders <= 0, "%s: nreaders = %d, adjusted to 1\n", __func__, nreaders))
1128 		nreaders = 1;
1129 	if (WARN_ONCE(nruns <= 0, "%s: nruns = %d, adjusted to 1\n", __func__, nruns))
1130 		nruns = 1;
1131 	reader_tasks = kcalloc(nreaders, sizeof(reader_tasks[0]),
1132 			       GFP_KERNEL);
1133 	if (!reader_tasks) {
1134 		SCALEOUT_ERRSTRING("out of memory");
1135 		firsterr = -ENOMEM;
1136 		goto unwind;
1137 	}
1138 
1139 	VERBOSE_SCALEOUT("Starting %d reader threads", nreaders);
1140 
1141 	for (i = 0; i < nreaders; i++) {
1142 		init_waitqueue_head(&reader_tasks[i].wq);
1143 		firsterr = torture_create_kthread(ref_scale_reader, (void *)i,
1144 						  reader_tasks[i].task);
1145 		if (torture_init_error(firsterr))
1146 			goto unwind;
1147 	}
1148 
1149 	// Main Task
1150 	init_waitqueue_head(&main_wq);
1151 	firsterr = torture_create_kthread(main_func, NULL, main_task);
1152 	if (torture_init_error(firsterr))
1153 		goto unwind;
1154 
1155 	torture_init_end();
1156 	return 0;
1157 
1158 unwind:
1159 	torture_init_end();
1160 	ref_scale_cleanup();
1161 	if (shutdown) {
1162 		WARN_ON(!IS_MODULE(CONFIG_RCU_REF_SCALE_TEST));
1163 		kernel_power_off();
1164 	}
1165 	return firsterr;
1166 }
1167 
1168 module_init(ref_scale_init);
1169 module_exit(ref_scale_cleanup);
1170