xref: /linux/kernel/rcu/refscale.c (revision 7f71507851fc7764b36a3221839607d3a45c2025)
1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // Scalability test comparing RCU vs other mechanisms
4 // for acquiring references on objects.
5 //
6 // Copyright (C) Google, 2020.
7 //
8 // Author: Joel Fernandes <joel@joelfernandes.org>
9 
10 #define pr_fmt(fmt) fmt
11 
12 #include <linux/atomic.h>
13 #include <linux/bitops.h>
14 #include <linux/completion.h>
15 #include <linux/cpu.h>
16 #include <linux/delay.h>
17 #include <linux/err.h>
18 #include <linux/init.h>
19 #include <linux/interrupt.h>
20 #include <linux/kthread.h>
21 #include <linux/kernel.h>
22 #include <linux/mm.h>
23 #include <linux/module.h>
24 #include <linux/moduleparam.h>
25 #include <linux/notifier.h>
26 #include <linux/percpu.h>
27 #include <linux/rcupdate.h>
28 #include <linux/rcupdate_trace.h>
29 #include <linux/reboot.h>
30 #include <linux/sched.h>
31 #include <linux/seq_buf.h>
32 #include <linux/spinlock.h>
33 #include <linux/smp.h>
34 #include <linux/stat.h>
35 #include <linux/srcu.h>
36 #include <linux/slab.h>
37 #include <linux/torture.h>
38 #include <linux/types.h>
39 
40 #include "rcu.h"
41 
42 #define SCALE_FLAG "-ref-scale: "
43 
44 #define SCALEOUT(s, x...) \
45 	pr_alert("%s" SCALE_FLAG s, scale_type, ## x)
46 
47 #define VERBOSE_SCALEOUT(s, x...) \
48 	do { \
49 		if (verbose) \
50 			pr_alert("%s" SCALE_FLAG s "\n", scale_type, ## x); \
51 	} while (0)
52 
53 static atomic_t verbose_batch_ctr;
54 
55 #define VERBOSE_SCALEOUT_BATCH(s, x...)							\
56 do {											\
57 	if (verbose &&									\
58 	    (verbose_batched <= 0 ||							\
59 	     !(atomic_inc_return(&verbose_batch_ctr) % verbose_batched))) {		\
60 		schedule_timeout_uninterruptible(1);					\
61 		pr_alert("%s" SCALE_FLAG s "\n", scale_type, ## x);			\
62 	}										\
63 } while (0)
64 
65 #define SCALEOUT_ERRSTRING(s, x...) pr_alert("%s" SCALE_FLAG "!!! " s "\n", scale_type, ## x)
66 
67 MODULE_DESCRIPTION("Scalability test for object reference mechanisms");
68 MODULE_LICENSE("GPL");
69 MODULE_AUTHOR("Joel Fernandes (Google) <joel@joelfernandes.org>");
70 
71 static char *scale_type = "rcu";
72 module_param(scale_type, charp, 0444);
73 MODULE_PARM_DESC(scale_type, "Type of test (rcu, srcu, refcnt, rwsem, rwlock.");
74 
75 torture_param(int, verbose, 0, "Enable verbose debugging printk()s");
76 torture_param(int, verbose_batched, 0, "Batch verbose debugging printk()s");
77 
78 // Number of seconds to extend warm-up and cool-down for multiple guest OSes
79 torture_param(long, guest_os_delay, 0,
80 	      "Number of seconds to extend warm-up/cool-down for multiple guest OSes.");
81 // Wait until there are multiple CPUs before starting test.
82 torture_param(int, holdoff, IS_BUILTIN(CONFIG_RCU_REF_SCALE_TEST) ? 10 : 0,
83 	      "Holdoff time before test start (s)");
84 // Number of typesafe_lookup structures, that is, the degree of concurrency.
85 torture_param(long, lookup_instances, 0, "Number of typesafe_lookup structures.");
86 // Number of loops per experiment, all readers execute operations concurrently.
87 torture_param(long, loops, 10000, "Number of loops per experiment.");
88 // Number of readers, with -1 defaulting to about 75% of the CPUs.
89 torture_param(int, nreaders, -1, "Number of readers, -1 for 75% of CPUs.");
90 // Number of runs.
91 torture_param(int, nruns, 30, "Number of experiments to run.");
92 // Reader delay in nanoseconds, 0 for no delay.
93 torture_param(int, readdelay, 0, "Read-side delay in nanoseconds.");
94 
95 #ifdef MODULE
96 # define REFSCALE_SHUTDOWN 0
97 #else
98 # define REFSCALE_SHUTDOWN 1
99 #endif
100 
101 torture_param(bool, shutdown, REFSCALE_SHUTDOWN,
102 	      "Shutdown at end of scalability tests.");
103 
104 struct reader_task {
105 	struct task_struct *task;
106 	int start_reader;
107 	wait_queue_head_t wq;
108 	u64 last_duration_ns;
109 };
110 
111 static struct task_struct *shutdown_task;
112 static wait_queue_head_t shutdown_wq;
113 
114 static struct task_struct *main_task;
115 static wait_queue_head_t main_wq;
116 static int shutdown_start;
117 
118 static struct reader_task *reader_tasks;
119 
120 // Number of readers that are part of the current experiment.
121 static atomic_t nreaders_exp;
122 
123 // Use to wait for all threads to start.
124 static atomic_t n_init;
125 static atomic_t n_started;
126 static atomic_t n_warmedup;
127 static atomic_t n_cooleddown;
128 
129 // Track which experiment is currently running.
130 static int exp_idx;
131 
132 // Operations vector for selecting different types of tests.
133 struct ref_scale_ops {
134 	bool (*init)(void);
135 	void (*cleanup)(void);
136 	void (*readsection)(const int nloops);
137 	void (*delaysection)(const int nloops, const int udl, const int ndl);
138 	const char *name;
139 };
140 
141 static const struct ref_scale_ops *cur_ops;
142 
143 static void un_delay(const int udl, const int ndl)
144 {
145 	if (udl)
146 		udelay(udl);
147 	if (ndl)
148 		ndelay(ndl);
149 }
150 
151 static void ref_rcu_read_section(const int nloops)
152 {
153 	int i;
154 
155 	for (i = nloops; i >= 0; i--) {
156 		rcu_read_lock();
157 		rcu_read_unlock();
158 	}
159 }
160 
161 static void ref_rcu_delay_section(const int nloops, const int udl, const int ndl)
162 {
163 	int i;
164 
165 	for (i = nloops; i >= 0; i--) {
166 		rcu_read_lock();
167 		un_delay(udl, ndl);
168 		rcu_read_unlock();
169 	}
170 }
171 
172 static bool rcu_sync_scale_init(void)
173 {
174 	return true;
175 }
176 
177 static const struct ref_scale_ops rcu_ops = {
178 	.init		= rcu_sync_scale_init,
179 	.readsection	= ref_rcu_read_section,
180 	.delaysection	= ref_rcu_delay_section,
181 	.name		= "rcu"
182 };
183 
184 // Definitions for SRCU ref scale testing.
185 DEFINE_STATIC_SRCU(srcu_refctl_scale);
186 static struct srcu_struct *srcu_ctlp = &srcu_refctl_scale;
187 
188 static void srcu_ref_scale_read_section(const int nloops)
189 {
190 	int i;
191 	int idx;
192 
193 	for (i = nloops; i >= 0; i--) {
194 		idx = srcu_read_lock(srcu_ctlp);
195 		srcu_read_unlock(srcu_ctlp, idx);
196 	}
197 }
198 
199 static void srcu_ref_scale_delay_section(const int nloops, const int udl, const int ndl)
200 {
201 	int i;
202 	int idx;
203 
204 	for (i = nloops; i >= 0; i--) {
205 		idx = srcu_read_lock(srcu_ctlp);
206 		un_delay(udl, ndl);
207 		srcu_read_unlock(srcu_ctlp, idx);
208 	}
209 }
210 
211 static const struct ref_scale_ops srcu_ops = {
212 	.init		= rcu_sync_scale_init,
213 	.readsection	= srcu_ref_scale_read_section,
214 	.delaysection	= srcu_ref_scale_delay_section,
215 	.name		= "srcu"
216 };
217 
218 static void srcu_lite_ref_scale_read_section(const int nloops)
219 {
220 	int i;
221 	int idx;
222 
223 	for (i = nloops; i >= 0; i--) {
224 		idx = srcu_read_lock_lite(srcu_ctlp);
225 		srcu_read_unlock_lite(srcu_ctlp, idx);
226 	}
227 }
228 
229 static void srcu_lite_ref_scale_delay_section(const int nloops, const int udl, const int ndl)
230 {
231 	int i;
232 	int idx;
233 
234 	for (i = nloops; i >= 0; i--) {
235 		idx = srcu_read_lock_lite(srcu_ctlp);
236 		un_delay(udl, ndl);
237 		srcu_read_unlock_lite(srcu_ctlp, idx);
238 	}
239 }
240 
241 static const struct ref_scale_ops srcu_lite_ops = {
242 	.init		= rcu_sync_scale_init,
243 	.readsection	= srcu_lite_ref_scale_read_section,
244 	.delaysection	= srcu_lite_ref_scale_delay_section,
245 	.name		= "srcu-lite"
246 };
247 
248 #ifdef CONFIG_TASKS_RCU
249 
250 // Definitions for RCU Tasks ref scale testing: Empty read markers.
251 // These definitions also work for RCU Rude readers.
252 static void rcu_tasks_ref_scale_read_section(const int nloops)
253 {
254 	int i;
255 
256 	for (i = nloops; i >= 0; i--)
257 		continue;
258 }
259 
260 static void rcu_tasks_ref_scale_delay_section(const int nloops, const int udl, const int ndl)
261 {
262 	int i;
263 
264 	for (i = nloops; i >= 0; i--)
265 		un_delay(udl, ndl);
266 }
267 
268 static const struct ref_scale_ops rcu_tasks_ops = {
269 	.init		= rcu_sync_scale_init,
270 	.readsection	= rcu_tasks_ref_scale_read_section,
271 	.delaysection	= rcu_tasks_ref_scale_delay_section,
272 	.name		= "rcu-tasks"
273 };
274 
275 #define RCU_TASKS_OPS &rcu_tasks_ops,
276 
277 #else // #ifdef CONFIG_TASKS_RCU
278 
279 #define RCU_TASKS_OPS
280 
281 #endif // #else // #ifdef CONFIG_TASKS_RCU
282 
283 #ifdef CONFIG_TASKS_TRACE_RCU
284 
285 // Definitions for RCU Tasks Trace ref scale testing.
286 static void rcu_trace_ref_scale_read_section(const int nloops)
287 {
288 	int i;
289 
290 	for (i = nloops; i >= 0; i--) {
291 		rcu_read_lock_trace();
292 		rcu_read_unlock_trace();
293 	}
294 }
295 
296 static void rcu_trace_ref_scale_delay_section(const int nloops, const int udl, const int ndl)
297 {
298 	int i;
299 
300 	for (i = nloops; i >= 0; i--) {
301 		rcu_read_lock_trace();
302 		un_delay(udl, ndl);
303 		rcu_read_unlock_trace();
304 	}
305 }
306 
307 static const struct ref_scale_ops rcu_trace_ops = {
308 	.init		= rcu_sync_scale_init,
309 	.readsection	= rcu_trace_ref_scale_read_section,
310 	.delaysection	= rcu_trace_ref_scale_delay_section,
311 	.name		= "rcu-trace"
312 };
313 
314 #define RCU_TRACE_OPS &rcu_trace_ops,
315 
316 #else // #ifdef CONFIG_TASKS_TRACE_RCU
317 
318 #define RCU_TRACE_OPS
319 
320 #endif // #else // #ifdef CONFIG_TASKS_TRACE_RCU
321 
322 // Definitions for reference count
323 static atomic_t refcnt;
324 
325 static void ref_refcnt_section(const int nloops)
326 {
327 	int i;
328 
329 	for (i = nloops; i >= 0; i--) {
330 		atomic_inc(&refcnt);
331 		atomic_dec(&refcnt);
332 	}
333 }
334 
335 static void ref_refcnt_delay_section(const int nloops, const int udl, const int ndl)
336 {
337 	int i;
338 
339 	for (i = nloops; i >= 0; i--) {
340 		atomic_inc(&refcnt);
341 		un_delay(udl, ndl);
342 		atomic_dec(&refcnt);
343 	}
344 }
345 
346 static const struct ref_scale_ops refcnt_ops = {
347 	.init		= rcu_sync_scale_init,
348 	.readsection	= ref_refcnt_section,
349 	.delaysection	= ref_refcnt_delay_section,
350 	.name		= "refcnt"
351 };
352 
353 // Definitions for rwlock
354 static rwlock_t test_rwlock;
355 
356 static bool ref_rwlock_init(void)
357 {
358 	rwlock_init(&test_rwlock);
359 	return true;
360 }
361 
362 static void ref_rwlock_section(const int nloops)
363 {
364 	int i;
365 
366 	for (i = nloops; i >= 0; i--) {
367 		read_lock(&test_rwlock);
368 		read_unlock(&test_rwlock);
369 	}
370 }
371 
372 static void ref_rwlock_delay_section(const int nloops, const int udl, const int ndl)
373 {
374 	int i;
375 
376 	for (i = nloops; i >= 0; i--) {
377 		read_lock(&test_rwlock);
378 		un_delay(udl, ndl);
379 		read_unlock(&test_rwlock);
380 	}
381 }
382 
383 static const struct ref_scale_ops rwlock_ops = {
384 	.init		= ref_rwlock_init,
385 	.readsection	= ref_rwlock_section,
386 	.delaysection	= ref_rwlock_delay_section,
387 	.name		= "rwlock"
388 };
389 
390 // Definitions for rwsem
391 static struct rw_semaphore test_rwsem;
392 
393 static bool ref_rwsem_init(void)
394 {
395 	init_rwsem(&test_rwsem);
396 	return true;
397 }
398 
399 static void ref_rwsem_section(const int nloops)
400 {
401 	int i;
402 
403 	for (i = nloops; i >= 0; i--) {
404 		down_read(&test_rwsem);
405 		up_read(&test_rwsem);
406 	}
407 }
408 
409 static void ref_rwsem_delay_section(const int nloops, const int udl, const int ndl)
410 {
411 	int i;
412 
413 	for (i = nloops; i >= 0; i--) {
414 		down_read(&test_rwsem);
415 		un_delay(udl, ndl);
416 		up_read(&test_rwsem);
417 	}
418 }
419 
420 static const struct ref_scale_ops rwsem_ops = {
421 	.init		= ref_rwsem_init,
422 	.readsection	= ref_rwsem_section,
423 	.delaysection	= ref_rwsem_delay_section,
424 	.name		= "rwsem"
425 };
426 
427 // Definitions for global spinlock
428 static DEFINE_RAW_SPINLOCK(test_lock);
429 
430 static void ref_lock_section(const int nloops)
431 {
432 	int i;
433 
434 	preempt_disable();
435 	for (i = nloops; i >= 0; i--) {
436 		raw_spin_lock(&test_lock);
437 		raw_spin_unlock(&test_lock);
438 	}
439 	preempt_enable();
440 }
441 
442 static void ref_lock_delay_section(const int nloops, const int udl, const int ndl)
443 {
444 	int i;
445 
446 	preempt_disable();
447 	for (i = nloops; i >= 0; i--) {
448 		raw_spin_lock(&test_lock);
449 		un_delay(udl, ndl);
450 		raw_spin_unlock(&test_lock);
451 	}
452 	preempt_enable();
453 }
454 
455 static const struct ref_scale_ops lock_ops = {
456 	.readsection	= ref_lock_section,
457 	.delaysection	= ref_lock_delay_section,
458 	.name		= "lock"
459 };
460 
461 // Definitions for global irq-save spinlock
462 
463 static void ref_lock_irq_section(const int nloops)
464 {
465 	unsigned long flags;
466 	int i;
467 
468 	preempt_disable();
469 	for (i = nloops; i >= 0; i--) {
470 		raw_spin_lock_irqsave(&test_lock, flags);
471 		raw_spin_unlock_irqrestore(&test_lock, flags);
472 	}
473 	preempt_enable();
474 }
475 
476 static void ref_lock_irq_delay_section(const int nloops, const int udl, const int ndl)
477 {
478 	unsigned long flags;
479 	int i;
480 
481 	preempt_disable();
482 	for (i = nloops; i >= 0; i--) {
483 		raw_spin_lock_irqsave(&test_lock, flags);
484 		un_delay(udl, ndl);
485 		raw_spin_unlock_irqrestore(&test_lock, flags);
486 	}
487 	preempt_enable();
488 }
489 
490 static const struct ref_scale_ops lock_irq_ops = {
491 	.readsection	= ref_lock_irq_section,
492 	.delaysection	= ref_lock_irq_delay_section,
493 	.name		= "lock-irq"
494 };
495 
496 // Definitions acquire-release.
497 static DEFINE_PER_CPU(unsigned long, test_acqrel);
498 
499 static void ref_acqrel_section(const int nloops)
500 {
501 	unsigned long x;
502 	int i;
503 
504 	preempt_disable();
505 	for (i = nloops; i >= 0; i--) {
506 		x = smp_load_acquire(this_cpu_ptr(&test_acqrel));
507 		smp_store_release(this_cpu_ptr(&test_acqrel), x + 1);
508 	}
509 	preempt_enable();
510 }
511 
512 static void ref_acqrel_delay_section(const int nloops, const int udl, const int ndl)
513 {
514 	unsigned long x;
515 	int i;
516 
517 	preempt_disable();
518 	for (i = nloops; i >= 0; i--) {
519 		x = smp_load_acquire(this_cpu_ptr(&test_acqrel));
520 		un_delay(udl, ndl);
521 		smp_store_release(this_cpu_ptr(&test_acqrel), x + 1);
522 	}
523 	preempt_enable();
524 }
525 
526 static const struct ref_scale_ops acqrel_ops = {
527 	.readsection	= ref_acqrel_section,
528 	.delaysection	= ref_acqrel_delay_section,
529 	.name		= "acqrel"
530 };
531 
532 static volatile u64 stopopts;
533 
534 static void ref_clock_section(const int nloops)
535 {
536 	u64 x = 0;
537 	int i;
538 
539 	preempt_disable();
540 	for (i = nloops; i >= 0; i--)
541 		x += ktime_get_real_fast_ns();
542 	preempt_enable();
543 	stopopts = x;
544 }
545 
546 static void ref_clock_delay_section(const int nloops, const int udl, const int ndl)
547 {
548 	u64 x = 0;
549 	int i;
550 
551 	preempt_disable();
552 	for (i = nloops; i >= 0; i--) {
553 		x += ktime_get_real_fast_ns();
554 		un_delay(udl, ndl);
555 	}
556 	preempt_enable();
557 	stopopts = x;
558 }
559 
560 static const struct ref_scale_ops clock_ops = {
561 	.readsection	= ref_clock_section,
562 	.delaysection	= ref_clock_delay_section,
563 	.name		= "clock"
564 };
565 
566 static void ref_jiffies_section(const int nloops)
567 {
568 	u64 x = 0;
569 	int i;
570 
571 	preempt_disable();
572 	for (i = nloops; i >= 0; i--)
573 		x += jiffies;
574 	preempt_enable();
575 	stopopts = x;
576 }
577 
578 static void ref_jiffies_delay_section(const int nloops, const int udl, const int ndl)
579 {
580 	u64 x = 0;
581 	int i;
582 
583 	preempt_disable();
584 	for (i = nloops; i >= 0; i--) {
585 		x += jiffies;
586 		un_delay(udl, ndl);
587 	}
588 	preempt_enable();
589 	stopopts = x;
590 }
591 
592 static const struct ref_scale_ops jiffies_ops = {
593 	.readsection	= ref_jiffies_section,
594 	.delaysection	= ref_jiffies_delay_section,
595 	.name		= "jiffies"
596 };
597 
598 ////////////////////////////////////////////////////////////////////////
599 //
600 // Methods leveraging SLAB_TYPESAFE_BY_RCU.
601 //
602 
603 // Item to look up in a typesafe manner.  Array of pointers to these.
604 struct refscale_typesafe {
605 	atomic_t rts_refctr;  // Used by all flavors
606 	spinlock_t rts_lock;
607 	seqlock_t rts_seqlock;
608 	unsigned int a;
609 	unsigned int b;
610 };
611 
612 static struct kmem_cache *typesafe_kmem_cachep;
613 static struct refscale_typesafe **rtsarray;
614 static long rtsarray_size;
615 static DEFINE_TORTURE_RANDOM_PERCPU(refscale_rand);
616 static bool (*rts_acquire)(struct refscale_typesafe *rtsp, unsigned int *start);
617 static bool (*rts_release)(struct refscale_typesafe *rtsp, unsigned int start);
618 
619 // Conditionally acquire an explicit in-structure reference count.
620 static bool typesafe_ref_acquire(struct refscale_typesafe *rtsp, unsigned int *start)
621 {
622 	return atomic_inc_not_zero(&rtsp->rts_refctr);
623 }
624 
625 // Unconditionally release an explicit in-structure reference count.
626 static bool typesafe_ref_release(struct refscale_typesafe *rtsp, unsigned int start)
627 {
628 	if (!atomic_dec_return(&rtsp->rts_refctr)) {
629 		WRITE_ONCE(rtsp->a, rtsp->a + 1);
630 		kmem_cache_free(typesafe_kmem_cachep, rtsp);
631 	}
632 	return true;
633 }
634 
635 // Unconditionally acquire an explicit in-structure spinlock.
636 static bool typesafe_lock_acquire(struct refscale_typesafe *rtsp, unsigned int *start)
637 {
638 	spin_lock(&rtsp->rts_lock);
639 	return true;
640 }
641 
642 // Unconditionally release an explicit in-structure spinlock.
643 static bool typesafe_lock_release(struct refscale_typesafe *rtsp, unsigned int start)
644 {
645 	spin_unlock(&rtsp->rts_lock);
646 	return true;
647 }
648 
649 // Unconditionally acquire an explicit in-structure sequence lock.
650 static bool typesafe_seqlock_acquire(struct refscale_typesafe *rtsp, unsigned int *start)
651 {
652 	*start = read_seqbegin(&rtsp->rts_seqlock);
653 	return true;
654 }
655 
656 // Conditionally release an explicit in-structure sequence lock.  Return
657 // true if this release was successful, that is, if no retry is required.
658 static bool typesafe_seqlock_release(struct refscale_typesafe *rtsp, unsigned int start)
659 {
660 	return !read_seqretry(&rtsp->rts_seqlock, start);
661 }
662 
663 // Do a read-side critical section with the specified delay in
664 // microseconds and nanoseconds inserted so as to increase probability
665 // of failure.
666 static void typesafe_delay_section(const int nloops, const int udl, const int ndl)
667 {
668 	unsigned int a;
669 	unsigned int b;
670 	int i;
671 	long idx;
672 	struct refscale_typesafe *rtsp;
673 	unsigned int start;
674 
675 	for (i = nloops; i >= 0; i--) {
676 		preempt_disable();
677 		idx = torture_random(this_cpu_ptr(&refscale_rand)) % rtsarray_size;
678 		preempt_enable();
679 retry:
680 		rcu_read_lock();
681 		rtsp = rcu_dereference(rtsarray[idx]);
682 		a = READ_ONCE(rtsp->a);
683 		if (!rts_acquire(rtsp, &start)) {
684 			rcu_read_unlock();
685 			goto retry;
686 		}
687 		if (a != READ_ONCE(rtsp->a)) {
688 			(void)rts_release(rtsp, start);
689 			rcu_read_unlock();
690 			goto retry;
691 		}
692 		un_delay(udl, ndl);
693 		b = READ_ONCE(rtsp->a);
694 		// Remember, seqlock read-side release can fail.
695 		if (!rts_release(rtsp, start)) {
696 			rcu_read_unlock();
697 			goto retry;
698 		}
699 		WARN_ONCE(a != b, "Re-read of ->a changed from %u to %u.\n", a, b);
700 		b = rtsp->b;
701 		rcu_read_unlock();
702 		WARN_ON_ONCE(a * a != b);
703 	}
704 }
705 
706 // Because the acquisition and release methods are expensive, there
707 // is no point in optimizing away the un_delay() function's two checks.
708 // Thus simply define typesafe_read_section() as a simple wrapper around
709 // typesafe_delay_section().
710 static void typesafe_read_section(const int nloops)
711 {
712 	typesafe_delay_section(nloops, 0, 0);
713 }
714 
715 // Allocate and initialize one refscale_typesafe structure.
716 static struct refscale_typesafe *typesafe_alloc_one(void)
717 {
718 	struct refscale_typesafe *rtsp;
719 
720 	rtsp = kmem_cache_alloc(typesafe_kmem_cachep, GFP_KERNEL);
721 	if (!rtsp)
722 		return NULL;
723 	atomic_set(&rtsp->rts_refctr, 1);
724 	WRITE_ONCE(rtsp->a, rtsp->a + 1);
725 	WRITE_ONCE(rtsp->b, rtsp->a * rtsp->a);
726 	return rtsp;
727 }
728 
729 // Slab-allocator constructor for refscale_typesafe structures created
730 // out of a new slab of system memory.
731 static void refscale_typesafe_ctor(void *rtsp_in)
732 {
733 	struct refscale_typesafe *rtsp = rtsp_in;
734 
735 	spin_lock_init(&rtsp->rts_lock);
736 	seqlock_init(&rtsp->rts_seqlock);
737 	preempt_disable();
738 	rtsp->a = torture_random(this_cpu_ptr(&refscale_rand));
739 	preempt_enable();
740 }
741 
742 static const struct ref_scale_ops typesafe_ref_ops;
743 static const struct ref_scale_ops typesafe_lock_ops;
744 static const struct ref_scale_ops typesafe_seqlock_ops;
745 
746 // Initialize for a typesafe test.
747 static bool typesafe_init(void)
748 {
749 	long idx;
750 	long si = lookup_instances;
751 
752 	typesafe_kmem_cachep = kmem_cache_create("refscale_typesafe",
753 						 sizeof(struct refscale_typesafe), sizeof(void *),
754 						 SLAB_TYPESAFE_BY_RCU, refscale_typesafe_ctor);
755 	if (!typesafe_kmem_cachep)
756 		return false;
757 	if (si < 0)
758 		si = -si * nr_cpu_ids;
759 	else if (si == 0)
760 		si = nr_cpu_ids;
761 	rtsarray_size = si;
762 	rtsarray = kcalloc(si, sizeof(*rtsarray), GFP_KERNEL);
763 	if (!rtsarray)
764 		return false;
765 	for (idx = 0; idx < rtsarray_size; idx++) {
766 		rtsarray[idx] = typesafe_alloc_one();
767 		if (!rtsarray[idx])
768 			return false;
769 	}
770 	if (cur_ops == &typesafe_ref_ops) {
771 		rts_acquire = typesafe_ref_acquire;
772 		rts_release = typesafe_ref_release;
773 	} else if (cur_ops == &typesafe_lock_ops) {
774 		rts_acquire = typesafe_lock_acquire;
775 		rts_release = typesafe_lock_release;
776 	} else if (cur_ops == &typesafe_seqlock_ops) {
777 		rts_acquire = typesafe_seqlock_acquire;
778 		rts_release = typesafe_seqlock_release;
779 	} else {
780 		WARN_ON_ONCE(1);
781 		return false;
782 	}
783 	return true;
784 }
785 
786 // Clean up after a typesafe test.
787 static void typesafe_cleanup(void)
788 {
789 	long idx;
790 
791 	if (rtsarray) {
792 		for (idx = 0; idx < rtsarray_size; idx++)
793 			kmem_cache_free(typesafe_kmem_cachep, rtsarray[idx]);
794 		kfree(rtsarray);
795 		rtsarray = NULL;
796 		rtsarray_size = 0;
797 	}
798 	kmem_cache_destroy(typesafe_kmem_cachep);
799 	typesafe_kmem_cachep = NULL;
800 	rts_acquire = NULL;
801 	rts_release = NULL;
802 }
803 
804 // The typesafe_init() function distinguishes these structures by address.
805 static const struct ref_scale_ops typesafe_ref_ops = {
806 	.init		= typesafe_init,
807 	.cleanup	= typesafe_cleanup,
808 	.readsection	= typesafe_read_section,
809 	.delaysection	= typesafe_delay_section,
810 	.name		= "typesafe_ref"
811 };
812 
813 static const struct ref_scale_ops typesafe_lock_ops = {
814 	.init		= typesafe_init,
815 	.cleanup	= typesafe_cleanup,
816 	.readsection	= typesafe_read_section,
817 	.delaysection	= typesafe_delay_section,
818 	.name		= "typesafe_lock"
819 };
820 
821 static const struct ref_scale_ops typesafe_seqlock_ops = {
822 	.init		= typesafe_init,
823 	.cleanup	= typesafe_cleanup,
824 	.readsection	= typesafe_read_section,
825 	.delaysection	= typesafe_delay_section,
826 	.name		= "typesafe_seqlock"
827 };
828 
829 static void rcu_scale_one_reader(void)
830 {
831 	if (readdelay <= 0)
832 		cur_ops->readsection(loops);
833 	else
834 		cur_ops->delaysection(loops, readdelay / 1000, readdelay % 1000);
835 }
836 
837 // Warm up cache, or, if needed run a series of rcu_scale_one_reader()
838 // to allow multiple rcuscale guest OSes to collect mutually valid data.
839 static void rcu_scale_warm_cool(void)
840 {
841 	unsigned long jdone = jiffies + (guest_os_delay > 0 ? guest_os_delay * HZ : -1);
842 
843 	do {
844 		rcu_scale_one_reader();
845 		cond_resched();
846 	} while (time_before(jiffies, jdone));
847 }
848 
849 // Reader kthread.  Repeatedly does empty RCU read-side
850 // critical section, minimizing update-side interference.
851 static int
852 ref_scale_reader(void *arg)
853 {
854 	unsigned long flags;
855 	long me = (long)arg;
856 	struct reader_task *rt = &(reader_tasks[me]);
857 	u64 start;
858 	s64 duration;
859 
860 	VERBOSE_SCALEOUT_BATCH("ref_scale_reader %ld: task started", me);
861 	WARN_ON_ONCE(set_cpus_allowed_ptr(current, cpumask_of(me % nr_cpu_ids)));
862 	set_user_nice(current, MAX_NICE);
863 	atomic_inc(&n_init);
864 	if (holdoff)
865 		schedule_timeout_interruptible(holdoff * HZ);
866 repeat:
867 	VERBOSE_SCALEOUT_BATCH("ref_scale_reader %ld: waiting to start next experiment on cpu %d", me, raw_smp_processor_id());
868 
869 	// Wait for signal that this reader can start.
870 	wait_event(rt->wq, (atomic_read(&nreaders_exp) && smp_load_acquire(&rt->start_reader)) ||
871 			   torture_must_stop());
872 
873 	if (torture_must_stop())
874 		goto end;
875 
876 	// Make sure that the CPU is affinitized appropriately during testing.
877 	WARN_ON_ONCE(raw_smp_processor_id() != me % nr_cpu_ids);
878 
879 	WRITE_ONCE(rt->start_reader, 0);
880 	if (!atomic_dec_return(&n_started))
881 		while (atomic_read_acquire(&n_started))
882 			cpu_relax();
883 
884 	VERBOSE_SCALEOUT_BATCH("ref_scale_reader %ld: experiment %d started", me, exp_idx);
885 
886 
887 	// To reduce noise, do an initial cache-warming invocation, check
888 	// in, and then keep warming until everyone has checked in.
889 	rcu_scale_one_reader();
890 	if (!atomic_dec_return(&n_warmedup))
891 		while (atomic_read_acquire(&n_warmedup))
892 			rcu_scale_one_reader();
893 	// Also keep interrupts disabled.  This also has the effect
894 	// of preventing entries into slow path for rcu_read_unlock().
895 	local_irq_save(flags);
896 	start = ktime_get_mono_fast_ns();
897 
898 	rcu_scale_one_reader();
899 
900 	duration = ktime_get_mono_fast_ns() - start;
901 	local_irq_restore(flags);
902 
903 	rt->last_duration_ns = WARN_ON_ONCE(duration < 0) ? 0 : duration;
904 	// To reduce runtime-skew noise, do maintain-load invocations until
905 	// everyone is done.
906 	if (!atomic_dec_return(&n_cooleddown))
907 		while (atomic_read_acquire(&n_cooleddown))
908 			rcu_scale_one_reader();
909 
910 	if (atomic_dec_and_test(&nreaders_exp))
911 		wake_up(&main_wq);
912 
913 	VERBOSE_SCALEOUT_BATCH("ref_scale_reader %ld: experiment %d ended, (readers remaining=%d)",
914 				me, exp_idx, atomic_read(&nreaders_exp));
915 
916 	if (!torture_must_stop())
917 		goto repeat;
918 end:
919 	torture_kthread_stopping("ref_scale_reader");
920 	return 0;
921 }
922 
923 static void reset_readers(void)
924 {
925 	int i;
926 	struct reader_task *rt;
927 
928 	for (i = 0; i < nreaders; i++) {
929 		rt = &(reader_tasks[i]);
930 
931 		rt->last_duration_ns = 0;
932 	}
933 }
934 
935 // Print the results of each reader and return the sum of all their durations.
936 static u64 process_durations(int n)
937 {
938 	int i;
939 	struct reader_task *rt;
940 	struct seq_buf s;
941 	char *buf;
942 	u64 sum = 0;
943 
944 	buf = kmalloc(800 + 64, GFP_KERNEL);
945 	if (!buf)
946 		return 0;
947 	seq_buf_init(&s, buf, 800 + 64);
948 
949 	seq_buf_printf(&s, "Experiment #%d (Format: <THREAD-NUM>:<Total loop time in ns>)",
950 		       exp_idx);
951 
952 	for (i = 0; i < n && !torture_must_stop(); i++) {
953 		rt = &(reader_tasks[i]);
954 
955 		if (i % 5 == 0)
956 			seq_buf_putc(&s, '\n');
957 
958 		if (seq_buf_used(&s) >= 800) {
959 			pr_alert("%s", seq_buf_str(&s));
960 			seq_buf_clear(&s);
961 		}
962 
963 		seq_buf_printf(&s, "%d: %llu\t", i, rt->last_duration_ns);
964 
965 		sum += rt->last_duration_ns;
966 	}
967 	pr_alert("%s\n", seq_buf_str(&s));
968 
969 	kfree(buf);
970 	return sum;
971 }
972 
973 // The main_func is the main orchestrator, it performs a bunch of
974 // experiments.  For every experiment, it orders all the readers
975 // involved to start and waits for them to finish the experiment. It
976 // then reads their timestamps and starts the next experiment. Each
977 // experiment progresses from 1 concurrent reader to N of them at which
978 // point all the timestamps are printed.
979 static int main_func(void *arg)
980 {
981 	int exp, r;
982 	char buf1[64];
983 	char *buf;
984 	u64 *result_avg;
985 
986 	set_cpus_allowed_ptr(current, cpumask_of(nreaders % nr_cpu_ids));
987 	set_user_nice(current, MAX_NICE);
988 
989 	VERBOSE_SCALEOUT("main_func task started");
990 	result_avg = kzalloc(nruns * sizeof(*result_avg), GFP_KERNEL);
991 	buf = kzalloc(800 + 64, GFP_KERNEL);
992 	if (!result_avg || !buf) {
993 		SCALEOUT_ERRSTRING("out of memory");
994 		goto oom_exit;
995 	}
996 	if (holdoff)
997 		schedule_timeout_interruptible(holdoff * HZ);
998 
999 	// Wait for all threads to start.
1000 	atomic_inc(&n_init);
1001 	while (atomic_read(&n_init) < nreaders + 1)
1002 		schedule_timeout_uninterruptible(1);
1003 
1004 	// Start exp readers up per experiment
1005 	rcu_scale_warm_cool();
1006 	for (exp = 0; exp < nruns && !torture_must_stop(); exp++) {
1007 		if (torture_must_stop())
1008 			goto end;
1009 
1010 		reset_readers();
1011 		atomic_set(&nreaders_exp, nreaders);
1012 		atomic_set(&n_started, nreaders);
1013 		atomic_set(&n_warmedup, nreaders);
1014 		atomic_set(&n_cooleddown, nreaders);
1015 
1016 		exp_idx = exp;
1017 
1018 		for (r = 0; r < nreaders; r++) {
1019 			smp_store_release(&reader_tasks[r].start_reader, 1);
1020 			wake_up(&reader_tasks[r].wq);
1021 		}
1022 
1023 		VERBOSE_SCALEOUT("main_func: experiment started, waiting for %d readers",
1024 				nreaders);
1025 
1026 		wait_event(main_wq,
1027 			   !atomic_read(&nreaders_exp) || torture_must_stop());
1028 
1029 		VERBOSE_SCALEOUT("main_func: experiment ended");
1030 
1031 		if (torture_must_stop())
1032 			goto end;
1033 
1034 		result_avg[exp] = div_u64(1000 * process_durations(nreaders), nreaders * loops);
1035 	}
1036 	rcu_scale_warm_cool();
1037 
1038 	// Print the average of all experiments
1039 	SCALEOUT("END OF TEST. Calculating average duration per loop (nanoseconds)...\n");
1040 
1041 	pr_alert("Runs\tTime(ns)\n");
1042 	for (exp = 0; exp < nruns; exp++) {
1043 		u64 avg;
1044 		u32 rem;
1045 
1046 		avg = div_u64_rem(result_avg[exp], 1000, &rem);
1047 		sprintf(buf1, "%d\t%llu.%03u\n", exp + 1, avg, rem);
1048 		strcat(buf, buf1);
1049 		if (strlen(buf) >= 800) {
1050 			pr_alert("%s", buf);
1051 			buf[0] = 0;
1052 		}
1053 	}
1054 
1055 	pr_alert("%s", buf);
1056 
1057 oom_exit:
1058 	// This will shutdown everything including us.
1059 	if (shutdown) {
1060 		shutdown_start = 1;
1061 		wake_up(&shutdown_wq);
1062 	}
1063 
1064 	// Wait for torture to stop us
1065 	while (!torture_must_stop())
1066 		schedule_timeout_uninterruptible(1);
1067 
1068 end:
1069 	torture_kthread_stopping("main_func");
1070 	kfree(result_avg);
1071 	kfree(buf);
1072 	return 0;
1073 }
1074 
1075 static void
1076 ref_scale_print_module_parms(const struct ref_scale_ops *cur_ops, const char *tag)
1077 {
1078 	pr_alert("%s" SCALE_FLAG
1079 		 "--- %s:  verbose=%d verbose_batched=%d shutdown=%d holdoff=%d lookup_instances=%ld loops=%ld nreaders=%d nruns=%d readdelay=%d\n", scale_type, tag,
1080 		 verbose, verbose_batched, shutdown, holdoff, lookup_instances, loops, nreaders, nruns, readdelay);
1081 }
1082 
1083 static void
1084 ref_scale_cleanup(void)
1085 {
1086 	int i;
1087 
1088 	if (torture_cleanup_begin())
1089 		return;
1090 
1091 	if (!cur_ops) {
1092 		torture_cleanup_end();
1093 		return;
1094 	}
1095 
1096 	if (reader_tasks) {
1097 		for (i = 0; i < nreaders; i++)
1098 			torture_stop_kthread("ref_scale_reader",
1099 					     reader_tasks[i].task);
1100 	}
1101 	kfree(reader_tasks);
1102 
1103 	torture_stop_kthread("main_task", main_task);
1104 	kfree(main_task);
1105 
1106 	// Do scale-type-specific cleanup operations.
1107 	if (cur_ops->cleanup != NULL)
1108 		cur_ops->cleanup();
1109 
1110 	torture_cleanup_end();
1111 }
1112 
1113 // Shutdown kthread.  Just waits to be awakened, then shuts down system.
1114 static int
1115 ref_scale_shutdown(void *arg)
1116 {
1117 	wait_event_idle(shutdown_wq, shutdown_start);
1118 
1119 	smp_mb(); // Wake before output.
1120 	ref_scale_cleanup();
1121 	kernel_power_off();
1122 
1123 	return -EINVAL;
1124 }
1125 
1126 static int __init
1127 ref_scale_init(void)
1128 {
1129 	long i;
1130 	int firsterr = 0;
1131 	static const struct ref_scale_ops *scale_ops[] = {
1132 		&rcu_ops, &srcu_ops, &srcu_lite_ops, RCU_TRACE_OPS RCU_TASKS_OPS
1133 		&refcnt_ops, &rwlock_ops, &rwsem_ops, &lock_ops, &lock_irq_ops, &acqrel_ops,
1134 		&clock_ops, &jiffies_ops, &typesafe_ref_ops, &typesafe_lock_ops,
1135 		&typesafe_seqlock_ops,
1136 	};
1137 
1138 	if (!torture_init_begin(scale_type, verbose))
1139 		return -EBUSY;
1140 
1141 	for (i = 0; i < ARRAY_SIZE(scale_ops); i++) {
1142 		cur_ops = scale_ops[i];
1143 		if (strcmp(scale_type, cur_ops->name) == 0)
1144 			break;
1145 	}
1146 	if (i == ARRAY_SIZE(scale_ops)) {
1147 		pr_alert("rcu-scale: invalid scale type: \"%s\"\n", scale_type);
1148 		pr_alert("rcu-scale types:");
1149 		for (i = 0; i < ARRAY_SIZE(scale_ops); i++)
1150 			pr_cont(" %s", scale_ops[i]->name);
1151 		pr_cont("\n");
1152 		firsterr = -EINVAL;
1153 		cur_ops = NULL;
1154 		goto unwind;
1155 	}
1156 	if (cur_ops->init)
1157 		if (!cur_ops->init()) {
1158 			firsterr = -EUCLEAN;
1159 			goto unwind;
1160 		}
1161 
1162 	ref_scale_print_module_parms(cur_ops, "Start of test");
1163 
1164 	// Shutdown task
1165 	if (shutdown) {
1166 		init_waitqueue_head(&shutdown_wq);
1167 		firsterr = torture_create_kthread(ref_scale_shutdown, NULL,
1168 						  shutdown_task);
1169 		if (torture_init_error(firsterr))
1170 			goto unwind;
1171 		schedule_timeout_uninterruptible(1);
1172 	}
1173 
1174 	// Reader tasks (default to ~75% of online CPUs).
1175 	if (nreaders < 0)
1176 		nreaders = (num_online_cpus() >> 1) + (num_online_cpus() >> 2);
1177 	if (WARN_ONCE(loops <= 0, "%s: loops = %ld, adjusted to 1\n", __func__, loops))
1178 		loops = 1;
1179 	if (WARN_ONCE(nreaders <= 0, "%s: nreaders = %d, adjusted to 1\n", __func__, nreaders))
1180 		nreaders = 1;
1181 	if (WARN_ONCE(nruns <= 0, "%s: nruns = %d, adjusted to 1\n", __func__, nruns))
1182 		nruns = 1;
1183 	reader_tasks = kcalloc(nreaders, sizeof(reader_tasks[0]),
1184 			       GFP_KERNEL);
1185 	if (!reader_tasks) {
1186 		SCALEOUT_ERRSTRING("out of memory");
1187 		firsterr = -ENOMEM;
1188 		goto unwind;
1189 	}
1190 
1191 	VERBOSE_SCALEOUT("Starting %d reader threads", nreaders);
1192 
1193 	for (i = 0; i < nreaders; i++) {
1194 		init_waitqueue_head(&reader_tasks[i].wq);
1195 		firsterr = torture_create_kthread(ref_scale_reader, (void *)i,
1196 						  reader_tasks[i].task);
1197 		if (torture_init_error(firsterr))
1198 			goto unwind;
1199 	}
1200 
1201 	// Main Task
1202 	init_waitqueue_head(&main_wq);
1203 	firsterr = torture_create_kthread(main_func, NULL, main_task);
1204 	if (torture_init_error(firsterr))
1205 		goto unwind;
1206 
1207 	torture_init_end();
1208 	return 0;
1209 
1210 unwind:
1211 	torture_init_end();
1212 	ref_scale_cleanup();
1213 	if (shutdown) {
1214 		WARN_ON(!IS_MODULE(CONFIG_RCU_REF_SCALE_TEST));
1215 		kernel_power_off();
1216 	}
1217 	return firsterr;
1218 }
1219 
1220 module_init(ref_scale_init);
1221 module_exit(ref_scale_cleanup);
1222