xref: /linux/kernel/rcu/refscale.c (revision 5cd2340cb6a383d04fd88e48fabc2a21a909d6a1)
1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // Scalability test comparing RCU vs other mechanisms
4 // for acquiring references on objects.
5 //
6 // Copyright (C) Google, 2020.
7 //
8 // Author: Joel Fernandes <joel@joelfernandes.org>
9 
10 #define pr_fmt(fmt) fmt
11 
12 #include <linux/atomic.h>
13 #include <linux/bitops.h>
14 #include <linux/completion.h>
15 #include <linux/cpu.h>
16 #include <linux/delay.h>
17 #include <linux/err.h>
18 #include <linux/init.h>
19 #include <linux/interrupt.h>
20 #include <linux/kthread.h>
21 #include <linux/kernel.h>
22 #include <linux/mm.h>
23 #include <linux/module.h>
24 #include <linux/moduleparam.h>
25 #include <linux/notifier.h>
26 #include <linux/percpu.h>
27 #include <linux/rcupdate.h>
28 #include <linux/rcupdate_trace.h>
29 #include <linux/reboot.h>
30 #include <linux/sched.h>
31 #include <linux/spinlock.h>
32 #include <linux/smp.h>
33 #include <linux/stat.h>
34 #include <linux/srcu.h>
35 #include <linux/slab.h>
36 #include <linux/torture.h>
37 #include <linux/types.h>
38 
39 #include "rcu.h"
40 
41 #define SCALE_FLAG "-ref-scale: "
42 
43 #define SCALEOUT(s, x...) \
44 	pr_alert("%s" SCALE_FLAG s, scale_type, ## x)
45 
46 #define VERBOSE_SCALEOUT(s, x...) \
47 	do { \
48 		if (verbose) \
49 			pr_alert("%s" SCALE_FLAG s "\n", scale_type, ## x); \
50 	} while (0)
51 
52 static atomic_t verbose_batch_ctr;
53 
54 #define VERBOSE_SCALEOUT_BATCH(s, x...)							\
55 do {											\
56 	if (verbose &&									\
57 	    (verbose_batched <= 0 ||							\
58 	     !(atomic_inc_return(&verbose_batch_ctr) % verbose_batched))) {		\
59 		schedule_timeout_uninterruptible(1);					\
60 		pr_alert("%s" SCALE_FLAG s "\n", scale_type, ## x);			\
61 	}										\
62 } while (0)
63 
64 #define SCALEOUT_ERRSTRING(s, x...) pr_alert("%s" SCALE_FLAG "!!! " s "\n", scale_type, ## x)
65 
66 MODULE_DESCRIPTION("Scalability test for object reference mechanisms");
67 MODULE_LICENSE("GPL");
68 MODULE_AUTHOR("Joel Fernandes (Google) <joel@joelfernandes.org>");
69 
70 static char *scale_type = "rcu";
71 module_param(scale_type, charp, 0444);
72 MODULE_PARM_DESC(scale_type, "Type of test (rcu, srcu, refcnt, rwsem, rwlock.");
73 
74 torture_param(int, verbose, 0, "Enable verbose debugging printk()s");
75 torture_param(int, verbose_batched, 0, "Batch verbose debugging printk()s");
76 
77 // Wait until there are multiple CPUs before starting test.
78 torture_param(int, holdoff, IS_BUILTIN(CONFIG_RCU_REF_SCALE_TEST) ? 10 : 0,
79 	      "Holdoff time before test start (s)");
80 // Number of typesafe_lookup structures, that is, the degree of concurrency.
81 torture_param(long, lookup_instances, 0, "Number of typesafe_lookup structures.");
82 // Number of loops per experiment, all readers execute operations concurrently.
83 torture_param(long, loops, 10000, "Number of loops per experiment.");
84 // Number of readers, with -1 defaulting to about 75% of the CPUs.
85 torture_param(int, nreaders, -1, "Number of readers, -1 for 75% of CPUs.");
86 // Number of runs.
87 torture_param(int, nruns, 30, "Number of experiments to run.");
88 // Reader delay in nanoseconds, 0 for no delay.
89 torture_param(int, readdelay, 0, "Read-side delay in nanoseconds.");
90 
91 #ifdef MODULE
92 # define REFSCALE_SHUTDOWN 0
93 #else
94 # define REFSCALE_SHUTDOWN 1
95 #endif
96 
97 torture_param(bool, shutdown, REFSCALE_SHUTDOWN,
98 	      "Shutdown at end of scalability tests.");
99 
100 struct reader_task {
101 	struct task_struct *task;
102 	int start_reader;
103 	wait_queue_head_t wq;
104 	u64 last_duration_ns;
105 };
106 
107 static struct task_struct *shutdown_task;
108 static wait_queue_head_t shutdown_wq;
109 
110 static struct task_struct *main_task;
111 static wait_queue_head_t main_wq;
112 static int shutdown_start;
113 
114 static struct reader_task *reader_tasks;
115 
116 // Number of readers that are part of the current experiment.
117 static atomic_t nreaders_exp;
118 
119 // Use to wait for all threads to start.
120 static atomic_t n_init;
121 static atomic_t n_started;
122 static atomic_t n_warmedup;
123 static atomic_t n_cooleddown;
124 
125 // Track which experiment is currently running.
126 static int exp_idx;
127 
128 // Operations vector for selecting different types of tests.
129 struct ref_scale_ops {
130 	bool (*init)(void);
131 	void (*cleanup)(void);
132 	void (*readsection)(const int nloops);
133 	void (*delaysection)(const int nloops, const int udl, const int ndl);
134 	const char *name;
135 };
136 
137 static struct ref_scale_ops *cur_ops;
138 
139 static void un_delay(const int udl, const int ndl)
140 {
141 	if (udl)
142 		udelay(udl);
143 	if (ndl)
144 		ndelay(ndl);
145 }
146 
147 static void ref_rcu_read_section(const int nloops)
148 {
149 	int i;
150 
151 	for (i = nloops; i >= 0; i--) {
152 		rcu_read_lock();
153 		rcu_read_unlock();
154 	}
155 }
156 
157 static void ref_rcu_delay_section(const int nloops, const int udl, const int ndl)
158 {
159 	int i;
160 
161 	for (i = nloops; i >= 0; i--) {
162 		rcu_read_lock();
163 		un_delay(udl, ndl);
164 		rcu_read_unlock();
165 	}
166 }
167 
168 static bool rcu_sync_scale_init(void)
169 {
170 	return true;
171 }
172 
173 static struct ref_scale_ops rcu_ops = {
174 	.init		= rcu_sync_scale_init,
175 	.readsection	= ref_rcu_read_section,
176 	.delaysection	= ref_rcu_delay_section,
177 	.name		= "rcu"
178 };
179 
180 // Definitions for SRCU ref scale testing.
181 DEFINE_STATIC_SRCU(srcu_refctl_scale);
182 static struct srcu_struct *srcu_ctlp = &srcu_refctl_scale;
183 
184 static void srcu_ref_scale_read_section(const int nloops)
185 {
186 	int i;
187 	int idx;
188 
189 	for (i = nloops; i >= 0; i--) {
190 		idx = srcu_read_lock(srcu_ctlp);
191 		srcu_read_unlock(srcu_ctlp, idx);
192 	}
193 }
194 
195 static void srcu_ref_scale_delay_section(const int nloops, const int udl, const int ndl)
196 {
197 	int i;
198 	int idx;
199 
200 	for (i = nloops; i >= 0; i--) {
201 		idx = srcu_read_lock(srcu_ctlp);
202 		un_delay(udl, ndl);
203 		srcu_read_unlock(srcu_ctlp, idx);
204 	}
205 }
206 
207 static struct ref_scale_ops srcu_ops = {
208 	.init		= rcu_sync_scale_init,
209 	.readsection	= srcu_ref_scale_read_section,
210 	.delaysection	= srcu_ref_scale_delay_section,
211 	.name		= "srcu"
212 };
213 
214 #ifdef CONFIG_TASKS_RCU
215 
216 // Definitions for RCU Tasks ref scale testing: Empty read markers.
217 // These definitions also work for RCU Rude readers.
218 static void rcu_tasks_ref_scale_read_section(const int nloops)
219 {
220 	int i;
221 
222 	for (i = nloops; i >= 0; i--)
223 		continue;
224 }
225 
226 static void rcu_tasks_ref_scale_delay_section(const int nloops, const int udl, const int ndl)
227 {
228 	int i;
229 
230 	for (i = nloops; i >= 0; i--)
231 		un_delay(udl, ndl);
232 }
233 
234 static struct ref_scale_ops rcu_tasks_ops = {
235 	.init		= rcu_sync_scale_init,
236 	.readsection	= rcu_tasks_ref_scale_read_section,
237 	.delaysection	= rcu_tasks_ref_scale_delay_section,
238 	.name		= "rcu-tasks"
239 };
240 
241 #define RCU_TASKS_OPS &rcu_tasks_ops,
242 
243 #else // #ifdef CONFIG_TASKS_RCU
244 
245 #define RCU_TASKS_OPS
246 
247 #endif // #else // #ifdef CONFIG_TASKS_RCU
248 
249 #ifdef CONFIG_TASKS_TRACE_RCU
250 
251 // Definitions for RCU Tasks Trace ref scale testing.
252 static void rcu_trace_ref_scale_read_section(const int nloops)
253 {
254 	int i;
255 
256 	for (i = nloops; i >= 0; i--) {
257 		rcu_read_lock_trace();
258 		rcu_read_unlock_trace();
259 	}
260 }
261 
262 static void rcu_trace_ref_scale_delay_section(const int nloops, const int udl, const int ndl)
263 {
264 	int i;
265 
266 	for (i = nloops; i >= 0; i--) {
267 		rcu_read_lock_trace();
268 		un_delay(udl, ndl);
269 		rcu_read_unlock_trace();
270 	}
271 }
272 
273 static struct ref_scale_ops rcu_trace_ops = {
274 	.init		= rcu_sync_scale_init,
275 	.readsection	= rcu_trace_ref_scale_read_section,
276 	.delaysection	= rcu_trace_ref_scale_delay_section,
277 	.name		= "rcu-trace"
278 };
279 
280 #define RCU_TRACE_OPS &rcu_trace_ops,
281 
282 #else // #ifdef CONFIG_TASKS_TRACE_RCU
283 
284 #define RCU_TRACE_OPS
285 
286 #endif // #else // #ifdef CONFIG_TASKS_TRACE_RCU
287 
288 // Definitions for reference count
289 static atomic_t refcnt;
290 
291 static void ref_refcnt_section(const int nloops)
292 {
293 	int i;
294 
295 	for (i = nloops; i >= 0; i--) {
296 		atomic_inc(&refcnt);
297 		atomic_dec(&refcnt);
298 	}
299 }
300 
301 static void ref_refcnt_delay_section(const int nloops, const int udl, const int ndl)
302 {
303 	int i;
304 
305 	for (i = nloops; i >= 0; i--) {
306 		atomic_inc(&refcnt);
307 		un_delay(udl, ndl);
308 		atomic_dec(&refcnt);
309 	}
310 }
311 
312 static struct ref_scale_ops refcnt_ops = {
313 	.init		= rcu_sync_scale_init,
314 	.readsection	= ref_refcnt_section,
315 	.delaysection	= ref_refcnt_delay_section,
316 	.name		= "refcnt"
317 };
318 
319 // Definitions for rwlock
320 static rwlock_t test_rwlock;
321 
322 static bool ref_rwlock_init(void)
323 {
324 	rwlock_init(&test_rwlock);
325 	return true;
326 }
327 
328 static void ref_rwlock_section(const int nloops)
329 {
330 	int i;
331 
332 	for (i = nloops; i >= 0; i--) {
333 		read_lock(&test_rwlock);
334 		read_unlock(&test_rwlock);
335 	}
336 }
337 
338 static void ref_rwlock_delay_section(const int nloops, const int udl, const int ndl)
339 {
340 	int i;
341 
342 	for (i = nloops; i >= 0; i--) {
343 		read_lock(&test_rwlock);
344 		un_delay(udl, ndl);
345 		read_unlock(&test_rwlock);
346 	}
347 }
348 
349 static struct ref_scale_ops rwlock_ops = {
350 	.init		= ref_rwlock_init,
351 	.readsection	= ref_rwlock_section,
352 	.delaysection	= ref_rwlock_delay_section,
353 	.name		= "rwlock"
354 };
355 
356 // Definitions for rwsem
357 static struct rw_semaphore test_rwsem;
358 
359 static bool ref_rwsem_init(void)
360 {
361 	init_rwsem(&test_rwsem);
362 	return true;
363 }
364 
365 static void ref_rwsem_section(const int nloops)
366 {
367 	int i;
368 
369 	for (i = nloops; i >= 0; i--) {
370 		down_read(&test_rwsem);
371 		up_read(&test_rwsem);
372 	}
373 }
374 
375 static void ref_rwsem_delay_section(const int nloops, const int udl, const int ndl)
376 {
377 	int i;
378 
379 	for (i = nloops; i >= 0; i--) {
380 		down_read(&test_rwsem);
381 		un_delay(udl, ndl);
382 		up_read(&test_rwsem);
383 	}
384 }
385 
386 static struct ref_scale_ops rwsem_ops = {
387 	.init		= ref_rwsem_init,
388 	.readsection	= ref_rwsem_section,
389 	.delaysection	= ref_rwsem_delay_section,
390 	.name		= "rwsem"
391 };
392 
393 // Definitions for global spinlock
394 static DEFINE_RAW_SPINLOCK(test_lock);
395 
396 static void ref_lock_section(const int nloops)
397 {
398 	int i;
399 
400 	preempt_disable();
401 	for (i = nloops; i >= 0; i--) {
402 		raw_spin_lock(&test_lock);
403 		raw_spin_unlock(&test_lock);
404 	}
405 	preempt_enable();
406 }
407 
408 static void ref_lock_delay_section(const int nloops, const int udl, const int ndl)
409 {
410 	int i;
411 
412 	preempt_disable();
413 	for (i = nloops; i >= 0; i--) {
414 		raw_spin_lock(&test_lock);
415 		un_delay(udl, ndl);
416 		raw_spin_unlock(&test_lock);
417 	}
418 	preempt_enable();
419 }
420 
421 static struct ref_scale_ops lock_ops = {
422 	.readsection	= ref_lock_section,
423 	.delaysection	= ref_lock_delay_section,
424 	.name		= "lock"
425 };
426 
427 // Definitions for global irq-save spinlock
428 
429 static void ref_lock_irq_section(const int nloops)
430 {
431 	unsigned long flags;
432 	int i;
433 
434 	preempt_disable();
435 	for (i = nloops; i >= 0; i--) {
436 		raw_spin_lock_irqsave(&test_lock, flags);
437 		raw_spin_unlock_irqrestore(&test_lock, flags);
438 	}
439 	preempt_enable();
440 }
441 
442 static void ref_lock_irq_delay_section(const int nloops, const int udl, const int ndl)
443 {
444 	unsigned long flags;
445 	int i;
446 
447 	preempt_disable();
448 	for (i = nloops; i >= 0; i--) {
449 		raw_spin_lock_irqsave(&test_lock, flags);
450 		un_delay(udl, ndl);
451 		raw_spin_unlock_irqrestore(&test_lock, flags);
452 	}
453 	preempt_enable();
454 }
455 
456 static struct ref_scale_ops lock_irq_ops = {
457 	.readsection	= ref_lock_irq_section,
458 	.delaysection	= ref_lock_irq_delay_section,
459 	.name		= "lock-irq"
460 };
461 
462 // Definitions acquire-release.
463 static DEFINE_PER_CPU(unsigned long, test_acqrel);
464 
465 static void ref_acqrel_section(const int nloops)
466 {
467 	unsigned long x;
468 	int i;
469 
470 	preempt_disable();
471 	for (i = nloops; i >= 0; i--) {
472 		x = smp_load_acquire(this_cpu_ptr(&test_acqrel));
473 		smp_store_release(this_cpu_ptr(&test_acqrel), x + 1);
474 	}
475 	preempt_enable();
476 }
477 
478 static void ref_acqrel_delay_section(const int nloops, const int udl, const int ndl)
479 {
480 	unsigned long x;
481 	int i;
482 
483 	preempt_disable();
484 	for (i = nloops; i >= 0; i--) {
485 		x = smp_load_acquire(this_cpu_ptr(&test_acqrel));
486 		un_delay(udl, ndl);
487 		smp_store_release(this_cpu_ptr(&test_acqrel), x + 1);
488 	}
489 	preempt_enable();
490 }
491 
492 static struct ref_scale_ops acqrel_ops = {
493 	.readsection	= ref_acqrel_section,
494 	.delaysection	= ref_acqrel_delay_section,
495 	.name		= "acqrel"
496 };
497 
498 static volatile u64 stopopts;
499 
500 static void ref_clock_section(const int nloops)
501 {
502 	u64 x = 0;
503 	int i;
504 
505 	preempt_disable();
506 	for (i = nloops; i >= 0; i--)
507 		x += ktime_get_real_fast_ns();
508 	preempt_enable();
509 	stopopts = x;
510 }
511 
512 static void ref_clock_delay_section(const int nloops, const int udl, const int ndl)
513 {
514 	u64 x = 0;
515 	int i;
516 
517 	preempt_disable();
518 	for (i = nloops; i >= 0; i--) {
519 		x += ktime_get_real_fast_ns();
520 		un_delay(udl, ndl);
521 	}
522 	preempt_enable();
523 	stopopts = x;
524 }
525 
526 static struct ref_scale_ops clock_ops = {
527 	.readsection	= ref_clock_section,
528 	.delaysection	= ref_clock_delay_section,
529 	.name		= "clock"
530 };
531 
532 static void ref_jiffies_section(const int nloops)
533 {
534 	u64 x = 0;
535 	int i;
536 
537 	preempt_disable();
538 	for (i = nloops; i >= 0; i--)
539 		x += jiffies;
540 	preempt_enable();
541 	stopopts = x;
542 }
543 
544 static void ref_jiffies_delay_section(const int nloops, const int udl, const int ndl)
545 {
546 	u64 x = 0;
547 	int i;
548 
549 	preempt_disable();
550 	for (i = nloops; i >= 0; i--) {
551 		x += jiffies;
552 		un_delay(udl, ndl);
553 	}
554 	preempt_enable();
555 	stopopts = x;
556 }
557 
558 static struct ref_scale_ops jiffies_ops = {
559 	.readsection	= ref_jiffies_section,
560 	.delaysection	= ref_jiffies_delay_section,
561 	.name		= "jiffies"
562 };
563 
564 ////////////////////////////////////////////////////////////////////////
565 //
566 // Methods leveraging SLAB_TYPESAFE_BY_RCU.
567 //
568 
569 // Item to look up in a typesafe manner.  Array of pointers to these.
570 struct refscale_typesafe {
571 	atomic_t rts_refctr;  // Used by all flavors
572 	spinlock_t rts_lock;
573 	seqlock_t rts_seqlock;
574 	unsigned int a;
575 	unsigned int b;
576 };
577 
578 static struct kmem_cache *typesafe_kmem_cachep;
579 static struct refscale_typesafe **rtsarray;
580 static long rtsarray_size;
581 static DEFINE_TORTURE_RANDOM_PERCPU(refscale_rand);
582 static bool (*rts_acquire)(struct refscale_typesafe *rtsp, unsigned int *start);
583 static bool (*rts_release)(struct refscale_typesafe *rtsp, unsigned int start);
584 
585 // Conditionally acquire an explicit in-structure reference count.
586 static bool typesafe_ref_acquire(struct refscale_typesafe *rtsp, unsigned int *start)
587 {
588 	return atomic_inc_not_zero(&rtsp->rts_refctr);
589 }
590 
591 // Unconditionally release an explicit in-structure reference count.
592 static bool typesafe_ref_release(struct refscale_typesafe *rtsp, unsigned int start)
593 {
594 	if (!atomic_dec_return(&rtsp->rts_refctr)) {
595 		WRITE_ONCE(rtsp->a, rtsp->a + 1);
596 		kmem_cache_free(typesafe_kmem_cachep, rtsp);
597 	}
598 	return true;
599 }
600 
601 // Unconditionally acquire an explicit in-structure spinlock.
602 static bool typesafe_lock_acquire(struct refscale_typesafe *rtsp, unsigned int *start)
603 {
604 	spin_lock(&rtsp->rts_lock);
605 	return true;
606 }
607 
608 // Unconditionally release an explicit in-structure spinlock.
609 static bool typesafe_lock_release(struct refscale_typesafe *rtsp, unsigned int start)
610 {
611 	spin_unlock(&rtsp->rts_lock);
612 	return true;
613 }
614 
615 // Unconditionally acquire an explicit in-structure sequence lock.
616 static bool typesafe_seqlock_acquire(struct refscale_typesafe *rtsp, unsigned int *start)
617 {
618 	*start = read_seqbegin(&rtsp->rts_seqlock);
619 	return true;
620 }
621 
622 // Conditionally release an explicit in-structure sequence lock.  Return
623 // true if this release was successful, that is, if no retry is required.
624 static bool typesafe_seqlock_release(struct refscale_typesafe *rtsp, unsigned int start)
625 {
626 	return !read_seqretry(&rtsp->rts_seqlock, start);
627 }
628 
629 // Do a read-side critical section with the specified delay in
630 // microseconds and nanoseconds inserted so as to increase probability
631 // of failure.
632 static void typesafe_delay_section(const int nloops, const int udl, const int ndl)
633 {
634 	unsigned int a;
635 	unsigned int b;
636 	int i;
637 	long idx;
638 	struct refscale_typesafe *rtsp;
639 	unsigned int start;
640 
641 	for (i = nloops; i >= 0; i--) {
642 		preempt_disable();
643 		idx = torture_random(this_cpu_ptr(&refscale_rand)) % rtsarray_size;
644 		preempt_enable();
645 retry:
646 		rcu_read_lock();
647 		rtsp = rcu_dereference(rtsarray[idx]);
648 		a = READ_ONCE(rtsp->a);
649 		if (!rts_acquire(rtsp, &start)) {
650 			rcu_read_unlock();
651 			goto retry;
652 		}
653 		if (a != READ_ONCE(rtsp->a)) {
654 			(void)rts_release(rtsp, start);
655 			rcu_read_unlock();
656 			goto retry;
657 		}
658 		un_delay(udl, ndl);
659 		b = READ_ONCE(rtsp->a);
660 		// Remember, seqlock read-side release can fail.
661 		if (!rts_release(rtsp, start)) {
662 			rcu_read_unlock();
663 			goto retry;
664 		}
665 		WARN_ONCE(a != b, "Re-read of ->a changed from %u to %u.\n", a, b);
666 		b = rtsp->b;
667 		rcu_read_unlock();
668 		WARN_ON_ONCE(a * a != b);
669 	}
670 }
671 
672 // Because the acquisition and release methods are expensive, there
673 // is no point in optimizing away the un_delay() function's two checks.
674 // Thus simply define typesafe_read_section() as a simple wrapper around
675 // typesafe_delay_section().
676 static void typesafe_read_section(const int nloops)
677 {
678 	typesafe_delay_section(nloops, 0, 0);
679 }
680 
681 // Allocate and initialize one refscale_typesafe structure.
682 static struct refscale_typesafe *typesafe_alloc_one(void)
683 {
684 	struct refscale_typesafe *rtsp;
685 
686 	rtsp = kmem_cache_alloc(typesafe_kmem_cachep, GFP_KERNEL);
687 	if (!rtsp)
688 		return NULL;
689 	atomic_set(&rtsp->rts_refctr, 1);
690 	WRITE_ONCE(rtsp->a, rtsp->a + 1);
691 	WRITE_ONCE(rtsp->b, rtsp->a * rtsp->a);
692 	return rtsp;
693 }
694 
695 // Slab-allocator constructor for refscale_typesafe structures created
696 // out of a new slab of system memory.
697 static void refscale_typesafe_ctor(void *rtsp_in)
698 {
699 	struct refscale_typesafe *rtsp = rtsp_in;
700 
701 	spin_lock_init(&rtsp->rts_lock);
702 	seqlock_init(&rtsp->rts_seqlock);
703 	preempt_disable();
704 	rtsp->a = torture_random(this_cpu_ptr(&refscale_rand));
705 	preempt_enable();
706 }
707 
708 static struct ref_scale_ops typesafe_ref_ops;
709 static struct ref_scale_ops typesafe_lock_ops;
710 static struct ref_scale_ops typesafe_seqlock_ops;
711 
712 // Initialize for a typesafe test.
713 static bool typesafe_init(void)
714 {
715 	long idx;
716 	long si = lookup_instances;
717 
718 	typesafe_kmem_cachep = kmem_cache_create("refscale_typesafe",
719 						 sizeof(struct refscale_typesafe), sizeof(void *),
720 						 SLAB_TYPESAFE_BY_RCU, refscale_typesafe_ctor);
721 	if (!typesafe_kmem_cachep)
722 		return false;
723 	if (si < 0)
724 		si = -si * nr_cpu_ids;
725 	else if (si == 0)
726 		si = nr_cpu_ids;
727 	rtsarray_size = si;
728 	rtsarray = kcalloc(si, sizeof(*rtsarray), GFP_KERNEL);
729 	if (!rtsarray)
730 		return false;
731 	for (idx = 0; idx < rtsarray_size; idx++) {
732 		rtsarray[idx] = typesafe_alloc_one();
733 		if (!rtsarray[idx])
734 			return false;
735 	}
736 	if (cur_ops == &typesafe_ref_ops) {
737 		rts_acquire = typesafe_ref_acquire;
738 		rts_release = typesafe_ref_release;
739 	} else if (cur_ops == &typesafe_lock_ops) {
740 		rts_acquire = typesafe_lock_acquire;
741 		rts_release = typesafe_lock_release;
742 	} else if (cur_ops == &typesafe_seqlock_ops) {
743 		rts_acquire = typesafe_seqlock_acquire;
744 		rts_release = typesafe_seqlock_release;
745 	} else {
746 		WARN_ON_ONCE(1);
747 		return false;
748 	}
749 	return true;
750 }
751 
752 // Clean up after a typesafe test.
753 static void typesafe_cleanup(void)
754 {
755 	long idx;
756 
757 	if (rtsarray) {
758 		for (idx = 0; idx < rtsarray_size; idx++)
759 			kmem_cache_free(typesafe_kmem_cachep, rtsarray[idx]);
760 		kfree(rtsarray);
761 		rtsarray = NULL;
762 		rtsarray_size = 0;
763 	}
764 	kmem_cache_destroy(typesafe_kmem_cachep);
765 	typesafe_kmem_cachep = NULL;
766 	rts_acquire = NULL;
767 	rts_release = NULL;
768 }
769 
770 // The typesafe_init() function distinguishes these structures by address.
771 static struct ref_scale_ops typesafe_ref_ops = {
772 	.init		= typesafe_init,
773 	.cleanup	= typesafe_cleanup,
774 	.readsection	= typesafe_read_section,
775 	.delaysection	= typesafe_delay_section,
776 	.name		= "typesafe_ref"
777 };
778 
779 static struct ref_scale_ops typesafe_lock_ops = {
780 	.init		= typesafe_init,
781 	.cleanup	= typesafe_cleanup,
782 	.readsection	= typesafe_read_section,
783 	.delaysection	= typesafe_delay_section,
784 	.name		= "typesafe_lock"
785 };
786 
787 static struct ref_scale_ops typesafe_seqlock_ops = {
788 	.init		= typesafe_init,
789 	.cleanup	= typesafe_cleanup,
790 	.readsection	= typesafe_read_section,
791 	.delaysection	= typesafe_delay_section,
792 	.name		= "typesafe_seqlock"
793 };
794 
795 static void rcu_scale_one_reader(void)
796 {
797 	if (readdelay <= 0)
798 		cur_ops->readsection(loops);
799 	else
800 		cur_ops->delaysection(loops, readdelay / 1000, readdelay % 1000);
801 }
802 
803 // Reader kthread.  Repeatedly does empty RCU read-side
804 // critical section, minimizing update-side interference.
805 static int
806 ref_scale_reader(void *arg)
807 {
808 	unsigned long flags;
809 	long me = (long)arg;
810 	struct reader_task *rt = &(reader_tasks[me]);
811 	u64 start;
812 	s64 duration;
813 
814 	VERBOSE_SCALEOUT_BATCH("ref_scale_reader %ld: task started", me);
815 	WARN_ON_ONCE(set_cpus_allowed_ptr(current, cpumask_of(me % nr_cpu_ids)));
816 	set_user_nice(current, MAX_NICE);
817 	atomic_inc(&n_init);
818 	if (holdoff)
819 		schedule_timeout_interruptible(holdoff * HZ);
820 repeat:
821 	VERBOSE_SCALEOUT_BATCH("ref_scale_reader %ld: waiting to start next experiment on cpu %d", me, raw_smp_processor_id());
822 
823 	// Wait for signal that this reader can start.
824 	wait_event(rt->wq, (atomic_read(&nreaders_exp) && smp_load_acquire(&rt->start_reader)) ||
825 			   torture_must_stop());
826 
827 	if (torture_must_stop())
828 		goto end;
829 
830 	// Make sure that the CPU is affinitized appropriately during testing.
831 	WARN_ON_ONCE(raw_smp_processor_id() != me);
832 
833 	WRITE_ONCE(rt->start_reader, 0);
834 	if (!atomic_dec_return(&n_started))
835 		while (atomic_read_acquire(&n_started))
836 			cpu_relax();
837 
838 	VERBOSE_SCALEOUT_BATCH("ref_scale_reader %ld: experiment %d started", me, exp_idx);
839 
840 
841 	// To reduce noise, do an initial cache-warming invocation, check
842 	// in, and then keep warming until everyone has checked in.
843 	rcu_scale_one_reader();
844 	if (!atomic_dec_return(&n_warmedup))
845 		while (atomic_read_acquire(&n_warmedup))
846 			rcu_scale_one_reader();
847 	// Also keep interrupts disabled.  This also has the effect
848 	// of preventing entries into slow path for rcu_read_unlock().
849 	local_irq_save(flags);
850 	start = ktime_get_mono_fast_ns();
851 
852 	rcu_scale_one_reader();
853 
854 	duration = ktime_get_mono_fast_ns() - start;
855 	local_irq_restore(flags);
856 
857 	rt->last_duration_ns = WARN_ON_ONCE(duration < 0) ? 0 : duration;
858 	// To reduce runtime-skew noise, do maintain-load invocations until
859 	// everyone is done.
860 	if (!atomic_dec_return(&n_cooleddown))
861 		while (atomic_read_acquire(&n_cooleddown))
862 			rcu_scale_one_reader();
863 
864 	if (atomic_dec_and_test(&nreaders_exp))
865 		wake_up(&main_wq);
866 
867 	VERBOSE_SCALEOUT_BATCH("ref_scale_reader %ld: experiment %d ended, (readers remaining=%d)",
868 				me, exp_idx, atomic_read(&nreaders_exp));
869 
870 	if (!torture_must_stop())
871 		goto repeat;
872 end:
873 	torture_kthread_stopping("ref_scale_reader");
874 	return 0;
875 }
876 
877 static void reset_readers(void)
878 {
879 	int i;
880 	struct reader_task *rt;
881 
882 	for (i = 0; i < nreaders; i++) {
883 		rt = &(reader_tasks[i]);
884 
885 		rt->last_duration_ns = 0;
886 	}
887 }
888 
889 // Print the results of each reader and return the sum of all their durations.
890 static u64 process_durations(int n)
891 {
892 	int i;
893 	struct reader_task *rt;
894 	char buf1[64];
895 	char *buf;
896 	u64 sum = 0;
897 
898 	buf = kmalloc(800 + 64, GFP_KERNEL);
899 	if (!buf)
900 		return 0;
901 	buf[0] = 0;
902 	sprintf(buf, "Experiment #%d (Format: <THREAD-NUM>:<Total loop time in ns>)",
903 		exp_idx);
904 
905 	for (i = 0; i < n && !torture_must_stop(); i++) {
906 		rt = &(reader_tasks[i]);
907 		sprintf(buf1, "%d: %llu\t", i, rt->last_duration_ns);
908 
909 		if (i % 5 == 0)
910 			strcat(buf, "\n");
911 		if (strlen(buf) >= 800) {
912 			pr_alert("%s", buf);
913 			buf[0] = 0;
914 		}
915 		strcat(buf, buf1);
916 
917 		sum += rt->last_duration_ns;
918 	}
919 	pr_alert("%s\n", buf);
920 
921 	kfree(buf);
922 	return sum;
923 }
924 
925 // The main_func is the main orchestrator, it performs a bunch of
926 // experiments.  For every experiment, it orders all the readers
927 // involved to start and waits for them to finish the experiment. It
928 // then reads their timestamps and starts the next experiment. Each
929 // experiment progresses from 1 concurrent reader to N of them at which
930 // point all the timestamps are printed.
931 static int main_func(void *arg)
932 {
933 	int exp, r;
934 	char buf1[64];
935 	char *buf;
936 	u64 *result_avg;
937 
938 	set_cpus_allowed_ptr(current, cpumask_of(nreaders % nr_cpu_ids));
939 	set_user_nice(current, MAX_NICE);
940 
941 	VERBOSE_SCALEOUT("main_func task started");
942 	result_avg = kzalloc(nruns * sizeof(*result_avg), GFP_KERNEL);
943 	buf = kzalloc(800 + 64, GFP_KERNEL);
944 	if (!result_avg || !buf) {
945 		SCALEOUT_ERRSTRING("out of memory");
946 		goto oom_exit;
947 	}
948 	if (holdoff)
949 		schedule_timeout_interruptible(holdoff * HZ);
950 
951 	// Wait for all threads to start.
952 	atomic_inc(&n_init);
953 	while (atomic_read(&n_init) < nreaders + 1)
954 		schedule_timeout_uninterruptible(1);
955 
956 	// Start exp readers up per experiment
957 	for (exp = 0; exp < nruns && !torture_must_stop(); exp++) {
958 		if (torture_must_stop())
959 			goto end;
960 
961 		reset_readers();
962 		atomic_set(&nreaders_exp, nreaders);
963 		atomic_set(&n_started, nreaders);
964 		atomic_set(&n_warmedup, nreaders);
965 		atomic_set(&n_cooleddown, nreaders);
966 
967 		exp_idx = exp;
968 
969 		for (r = 0; r < nreaders; r++) {
970 			smp_store_release(&reader_tasks[r].start_reader, 1);
971 			wake_up(&reader_tasks[r].wq);
972 		}
973 
974 		VERBOSE_SCALEOUT("main_func: experiment started, waiting for %d readers",
975 				nreaders);
976 
977 		wait_event(main_wq,
978 			   !atomic_read(&nreaders_exp) || torture_must_stop());
979 
980 		VERBOSE_SCALEOUT("main_func: experiment ended");
981 
982 		if (torture_must_stop())
983 			goto end;
984 
985 		result_avg[exp] = div_u64(1000 * process_durations(nreaders), nreaders * loops);
986 	}
987 
988 	// Print the average of all experiments
989 	SCALEOUT("END OF TEST. Calculating average duration per loop (nanoseconds)...\n");
990 
991 	pr_alert("Runs\tTime(ns)\n");
992 	for (exp = 0; exp < nruns; exp++) {
993 		u64 avg;
994 		u32 rem;
995 
996 		avg = div_u64_rem(result_avg[exp], 1000, &rem);
997 		sprintf(buf1, "%d\t%llu.%03u\n", exp + 1, avg, rem);
998 		strcat(buf, buf1);
999 		if (strlen(buf) >= 800) {
1000 			pr_alert("%s", buf);
1001 			buf[0] = 0;
1002 		}
1003 	}
1004 
1005 	pr_alert("%s", buf);
1006 
1007 oom_exit:
1008 	// This will shutdown everything including us.
1009 	if (shutdown) {
1010 		shutdown_start = 1;
1011 		wake_up(&shutdown_wq);
1012 	}
1013 
1014 	// Wait for torture to stop us
1015 	while (!torture_must_stop())
1016 		schedule_timeout_uninterruptible(1);
1017 
1018 end:
1019 	torture_kthread_stopping("main_func");
1020 	kfree(result_avg);
1021 	kfree(buf);
1022 	return 0;
1023 }
1024 
1025 static void
1026 ref_scale_print_module_parms(struct ref_scale_ops *cur_ops, const char *tag)
1027 {
1028 	pr_alert("%s" SCALE_FLAG
1029 		 "--- %s:  verbose=%d verbose_batched=%d shutdown=%d holdoff=%d lookup_instances=%ld loops=%ld nreaders=%d nruns=%d readdelay=%d\n", scale_type, tag,
1030 		 verbose, verbose_batched, shutdown, holdoff, lookup_instances, loops, nreaders, nruns, readdelay);
1031 }
1032 
1033 static void
1034 ref_scale_cleanup(void)
1035 {
1036 	int i;
1037 
1038 	if (torture_cleanup_begin())
1039 		return;
1040 
1041 	if (!cur_ops) {
1042 		torture_cleanup_end();
1043 		return;
1044 	}
1045 
1046 	if (reader_tasks) {
1047 		for (i = 0; i < nreaders; i++)
1048 			torture_stop_kthread("ref_scale_reader",
1049 					     reader_tasks[i].task);
1050 	}
1051 	kfree(reader_tasks);
1052 
1053 	torture_stop_kthread("main_task", main_task);
1054 	kfree(main_task);
1055 
1056 	// Do scale-type-specific cleanup operations.
1057 	if (cur_ops->cleanup != NULL)
1058 		cur_ops->cleanup();
1059 
1060 	torture_cleanup_end();
1061 }
1062 
1063 // Shutdown kthread.  Just waits to be awakened, then shuts down system.
1064 static int
1065 ref_scale_shutdown(void *arg)
1066 {
1067 	wait_event_idle(shutdown_wq, shutdown_start);
1068 
1069 	smp_mb(); // Wake before output.
1070 	ref_scale_cleanup();
1071 	kernel_power_off();
1072 
1073 	return -EINVAL;
1074 }
1075 
1076 static int __init
1077 ref_scale_init(void)
1078 {
1079 	long i;
1080 	int firsterr = 0;
1081 	static struct ref_scale_ops *scale_ops[] = {
1082 		&rcu_ops, &srcu_ops, RCU_TRACE_OPS RCU_TASKS_OPS &refcnt_ops, &rwlock_ops,
1083 		&rwsem_ops, &lock_ops, &lock_irq_ops, &acqrel_ops, &clock_ops, &jiffies_ops,
1084 		&typesafe_ref_ops, &typesafe_lock_ops, &typesafe_seqlock_ops,
1085 	};
1086 
1087 	if (!torture_init_begin(scale_type, verbose))
1088 		return -EBUSY;
1089 
1090 	for (i = 0; i < ARRAY_SIZE(scale_ops); i++) {
1091 		cur_ops = scale_ops[i];
1092 		if (strcmp(scale_type, cur_ops->name) == 0)
1093 			break;
1094 	}
1095 	if (i == ARRAY_SIZE(scale_ops)) {
1096 		pr_alert("rcu-scale: invalid scale type: \"%s\"\n", scale_type);
1097 		pr_alert("rcu-scale types:");
1098 		for (i = 0; i < ARRAY_SIZE(scale_ops); i++)
1099 			pr_cont(" %s", scale_ops[i]->name);
1100 		pr_cont("\n");
1101 		firsterr = -EINVAL;
1102 		cur_ops = NULL;
1103 		goto unwind;
1104 	}
1105 	if (cur_ops->init)
1106 		if (!cur_ops->init()) {
1107 			firsterr = -EUCLEAN;
1108 			goto unwind;
1109 		}
1110 
1111 	ref_scale_print_module_parms(cur_ops, "Start of test");
1112 
1113 	// Shutdown task
1114 	if (shutdown) {
1115 		init_waitqueue_head(&shutdown_wq);
1116 		firsterr = torture_create_kthread(ref_scale_shutdown, NULL,
1117 						  shutdown_task);
1118 		if (torture_init_error(firsterr))
1119 			goto unwind;
1120 		schedule_timeout_uninterruptible(1);
1121 	}
1122 
1123 	// Reader tasks (default to ~75% of online CPUs).
1124 	if (nreaders < 0)
1125 		nreaders = (num_online_cpus() >> 1) + (num_online_cpus() >> 2);
1126 	if (WARN_ONCE(loops <= 0, "%s: loops = %ld, adjusted to 1\n", __func__, loops))
1127 		loops = 1;
1128 	if (WARN_ONCE(nreaders <= 0, "%s: nreaders = %d, adjusted to 1\n", __func__, nreaders))
1129 		nreaders = 1;
1130 	if (WARN_ONCE(nruns <= 0, "%s: nruns = %d, adjusted to 1\n", __func__, nruns))
1131 		nruns = 1;
1132 	reader_tasks = kcalloc(nreaders, sizeof(reader_tasks[0]),
1133 			       GFP_KERNEL);
1134 	if (!reader_tasks) {
1135 		SCALEOUT_ERRSTRING("out of memory");
1136 		firsterr = -ENOMEM;
1137 		goto unwind;
1138 	}
1139 
1140 	VERBOSE_SCALEOUT("Starting %d reader threads", nreaders);
1141 
1142 	for (i = 0; i < nreaders; i++) {
1143 		init_waitqueue_head(&reader_tasks[i].wq);
1144 		firsterr = torture_create_kthread(ref_scale_reader, (void *)i,
1145 						  reader_tasks[i].task);
1146 		if (torture_init_error(firsterr))
1147 			goto unwind;
1148 	}
1149 
1150 	// Main Task
1151 	init_waitqueue_head(&main_wq);
1152 	firsterr = torture_create_kthread(main_func, NULL, main_task);
1153 	if (torture_init_error(firsterr))
1154 		goto unwind;
1155 
1156 	torture_init_end();
1157 	return 0;
1158 
1159 unwind:
1160 	torture_init_end();
1161 	ref_scale_cleanup();
1162 	if (shutdown) {
1163 		WARN_ON(!IS_MODULE(CONFIG_RCU_REF_SCALE_TEST));
1164 		kernel_power_off();
1165 	}
1166 	return firsterr;
1167 }
1168 
1169 module_init(ref_scale_init);
1170 module_exit(ref_scale_cleanup);
1171