1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Read-Copy Update module-based scalability-test facility 4 * 5 * Copyright (C) IBM Corporation, 2015 6 * 7 * Authors: Paul E. McKenney <paulmck@linux.ibm.com> 8 */ 9 10 #define pr_fmt(fmt) fmt 11 12 #include <linux/types.h> 13 #include <linux/kernel.h> 14 #include <linux/init.h> 15 #include <linux/mm.h> 16 #include <linux/module.h> 17 #include <linux/kthread.h> 18 #include <linux/err.h> 19 #include <linux/spinlock.h> 20 #include <linux/smp.h> 21 #include <linux/rcupdate.h> 22 #include <linux/interrupt.h> 23 #include <linux/sched.h> 24 #include <uapi/linux/sched/types.h> 25 #include <linux/atomic.h> 26 #include <linux/bitops.h> 27 #include <linux/completion.h> 28 #include <linux/moduleparam.h> 29 #include <linux/percpu.h> 30 #include <linux/notifier.h> 31 #include <linux/reboot.h> 32 #include <linux/freezer.h> 33 #include <linux/cpu.h> 34 #include <linux/delay.h> 35 #include <linux/stat.h> 36 #include <linux/srcu.h> 37 #include <linux/slab.h> 38 #include <asm/byteorder.h> 39 #include <linux/torture.h> 40 #include <linux/vmalloc.h> 41 #include <linux/rcupdate_trace.h> 42 #include <linux/sched/debug.h> 43 44 #include "rcu.h" 45 46 MODULE_DESCRIPTION("Read-Copy Update module-based scalability-test facility"); 47 MODULE_LICENSE("GPL"); 48 MODULE_AUTHOR("Paul E. McKenney <paulmck@linux.ibm.com>"); 49 50 #define SCALE_FLAG "-scale:" 51 #define SCALEOUT_STRING(s) \ 52 pr_alert("%s" SCALE_FLAG " %s\n", scale_type, s) 53 #define VERBOSE_SCALEOUT_STRING(s) \ 54 do { if (verbose) pr_alert("%s" SCALE_FLAG " %s\n", scale_type, s); } while (0) 55 #define SCALEOUT_ERRSTRING(s) \ 56 pr_alert("%s" SCALE_FLAG "!!! %s\n", scale_type, s) 57 58 /* 59 * The intended use cases for the nreaders and nwriters module parameters 60 * are as follows: 61 * 62 * 1. Specify only the nr_cpus kernel boot parameter. This will 63 * set both nreaders and nwriters to the value specified by 64 * nr_cpus for a mixed reader/writer test. 65 * 66 * 2. Specify the nr_cpus kernel boot parameter, but set 67 * rcuscale.nreaders to zero. This will set nwriters to the 68 * value specified by nr_cpus for an update-only test. 69 * 70 * 3. Specify the nr_cpus kernel boot parameter, but set 71 * rcuscale.nwriters to zero. This will set nreaders to the 72 * value specified by nr_cpus for a read-only test. 73 * 74 * Various other use cases may of course be specified. 75 * 76 * Note that this test's readers are intended only as a test load for 77 * the writers. The reader scalability statistics will be overly 78 * pessimistic due to the per-critical-section interrupt disabling, 79 * test-end checks, and the pair of calls through pointers. 80 */ 81 82 #ifdef MODULE 83 # define RCUSCALE_SHUTDOWN 0 84 #else 85 # define RCUSCALE_SHUTDOWN 1 86 #endif 87 88 torture_param(bool, gp_async, false, "Use asynchronous GP wait primitives"); 89 torture_param(int, gp_async_max, 1000, "Max # outstanding waits per writer"); 90 torture_param(bool, gp_exp, false, "Use expedited GP wait primitives"); 91 torture_param(int, holdoff, 10, "Holdoff time before test start (s)"); 92 torture_param(int, minruntime, 0, "Minimum run time (s)"); 93 torture_param(int, nreaders, -1, "Number of RCU reader threads"); 94 torture_param(int, nwriters, -1, "Number of RCU updater threads"); 95 torture_param(bool, shutdown, RCUSCALE_SHUTDOWN, 96 "Shutdown at end of scalability tests."); 97 torture_param(int, verbose, 1, "Enable verbose debugging printk()s"); 98 torture_param(int, writer_holdoff, 0, "Holdoff (us) between GPs, zero to disable"); 99 torture_param(int, writer_holdoff_jiffies, 0, "Holdoff (jiffies) between GPs, zero to disable"); 100 torture_param(int, kfree_rcu_test, 0, "Do we run a kfree_rcu() scale test?"); 101 torture_param(int, kfree_mult, 1, "Multiple of kfree_obj size to allocate."); 102 torture_param(int, kfree_by_call_rcu, 0, "Use call_rcu() to emulate kfree_rcu()?"); 103 104 static char *scale_type = "rcu"; 105 module_param(scale_type, charp, 0444); 106 MODULE_PARM_DESC(scale_type, "Type of RCU to scalability-test (rcu, srcu, ...)"); 107 108 // Structure definitions for custom fixed-per-task allocator. 109 struct writer_mblock { 110 struct rcu_head wmb_rh; 111 struct llist_node wmb_node; 112 struct writer_freelist *wmb_wfl; 113 }; 114 115 struct writer_freelist { 116 struct llist_head ws_lhg; 117 atomic_t ws_inflight; 118 struct llist_head ____cacheline_internodealigned_in_smp ws_lhp; 119 struct writer_mblock *ws_mblocks; 120 }; 121 122 static int nrealreaders; 123 static int nrealwriters; 124 static struct task_struct **writer_tasks; 125 static struct task_struct **reader_tasks; 126 static struct task_struct *shutdown_task; 127 128 static u64 **writer_durations; 129 static bool *writer_done; 130 static struct writer_freelist *writer_freelists; 131 static int *writer_n_durations; 132 static atomic_t n_rcu_scale_reader_started; 133 static atomic_t n_rcu_scale_writer_started; 134 static atomic_t n_rcu_scale_writer_finished; 135 static wait_queue_head_t shutdown_wq; 136 static u64 t_rcu_scale_writer_started; 137 static u64 t_rcu_scale_writer_finished; 138 static unsigned long b_rcu_gp_test_started; 139 static unsigned long b_rcu_gp_test_finished; 140 141 #define MAX_MEAS 10000 142 #define MIN_MEAS 100 143 144 /* 145 * Operations vector for selecting different types of tests. 146 */ 147 148 struct rcu_scale_ops { 149 int ptype; 150 void (*init)(void); 151 void (*cleanup)(void); 152 int (*readlock)(void); 153 void (*readunlock)(int idx); 154 unsigned long (*get_gp_seq)(void); 155 unsigned long (*gp_diff)(unsigned long new, unsigned long old); 156 unsigned long (*exp_completed)(void); 157 void (*async)(struct rcu_head *head, rcu_callback_t func); 158 void (*gp_barrier)(void); 159 void (*sync)(void); 160 void (*exp_sync)(void); 161 struct task_struct *(*rso_gp_kthread)(void); 162 void (*stats)(void); 163 const char *name; 164 }; 165 166 static struct rcu_scale_ops *cur_ops; 167 168 /* 169 * Definitions for rcu scalability testing. 170 */ 171 172 static int rcu_scale_read_lock(void) __acquires(RCU) 173 { 174 rcu_read_lock(); 175 return 0; 176 } 177 178 static void rcu_scale_read_unlock(int idx) __releases(RCU) 179 { 180 rcu_read_unlock(); 181 } 182 183 static unsigned long __maybe_unused rcu_no_completed(void) 184 { 185 return 0; 186 } 187 188 static void rcu_sync_scale_init(void) 189 { 190 } 191 192 static struct rcu_scale_ops rcu_ops = { 193 .ptype = RCU_FLAVOR, 194 .init = rcu_sync_scale_init, 195 .readlock = rcu_scale_read_lock, 196 .readunlock = rcu_scale_read_unlock, 197 .get_gp_seq = rcu_get_gp_seq, 198 .gp_diff = rcu_seq_diff, 199 .exp_completed = rcu_exp_batches_completed, 200 .async = call_rcu_hurry, 201 .gp_barrier = rcu_barrier, 202 .sync = synchronize_rcu, 203 .exp_sync = synchronize_rcu_expedited, 204 .name = "rcu" 205 }; 206 207 /* 208 * Definitions for srcu scalability testing. 209 */ 210 211 DEFINE_STATIC_SRCU(srcu_ctl_scale); 212 static struct srcu_struct *srcu_ctlp = &srcu_ctl_scale; 213 214 static int srcu_scale_read_lock(void) __acquires(srcu_ctlp) 215 { 216 return srcu_read_lock(srcu_ctlp); 217 } 218 219 static void srcu_scale_read_unlock(int idx) __releases(srcu_ctlp) 220 { 221 srcu_read_unlock(srcu_ctlp, idx); 222 } 223 224 static unsigned long srcu_scale_completed(void) 225 { 226 return srcu_batches_completed(srcu_ctlp); 227 } 228 229 static void srcu_call_rcu(struct rcu_head *head, rcu_callback_t func) 230 { 231 call_srcu(srcu_ctlp, head, func); 232 } 233 234 static void srcu_rcu_barrier(void) 235 { 236 srcu_barrier(srcu_ctlp); 237 } 238 239 static void srcu_scale_synchronize(void) 240 { 241 synchronize_srcu(srcu_ctlp); 242 } 243 244 static void srcu_scale_stats(void) 245 { 246 srcu_torture_stats_print(srcu_ctlp, scale_type, SCALE_FLAG); 247 } 248 249 static void srcu_scale_synchronize_expedited(void) 250 { 251 synchronize_srcu_expedited(srcu_ctlp); 252 } 253 254 static struct rcu_scale_ops srcu_ops = { 255 .ptype = SRCU_FLAVOR, 256 .init = rcu_sync_scale_init, 257 .readlock = srcu_scale_read_lock, 258 .readunlock = srcu_scale_read_unlock, 259 .get_gp_seq = srcu_scale_completed, 260 .gp_diff = rcu_seq_diff, 261 .exp_completed = srcu_scale_completed, 262 .async = srcu_call_rcu, 263 .gp_barrier = srcu_rcu_barrier, 264 .sync = srcu_scale_synchronize, 265 .exp_sync = srcu_scale_synchronize_expedited, 266 .stats = srcu_scale_stats, 267 .name = "srcu" 268 }; 269 270 static struct srcu_struct srcud; 271 272 static void srcu_sync_scale_init(void) 273 { 274 srcu_ctlp = &srcud; 275 init_srcu_struct(srcu_ctlp); 276 } 277 278 static void srcu_sync_scale_cleanup(void) 279 { 280 cleanup_srcu_struct(srcu_ctlp); 281 } 282 283 static struct rcu_scale_ops srcud_ops = { 284 .ptype = SRCU_FLAVOR, 285 .init = srcu_sync_scale_init, 286 .cleanup = srcu_sync_scale_cleanup, 287 .readlock = srcu_scale_read_lock, 288 .readunlock = srcu_scale_read_unlock, 289 .get_gp_seq = srcu_scale_completed, 290 .gp_diff = rcu_seq_diff, 291 .exp_completed = srcu_scale_completed, 292 .async = srcu_call_rcu, 293 .gp_barrier = srcu_rcu_barrier, 294 .sync = srcu_scale_synchronize, 295 .exp_sync = srcu_scale_synchronize_expedited, 296 .stats = srcu_scale_stats, 297 .name = "srcud" 298 }; 299 300 #ifdef CONFIG_TASKS_RCU 301 302 /* 303 * Definitions for RCU-tasks scalability testing. 304 */ 305 306 static int tasks_scale_read_lock(void) 307 { 308 return 0; 309 } 310 311 static void tasks_scale_read_unlock(int idx) 312 { 313 } 314 315 static void rcu_tasks_scale_stats(void) 316 { 317 rcu_tasks_torture_stats_print(scale_type, SCALE_FLAG); 318 } 319 320 static struct rcu_scale_ops tasks_ops = { 321 .ptype = RCU_TASKS_FLAVOR, 322 .init = rcu_sync_scale_init, 323 .readlock = tasks_scale_read_lock, 324 .readunlock = tasks_scale_read_unlock, 325 .get_gp_seq = rcu_no_completed, 326 .gp_diff = rcu_seq_diff, 327 .async = call_rcu_tasks, 328 .gp_barrier = rcu_barrier_tasks, 329 .sync = synchronize_rcu_tasks, 330 .exp_sync = synchronize_rcu_tasks, 331 .rso_gp_kthread = get_rcu_tasks_gp_kthread, 332 .stats = IS_ENABLED(CONFIG_TINY_RCU) ? NULL : rcu_tasks_scale_stats, 333 .name = "tasks" 334 }; 335 336 #define TASKS_OPS &tasks_ops, 337 338 #else // #ifdef CONFIG_TASKS_RCU 339 340 #define TASKS_OPS 341 342 #endif // #else // #ifdef CONFIG_TASKS_RCU 343 344 #ifdef CONFIG_TASKS_RUDE_RCU 345 346 /* 347 * Definitions for RCU-tasks-rude scalability testing. 348 */ 349 350 static int tasks_rude_scale_read_lock(void) 351 { 352 return 0; 353 } 354 355 static void tasks_rude_scale_read_unlock(int idx) 356 { 357 } 358 359 static void rcu_tasks_rude_scale_stats(void) 360 { 361 rcu_tasks_rude_torture_stats_print(scale_type, SCALE_FLAG); 362 } 363 364 static struct rcu_scale_ops tasks_rude_ops = { 365 .ptype = RCU_TASKS_RUDE_FLAVOR, 366 .init = rcu_sync_scale_init, 367 .readlock = tasks_rude_scale_read_lock, 368 .readunlock = tasks_rude_scale_read_unlock, 369 .get_gp_seq = rcu_no_completed, 370 .gp_diff = rcu_seq_diff, 371 .sync = synchronize_rcu_tasks_rude, 372 .exp_sync = synchronize_rcu_tasks_rude, 373 .rso_gp_kthread = get_rcu_tasks_rude_gp_kthread, 374 .stats = IS_ENABLED(CONFIG_TINY_RCU) ? NULL : rcu_tasks_rude_scale_stats, 375 .name = "tasks-rude" 376 }; 377 378 #define TASKS_RUDE_OPS &tasks_rude_ops, 379 380 #else // #ifdef CONFIG_TASKS_RUDE_RCU 381 382 #define TASKS_RUDE_OPS 383 384 #endif // #else // #ifdef CONFIG_TASKS_RUDE_RCU 385 386 #ifdef CONFIG_TASKS_TRACE_RCU 387 388 /* 389 * Definitions for RCU-tasks-trace scalability testing. 390 */ 391 392 static int tasks_trace_scale_read_lock(void) 393 { 394 rcu_read_lock_trace(); 395 return 0; 396 } 397 398 static void tasks_trace_scale_read_unlock(int idx) 399 { 400 rcu_read_unlock_trace(); 401 } 402 403 static void rcu_tasks_trace_scale_stats(void) 404 { 405 rcu_tasks_trace_torture_stats_print(scale_type, SCALE_FLAG); 406 } 407 408 static struct rcu_scale_ops tasks_tracing_ops = { 409 .ptype = RCU_TASKS_FLAVOR, 410 .init = rcu_sync_scale_init, 411 .readlock = tasks_trace_scale_read_lock, 412 .readunlock = tasks_trace_scale_read_unlock, 413 .get_gp_seq = rcu_no_completed, 414 .gp_diff = rcu_seq_diff, 415 .async = call_rcu_tasks_trace, 416 .gp_barrier = rcu_barrier_tasks_trace, 417 .sync = synchronize_rcu_tasks_trace, 418 .exp_sync = synchronize_rcu_tasks_trace, 419 .rso_gp_kthread = get_rcu_tasks_trace_gp_kthread, 420 .stats = IS_ENABLED(CONFIG_TINY_RCU) ? NULL : rcu_tasks_trace_scale_stats, 421 .name = "tasks-tracing" 422 }; 423 424 #define TASKS_TRACING_OPS &tasks_tracing_ops, 425 426 #else // #ifdef CONFIG_TASKS_TRACE_RCU 427 428 #define TASKS_TRACING_OPS 429 430 #endif // #else // #ifdef CONFIG_TASKS_TRACE_RCU 431 432 static unsigned long rcuscale_seq_diff(unsigned long new, unsigned long old) 433 { 434 if (!cur_ops->gp_diff) 435 return new - old; 436 return cur_ops->gp_diff(new, old); 437 } 438 439 /* 440 * If scalability tests complete, wait for shutdown to commence. 441 */ 442 static void rcu_scale_wait_shutdown(void) 443 { 444 cond_resched_tasks_rcu_qs(); 445 if (atomic_read(&n_rcu_scale_writer_finished) < nrealwriters) 446 return; 447 while (!torture_must_stop()) 448 schedule_timeout_uninterruptible(1); 449 } 450 451 /* 452 * RCU scalability reader kthread. Repeatedly does empty RCU read-side 453 * critical section, minimizing update-side interference. However, the 454 * point of this test is not to evaluate reader scalability, but instead 455 * to serve as a test load for update-side scalability testing. 456 */ 457 static int 458 rcu_scale_reader(void *arg) 459 { 460 unsigned long flags; 461 int idx; 462 long me = (long)arg; 463 464 VERBOSE_SCALEOUT_STRING("rcu_scale_reader task started"); 465 set_cpus_allowed_ptr(current, cpumask_of(me % nr_cpu_ids)); 466 set_user_nice(current, MAX_NICE); 467 atomic_inc(&n_rcu_scale_reader_started); 468 469 do { 470 local_irq_save(flags); 471 idx = cur_ops->readlock(); 472 cur_ops->readunlock(idx); 473 local_irq_restore(flags); 474 rcu_scale_wait_shutdown(); 475 } while (!torture_must_stop()); 476 torture_kthread_stopping("rcu_scale_reader"); 477 return 0; 478 } 479 480 /* 481 * Allocate a writer_mblock structure for the specified rcu_scale_writer 482 * task. 483 */ 484 static struct writer_mblock *rcu_scale_alloc(long me) 485 { 486 struct llist_node *llnp; 487 struct writer_freelist *wflp; 488 struct writer_mblock *wmbp; 489 490 if (WARN_ON_ONCE(!writer_freelists)) 491 return NULL; 492 wflp = &writer_freelists[me]; 493 if (llist_empty(&wflp->ws_lhp)) { 494 // ->ws_lhp is private to its rcu_scale_writer task. 495 wmbp = container_of(llist_del_all(&wflp->ws_lhg), struct writer_mblock, wmb_node); 496 wflp->ws_lhp.first = &wmbp->wmb_node; 497 } 498 llnp = llist_del_first(&wflp->ws_lhp); 499 if (!llnp) 500 return NULL; 501 return container_of(llnp, struct writer_mblock, wmb_node); 502 } 503 504 /* 505 * Free a writer_mblock structure to its rcu_scale_writer task. 506 */ 507 static void rcu_scale_free(struct writer_mblock *wmbp) 508 { 509 struct writer_freelist *wflp; 510 511 if (!wmbp) 512 return; 513 wflp = wmbp->wmb_wfl; 514 llist_add(&wmbp->wmb_node, &wflp->ws_lhg); 515 } 516 517 /* 518 * Callback function for asynchronous grace periods from rcu_scale_writer(). 519 */ 520 static void rcu_scale_async_cb(struct rcu_head *rhp) 521 { 522 struct writer_mblock *wmbp = container_of(rhp, struct writer_mblock, wmb_rh); 523 struct writer_freelist *wflp = wmbp->wmb_wfl; 524 525 atomic_dec(&wflp->ws_inflight); 526 rcu_scale_free(wmbp); 527 } 528 529 /* 530 * RCU scale writer kthread. Repeatedly does a grace period. 531 */ 532 static int 533 rcu_scale_writer(void *arg) 534 { 535 int i = 0; 536 int i_max; 537 unsigned long jdone; 538 long me = (long)arg; 539 bool selfreport = false; 540 bool started = false, done = false, alldone = false; 541 u64 t; 542 DEFINE_TORTURE_RANDOM(tr); 543 u64 *wdp; 544 u64 *wdpp = writer_durations[me]; 545 struct writer_freelist *wflp = &writer_freelists[me]; 546 struct writer_mblock *wmbp = NULL; 547 548 VERBOSE_SCALEOUT_STRING("rcu_scale_writer task started"); 549 WARN_ON(!wdpp); 550 set_cpus_allowed_ptr(current, cpumask_of(me % nr_cpu_ids)); 551 current->flags |= PF_NO_SETAFFINITY; 552 sched_set_fifo_low(current); 553 554 if (holdoff) 555 schedule_timeout_idle(holdoff * HZ); 556 557 /* 558 * Wait until rcu_end_inkernel_boot() is called for normal GP tests 559 * so that RCU is not always expedited for normal GP tests. 560 * The system_state test is approximate, but works well in practice. 561 */ 562 while (!gp_exp && system_state != SYSTEM_RUNNING) 563 schedule_timeout_uninterruptible(1); 564 565 t = ktime_get_mono_fast_ns(); 566 if (atomic_inc_return(&n_rcu_scale_writer_started) >= nrealwriters) { 567 t_rcu_scale_writer_started = t; 568 if (gp_exp) { 569 b_rcu_gp_test_started = 570 cur_ops->exp_completed() / 2; 571 } else { 572 b_rcu_gp_test_started = cur_ops->get_gp_seq(); 573 } 574 } 575 576 jdone = jiffies + minruntime * HZ; 577 do { 578 bool gp_succeeded = false; 579 580 if (writer_holdoff) 581 udelay(writer_holdoff); 582 if (writer_holdoff_jiffies) 583 schedule_timeout_idle(torture_random(&tr) % writer_holdoff_jiffies + 1); 584 wdp = &wdpp[i]; 585 *wdp = ktime_get_mono_fast_ns(); 586 if (gp_async && !WARN_ON_ONCE(!cur_ops->async)) { 587 if (!wmbp) 588 wmbp = rcu_scale_alloc(me); 589 if (wmbp && atomic_read(&wflp->ws_inflight) < gp_async_max) { 590 atomic_inc(&wflp->ws_inflight); 591 cur_ops->async(&wmbp->wmb_rh, rcu_scale_async_cb); 592 wmbp = NULL; 593 gp_succeeded = true; 594 } else if (!kthread_should_stop()) { 595 cur_ops->gp_barrier(); 596 } else { 597 rcu_scale_free(wmbp); /* Because we are stopping. */ 598 wmbp = NULL; 599 } 600 } else if (gp_exp) { 601 cur_ops->exp_sync(); 602 gp_succeeded = true; 603 } else { 604 cur_ops->sync(); 605 gp_succeeded = true; 606 } 607 t = ktime_get_mono_fast_ns(); 608 *wdp = t - *wdp; 609 i_max = i; 610 if (!started && 611 atomic_read(&n_rcu_scale_writer_started) >= nrealwriters) 612 started = true; 613 if (!done && i >= MIN_MEAS && time_after(jiffies, jdone)) { 614 done = true; 615 WRITE_ONCE(writer_done[me], true); 616 sched_set_normal(current, 0); 617 pr_alert("%s%s rcu_scale_writer %ld has %d measurements\n", 618 scale_type, SCALE_FLAG, me, MIN_MEAS); 619 if (atomic_inc_return(&n_rcu_scale_writer_finished) >= 620 nrealwriters) { 621 schedule_timeout_interruptible(10); 622 rcu_ftrace_dump(DUMP_ALL); 623 SCALEOUT_STRING("Test complete"); 624 t_rcu_scale_writer_finished = t; 625 if (gp_exp) { 626 b_rcu_gp_test_finished = 627 cur_ops->exp_completed() / 2; 628 } else { 629 b_rcu_gp_test_finished = 630 cur_ops->get_gp_seq(); 631 } 632 if (shutdown) { 633 smp_mb(); /* Assign before wake. */ 634 wake_up(&shutdown_wq); 635 } 636 } 637 } 638 if (done && !alldone && 639 atomic_read(&n_rcu_scale_writer_finished) >= nrealwriters) 640 alldone = true; 641 if (done && !alldone && time_after(jiffies, jdone + HZ * 60)) { 642 static atomic_t dumped; 643 int i; 644 645 if (!atomic_xchg(&dumped, 1)) { 646 for (i = 0; i < nrealwriters; i++) { 647 if (writer_done[i]) 648 continue; 649 pr_info("%s: Task %ld flags writer %d:\n", __func__, me, i); 650 sched_show_task(writer_tasks[i]); 651 } 652 if (cur_ops->stats) 653 cur_ops->stats(); 654 } 655 } 656 if (!selfreport && time_after(jiffies, jdone + HZ * (70 + me))) { 657 pr_info("%s: Writer %ld self-report: started %d done %d/%d->%d i %d jdone %lu.\n", 658 __func__, me, started, done, writer_done[me], atomic_read(&n_rcu_scale_writer_finished), i, jiffies - jdone); 659 selfreport = true; 660 } 661 if (gp_succeeded && started && !alldone && i < MAX_MEAS - 1) 662 i++; 663 rcu_scale_wait_shutdown(); 664 } while (!torture_must_stop()); 665 if (gp_async && cur_ops->async) { 666 rcu_scale_free(wmbp); 667 cur_ops->gp_barrier(); 668 } 669 writer_n_durations[me] = i_max + 1; 670 torture_kthread_stopping("rcu_scale_writer"); 671 return 0; 672 } 673 674 static void 675 rcu_scale_print_module_parms(struct rcu_scale_ops *cur_ops, const char *tag) 676 { 677 pr_alert("%s" SCALE_FLAG 678 "--- %s: gp_async=%d gp_async_max=%d gp_exp=%d holdoff=%d minruntime=%d nreaders=%d nwriters=%d writer_holdoff=%d writer_holdoff_jiffies=%d verbose=%d shutdown=%d\n", 679 scale_type, tag, gp_async, gp_async_max, gp_exp, holdoff, minruntime, nrealreaders, nrealwriters, writer_holdoff, writer_holdoff_jiffies, verbose, shutdown); 680 } 681 682 /* 683 * Return the number if non-negative. If -1, the number of CPUs. 684 * If less than -1, that much less than the number of CPUs, but 685 * at least one. 686 */ 687 static int compute_real(int n) 688 { 689 int nr; 690 691 if (n >= 0) { 692 nr = n; 693 } else { 694 nr = num_online_cpus() + 1 + n; 695 if (nr <= 0) 696 nr = 1; 697 } 698 return nr; 699 } 700 701 /* 702 * kfree_rcu() scalability tests: Start a kfree_rcu() loop on all CPUs for number 703 * of iterations and measure total time and number of GP for all iterations to complete. 704 */ 705 706 torture_param(int, kfree_nthreads, -1, "Number of threads running loops of kfree_rcu()."); 707 torture_param(int, kfree_alloc_num, 8000, "Number of allocations and frees done in an iteration."); 708 torture_param(int, kfree_loops, 10, "Number of loops doing kfree_alloc_num allocations and frees."); 709 torture_param(bool, kfree_rcu_test_double, false, "Do we run a kfree_rcu() double-argument scale test?"); 710 torture_param(bool, kfree_rcu_test_single, false, "Do we run a kfree_rcu() single-argument scale test?"); 711 712 static struct task_struct **kfree_reader_tasks; 713 static int kfree_nrealthreads; 714 static atomic_t n_kfree_scale_thread_started; 715 static atomic_t n_kfree_scale_thread_ended; 716 static struct task_struct *kthread_tp; 717 static u64 kthread_stime; 718 719 struct kfree_obj { 720 char kfree_obj[8]; 721 struct rcu_head rh; 722 }; 723 724 /* Used if doing RCU-kfree'ing via call_rcu(). */ 725 static void kfree_call_rcu(struct rcu_head *rh) 726 { 727 struct kfree_obj *obj = container_of(rh, struct kfree_obj, rh); 728 729 kfree(obj); 730 } 731 732 static int 733 kfree_scale_thread(void *arg) 734 { 735 int i, loop = 0; 736 long me = (long)arg; 737 struct kfree_obj *alloc_ptr; 738 u64 start_time, end_time; 739 long long mem_begin, mem_during = 0; 740 bool kfree_rcu_test_both; 741 DEFINE_TORTURE_RANDOM(tr); 742 743 VERBOSE_SCALEOUT_STRING("kfree_scale_thread task started"); 744 set_cpus_allowed_ptr(current, cpumask_of(me % nr_cpu_ids)); 745 set_user_nice(current, MAX_NICE); 746 kfree_rcu_test_both = (kfree_rcu_test_single == kfree_rcu_test_double); 747 748 start_time = ktime_get_mono_fast_ns(); 749 750 if (atomic_inc_return(&n_kfree_scale_thread_started) >= kfree_nrealthreads) { 751 if (gp_exp) 752 b_rcu_gp_test_started = cur_ops->exp_completed() / 2; 753 else 754 b_rcu_gp_test_started = cur_ops->get_gp_seq(); 755 } 756 757 do { 758 if (!mem_during) { 759 mem_during = mem_begin = si_mem_available(); 760 } else if (loop % (kfree_loops / 4) == 0) { 761 mem_during = (mem_during + si_mem_available()) / 2; 762 } 763 764 for (i = 0; i < kfree_alloc_num; i++) { 765 alloc_ptr = kmalloc(kfree_mult * sizeof(struct kfree_obj), GFP_KERNEL); 766 if (!alloc_ptr) 767 return -ENOMEM; 768 769 if (kfree_by_call_rcu) { 770 call_rcu(&(alloc_ptr->rh), kfree_call_rcu); 771 continue; 772 } 773 774 // By default kfree_rcu_test_single and kfree_rcu_test_double are 775 // initialized to false. If both have the same value (false or true) 776 // both are randomly tested, otherwise only the one with value true 777 // is tested. 778 if ((kfree_rcu_test_single && !kfree_rcu_test_double) || 779 (kfree_rcu_test_both && torture_random(&tr) & 0x800)) 780 kfree_rcu_mightsleep(alloc_ptr); 781 else 782 kfree_rcu(alloc_ptr, rh); 783 } 784 785 cond_resched(); 786 } while (!torture_must_stop() && ++loop < kfree_loops); 787 788 if (atomic_inc_return(&n_kfree_scale_thread_ended) >= kfree_nrealthreads) { 789 end_time = ktime_get_mono_fast_ns(); 790 791 if (gp_exp) 792 b_rcu_gp_test_finished = cur_ops->exp_completed() / 2; 793 else 794 b_rcu_gp_test_finished = cur_ops->get_gp_seq(); 795 796 pr_alert("Total time taken by all kfree'ers: %llu ns, loops: %d, batches: %ld, memory footprint: %lldMB\n", 797 (unsigned long long)(end_time - start_time), kfree_loops, 798 rcuscale_seq_diff(b_rcu_gp_test_finished, b_rcu_gp_test_started), 799 (mem_begin - mem_during) >> (20 - PAGE_SHIFT)); 800 801 if (shutdown) { 802 smp_mb(); /* Assign before wake. */ 803 wake_up(&shutdown_wq); 804 } 805 } 806 807 torture_kthread_stopping("kfree_scale_thread"); 808 return 0; 809 } 810 811 static void 812 kfree_scale_cleanup(void) 813 { 814 int i; 815 816 if (torture_cleanup_begin()) 817 return; 818 819 if (kfree_reader_tasks) { 820 for (i = 0; i < kfree_nrealthreads; i++) 821 torture_stop_kthread(kfree_scale_thread, 822 kfree_reader_tasks[i]); 823 kfree(kfree_reader_tasks); 824 kfree_reader_tasks = NULL; 825 } 826 827 torture_cleanup_end(); 828 } 829 830 /* 831 * shutdown kthread. Just waits to be awakened, then shuts down system. 832 */ 833 static int 834 kfree_scale_shutdown(void *arg) 835 { 836 wait_event_idle(shutdown_wq, 837 atomic_read(&n_kfree_scale_thread_ended) >= kfree_nrealthreads); 838 839 smp_mb(); /* Wake before output. */ 840 841 kfree_scale_cleanup(); 842 kernel_power_off(); 843 return -EINVAL; 844 } 845 846 // Used if doing RCU-kfree'ing via call_rcu(). 847 static unsigned long jiffies_at_lazy_cb; 848 static struct rcu_head lazy_test1_rh; 849 static int rcu_lazy_test1_cb_called; 850 static void call_rcu_lazy_test1(struct rcu_head *rh) 851 { 852 jiffies_at_lazy_cb = jiffies; 853 WRITE_ONCE(rcu_lazy_test1_cb_called, 1); 854 } 855 856 static int __init 857 kfree_scale_init(void) 858 { 859 int firsterr = 0; 860 long i; 861 unsigned long jif_start; 862 unsigned long orig_jif; 863 864 pr_alert("%s" SCALE_FLAG 865 "--- kfree_rcu_test: kfree_mult=%d kfree_by_call_rcu=%d kfree_nthreads=%d kfree_alloc_num=%d kfree_loops=%d kfree_rcu_test_double=%d kfree_rcu_test_single=%d\n", 866 scale_type, kfree_mult, kfree_by_call_rcu, kfree_nthreads, kfree_alloc_num, kfree_loops, kfree_rcu_test_double, kfree_rcu_test_single); 867 868 // Also, do a quick self-test to ensure laziness is as much as 869 // expected. 870 if (kfree_by_call_rcu && !IS_ENABLED(CONFIG_RCU_LAZY)) { 871 pr_alert("CONFIG_RCU_LAZY is disabled, falling back to kfree_rcu() for delayed RCU kfree'ing\n"); 872 kfree_by_call_rcu = 0; 873 } 874 875 if (kfree_by_call_rcu) { 876 /* do a test to check the timeout. */ 877 orig_jif = rcu_get_jiffies_lazy_flush(); 878 879 rcu_set_jiffies_lazy_flush(2 * HZ); 880 rcu_barrier(); 881 882 jif_start = jiffies; 883 jiffies_at_lazy_cb = 0; 884 call_rcu(&lazy_test1_rh, call_rcu_lazy_test1); 885 886 smp_cond_load_relaxed(&rcu_lazy_test1_cb_called, VAL == 1); 887 888 rcu_set_jiffies_lazy_flush(orig_jif); 889 890 if (WARN_ON_ONCE(jiffies_at_lazy_cb - jif_start < 2 * HZ)) { 891 pr_alert("ERROR: call_rcu() CBs are not being lazy as expected!\n"); 892 firsterr = -1; 893 goto unwind; 894 } 895 896 if (WARN_ON_ONCE(jiffies_at_lazy_cb - jif_start > 3 * HZ)) { 897 pr_alert("ERROR: call_rcu() CBs are being too lazy!\n"); 898 firsterr = -1; 899 goto unwind; 900 } 901 } 902 903 kfree_nrealthreads = compute_real(kfree_nthreads); 904 /* Start up the kthreads. */ 905 if (shutdown) { 906 init_waitqueue_head(&shutdown_wq); 907 firsterr = torture_create_kthread(kfree_scale_shutdown, NULL, 908 shutdown_task); 909 if (torture_init_error(firsterr)) 910 goto unwind; 911 schedule_timeout_uninterruptible(1); 912 } 913 914 pr_alert("kfree object size=%zu, kfree_by_call_rcu=%d\n", 915 kfree_mult * sizeof(struct kfree_obj), 916 kfree_by_call_rcu); 917 918 kfree_reader_tasks = kcalloc(kfree_nrealthreads, sizeof(kfree_reader_tasks[0]), 919 GFP_KERNEL); 920 if (kfree_reader_tasks == NULL) { 921 firsterr = -ENOMEM; 922 goto unwind; 923 } 924 925 for (i = 0; i < kfree_nrealthreads; i++) { 926 firsterr = torture_create_kthread(kfree_scale_thread, (void *)i, 927 kfree_reader_tasks[i]); 928 if (torture_init_error(firsterr)) 929 goto unwind; 930 } 931 932 while (atomic_read(&n_kfree_scale_thread_started) < kfree_nrealthreads) 933 schedule_timeout_uninterruptible(1); 934 935 torture_init_end(); 936 return 0; 937 938 unwind: 939 torture_init_end(); 940 kfree_scale_cleanup(); 941 return firsterr; 942 } 943 944 static void 945 rcu_scale_cleanup(void) 946 { 947 int i; 948 int j; 949 int ngps = 0; 950 u64 *wdp; 951 u64 *wdpp; 952 953 /* 954 * Would like warning at start, but everything is expedited 955 * during the mid-boot phase, so have to wait till the end. 956 */ 957 if (rcu_gp_is_expedited() && !rcu_gp_is_normal() && !gp_exp) 958 SCALEOUT_ERRSTRING("All grace periods expedited, no normal ones to measure!"); 959 if (rcu_gp_is_normal() && gp_exp) 960 SCALEOUT_ERRSTRING("All grace periods normal, no expedited ones to measure!"); 961 if (gp_exp && gp_async) 962 SCALEOUT_ERRSTRING("No expedited async GPs, so went with async!"); 963 964 // If built-in, just report all of the GP kthread's CPU time. 965 if (IS_BUILTIN(CONFIG_RCU_SCALE_TEST) && !kthread_tp && cur_ops->rso_gp_kthread) 966 kthread_tp = cur_ops->rso_gp_kthread(); 967 if (kthread_tp) { 968 u32 ns; 969 u64 us; 970 971 kthread_stime = kthread_tp->stime - kthread_stime; 972 us = div_u64_rem(kthread_stime, 1000, &ns); 973 pr_info("rcu_scale: Grace-period kthread CPU time: %llu.%03u us\n", us, ns); 974 show_rcu_gp_kthreads(); 975 } 976 if (kfree_rcu_test) { 977 kfree_scale_cleanup(); 978 return; 979 } 980 981 if (torture_cleanup_begin()) 982 return; 983 if (!cur_ops) { 984 torture_cleanup_end(); 985 return; 986 } 987 988 if (reader_tasks) { 989 for (i = 0; i < nrealreaders; i++) 990 torture_stop_kthread(rcu_scale_reader, 991 reader_tasks[i]); 992 kfree(reader_tasks); 993 reader_tasks = NULL; 994 } 995 996 if (writer_tasks) { 997 for (i = 0; i < nrealwriters; i++) { 998 torture_stop_kthread(rcu_scale_writer, 999 writer_tasks[i]); 1000 if (!writer_n_durations) 1001 continue; 1002 j = writer_n_durations[i]; 1003 pr_alert("%s%s writer %d gps: %d\n", 1004 scale_type, SCALE_FLAG, i, j); 1005 ngps += j; 1006 } 1007 pr_alert("%s%s start: %llu end: %llu duration: %llu gps: %d batches: %ld\n", 1008 scale_type, SCALE_FLAG, 1009 t_rcu_scale_writer_started, t_rcu_scale_writer_finished, 1010 t_rcu_scale_writer_finished - 1011 t_rcu_scale_writer_started, 1012 ngps, 1013 rcuscale_seq_diff(b_rcu_gp_test_finished, 1014 b_rcu_gp_test_started)); 1015 for (i = 0; i < nrealwriters; i++) { 1016 if (!writer_durations) 1017 break; 1018 if (!writer_n_durations) 1019 continue; 1020 wdpp = writer_durations[i]; 1021 if (!wdpp) 1022 continue; 1023 for (j = 0; j < writer_n_durations[i]; j++) { 1024 wdp = &wdpp[j]; 1025 pr_alert("%s%s %4d writer-duration: %5d %llu\n", 1026 scale_type, SCALE_FLAG, 1027 i, j, *wdp); 1028 if (j % 100 == 0) 1029 schedule_timeout_uninterruptible(1); 1030 } 1031 kfree(writer_durations[i]); 1032 if (writer_freelists) { 1033 int ctr = 0; 1034 struct llist_node *llnp; 1035 struct writer_freelist *wflp = &writer_freelists[i]; 1036 1037 if (wflp->ws_mblocks) { 1038 llist_for_each(llnp, wflp->ws_lhg.first) 1039 ctr++; 1040 llist_for_each(llnp, wflp->ws_lhp.first) 1041 ctr++; 1042 WARN_ONCE(ctr != gp_async_max, 1043 "%s: ctr = %d gp_async_max = %d\n", 1044 __func__, ctr, gp_async_max); 1045 kfree(wflp->ws_mblocks); 1046 } 1047 } 1048 } 1049 kfree(writer_tasks); 1050 writer_tasks = NULL; 1051 kfree(writer_durations); 1052 writer_durations = NULL; 1053 kfree(writer_n_durations); 1054 writer_n_durations = NULL; 1055 kfree(writer_done); 1056 writer_done = NULL; 1057 kfree(writer_freelists); 1058 writer_freelists = NULL; 1059 } 1060 1061 /* Do torture-type-specific cleanup operations. */ 1062 if (cur_ops->cleanup != NULL) 1063 cur_ops->cleanup(); 1064 1065 torture_cleanup_end(); 1066 } 1067 1068 /* 1069 * RCU scalability shutdown kthread. Just waits to be awakened, then shuts 1070 * down system. 1071 */ 1072 static int 1073 rcu_scale_shutdown(void *arg) 1074 { 1075 wait_event_idle(shutdown_wq, atomic_read(&n_rcu_scale_writer_finished) >= nrealwriters); 1076 smp_mb(); /* Wake before output. */ 1077 rcu_scale_cleanup(); 1078 kernel_power_off(); 1079 return -EINVAL; 1080 } 1081 1082 static int __init 1083 rcu_scale_init(void) 1084 { 1085 int firsterr = 0; 1086 long i; 1087 long j; 1088 static struct rcu_scale_ops *scale_ops[] = { 1089 &rcu_ops, &srcu_ops, &srcud_ops, TASKS_OPS TASKS_RUDE_OPS TASKS_TRACING_OPS 1090 }; 1091 1092 if (!torture_init_begin(scale_type, verbose)) 1093 return -EBUSY; 1094 1095 /* Process args and announce that the scalability'er is on the job. */ 1096 for (i = 0; i < ARRAY_SIZE(scale_ops); i++) { 1097 cur_ops = scale_ops[i]; 1098 if (strcmp(scale_type, cur_ops->name) == 0) 1099 break; 1100 } 1101 if (i == ARRAY_SIZE(scale_ops)) { 1102 pr_alert("rcu-scale: invalid scale type: \"%s\"\n", scale_type); 1103 pr_alert("rcu-scale types:"); 1104 for (i = 0; i < ARRAY_SIZE(scale_ops); i++) 1105 pr_cont(" %s", scale_ops[i]->name); 1106 pr_cont("\n"); 1107 firsterr = -EINVAL; 1108 cur_ops = NULL; 1109 goto unwind; 1110 } 1111 if (cur_ops->init) 1112 cur_ops->init(); 1113 1114 if (cur_ops->rso_gp_kthread) { 1115 kthread_tp = cur_ops->rso_gp_kthread(); 1116 if (kthread_tp) 1117 kthread_stime = kthread_tp->stime; 1118 } 1119 if (kfree_rcu_test) 1120 return kfree_scale_init(); 1121 1122 nrealwriters = compute_real(nwriters); 1123 nrealreaders = compute_real(nreaders); 1124 atomic_set(&n_rcu_scale_reader_started, 0); 1125 atomic_set(&n_rcu_scale_writer_started, 0); 1126 atomic_set(&n_rcu_scale_writer_finished, 0); 1127 rcu_scale_print_module_parms(cur_ops, "Start of test"); 1128 1129 /* Start up the kthreads. */ 1130 1131 if (shutdown) { 1132 init_waitqueue_head(&shutdown_wq); 1133 firsterr = torture_create_kthread(rcu_scale_shutdown, NULL, 1134 shutdown_task); 1135 if (torture_init_error(firsterr)) 1136 goto unwind; 1137 schedule_timeout_uninterruptible(1); 1138 } 1139 reader_tasks = kcalloc(nrealreaders, sizeof(reader_tasks[0]), 1140 GFP_KERNEL); 1141 if (reader_tasks == NULL) { 1142 SCALEOUT_ERRSTRING("out of memory"); 1143 firsterr = -ENOMEM; 1144 goto unwind; 1145 } 1146 for (i = 0; i < nrealreaders; i++) { 1147 firsterr = torture_create_kthread(rcu_scale_reader, (void *)i, 1148 reader_tasks[i]); 1149 if (torture_init_error(firsterr)) 1150 goto unwind; 1151 } 1152 while (atomic_read(&n_rcu_scale_reader_started) < nrealreaders) 1153 schedule_timeout_uninterruptible(1); 1154 writer_tasks = kcalloc(nrealwriters, sizeof(writer_tasks[0]), GFP_KERNEL); 1155 writer_durations = kcalloc(nrealwriters, sizeof(*writer_durations), GFP_KERNEL); 1156 writer_n_durations = kcalloc(nrealwriters, sizeof(*writer_n_durations), GFP_KERNEL); 1157 writer_done = kcalloc(nrealwriters, sizeof(writer_done[0]), GFP_KERNEL); 1158 if (gp_async) { 1159 if (gp_async_max <= 0) { 1160 pr_warn("%s: gp_async_max = %d must be greater than zero.\n", 1161 __func__, gp_async_max); 1162 WARN_ON_ONCE(IS_BUILTIN(CONFIG_RCU_TORTURE_TEST)); 1163 firsterr = -EINVAL; 1164 goto unwind; 1165 } 1166 writer_freelists = kcalloc(nrealwriters, sizeof(writer_freelists[0]), GFP_KERNEL); 1167 } 1168 if (!writer_tasks || !writer_durations || !writer_n_durations || !writer_done || 1169 (gp_async && !writer_freelists)) { 1170 SCALEOUT_ERRSTRING("out of memory"); 1171 firsterr = -ENOMEM; 1172 goto unwind; 1173 } 1174 for (i = 0; i < nrealwriters; i++) { 1175 writer_durations[i] = 1176 kcalloc(MAX_MEAS, sizeof(*writer_durations[i]), 1177 GFP_KERNEL); 1178 if (!writer_durations[i]) { 1179 firsterr = -ENOMEM; 1180 goto unwind; 1181 } 1182 if (writer_freelists) { 1183 struct writer_freelist *wflp = &writer_freelists[i]; 1184 1185 init_llist_head(&wflp->ws_lhg); 1186 init_llist_head(&wflp->ws_lhp); 1187 wflp->ws_mblocks = kcalloc(gp_async_max, sizeof(wflp->ws_mblocks[0]), 1188 GFP_KERNEL); 1189 if (!wflp->ws_mblocks) { 1190 firsterr = -ENOMEM; 1191 goto unwind; 1192 } 1193 for (j = 0; j < gp_async_max; j++) { 1194 struct writer_mblock *wmbp = &wflp->ws_mblocks[j]; 1195 1196 wmbp->wmb_wfl = wflp; 1197 llist_add(&wmbp->wmb_node, &wflp->ws_lhp); 1198 } 1199 } 1200 firsterr = torture_create_kthread(rcu_scale_writer, (void *)i, 1201 writer_tasks[i]); 1202 if (torture_init_error(firsterr)) 1203 goto unwind; 1204 } 1205 torture_init_end(); 1206 return 0; 1207 1208 unwind: 1209 torture_init_end(); 1210 rcu_scale_cleanup(); 1211 if (shutdown) { 1212 WARN_ON(!IS_MODULE(CONFIG_RCU_SCALE_TEST)); 1213 kernel_power_off(); 1214 } 1215 return firsterr; 1216 } 1217 1218 module_init(rcu_scale_init); 1219 module_exit(rcu_scale_cleanup); 1220