xref: /linux/kernel/rcu/rcuscale.c (revision 024bfd2e9d80d7131f1178eb2235030b96f7ef0e)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Read-Copy Update module-based scalability-test facility
4  *
5  * Copyright (C) IBM Corporation, 2015
6  *
7  * Authors: Paul E. McKenney <paulmck@linux.ibm.com>
8  */
9 
10 #define pr_fmt(fmt) fmt
11 
12 #include <linux/types.h>
13 #include <linux/kernel.h>
14 #include <linux/init.h>
15 #include <linux/mm.h>
16 #include <linux/module.h>
17 #include <linux/kthread.h>
18 #include <linux/err.h>
19 #include <linux/spinlock.h>
20 #include <linux/smp.h>
21 #include <linux/rcupdate.h>
22 #include <linux/interrupt.h>
23 #include <linux/sched.h>
24 #include <uapi/linux/sched/types.h>
25 #include <linux/atomic.h>
26 #include <linux/bitops.h>
27 #include <linux/completion.h>
28 #include <linux/moduleparam.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/reboot.h>
32 #include <linux/freezer.h>
33 #include <linux/cpu.h>
34 #include <linux/delay.h>
35 #include <linux/stat.h>
36 #include <linux/srcu.h>
37 #include <linux/slab.h>
38 #include <asm/byteorder.h>
39 #include <linux/torture.h>
40 #include <linux/vmalloc.h>
41 #include <linux/rcupdate_trace.h>
42 #include <linux/sched/debug.h>
43 
44 #include "rcu.h"
45 
46 MODULE_DESCRIPTION("Read-Copy Update module-based scalability-test facility");
47 MODULE_LICENSE("GPL");
48 MODULE_AUTHOR("Paul E. McKenney <paulmck@linux.ibm.com>");
49 
50 #define SCALE_FLAG "-scale:"
51 #define SCALEOUT_STRING(s) \
52 	pr_alert("%s" SCALE_FLAG " %s\n", scale_type, s)
53 #define VERBOSE_SCALEOUT_STRING(s) \
54 	do { if (verbose) pr_alert("%s" SCALE_FLAG " %s\n", scale_type, s); } while (0)
55 #define SCALEOUT_ERRSTRING(s) \
56 	pr_alert("%s" SCALE_FLAG "!!! %s\n", scale_type, s)
57 
58 /*
59  * The intended use cases for the nreaders and nwriters module parameters
60  * are as follows:
61  *
62  * 1.	Specify only the nr_cpus kernel boot parameter.  This will
63  *	set both nreaders and nwriters to the value specified by
64  *	nr_cpus for a mixed reader/writer test.
65  *
66  * 2.	Specify the nr_cpus kernel boot parameter, but set
67  *	rcuscale.nreaders to zero.  This will set nwriters to the
68  *	value specified by nr_cpus for an update-only test.
69  *
70  * 3.	Specify the nr_cpus kernel boot parameter, but set
71  *	rcuscale.nwriters to zero.  This will set nreaders to the
72  *	value specified by nr_cpus for a read-only test.
73  *
74  * Various other use cases may of course be specified.
75  *
76  * Note that this test's readers are intended only as a test load for
77  * the writers.  The reader scalability statistics will be overly
78  * pessimistic due to the per-critical-section interrupt disabling,
79  * test-end checks, and the pair of calls through pointers.
80  */
81 
82 #ifdef MODULE
83 # define RCUSCALE_SHUTDOWN 0
84 #else
85 # define RCUSCALE_SHUTDOWN 1
86 #endif
87 
88 torture_param(bool, gp_async, false, "Use asynchronous GP wait primitives");
89 torture_param(int, gp_async_max, 1000, "Max # outstanding waits per writer");
90 torture_param(bool, gp_exp, false, "Use expedited GP wait primitives");
91 torture_param(int, holdoff, 10, "Holdoff time before test start (s)");
92 torture_param(int, minruntime, 0, "Minimum run time (s)");
93 torture_param(int, nreaders, -1, "Number of RCU reader threads");
94 torture_param(int, nwriters, -1, "Number of RCU updater threads");
95 torture_param(bool, shutdown, RCUSCALE_SHUTDOWN,
96 	      "Shutdown at end of scalability tests.");
97 torture_param(int, verbose, 1, "Enable verbose debugging printk()s");
98 torture_param(int, writer_holdoff, 0, "Holdoff (us) between GPs, zero to disable");
99 torture_param(int, writer_holdoff_jiffies, 0, "Holdoff (jiffies) between GPs, zero to disable");
100 torture_param(int, kfree_rcu_test, 0, "Do we run a kfree_rcu() scale test?");
101 torture_param(int, kfree_mult, 1, "Multiple of kfree_obj size to allocate.");
102 torture_param(int, kfree_by_call_rcu, 0, "Use call_rcu() to emulate kfree_rcu()?");
103 
104 static char *scale_type = "rcu";
105 module_param(scale_type, charp, 0444);
106 MODULE_PARM_DESC(scale_type, "Type of RCU to scalability-test (rcu, srcu, ...)");
107 
108 // Structure definitions for custom fixed-per-task allocator.
109 struct writer_mblock {
110 	struct rcu_head wmb_rh;
111 	struct llist_node wmb_node;
112 	struct writer_freelist *wmb_wfl;
113 };
114 
115 struct writer_freelist {
116 	struct llist_head ws_lhg;
117 	atomic_t ws_inflight;
118 	struct llist_head ____cacheline_internodealigned_in_smp ws_lhp;
119 	struct writer_mblock *ws_mblocks;
120 };
121 
122 static int nrealreaders;
123 static int nrealwriters;
124 static struct task_struct **writer_tasks;
125 static struct task_struct **reader_tasks;
126 static struct task_struct *shutdown_task;
127 
128 static u64 **writer_durations;
129 static bool *writer_done;
130 static struct writer_freelist *writer_freelists;
131 static int *writer_n_durations;
132 static atomic_t n_rcu_scale_reader_started;
133 static atomic_t n_rcu_scale_writer_started;
134 static atomic_t n_rcu_scale_writer_finished;
135 static wait_queue_head_t shutdown_wq;
136 static u64 t_rcu_scale_writer_started;
137 static u64 t_rcu_scale_writer_finished;
138 static unsigned long b_rcu_gp_test_started;
139 static unsigned long b_rcu_gp_test_finished;
140 
141 #define MAX_MEAS 10000
142 #define MIN_MEAS 100
143 
144 /*
145  * Operations vector for selecting different types of tests.
146  */
147 
148 struct rcu_scale_ops {
149 	int ptype;
150 	void (*init)(void);
151 	void (*cleanup)(void);
152 	int (*readlock)(void);
153 	void (*readunlock)(int idx);
154 	unsigned long (*get_gp_seq)(void);
155 	unsigned long (*gp_diff)(unsigned long new, unsigned long old);
156 	unsigned long (*exp_completed)(void);
157 	void (*async)(struct rcu_head *head, rcu_callback_t func);
158 	void (*gp_barrier)(void);
159 	void (*sync)(void);
160 	void (*exp_sync)(void);
161 	struct task_struct *(*rso_gp_kthread)(void);
162 	void (*stats)(void);
163 	const char *name;
164 };
165 
166 static struct rcu_scale_ops *cur_ops;
167 
168 /*
169  * Definitions for rcu scalability testing.
170  */
171 
172 static int rcu_scale_read_lock(void) __acquires(RCU)
173 {
174 	rcu_read_lock();
175 	return 0;
176 }
177 
178 static void rcu_scale_read_unlock(int idx) __releases(RCU)
179 {
180 	rcu_read_unlock();
181 }
182 
183 static unsigned long __maybe_unused rcu_no_completed(void)
184 {
185 	return 0;
186 }
187 
188 static void rcu_sync_scale_init(void)
189 {
190 }
191 
192 static struct rcu_scale_ops rcu_ops = {
193 	.ptype		= RCU_FLAVOR,
194 	.init		= rcu_sync_scale_init,
195 	.readlock	= rcu_scale_read_lock,
196 	.readunlock	= rcu_scale_read_unlock,
197 	.get_gp_seq	= rcu_get_gp_seq,
198 	.gp_diff	= rcu_seq_diff,
199 	.exp_completed	= rcu_exp_batches_completed,
200 	.async		= call_rcu_hurry,
201 	.gp_barrier	= rcu_barrier,
202 	.sync		= synchronize_rcu,
203 	.exp_sync	= synchronize_rcu_expedited,
204 	.name		= "rcu"
205 };
206 
207 /*
208  * Definitions for srcu scalability testing.
209  */
210 
211 DEFINE_STATIC_SRCU(srcu_ctl_scale);
212 static struct srcu_struct *srcu_ctlp = &srcu_ctl_scale;
213 
214 static int srcu_scale_read_lock(void) __acquires(srcu_ctlp)
215 {
216 	return srcu_read_lock(srcu_ctlp);
217 }
218 
219 static void srcu_scale_read_unlock(int idx) __releases(srcu_ctlp)
220 {
221 	srcu_read_unlock(srcu_ctlp, idx);
222 }
223 
224 static unsigned long srcu_scale_completed(void)
225 {
226 	return srcu_batches_completed(srcu_ctlp);
227 }
228 
229 static void srcu_call_rcu(struct rcu_head *head, rcu_callback_t func)
230 {
231 	call_srcu(srcu_ctlp, head, func);
232 }
233 
234 static void srcu_rcu_barrier(void)
235 {
236 	srcu_barrier(srcu_ctlp);
237 }
238 
239 static void srcu_scale_synchronize(void)
240 {
241 	synchronize_srcu(srcu_ctlp);
242 }
243 
244 static void srcu_scale_stats(void)
245 {
246 	srcu_torture_stats_print(srcu_ctlp, scale_type, SCALE_FLAG);
247 }
248 
249 static void srcu_scale_synchronize_expedited(void)
250 {
251 	synchronize_srcu_expedited(srcu_ctlp);
252 }
253 
254 static struct rcu_scale_ops srcu_ops = {
255 	.ptype		= SRCU_FLAVOR,
256 	.init		= rcu_sync_scale_init,
257 	.readlock	= srcu_scale_read_lock,
258 	.readunlock	= srcu_scale_read_unlock,
259 	.get_gp_seq	= srcu_scale_completed,
260 	.gp_diff	= rcu_seq_diff,
261 	.exp_completed	= srcu_scale_completed,
262 	.async		= srcu_call_rcu,
263 	.gp_barrier	= srcu_rcu_barrier,
264 	.sync		= srcu_scale_synchronize,
265 	.exp_sync	= srcu_scale_synchronize_expedited,
266 	.stats		= srcu_scale_stats,
267 	.name		= "srcu"
268 };
269 
270 static struct srcu_struct srcud;
271 
272 static void srcu_sync_scale_init(void)
273 {
274 	srcu_ctlp = &srcud;
275 	init_srcu_struct(srcu_ctlp);
276 }
277 
278 static void srcu_sync_scale_cleanup(void)
279 {
280 	cleanup_srcu_struct(srcu_ctlp);
281 }
282 
283 static struct rcu_scale_ops srcud_ops = {
284 	.ptype		= SRCU_FLAVOR,
285 	.init		= srcu_sync_scale_init,
286 	.cleanup	= srcu_sync_scale_cleanup,
287 	.readlock	= srcu_scale_read_lock,
288 	.readunlock	= srcu_scale_read_unlock,
289 	.get_gp_seq	= srcu_scale_completed,
290 	.gp_diff	= rcu_seq_diff,
291 	.exp_completed	= srcu_scale_completed,
292 	.async		= srcu_call_rcu,
293 	.gp_barrier	= srcu_rcu_barrier,
294 	.sync		= srcu_scale_synchronize,
295 	.exp_sync	= srcu_scale_synchronize_expedited,
296 	.stats		= srcu_scale_stats,
297 	.name		= "srcud"
298 };
299 
300 #ifdef CONFIG_TASKS_RCU
301 
302 /*
303  * Definitions for RCU-tasks scalability testing.
304  */
305 
306 static int tasks_scale_read_lock(void)
307 {
308 	return 0;
309 }
310 
311 static void tasks_scale_read_unlock(int idx)
312 {
313 }
314 
315 static void rcu_tasks_scale_stats(void)
316 {
317 	rcu_tasks_torture_stats_print(scale_type, SCALE_FLAG);
318 }
319 
320 static struct rcu_scale_ops tasks_ops = {
321 	.ptype		= RCU_TASKS_FLAVOR,
322 	.init		= rcu_sync_scale_init,
323 	.readlock	= tasks_scale_read_lock,
324 	.readunlock	= tasks_scale_read_unlock,
325 	.get_gp_seq	= rcu_no_completed,
326 	.gp_diff	= rcu_seq_diff,
327 	.async		= call_rcu_tasks,
328 	.gp_barrier	= rcu_barrier_tasks,
329 	.sync		= synchronize_rcu_tasks,
330 	.exp_sync	= synchronize_rcu_tasks,
331 	.rso_gp_kthread	= get_rcu_tasks_gp_kthread,
332 	.stats		= IS_ENABLED(CONFIG_TINY_RCU) ? NULL : rcu_tasks_scale_stats,
333 	.name		= "tasks"
334 };
335 
336 #define TASKS_OPS &tasks_ops,
337 
338 #else // #ifdef CONFIG_TASKS_RCU
339 
340 #define TASKS_OPS
341 
342 #endif // #else // #ifdef CONFIG_TASKS_RCU
343 
344 #ifdef CONFIG_TASKS_RUDE_RCU
345 
346 /*
347  * Definitions for RCU-tasks-rude scalability testing.
348  */
349 
350 static int tasks_rude_scale_read_lock(void)
351 {
352 	return 0;
353 }
354 
355 static void tasks_rude_scale_read_unlock(int idx)
356 {
357 }
358 
359 static void rcu_tasks_rude_scale_stats(void)
360 {
361 	rcu_tasks_rude_torture_stats_print(scale_type, SCALE_FLAG);
362 }
363 
364 static struct rcu_scale_ops tasks_rude_ops = {
365 	.ptype		= RCU_TASKS_RUDE_FLAVOR,
366 	.init		= rcu_sync_scale_init,
367 	.readlock	= tasks_rude_scale_read_lock,
368 	.readunlock	= tasks_rude_scale_read_unlock,
369 	.get_gp_seq	= rcu_no_completed,
370 	.gp_diff	= rcu_seq_diff,
371 	.sync		= synchronize_rcu_tasks_rude,
372 	.exp_sync	= synchronize_rcu_tasks_rude,
373 	.rso_gp_kthread	= get_rcu_tasks_rude_gp_kthread,
374 	.stats		= IS_ENABLED(CONFIG_TINY_RCU) ? NULL : rcu_tasks_rude_scale_stats,
375 	.name		= "tasks-rude"
376 };
377 
378 #define TASKS_RUDE_OPS &tasks_rude_ops,
379 
380 #else // #ifdef CONFIG_TASKS_RUDE_RCU
381 
382 #define TASKS_RUDE_OPS
383 
384 #endif // #else // #ifdef CONFIG_TASKS_RUDE_RCU
385 
386 #ifdef CONFIG_TASKS_TRACE_RCU
387 
388 /*
389  * Definitions for RCU-tasks-trace scalability testing.
390  */
391 
392 static int tasks_trace_scale_read_lock(void)
393 {
394 	rcu_read_lock_trace();
395 	return 0;
396 }
397 
398 static void tasks_trace_scale_read_unlock(int idx)
399 {
400 	rcu_read_unlock_trace();
401 }
402 
403 static void rcu_tasks_trace_scale_stats(void)
404 {
405 	rcu_tasks_trace_torture_stats_print(scale_type, SCALE_FLAG);
406 }
407 
408 static struct rcu_scale_ops tasks_tracing_ops = {
409 	.ptype		= RCU_TASKS_FLAVOR,
410 	.init		= rcu_sync_scale_init,
411 	.readlock	= tasks_trace_scale_read_lock,
412 	.readunlock	= tasks_trace_scale_read_unlock,
413 	.get_gp_seq	= rcu_no_completed,
414 	.gp_diff	= rcu_seq_diff,
415 	.async		= call_rcu_tasks_trace,
416 	.gp_barrier	= rcu_barrier_tasks_trace,
417 	.sync		= synchronize_rcu_tasks_trace,
418 	.exp_sync	= synchronize_rcu_tasks_trace,
419 	.rso_gp_kthread	= get_rcu_tasks_trace_gp_kthread,
420 	.stats		= IS_ENABLED(CONFIG_TINY_RCU) ? NULL : rcu_tasks_trace_scale_stats,
421 	.name		= "tasks-tracing"
422 };
423 
424 #define TASKS_TRACING_OPS &tasks_tracing_ops,
425 
426 #else // #ifdef CONFIG_TASKS_TRACE_RCU
427 
428 #define TASKS_TRACING_OPS
429 
430 #endif // #else // #ifdef CONFIG_TASKS_TRACE_RCU
431 
432 static unsigned long rcuscale_seq_diff(unsigned long new, unsigned long old)
433 {
434 	if (!cur_ops->gp_diff)
435 		return new - old;
436 	return cur_ops->gp_diff(new, old);
437 }
438 
439 /*
440  * If scalability tests complete, wait for shutdown to commence.
441  */
442 static void rcu_scale_wait_shutdown(void)
443 {
444 	cond_resched_tasks_rcu_qs();
445 	if (atomic_read(&n_rcu_scale_writer_finished) < nrealwriters)
446 		return;
447 	while (!torture_must_stop())
448 		schedule_timeout_uninterruptible(1);
449 }
450 
451 /*
452  * RCU scalability reader kthread.  Repeatedly does empty RCU read-side
453  * critical section, minimizing update-side interference.  However, the
454  * point of this test is not to evaluate reader scalability, but instead
455  * to serve as a test load for update-side scalability testing.
456  */
457 static int
458 rcu_scale_reader(void *arg)
459 {
460 	unsigned long flags;
461 	int idx;
462 	long me = (long)arg;
463 
464 	VERBOSE_SCALEOUT_STRING("rcu_scale_reader task started");
465 	set_cpus_allowed_ptr(current, cpumask_of(me % nr_cpu_ids));
466 	set_user_nice(current, MAX_NICE);
467 	atomic_inc(&n_rcu_scale_reader_started);
468 
469 	do {
470 		local_irq_save(flags);
471 		idx = cur_ops->readlock();
472 		cur_ops->readunlock(idx);
473 		local_irq_restore(flags);
474 		rcu_scale_wait_shutdown();
475 	} while (!torture_must_stop());
476 	torture_kthread_stopping("rcu_scale_reader");
477 	return 0;
478 }
479 
480 /*
481  * Allocate a writer_mblock structure for the specified rcu_scale_writer
482  * task.
483  */
484 static struct writer_mblock *rcu_scale_alloc(long me)
485 {
486 	struct llist_node *llnp;
487 	struct writer_freelist *wflp;
488 	struct writer_mblock *wmbp;
489 
490 	if (WARN_ON_ONCE(!writer_freelists))
491 		return NULL;
492 	wflp = &writer_freelists[me];
493 	if (llist_empty(&wflp->ws_lhp)) {
494 		// ->ws_lhp is private to its rcu_scale_writer task.
495 		wmbp = container_of(llist_del_all(&wflp->ws_lhg), struct writer_mblock, wmb_node);
496 		wflp->ws_lhp.first = &wmbp->wmb_node;
497 	}
498 	llnp = llist_del_first(&wflp->ws_lhp);
499 	if (!llnp)
500 		return NULL;
501 	return container_of(llnp, struct writer_mblock, wmb_node);
502 }
503 
504 /*
505  * Free a writer_mblock structure to its rcu_scale_writer task.
506  */
507 static void rcu_scale_free(struct writer_mblock *wmbp)
508 {
509 	struct writer_freelist *wflp;
510 
511 	if (!wmbp)
512 		return;
513 	wflp = wmbp->wmb_wfl;
514 	llist_add(&wmbp->wmb_node, &wflp->ws_lhg);
515 }
516 
517 /*
518  * Callback function for asynchronous grace periods from rcu_scale_writer().
519  */
520 static void rcu_scale_async_cb(struct rcu_head *rhp)
521 {
522 	struct writer_mblock *wmbp = container_of(rhp, struct writer_mblock, wmb_rh);
523 	struct writer_freelist *wflp = wmbp->wmb_wfl;
524 
525 	atomic_dec(&wflp->ws_inflight);
526 	rcu_scale_free(wmbp);
527 }
528 
529 /*
530  * RCU scale writer kthread.  Repeatedly does a grace period.
531  */
532 static int
533 rcu_scale_writer(void *arg)
534 {
535 	int i = 0;
536 	int i_max;
537 	unsigned long jdone;
538 	long me = (long)arg;
539 	bool selfreport = false;
540 	bool started = false, done = false, alldone = false;
541 	u64 t;
542 	DEFINE_TORTURE_RANDOM(tr);
543 	u64 *wdp;
544 	u64 *wdpp = writer_durations[me];
545 	struct writer_freelist *wflp = &writer_freelists[me];
546 	struct writer_mblock *wmbp = NULL;
547 
548 	VERBOSE_SCALEOUT_STRING("rcu_scale_writer task started");
549 	WARN_ON(!wdpp);
550 	set_cpus_allowed_ptr(current, cpumask_of(me % nr_cpu_ids));
551 	current->flags |= PF_NO_SETAFFINITY;
552 	sched_set_fifo_low(current);
553 
554 	if (holdoff)
555 		schedule_timeout_idle(holdoff * HZ);
556 
557 	/*
558 	 * Wait until rcu_end_inkernel_boot() is called for normal GP tests
559 	 * so that RCU is not always expedited for normal GP tests.
560 	 * The system_state test is approximate, but works well in practice.
561 	 */
562 	while (!gp_exp && system_state != SYSTEM_RUNNING)
563 		schedule_timeout_uninterruptible(1);
564 
565 	t = ktime_get_mono_fast_ns();
566 	if (atomic_inc_return(&n_rcu_scale_writer_started) >= nrealwriters) {
567 		t_rcu_scale_writer_started = t;
568 		if (gp_exp) {
569 			b_rcu_gp_test_started =
570 				cur_ops->exp_completed() / 2;
571 		} else {
572 			b_rcu_gp_test_started = cur_ops->get_gp_seq();
573 		}
574 	}
575 
576 	jdone = jiffies + minruntime * HZ;
577 	do {
578 		bool gp_succeeded = false;
579 
580 		if (writer_holdoff)
581 			udelay(writer_holdoff);
582 		if (writer_holdoff_jiffies)
583 			schedule_timeout_idle(torture_random(&tr) % writer_holdoff_jiffies + 1);
584 		wdp = &wdpp[i];
585 		*wdp = ktime_get_mono_fast_ns();
586 		if (gp_async && !WARN_ON_ONCE(!cur_ops->async)) {
587 			if (!wmbp)
588 				wmbp = rcu_scale_alloc(me);
589 			if (wmbp && atomic_read(&wflp->ws_inflight) < gp_async_max) {
590 				atomic_inc(&wflp->ws_inflight);
591 				cur_ops->async(&wmbp->wmb_rh, rcu_scale_async_cb);
592 				wmbp = NULL;
593 				gp_succeeded = true;
594 			} else if (!kthread_should_stop()) {
595 				cur_ops->gp_barrier();
596 			} else {
597 				rcu_scale_free(wmbp); /* Because we are stopping. */
598 				wmbp = NULL;
599 			}
600 		} else if (gp_exp) {
601 			cur_ops->exp_sync();
602 			gp_succeeded = true;
603 		} else {
604 			cur_ops->sync();
605 			gp_succeeded = true;
606 		}
607 		t = ktime_get_mono_fast_ns();
608 		*wdp = t - *wdp;
609 		i_max = i;
610 		if (!started &&
611 		    atomic_read(&n_rcu_scale_writer_started) >= nrealwriters)
612 			started = true;
613 		if (!done && i >= MIN_MEAS && time_after(jiffies, jdone)) {
614 			done = true;
615 			WRITE_ONCE(writer_done[me], true);
616 			sched_set_normal(current, 0);
617 			pr_alert("%s%s rcu_scale_writer %ld has %d measurements\n",
618 				 scale_type, SCALE_FLAG, me, MIN_MEAS);
619 			if (atomic_inc_return(&n_rcu_scale_writer_finished) >=
620 			    nrealwriters) {
621 				schedule_timeout_interruptible(10);
622 				rcu_ftrace_dump(DUMP_ALL);
623 				SCALEOUT_STRING("Test complete");
624 				t_rcu_scale_writer_finished = t;
625 				if (gp_exp) {
626 					b_rcu_gp_test_finished =
627 						cur_ops->exp_completed() / 2;
628 				} else {
629 					b_rcu_gp_test_finished =
630 						cur_ops->get_gp_seq();
631 				}
632 				if (shutdown) {
633 					smp_mb(); /* Assign before wake. */
634 					wake_up(&shutdown_wq);
635 				}
636 			}
637 		}
638 		if (done && !alldone &&
639 		    atomic_read(&n_rcu_scale_writer_finished) >= nrealwriters)
640 			alldone = true;
641 		if (done && !alldone && time_after(jiffies, jdone + HZ * 60)) {
642 			static atomic_t dumped;
643 			int i;
644 
645 			if (!atomic_xchg(&dumped, 1)) {
646 				for (i = 0; i < nrealwriters; i++) {
647 					if (writer_done[i])
648 						continue;
649 					pr_info("%s: Task %ld flags writer %d:\n", __func__, me, i);
650 					sched_show_task(writer_tasks[i]);
651 				}
652 				if (cur_ops->stats)
653 					cur_ops->stats();
654 			}
655 		}
656 		if (!selfreport && time_after(jiffies, jdone + HZ * (70 + me))) {
657 			pr_info("%s: Writer %ld self-report: started %d done %d/%d->%d i %d jdone %lu.\n",
658 				__func__, me, started, done, writer_done[me], atomic_read(&n_rcu_scale_writer_finished), i, jiffies - jdone);
659 			selfreport = true;
660 		}
661 		if (gp_succeeded && started && !alldone && i < MAX_MEAS - 1)
662 			i++;
663 		rcu_scale_wait_shutdown();
664 	} while (!torture_must_stop());
665 	if (gp_async && cur_ops->async) {
666 		rcu_scale_free(wmbp);
667 		cur_ops->gp_barrier();
668 	}
669 	writer_n_durations[me] = i_max + 1;
670 	torture_kthread_stopping("rcu_scale_writer");
671 	return 0;
672 }
673 
674 static void
675 rcu_scale_print_module_parms(struct rcu_scale_ops *cur_ops, const char *tag)
676 {
677 	pr_alert("%s" SCALE_FLAG
678 		 "--- %s: gp_async=%d gp_async_max=%d gp_exp=%d holdoff=%d minruntime=%d nreaders=%d nwriters=%d writer_holdoff=%d writer_holdoff_jiffies=%d verbose=%d shutdown=%d\n",
679 		 scale_type, tag, gp_async, gp_async_max, gp_exp, holdoff, minruntime, nrealreaders, nrealwriters, writer_holdoff, writer_holdoff_jiffies, verbose, shutdown);
680 }
681 
682 /*
683  * Return the number if non-negative.  If -1, the number of CPUs.
684  * If less than -1, that much less than the number of CPUs, but
685  * at least one.
686  */
687 static int compute_real(int n)
688 {
689 	int nr;
690 
691 	if (n >= 0) {
692 		nr = n;
693 	} else {
694 		nr = num_online_cpus() + 1 + n;
695 		if (nr <= 0)
696 			nr = 1;
697 	}
698 	return nr;
699 }
700 
701 /*
702  * kfree_rcu() scalability tests: Start a kfree_rcu() loop on all CPUs for number
703  * of iterations and measure total time and number of GP for all iterations to complete.
704  */
705 
706 torture_param(int, kfree_nthreads, -1, "Number of threads running loops of kfree_rcu().");
707 torture_param(int, kfree_alloc_num, 8000, "Number of allocations and frees done in an iteration.");
708 torture_param(int, kfree_loops, 10, "Number of loops doing kfree_alloc_num allocations and frees.");
709 torture_param(bool, kfree_rcu_test_double, false, "Do we run a kfree_rcu() double-argument scale test?");
710 torture_param(bool, kfree_rcu_test_single, false, "Do we run a kfree_rcu() single-argument scale test?");
711 
712 static struct task_struct **kfree_reader_tasks;
713 static int kfree_nrealthreads;
714 static atomic_t n_kfree_scale_thread_started;
715 static atomic_t n_kfree_scale_thread_ended;
716 static struct task_struct *kthread_tp;
717 static u64 kthread_stime;
718 
719 struct kfree_obj {
720 	char kfree_obj[8];
721 	struct rcu_head rh;
722 };
723 
724 /* Used if doing RCU-kfree'ing via call_rcu(). */
725 static void kfree_call_rcu(struct rcu_head *rh)
726 {
727 	struct kfree_obj *obj = container_of(rh, struct kfree_obj, rh);
728 
729 	kfree(obj);
730 }
731 
732 static int
733 kfree_scale_thread(void *arg)
734 {
735 	int i, loop = 0;
736 	long me = (long)arg;
737 	struct kfree_obj *alloc_ptr;
738 	u64 start_time, end_time;
739 	long long mem_begin, mem_during = 0;
740 	bool kfree_rcu_test_both;
741 	DEFINE_TORTURE_RANDOM(tr);
742 
743 	VERBOSE_SCALEOUT_STRING("kfree_scale_thread task started");
744 	set_cpus_allowed_ptr(current, cpumask_of(me % nr_cpu_ids));
745 	set_user_nice(current, MAX_NICE);
746 	kfree_rcu_test_both = (kfree_rcu_test_single == kfree_rcu_test_double);
747 
748 	start_time = ktime_get_mono_fast_ns();
749 
750 	if (atomic_inc_return(&n_kfree_scale_thread_started) >= kfree_nrealthreads) {
751 		if (gp_exp)
752 			b_rcu_gp_test_started = cur_ops->exp_completed() / 2;
753 		else
754 			b_rcu_gp_test_started = cur_ops->get_gp_seq();
755 	}
756 
757 	do {
758 		if (!mem_during) {
759 			mem_during = mem_begin = si_mem_available();
760 		} else if (loop % (kfree_loops / 4) == 0) {
761 			mem_during = (mem_during + si_mem_available()) / 2;
762 		}
763 
764 		for (i = 0; i < kfree_alloc_num; i++) {
765 			alloc_ptr = kmalloc(kfree_mult * sizeof(struct kfree_obj), GFP_KERNEL);
766 			if (!alloc_ptr)
767 				return -ENOMEM;
768 
769 			if (kfree_by_call_rcu) {
770 				call_rcu(&(alloc_ptr->rh), kfree_call_rcu);
771 				continue;
772 			}
773 
774 			// By default kfree_rcu_test_single and kfree_rcu_test_double are
775 			// initialized to false. If both have the same value (false or true)
776 			// both are randomly tested, otherwise only the one with value true
777 			// is tested.
778 			if ((kfree_rcu_test_single && !kfree_rcu_test_double) ||
779 					(kfree_rcu_test_both && torture_random(&tr) & 0x800))
780 				kfree_rcu_mightsleep(alloc_ptr);
781 			else
782 				kfree_rcu(alloc_ptr, rh);
783 		}
784 
785 		cond_resched();
786 	} while (!torture_must_stop() && ++loop < kfree_loops);
787 
788 	if (atomic_inc_return(&n_kfree_scale_thread_ended) >= kfree_nrealthreads) {
789 		end_time = ktime_get_mono_fast_ns();
790 
791 		if (gp_exp)
792 			b_rcu_gp_test_finished = cur_ops->exp_completed() / 2;
793 		else
794 			b_rcu_gp_test_finished = cur_ops->get_gp_seq();
795 
796 		pr_alert("Total time taken by all kfree'ers: %llu ns, loops: %d, batches: %ld, memory footprint: %lldMB\n",
797 		       (unsigned long long)(end_time - start_time), kfree_loops,
798 		       rcuscale_seq_diff(b_rcu_gp_test_finished, b_rcu_gp_test_started),
799 		       (mem_begin - mem_during) >> (20 - PAGE_SHIFT));
800 
801 		if (shutdown) {
802 			smp_mb(); /* Assign before wake. */
803 			wake_up(&shutdown_wq);
804 		}
805 	}
806 
807 	torture_kthread_stopping("kfree_scale_thread");
808 	return 0;
809 }
810 
811 static void
812 kfree_scale_cleanup(void)
813 {
814 	int i;
815 
816 	if (torture_cleanup_begin())
817 		return;
818 
819 	if (kfree_reader_tasks) {
820 		for (i = 0; i < kfree_nrealthreads; i++)
821 			torture_stop_kthread(kfree_scale_thread,
822 					     kfree_reader_tasks[i]);
823 		kfree(kfree_reader_tasks);
824 		kfree_reader_tasks = NULL;
825 	}
826 
827 	torture_cleanup_end();
828 }
829 
830 /*
831  * shutdown kthread.  Just waits to be awakened, then shuts down system.
832  */
833 static int
834 kfree_scale_shutdown(void *arg)
835 {
836 	wait_event_idle(shutdown_wq,
837 			atomic_read(&n_kfree_scale_thread_ended) >= kfree_nrealthreads);
838 
839 	smp_mb(); /* Wake before output. */
840 
841 	kfree_scale_cleanup();
842 	kernel_power_off();
843 	return -EINVAL;
844 }
845 
846 // Used if doing RCU-kfree'ing via call_rcu().
847 static unsigned long jiffies_at_lazy_cb;
848 static struct rcu_head lazy_test1_rh;
849 static int rcu_lazy_test1_cb_called;
850 static void call_rcu_lazy_test1(struct rcu_head *rh)
851 {
852 	jiffies_at_lazy_cb = jiffies;
853 	WRITE_ONCE(rcu_lazy_test1_cb_called, 1);
854 }
855 
856 static int __init
857 kfree_scale_init(void)
858 {
859 	int firsterr = 0;
860 	long i;
861 	unsigned long jif_start;
862 	unsigned long orig_jif;
863 
864 	pr_alert("%s" SCALE_FLAG
865 		 "--- kfree_rcu_test: kfree_mult=%d kfree_by_call_rcu=%d kfree_nthreads=%d kfree_alloc_num=%d kfree_loops=%d kfree_rcu_test_double=%d kfree_rcu_test_single=%d\n",
866 		 scale_type, kfree_mult, kfree_by_call_rcu, kfree_nthreads, kfree_alloc_num, kfree_loops, kfree_rcu_test_double, kfree_rcu_test_single);
867 
868 	// Also, do a quick self-test to ensure laziness is as much as
869 	// expected.
870 	if (kfree_by_call_rcu && !IS_ENABLED(CONFIG_RCU_LAZY)) {
871 		pr_alert("CONFIG_RCU_LAZY is disabled, falling back to kfree_rcu() for delayed RCU kfree'ing\n");
872 		kfree_by_call_rcu = 0;
873 	}
874 
875 	if (kfree_by_call_rcu) {
876 		/* do a test to check the timeout. */
877 		orig_jif = rcu_get_jiffies_lazy_flush();
878 
879 		rcu_set_jiffies_lazy_flush(2 * HZ);
880 		rcu_barrier();
881 
882 		jif_start = jiffies;
883 		jiffies_at_lazy_cb = 0;
884 		call_rcu(&lazy_test1_rh, call_rcu_lazy_test1);
885 
886 		smp_cond_load_relaxed(&rcu_lazy_test1_cb_called, VAL == 1);
887 
888 		rcu_set_jiffies_lazy_flush(orig_jif);
889 
890 		if (WARN_ON_ONCE(jiffies_at_lazy_cb - jif_start < 2 * HZ)) {
891 			pr_alert("ERROR: call_rcu() CBs are not being lazy as expected!\n");
892 			firsterr = -1;
893 			goto unwind;
894 		}
895 
896 		if (WARN_ON_ONCE(jiffies_at_lazy_cb - jif_start > 3 * HZ)) {
897 			pr_alert("ERROR: call_rcu() CBs are being too lazy!\n");
898 			firsterr = -1;
899 			goto unwind;
900 		}
901 	}
902 
903 	kfree_nrealthreads = compute_real(kfree_nthreads);
904 	/* Start up the kthreads. */
905 	if (shutdown) {
906 		init_waitqueue_head(&shutdown_wq);
907 		firsterr = torture_create_kthread(kfree_scale_shutdown, NULL,
908 						  shutdown_task);
909 		if (torture_init_error(firsterr))
910 			goto unwind;
911 		schedule_timeout_uninterruptible(1);
912 	}
913 
914 	pr_alert("kfree object size=%zu, kfree_by_call_rcu=%d\n",
915 			kfree_mult * sizeof(struct kfree_obj),
916 			kfree_by_call_rcu);
917 
918 	kfree_reader_tasks = kcalloc(kfree_nrealthreads, sizeof(kfree_reader_tasks[0]),
919 			       GFP_KERNEL);
920 	if (kfree_reader_tasks == NULL) {
921 		firsterr = -ENOMEM;
922 		goto unwind;
923 	}
924 
925 	for (i = 0; i < kfree_nrealthreads; i++) {
926 		firsterr = torture_create_kthread(kfree_scale_thread, (void *)i,
927 						  kfree_reader_tasks[i]);
928 		if (torture_init_error(firsterr))
929 			goto unwind;
930 	}
931 
932 	while (atomic_read(&n_kfree_scale_thread_started) < kfree_nrealthreads)
933 		schedule_timeout_uninterruptible(1);
934 
935 	torture_init_end();
936 	return 0;
937 
938 unwind:
939 	torture_init_end();
940 	kfree_scale_cleanup();
941 	return firsterr;
942 }
943 
944 static void
945 rcu_scale_cleanup(void)
946 {
947 	int i;
948 	int j;
949 	int ngps = 0;
950 	u64 *wdp;
951 	u64 *wdpp;
952 
953 	/*
954 	 * Would like warning at start, but everything is expedited
955 	 * during the mid-boot phase, so have to wait till the end.
956 	 */
957 	if (rcu_gp_is_expedited() && !rcu_gp_is_normal() && !gp_exp)
958 		SCALEOUT_ERRSTRING("All grace periods expedited, no normal ones to measure!");
959 	if (rcu_gp_is_normal() && gp_exp)
960 		SCALEOUT_ERRSTRING("All grace periods normal, no expedited ones to measure!");
961 	if (gp_exp && gp_async)
962 		SCALEOUT_ERRSTRING("No expedited async GPs, so went with async!");
963 
964 	// If built-in, just report all of the GP kthread's CPU time.
965 	if (IS_BUILTIN(CONFIG_RCU_SCALE_TEST) && !kthread_tp && cur_ops->rso_gp_kthread)
966 		kthread_tp = cur_ops->rso_gp_kthread();
967 	if (kthread_tp) {
968 		u32 ns;
969 		u64 us;
970 
971 		kthread_stime = kthread_tp->stime - kthread_stime;
972 		us = div_u64_rem(kthread_stime, 1000, &ns);
973 		pr_info("rcu_scale: Grace-period kthread CPU time: %llu.%03u us\n", us, ns);
974 		show_rcu_gp_kthreads();
975 	}
976 	if (kfree_rcu_test) {
977 		kfree_scale_cleanup();
978 		return;
979 	}
980 
981 	if (torture_cleanup_begin())
982 		return;
983 	if (!cur_ops) {
984 		torture_cleanup_end();
985 		return;
986 	}
987 
988 	if (reader_tasks) {
989 		for (i = 0; i < nrealreaders; i++)
990 			torture_stop_kthread(rcu_scale_reader,
991 					     reader_tasks[i]);
992 		kfree(reader_tasks);
993 		reader_tasks = NULL;
994 	}
995 
996 	if (writer_tasks) {
997 		for (i = 0; i < nrealwriters; i++) {
998 			torture_stop_kthread(rcu_scale_writer,
999 					     writer_tasks[i]);
1000 			if (!writer_n_durations)
1001 				continue;
1002 			j = writer_n_durations[i];
1003 			pr_alert("%s%s writer %d gps: %d\n",
1004 				 scale_type, SCALE_FLAG, i, j);
1005 			ngps += j;
1006 		}
1007 		pr_alert("%s%s start: %llu end: %llu duration: %llu gps: %d batches: %ld\n",
1008 			 scale_type, SCALE_FLAG,
1009 			 t_rcu_scale_writer_started, t_rcu_scale_writer_finished,
1010 			 t_rcu_scale_writer_finished -
1011 			 t_rcu_scale_writer_started,
1012 			 ngps,
1013 			 rcuscale_seq_diff(b_rcu_gp_test_finished,
1014 					   b_rcu_gp_test_started));
1015 		for (i = 0; i < nrealwriters; i++) {
1016 			if (!writer_durations)
1017 				break;
1018 			if (!writer_n_durations)
1019 				continue;
1020 			wdpp = writer_durations[i];
1021 			if (!wdpp)
1022 				continue;
1023 			for (j = 0; j < writer_n_durations[i]; j++) {
1024 				wdp = &wdpp[j];
1025 				pr_alert("%s%s %4d writer-duration: %5d %llu\n",
1026 					scale_type, SCALE_FLAG,
1027 					i, j, *wdp);
1028 				if (j % 100 == 0)
1029 					schedule_timeout_uninterruptible(1);
1030 			}
1031 			kfree(writer_durations[i]);
1032 			if (writer_freelists) {
1033 				int ctr = 0;
1034 				struct llist_node *llnp;
1035 				struct writer_freelist *wflp = &writer_freelists[i];
1036 
1037 				if (wflp->ws_mblocks) {
1038 					llist_for_each(llnp, wflp->ws_lhg.first)
1039 						ctr++;
1040 					llist_for_each(llnp, wflp->ws_lhp.first)
1041 						ctr++;
1042 					WARN_ONCE(ctr != gp_async_max,
1043 						  "%s: ctr = %d gp_async_max = %d\n",
1044 						  __func__, ctr, gp_async_max);
1045 					kfree(wflp->ws_mblocks);
1046 				}
1047 			}
1048 		}
1049 		kfree(writer_tasks);
1050 		writer_tasks = NULL;
1051 		kfree(writer_durations);
1052 		writer_durations = NULL;
1053 		kfree(writer_n_durations);
1054 		writer_n_durations = NULL;
1055 		kfree(writer_done);
1056 		writer_done = NULL;
1057 		kfree(writer_freelists);
1058 		writer_freelists = NULL;
1059 	}
1060 
1061 	/* Do torture-type-specific cleanup operations.  */
1062 	if (cur_ops->cleanup != NULL)
1063 		cur_ops->cleanup();
1064 
1065 	torture_cleanup_end();
1066 }
1067 
1068 /*
1069  * RCU scalability shutdown kthread.  Just waits to be awakened, then shuts
1070  * down system.
1071  */
1072 static int
1073 rcu_scale_shutdown(void *arg)
1074 {
1075 	wait_event_idle(shutdown_wq, atomic_read(&n_rcu_scale_writer_finished) >= nrealwriters);
1076 	smp_mb(); /* Wake before output. */
1077 	rcu_scale_cleanup();
1078 	kernel_power_off();
1079 	return -EINVAL;
1080 }
1081 
1082 static int __init
1083 rcu_scale_init(void)
1084 {
1085 	int firsterr = 0;
1086 	long i;
1087 	long j;
1088 	static struct rcu_scale_ops *scale_ops[] = {
1089 		&rcu_ops, &srcu_ops, &srcud_ops, TASKS_OPS TASKS_RUDE_OPS TASKS_TRACING_OPS
1090 	};
1091 
1092 	if (!torture_init_begin(scale_type, verbose))
1093 		return -EBUSY;
1094 
1095 	/* Process args and announce that the scalability'er is on the job. */
1096 	for (i = 0; i < ARRAY_SIZE(scale_ops); i++) {
1097 		cur_ops = scale_ops[i];
1098 		if (strcmp(scale_type, cur_ops->name) == 0)
1099 			break;
1100 	}
1101 	if (i == ARRAY_SIZE(scale_ops)) {
1102 		pr_alert("rcu-scale: invalid scale type: \"%s\"\n", scale_type);
1103 		pr_alert("rcu-scale types:");
1104 		for (i = 0; i < ARRAY_SIZE(scale_ops); i++)
1105 			pr_cont(" %s", scale_ops[i]->name);
1106 		pr_cont("\n");
1107 		firsterr = -EINVAL;
1108 		cur_ops = NULL;
1109 		goto unwind;
1110 	}
1111 	if (cur_ops->init)
1112 		cur_ops->init();
1113 
1114 	if (cur_ops->rso_gp_kthread) {
1115 		kthread_tp = cur_ops->rso_gp_kthread();
1116 		if (kthread_tp)
1117 			kthread_stime = kthread_tp->stime;
1118 	}
1119 	if (kfree_rcu_test)
1120 		return kfree_scale_init();
1121 
1122 	nrealwriters = compute_real(nwriters);
1123 	nrealreaders = compute_real(nreaders);
1124 	atomic_set(&n_rcu_scale_reader_started, 0);
1125 	atomic_set(&n_rcu_scale_writer_started, 0);
1126 	atomic_set(&n_rcu_scale_writer_finished, 0);
1127 	rcu_scale_print_module_parms(cur_ops, "Start of test");
1128 
1129 	/* Start up the kthreads. */
1130 
1131 	if (shutdown) {
1132 		init_waitqueue_head(&shutdown_wq);
1133 		firsterr = torture_create_kthread(rcu_scale_shutdown, NULL,
1134 						  shutdown_task);
1135 		if (torture_init_error(firsterr))
1136 			goto unwind;
1137 		schedule_timeout_uninterruptible(1);
1138 	}
1139 	reader_tasks = kcalloc(nrealreaders, sizeof(reader_tasks[0]),
1140 			       GFP_KERNEL);
1141 	if (reader_tasks == NULL) {
1142 		SCALEOUT_ERRSTRING("out of memory");
1143 		firsterr = -ENOMEM;
1144 		goto unwind;
1145 	}
1146 	for (i = 0; i < nrealreaders; i++) {
1147 		firsterr = torture_create_kthread(rcu_scale_reader, (void *)i,
1148 						  reader_tasks[i]);
1149 		if (torture_init_error(firsterr))
1150 			goto unwind;
1151 	}
1152 	while (atomic_read(&n_rcu_scale_reader_started) < nrealreaders)
1153 		schedule_timeout_uninterruptible(1);
1154 	writer_tasks = kcalloc(nrealwriters, sizeof(writer_tasks[0]), GFP_KERNEL);
1155 	writer_durations = kcalloc(nrealwriters, sizeof(*writer_durations), GFP_KERNEL);
1156 	writer_n_durations = kcalloc(nrealwriters, sizeof(*writer_n_durations), GFP_KERNEL);
1157 	writer_done = kcalloc(nrealwriters, sizeof(writer_done[0]), GFP_KERNEL);
1158 	if (gp_async) {
1159 		if (gp_async_max <= 0) {
1160 			pr_warn("%s: gp_async_max = %d must be greater than zero.\n",
1161 				__func__, gp_async_max);
1162 			WARN_ON_ONCE(IS_BUILTIN(CONFIG_RCU_TORTURE_TEST));
1163 			firsterr = -EINVAL;
1164 			goto unwind;
1165 		}
1166 		writer_freelists = kcalloc(nrealwriters, sizeof(writer_freelists[0]), GFP_KERNEL);
1167 	}
1168 	if (!writer_tasks || !writer_durations || !writer_n_durations || !writer_done ||
1169 	    (gp_async && !writer_freelists)) {
1170 		SCALEOUT_ERRSTRING("out of memory");
1171 		firsterr = -ENOMEM;
1172 		goto unwind;
1173 	}
1174 	for (i = 0; i < nrealwriters; i++) {
1175 		writer_durations[i] =
1176 			kcalloc(MAX_MEAS, sizeof(*writer_durations[i]),
1177 				GFP_KERNEL);
1178 		if (!writer_durations[i]) {
1179 			firsterr = -ENOMEM;
1180 			goto unwind;
1181 		}
1182 		if (writer_freelists) {
1183 			struct writer_freelist *wflp = &writer_freelists[i];
1184 
1185 			init_llist_head(&wflp->ws_lhg);
1186 			init_llist_head(&wflp->ws_lhp);
1187 			wflp->ws_mblocks = kcalloc(gp_async_max, sizeof(wflp->ws_mblocks[0]),
1188 						   GFP_KERNEL);
1189 			if (!wflp->ws_mblocks) {
1190 				firsterr = -ENOMEM;
1191 				goto unwind;
1192 			}
1193 			for (j = 0; j < gp_async_max; j++) {
1194 				struct writer_mblock *wmbp = &wflp->ws_mblocks[j];
1195 
1196 				wmbp->wmb_wfl = wflp;
1197 				llist_add(&wmbp->wmb_node, &wflp->ws_lhp);
1198 			}
1199 		}
1200 		firsterr = torture_create_kthread(rcu_scale_writer, (void *)i,
1201 						  writer_tasks[i]);
1202 		if (torture_init_error(firsterr))
1203 			goto unwind;
1204 	}
1205 	torture_init_end();
1206 	return 0;
1207 
1208 unwind:
1209 	torture_init_end();
1210 	rcu_scale_cleanup();
1211 	if (shutdown) {
1212 		WARN_ON(!IS_MODULE(CONFIG_RCU_SCALE_TEST));
1213 		kernel_power_off();
1214 	}
1215 	return firsterr;
1216 }
1217 
1218 module_init(rcu_scale_init);
1219 module_exit(rcu_scale_cleanup);
1220