xref: /linux/kernel/rcu/rcu.h (revision f6154d8babbb8a98f0d3ea325aafae2e33bfd8be)
1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3  * Read-Copy Update definitions shared among RCU implementations.
4  *
5  * Copyright IBM Corporation, 2011
6  *
7  * Author: Paul E. McKenney <paulmck@linux.ibm.com>
8  */
9 
10 #ifndef __LINUX_RCU_H
11 #define __LINUX_RCU_H
12 
13 #include <linux/slab.h>
14 #include <trace/events/rcu.h>
15 
16 /*
17  * Grace-period counter management.
18  *
19  * The two least significant bits contain the control flags.
20  * The most significant bits contain the grace-period sequence counter.
21  *
22  * When both control flags are zero, no grace period is in progress.
23  * When either bit is non-zero, a grace period has started and is in
24  * progress. When the grace period completes, the control flags are reset
25  * to 0 and the grace-period sequence counter is incremented.
26  *
27  * However some specific RCU usages make use of custom values.
28  *
29  * SRCU special control values:
30  *
31  *	SRCU_SNP_INIT_SEQ	:	Invalid/init value set when SRCU node
32  *					is initialized.
33  *
34  *	SRCU_STATE_IDLE		:	No SRCU gp is in progress
35  *
36  *	SRCU_STATE_SCAN1	:	State set by rcu_seq_start(). Indicates
37  *					we are scanning the readers on the slot
38  *					defined as inactive (there might well
39  *					be pending readers that will use that
40  *					index, but their number is bounded).
41  *
42  *	SRCU_STATE_SCAN2	:	State set manually via rcu_seq_set_state()
43  *					Indicates we are flipping the readers
44  *					index and then scanning the readers on the
45  *					slot newly designated as inactive (again,
46  *					the number of pending readers that will use
47  *					this inactive index is bounded).
48  *
49  * RCU polled GP special control value:
50  *
51  *	RCU_GET_STATE_COMPLETED :	State value indicating an already-completed
52  *					polled GP has completed.  This value covers
53  *					both the state and the counter of the
54  *					grace-period sequence number.
55  */
56 
57 #define RCU_SEQ_CTR_SHIFT	2
58 #define RCU_SEQ_STATE_MASK	((1 << RCU_SEQ_CTR_SHIFT) - 1)
59 
60 /* Low-order bit definition for polled grace-period APIs. */
61 #define RCU_GET_STATE_COMPLETED	0x1
62 
63 extern int sysctl_sched_rt_runtime;
64 
65 /*
66  * Return the counter portion of a sequence number previously returned
67  * by rcu_seq_snap() or rcu_seq_current().
68  */
69 static inline unsigned long rcu_seq_ctr(unsigned long s)
70 {
71 	return s >> RCU_SEQ_CTR_SHIFT;
72 }
73 
74 /*
75  * Return the state portion of a sequence number previously returned
76  * by rcu_seq_snap() or rcu_seq_current().
77  */
78 static inline int rcu_seq_state(unsigned long s)
79 {
80 	return s & RCU_SEQ_STATE_MASK;
81 }
82 
83 /*
84  * Set the state portion of the pointed-to sequence number.
85  * The caller is responsible for preventing conflicting updates.
86  */
87 static inline void rcu_seq_set_state(unsigned long *sp, int newstate)
88 {
89 	WARN_ON_ONCE(newstate & ~RCU_SEQ_STATE_MASK);
90 	WRITE_ONCE(*sp, (*sp & ~RCU_SEQ_STATE_MASK) + newstate);
91 }
92 
93 /* Adjust sequence number for start of update-side operation. */
94 static inline void rcu_seq_start(unsigned long *sp)
95 {
96 	WRITE_ONCE(*sp, *sp + 1);
97 	smp_mb(); /* Ensure update-side operation after counter increment. */
98 	WARN_ON_ONCE(rcu_seq_state(*sp) != 1);
99 }
100 
101 /* Compute the end-of-grace-period value for the specified sequence number. */
102 static inline unsigned long rcu_seq_endval(unsigned long *sp)
103 {
104 	return (*sp | RCU_SEQ_STATE_MASK) + 1;
105 }
106 
107 /* Adjust sequence number for end of update-side operation. */
108 static inline void rcu_seq_end(unsigned long *sp)
109 {
110 	smp_mb(); /* Ensure update-side operation before counter increment. */
111 	WARN_ON_ONCE(!rcu_seq_state(*sp));
112 	WRITE_ONCE(*sp, rcu_seq_endval(sp));
113 }
114 
115 /*
116  * rcu_seq_snap - Take a snapshot of the update side's sequence number.
117  *
118  * This function returns the earliest value of the grace-period sequence number
119  * that will indicate that a full grace period has elapsed since the current
120  * time.  Once the grace-period sequence number has reached this value, it will
121  * be safe to invoke all callbacks that have been registered prior to the
122  * current time. This value is the current grace-period number plus two to the
123  * power of the number of low-order bits reserved for state, then rounded up to
124  * the next value in which the state bits are all zero.
125  */
126 static inline unsigned long rcu_seq_snap(unsigned long *sp)
127 {
128 	unsigned long s;
129 
130 	s = (READ_ONCE(*sp) + 2 * RCU_SEQ_STATE_MASK + 1) & ~RCU_SEQ_STATE_MASK;
131 	smp_mb(); /* Above access must not bleed into critical section. */
132 	return s;
133 }
134 
135 /* Return the current value the update side's sequence number, no ordering. */
136 static inline unsigned long rcu_seq_current(unsigned long *sp)
137 {
138 	return READ_ONCE(*sp);
139 }
140 
141 /*
142  * Given a snapshot from rcu_seq_snap(), determine whether or not the
143  * corresponding update-side operation has started.
144  */
145 static inline bool rcu_seq_started(unsigned long *sp, unsigned long s)
146 {
147 	return ULONG_CMP_LT((s - 1) & ~RCU_SEQ_STATE_MASK, READ_ONCE(*sp));
148 }
149 
150 /*
151  * Given a snapshot from rcu_seq_snap(), determine whether or not a
152  * full update-side operation has occurred.
153  */
154 static inline bool rcu_seq_done(unsigned long *sp, unsigned long s)
155 {
156 	return ULONG_CMP_GE(READ_ONCE(*sp), s);
157 }
158 
159 /*
160  * Given a snapshot from rcu_seq_snap(), determine whether or not a
161  * full update-side operation has occurred, but do not allow the
162  * (ULONG_MAX / 2) safety-factor/guard-band.
163  */
164 static inline bool rcu_seq_done_exact(unsigned long *sp, unsigned long s)
165 {
166 	unsigned long cur_s = READ_ONCE(*sp);
167 
168 	return ULONG_CMP_GE(cur_s, s) || ULONG_CMP_LT(cur_s, s - (2 * RCU_SEQ_STATE_MASK + 1));
169 }
170 
171 /*
172  * Has a grace period completed since the time the old gp_seq was collected?
173  */
174 static inline bool rcu_seq_completed_gp(unsigned long old, unsigned long new)
175 {
176 	return ULONG_CMP_LT(old, new & ~RCU_SEQ_STATE_MASK);
177 }
178 
179 /*
180  * Has a grace period started since the time the old gp_seq was collected?
181  */
182 static inline bool rcu_seq_new_gp(unsigned long old, unsigned long new)
183 {
184 	return ULONG_CMP_LT((old + RCU_SEQ_STATE_MASK) & ~RCU_SEQ_STATE_MASK,
185 			    new);
186 }
187 
188 /*
189  * Roughly how many full grace periods have elapsed between the collection
190  * of the two specified grace periods?
191  */
192 static inline unsigned long rcu_seq_diff(unsigned long new, unsigned long old)
193 {
194 	unsigned long rnd_diff;
195 
196 	if (old == new)
197 		return 0;
198 	/*
199 	 * Compute the number of grace periods (still shifted up), plus
200 	 * one if either of new and old is not an exact grace period.
201 	 */
202 	rnd_diff = (new & ~RCU_SEQ_STATE_MASK) -
203 		   ((old + RCU_SEQ_STATE_MASK) & ~RCU_SEQ_STATE_MASK) +
204 		   ((new & RCU_SEQ_STATE_MASK) || (old & RCU_SEQ_STATE_MASK));
205 	if (ULONG_CMP_GE(RCU_SEQ_STATE_MASK, rnd_diff))
206 		return 1; /* Definitely no grace period has elapsed. */
207 	return ((rnd_diff - RCU_SEQ_STATE_MASK - 1) >> RCU_SEQ_CTR_SHIFT) + 2;
208 }
209 
210 /*
211  * debug_rcu_head_queue()/debug_rcu_head_unqueue() are used internally
212  * by call_rcu() and rcu callback execution, and are therefore not part
213  * of the RCU API. These are in rcupdate.h because they are used by all
214  * RCU implementations.
215  */
216 
217 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
218 # define STATE_RCU_HEAD_READY	0
219 # define STATE_RCU_HEAD_QUEUED	1
220 
221 extern const struct debug_obj_descr rcuhead_debug_descr;
222 
223 static inline int debug_rcu_head_queue(struct rcu_head *head)
224 {
225 	int r1;
226 
227 	r1 = debug_object_activate(head, &rcuhead_debug_descr);
228 	debug_object_active_state(head, &rcuhead_debug_descr,
229 				  STATE_RCU_HEAD_READY,
230 				  STATE_RCU_HEAD_QUEUED);
231 	return r1;
232 }
233 
234 static inline void debug_rcu_head_unqueue(struct rcu_head *head)
235 {
236 	debug_object_active_state(head, &rcuhead_debug_descr,
237 				  STATE_RCU_HEAD_QUEUED,
238 				  STATE_RCU_HEAD_READY);
239 	debug_object_deactivate(head, &rcuhead_debug_descr);
240 }
241 #else	/* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
242 static inline int debug_rcu_head_queue(struct rcu_head *head)
243 {
244 	return 0;
245 }
246 
247 static inline void debug_rcu_head_unqueue(struct rcu_head *head)
248 {
249 }
250 #endif	/* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
251 
252 static inline void debug_rcu_head_callback(struct rcu_head *rhp)
253 {
254 	if (unlikely(!rhp->func))
255 		kmem_dump_obj(rhp);
256 }
257 
258 extern int rcu_cpu_stall_suppress_at_boot;
259 
260 static inline bool rcu_stall_is_suppressed_at_boot(void)
261 {
262 	return rcu_cpu_stall_suppress_at_boot && !rcu_inkernel_boot_has_ended();
263 }
264 
265 #ifdef CONFIG_RCU_STALL_COMMON
266 
267 extern int rcu_cpu_stall_ftrace_dump;
268 extern int rcu_cpu_stall_suppress;
269 extern int rcu_cpu_stall_timeout;
270 extern int rcu_exp_cpu_stall_timeout;
271 extern int rcu_cpu_stall_cputime;
272 extern bool rcu_exp_stall_task_details __read_mostly;
273 int rcu_jiffies_till_stall_check(void);
274 int rcu_exp_jiffies_till_stall_check(void);
275 
276 static inline bool rcu_stall_is_suppressed(void)
277 {
278 	return rcu_stall_is_suppressed_at_boot() || rcu_cpu_stall_suppress;
279 }
280 
281 #define rcu_ftrace_dump_stall_suppress() \
282 do { \
283 	if (!rcu_cpu_stall_suppress) \
284 		rcu_cpu_stall_suppress = 3; \
285 } while (0)
286 
287 #define rcu_ftrace_dump_stall_unsuppress() \
288 do { \
289 	if (rcu_cpu_stall_suppress == 3) \
290 		rcu_cpu_stall_suppress = 0; \
291 } while (0)
292 
293 #else /* #endif #ifdef CONFIG_RCU_STALL_COMMON */
294 
295 static inline bool rcu_stall_is_suppressed(void)
296 {
297 	return rcu_stall_is_suppressed_at_boot();
298 }
299 #define rcu_ftrace_dump_stall_suppress()
300 #define rcu_ftrace_dump_stall_unsuppress()
301 #endif /* #ifdef CONFIG_RCU_STALL_COMMON */
302 
303 /*
304  * Strings used in tracepoints need to be exported via the
305  * tracing system such that tools like perf and trace-cmd can
306  * translate the string address pointers to actual text.
307  */
308 #define TPS(x)  tracepoint_string(x)
309 
310 /*
311  * Dump the ftrace buffer, but only one time per callsite per boot.
312  */
313 #define rcu_ftrace_dump(oops_dump_mode) \
314 do { \
315 	static atomic_t ___rfd_beenhere = ATOMIC_INIT(0); \
316 	\
317 	if (!atomic_read(&___rfd_beenhere) && \
318 	    !atomic_xchg(&___rfd_beenhere, 1)) { \
319 		tracing_off(); \
320 		rcu_ftrace_dump_stall_suppress(); \
321 		ftrace_dump(oops_dump_mode); \
322 		rcu_ftrace_dump_stall_unsuppress(); \
323 	} \
324 } while (0)
325 
326 void rcu_early_boot_tests(void);
327 void rcu_test_sync_prims(void);
328 
329 /*
330  * This function really isn't for public consumption, but RCU is special in
331  * that context switches can allow the state machine to make progress.
332  */
333 extern void resched_cpu(int cpu);
334 
335 #if !defined(CONFIG_TINY_RCU)
336 
337 #include <linux/rcu_node_tree.h>
338 
339 extern int rcu_num_lvls;
340 extern int num_rcu_lvl[];
341 extern int rcu_num_nodes;
342 static bool rcu_fanout_exact;
343 static int rcu_fanout_leaf;
344 
345 /*
346  * Compute the per-level fanout, either using the exact fanout specified
347  * or balancing the tree, depending on the rcu_fanout_exact boot parameter.
348  */
349 static inline void rcu_init_levelspread(int *levelspread, const int *levelcnt)
350 {
351 	int i;
352 
353 	for (i = 0; i < RCU_NUM_LVLS; i++)
354 		levelspread[i] = INT_MIN;
355 	if (rcu_fanout_exact) {
356 		levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
357 		for (i = rcu_num_lvls - 2; i >= 0; i--)
358 			levelspread[i] = RCU_FANOUT;
359 	} else {
360 		int ccur;
361 		int cprv;
362 
363 		cprv = nr_cpu_ids;
364 		for (i = rcu_num_lvls - 1; i >= 0; i--) {
365 			ccur = levelcnt[i];
366 			levelspread[i] = (cprv + ccur - 1) / ccur;
367 			cprv = ccur;
368 		}
369 	}
370 }
371 
372 extern void rcu_init_geometry(void);
373 
374 /* Returns a pointer to the first leaf rcu_node structure. */
375 #define rcu_first_leaf_node() (rcu_state.level[rcu_num_lvls - 1])
376 
377 /* Is this rcu_node a leaf? */
378 #define rcu_is_leaf_node(rnp) ((rnp)->level == rcu_num_lvls - 1)
379 
380 /* Is this rcu_node the last leaf? */
381 #define rcu_is_last_leaf_node(rnp) ((rnp) == &rcu_state.node[rcu_num_nodes - 1])
382 
383 /*
384  * Do a full breadth-first scan of the {s,}rcu_node structures for the
385  * specified state structure (for SRCU) or the only rcu_state structure
386  * (for RCU).
387  */
388 #define _rcu_for_each_node_breadth_first(sp, rnp) \
389 	for ((rnp) = &(sp)->node[0]; \
390 	     (rnp) < &(sp)->node[rcu_num_nodes]; (rnp)++)
391 #define rcu_for_each_node_breadth_first(rnp) \
392 	_rcu_for_each_node_breadth_first(&rcu_state, rnp)
393 #define srcu_for_each_node_breadth_first(ssp, rnp) \
394 	_rcu_for_each_node_breadth_first(ssp->srcu_sup, rnp)
395 
396 /*
397  * Scan the leaves of the rcu_node hierarchy for the rcu_state structure.
398  * Note that if there is a singleton rcu_node tree with but one rcu_node
399  * structure, this loop -will- visit the rcu_node structure.  It is still
400  * a leaf node, even if it is also the root node.
401  */
402 #define rcu_for_each_leaf_node(rnp) \
403 	for ((rnp) = rcu_first_leaf_node(); \
404 	     (rnp) < &rcu_state.node[rcu_num_nodes]; (rnp)++)
405 
406 /*
407  * Iterate over all possible CPUs in a leaf RCU node.
408  */
409 #define for_each_leaf_node_possible_cpu(rnp, cpu) \
410 	for (WARN_ON_ONCE(!rcu_is_leaf_node(rnp)), \
411 	     (cpu) = cpumask_next((rnp)->grplo - 1, cpu_possible_mask); \
412 	     (cpu) <= rnp->grphi; \
413 	     (cpu) = cpumask_next((cpu), cpu_possible_mask))
414 
415 /*
416  * Iterate over all CPUs in a leaf RCU node's specified mask.
417  */
418 #define rcu_find_next_bit(rnp, cpu, mask) \
419 	((rnp)->grplo + find_next_bit(&(mask), BITS_PER_LONG, (cpu)))
420 #define for_each_leaf_node_cpu_mask(rnp, cpu, mask) \
421 	for (WARN_ON_ONCE(!rcu_is_leaf_node(rnp)), \
422 	     (cpu) = rcu_find_next_bit((rnp), 0, (mask)); \
423 	     (cpu) <= rnp->grphi; \
424 	     (cpu) = rcu_find_next_bit((rnp), (cpu) + 1 - (rnp->grplo), (mask)))
425 
426 #endif /* !defined(CONFIG_TINY_RCU) */
427 
428 #if !defined(CONFIG_TINY_RCU) || defined(CONFIG_TASKS_RCU_GENERIC)
429 
430 /*
431  * Wrappers for the rcu_node::lock acquire and release.
432  *
433  * Because the rcu_nodes form a tree, the tree traversal locking will observe
434  * different lock values, this in turn means that an UNLOCK of one level
435  * followed by a LOCK of another level does not imply a full memory barrier;
436  * and most importantly transitivity is lost.
437  *
438  * In order to restore full ordering between tree levels, augment the regular
439  * lock acquire functions with smp_mb__after_unlock_lock().
440  *
441  * As ->lock of struct rcu_node is a __private field, therefore one should use
442  * these wrappers rather than directly call raw_spin_{lock,unlock}* on ->lock.
443  */
444 #define raw_spin_lock_rcu_node(p)					\
445 do {									\
446 	raw_spin_lock(&ACCESS_PRIVATE(p, lock));			\
447 	smp_mb__after_unlock_lock();					\
448 } while (0)
449 
450 #define raw_spin_unlock_rcu_node(p)					\
451 do {									\
452 	lockdep_assert_irqs_disabled();					\
453 	raw_spin_unlock(&ACCESS_PRIVATE(p, lock));			\
454 } while (0)
455 
456 #define raw_spin_lock_irq_rcu_node(p)					\
457 do {									\
458 	raw_spin_lock_irq(&ACCESS_PRIVATE(p, lock));			\
459 	smp_mb__after_unlock_lock();					\
460 } while (0)
461 
462 #define raw_spin_unlock_irq_rcu_node(p)					\
463 do {									\
464 	lockdep_assert_irqs_disabled();					\
465 	raw_spin_unlock_irq(&ACCESS_PRIVATE(p, lock));			\
466 } while (0)
467 
468 #define raw_spin_lock_irqsave_rcu_node(p, flags)			\
469 do {									\
470 	raw_spin_lock_irqsave(&ACCESS_PRIVATE(p, lock), flags);	\
471 	smp_mb__after_unlock_lock();					\
472 } while (0)
473 
474 #define raw_spin_unlock_irqrestore_rcu_node(p, flags)			\
475 do {									\
476 	lockdep_assert_irqs_disabled();					\
477 	raw_spin_unlock_irqrestore(&ACCESS_PRIVATE(p, lock), flags);	\
478 } while (0)
479 
480 #define raw_spin_trylock_rcu_node(p)					\
481 ({									\
482 	bool ___locked = raw_spin_trylock(&ACCESS_PRIVATE(p, lock));	\
483 									\
484 	if (___locked)							\
485 		smp_mb__after_unlock_lock();				\
486 	___locked;							\
487 })
488 
489 #define raw_lockdep_assert_held_rcu_node(p)				\
490 	lockdep_assert_held(&ACCESS_PRIVATE(p, lock))
491 
492 #endif // #if !defined(CONFIG_TINY_RCU) || defined(CONFIG_TASKS_RCU_GENERIC)
493 
494 #ifdef CONFIG_TINY_RCU
495 /* Tiny RCU doesn't expedite, as its purpose in life is instead to be tiny. */
496 static inline bool rcu_gp_is_normal(void) { return true; }
497 static inline bool rcu_gp_is_expedited(void) { return false; }
498 static inline bool rcu_async_should_hurry(void) { return false; }
499 static inline void rcu_expedite_gp(void) { }
500 static inline void rcu_unexpedite_gp(void) { }
501 static inline void rcu_async_hurry(void) { }
502 static inline void rcu_async_relax(void) { }
503 static inline bool rcu_cpu_online(int cpu) { return true; }
504 #else /* #ifdef CONFIG_TINY_RCU */
505 bool rcu_gp_is_normal(void);     /* Internal RCU use. */
506 bool rcu_gp_is_expedited(void);  /* Internal RCU use. */
507 bool rcu_async_should_hurry(void);  /* Internal RCU use. */
508 void rcu_expedite_gp(void);
509 void rcu_unexpedite_gp(void);
510 void rcu_async_hurry(void);
511 void rcu_async_relax(void);
512 void rcupdate_announce_bootup_oddness(void);
513 bool rcu_cpu_online(int cpu);
514 #ifdef CONFIG_TASKS_RCU_GENERIC
515 void show_rcu_tasks_gp_kthreads(void);
516 #else /* #ifdef CONFIG_TASKS_RCU_GENERIC */
517 static inline void show_rcu_tasks_gp_kthreads(void) {}
518 #endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */
519 #endif /* #else #ifdef CONFIG_TINY_RCU */
520 
521 #ifdef CONFIG_TASKS_RCU
522 struct task_struct *get_rcu_tasks_gp_kthread(void);
523 #endif // # ifdef CONFIG_TASKS_RCU
524 
525 #ifdef CONFIG_TASKS_RUDE_RCU
526 struct task_struct *get_rcu_tasks_rude_gp_kthread(void);
527 #endif // # ifdef CONFIG_TASKS_RUDE_RCU
528 
529 #define RCU_SCHEDULER_INACTIVE	0
530 #define RCU_SCHEDULER_INIT	1
531 #define RCU_SCHEDULER_RUNNING	2
532 
533 enum rcutorture_type {
534 	RCU_FLAVOR,
535 	RCU_TASKS_FLAVOR,
536 	RCU_TASKS_RUDE_FLAVOR,
537 	RCU_TASKS_TRACING_FLAVOR,
538 	RCU_TRIVIAL_FLAVOR,
539 	SRCU_FLAVOR,
540 	INVALID_RCU_FLAVOR
541 };
542 
543 #if defined(CONFIG_RCU_LAZY)
544 unsigned long rcu_lazy_get_jiffies_till_flush(void);
545 void rcu_lazy_set_jiffies_till_flush(unsigned long j);
546 #else
547 static inline unsigned long rcu_lazy_get_jiffies_till_flush(void) { return 0; }
548 static inline void rcu_lazy_set_jiffies_till_flush(unsigned long j) { }
549 #endif
550 
551 #if defined(CONFIG_TREE_RCU)
552 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
553 			    unsigned long *gp_seq);
554 void do_trace_rcu_torture_read(const char *rcutorturename,
555 			       struct rcu_head *rhp,
556 			       unsigned long secs,
557 			       unsigned long c_old,
558 			       unsigned long c);
559 void rcu_gp_set_torture_wait(int duration);
560 #else
561 static inline void rcutorture_get_gp_data(enum rcutorture_type test_type,
562 					  int *flags, unsigned long *gp_seq)
563 {
564 	*flags = 0;
565 	*gp_seq = 0;
566 }
567 #ifdef CONFIG_RCU_TRACE
568 void do_trace_rcu_torture_read(const char *rcutorturename,
569 			       struct rcu_head *rhp,
570 			       unsigned long secs,
571 			       unsigned long c_old,
572 			       unsigned long c);
573 #else
574 #define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
575 	do { } while (0)
576 #endif
577 static inline void rcu_gp_set_torture_wait(int duration) { }
578 #endif
579 
580 #ifdef CONFIG_TINY_SRCU
581 
582 static inline void srcutorture_get_gp_data(enum rcutorture_type test_type,
583 					   struct srcu_struct *sp, int *flags,
584 					   unsigned long *gp_seq)
585 {
586 	if (test_type != SRCU_FLAVOR)
587 		return;
588 	*flags = 0;
589 	*gp_seq = sp->srcu_idx;
590 }
591 
592 #elif defined(CONFIG_TREE_SRCU)
593 
594 void srcutorture_get_gp_data(enum rcutorture_type test_type,
595 			     struct srcu_struct *sp, int *flags,
596 			     unsigned long *gp_seq);
597 
598 #endif
599 
600 #ifdef CONFIG_TINY_RCU
601 static inline bool rcu_dynticks_zero_in_eqs(int cpu, int *vp) { return false; }
602 static inline unsigned long rcu_get_gp_seq(void) { return 0; }
603 static inline unsigned long rcu_exp_batches_completed(void) { return 0; }
604 static inline unsigned long
605 srcu_batches_completed(struct srcu_struct *sp) { return 0; }
606 static inline void rcu_force_quiescent_state(void) { }
607 static inline bool rcu_check_boost_fail(unsigned long gp_state, int *cpup) { return true; }
608 static inline void show_rcu_gp_kthreads(void) { }
609 static inline int rcu_get_gp_kthreads_prio(void) { return 0; }
610 static inline void rcu_fwd_progress_check(unsigned long j) { }
611 static inline void rcu_gp_slow_register(atomic_t *rgssp) { }
612 static inline void rcu_gp_slow_unregister(atomic_t *rgssp) { }
613 #else /* #ifdef CONFIG_TINY_RCU */
614 bool rcu_dynticks_zero_in_eqs(int cpu, int *vp);
615 unsigned long rcu_get_gp_seq(void);
616 unsigned long rcu_exp_batches_completed(void);
617 unsigned long srcu_batches_completed(struct srcu_struct *sp);
618 bool rcu_check_boost_fail(unsigned long gp_state, int *cpup);
619 void show_rcu_gp_kthreads(void);
620 int rcu_get_gp_kthreads_prio(void);
621 void rcu_fwd_progress_check(unsigned long j);
622 void rcu_force_quiescent_state(void);
623 extern struct workqueue_struct *rcu_gp_wq;
624 #ifdef CONFIG_RCU_EXP_KTHREAD
625 extern struct kthread_worker *rcu_exp_gp_kworker;
626 extern struct kthread_worker *rcu_exp_par_gp_kworker;
627 #else /* !CONFIG_RCU_EXP_KTHREAD */
628 extern struct workqueue_struct *rcu_par_gp_wq;
629 #endif /* CONFIG_RCU_EXP_KTHREAD */
630 void rcu_gp_slow_register(atomic_t *rgssp);
631 void rcu_gp_slow_unregister(atomic_t *rgssp);
632 #endif /* #else #ifdef CONFIG_TINY_RCU */
633 
634 #ifdef CONFIG_RCU_NOCB_CPU
635 void rcu_bind_current_to_nocb(void);
636 #else
637 static inline void rcu_bind_current_to_nocb(void) { }
638 #endif
639 
640 #if !defined(CONFIG_TINY_RCU) && defined(CONFIG_TASKS_RCU)
641 void show_rcu_tasks_classic_gp_kthread(void);
642 #else
643 static inline void show_rcu_tasks_classic_gp_kthread(void) {}
644 #endif
645 #if !defined(CONFIG_TINY_RCU) && defined(CONFIG_TASKS_RUDE_RCU)
646 void show_rcu_tasks_rude_gp_kthread(void);
647 #else
648 static inline void show_rcu_tasks_rude_gp_kthread(void) {}
649 #endif
650 #if !defined(CONFIG_TINY_RCU) && defined(CONFIG_TASKS_TRACE_RCU)
651 void show_rcu_tasks_trace_gp_kthread(void);
652 #else
653 static inline void show_rcu_tasks_trace_gp_kthread(void) {}
654 #endif
655 
656 #ifdef CONFIG_TINY_RCU
657 static inline bool rcu_cpu_beenfullyonline(int cpu) { return true; }
658 #else
659 bool rcu_cpu_beenfullyonline(int cpu);
660 #endif
661 
662 #ifdef CONFIG_RCU_STALL_COMMON
663 int rcu_stall_notifier_call_chain(unsigned long val, void *v);
664 #else // #ifdef CONFIG_RCU_STALL_COMMON
665 static inline int rcu_stall_notifier_call_chain(unsigned long val, void *v) { return NOTIFY_DONE; }
666 #endif // #else // #ifdef CONFIG_RCU_STALL_COMMON
667 
668 #endif /* __LINUX_RCU_H */
669