1 /* SPDX-License-Identifier: GPL-2.0+ */ 2 /* 3 * Read-Copy Update definitions shared among RCU implementations. 4 * 5 * Copyright IBM Corporation, 2011 6 * 7 * Author: Paul E. McKenney <paulmck@linux.ibm.com> 8 */ 9 10 #ifndef __LINUX_RCU_H 11 #define __LINUX_RCU_H 12 13 #include <trace/events/rcu.h> 14 15 /* Offset to allow distinguishing irq vs. task-based idle entry/exit. */ 16 #define DYNTICK_IRQ_NONIDLE ((LONG_MAX / 2) + 1) 17 18 19 /* 20 * Grace-period counter management. 21 */ 22 23 #define RCU_SEQ_CTR_SHIFT 2 24 #define RCU_SEQ_STATE_MASK ((1 << RCU_SEQ_CTR_SHIFT) - 1) 25 26 /* 27 * Return the counter portion of a sequence number previously returned 28 * by rcu_seq_snap() or rcu_seq_current(). 29 */ 30 static inline unsigned long rcu_seq_ctr(unsigned long s) 31 { 32 return s >> RCU_SEQ_CTR_SHIFT; 33 } 34 35 /* 36 * Return the state portion of a sequence number previously returned 37 * by rcu_seq_snap() or rcu_seq_current(). 38 */ 39 static inline int rcu_seq_state(unsigned long s) 40 { 41 return s & RCU_SEQ_STATE_MASK; 42 } 43 44 /* 45 * Set the state portion of the pointed-to sequence number. 46 * The caller is responsible for preventing conflicting updates. 47 */ 48 static inline void rcu_seq_set_state(unsigned long *sp, int newstate) 49 { 50 WARN_ON_ONCE(newstate & ~RCU_SEQ_STATE_MASK); 51 WRITE_ONCE(*sp, (*sp & ~RCU_SEQ_STATE_MASK) + newstate); 52 } 53 54 /* Adjust sequence number for start of update-side operation. */ 55 static inline void rcu_seq_start(unsigned long *sp) 56 { 57 WRITE_ONCE(*sp, *sp + 1); 58 smp_mb(); /* Ensure update-side operation after counter increment. */ 59 WARN_ON_ONCE(rcu_seq_state(*sp) != 1); 60 } 61 62 /* Compute the end-of-grace-period value for the specified sequence number. */ 63 static inline unsigned long rcu_seq_endval(unsigned long *sp) 64 { 65 return (*sp | RCU_SEQ_STATE_MASK) + 1; 66 } 67 68 /* Adjust sequence number for end of update-side operation. */ 69 static inline void rcu_seq_end(unsigned long *sp) 70 { 71 smp_mb(); /* Ensure update-side operation before counter increment. */ 72 WARN_ON_ONCE(!rcu_seq_state(*sp)); 73 WRITE_ONCE(*sp, rcu_seq_endval(sp)); 74 } 75 76 /* 77 * rcu_seq_snap - Take a snapshot of the update side's sequence number. 78 * 79 * This function returns the earliest value of the grace-period sequence number 80 * that will indicate that a full grace period has elapsed since the current 81 * time. Once the grace-period sequence number has reached this value, it will 82 * be safe to invoke all callbacks that have been registered prior to the 83 * current time. This value is the current grace-period number plus two to the 84 * power of the number of low-order bits reserved for state, then rounded up to 85 * the next value in which the state bits are all zero. 86 */ 87 static inline unsigned long rcu_seq_snap(unsigned long *sp) 88 { 89 unsigned long s; 90 91 s = (READ_ONCE(*sp) + 2 * RCU_SEQ_STATE_MASK + 1) & ~RCU_SEQ_STATE_MASK; 92 smp_mb(); /* Above access must not bleed into critical section. */ 93 return s; 94 } 95 96 /* Return the current value the update side's sequence number, no ordering. */ 97 static inline unsigned long rcu_seq_current(unsigned long *sp) 98 { 99 return READ_ONCE(*sp); 100 } 101 102 /* 103 * Given a snapshot from rcu_seq_snap(), determine whether or not the 104 * corresponding update-side operation has started. 105 */ 106 static inline bool rcu_seq_started(unsigned long *sp, unsigned long s) 107 { 108 return ULONG_CMP_LT((s - 1) & ~RCU_SEQ_STATE_MASK, READ_ONCE(*sp)); 109 } 110 111 /* 112 * Given a snapshot from rcu_seq_snap(), determine whether or not a 113 * full update-side operation has occurred. 114 */ 115 static inline bool rcu_seq_done(unsigned long *sp, unsigned long s) 116 { 117 return ULONG_CMP_GE(READ_ONCE(*sp), s); 118 } 119 120 /* 121 * Has a grace period completed since the time the old gp_seq was collected? 122 */ 123 static inline bool rcu_seq_completed_gp(unsigned long old, unsigned long new) 124 { 125 return ULONG_CMP_LT(old, new & ~RCU_SEQ_STATE_MASK); 126 } 127 128 /* 129 * Has a grace period started since the time the old gp_seq was collected? 130 */ 131 static inline bool rcu_seq_new_gp(unsigned long old, unsigned long new) 132 { 133 return ULONG_CMP_LT((old + RCU_SEQ_STATE_MASK) & ~RCU_SEQ_STATE_MASK, 134 new); 135 } 136 137 /* 138 * Roughly how many full grace periods have elapsed between the collection 139 * of the two specified grace periods? 140 */ 141 static inline unsigned long rcu_seq_diff(unsigned long new, unsigned long old) 142 { 143 unsigned long rnd_diff; 144 145 if (old == new) 146 return 0; 147 /* 148 * Compute the number of grace periods (still shifted up), plus 149 * one if either of new and old is not an exact grace period. 150 */ 151 rnd_diff = (new & ~RCU_SEQ_STATE_MASK) - 152 ((old + RCU_SEQ_STATE_MASK) & ~RCU_SEQ_STATE_MASK) + 153 ((new & RCU_SEQ_STATE_MASK) || (old & RCU_SEQ_STATE_MASK)); 154 if (ULONG_CMP_GE(RCU_SEQ_STATE_MASK, rnd_diff)) 155 return 1; /* Definitely no grace period has elapsed. */ 156 return ((rnd_diff - RCU_SEQ_STATE_MASK - 1) >> RCU_SEQ_CTR_SHIFT) + 2; 157 } 158 159 /* 160 * debug_rcu_head_queue()/debug_rcu_head_unqueue() are used internally 161 * by call_rcu() and rcu callback execution, and are therefore not part 162 * of the RCU API. These are in rcupdate.h because they are used by all 163 * RCU implementations. 164 */ 165 166 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD 167 # define STATE_RCU_HEAD_READY 0 168 # define STATE_RCU_HEAD_QUEUED 1 169 170 extern struct debug_obj_descr rcuhead_debug_descr; 171 172 static inline int debug_rcu_head_queue(struct rcu_head *head) 173 { 174 int r1; 175 176 r1 = debug_object_activate(head, &rcuhead_debug_descr); 177 debug_object_active_state(head, &rcuhead_debug_descr, 178 STATE_RCU_HEAD_READY, 179 STATE_RCU_HEAD_QUEUED); 180 return r1; 181 } 182 183 static inline void debug_rcu_head_unqueue(struct rcu_head *head) 184 { 185 debug_object_active_state(head, &rcuhead_debug_descr, 186 STATE_RCU_HEAD_QUEUED, 187 STATE_RCU_HEAD_READY); 188 debug_object_deactivate(head, &rcuhead_debug_descr); 189 } 190 #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */ 191 static inline int debug_rcu_head_queue(struct rcu_head *head) 192 { 193 return 0; 194 } 195 196 static inline void debug_rcu_head_unqueue(struct rcu_head *head) 197 { 198 } 199 #endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */ 200 201 void kfree(const void *); 202 203 /* 204 * Reclaim the specified callback, either by invoking it (non-lazy case) 205 * or freeing it directly (lazy case). Return true if lazy, false otherwise. 206 */ 207 static inline bool __rcu_reclaim(const char *rn, struct rcu_head *head) 208 { 209 rcu_callback_t f; 210 unsigned long offset = (unsigned long)head->func; 211 212 rcu_lock_acquire(&rcu_callback_map); 213 if (__is_kfree_rcu_offset(offset)) { 214 trace_rcu_invoke_kfree_callback(rn, head, offset); 215 kfree((void *)head - offset); 216 rcu_lock_release(&rcu_callback_map); 217 return true; 218 } else { 219 trace_rcu_invoke_callback(rn, head); 220 f = head->func; 221 WRITE_ONCE(head->func, (rcu_callback_t)0L); 222 f(head); 223 rcu_lock_release(&rcu_callback_map); 224 return false; 225 } 226 } 227 228 #ifdef CONFIG_RCU_STALL_COMMON 229 230 extern int rcu_cpu_stall_suppress; 231 extern int rcu_cpu_stall_timeout; 232 int rcu_jiffies_till_stall_check(void); 233 234 #define rcu_ftrace_dump_stall_suppress() \ 235 do { \ 236 if (!rcu_cpu_stall_suppress) \ 237 rcu_cpu_stall_suppress = 3; \ 238 } while (0) 239 240 #define rcu_ftrace_dump_stall_unsuppress() \ 241 do { \ 242 if (rcu_cpu_stall_suppress == 3) \ 243 rcu_cpu_stall_suppress = 0; \ 244 } while (0) 245 246 #else /* #endif #ifdef CONFIG_RCU_STALL_COMMON */ 247 #define rcu_ftrace_dump_stall_suppress() 248 #define rcu_ftrace_dump_stall_unsuppress() 249 #endif /* #ifdef CONFIG_RCU_STALL_COMMON */ 250 251 /* 252 * Strings used in tracepoints need to be exported via the 253 * tracing system such that tools like perf and trace-cmd can 254 * translate the string address pointers to actual text. 255 */ 256 #define TPS(x) tracepoint_string(x) 257 258 /* 259 * Dump the ftrace buffer, but only one time per callsite per boot. 260 */ 261 #define rcu_ftrace_dump(oops_dump_mode) \ 262 do { \ 263 static atomic_t ___rfd_beenhere = ATOMIC_INIT(0); \ 264 \ 265 if (!atomic_read(&___rfd_beenhere) && \ 266 !atomic_xchg(&___rfd_beenhere, 1)) { \ 267 tracing_off(); \ 268 rcu_ftrace_dump_stall_suppress(); \ 269 ftrace_dump(oops_dump_mode); \ 270 rcu_ftrace_dump_stall_unsuppress(); \ 271 } \ 272 } while (0) 273 274 void rcu_early_boot_tests(void); 275 void rcu_test_sync_prims(void); 276 277 /* 278 * This function really isn't for public consumption, but RCU is special in 279 * that context switches can allow the state machine to make progress. 280 */ 281 extern void resched_cpu(int cpu); 282 283 #if defined(SRCU) || !defined(TINY_RCU) 284 285 #include <linux/rcu_node_tree.h> 286 287 extern int rcu_num_lvls; 288 extern int num_rcu_lvl[]; 289 extern int rcu_num_nodes; 290 static bool rcu_fanout_exact; 291 static int rcu_fanout_leaf; 292 293 /* 294 * Compute the per-level fanout, either using the exact fanout specified 295 * or balancing the tree, depending on the rcu_fanout_exact boot parameter. 296 */ 297 static inline void rcu_init_levelspread(int *levelspread, const int *levelcnt) 298 { 299 int i; 300 301 if (rcu_fanout_exact) { 302 levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf; 303 for (i = rcu_num_lvls - 2; i >= 0; i--) 304 levelspread[i] = RCU_FANOUT; 305 } else { 306 int ccur; 307 int cprv; 308 309 cprv = nr_cpu_ids; 310 for (i = rcu_num_lvls - 1; i >= 0; i--) { 311 ccur = levelcnt[i]; 312 levelspread[i] = (cprv + ccur - 1) / ccur; 313 cprv = ccur; 314 } 315 } 316 } 317 318 /* Returns a pointer to the first leaf rcu_node structure. */ 319 #define rcu_first_leaf_node() (rcu_state.level[rcu_num_lvls - 1]) 320 321 /* Is this rcu_node a leaf? */ 322 #define rcu_is_leaf_node(rnp) ((rnp)->level == rcu_num_lvls - 1) 323 324 /* Is this rcu_node the last leaf? */ 325 #define rcu_is_last_leaf_node(rnp) ((rnp) == &rcu_state.node[rcu_num_nodes - 1]) 326 327 /* 328 * Do a full breadth-first scan of the {s,}rcu_node structures for the 329 * specified state structure (for SRCU) or the only rcu_state structure 330 * (for RCU). 331 */ 332 #define srcu_for_each_node_breadth_first(sp, rnp) \ 333 for ((rnp) = &(sp)->node[0]; \ 334 (rnp) < &(sp)->node[rcu_num_nodes]; (rnp)++) 335 #define rcu_for_each_node_breadth_first(rnp) \ 336 srcu_for_each_node_breadth_first(&rcu_state, rnp) 337 338 /* 339 * Scan the leaves of the rcu_node hierarchy for the rcu_state structure. 340 * Note that if there is a singleton rcu_node tree with but one rcu_node 341 * structure, this loop -will- visit the rcu_node structure. It is still 342 * a leaf node, even if it is also the root node. 343 */ 344 #define rcu_for_each_leaf_node(rnp) \ 345 for ((rnp) = rcu_first_leaf_node(); \ 346 (rnp) < &rcu_state.node[rcu_num_nodes]; (rnp)++) 347 348 /* 349 * Iterate over all possible CPUs in a leaf RCU node. 350 */ 351 #define for_each_leaf_node_possible_cpu(rnp, cpu) \ 352 for ((cpu) = cpumask_next((rnp)->grplo - 1, cpu_possible_mask); \ 353 (cpu) <= rnp->grphi; \ 354 (cpu) = cpumask_next((cpu), cpu_possible_mask)) 355 356 /* 357 * Iterate over all CPUs in a leaf RCU node's specified mask. 358 */ 359 #define rcu_find_next_bit(rnp, cpu, mask) \ 360 ((rnp)->grplo + find_next_bit(&(mask), BITS_PER_LONG, (cpu))) 361 #define for_each_leaf_node_cpu_mask(rnp, cpu, mask) \ 362 for ((cpu) = rcu_find_next_bit((rnp), 0, (mask)); \ 363 (cpu) <= rnp->grphi; \ 364 (cpu) = rcu_find_next_bit((rnp), (cpu) + 1 - (rnp->grplo), (mask))) 365 366 /* 367 * Wrappers for the rcu_node::lock acquire and release. 368 * 369 * Because the rcu_nodes form a tree, the tree traversal locking will observe 370 * different lock values, this in turn means that an UNLOCK of one level 371 * followed by a LOCK of another level does not imply a full memory barrier; 372 * and most importantly transitivity is lost. 373 * 374 * In order to restore full ordering between tree levels, augment the regular 375 * lock acquire functions with smp_mb__after_unlock_lock(). 376 * 377 * As ->lock of struct rcu_node is a __private field, therefore one should use 378 * these wrappers rather than directly call raw_spin_{lock,unlock}* on ->lock. 379 */ 380 #define raw_spin_lock_rcu_node(p) \ 381 do { \ 382 raw_spin_lock(&ACCESS_PRIVATE(p, lock)); \ 383 smp_mb__after_unlock_lock(); \ 384 } while (0) 385 386 #define raw_spin_unlock_rcu_node(p) raw_spin_unlock(&ACCESS_PRIVATE(p, lock)) 387 388 #define raw_spin_lock_irq_rcu_node(p) \ 389 do { \ 390 raw_spin_lock_irq(&ACCESS_PRIVATE(p, lock)); \ 391 smp_mb__after_unlock_lock(); \ 392 } while (0) 393 394 #define raw_spin_unlock_irq_rcu_node(p) \ 395 raw_spin_unlock_irq(&ACCESS_PRIVATE(p, lock)) 396 397 #define raw_spin_lock_irqsave_rcu_node(p, flags) \ 398 do { \ 399 raw_spin_lock_irqsave(&ACCESS_PRIVATE(p, lock), flags); \ 400 smp_mb__after_unlock_lock(); \ 401 } while (0) 402 403 #define raw_spin_unlock_irqrestore_rcu_node(p, flags) \ 404 raw_spin_unlock_irqrestore(&ACCESS_PRIVATE(p, lock), flags) 405 406 #define raw_spin_trylock_rcu_node(p) \ 407 ({ \ 408 bool ___locked = raw_spin_trylock(&ACCESS_PRIVATE(p, lock)); \ 409 \ 410 if (___locked) \ 411 smp_mb__after_unlock_lock(); \ 412 ___locked; \ 413 }) 414 415 #define raw_lockdep_assert_held_rcu_node(p) \ 416 lockdep_assert_held(&ACCESS_PRIVATE(p, lock)) 417 418 #endif /* #if defined(SRCU) || !defined(TINY_RCU) */ 419 420 #ifdef CONFIG_SRCU 421 void srcu_init(void); 422 #else /* #ifdef CONFIG_SRCU */ 423 static inline void srcu_init(void) { } 424 #endif /* #else #ifdef CONFIG_SRCU */ 425 426 #ifdef CONFIG_TINY_RCU 427 /* Tiny RCU doesn't expedite, as its purpose in life is instead to be tiny. */ 428 static inline bool rcu_gp_is_normal(void) { return true; } 429 static inline bool rcu_gp_is_expedited(void) { return false; } 430 static inline void rcu_expedite_gp(void) { } 431 static inline void rcu_unexpedite_gp(void) { } 432 static inline void rcu_request_urgent_qs_task(struct task_struct *t) { } 433 #else /* #ifdef CONFIG_TINY_RCU */ 434 bool rcu_gp_is_normal(void); /* Internal RCU use. */ 435 bool rcu_gp_is_expedited(void); /* Internal RCU use. */ 436 void rcu_expedite_gp(void); 437 void rcu_unexpedite_gp(void); 438 void rcupdate_announce_bootup_oddness(void); 439 void rcu_request_urgent_qs_task(struct task_struct *t); 440 #endif /* #else #ifdef CONFIG_TINY_RCU */ 441 442 #define RCU_SCHEDULER_INACTIVE 0 443 #define RCU_SCHEDULER_INIT 1 444 #define RCU_SCHEDULER_RUNNING 2 445 446 enum rcutorture_type { 447 RCU_FLAVOR, 448 RCU_TASKS_FLAVOR, 449 SRCU_FLAVOR, 450 INVALID_RCU_FLAVOR 451 }; 452 453 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU) 454 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags, 455 unsigned long *gp_seq); 456 void rcutorture_record_progress(unsigned long vernum); 457 void do_trace_rcu_torture_read(const char *rcutorturename, 458 struct rcu_head *rhp, 459 unsigned long secs, 460 unsigned long c_old, 461 unsigned long c); 462 #else 463 static inline void rcutorture_get_gp_data(enum rcutorture_type test_type, 464 int *flags, unsigned long *gp_seq) 465 { 466 *flags = 0; 467 *gp_seq = 0; 468 } 469 static inline void rcutorture_record_progress(unsigned long vernum) { } 470 #ifdef CONFIG_RCU_TRACE 471 void do_trace_rcu_torture_read(const char *rcutorturename, 472 struct rcu_head *rhp, 473 unsigned long secs, 474 unsigned long c_old, 475 unsigned long c); 476 #else 477 #define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \ 478 do { } while (0) 479 #endif 480 #endif 481 482 #ifdef CONFIG_TINY_SRCU 483 484 static inline void srcutorture_get_gp_data(enum rcutorture_type test_type, 485 struct srcu_struct *sp, int *flags, 486 unsigned long *gp_seq) 487 { 488 if (test_type != SRCU_FLAVOR) 489 return; 490 *flags = 0; 491 *gp_seq = sp->srcu_idx; 492 } 493 494 #elif defined(CONFIG_TREE_SRCU) 495 496 void srcutorture_get_gp_data(enum rcutorture_type test_type, 497 struct srcu_struct *sp, int *flags, 498 unsigned long *gp_seq); 499 500 #endif 501 502 #ifdef CONFIG_TINY_RCU 503 static inline unsigned long rcu_get_gp_seq(void) { return 0; } 504 static inline unsigned long rcu_exp_batches_completed(void) { return 0; } 505 static inline unsigned long 506 srcu_batches_completed(struct srcu_struct *sp) { return 0; } 507 static inline void rcu_force_quiescent_state(void) { } 508 static inline void show_rcu_gp_kthreads(void) { } 509 static inline int rcu_get_gp_kthreads_prio(void) { return 0; } 510 static inline void rcu_fwd_progress_check(unsigned long j) { } 511 #else /* #ifdef CONFIG_TINY_RCU */ 512 unsigned long rcu_get_gp_seq(void); 513 unsigned long rcu_exp_batches_completed(void); 514 unsigned long srcu_batches_completed(struct srcu_struct *sp); 515 void show_rcu_gp_kthreads(void); 516 int rcu_get_gp_kthreads_prio(void); 517 void rcu_fwd_progress_check(unsigned long j); 518 void rcu_force_quiescent_state(void); 519 extern struct workqueue_struct *rcu_gp_wq; 520 extern struct workqueue_struct *rcu_par_gp_wq; 521 #endif /* #else #ifdef CONFIG_TINY_RCU */ 522 523 #ifdef CONFIG_RCU_NOCB_CPU 524 bool rcu_is_nocb_cpu(int cpu); 525 void rcu_bind_current_to_nocb(void); 526 #else 527 static inline bool rcu_is_nocb_cpu(int cpu) { return false; } 528 static inline void rcu_bind_current_to_nocb(void) { } 529 #endif 530 531 #endif /* __LINUX_RCU_H */ 532