xref: /linux/kernel/rcu/rcu.h (revision 3e49aea71d5bac93b892f954d14bc8070e4cc651)
1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3  * Read-Copy Update definitions shared among RCU implementations.
4  *
5  * Copyright IBM Corporation, 2011
6  *
7  * Author: Paul E. McKenney <paulmck@linux.ibm.com>
8  */
9 
10 #ifndef __LINUX_RCU_H
11 #define __LINUX_RCU_H
12 
13 #include <linux/slab.h>
14 #include <trace/events/rcu.h>
15 
16 /*
17  * Grace-period counter management.
18  *
19  * The two least significant bits contain the control flags.
20  * The most significant bits contain the grace-period sequence counter.
21  *
22  * When both control flags are zero, no grace period is in progress.
23  * When either bit is non-zero, a grace period has started and is in
24  * progress. When the grace period completes, the control flags are reset
25  * to 0 and the grace-period sequence counter is incremented.
26  *
27  * However some specific RCU usages make use of custom values.
28  *
29  * SRCU special control values:
30  *
31  *	SRCU_SNP_INIT_SEQ	:	Invalid/init value set when SRCU node
32  *					is initialized.
33  *
34  *	SRCU_STATE_IDLE		:	No SRCU gp is in progress
35  *
36  *	SRCU_STATE_SCAN1	:	State set by rcu_seq_start(). Indicates
37  *					we are scanning the readers on the slot
38  *					defined as inactive (there might well
39  *					be pending readers that will use that
40  *					index, but their number is bounded).
41  *
42  *	SRCU_STATE_SCAN2	:	State set manually via rcu_seq_set_state()
43  *					Indicates we are flipping the readers
44  *					index and then scanning the readers on the
45  *					slot newly designated as inactive (again,
46  *					the number of pending readers that will use
47  *					this inactive index is bounded).
48  *
49  * RCU polled GP special control value:
50  *
51  *	RCU_GET_STATE_COMPLETED :	State value indicating an already-completed
52  *					polled GP has completed.  This value covers
53  *					both the state and the counter of the
54  *					grace-period sequence number.
55  */
56 
57 #define RCU_SEQ_CTR_SHIFT	2
58 #define RCU_SEQ_STATE_MASK	((1 << RCU_SEQ_CTR_SHIFT) - 1)
59 
60 /* Low-order bit definition for polled grace-period APIs. */
61 #define RCU_GET_STATE_COMPLETED	0x1
62 
63 extern int sysctl_sched_rt_runtime;
64 
65 /*
66  * Return the counter portion of a sequence number previously returned
67  * by rcu_seq_snap() or rcu_seq_current().
68  */
69 static inline unsigned long rcu_seq_ctr(unsigned long s)
70 {
71 	return s >> RCU_SEQ_CTR_SHIFT;
72 }
73 
74 /*
75  * Return the state portion of a sequence number previously returned
76  * by rcu_seq_snap() or rcu_seq_current().
77  */
78 static inline int rcu_seq_state(unsigned long s)
79 {
80 	return s & RCU_SEQ_STATE_MASK;
81 }
82 
83 /*
84  * Set the state portion of the pointed-to sequence number.
85  * The caller is responsible for preventing conflicting updates.
86  */
87 static inline void rcu_seq_set_state(unsigned long *sp, int newstate)
88 {
89 	WARN_ON_ONCE(newstate & ~RCU_SEQ_STATE_MASK);
90 	WRITE_ONCE(*sp, (*sp & ~RCU_SEQ_STATE_MASK) + newstate);
91 }
92 
93 /* Adjust sequence number for start of update-side operation. */
94 static inline void rcu_seq_start(unsigned long *sp)
95 {
96 	WRITE_ONCE(*sp, *sp + 1);
97 	smp_mb(); /* Ensure update-side operation after counter increment. */
98 	WARN_ON_ONCE(rcu_seq_state(*sp) != 1);
99 }
100 
101 /* Compute the end-of-grace-period value for the specified sequence number. */
102 static inline unsigned long rcu_seq_endval(unsigned long *sp)
103 {
104 	return (*sp | RCU_SEQ_STATE_MASK) + 1;
105 }
106 
107 /* Adjust sequence number for end of update-side operation. */
108 static inline void rcu_seq_end(unsigned long *sp)
109 {
110 	smp_mb(); /* Ensure update-side operation before counter increment. */
111 	WARN_ON_ONCE(!rcu_seq_state(*sp));
112 	WRITE_ONCE(*sp, rcu_seq_endval(sp));
113 }
114 
115 /*
116  * rcu_seq_snap - Take a snapshot of the update side's sequence number.
117  *
118  * This function returns the earliest value of the grace-period sequence number
119  * that will indicate that a full grace period has elapsed since the current
120  * time.  Once the grace-period sequence number has reached this value, it will
121  * be safe to invoke all callbacks that have been registered prior to the
122  * current time. This value is the current grace-period number plus two to the
123  * power of the number of low-order bits reserved for state, then rounded up to
124  * the next value in which the state bits are all zero.
125  */
126 static inline unsigned long rcu_seq_snap(unsigned long *sp)
127 {
128 	unsigned long s;
129 
130 	s = (READ_ONCE(*sp) + 2 * RCU_SEQ_STATE_MASK + 1) & ~RCU_SEQ_STATE_MASK;
131 	smp_mb(); /* Above access must not bleed into critical section. */
132 	return s;
133 }
134 
135 /* Return the current value the update side's sequence number, no ordering. */
136 static inline unsigned long rcu_seq_current(unsigned long *sp)
137 {
138 	return READ_ONCE(*sp);
139 }
140 
141 /*
142  * Given a snapshot from rcu_seq_snap(), determine whether or not the
143  * corresponding update-side operation has started.
144  */
145 static inline bool rcu_seq_started(unsigned long *sp, unsigned long s)
146 {
147 	return ULONG_CMP_LT((s - 1) & ~RCU_SEQ_STATE_MASK, READ_ONCE(*sp));
148 }
149 
150 /*
151  * Given a snapshot from rcu_seq_snap(), determine whether or not a
152  * full update-side operation has occurred.
153  */
154 static inline bool rcu_seq_done(unsigned long *sp, unsigned long s)
155 {
156 	return ULONG_CMP_GE(READ_ONCE(*sp), s);
157 }
158 
159 /*
160  * Given a snapshot from rcu_seq_snap(), determine whether or not a
161  * full update-side operation has occurred, but do not allow the
162  * (ULONG_MAX / 2) safety-factor/guard-band.
163  */
164 static inline bool rcu_seq_done_exact(unsigned long *sp, unsigned long s)
165 {
166 	unsigned long cur_s = READ_ONCE(*sp);
167 
168 	return ULONG_CMP_GE(cur_s, s) || ULONG_CMP_LT(cur_s, s - (2 * RCU_SEQ_STATE_MASK + 1));
169 }
170 
171 /*
172  * Has a grace period completed since the time the old gp_seq was collected?
173  */
174 static inline bool rcu_seq_completed_gp(unsigned long old, unsigned long new)
175 {
176 	return ULONG_CMP_LT(old, new & ~RCU_SEQ_STATE_MASK);
177 }
178 
179 /*
180  * Has a grace period started since the time the old gp_seq was collected?
181  */
182 static inline bool rcu_seq_new_gp(unsigned long old, unsigned long new)
183 {
184 	return ULONG_CMP_LT((old + RCU_SEQ_STATE_MASK) & ~RCU_SEQ_STATE_MASK,
185 			    new);
186 }
187 
188 /*
189  * Roughly how many full grace periods have elapsed between the collection
190  * of the two specified grace periods?
191  */
192 static inline unsigned long rcu_seq_diff(unsigned long new, unsigned long old)
193 {
194 	unsigned long rnd_diff;
195 
196 	if (old == new)
197 		return 0;
198 	/*
199 	 * Compute the number of grace periods (still shifted up), plus
200 	 * one if either of new and old is not an exact grace period.
201 	 */
202 	rnd_diff = (new & ~RCU_SEQ_STATE_MASK) -
203 		   ((old + RCU_SEQ_STATE_MASK) & ~RCU_SEQ_STATE_MASK) +
204 		   ((new & RCU_SEQ_STATE_MASK) || (old & RCU_SEQ_STATE_MASK));
205 	if (ULONG_CMP_GE(RCU_SEQ_STATE_MASK, rnd_diff))
206 		return 1; /* Definitely no grace period has elapsed. */
207 	return ((rnd_diff - RCU_SEQ_STATE_MASK - 1) >> RCU_SEQ_CTR_SHIFT) + 2;
208 }
209 
210 /*
211  * debug_rcu_head_queue()/debug_rcu_head_unqueue() are used internally
212  * by call_rcu() and rcu callback execution, and are therefore not part
213  * of the RCU API. These are in rcupdate.h because they are used by all
214  * RCU implementations.
215  */
216 
217 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
218 # define STATE_RCU_HEAD_READY	0
219 # define STATE_RCU_HEAD_QUEUED	1
220 
221 extern const struct debug_obj_descr rcuhead_debug_descr;
222 
223 static inline int debug_rcu_head_queue(struct rcu_head *head)
224 {
225 	int r1;
226 
227 	r1 = debug_object_activate(head, &rcuhead_debug_descr);
228 	debug_object_active_state(head, &rcuhead_debug_descr,
229 				  STATE_RCU_HEAD_READY,
230 				  STATE_RCU_HEAD_QUEUED);
231 	return r1;
232 }
233 
234 static inline void debug_rcu_head_unqueue(struct rcu_head *head)
235 {
236 	debug_object_active_state(head, &rcuhead_debug_descr,
237 				  STATE_RCU_HEAD_QUEUED,
238 				  STATE_RCU_HEAD_READY);
239 	debug_object_deactivate(head, &rcuhead_debug_descr);
240 }
241 #else	/* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
242 static inline int debug_rcu_head_queue(struct rcu_head *head)
243 {
244 	return 0;
245 }
246 
247 static inline void debug_rcu_head_unqueue(struct rcu_head *head)
248 {
249 }
250 #endif	/* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
251 
252 static inline void debug_rcu_head_callback(struct rcu_head *rhp)
253 {
254 	if (unlikely(!rhp->func))
255 		kmem_dump_obj(rhp);
256 }
257 
258 static inline bool rcu_barrier_cb_is_done(struct rcu_head *rhp)
259 {
260 	return rhp->next == rhp;
261 }
262 
263 extern int rcu_cpu_stall_suppress_at_boot;
264 
265 static inline bool rcu_stall_is_suppressed_at_boot(void)
266 {
267 	return rcu_cpu_stall_suppress_at_boot && !rcu_inkernel_boot_has_ended();
268 }
269 
270 extern int rcu_cpu_stall_notifiers;
271 
272 #ifdef CONFIG_RCU_STALL_COMMON
273 
274 extern int rcu_cpu_stall_ftrace_dump;
275 extern int rcu_cpu_stall_suppress;
276 extern int rcu_cpu_stall_timeout;
277 extern int rcu_exp_cpu_stall_timeout;
278 extern int rcu_cpu_stall_cputime;
279 extern bool rcu_exp_stall_task_details __read_mostly;
280 int rcu_jiffies_till_stall_check(void);
281 int rcu_exp_jiffies_till_stall_check(void);
282 
283 static inline bool rcu_stall_is_suppressed(void)
284 {
285 	return rcu_stall_is_suppressed_at_boot() || rcu_cpu_stall_suppress;
286 }
287 
288 #define rcu_ftrace_dump_stall_suppress() \
289 do { \
290 	if (!rcu_cpu_stall_suppress) \
291 		rcu_cpu_stall_suppress = 3; \
292 } while (0)
293 
294 #define rcu_ftrace_dump_stall_unsuppress() \
295 do { \
296 	if (rcu_cpu_stall_suppress == 3) \
297 		rcu_cpu_stall_suppress = 0; \
298 } while (0)
299 
300 #else /* #endif #ifdef CONFIG_RCU_STALL_COMMON */
301 
302 static inline bool rcu_stall_is_suppressed(void)
303 {
304 	return rcu_stall_is_suppressed_at_boot();
305 }
306 #define rcu_ftrace_dump_stall_suppress()
307 #define rcu_ftrace_dump_stall_unsuppress()
308 #endif /* #ifdef CONFIG_RCU_STALL_COMMON */
309 
310 /*
311  * Strings used in tracepoints need to be exported via the
312  * tracing system such that tools like perf and trace-cmd can
313  * translate the string address pointers to actual text.
314  */
315 #define TPS(x)  tracepoint_string(x)
316 
317 /*
318  * Dump the ftrace buffer, but only one time per callsite per boot.
319  */
320 #define rcu_ftrace_dump(oops_dump_mode) \
321 do { \
322 	static atomic_t ___rfd_beenhere = ATOMIC_INIT(0); \
323 	\
324 	if (!atomic_read(&___rfd_beenhere) && \
325 	    !atomic_xchg(&___rfd_beenhere, 1)) { \
326 		tracing_off(); \
327 		rcu_ftrace_dump_stall_suppress(); \
328 		ftrace_dump(oops_dump_mode); \
329 		rcu_ftrace_dump_stall_unsuppress(); \
330 	} \
331 } while (0)
332 
333 void rcu_early_boot_tests(void);
334 void rcu_test_sync_prims(void);
335 
336 /*
337  * This function really isn't for public consumption, but RCU is special in
338  * that context switches can allow the state machine to make progress.
339  */
340 extern void resched_cpu(int cpu);
341 
342 #if !defined(CONFIG_TINY_RCU)
343 
344 #include <linux/rcu_node_tree.h>
345 
346 extern int rcu_num_lvls;
347 extern int num_rcu_lvl[];
348 extern int rcu_num_nodes;
349 static bool rcu_fanout_exact;
350 static int rcu_fanout_leaf;
351 
352 /*
353  * Compute the per-level fanout, either using the exact fanout specified
354  * or balancing the tree, depending on the rcu_fanout_exact boot parameter.
355  */
356 static inline void rcu_init_levelspread(int *levelspread, const int *levelcnt)
357 {
358 	int i;
359 
360 	for (i = 0; i < RCU_NUM_LVLS; i++)
361 		levelspread[i] = INT_MIN;
362 	if (rcu_fanout_exact) {
363 		levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
364 		for (i = rcu_num_lvls - 2; i >= 0; i--)
365 			levelspread[i] = RCU_FANOUT;
366 	} else {
367 		int ccur;
368 		int cprv;
369 
370 		cprv = nr_cpu_ids;
371 		for (i = rcu_num_lvls - 1; i >= 0; i--) {
372 			ccur = levelcnt[i];
373 			levelspread[i] = (cprv + ccur - 1) / ccur;
374 			cprv = ccur;
375 		}
376 	}
377 }
378 
379 extern void rcu_init_geometry(void);
380 
381 /* Returns a pointer to the first leaf rcu_node structure. */
382 #define rcu_first_leaf_node() (rcu_state.level[rcu_num_lvls - 1])
383 
384 /* Is this rcu_node a leaf? */
385 #define rcu_is_leaf_node(rnp) ((rnp)->level == rcu_num_lvls - 1)
386 
387 /* Is this rcu_node the last leaf? */
388 #define rcu_is_last_leaf_node(rnp) ((rnp) == &rcu_state.node[rcu_num_nodes - 1])
389 
390 /*
391  * Do a full breadth-first scan of the {s,}rcu_node structures for the
392  * specified state structure (for SRCU) or the only rcu_state structure
393  * (for RCU).
394  */
395 #define _rcu_for_each_node_breadth_first(sp, rnp) \
396 	for ((rnp) = &(sp)->node[0]; \
397 	     (rnp) < &(sp)->node[rcu_num_nodes]; (rnp)++)
398 #define rcu_for_each_node_breadth_first(rnp) \
399 	_rcu_for_each_node_breadth_first(&rcu_state, rnp)
400 #define srcu_for_each_node_breadth_first(ssp, rnp) \
401 	_rcu_for_each_node_breadth_first(ssp->srcu_sup, rnp)
402 
403 /*
404  * Scan the leaves of the rcu_node hierarchy for the rcu_state structure.
405  * Note that if there is a singleton rcu_node tree with but one rcu_node
406  * structure, this loop -will- visit the rcu_node structure.  It is still
407  * a leaf node, even if it is also the root node.
408  */
409 #define rcu_for_each_leaf_node(rnp) \
410 	for ((rnp) = rcu_first_leaf_node(); \
411 	     (rnp) < &rcu_state.node[rcu_num_nodes]; (rnp)++)
412 
413 /*
414  * Iterate over all possible CPUs in a leaf RCU node.
415  */
416 #define for_each_leaf_node_possible_cpu(rnp, cpu) \
417 	for (WARN_ON_ONCE(!rcu_is_leaf_node(rnp)), \
418 	     (cpu) = cpumask_next((rnp)->grplo - 1, cpu_possible_mask); \
419 	     (cpu) <= rnp->grphi; \
420 	     (cpu) = cpumask_next((cpu), cpu_possible_mask))
421 
422 /*
423  * Iterate over all CPUs in a leaf RCU node's specified mask.
424  */
425 #define rcu_find_next_bit(rnp, cpu, mask) \
426 	((rnp)->grplo + find_next_bit(&(mask), BITS_PER_LONG, (cpu)))
427 #define for_each_leaf_node_cpu_mask(rnp, cpu, mask) \
428 	for (WARN_ON_ONCE(!rcu_is_leaf_node(rnp)), \
429 	     (cpu) = rcu_find_next_bit((rnp), 0, (mask)); \
430 	     (cpu) <= rnp->grphi; \
431 	     (cpu) = rcu_find_next_bit((rnp), (cpu) + 1 - (rnp->grplo), (mask)))
432 
433 #endif /* !defined(CONFIG_TINY_RCU) */
434 
435 #if !defined(CONFIG_TINY_RCU) || defined(CONFIG_TASKS_RCU_GENERIC)
436 
437 /*
438  * Wrappers for the rcu_node::lock acquire and release.
439  *
440  * Because the rcu_nodes form a tree, the tree traversal locking will observe
441  * different lock values, this in turn means that an UNLOCK of one level
442  * followed by a LOCK of another level does not imply a full memory barrier;
443  * and most importantly transitivity is lost.
444  *
445  * In order to restore full ordering between tree levels, augment the regular
446  * lock acquire functions with smp_mb__after_unlock_lock().
447  *
448  * As ->lock of struct rcu_node is a __private field, therefore one should use
449  * these wrappers rather than directly call raw_spin_{lock,unlock}* on ->lock.
450  */
451 #define raw_spin_lock_rcu_node(p)					\
452 do {									\
453 	raw_spin_lock(&ACCESS_PRIVATE(p, lock));			\
454 	smp_mb__after_unlock_lock();					\
455 } while (0)
456 
457 #define raw_spin_unlock_rcu_node(p)					\
458 do {									\
459 	lockdep_assert_irqs_disabled();					\
460 	raw_spin_unlock(&ACCESS_PRIVATE(p, lock));			\
461 } while (0)
462 
463 #define raw_spin_lock_irq_rcu_node(p)					\
464 do {									\
465 	raw_spin_lock_irq(&ACCESS_PRIVATE(p, lock));			\
466 	smp_mb__after_unlock_lock();					\
467 } while (0)
468 
469 #define raw_spin_unlock_irq_rcu_node(p)					\
470 do {									\
471 	lockdep_assert_irqs_disabled();					\
472 	raw_spin_unlock_irq(&ACCESS_PRIVATE(p, lock));			\
473 } while (0)
474 
475 #define raw_spin_lock_irqsave_rcu_node(p, flags)			\
476 do {									\
477 	raw_spin_lock_irqsave(&ACCESS_PRIVATE(p, lock), flags);	\
478 	smp_mb__after_unlock_lock();					\
479 } while (0)
480 
481 #define raw_spin_unlock_irqrestore_rcu_node(p, flags)			\
482 do {									\
483 	lockdep_assert_irqs_disabled();					\
484 	raw_spin_unlock_irqrestore(&ACCESS_PRIVATE(p, lock), flags);	\
485 } while (0)
486 
487 #define raw_spin_trylock_rcu_node(p)					\
488 ({									\
489 	bool ___locked = raw_spin_trylock(&ACCESS_PRIVATE(p, lock));	\
490 									\
491 	if (___locked)							\
492 		smp_mb__after_unlock_lock();				\
493 	___locked;							\
494 })
495 
496 #define raw_lockdep_assert_held_rcu_node(p)				\
497 	lockdep_assert_held(&ACCESS_PRIVATE(p, lock))
498 
499 #endif // #if !defined(CONFIG_TINY_RCU) || defined(CONFIG_TASKS_RCU_GENERIC)
500 
501 #ifdef CONFIG_TINY_RCU
502 /* Tiny RCU doesn't expedite, as its purpose in life is instead to be tiny. */
503 static inline bool rcu_gp_is_normal(void) { return true; }
504 static inline bool rcu_gp_is_expedited(void) { return false; }
505 static inline bool rcu_async_should_hurry(void) { return false; }
506 static inline void rcu_expedite_gp(void) { }
507 static inline void rcu_unexpedite_gp(void) { }
508 static inline void rcu_async_hurry(void) { }
509 static inline void rcu_async_relax(void) { }
510 static inline bool rcu_cpu_online(int cpu) { return true; }
511 #else /* #ifdef CONFIG_TINY_RCU */
512 bool rcu_gp_is_normal(void);     /* Internal RCU use. */
513 bool rcu_gp_is_expedited(void);  /* Internal RCU use. */
514 bool rcu_async_should_hurry(void);  /* Internal RCU use. */
515 void rcu_expedite_gp(void);
516 void rcu_unexpedite_gp(void);
517 void rcu_async_hurry(void);
518 void rcu_async_relax(void);
519 void rcupdate_announce_bootup_oddness(void);
520 bool rcu_cpu_online(int cpu);
521 #ifdef CONFIG_TASKS_RCU_GENERIC
522 void show_rcu_tasks_gp_kthreads(void);
523 #else /* #ifdef CONFIG_TASKS_RCU_GENERIC */
524 static inline void show_rcu_tasks_gp_kthreads(void) {}
525 #endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */
526 #endif /* #else #ifdef CONFIG_TINY_RCU */
527 
528 #ifdef CONFIG_TASKS_RCU
529 struct task_struct *get_rcu_tasks_gp_kthread(void);
530 void rcu_tasks_get_gp_data(int *flags, unsigned long *gp_seq);
531 #endif // # ifdef CONFIG_TASKS_RCU
532 
533 #ifdef CONFIG_TASKS_RUDE_RCU
534 struct task_struct *get_rcu_tasks_rude_gp_kthread(void);
535 void rcu_tasks_rude_get_gp_data(int *flags, unsigned long *gp_seq);
536 #endif // # ifdef CONFIG_TASKS_RUDE_RCU
537 
538 #ifdef CONFIG_TASKS_TRACE_RCU
539 void rcu_tasks_trace_get_gp_data(int *flags, unsigned long *gp_seq);
540 #endif
541 
542 #ifdef CONFIG_TASKS_RCU_GENERIC
543 void tasks_cblist_init_generic(void);
544 #else /* #ifdef CONFIG_TASKS_RCU_GENERIC */
545 static inline void tasks_cblist_init_generic(void) { }
546 #endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */
547 
548 #define RCU_SCHEDULER_INACTIVE	0
549 #define RCU_SCHEDULER_INIT	1
550 #define RCU_SCHEDULER_RUNNING	2
551 
552 enum rcutorture_type {
553 	RCU_FLAVOR,
554 	RCU_TASKS_FLAVOR,
555 	RCU_TASKS_RUDE_FLAVOR,
556 	RCU_TASKS_TRACING_FLAVOR,
557 	RCU_TRIVIAL_FLAVOR,
558 	SRCU_FLAVOR,
559 	INVALID_RCU_FLAVOR
560 };
561 
562 #if defined(CONFIG_RCU_LAZY)
563 unsigned long rcu_get_jiffies_lazy_flush(void);
564 void rcu_set_jiffies_lazy_flush(unsigned long j);
565 #else
566 static inline unsigned long rcu_get_jiffies_lazy_flush(void) { return 0; }
567 static inline void rcu_set_jiffies_lazy_flush(unsigned long j) { }
568 #endif
569 
570 #if defined(CONFIG_TREE_RCU)
571 void rcutorture_get_gp_data(int *flags, unsigned long *gp_seq);
572 void do_trace_rcu_torture_read(const char *rcutorturename,
573 			       struct rcu_head *rhp,
574 			       unsigned long secs,
575 			       unsigned long c_old,
576 			       unsigned long c);
577 void rcu_gp_set_torture_wait(int duration);
578 #else
579 static inline void rcutorture_get_gp_data(int *flags, unsigned long *gp_seq)
580 {
581 	*flags = 0;
582 	*gp_seq = 0;
583 }
584 #ifdef CONFIG_RCU_TRACE
585 void do_trace_rcu_torture_read(const char *rcutorturename,
586 			       struct rcu_head *rhp,
587 			       unsigned long secs,
588 			       unsigned long c_old,
589 			       unsigned long c);
590 #else
591 #define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
592 	do { } while (0)
593 #endif
594 static inline void rcu_gp_set_torture_wait(int duration) { }
595 #endif
596 
597 #ifdef CONFIG_TINY_SRCU
598 
599 static inline void srcutorture_get_gp_data(struct srcu_struct *sp, int *flags,
600 					   unsigned long *gp_seq)
601 {
602 	*flags = 0;
603 	*gp_seq = sp->srcu_idx;
604 }
605 
606 #elif defined(CONFIG_TREE_SRCU)
607 
608 void srcutorture_get_gp_data(struct srcu_struct *sp, int *flags,
609 			     unsigned long *gp_seq);
610 
611 #endif
612 
613 #ifdef CONFIG_TINY_RCU
614 static inline bool rcu_dynticks_zero_in_eqs(int cpu, int *vp) { return false; }
615 static inline unsigned long rcu_get_gp_seq(void) { return 0; }
616 static inline unsigned long rcu_exp_batches_completed(void) { return 0; }
617 static inline unsigned long
618 srcu_batches_completed(struct srcu_struct *sp) { return 0; }
619 static inline void rcu_force_quiescent_state(void) { }
620 static inline bool rcu_check_boost_fail(unsigned long gp_state, int *cpup) { return true; }
621 static inline void show_rcu_gp_kthreads(void) { }
622 static inline int rcu_get_gp_kthreads_prio(void) { return 0; }
623 static inline void rcu_fwd_progress_check(unsigned long j) { }
624 static inline void rcu_gp_slow_register(atomic_t *rgssp) { }
625 static inline void rcu_gp_slow_unregister(atomic_t *rgssp) { }
626 #else /* #ifdef CONFIG_TINY_RCU */
627 bool rcu_dynticks_zero_in_eqs(int cpu, int *vp);
628 unsigned long rcu_get_gp_seq(void);
629 unsigned long rcu_exp_batches_completed(void);
630 unsigned long srcu_batches_completed(struct srcu_struct *sp);
631 bool rcu_check_boost_fail(unsigned long gp_state, int *cpup);
632 void show_rcu_gp_kthreads(void);
633 int rcu_get_gp_kthreads_prio(void);
634 void rcu_fwd_progress_check(unsigned long j);
635 void rcu_force_quiescent_state(void);
636 extern struct workqueue_struct *rcu_gp_wq;
637 extern struct kthread_worker *rcu_exp_gp_kworker;
638 void rcu_gp_slow_register(atomic_t *rgssp);
639 void rcu_gp_slow_unregister(atomic_t *rgssp);
640 #endif /* #else #ifdef CONFIG_TINY_RCU */
641 
642 #ifdef CONFIG_RCU_NOCB_CPU
643 void rcu_bind_current_to_nocb(void);
644 #else
645 static inline void rcu_bind_current_to_nocb(void) { }
646 #endif
647 
648 #if !defined(CONFIG_TINY_RCU) && defined(CONFIG_TASKS_RCU)
649 void show_rcu_tasks_classic_gp_kthread(void);
650 #else
651 static inline void show_rcu_tasks_classic_gp_kthread(void) {}
652 #endif
653 #if !defined(CONFIG_TINY_RCU) && defined(CONFIG_TASKS_RUDE_RCU)
654 void show_rcu_tasks_rude_gp_kthread(void);
655 #else
656 static inline void show_rcu_tasks_rude_gp_kthread(void) {}
657 #endif
658 #if !defined(CONFIG_TINY_RCU) && defined(CONFIG_TASKS_TRACE_RCU)
659 void show_rcu_tasks_trace_gp_kthread(void);
660 #else
661 static inline void show_rcu_tasks_trace_gp_kthread(void) {}
662 #endif
663 
664 #ifdef CONFIG_TINY_RCU
665 static inline bool rcu_cpu_beenfullyonline(int cpu) { return true; }
666 #else
667 bool rcu_cpu_beenfullyonline(int cpu);
668 #endif
669 
670 #if defined(CONFIG_RCU_STALL_COMMON) && defined(CONFIG_RCU_CPU_STALL_NOTIFIER)
671 int rcu_stall_notifier_call_chain(unsigned long val, void *v);
672 #else // #if defined(CONFIG_RCU_STALL_COMMON) && defined(CONFIG_RCU_CPU_STALL_NOTIFIER)
673 static inline int rcu_stall_notifier_call_chain(unsigned long val, void *v) { return NOTIFY_DONE; }
674 #endif // #else // #if defined(CONFIG_RCU_STALL_COMMON) && defined(CONFIG_RCU_CPU_STALL_NOTIFIER)
675 
676 #endif /* __LINUX_RCU_H */
677