xref: /linux/kernel/rcu/rcu.h (revision 2b64b2ed277ff23e785fbdb65098ee7e1252d64f)
1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3  * Read-Copy Update definitions shared among RCU implementations.
4  *
5  * Copyright IBM Corporation, 2011
6  *
7  * Author: Paul E. McKenney <paulmck@linux.ibm.com>
8  */
9 
10 #ifndef __LINUX_RCU_H
11 #define __LINUX_RCU_H
12 
13 #include <trace/events/rcu.h>
14 #ifdef CONFIG_RCU_TRACE
15 #define RCU_TRACE(stmt) stmt
16 #else /* #ifdef CONFIG_RCU_TRACE */
17 #define RCU_TRACE(stmt)
18 #endif /* #else #ifdef CONFIG_RCU_TRACE */
19 
20 /* Offset to allow distinguishing irq vs. task-based idle entry/exit. */
21 #define DYNTICK_IRQ_NONIDLE	((LONG_MAX / 2) + 1)
22 
23 
24 /*
25  * Grace-period counter management.
26  */
27 
28 #define RCU_SEQ_CTR_SHIFT	2
29 #define RCU_SEQ_STATE_MASK	((1 << RCU_SEQ_CTR_SHIFT) - 1)
30 
31 /*
32  * Return the counter portion of a sequence number previously returned
33  * by rcu_seq_snap() or rcu_seq_current().
34  */
35 static inline unsigned long rcu_seq_ctr(unsigned long s)
36 {
37 	return s >> RCU_SEQ_CTR_SHIFT;
38 }
39 
40 /*
41  * Return the state portion of a sequence number previously returned
42  * by rcu_seq_snap() or rcu_seq_current().
43  */
44 static inline int rcu_seq_state(unsigned long s)
45 {
46 	return s & RCU_SEQ_STATE_MASK;
47 }
48 
49 /*
50  * Set the state portion of the pointed-to sequence number.
51  * The caller is responsible for preventing conflicting updates.
52  */
53 static inline void rcu_seq_set_state(unsigned long *sp, int newstate)
54 {
55 	WARN_ON_ONCE(newstate & ~RCU_SEQ_STATE_MASK);
56 	WRITE_ONCE(*sp, (*sp & ~RCU_SEQ_STATE_MASK) + newstate);
57 }
58 
59 /* Adjust sequence number for start of update-side operation. */
60 static inline void rcu_seq_start(unsigned long *sp)
61 {
62 	WRITE_ONCE(*sp, *sp + 1);
63 	smp_mb(); /* Ensure update-side operation after counter increment. */
64 	WARN_ON_ONCE(rcu_seq_state(*sp) != 1);
65 }
66 
67 /* Compute the end-of-grace-period value for the specified sequence number. */
68 static inline unsigned long rcu_seq_endval(unsigned long *sp)
69 {
70 	return (*sp | RCU_SEQ_STATE_MASK) + 1;
71 }
72 
73 /* Adjust sequence number for end of update-side operation. */
74 static inline void rcu_seq_end(unsigned long *sp)
75 {
76 	smp_mb(); /* Ensure update-side operation before counter increment. */
77 	WARN_ON_ONCE(!rcu_seq_state(*sp));
78 	WRITE_ONCE(*sp, rcu_seq_endval(sp));
79 }
80 
81 /*
82  * rcu_seq_snap - Take a snapshot of the update side's sequence number.
83  *
84  * This function returns the earliest value of the grace-period sequence number
85  * that will indicate that a full grace period has elapsed since the current
86  * time.  Once the grace-period sequence number has reached this value, it will
87  * be safe to invoke all callbacks that have been registered prior to the
88  * current time. This value is the current grace-period number plus two to the
89  * power of the number of low-order bits reserved for state, then rounded up to
90  * the next value in which the state bits are all zero.
91  */
92 static inline unsigned long rcu_seq_snap(unsigned long *sp)
93 {
94 	unsigned long s;
95 
96 	s = (READ_ONCE(*sp) + 2 * RCU_SEQ_STATE_MASK + 1) & ~RCU_SEQ_STATE_MASK;
97 	smp_mb(); /* Above access must not bleed into critical section. */
98 	return s;
99 }
100 
101 /* Return the current value the update side's sequence number, no ordering. */
102 static inline unsigned long rcu_seq_current(unsigned long *sp)
103 {
104 	return READ_ONCE(*sp);
105 }
106 
107 /*
108  * Given a snapshot from rcu_seq_snap(), determine whether or not the
109  * corresponding update-side operation has started.
110  */
111 static inline bool rcu_seq_started(unsigned long *sp, unsigned long s)
112 {
113 	return ULONG_CMP_LT((s - 1) & ~RCU_SEQ_STATE_MASK, READ_ONCE(*sp));
114 }
115 
116 /*
117  * Given a snapshot from rcu_seq_snap(), determine whether or not a
118  * full update-side operation has occurred.
119  */
120 static inline bool rcu_seq_done(unsigned long *sp, unsigned long s)
121 {
122 	return ULONG_CMP_GE(READ_ONCE(*sp), s);
123 }
124 
125 /*
126  * Has a grace period completed since the time the old gp_seq was collected?
127  */
128 static inline bool rcu_seq_completed_gp(unsigned long old, unsigned long new)
129 {
130 	return ULONG_CMP_LT(old, new & ~RCU_SEQ_STATE_MASK);
131 }
132 
133 /*
134  * Has a grace period started since the time the old gp_seq was collected?
135  */
136 static inline bool rcu_seq_new_gp(unsigned long old, unsigned long new)
137 {
138 	return ULONG_CMP_LT((old + RCU_SEQ_STATE_MASK) & ~RCU_SEQ_STATE_MASK,
139 			    new);
140 }
141 
142 /*
143  * Roughly how many full grace periods have elapsed between the collection
144  * of the two specified grace periods?
145  */
146 static inline unsigned long rcu_seq_diff(unsigned long new, unsigned long old)
147 {
148 	unsigned long rnd_diff;
149 
150 	if (old == new)
151 		return 0;
152 	/*
153 	 * Compute the number of grace periods (still shifted up), plus
154 	 * one if either of new and old is not an exact grace period.
155 	 */
156 	rnd_diff = (new & ~RCU_SEQ_STATE_MASK) -
157 		   ((old + RCU_SEQ_STATE_MASK) & ~RCU_SEQ_STATE_MASK) +
158 		   ((new & RCU_SEQ_STATE_MASK) || (old & RCU_SEQ_STATE_MASK));
159 	if (ULONG_CMP_GE(RCU_SEQ_STATE_MASK, rnd_diff))
160 		return 1; /* Definitely no grace period has elapsed. */
161 	return ((rnd_diff - RCU_SEQ_STATE_MASK - 1) >> RCU_SEQ_CTR_SHIFT) + 2;
162 }
163 
164 /*
165  * debug_rcu_head_queue()/debug_rcu_head_unqueue() are used internally
166  * by call_rcu() and rcu callback execution, and are therefore not part
167  * of the RCU API. These are in rcupdate.h because they are used by all
168  * RCU implementations.
169  */
170 
171 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
172 # define STATE_RCU_HEAD_READY	0
173 # define STATE_RCU_HEAD_QUEUED	1
174 
175 extern struct debug_obj_descr rcuhead_debug_descr;
176 
177 static inline int debug_rcu_head_queue(struct rcu_head *head)
178 {
179 	int r1;
180 
181 	r1 = debug_object_activate(head, &rcuhead_debug_descr);
182 	debug_object_active_state(head, &rcuhead_debug_descr,
183 				  STATE_RCU_HEAD_READY,
184 				  STATE_RCU_HEAD_QUEUED);
185 	return r1;
186 }
187 
188 static inline void debug_rcu_head_unqueue(struct rcu_head *head)
189 {
190 	debug_object_active_state(head, &rcuhead_debug_descr,
191 				  STATE_RCU_HEAD_QUEUED,
192 				  STATE_RCU_HEAD_READY);
193 	debug_object_deactivate(head, &rcuhead_debug_descr);
194 }
195 #else	/* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
196 static inline int debug_rcu_head_queue(struct rcu_head *head)
197 {
198 	return 0;
199 }
200 
201 static inline void debug_rcu_head_unqueue(struct rcu_head *head)
202 {
203 }
204 #endif	/* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
205 
206 void kfree(const void *);
207 
208 /*
209  * Reclaim the specified callback, either by invoking it (non-lazy case)
210  * or freeing it directly (lazy case).  Return true if lazy, false otherwise.
211  */
212 static inline bool __rcu_reclaim(const char *rn, struct rcu_head *head)
213 {
214 	rcu_callback_t f;
215 	unsigned long offset = (unsigned long)head->func;
216 
217 	rcu_lock_acquire(&rcu_callback_map);
218 	if (__is_kfree_rcu_offset(offset)) {
219 		RCU_TRACE(trace_rcu_invoke_kfree_callback(rn, head, offset);)
220 		kfree((void *)head - offset);
221 		rcu_lock_release(&rcu_callback_map);
222 		return true;
223 	} else {
224 		RCU_TRACE(trace_rcu_invoke_callback(rn, head);)
225 		f = head->func;
226 		WRITE_ONCE(head->func, (rcu_callback_t)0L);
227 		f(head);
228 		rcu_lock_release(&rcu_callback_map);
229 		return false;
230 	}
231 }
232 
233 #ifdef CONFIG_RCU_STALL_COMMON
234 
235 extern int rcu_cpu_stall_suppress;
236 int rcu_jiffies_till_stall_check(void);
237 
238 #define rcu_ftrace_dump_stall_suppress() \
239 do { \
240 	if (!rcu_cpu_stall_suppress) \
241 		rcu_cpu_stall_suppress = 3; \
242 } while (0)
243 
244 #define rcu_ftrace_dump_stall_unsuppress() \
245 do { \
246 	if (rcu_cpu_stall_suppress == 3) \
247 		rcu_cpu_stall_suppress = 0; \
248 } while (0)
249 
250 #else /* #endif #ifdef CONFIG_RCU_STALL_COMMON */
251 #define rcu_ftrace_dump_stall_suppress()
252 #define rcu_ftrace_dump_stall_unsuppress()
253 #endif /* #ifdef CONFIG_RCU_STALL_COMMON */
254 
255 /*
256  * Strings used in tracepoints need to be exported via the
257  * tracing system such that tools like perf and trace-cmd can
258  * translate the string address pointers to actual text.
259  */
260 #define TPS(x)  tracepoint_string(x)
261 
262 /*
263  * Dump the ftrace buffer, but only one time per callsite per boot.
264  */
265 #define rcu_ftrace_dump(oops_dump_mode) \
266 do { \
267 	static atomic_t ___rfd_beenhere = ATOMIC_INIT(0); \
268 	\
269 	if (!atomic_read(&___rfd_beenhere) && \
270 	    !atomic_xchg(&___rfd_beenhere, 1)) { \
271 		tracing_off(); \
272 		rcu_ftrace_dump_stall_suppress(); \
273 		ftrace_dump(oops_dump_mode); \
274 		rcu_ftrace_dump_stall_unsuppress(); \
275 	} \
276 } while (0)
277 
278 void rcu_early_boot_tests(void);
279 void rcu_test_sync_prims(void);
280 
281 /*
282  * This function really isn't for public consumption, but RCU is special in
283  * that context switches can allow the state machine to make progress.
284  */
285 extern void resched_cpu(int cpu);
286 
287 #if defined(SRCU) || !defined(TINY_RCU)
288 
289 #include <linux/rcu_node_tree.h>
290 
291 extern int rcu_num_lvls;
292 extern int num_rcu_lvl[];
293 extern int rcu_num_nodes;
294 static bool rcu_fanout_exact;
295 static int rcu_fanout_leaf;
296 
297 /*
298  * Compute the per-level fanout, either using the exact fanout specified
299  * or balancing the tree, depending on the rcu_fanout_exact boot parameter.
300  */
301 static inline void rcu_init_levelspread(int *levelspread, const int *levelcnt)
302 {
303 	int i;
304 
305 	if (rcu_fanout_exact) {
306 		levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
307 		for (i = rcu_num_lvls - 2; i >= 0; i--)
308 			levelspread[i] = RCU_FANOUT;
309 	} else {
310 		int ccur;
311 		int cprv;
312 
313 		cprv = nr_cpu_ids;
314 		for (i = rcu_num_lvls - 1; i >= 0; i--) {
315 			ccur = levelcnt[i];
316 			levelspread[i] = (cprv + ccur - 1) / ccur;
317 			cprv = ccur;
318 		}
319 	}
320 }
321 
322 /* Returns a pointer to the first leaf rcu_node structure. */
323 #define rcu_first_leaf_node() (rcu_state.level[rcu_num_lvls - 1])
324 
325 /* Is this rcu_node a leaf? */
326 #define rcu_is_leaf_node(rnp) ((rnp)->level == rcu_num_lvls - 1)
327 
328 /* Is this rcu_node the last leaf? */
329 #define rcu_is_last_leaf_node(rnp) ((rnp) == &rcu_state.node[rcu_num_nodes - 1])
330 
331 /*
332  * Do a full breadth-first scan of the {s,}rcu_node structures for the
333  * specified state structure (for SRCU) or the only rcu_state structure
334  * (for RCU).
335  */
336 #define srcu_for_each_node_breadth_first(sp, rnp) \
337 	for ((rnp) = &(sp)->node[0]; \
338 	     (rnp) < &(sp)->node[rcu_num_nodes]; (rnp)++)
339 #define rcu_for_each_node_breadth_first(rnp) \
340 	srcu_for_each_node_breadth_first(&rcu_state, rnp)
341 
342 /*
343  * Scan the leaves of the rcu_node hierarchy for the rcu_state structure.
344  * Note that if there is a singleton rcu_node tree with but one rcu_node
345  * structure, this loop -will- visit the rcu_node structure.  It is still
346  * a leaf node, even if it is also the root node.
347  */
348 #define rcu_for_each_leaf_node(rnp) \
349 	for ((rnp) = rcu_first_leaf_node(); \
350 	     (rnp) < &rcu_state.node[rcu_num_nodes]; (rnp)++)
351 
352 /*
353  * Iterate over all possible CPUs in a leaf RCU node.
354  */
355 #define for_each_leaf_node_possible_cpu(rnp, cpu) \
356 	for ((cpu) = cpumask_next((rnp)->grplo - 1, cpu_possible_mask); \
357 	     (cpu) <= rnp->grphi; \
358 	     (cpu) = cpumask_next((cpu), cpu_possible_mask))
359 
360 /*
361  * Iterate over all CPUs in a leaf RCU node's specified mask.
362  */
363 #define rcu_find_next_bit(rnp, cpu, mask) \
364 	((rnp)->grplo + find_next_bit(&(mask), BITS_PER_LONG, (cpu)))
365 #define for_each_leaf_node_cpu_mask(rnp, cpu, mask) \
366 	for ((cpu) = rcu_find_next_bit((rnp), 0, (mask)); \
367 	     (cpu) <= rnp->grphi; \
368 	     (cpu) = rcu_find_next_bit((rnp), (cpu) + 1 - (rnp->grplo), (mask)))
369 
370 /*
371  * Wrappers for the rcu_node::lock acquire and release.
372  *
373  * Because the rcu_nodes form a tree, the tree traversal locking will observe
374  * different lock values, this in turn means that an UNLOCK of one level
375  * followed by a LOCK of another level does not imply a full memory barrier;
376  * and most importantly transitivity is lost.
377  *
378  * In order to restore full ordering between tree levels, augment the regular
379  * lock acquire functions with smp_mb__after_unlock_lock().
380  *
381  * As ->lock of struct rcu_node is a __private field, therefore one should use
382  * these wrappers rather than directly call raw_spin_{lock,unlock}* on ->lock.
383  */
384 #define raw_spin_lock_rcu_node(p)					\
385 do {									\
386 	raw_spin_lock(&ACCESS_PRIVATE(p, lock));			\
387 	smp_mb__after_unlock_lock();					\
388 } while (0)
389 
390 #define raw_spin_unlock_rcu_node(p) raw_spin_unlock(&ACCESS_PRIVATE(p, lock))
391 
392 #define raw_spin_lock_irq_rcu_node(p)					\
393 do {									\
394 	raw_spin_lock_irq(&ACCESS_PRIVATE(p, lock));			\
395 	smp_mb__after_unlock_lock();					\
396 } while (0)
397 
398 #define raw_spin_unlock_irq_rcu_node(p)					\
399 	raw_spin_unlock_irq(&ACCESS_PRIVATE(p, lock))
400 
401 #define raw_spin_lock_irqsave_rcu_node(p, flags)			\
402 do {									\
403 	raw_spin_lock_irqsave(&ACCESS_PRIVATE(p, lock), flags);	\
404 	smp_mb__after_unlock_lock();					\
405 } while (0)
406 
407 #define raw_spin_unlock_irqrestore_rcu_node(p, flags)			\
408 	raw_spin_unlock_irqrestore(&ACCESS_PRIVATE(p, lock), flags)
409 
410 #define raw_spin_trylock_rcu_node(p)					\
411 ({									\
412 	bool ___locked = raw_spin_trylock(&ACCESS_PRIVATE(p, lock));	\
413 									\
414 	if (___locked)							\
415 		smp_mb__after_unlock_lock();				\
416 	___locked;							\
417 })
418 
419 #define raw_lockdep_assert_held_rcu_node(p)				\
420 	lockdep_assert_held(&ACCESS_PRIVATE(p, lock))
421 
422 #endif /* #if defined(SRCU) || !defined(TINY_RCU) */
423 
424 #ifdef CONFIG_SRCU
425 void srcu_init(void);
426 #else /* #ifdef CONFIG_SRCU */
427 static inline void srcu_init(void) { }
428 #endif /* #else #ifdef CONFIG_SRCU */
429 
430 #ifdef CONFIG_TINY_RCU
431 /* Tiny RCU doesn't expedite, as its purpose in life is instead to be tiny. */
432 static inline bool rcu_gp_is_normal(void) { return true; }
433 static inline bool rcu_gp_is_expedited(void) { return false; }
434 static inline void rcu_expedite_gp(void) { }
435 static inline void rcu_unexpedite_gp(void) { }
436 static inline void rcu_request_urgent_qs_task(struct task_struct *t) { }
437 #else /* #ifdef CONFIG_TINY_RCU */
438 bool rcu_gp_is_normal(void);     /* Internal RCU use. */
439 bool rcu_gp_is_expedited(void);  /* Internal RCU use. */
440 void rcu_expedite_gp(void);
441 void rcu_unexpedite_gp(void);
442 void rcupdate_announce_bootup_oddness(void);
443 void rcu_request_urgent_qs_task(struct task_struct *t);
444 #endif /* #else #ifdef CONFIG_TINY_RCU */
445 
446 #define RCU_SCHEDULER_INACTIVE	0
447 #define RCU_SCHEDULER_INIT	1
448 #define RCU_SCHEDULER_RUNNING	2
449 
450 enum rcutorture_type {
451 	RCU_FLAVOR,
452 	RCU_TASKS_FLAVOR,
453 	SRCU_FLAVOR,
454 	INVALID_RCU_FLAVOR
455 };
456 
457 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU)
458 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
459 			    unsigned long *gp_seq);
460 void rcutorture_record_progress(unsigned long vernum);
461 void do_trace_rcu_torture_read(const char *rcutorturename,
462 			       struct rcu_head *rhp,
463 			       unsigned long secs,
464 			       unsigned long c_old,
465 			       unsigned long c);
466 #else
467 static inline void rcutorture_get_gp_data(enum rcutorture_type test_type,
468 					  int *flags, unsigned long *gp_seq)
469 {
470 	*flags = 0;
471 	*gp_seq = 0;
472 }
473 static inline void rcutorture_record_progress(unsigned long vernum) { }
474 #ifdef CONFIG_RCU_TRACE
475 void do_trace_rcu_torture_read(const char *rcutorturename,
476 			       struct rcu_head *rhp,
477 			       unsigned long secs,
478 			       unsigned long c_old,
479 			       unsigned long c);
480 #else
481 #define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
482 	do { } while (0)
483 #endif
484 #endif
485 
486 #ifdef CONFIG_TINY_SRCU
487 
488 static inline void srcutorture_get_gp_data(enum rcutorture_type test_type,
489 					   struct srcu_struct *sp, int *flags,
490 					   unsigned long *gp_seq)
491 {
492 	if (test_type != SRCU_FLAVOR)
493 		return;
494 	*flags = 0;
495 	*gp_seq = sp->srcu_idx;
496 }
497 
498 #elif defined(CONFIG_TREE_SRCU)
499 
500 void srcutorture_get_gp_data(enum rcutorture_type test_type,
501 			     struct srcu_struct *sp, int *flags,
502 			     unsigned long *gp_seq);
503 
504 #endif
505 
506 #ifdef CONFIG_TINY_RCU
507 static inline unsigned long rcu_get_gp_seq(void) { return 0; }
508 static inline unsigned long rcu_exp_batches_completed(void) { return 0; }
509 static inline unsigned long
510 srcu_batches_completed(struct srcu_struct *sp) { return 0; }
511 static inline void rcu_force_quiescent_state(void) { }
512 static inline void show_rcu_gp_kthreads(void) { }
513 static inline int rcu_get_gp_kthreads_prio(void) { return 0; }
514 static inline void rcu_fwd_progress_check(unsigned long j) { }
515 #else /* #ifdef CONFIG_TINY_RCU */
516 unsigned long rcu_get_gp_seq(void);
517 unsigned long rcu_exp_batches_completed(void);
518 unsigned long srcu_batches_completed(struct srcu_struct *sp);
519 void show_rcu_gp_kthreads(void);
520 int rcu_get_gp_kthreads_prio(void);
521 void rcu_fwd_progress_check(unsigned long j);
522 void rcu_force_quiescent_state(void);
523 extern struct workqueue_struct *rcu_gp_wq;
524 extern struct workqueue_struct *rcu_par_gp_wq;
525 #endif /* #else #ifdef CONFIG_TINY_RCU */
526 
527 #ifdef CONFIG_RCU_NOCB_CPU
528 bool rcu_is_nocb_cpu(int cpu);
529 void rcu_bind_current_to_nocb(void);
530 #else
531 static inline bool rcu_is_nocb_cpu(int cpu) { return false; }
532 static inline void rcu_bind_current_to_nocb(void) { }
533 #endif
534 
535 #endif /* __LINUX_RCU_H */
536