1 /* 2 * linux/kernel/ptrace.c 3 * 4 * (C) Copyright 1999 Linus Torvalds 5 * 6 * Common interfaces for "ptrace()" which we do not want 7 * to continually duplicate across every architecture. 8 */ 9 10 #include <linux/capability.h> 11 #include <linux/export.h> 12 #include <linux/sched.h> 13 #include <linux/errno.h> 14 #include <linux/mm.h> 15 #include <linux/highmem.h> 16 #include <linux/pagemap.h> 17 #include <linux/ptrace.h> 18 #include <linux/security.h> 19 #include <linux/signal.h> 20 #include <linux/audit.h> 21 #include <linux/pid_namespace.h> 22 #include <linux/syscalls.h> 23 #include <linux/uaccess.h> 24 #include <linux/regset.h> 25 #include <linux/hw_breakpoint.h> 26 #include <linux/cn_proc.h> 27 28 29 static int ptrace_trapping_sleep_fn(void *flags) 30 { 31 schedule(); 32 return 0; 33 } 34 35 /* 36 * ptrace a task: make the debugger its new parent and 37 * move it to the ptrace list. 38 * 39 * Must be called with the tasklist lock write-held. 40 */ 41 void __ptrace_link(struct task_struct *child, struct task_struct *new_parent) 42 { 43 BUG_ON(!list_empty(&child->ptrace_entry)); 44 list_add(&child->ptrace_entry, &new_parent->ptraced); 45 child->parent = new_parent; 46 } 47 48 /** 49 * __ptrace_unlink - unlink ptracee and restore its execution state 50 * @child: ptracee to be unlinked 51 * 52 * Remove @child from the ptrace list, move it back to the original parent, 53 * and restore the execution state so that it conforms to the group stop 54 * state. 55 * 56 * Unlinking can happen via two paths - explicit PTRACE_DETACH or ptracer 57 * exiting. For PTRACE_DETACH, unless the ptracee has been killed between 58 * ptrace_check_attach() and here, it's guaranteed to be in TASK_TRACED. 59 * If the ptracer is exiting, the ptracee can be in any state. 60 * 61 * After detach, the ptracee should be in a state which conforms to the 62 * group stop. If the group is stopped or in the process of stopping, the 63 * ptracee should be put into TASK_STOPPED; otherwise, it should be woken 64 * up from TASK_TRACED. 65 * 66 * If the ptracee is in TASK_TRACED and needs to be moved to TASK_STOPPED, 67 * it goes through TRACED -> RUNNING -> STOPPED transition which is similar 68 * to but in the opposite direction of what happens while attaching to a 69 * stopped task. However, in this direction, the intermediate RUNNING 70 * state is not hidden even from the current ptracer and if it immediately 71 * re-attaches and performs a WNOHANG wait(2), it may fail. 72 * 73 * CONTEXT: 74 * write_lock_irq(tasklist_lock) 75 */ 76 void __ptrace_unlink(struct task_struct *child) 77 { 78 BUG_ON(!child->ptrace); 79 80 child->ptrace = 0; 81 child->parent = child->real_parent; 82 list_del_init(&child->ptrace_entry); 83 84 spin_lock(&child->sighand->siglock); 85 86 /* 87 * Clear all pending traps and TRAPPING. TRAPPING should be 88 * cleared regardless of JOBCTL_STOP_PENDING. Do it explicitly. 89 */ 90 task_clear_jobctl_pending(child, JOBCTL_TRAP_MASK); 91 task_clear_jobctl_trapping(child); 92 93 /* 94 * Reinstate JOBCTL_STOP_PENDING if group stop is in effect and 95 * @child isn't dead. 96 */ 97 if (!(child->flags & PF_EXITING) && 98 (child->signal->flags & SIGNAL_STOP_STOPPED || 99 child->signal->group_stop_count)) { 100 child->jobctl |= JOBCTL_STOP_PENDING; 101 102 /* 103 * This is only possible if this thread was cloned by the 104 * traced task running in the stopped group, set the signal 105 * for the future reports. 106 * FIXME: we should change ptrace_init_task() to handle this 107 * case. 108 */ 109 if (!(child->jobctl & JOBCTL_STOP_SIGMASK)) 110 child->jobctl |= SIGSTOP; 111 } 112 113 /* 114 * If transition to TASK_STOPPED is pending or in TASK_TRACED, kick 115 * @child in the butt. Note that @resume should be used iff @child 116 * is in TASK_TRACED; otherwise, we might unduly disrupt 117 * TASK_KILLABLE sleeps. 118 */ 119 if (child->jobctl & JOBCTL_STOP_PENDING || task_is_traced(child)) 120 signal_wake_up(child, task_is_traced(child)); 121 122 spin_unlock(&child->sighand->siglock); 123 } 124 125 /** 126 * ptrace_check_attach - check whether ptracee is ready for ptrace operation 127 * @child: ptracee to check for 128 * @ignore_state: don't check whether @child is currently %TASK_TRACED 129 * 130 * Check whether @child is being ptraced by %current and ready for further 131 * ptrace operations. If @ignore_state is %false, @child also should be in 132 * %TASK_TRACED state and on return the child is guaranteed to be traced 133 * and not executing. If @ignore_state is %true, @child can be in any 134 * state. 135 * 136 * CONTEXT: 137 * Grabs and releases tasklist_lock and @child->sighand->siglock. 138 * 139 * RETURNS: 140 * 0 on success, -ESRCH if %child is not ready. 141 */ 142 int ptrace_check_attach(struct task_struct *child, bool ignore_state) 143 { 144 int ret = -ESRCH; 145 146 /* 147 * We take the read lock around doing both checks to close a 148 * possible race where someone else was tracing our child and 149 * detached between these two checks. After this locked check, 150 * we are sure that this is our traced child and that can only 151 * be changed by us so it's not changing right after this. 152 */ 153 read_lock(&tasklist_lock); 154 if ((child->ptrace & PT_PTRACED) && child->parent == current) { 155 /* 156 * child->sighand can't be NULL, release_task() 157 * does ptrace_unlink() before __exit_signal(). 158 */ 159 spin_lock_irq(&child->sighand->siglock); 160 WARN_ON_ONCE(task_is_stopped(child)); 161 if (ignore_state || (task_is_traced(child) && 162 !(child->jobctl & JOBCTL_LISTENING))) 163 ret = 0; 164 spin_unlock_irq(&child->sighand->siglock); 165 } 166 read_unlock(&tasklist_lock); 167 168 if (!ret && !ignore_state) 169 ret = wait_task_inactive(child, TASK_TRACED) ? 0 : -ESRCH; 170 171 /* All systems go.. */ 172 return ret; 173 } 174 175 int __ptrace_may_access(struct task_struct *task, unsigned int mode) 176 { 177 const struct cred *cred = current_cred(), *tcred; 178 179 /* May we inspect the given task? 180 * This check is used both for attaching with ptrace 181 * and for allowing access to sensitive information in /proc. 182 * 183 * ptrace_attach denies several cases that /proc allows 184 * because setting up the necessary parent/child relationship 185 * or halting the specified task is impossible. 186 */ 187 int dumpable = 0; 188 /* Don't let security modules deny introspection */ 189 if (task == current) 190 return 0; 191 rcu_read_lock(); 192 tcred = __task_cred(task); 193 if (cred->user->user_ns == tcred->user->user_ns && 194 (cred->uid == tcred->euid && 195 cred->uid == tcred->suid && 196 cred->uid == tcred->uid && 197 cred->gid == tcred->egid && 198 cred->gid == tcred->sgid && 199 cred->gid == tcred->gid)) 200 goto ok; 201 if (ns_capable(tcred->user->user_ns, CAP_SYS_PTRACE)) 202 goto ok; 203 rcu_read_unlock(); 204 return -EPERM; 205 ok: 206 rcu_read_unlock(); 207 smp_rmb(); 208 if (task->mm) 209 dumpable = get_dumpable(task->mm); 210 if (!dumpable && !task_ns_capable(task, CAP_SYS_PTRACE)) 211 return -EPERM; 212 213 return security_ptrace_access_check(task, mode); 214 } 215 216 bool ptrace_may_access(struct task_struct *task, unsigned int mode) 217 { 218 int err; 219 task_lock(task); 220 err = __ptrace_may_access(task, mode); 221 task_unlock(task); 222 return !err; 223 } 224 225 static int ptrace_attach(struct task_struct *task, long request, 226 unsigned long flags) 227 { 228 bool seize = (request == PTRACE_SEIZE); 229 int retval; 230 231 /* 232 * SEIZE will enable new ptrace behaviors which will be implemented 233 * gradually. SEIZE_DEVEL is used to prevent applications 234 * expecting full SEIZE behaviors trapping on kernel commits which 235 * are still in the process of implementing them. 236 * 237 * Only test programs for new ptrace behaviors being implemented 238 * should set SEIZE_DEVEL. If unset, SEIZE will fail with -EIO. 239 * 240 * Once SEIZE behaviors are completely implemented, this flag and 241 * the following test will be removed. 242 */ 243 retval = -EIO; 244 if (seize && !(flags & PTRACE_SEIZE_DEVEL)) 245 goto out; 246 247 audit_ptrace(task); 248 249 retval = -EPERM; 250 if (unlikely(task->flags & PF_KTHREAD)) 251 goto out; 252 if (same_thread_group(task, current)) 253 goto out; 254 255 /* 256 * Protect exec's credential calculations against our interference; 257 * interference; SUID, SGID and LSM creds get determined differently 258 * under ptrace. 259 */ 260 retval = -ERESTARTNOINTR; 261 if (mutex_lock_interruptible(&task->signal->cred_guard_mutex)) 262 goto out; 263 264 task_lock(task); 265 retval = __ptrace_may_access(task, PTRACE_MODE_ATTACH); 266 task_unlock(task); 267 if (retval) 268 goto unlock_creds; 269 270 write_lock_irq(&tasklist_lock); 271 retval = -EPERM; 272 if (unlikely(task->exit_state)) 273 goto unlock_tasklist; 274 if (task->ptrace) 275 goto unlock_tasklist; 276 277 task->ptrace = PT_PTRACED; 278 if (seize) 279 task->ptrace |= PT_SEIZED; 280 if (task_ns_capable(task, CAP_SYS_PTRACE)) 281 task->ptrace |= PT_PTRACE_CAP; 282 283 __ptrace_link(task, current); 284 285 /* SEIZE doesn't trap tracee on attach */ 286 if (!seize) 287 send_sig_info(SIGSTOP, SEND_SIG_FORCED, task); 288 289 spin_lock(&task->sighand->siglock); 290 291 /* 292 * If the task is already STOPPED, set JOBCTL_TRAP_STOP and 293 * TRAPPING, and kick it so that it transits to TRACED. TRAPPING 294 * will be cleared if the child completes the transition or any 295 * event which clears the group stop states happens. We'll wait 296 * for the transition to complete before returning from this 297 * function. 298 * 299 * This hides STOPPED -> RUNNING -> TRACED transition from the 300 * attaching thread but a different thread in the same group can 301 * still observe the transient RUNNING state. IOW, if another 302 * thread's WNOHANG wait(2) on the stopped tracee races against 303 * ATTACH, the wait(2) may fail due to the transient RUNNING. 304 * 305 * The following task_is_stopped() test is safe as both transitions 306 * in and out of STOPPED are protected by siglock. 307 */ 308 if (task_is_stopped(task) && 309 task_set_jobctl_pending(task, JOBCTL_TRAP_STOP | JOBCTL_TRAPPING)) 310 signal_wake_up(task, 1); 311 312 spin_unlock(&task->sighand->siglock); 313 314 retval = 0; 315 unlock_tasklist: 316 write_unlock_irq(&tasklist_lock); 317 unlock_creds: 318 mutex_unlock(&task->signal->cred_guard_mutex); 319 out: 320 if (!retval) { 321 wait_on_bit(&task->jobctl, JOBCTL_TRAPPING_BIT, 322 ptrace_trapping_sleep_fn, TASK_UNINTERRUPTIBLE); 323 proc_ptrace_connector(task, PTRACE_ATTACH); 324 } 325 326 return retval; 327 } 328 329 /** 330 * ptrace_traceme -- helper for PTRACE_TRACEME 331 * 332 * Performs checks and sets PT_PTRACED. 333 * Should be used by all ptrace implementations for PTRACE_TRACEME. 334 */ 335 static int ptrace_traceme(void) 336 { 337 int ret = -EPERM; 338 339 write_lock_irq(&tasklist_lock); 340 /* Are we already being traced? */ 341 if (!current->ptrace) { 342 ret = security_ptrace_traceme(current->parent); 343 /* 344 * Check PF_EXITING to ensure ->real_parent has not passed 345 * exit_ptrace(). Otherwise we don't report the error but 346 * pretend ->real_parent untraces us right after return. 347 */ 348 if (!ret && !(current->real_parent->flags & PF_EXITING)) { 349 current->ptrace = PT_PTRACED; 350 __ptrace_link(current, current->real_parent); 351 } 352 } 353 write_unlock_irq(&tasklist_lock); 354 355 return ret; 356 } 357 358 /* 359 * Called with irqs disabled, returns true if childs should reap themselves. 360 */ 361 static int ignoring_children(struct sighand_struct *sigh) 362 { 363 int ret; 364 spin_lock(&sigh->siglock); 365 ret = (sigh->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) || 366 (sigh->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT); 367 spin_unlock(&sigh->siglock); 368 return ret; 369 } 370 371 /* 372 * Called with tasklist_lock held for writing. 373 * Unlink a traced task, and clean it up if it was a traced zombie. 374 * Return true if it needs to be reaped with release_task(). 375 * (We can't call release_task() here because we already hold tasklist_lock.) 376 * 377 * If it's a zombie, our attachedness prevented normal parent notification 378 * or self-reaping. Do notification now if it would have happened earlier. 379 * If it should reap itself, return true. 380 * 381 * If it's our own child, there is no notification to do. But if our normal 382 * children self-reap, then this child was prevented by ptrace and we must 383 * reap it now, in that case we must also wake up sub-threads sleeping in 384 * do_wait(). 385 */ 386 static bool __ptrace_detach(struct task_struct *tracer, struct task_struct *p) 387 { 388 bool dead; 389 390 __ptrace_unlink(p); 391 392 if (p->exit_state != EXIT_ZOMBIE) 393 return false; 394 395 dead = !thread_group_leader(p); 396 397 if (!dead && thread_group_empty(p)) { 398 if (!same_thread_group(p->real_parent, tracer)) 399 dead = do_notify_parent(p, p->exit_signal); 400 else if (ignoring_children(tracer->sighand)) { 401 __wake_up_parent(p, tracer); 402 dead = true; 403 } 404 } 405 /* Mark it as in the process of being reaped. */ 406 if (dead) 407 p->exit_state = EXIT_DEAD; 408 return dead; 409 } 410 411 static int ptrace_detach(struct task_struct *child, unsigned int data) 412 { 413 bool dead = false; 414 415 if (!valid_signal(data)) 416 return -EIO; 417 418 /* Architecture-specific hardware disable .. */ 419 ptrace_disable(child); 420 clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE); 421 422 write_lock_irq(&tasklist_lock); 423 /* 424 * This child can be already killed. Make sure de_thread() or 425 * our sub-thread doing do_wait() didn't do release_task() yet. 426 */ 427 if (child->ptrace) { 428 child->exit_code = data; 429 dead = __ptrace_detach(current, child); 430 } 431 write_unlock_irq(&tasklist_lock); 432 433 proc_ptrace_connector(child, PTRACE_DETACH); 434 if (unlikely(dead)) 435 release_task(child); 436 437 return 0; 438 } 439 440 /* 441 * Detach all tasks we were using ptrace on. Called with tasklist held 442 * for writing, and returns with it held too. But note it can release 443 * and reacquire the lock. 444 */ 445 void exit_ptrace(struct task_struct *tracer) 446 __releases(&tasklist_lock) 447 __acquires(&tasklist_lock) 448 { 449 struct task_struct *p, *n; 450 LIST_HEAD(ptrace_dead); 451 452 if (likely(list_empty(&tracer->ptraced))) 453 return; 454 455 list_for_each_entry_safe(p, n, &tracer->ptraced, ptrace_entry) { 456 if (__ptrace_detach(tracer, p)) 457 list_add(&p->ptrace_entry, &ptrace_dead); 458 } 459 460 write_unlock_irq(&tasklist_lock); 461 BUG_ON(!list_empty(&tracer->ptraced)); 462 463 list_for_each_entry_safe(p, n, &ptrace_dead, ptrace_entry) { 464 list_del_init(&p->ptrace_entry); 465 release_task(p); 466 } 467 468 write_lock_irq(&tasklist_lock); 469 } 470 471 int ptrace_readdata(struct task_struct *tsk, unsigned long src, char __user *dst, int len) 472 { 473 int copied = 0; 474 475 while (len > 0) { 476 char buf[128]; 477 int this_len, retval; 478 479 this_len = (len > sizeof(buf)) ? sizeof(buf) : len; 480 retval = access_process_vm(tsk, src, buf, this_len, 0); 481 if (!retval) { 482 if (copied) 483 break; 484 return -EIO; 485 } 486 if (copy_to_user(dst, buf, retval)) 487 return -EFAULT; 488 copied += retval; 489 src += retval; 490 dst += retval; 491 len -= retval; 492 } 493 return copied; 494 } 495 496 int ptrace_writedata(struct task_struct *tsk, char __user *src, unsigned long dst, int len) 497 { 498 int copied = 0; 499 500 while (len > 0) { 501 char buf[128]; 502 int this_len, retval; 503 504 this_len = (len > sizeof(buf)) ? sizeof(buf) : len; 505 if (copy_from_user(buf, src, this_len)) 506 return -EFAULT; 507 retval = access_process_vm(tsk, dst, buf, this_len, 1); 508 if (!retval) { 509 if (copied) 510 break; 511 return -EIO; 512 } 513 copied += retval; 514 src += retval; 515 dst += retval; 516 len -= retval; 517 } 518 return copied; 519 } 520 521 static int ptrace_setoptions(struct task_struct *child, unsigned long data) 522 { 523 child->ptrace &= ~PT_TRACE_MASK; 524 525 if (data & PTRACE_O_TRACESYSGOOD) 526 child->ptrace |= PT_TRACESYSGOOD; 527 528 if (data & PTRACE_O_TRACEFORK) 529 child->ptrace |= PT_TRACE_FORK; 530 531 if (data & PTRACE_O_TRACEVFORK) 532 child->ptrace |= PT_TRACE_VFORK; 533 534 if (data & PTRACE_O_TRACECLONE) 535 child->ptrace |= PT_TRACE_CLONE; 536 537 if (data & PTRACE_O_TRACEEXEC) 538 child->ptrace |= PT_TRACE_EXEC; 539 540 if (data & PTRACE_O_TRACEVFORKDONE) 541 child->ptrace |= PT_TRACE_VFORK_DONE; 542 543 if (data & PTRACE_O_TRACEEXIT) 544 child->ptrace |= PT_TRACE_EXIT; 545 546 return (data & ~PTRACE_O_MASK) ? -EINVAL : 0; 547 } 548 549 static int ptrace_getsiginfo(struct task_struct *child, siginfo_t *info) 550 { 551 unsigned long flags; 552 int error = -ESRCH; 553 554 if (lock_task_sighand(child, &flags)) { 555 error = -EINVAL; 556 if (likely(child->last_siginfo != NULL)) { 557 *info = *child->last_siginfo; 558 error = 0; 559 } 560 unlock_task_sighand(child, &flags); 561 } 562 return error; 563 } 564 565 static int ptrace_setsiginfo(struct task_struct *child, const siginfo_t *info) 566 { 567 unsigned long flags; 568 int error = -ESRCH; 569 570 if (lock_task_sighand(child, &flags)) { 571 error = -EINVAL; 572 if (likely(child->last_siginfo != NULL)) { 573 *child->last_siginfo = *info; 574 error = 0; 575 } 576 unlock_task_sighand(child, &flags); 577 } 578 return error; 579 } 580 581 582 #ifdef PTRACE_SINGLESTEP 583 #define is_singlestep(request) ((request) == PTRACE_SINGLESTEP) 584 #else 585 #define is_singlestep(request) 0 586 #endif 587 588 #ifdef PTRACE_SINGLEBLOCK 589 #define is_singleblock(request) ((request) == PTRACE_SINGLEBLOCK) 590 #else 591 #define is_singleblock(request) 0 592 #endif 593 594 #ifdef PTRACE_SYSEMU 595 #define is_sysemu_singlestep(request) ((request) == PTRACE_SYSEMU_SINGLESTEP) 596 #else 597 #define is_sysemu_singlestep(request) 0 598 #endif 599 600 static int ptrace_resume(struct task_struct *child, long request, 601 unsigned long data) 602 { 603 if (!valid_signal(data)) 604 return -EIO; 605 606 if (request == PTRACE_SYSCALL) 607 set_tsk_thread_flag(child, TIF_SYSCALL_TRACE); 608 else 609 clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE); 610 611 #ifdef TIF_SYSCALL_EMU 612 if (request == PTRACE_SYSEMU || request == PTRACE_SYSEMU_SINGLESTEP) 613 set_tsk_thread_flag(child, TIF_SYSCALL_EMU); 614 else 615 clear_tsk_thread_flag(child, TIF_SYSCALL_EMU); 616 #endif 617 618 if (is_singleblock(request)) { 619 if (unlikely(!arch_has_block_step())) 620 return -EIO; 621 user_enable_block_step(child); 622 } else if (is_singlestep(request) || is_sysemu_singlestep(request)) { 623 if (unlikely(!arch_has_single_step())) 624 return -EIO; 625 user_enable_single_step(child); 626 } else { 627 user_disable_single_step(child); 628 } 629 630 child->exit_code = data; 631 wake_up_state(child, __TASK_TRACED); 632 633 return 0; 634 } 635 636 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 637 638 static const struct user_regset * 639 find_regset(const struct user_regset_view *view, unsigned int type) 640 { 641 const struct user_regset *regset; 642 int n; 643 644 for (n = 0; n < view->n; ++n) { 645 regset = view->regsets + n; 646 if (regset->core_note_type == type) 647 return regset; 648 } 649 650 return NULL; 651 } 652 653 static int ptrace_regset(struct task_struct *task, int req, unsigned int type, 654 struct iovec *kiov) 655 { 656 const struct user_regset_view *view = task_user_regset_view(task); 657 const struct user_regset *regset = find_regset(view, type); 658 int regset_no; 659 660 if (!regset || (kiov->iov_len % regset->size) != 0) 661 return -EINVAL; 662 663 regset_no = regset - view->regsets; 664 kiov->iov_len = min(kiov->iov_len, 665 (__kernel_size_t) (regset->n * regset->size)); 666 667 if (req == PTRACE_GETREGSET) 668 return copy_regset_to_user(task, view, regset_no, 0, 669 kiov->iov_len, kiov->iov_base); 670 else 671 return copy_regset_from_user(task, view, regset_no, 0, 672 kiov->iov_len, kiov->iov_base); 673 } 674 675 #endif 676 677 int ptrace_request(struct task_struct *child, long request, 678 unsigned long addr, unsigned long data) 679 { 680 bool seized = child->ptrace & PT_SEIZED; 681 int ret = -EIO; 682 siginfo_t siginfo, *si; 683 void __user *datavp = (void __user *) data; 684 unsigned long __user *datalp = datavp; 685 unsigned long flags; 686 687 switch (request) { 688 case PTRACE_PEEKTEXT: 689 case PTRACE_PEEKDATA: 690 return generic_ptrace_peekdata(child, addr, data); 691 case PTRACE_POKETEXT: 692 case PTRACE_POKEDATA: 693 return generic_ptrace_pokedata(child, addr, data); 694 695 #ifdef PTRACE_OLDSETOPTIONS 696 case PTRACE_OLDSETOPTIONS: 697 #endif 698 case PTRACE_SETOPTIONS: 699 ret = ptrace_setoptions(child, data); 700 break; 701 case PTRACE_GETEVENTMSG: 702 ret = put_user(child->ptrace_message, datalp); 703 break; 704 705 case PTRACE_GETSIGINFO: 706 ret = ptrace_getsiginfo(child, &siginfo); 707 if (!ret) 708 ret = copy_siginfo_to_user(datavp, &siginfo); 709 break; 710 711 case PTRACE_SETSIGINFO: 712 if (copy_from_user(&siginfo, datavp, sizeof siginfo)) 713 ret = -EFAULT; 714 else 715 ret = ptrace_setsiginfo(child, &siginfo); 716 break; 717 718 case PTRACE_INTERRUPT: 719 /* 720 * Stop tracee without any side-effect on signal or job 721 * control. At least one trap is guaranteed to happen 722 * after this request. If @child is already trapped, the 723 * current trap is not disturbed and another trap will 724 * happen after the current trap is ended with PTRACE_CONT. 725 * 726 * The actual trap might not be PTRACE_EVENT_STOP trap but 727 * the pending condition is cleared regardless. 728 */ 729 if (unlikely(!seized || !lock_task_sighand(child, &flags))) 730 break; 731 732 /* 733 * INTERRUPT doesn't disturb existing trap sans one 734 * exception. If ptracer issued LISTEN for the current 735 * STOP, this INTERRUPT should clear LISTEN and re-trap 736 * tracee into STOP. 737 */ 738 if (likely(task_set_jobctl_pending(child, JOBCTL_TRAP_STOP))) 739 signal_wake_up(child, child->jobctl & JOBCTL_LISTENING); 740 741 unlock_task_sighand(child, &flags); 742 ret = 0; 743 break; 744 745 case PTRACE_LISTEN: 746 /* 747 * Listen for events. Tracee must be in STOP. It's not 748 * resumed per-se but is not considered to be in TRACED by 749 * wait(2) or ptrace(2). If an async event (e.g. group 750 * stop state change) happens, tracee will enter STOP trap 751 * again. Alternatively, ptracer can issue INTERRUPT to 752 * finish listening and re-trap tracee into STOP. 753 */ 754 if (unlikely(!seized || !lock_task_sighand(child, &flags))) 755 break; 756 757 si = child->last_siginfo; 758 if (likely(si && (si->si_code >> 8) == PTRACE_EVENT_STOP)) { 759 child->jobctl |= JOBCTL_LISTENING; 760 /* 761 * If NOTIFY is set, it means event happened between 762 * start of this trap and now. Trigger re-trap. 763 */ 764 if (child->jobctl & JOBCTL_TRAP_NOTIFY) 765 signal_wake_up(child, true); 766 ret = 0; 767 } 768 unlock_task_sighand(child, &flags); 769 break; 770 771 case PTRACE_DETACH: /* detach a process that was attached. */ 772 ret = ptrace_detach(child, data); 773 break; 774 775 #ifdef CONFIG_BINFMT_ELF_FDPIC 776 case PTRACE_GETFDPIC: { 777 struct mm_struct *mm = get_task_mm(child); 778 unsigned long tmp = 0; 779 780 ret = -ESRCH; 781 if (!mm) 782 break; 783 784 switch (addr) { 785 case PTRACE_GETFDPIC_EXEC: 786 tmp = mm->context.exec_fdpic_loadmap; 787 break; 788 case PTRACE_GETFDPIC_INTERP: 789 tmp = mm->context.interp_fdpic_loadmap; 790 break; 791 default: 792 break; 793 } 794 mmput(mm); 795 796 ret = put_user(tmp, datalp); 797 break; 798 } 799 #endif 800 801 #ifdef PTRACE_SINGLESTEP 802 case PTRACE_SINGLESTEP: 803 #endif 804 #ifdef PTRACE_SINGLEBLOCK 805 case PTRACE_SINGLEBLOCK: 806 #endif 807 #ifdef PTRACE_SYSEMU 808 case PTRACE_SYSEMU: 809 case PTRACE_SYSEMU_SINGLESTEP: 810 #endif 811 case PTRACE_SYSCALL: 812 case PTRACE_CONT: 813 return ptrace_resume(child, request, data); 814 815 case PTRACE_KILL: 816 if (child->exit_state) /* already dead */ 817 return 0; 818 return ptrace_resume(child, request, SIGKILL); 819 820 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 821 case PTRACE_GETREGSET: 822 case PTRACE_SETREGSET: 823 { 824 struct iovec kiov; 825 struct iovec __user *uiov = datavp; 826 827 if (!access_ok(VERIFY_WRITE, uiov, sizeof(*uiov))) 828 return -EFAULT; 829 830 if (__get_user(kiov.iov_base, &uiov->iov_base) || 831 __get_user(kiov.iov_len, &uiov->iov_len)) 832 return -EFAULT; 833 834 ret = ptrace_regset(child, request, addr, &kiov); 835 if (!ret) 836 ret = __put_user(kiov.iov_len, &uiov->iov_len); 837 break; 838 } 839 #endif 840 default: 841 break; 842 } 843 844 return ret; 845 } 846 847 static struct task_struct *ptrace_get_task_struct(pid_t pid) 848 { 849 struct task_struct *child; 850 851 rcu_read_lock(); 852 child = find_task_by_vpid(pid); 853 if (child) 854 get_task_struct(child); 855 rcu_read_unlock(); 856 857 if (!child) 858 return ERR_PTR(-ESRCH); 859 return child; 860 } 861 862 #ifndef arch_ptrace_attach 863 #define arch_ptrace_attach(child) do { } while (0) 864 #endif 865 866 SYSCALL_DEFINE4(ptrace, long, request, long, pid, unsigned long, addr, 867 unsigned long, data) 868 { 869 struct task_struct *child; 870 long ret; 871 872 if (request == PTRACE_TRACEME) { 873 ret = ptrace_traceme(); 874 if (!ret) 875 arch_ptrace_attach(current); 876 goto out; 877 } 878 879 child = ptrace_get_task_struct(pid); 880 if (IS_ERR(child)) { 881 ret = PTR_ERR(child); 882 goto out; 883 } 884 885 if (request == PTRACE_ATTACH || request == PTRACE_SEIZE) { 886 ret = ptrace_attach(child, request, data); 887 /* 888 * Some architectures need to do book-keeping after 889 * a ptrace attach. 890 */ 891 if (!ret) 892 arch_ptrace_attach(child); 893 goto out_put_task_struct; 894 } 895 896 ret = ptrace_check_attach(child, request == PTRACE_KILL || 897 request == PTRACE_INTERRUPT); 898 if (ret < 0) 899 goto out_put_task_struct; 900 901 ret = arch_ptrace(child, request, addr, data); 902 903 out_put_task_struct: 904 put_task_struct(child); 905 out: 906 return ret; 907 } 908 909 int generic_ptrace_peekdata(struct task_struct *tsk, unsigned long addr, 910 unsigned long data) 911 { 912 unsigned long tmp; 913 int copied; 914 915 copied = access_process_vm(tsk, addr, &tmp, sizeof(tmp), 0); 916 if (copied != sizeof(tmp)) 917 return -EIO; 918 return put_user(tmp, (unsigned long __user *)data); 919 } 920 921 int generic_ptrace_pokedata(struct task_struct *tsk, unsigned long addr, 922 unsigned long data) 923 { 924 int copied; 925 926 copied = access_process_vm(tsk, addr, &data, sizeof(data), 1); 927 return (copied == sizeof(data)) ? 0 : -EIO; 928 } 929 930 #if defined CONFIG_COMPAT 931 #include <linux/compat.h> 932 933 int compat_ptrace_request(struct task_struct *child, compat_long_t request, 934 compat_ulong_t addr, compat_ulong_t data) 935 { 936 compat_ulong_t __user *datap = compat_ptr(data); 937 compat_ulong_t word; 938 siginfo_t siginfo; 939 int ret; 940 941 switch (request) { 942 case PTRACE_PEEKTEXT: 943 case PTRACE_PEEKDATA: 944 ret = access_process_vm(child, addr, &word, sizeof(word), 0); 945 if (ret != sizeof(word)) 946 ret = -EIO; 947 else 948 ret = put_user(word, datap); 949 break; 950 951 case PTRACE_POKETEXT: 952 case PTRACE_POKEDATA: 953 ret = access_process_vm(child, addr, &data, sizeof(data), 1); 954 ret = (ret != sizeof(data) ? -EIO : 0); 955 break; 956 957 case PTRACE_GETEVENTMSG: 958 ret = put_user((compat_ulong_t) child->ptrace_message, datap); 959 break; 960 961 case PTRACE_GETSIGINFO: 962 ret = ptrace_getsiginfo(child, &siginfo); 963 if (!ret) 964 ret = copy_siginfo_to_user32( 965 (struct compat_siginfo __user *) datap, 966 &siginfo); 967 break; 968 969 case PTRACE_SETSIGINFO: 970 memset(&siginfo, 0, sizeof siginfo); 971 if (copy_siginfo_from_user32( 972 &siginfo, (struct compat_siginfo __user *) datap)) 973 ret = -EFAULT; 974 else 975 ret = ptrace_setsiginfo(child, &siginfo); 976 break; 977 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 978 case PTRACE_GETREGSET: 979 case PTRACE_SETREGSET: 980 { 981 struct iovec kiov; 982 struct compat_iovec __user *uiov = 983 (struct compat_iovec __user *) datap; 984 compat_uptr_t ptr; 985 compat_size_t len; 986 987 if (!access_ok(VERIFY_WRITE, uiov, sizeof(*uiov))) 988 return -EFAULT; 989 990 if (__get_user(ptr, &uiov->iov_base) || 991 __get_user(len, &uiov->iov_len)) 992 return -EFAULT; 993 994 kiov.iov_base = compat_ptr(ptr); 995 kiov.iov_len = len; 996 997 ret = ptrace_regset(child, request, addr, &kiov); 998 if (!ret) 999 ret = __put_user(kiov.iov_len, &uiov->iov_len); 1000 break; 1001 } 1002 #endif 1003 1004 default: 1005 ret = ptrace_request(child, request, addr, data); 1006 } 1007 1008 return ret; 1009 } 1010 1011 asmlinkage long compat_sys_ptrace(compat_long_t request, compat_long_t pid, 1012 compat_long_t addr, compat_long_t data) 1013 { 1014 struct task_struct *child; 1015 long ret; 1016 1017 if (request == PTRACE_TRACEME) { 1018 ret = ptrace_traceme(); 1019 goto out; 1020 } 1021 1022 child = ptrace_get_task_struct(pid); 1023 if (IS_ERR(child)) { 1024 ret = PTR_ERR(child); 1025 goto out; 1026 } 1027 1028 if (request == PTRACE_ATTACH || request == PTRACE_SEIZE) { 1029 ret = ptrace_attach(child, request, data); 1030 /* 1031 * Some architectures need to do book-keeping after 1032 * a ptrace attach. 1033 */ 1034 if (!ret) 1035 arch_ptrace_attach(child); 1036 goto out_put_task_struct; 1037 } 1038 1039 ret = ptrace_check_attach(child, request == PTRACE_KILL || 1040 request == PTRACE_INTERRUPT); 1041 if (!ret) 1042 ret = compat_arch_ptrace(child, request, addr, data); 1043 1044 out_put_task_struct: 1045 put_task_struct(child); 1046 out: 1047 return ret; 1048 } 1049 #endif /* CONFIG_COMPAT */ 1050 1051 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1052 int ptrace_get_breakpoints(struct task_struct *tsk) 1053 { 1054 if (atomic_inc_not_zero(&tsk->ptrace_bp_refcnt)) 1055 return 0; 1056 1057 return -1; 1058 } 1059 1060 void ptrace_put_breakpoints(struct task_struct *tsk) 1061 { 1062 if (atomic_dec_and_test(&tsk->ptrace_bp_refcnt)) 1063 flush_ptrace_hw_breakpoint(tsk); 1064 } 1065 #endif /* CONFIG_HAVE_HW_BREAKPOINT */ 1066