1 /* 2 * linux/kernel/ptrace.c 3 * 4 * (C) Copyright 1999 Linus Torvalds 5 * 6 * Common interfaces for "ptrace()" which we do not want 7 * to continually duplicate across every architecture. 8 */ 9 10 #include <linux/capability.h> 11 #include <linux/export.h> 12 #include <linux/sched.h> 13 #include <linux/sched/mm.h> 14 #include <linux/sched/coredump.h> 15 #include <linux/sched/task.h> 16 #include <linux/errno.h> 17 #include <linux/mm.h> 18 #include <linux/highmem.h> 19 #include <linux/pagemap.h> 20 #include <linux/ptrace.h> 21 #include <linux/security.h> 22 #include <linux/signal.h> 23 #include <linux/uio.h> 24 #include <linux/audit.h> 25 #include <linux/pid_namespace.h> 26 #include <linux/syscalls.h> 27 #include <linux/uaccess.h> 28 #include <linux/regset.h> 29 #include <linux/hw_breakpoint.h> 30 #include <linux/cn_proc.h> 31 #include <linux/compat.h> 32 #include <linux/sched/signal.h> 33 34 /* 35 * Access another process' address space via ptrace. 36 * Source/target buffer must be kernel space, 37 * Do not walk the page table directly, use get_user_pages 38 */ 39 int ptrace_access_vm(struct task_struct *tsk, unsigned long addr, 40 void *buf, int len, unsigned int gup_flags) 41 { 42 struct mm_struct *mm; 43 int ret; 44 45 mm = get_task_mm(tsk); 46 if (!mm) 47 return 0; 48 49 if (!tsk->ptrace || 50 (current != tsk->parent) || 51 ((get_dumpable(mm) != SUID_DUMP_USER) && 52 !ptracer_capable(tsk, mm->user_ns))) { 53 mmput(mm); 54 return 0; 55 } 56 57 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags); 58 mmput(mm); 59 60 return ret; 61 } 62 63 64 void __ptrace_link(struct task_struct *child, struct task_struct *new_parent, 65 const struct cred *ptracer_cred) 66 { 67 BUG_ON(!list_empty(&child->ptrace_entry)); 68 list_add(&child->ptrace_entry, &new_parent->ptraced); 69 child->parent = new_parent; 70 child->ptracer_cred = get_cred(ptracer_cred); 71 } 72 73 /* 74 * ptrace a task: make the debugger its new parent and 75 * move it to the ptrace list. 76 * 77 * Must be called with the tasklist lock write-held. 78 */ 79 static void ptrace_link(struct task_struct *child, struct task_struct *new_parent) 80 { 81 rcu_read_lock(); 82 __ptrace_link(child, new_parent, __task_cred(new_parent)); 83 rcu_read_unlock(); 84 } 85 86 /** 87 * __ptrace_unlink - unlink ptracee and restore its execution state 88 * @child: ptracee to be unlinked 89 * 90 * Remove @child from the ptrace list, move it back to the original parent, 91 * and restore the execution state so that it conforms to the group stop 92 * state. 93 * 94 * Unlinking can happen via two paths - explicit PTRACE_DETACH or ptracer 95 * exiting. For PTRACE_DETACH, unless the ptracee has been killed between 96 * ptrace_check_attach() and here, it's guaranteed to be in TASK_TRACED. 97 * If the ptracer is exiting, the ptracee can be in any state. 98 * 99 * After detach, the ptracee should be in a state which conforms to the 100 * group stop. If the group is stopped or in the process of stopping, the 101 * ptracee should be put into TASK_STOPPED; otherwise, it should be woken 102 * up from TASK_TRACED. 103 * 104 * If the ptracee is in TASK_TRACED and needs to be moved to TASK_STOPPED, 105 * it goes through TRACED -> RUNNING -> STOPPED transition which is similar 106 * to but in the opposite direction of what happens while attaching to a 107 * stopped task. However, in this direction, the intermediate RUNNING 108 * state is not hidden even from the current ptracer and if it immediately 109 * re-attaches and performs a WNOHANG wait(2), it may fail. 110 * 111 * CONTEXT: 112 * write_lock_irq(tasklist_lock) 113 */ 114 void __ptrace_unlink(struct task_struct *child) 115 { 116 const struct cred *old_cred; 117 BUG_ON(!child->ptrace); 118 119 clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE); 120 121 child->parent = child->real_parent; 122 list_del_init(&child->ptrace_entry); 123 old_cred = child->ptracer_cred; 124 child->ptracer_cred = NULL; 125 put_cred(old_cred); 126 127 spin_lock(&child->sighand->siglock); 128 child->ptrace = 0; 129 /* 130 * Clear all pending traps and TRAPPING. TRAPPING should be 131 * cleared regardless of JOBCTL_STOP_PENDING. Do it explicitly. 132 */ 133 task_clear_jobctl_pending(child, JOBCTL_TRAP_MASK); 134 task_clear_jobctl_trapping(child); 135 136 /* 137 * Reinstate JOBCTL_STOP_PENDING if group stop is in effect and 138 * @child isn't dead. 139 */ 140 if (!(child->flags & PF_EXITING) && 141 (child->signal->flags & SIGNAL_STOP_STOPPED || 142 child->signal->group_stop_count)) { 143 child->jobctl |= JOBCTL_STOP_PENDING; 144 145 /* 146 * This is only possible if this thread was cloned by the 147 * traced task running in the stopped group, set the signal 148 * for the future reports. 149 * FIXME: we should change ptrace_init_task() to handle this 150 * case. 151 */ 152 if (!(child->jobctl & JOBCTL_STOP_SIGMASK)) 153 child->jobctl |= SIGSTOP; 154 } 155 156 /* 157 * If transition to TASK_STOPPED is pending or in TASK_TRACED, kick 158 * @child in the butt. Note that @resume should be used iff @child 159 * is in TASK_TRACED; otherwise, we might unduly disrupt 160 * TASK_KILLABLE sleeps. 161 */ 162 if (child->jobctl & JOBCTL_STOP_PENDING || task_is_traced(child)) 163 ptrace_signal_wake_up(child, true); 164 165 spin_unlock(&child->sighand->siglock); 166 } 167 168 /* Ensure that nothing can wake it up, even SIGKILL */ 169 static bool ptrace_freeze_traced(struct task_struct *task) 170 { 171 bool ret = false; 172 173 /* Lockless, nobody but us can set this flag */ 174 if (task->jobctl & JOBCTL_LISTENING) 175 return ret; 176 177 spin_lock_irq(&task->sighand->siglock); 178 if (task_is_traced(task) && !__fatal_signal_pending(task)) { 179 task->state = __TASK_TRACED; 180 ret = true; 181 } 182 spin_unlock_irq(&task->sighand->siglock); 183 184 return ret; 185 } 186 187 static void ptrace_unfreeze_traced(struct task_struct *task) 188 { 189 if (task->state != __TASK_TRACED) 190 return; 191 192 WARN_ON(!task->ptrace || task->parent != current); 193 194 /* 195 * PTRACE_LISTEN can allow ptrace_trap_notify to wake us up remotely. 196 * Recheck state under the lock to close this race. 197 */ 198 spin_lock_irq(&task->sighand->siglock); 199 if (task->state == __TASK_TRACED) { 200 if (__fatal_signal_pending(task)) 201 wake_up_state(task, __TASK_TRACED); 202 else 203 task->state = TASK_TRACED; 204 } 205 spin_unlock_irq(&task->sighand->siglock); 206 } 207 208 /** 209 * ptrace_check_attach - check whether ptracee is ready for ptrace operation 210 * @child: ptracee to check for 211 * @ignore_state: don't check whether @child is currently %TASK_TRACED 212 * 213 * Check whether @child is being ptraced by %current and ready for further 214 * ptrace operations. If @ignore_state is %false, @child also should be in 215 * %TASK_TRACED state and on return the child is guaranteed to be traced 216 * and not executing. If @ignore_state is %true, @child can be in any 217 * state. 218 * 219 * CONTEXT: 220 * Grabs and releases tasklist_lock and @child->sighand->siglock. 221 * 222 * RETURNS: 223 * 0 on success, -ESRCH if %child is not ready. 224 */ 225 static int ptrace_check_attach(struct task_struct *child, bool ignore_state) 226 { 227 int ret = -ESRCH; 228 229 /* 230 * We take the read lock around doing both checks to close a 231 * possible race where someone else was tracing our child and 232 * detached between these two checks. After this locked check, 233 * we are sure that this is our traced child and that can only 234 * be changed by us so it's not changing right after this. 235 */ 236 read_lock(&tasklist_lock); 237 if (child->ptrace && child->parent == current) { 238 WARN_ON(child->state == __TASK_TRACED); 239 /* 240 * child->sighand can't be NULL, release_task() 241 * does ptrace_unlink() before __exit_signal(). 242 */ 243 if (ignore_state || ptrace_freeze_traced(child)) 244 ret = 0; 245 } 246 read_unlock(&tasklist_lock); 247 248 if (!ret && !ignore_state) { 249 if (!wait_task_inactive(child, __TASK_TRACED)) { 250 /* 251 * This can only happen if may_ptrace_stop() fails and 252 * ptrace_stop() changes ->state back to TASK_RUNNING, 253 * so we should not worry about leaking __TASK_TRACED. 254 */ 255 WARN_ON(child->state == __TASK_TRACED); 256 ret = -ESRCH; 257 } 258 } 259 260 return ret; 261 } 262 263 static int ptrace_has_cap(struct user_namespace *ns, unsigned int mode) 264 { 265 if (mode & PTRACE_MODE_NOAUDIT) 266 return has_ns_capability_noaudit(current, ns, CAP_SYS_PTRACE); 267 else 268 return has_ns_capability(current, ns, CAP_SYS_PTRACE); 269 } 270 271 /* Returns 0 on success, -errno on denial. */ 272 static int __ptrace_may_access(struct task_struct *task, unsigned int mode) 273 { 274 const struct cred *cred = current_cred(), *tcred; 275 struct mm_struct *mm; 276 kuid_t caller_uid; 277 kgid_t caller_gid; 278 279 if (!(mode & PTRACE_MODE_FSCREDS) == !(mode & PTRACE_MODE_REALCREDS)) { 280 WARN(1, "denying ptrace access check without PTRACE_MODE_*CREDS\n"); 281 return -EPERM; 282 } 283 284 /* May we inspect the given task? 285 * This check is used both for attaching with ptrace 286 * and for allowing access to sensitive information in /proc. 287 * 288 * ptrace_attach denies several cases that /proc allows 289 * because setting up the necessary parent/child relationship 290 * or halting the specified task is impossible. 291 */ 292 293 /* Don't let security modules deny introspection */ 294 if (same_thread_group(task, current)) 295 return 0; 296 rcu_read_lock(); 297 if (mode & PTRACE_MODE_FSCREDS) { 298 caller_uid = cred->fsuid; 299 caller_gid = cred->fsgid; 300 } else { 301 /* 302 * Using the euid would make more sense here, but something 303 * in userland might rely on the old behavior, and this 304 * shouldn't be a security problem since 305 * PTRACE_MODE_REALCREDS implies that the caller explicitly 306 * used a syscall that requests access to another process 307 * (and not a filesystem syscall to procfs). 308 */ 309 caller_uid = cred->uid; 310 caller_gid = cred->gid; 311 } 312 tcred = __task_cred(task); 313 if (uid_eq(caller_uid, tcred->euid) && 314 uid_eq(caller_uid, tcred->suid) && 315 uid_eq(caller_uid, tcred->uid) && 316 gid_eq(caller_gid, tcred->egid) && 317 gid_eq(caller_gid, tcred->sgid) && 318 gid_eq(caller_gid, tcred->gid)) 319 goto ok; 320 if (ptrace_has_cap(tcred->user_ns, mode)) 321 goto ok; 322 rcu_read_unlock(); 323 return -EPERM; 324 ok: 325 rcu_read_unlock(); 326 mm = task->mm; 327 if (mm && 328 ((get_dumpable(mm) != SUID_DUMP_USER) && 329 !ptrace_has_cap(mm->user_ns, mode))) 330 return -EPERM; 331 332 return security_ptrace_access_check(task, mode); 333 } 334 335 bool ptrace_may_access(struct task_struct *task, unsigned int mode) 336 { 337 int err; 338 task_lock(task); 339 err = __ptrace_may_access(task, mode); 340 task_unlock(task); 341 return !err; 342 } 343 344 static int ptrace_attach(struct task_struct *task, long request, 345 unsigned long addr, 346 unsigned long flags) 347 { 348 bool seize = (request == PTRACE_SEIZE); 349 int retval; 350 351 retval = -EIO; 352 if (seize) { 353 if (addr != 0) 354 goto out; 355 if (flags & ~(unsigned long)PTRACE_O_MASK) 356 goto out; 357 flags = PT_PTRACED | PT_SEIZED | (flags << PT_OPT_FLAG_SHIFT); 358 } else { 359 flags = PT_PTRACED; 360 } 361 362 audit_ptrace(task); 363 364 retval = -EPERM; 365 if (unlikely(task->flags & PF_KTHREAD)) 366 goto out; 367 if (same_thread_group(task, current)) 368 goto out; 369 370 /* 371 * Protect exec's credential calculations against our interference; 372 * SUID, SGID and LSM creds get determined differently 373 * under ptrace. 374 */ 375 retval = -ERESTARTNOINTR; 376 if (mutex_lock_interruptible(&task->signal->cred_guard_mutex)) 377 goto out; 378 379 task_lock(task); 380 retval = __ptrace_may_access(task, PTRACE_MODE_ATTACH_REALCREDS); 381 task_unlock(task); 382 if (retval) 383 goto unlock_creds; 384 385 write_lock_irq(&tasklist_lock); 386 retval = -EPERM; 387 if (unlikely(task->exit_state)) 388 goto unlock_tasklist; 389 if (task->ptrace) 390 goto unlock_tasklist; 391 392 if (seize) 393 flags |= PT_SEIZED; 394 task->ptrace = flags; 395 396 ptrace_link(task, current); 397 398 /* SEIZE doesn't trap tracee on attach */ 399 if (!seize) 400 send_sig_info(SIGSTOP, SEND_SIG_PRIV, task); 401 402 spin_lock(&task->sighand->siglock); 403 404 /* 405 * If the task is already STOPPED, set JOBCTL_TRAP_STOP and 406 * TRAPPING, and kick it so that it transits to TRACED. TRAPPING 407 * will be cleared if the child completes the transition or any 408 * event which clears the group stop states happens. We'll wait 409 * for the transition to complete before returning from this 410 * function. 411 * 412 * This hides STOPPED -> RUNNING -> TRACED transition from the 413 * attaching thread but a different thread in the same group can 414 * still observe the transient RUNNING state. IOW, if another 415 * thread's WNOHANG wait(2) on the stopped tracee races against 416 * ATTACH, the wait(2) may fail due to the transient RUNNING. 417 * 418 * The following task_is_stopped() test is safe as both transitions 419 * in and out of STOPPED are protected by siglock. 420 */ 421 if (task_is_stopped(task) && 422 task_set_jobctl_pending(task, JOBCTL_TRAP_STOP | JOBCTL_TRAPPING)) 423 signal_wake_up_state(task, __TASK_STOPPED); 424 425 spin_unlock(&task->sighand->siglock); 426 427 retval = 0; 428 unlock_tasklist: 429 write_unlock_irq(&tasklist_lock); 430 unlock_creds: 431 mutex_unlock(&task->signal->cred_guard_mutex); 432 out: 433 if (!retval) { 434 /* 435 * We do not bother to change retval or clear JOBCTL_TRAPPING 436 * if wait_on_bit() was interrupted by SIGKILL. The tracer will 437 * not return to user-mode, it will exit and clear this bit in 438 * __ptrace_unlink() if it wasn't already cleared by the tracee; 439 * and until then nobody can ptrace this task. 440 */ 441 wait_on_bit(&task->jobctl, JOBCTL_TRAPPING_BIT, TASK_KILLABLE); 442 proc_ptrace_connector(task, PTRACE_ATTACH); 443 } 444 445 return retval; 446 } 447 448 /** 449 * ptrace_traceme -- helper for PTRACE_TRACEME 450 * 451 * Performs checks and sets PT_PTRACED. 452 * Should be used by all ptrace implementations for PTRACE_TRACEME. 453 */ 454 static int ptrace_traceme(void) 455 { 456 int ret = -EPERM; 457 458 write_lock_irq(&tasklist_lock); 459 /* Are we already being traced? */ 460 if (!current->ptrace) { 461 ret = security_ptrace_traceme(current->parent); 462 /* 463 * Check PF_EXITING to ensure ->real_parent has not passed 464 * exit_ptrace(). Otherwise we don't report the error but 465 * pretend ->real_parent untraces us right after return. 466 */ 467 if (!ret && !(current->real_parent->flags & PF_EXITING)) { 468 current->ptrace = PT_PTRACED; 469 ptrace_link(current, current->real_parent); 470 } 471 } 472 write_unlock_irq(&tasklist_lock); 473 474 return ret; 475 } 476 477 /* 478 * Called with irqs disabled, returns true if childs should reap themselves. 479 */ 480 static int ignoring_children(struct sighand_struct *sigh) 481 { 482 int ret; 483 spin_lock(&sigh->siglock); 484 ret = (sigh->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) || 485 (sigh->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT); 486 spin_unlock(&sigh->siglock); 487 return ret; 488 } 489 490 /* 491 * Called with tasklist_lock held for writing. 492 * Unlink a traced task, and clean it up if it was a traced zombie. 493 * Return true if it needs to be reaped with release_task(). 494 * (We can't call release_task() here because we already hold tasklist_lock.) 495 * 496 * If it's a zombie, our attachedness prevented normal parent notification 497 * or self-reaping. Do notification now if it would have happened earlier. 498 * If it should reap itself, return true. 499 * 500 * If it's our own child, there is no notification to do. But if our normal 501 * children self-reap, then this child was prevented by ptrace and we must 502 * reap it now, in that case we must also wake up sub-threads sleeping in 503 * do_wait(). 504 */ 505 static bool __ptrace_detach(struct task_struct *tracer, struct task_struct *p) 506 { 507 bool dead; 508 509 __ptrace_unlink(p); 510 511 if (p->exit_state != EXIT_ZOMBIE) 512 return false; 513 514 dead = !thread_group_leader(p); 515 516 if (!dead && thread_group_empty(p)) { 517 if (!same_thread_group(p->real_parent, tracer)) 518 dead = do_notify_parent(p, p->exit_signal); 519 else if (ignoring_children(tracer->sighand)) { 520 __wake_up_parent(p, tracer); 521 dead = true; 522 } 523 } 524 /* Mark it as in the process of being reaped. */ 525 if (dead) 526 p->exit_state = EXIT_DEAD; 527 return dead; 528 } 529 530 static int ptrace_detach(struct task_struct *child, unsigned int data) 531 { 532 if (!valid_signal(data)) 533 return -EIO; 534 535 /* Architecture-specific hardware disable .. */ 536 ptrace_disable(child); 537 538 write_lock_irq(&tasklist_lock); 539 /* 540 * We rely on ptrace_freeze_traced(). It can't be killed and 541 * untraced by another thread, it can't be a zombie. 542 */ 543 WARN_ON(!child->ptrace || child->exit_state); 544 /* 545 * tasklist_lock avoids the race with wait_task_stopped(), see 546 * the comment in ptrace_resume(). 547 */ 548 child->exit_code = data; 549 __ptrace_detach(current, child); 550 write_unlock_irq(&tasklist_lock); 551 552 proc_ptrace_connector(child, PTRACE_DETACH); 553 554 return 0; 555 } 556 557 /* 558 * Detach all tasks we were using ptrace on. Called with tasklist held 559 * for writing. 560 */ 561 void exit_ptrace(struct task_struct *tracer, struct list_head *dead) 562 { 563 struct task_struct *p, *n; 564 565 list_for_each_entry_safe(p, n, &tracer->ptraced, ptrace_entry) { 566 if (unlikely(p->ptrace & PT_EXITKILL)) 567 send_sig_info(SIGKILL, SEND_SIG_PRIV, p); 568 569 if (__ptrace_detach(tracer, p)) 570 list_add(&p->ptrace_entry, dead); 571 } 572 } 573 574 int ptrace_readdata(struct task_struct *tsk, unsigned long src, char __user *dst, int len) 575 { 576 int copied = 0; 577 578 while (len > 0) { 579 char buf[128]; 580 int this_len, retval; 581 582 this_len = (len > sizeof(buf)) ? sizeof(buf) : len; 583 retval = ptrace_access_vm(tsk, src, buf, this_len, FOLL_FORCE); 584 585 if (!retval) { 586 if (copied) 587 break; 588 return -EIO; 589 } 590 if (copy_to_user(dst, buf, retval)) 591 return -EFAULT; 592 copied += retval; 593 src += retval; 594 dst += retval; 595 len -= retval; 596 } 597 return copied; 598 } 599 600 int ptrace_writedata(struct task_struct *tsk, char __user *src, unsigned long dst, int len) 601 { 602 int copied = 0; 603 604 while (len > 0) { 605 char buf[128]; 606 int this_len, retval; 607 608 this_len = (len > sizeof(buf)) ? sizeof(buf) : len; 609 if (copy_from_user(buf, src, this_len)) 610 return -EFAULT; 611 retval = ptrace_access_vm(tsk, dst, buf, this_len, 612 FOLL_FORCE | FOLL_WRITE); 613 if (!retval) { 614 if (copied) 615 break; 616 return -EIO; 617 } 618 copied += retval; 619 src += retval; 620 dst += retval; 621 len -= retval; 622 } 623 return copied; 624 } 625 626 static int ptrace_setoptions(struct task_struct *child, unsigned long data) 627 { 628 unsigned flags; 629 630 if (data & ~(unsigned long)PTRACE_O_MASK) 631 return -EINVAL; 632 633 if (unlikely(data & PTRACE_O_SUSPEND_SECCOMP)) { 634 if (!IS_ENABLED(CONFIG_CHECKPOINT_RESTORE) || 635 !IS_ENABLED(CONFIG_SECCOMP)) 636 return -EINVAL; 637 638 if (!capable(CAP_SYS_ADMIN)) 639 return -EPERM; 640 641 if (seccomp_mode(¤t->seccomp) != SECCOMP_MODE_DISABLED || 642 current->ptrace & PT_SUSPEND_SECCOMP) 643 return -EPERM; 644 } 645 646 /* Avoid intermediate state when all opts are cleared */ 647 flags = child->ptrace; 648 flags &= ~(PTRACE_O_MASK << PT_OPT_FLAG_SHIFT); 649 flags |= (data << PT_OPT_FLAG_SHIFT); 650 child->ptrace = flags; 651 652 return 0; 653 } 654 655 static int ptrace_getsiginfo(struct task_struct *child, kernel_siginfo_t *info) 656 { 657 unsigned long flags; 658 int error = -ESRCH; 659 660 if (lock_task_sighand(child, &flags)) { 661 error = -EINVAL; 662 if (likely(child->last_siginfo != NULL)) { 663 copy_siginfo(info, child->last_siginfo); 664 error = 0; 665 } 666 unlock_task_sighand(child, &flags); 667 } 668 return error; 669 } 670 671 static int ptrace_setsiginfo(struct task_struct *child, const kernel_siginfo_t *info) 672 { 673 unsigned long flags; 674 int error = -ESRCH; 675 676 if (lock_task_sighand(child, &flags)) { 677 error = -EINVAL; 678 if (likely(child->last_siginfo != NULL)) { 679 copy_siginfo(child->last_siginfo, info); 680 error = 0; 681 } 682 unlock_task_sighand(child, &flags); 683 } 684 return error; 685 } 686 687 static int ptrace_peek_siginfo(struct task_struct *child, 688 unsigned long addr, 689 unsigned long data) 690 { 691 struct ptrace_peeksiginfo_args arg; 692 struct sigpending *pending; 693 struct sigqueue *q; 694 int ret, i; 695 696 ret = copy_from_user(&arg, (void __user *) addr, 697 sizeof(struct ptrace_peeksiginfo_args)); 698 if (ret) 699 return -EFAULT; 700 701 if (arg.flags & ~PTRACE_PEEKSIGINFO_SHARED) 702 return -EINVAL; /* unknown flags */ 703 704 if (arg.nr < 0) 705 return -EINVAL; 706 707 if (arg.flags & PTRACE_PEEKSIGINFO_SHARED) 708 pending = &child->signal->shared_pending; 709 else 710 pending = &child->pending; 711 712 for (i = 0; i < arg.nr; ) { 713 kernel_siginfo_t info; 714 s32 off = arg.off + i; 715 716 spin_lock_irq(&child->sighand->siglock); 717 list_for_each_entry(q, &pending->list, list) { 718 if (!off--) { 719 copy_siginfo(&info, &q->info); 720 break; 721 } 722 } 723 spin_unlock_irq(&child->sighand->siglock); 724 725 if (off >= 0) /* beyond the end of the list */ 726 break; 727 728 #ifdef CONFIG_COMPAT 729 if (unlikely(in_compat_syscall())) { 730 compat_siginfo_t __user *uinfo = compat_ptr(data); 731 732 if (copy_siginfo_to_user32(uinfo, &info)) { 733 ret = -EFAULT; 734 break; 735 } 736 737 } else 738 #endif 739 { 740 siginfo_t __user *uinfo = (siginfo_t __user *) data; 741 742 if (copy_siginfo_to_user(uinfo, &info)) { 743 ret = -EFAULT; 744 break; 745 } 746 } 747 748 data += sizeof(siginfo_t); 749 i++; 750 751 if (signal_pending(current)) 752 break; 753 754 cond_resched(); 755 } 756 757 if (i > 0) 758 return i; 759 760 return ret; 761 } 762 763 #ifdef PTRACE_SINGLESTEP 764 #define is_singlestep(request) ((request) == PTRACE_SINGLESTEP) 765 #else 766 #define is_singlestep(request) 0 767 #endif 768 769 #ifdef PTRACE_SINGLEBLOCK 770 #define is_singleblock(request) ((request) == PTRACE_SINGLEBLOCK) 771 #else 772 #define is_singleblock(request) 0 773 #endif 774 775 #ifdef PTRACE_SYSEMU 776 #define is_sysemu_singlestep(request) ((request) == PTRACE_SYSEMU_SINGLESTEP) 777 #else 778 #define is_sysemu_singlestep(request) 0 779 #endif 780 781 static int ptrace_resume(struct task_struct *child, long request, 782 unsigned long data) 783 { 784 bool need_siglock; 785 786 if (!valid_signal(data)) 787 return -EIO; 788 789 if (request == PTRACE_SYSCALL) 790 set_tsk_thread_flag(child, TIF_SYSCALL_TRACE); 791 else 792 clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE); 793 794 #ifdef TIF_SYSCALL_EMU 795 if (request == PTRACE_SYSEMU || request == PTRACE_SYSEMU_SINGLESTEP) 796 set_tsk_thread_flag(child, TIF_SYSCALL_EMU); 797 else 798 clear_tsk_thread_flag(child, TIF_SYSCALL_EMU); 799 #endif 800 801 if (is_singleblock(request)) { 802 if (unlikely(!arch_has_block_step())) 803 return -EIO; 804 user_enable_block_step(child); 805 } else if (is_singlestep(request) || is_sysemu_singlestep(request)) { 806 if (unlikely(!arch_has_single_step())) 807 return -EIO; 808 user_enable_single_step(child); 809 } else { 810 user_disable_single_step(child); 811 } 812 813 /* 814 * Change ->exit_code and ->state under siglock to avoid the race 815 * with wait_task_stopped() in between; a non-zero ->exit_code will 816 * wrongly look like another report from tracee. 817 * 818 * Note that we need siglock even if ->exit_code == data and/or this 819 * status was not reported yet, the new status must not be cleared by 820 * wait_task_stopped() after resume. 821 * 822 * If data == 0 we do not care if wait_task_stopped() reports the old 823 * status and clears the code too; this can't race with the tracee, it 824 * takes siglock after resume. 825 */ 826 need_siglock = data && !thread_group_empty(current); 827 if (need_siglock) 828 spin_lock_irq(&child->sighand->siglock); 829 child->exit_code = data; 830 wake_up_state(child, __TASK_TRACED); 831 if (need_siglock) 832 spin_unlock_irq(&child->sighand->siglock); 833 834 return 0; 835 } 836 837 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 838 839 static const struct user_regset * 840 find_regset(const struct user_regset_view *view, unsigned int type) 841 { 842 const struct user_regset *regset; 843 int n; 844 845 for (n = 0; n < view->n; ++n) { 846 regset = view->regsets + n; 847 if (regset->core_note_type == type) 848 return regset; 849 } 850 851 return NULL; 852 } 853 854 static int ptrace_regset(struct task_struct *task, int req, unsigned int type, 855 struct iovec *kiov) 856 { 857 const struct user_regset_view *view = task_user_regset_view(task); 858 const struct user_regset *regset = find_regset(view, type); 859 int regset_no; 860 861 if (!regset || (kiov->iov_len % regset->size) != 0) 862 return -EINVAL; 863 864 regset_no = regset - view->regsets; 865 kiov->iov_len = min(kiov->iov_len, 866 (__kernel_size_t) (regset->n * regset->size)); 867 868 if (req == PTRACE_GETREGSET) 869 return copy_regset_to_user(task, view, regset_no, 0, 870 kiov->iov_len, kiov->iov_base); 871 else 872 return copy_regset_from_user(task, view, regset_no, 0, 873 kiov->iov_len, kiov->iov_base); 874 } 875 876 /* 877 * This is declared in linux/regset.h and defined in machine-dependent 878 * code. We put the export here, near the primary machine-neutral use, 879 * to ensure no machine forgets it. 880 */ 881 EXPORT_SYMBOL_GPL(task_user_regset_view); 882 #endif 883 884 int ptrace_request(struct task_struct *child, long request, 885 unsigned long addr, unsigned long data) 886 { 887 bool seized = child->ptrace & PT_SEIZED; 888 int ret = -EIO; 889 kernel_siginfo_t siginfo, *si; 890 void __user *datavp = (void __user *) data; 891 unsigned long __user *datalp = datavp; 892 unsigned long flags; 893 894 switch (request) { 895 case PTRACE_PEEKTEXT: 896 case PTRACE_PEEKDATA: 897 return generic_ptrace_peekdata(child, addr, data); 898 case PTRACE_POKETEXT: 899 case PTRACE_POKEDATA: 900 return generic_ptrace_pokedata(child, addr, data); 901 902 #ifdef PTRACE_OLDSETOPTIONS 903 case PTRACE_OLDSETOPTIONS: 904 #endif 905 case PTRACE_SETOPTIONS: 906 ret = ptrace_setoptions(child, data); 907 break; 908 case PTRACE_GETEVENTMSG: 909 ret = put_user(child->ptrace_message, datalp); 910 break; 911 912 case PTRACE_PEEKSIGINFO: 913 ret = ptrace_peek_siginfo(child, addr, data); 914 break; 915 916 case PTRACE_GETSIGINFO: 917 ret = ptrace_getsiginfo(child, &siginfo); 918 if (!ret) 919 ret = copy_siginfo_to_user(datavp, &siginfo); 920 break; 921 922 case PTRACE_SETSIGINFO: 923 ret = copy_siginfo_from_user(&siginfo, datavp); 924 if (!ret) 925 ret = ptrace_setsiginfo(child, &siginfo); 926 break; 927 928 case PTRACE_GETSIGMASK: { 929 sigset_t *mask; 930 931 if (addr != sizeof(sigset_t)) { 932 ret = -EINVAL; 933 break; 934 } 935 936 if (test_tsk_restore_sigmask(child)) 937 mask = &child->saved_sigmask; 938 else 939 mask = &child->blocked; 940 941 if (copy_to_user(datavp, mask, sizeof(sigset_t))) 942 ret = -EFAULT; 943 else 944 ret = 0; 945 946 break; 947 } 948 949 case PTRACE_SETSIGMASK: { 950 sigset_t new_set; 951 952 if (addr != sizeof(sigset_t)) { 953 ret = -EINVAL; 954 break; 955 } 956 957 if (copy_from_user(&new_set, datavp, sizeof(sigset_t))) { 958 ret = -EFAULT; 959 break; 960 } 961 962 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 963 964 /* 965 * Every thread does recalc_sigpending() after resume, so 966 * retarget_shared_pending() and recalc_sigpending() are not 967 * called here. 968 */ 969 spin_lock_irq(&child->sighand->siglock); 970 child->blocked = new_set; 971 spin_unlock_irq(&child->sighand->siglock); 972 973 clear_tsk_restore_sigmask(child); 974 975 ret = 0; 976 break; 977 } 978 979 case PTRACE_INTERRUPT: 980 /* 981 * Stop tracee without any side-effect on signal or job 982 * control. At least one trap is guaranteed to happen 983 * after this request. If @child is already trapped, the 984 * current trap is not disturbed and another trap will 985 * happen after the current trap is ended with PTRACE_CONT. 986 * 987 * The actual trap might not be PTRACE_EVENT_STOP trap but 988 * the pending condition is cleared regardless. 989 */ 990 if (unlikely(!seized || !lock_task_sighand(child, &flags))) 991 break; 992 993 /* 994 * INTERRUPT doesn't disturb existing trap sans one 995 * exception. If ptracer issued LISTEN for the current 996 * STOP, this INTERRUPT should clear LISTEN and re-trap 997 * tracee into STOP. 998 */ 999 if (likely(task_set_jobctl_pending(child, JOBCTL_TRAP_STOP))) 1000 ptrace_signal_wake_up(child, child->jobctl & JOBCTL_LISTENING); 1001 1002 unlock_task_sighand(child, &flags); 1003 ret = 0; 1004 break; 1005 1006 case PTRACE_LISTEN: 1007 /* 1008 * Listen for events. Tracee must be in STOP. It's not 1009 * resumed per-se but is not considered to be in TRACED by 1010 * wait(2) or ptrace(2). If an async event (e.g. group 1011 * stop state change) happens, tracee will enter STOP trap 1012 * again. Alternatively, ptracer can issue INTERRUPT to 1013 * finish listening and re-trap tracee into STOP. 1014 */ 1015 if (unlikely(!seized || !lock_task_sighand(child, &flags))) 1016 break; 1017 1018 si = child->last_siginfo; 1019 if (likely(si && (si->si_code >> 8) == PTRACE_EVENT_STOP)) { 1020 child->jobctl |= JOBCTL_LISTENING; 1021 /* 1022 * If NOTIFY is set, it means event happened between 1023 * start of this trap and now. Trigger re-trap. 1024 */ 1025 if (child->jobctl & JOBCTL_TRAP_NOTIFY) 1026 ptrace_signal_wake_up(child, true); 1027 ret = 0; 1028 } 1029 unlock_task_sighand(child, &flags); 1030 break; 1031 1032 case PTRACE_DETACH: /* detach a process that was attached. */ 1033 ret = ptrace_detach(child, data); 1034 break; 1035 1036 #ifdef CONFIG_BINFMT_ELF_FDPIC 1037 case PTRACE_GETFDPIC: { 1038 struct mm_struct *mm = get_task_mm(child); 1039 unsigned long tmp = 0; 1040 1041 ret = -ESRCH; 1042 if (!mm) 1043 break; 1044 1045 switch (addr) { 1046 case PTRACE_GETFDPIC_EXEC: 1047 tmp = mm->context.exec_fdpic_loadmap; 1048 break; 1049 case PTRACE_GETFDPIC_INTERP: 1050 tmp = mm->context.interp_fdpic_loadmap; 1051 break; 1052 default: 1053 break; 1054 } 1055 mmput(mm); 1056 1057 ret = put_user(tmp, datalp); 1058 break; 1059 } 1060 #endif 1061 1062 #ifdef PTRACE_SINGLESTEP 1063 case PTRACE_SINGLESTEP: 1064 #endif 1065 #ifdef PTRACE_SINGLEBLOCK 1066 case PTRACE_SINGLEBLOCK: 1067 #endif 1068 #ifdef PTRACE_SYSEMU 1069 case PTRACE_SYSEMU: 1070 case PTRACE_SYSEMU_SINGLESTEP: 1071 #endif 1072 case PTRACE_SYSCALL: 1073 case PTRACE_CONT: 1074 return ptrace_resume(child, request, data); 1075 1076 case PTRACE_KILL: 1077 if (child->exit_state) /* already dead */ 1078 return 0; 1079 return ptrace_resume(child, request, SIGKILL); 1080 1081 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 1082 case PTRACE_GETREGSET: 1083 case PTRACE_SETREGSET: { 1084 struct iovec kiov; 1085 struct iovec __user *uiov = datavp; 1086 1087 if (!access_ok(uiov, sizeof(*uiov))) 1088 return -EFAULT; 1089 1090 if (__get_user(kiov.iov_base, &uiov->iov_base) || 1091 __get_user(kiov.iov_len, &uiov->iov_len)) 1092 return -EFAULT; 1093 1094 ret = ptrace_regset(child, request, addr, &kiov); 1095 if (!ret) 1096 ret = __put_user(kiov.iov_len, &uiov->iov_len); 1097 break; 1098 } 1099 #endif 1100 1101 case PTRACE_SECCOMP_GET_FILTER: 1102 ret = seccomp_get_filter(child, addr, datavp); 1103 break; 1104 1105 case PTRACE_SECCOMP_GET_METADATA: 1106 ret = seccomp_get_metadata(child, addr, datavp); 1107 break; 1108 1109 default: 1110 break; 1111 } 1112 1113 return ret; 1114 } 1115 1116 #ifndef arch_ptrace_attach 1117 #define arch_ptrace_attach(child) do { } while (0) 1118 #endif 1119 1120 SYSCALL_DEFINE4(ptrace, long, request, long, pid, unsigned long, addr, 1121 unsigned long, data) 1122 { 1123 struct task_struct *child; 1124 long ret; 1125 1126 if (request == PTRACE_TRACEME) { 1127 ret = ptrace_traceme(); 1128 if (!ret) 1129 arch_ptrace_attach(current); 1130 goto out; 1131 } 1132 1133 child = find_get_task_by_vpid(pid); 1134 if (!child) { 1135 ret = -ESRCH; 1136 goto out; 1137 } 1138 1139 if (request == PTRACE_ATTACH || request == PTRACE_SEIZE) { 1140 ret = ptrace_attach(child, request, addr, data); 1141 /* 1142 * Some architectures need to do book-keeping after 1143 * a ptrace attach. 1144 */ 1145 if (!ret) 1146 arch_ptrace_attach(child); 1147 goto out_put_task_struct; 1148 } 1149 1150 ret = ptrace_check_attach(child, request == PTRACE_KILL || 1151 request == PTRACE_INTERRUPT); 1152 if (ret < 0) 1153 goto out_put_task_struct; 1154 1155 ret = arch_ptrace(child, request, addr, data); 1156 if (ret || request != PTRACE_DETACH) 1157 ptrace_unfreeze_traced(child); 1158 1159 out_put_task_struct: 1160 put_task_struct(child); 1161 out: 1162 return ret; 1163 } 1164 1165 int generic_ptrace_peekdata(struct task_struct *tsk, unsigned long addr, 1166 unsigned long data) 1167 { 1168 unsigned long tmp; 1169 int copied; 1170 1171 copied = ptrace_access_vm(tsk, addr, &tmp, sizeof(tmp), FOLL_FORCE); 1172 if (copied != sizeof(tmp)) 1173 return -EIO; 1174 return put_user(tmp, (unsigned long __user *)data); 1175 } 1176 1177 int generic_ptrace_pokedata(struct task_struct *tsk, unsigned long addr, 1178 unsigned long data) 1179 { 1180 int copied; 1181 1182 copied = ptrace_access_vm(tsk, addr, &data, sizeof(data), 1183 FOLL_FORCE | FOLL_WRITE); 1184 return (copied == sizeof(data)) ? 0 : -EIO; 1185 } 1186 1187 #if defined CONFIG_COMPAT 1188 1189 int compat_ptrace_request(struct task_struct *child, compat_long_t request, 1190 compat_ulong_t addr, compat_ulong_t data) 1191 { 1192 compat_ulong_t __user *datap = compat_ptr(data); 1193 compat_ulong_t word; 1194 kernel_siginfo_t siginfo; 1195 int ret; 1196 1197 switch (request) { 1198 case PTRACE_PEEKTEXT: 1199 case PTRACE_PEEKDATA: 1200 ret = ptrace_access_vm(child, addr, &word, sizeof(word), 1201 FOLL_FORCE); 1202 if (ret != sizeof(word)) 1203 ret = -EIO; 1204 else 1205 ret = put_user(word, datap); 1206 break; 1207 1208 case PTRACE_POKETEXT: 1209 case PTRACE_POKEDATA: 1210 ret = ptrace_access_vm(child, addr, &data, sizeof(data), 1211 FOLL_FORCE | FOLL_WRITE); 1212 ret = (ret != sizeof(data) ? -EIO : 0); 1213 break; 1214 1215 case PTRACE_GETEVENTMSG: 1216 ret = put_user((compat_ulong_t) child->ptrace_message, datap); 1217 break; 1218 1219 case PTRACE_GETSIGINFO: 1220 ret = ptrace_getsiginfo(child, &siginfo); 1221 if (!ret) 1222 ret = copy_siginfo_to_user32( 1223 (struct compat_siginfo __user *) datap, 1224 &siginfo); 1225 break; 1226 1227 case PTRACE_SETSIGINFO: 1228 ret = copy_siginfo_from_user32( 1229 &siginfo, (struct compat_siginfo __user *) datap); 1230 if (!ret) 1231 ret = ptrace_setsiginfo(child, &siginfo); 1232 break; 1233 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 1234 case PTRACE_GETREGSET: 1235 case PTRACE_SETREGSET: 1236 { 1237 struct iovec kiov; 1238 struct compat_iovec __user *uiov = 1239 (struct compat_iovec __user *) datap; 1240 compat_uptr_t ptr; 1241 compat_size_t len; 1242 1243 if (!access_ok(uiov, sizeof(*uiov))) 1244 return -EFAULT; 1245 1246 if (__get_user(ptr, &uiov->iov_base) || 1247 __get_user(len, &uiov->iov_len)) 1248 return -EFAULT; 1249 1250 kiov.iov_base = compat_ptr(ptr); 1251 kiov.iov_len = len; 1252 1253 ret = ptrace_regset(child, request, addr, &kiov); 1254 if (!ret) 1255 ret = __put_user(kiov.iov_len, &uiov->iov_len); 1256 break; 1257 } 1258 #endif 1259 1260 default: 1261 ret = ptrace_request(child, request, addr, data); 1262 } 1263 1264 return ret; 1265 } 1266 1267 COMPAT_SYSCALL_DEFINE4(ptrace, compat_long_t, request, compat_long_t, pid, 1268 compat_long_t, addr, compat_long_t, data) 1269 { 1270 struct task_struct *child; 1271 long ret; 1272 1273 if (request == PTRACE_TRACEME) { 1274 ret = ptrace_traceme(); 1275 goto out; 1276 } 1277 1278 child = find_get_task_by_vpid(pid); 1279 if (!child) { 1280 ret = -ESRCH; 1281 goto out; 1282 } 1283 1284 if (request == PTRACE_ATTACH || request == PTRACE_SEIZE) { 1285 ret = ptrace_attach(child, request, addr, data); 1286 /* 1287 * Some architectures need to do book-keeping after 1288 * a ptrace attach. 1289 */ 1290 if (!ret) 1291 arch_ptrace_attach(child); 1292 goto out_put_task_struct; 1293 } 1294 1295 ret = ptrace_check_attach(child, request == PTRACE_KILL || 1296 request == PTRACE_INTERRUPT); 1297 if (!ret) { 1298 ret = compat_arch_ptrace(child, request, addr, data); 1299 if (ret || request != PTRACE_DETACH) 1300 ptrace_unfreeze_traced(child); 1301 } 1302 1303 out_put_task_struct: 1304 put_task_struct(child); 1305 out: 1306 return ret; 1307 } 1308 #endif /* CONFIG_COMPAT */ 1309