1 /* 2 * linux/kernel/profile.c 3 * Simple profiling. Manages a direct-mapped profile hit count buffer, 4 * with configurable resolution, support for restricting the cpus on 5 * which profiling is done, and switching between cpu time and 6 * schedule() calls via kernel command line parameters passed at boot. 7 * 8 * Scheduler profiling support, Arjan van de Ven and Ingo Molnar, 9 * Red Hat, July 2004 10 * Consolidation of architecture support code for profiling, 11 * William Irwin, Oracle, July 2004 12 * Amortized hit count accounting via per-cpu open-addressed hashtables 13 * to resolve timer interrupt livelocks, William Irwin, Oracle, 2004 14 */ 15 16 #include <linux/config.h> 17 #include <linux/module.h> 18 #include <linux/profile.h> 19 #include <linux/bootmem.h> 20 #include <linux/notifier.h> 21 #include <linux/mm.h> 22 #include <linux/cpumask.h> 23 #include <linux/cpu.h> 24 #include <linux/profile.h> 25 #include <linux/highmem.h> 26 #include <linux/mutex.h> 27 #include <asm/sections.h> 28 #include <asm/semaphore.h> 29 30 struct profile_hit { 31 u32 pc, hits; 32 }; 33 #define PROFILE_GRPSHIFT 3 34 #define PROFILE_GRPSZ (1 << PROFILE_GRPSHIFT) 35 #define NR_PROFILE_HIT (PAGE_SIZE/sizeof(struct profile_hit)) 36 #define NR_PROFILE_GRP (NR_PROFILE_HIT/PROFILE_GRPSZ) 37 38 /* Oprofile timer tick hook */ 39 int (*timer_hook)(struct pt_regs *) __read_mostly; 40 41 static atomic_t *prof_buffer; 42 static unsigned long prof_len, prof_shift; 43 static int prof_on __read_mostly; 44 static cpumask_t prof_cpu_mask = CPU_MASK_ALL; 45 #ifdef CONFIG_SMP 46 static DEFINE_PER_CPU(struct profile_hit *[2], cpu_profile_hits); 47 static DEFINE_PER_CPU(int, cpu_profile_flip); 48 static DEFINE_MUTEX(profile_flip_mutex); 49 #endif /* CONFIG_SMP */ 50 51 static int __init profile_setup(char * str) 52 { 53 static char __initdata schedstr[] = "schedule"; 54 int par; 55 56 if (!strncmp(str, schedstr, strlen(schedstr))) { 57 prof_on = SCHED_PROFILING; 58 if (str[strlen(schedstr)] == ',') 59 str += strlen(schedstr) + 1; 60 if (get_option(&str, &par)) 61 prof_shift = par; 62 printk(KERN_INFO 63 "kernel schedule profiling enabled (shift: %ld)\n", 64 prof_shift); 65 } else if (get_option(&str, &par)) { 66 prof_shift = par; 67 prof_on = CPU_PROFILING; 68 printk(KERN_INFO "kernel profiling enabled (shift: %ld)\n", 69 prof_shift); 70 } 71 return 1; 72 } 73 __setup("profile=", profile_setup); 74 75 76 void __init profile_init(void) 77 { 78 if (!prof_on) 79 return; 80 81 /* only text is profiled */ 82 prof_len = (_etext - _stext) >> prof_shift; 83 prof_buffer = alloc_bootmem(prof_len*sizeof(atomic_t)); 84 } 85 86 /* Profile event notifications */ 87 88 #ifdef CONFIG_PROFILING 89 90 static BLOCKING_NOTIFIER_HEAD(task_exit_notifier); 91 static ATOMIC_NOTIFIER_HEAD(task_free_notifier); 92 static BLOCKING_NOTIFIER_HEAD(munmap_notifier); 93 94 void profile_task_exit(struct task_struct * task) 95 { 96 blocking_notifier_call_chain(&task_exit_notifier, 0, task); 97 } 98 99 int profile_handoff_task(struct task_struct * task) 100 { 101 int ret; 102 ret = atomic_notifier_call_chain(&task_free_notifier, 0, task); 103 return (ret == NOTIFY_OK) ? 1 : 0; 104 } 105 106 void profile_munmap(unsigned long addr) 107 { 108 blocking_notifier_call_chain(&munmap_notifier, 0, (void *)addr); 109 } 110 111 int task_handoff_register(struct notifier_block * n) 112 { 113 return atomic_notifier_chain_register(&task_free_notifier, n); 114 } 115 116 int task_handoff_unregister(struct notifier_block * n) 117 { 118 return atomic_notifier_chain_unregister(&task_free_notifier, n); 119 } 120 121 int profile_event_register(enum profile_type type, struct notifier_block * n) 122 { 123 int err = -EINVAL; 124 125 switch (type) { 126 case PROFILE_TASK_EXIT: 127 err = blocking_notifier_chain_register( 128 &task_exit_notifier, n); 129 break; 130 case PROFILE_MUNMAP: 131 err = blocking_notifier_chain_register( 132 &munmap_notifier, n); 133 break; 134 } 135 136 return err; 137 } 138 139 140 int profile_event_unregister(enum profile_type type, struct notifier_block * n) 141 { 142 int err = -EINVAL; 143 144 switch (type) { 145 case PROFILE_TASK_EXIT: 146 err = blocking_notifier_chain_unregister( 147 &task_exit_notifier, n); 148 break; 149 case PROFILE_MUNMAP: 150 err = blocking_notifier_chain_unregister( 151 &munmap_notifier, n); 152 break; 153 } 154 155 return err; 156 } 157 158 int register_timer_hook(int (*hook)(struct pt_regs *)) 159 { 160 if (timer_hook) 161 return -EBUSY; 162 timer_hook = hook; 163 return 0; 164 } 165 166 void unregister_timer_hook(int (*hook)(struct pt_regs *)) 167 { 168 WARN_ON(hook != timer_hook); 169 timer_hook = NULL; 170 /* make sure all CPUs see the NULL hook */ 171 synchronize_sched(); /* Allow ongoing interrupts to complete. */ 172 } 173 174 EXPORT_SYMBOL_GPL(register_timer_hook); 175 EXPORT_SYMBOL_GPL(unregister_timer_hook); 176 EXPORT_SYMBOL_GPL(task_handoff_register); 177 EXPORT_SYMBOL_GPL(task_handoff_unregister); 178 179 #endif /* CONFIG_PROFILING */ 180 181 EXPORT_SYMBOL_GPL(profile_event_register); 182 EXPORT_SYMBOL_GPL(profile_event_unregister); 183 184 #ifdef CONFIG_SMP 185 /* 186 * Each cpu has a pair of open-addressed hashtables for pending 187 * profile hits. read_profile() IPI's all cpus to request them 188 * to flip buffers and flushes their contents to prof_buffer itself. 189 * Flip requests are serialized by the profile_flip_mutex. The sole 190 * use of having a second hashtable is for avoiding cacheline 191 * contention that would otherwise happen during flushes of pending 192 * profile hits required for the accuracy of reported profile hits 193 * and so resurrect the interrupt livelock issue. 194 * 195 * The open-addressed hashtables are indexed by profile buffer slot 196 * and hold the number of pending hits to that profile buffer slot on 197 * a cpu in an entry. When the hashtable overflows, all pending hits 198 * are accounted to their corresponding profile buffer slots with 199 * atomic_add() and the hashtable emptied. As numerous pending hits 200 * may be accounted to a profile buffer slot in a hashtable entry, 201 * this amortizes a number of atomic profile buffer increments likely 202 * to be far larger than the number of entries in the hashtable, 203 * particularly given that the number of distinct profile buffer 204 * positions to which hits are accounted during short intervals (e.g. 205 * several seconds) is usually very small. Exclusion from buffer 206 * flipping is provided by interrupt disablement (note that for 207 * SCHED_PROFILING profile_hit() may be called from process context). 208 * The hash function is meant to be lightweight as opposed to strong, 209 * and was vaguely inspired by ppc64 firmware-supported inverted 210 * pagetable hash functions, but uses a full hashtable full of finite 211 * collision chains, not just pairs of them. 212 * 213 * -- wli 214 */ 215 static void __profile_flip_buffers(void *unused) 216 { 217 int cpu = smp_processor_id(); 218 219 per_cpu(cpu_profile_flip, cpu) = !per_cpu(cpu_profile_flip, cpu); 220 } 221 222 static void profile_flip_buffers(void) 223 { 224 int i, j, cpu; 225 226 mutex_lock(&profile_flip_mutex); 227 j = per_cpu(cpu_profile_flip, get_cpu()); 228 put_cpu(); 229 on_each_cpu(__profile_flip_buffers, NULL, 0, 1); 230 for_each_online_cpu(cpu) { 231 struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[j]; 232 for (i = 0; i < NR_PROFILE_HIT; ++i) { 233 if (!hits[i].hits) { 234 if (hits[i].pc) 235 hits[i].pc = 0; 236 continue; 237 } 238 atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]); 239 hits[i].hits = hits[i].pc = 0; 240 } 241 } 242 mutex_unlock(&profile_flip_mutex); 243 } 244 245 static void profile_discard_flip_buffers(void) 246 { 247 int i, cpu; 248 249 mutex_lock(&profile_flip_mutex); 250 i = per_cpu(cpu_profile_flip, get_cpu()); 251 put_cpu(); 252 on_each_cpu(__profile_flip_buffers, NULL, 0, 1); 253 for_each_online_cpu(cpu) { 254 struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[i]; 255 memset(hits, 0, NR_PROFILE_HIT*sizeof(struct profile_hit)); 256 } 257 mutex_unlock(&profile_flip_mutex); 258 } 259 260 void profile_hit(int type, void *__pc) 261 { 262 unsigned long primary, secondary, flags, pc = (unsigned long)__pc; 263 int i, j, cpu; 264 struct profile_hit *hits; 265 266 if (prof_on != type || !prof_buffer) 267 return; 268 pc = min((pc - (unsigned long)_stext) >> prof_shift, prof_len - 1); 269 i = primary = (pc & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT; 270 secondary = (~(pc << 1) & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT; 271 cpu = get_cpu(); 272 hits = per_cpu(cpu_profile_hits, cpu)[per_cpu(cpu_profile_flip, cpu)]; 273 if (!hits) { 274 put_cpu(); 275 return; 276 } 277 local_irq_save(flags); 278 do { 279 for (j = 0; j < PROFILE_GRPSZ; ++j) { 280 if (hits[i + j].pc == pc) { 281 hits[i + j].hits++; 282 goto out; 283 } else if (!hits[i + j].hits) { 284 hits[i + j].pc = pc; 285 hits[i + j].hits = 1; 286 goto out; 287 } 288 } 289 i = (i + secondary) & (NR_PROFILE_HIT - 1); 290 } while (i != primary); 291 atomic_inc(&prof_buffer[pc]); 292 for (i = 0; i < NR_PROFILE_HIT; ++i) { 293 atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]); 294 hits[i].pc = hits[i].hits = 0; 295 } 296 out: 297 local_irq_restore(flags); 298 put_cpu(); 299 } 300 301 #ifdef CONFIG_HOTPLUG_CPU 302 static int profile_cpu_callback(struct notifier_block *info, 303 unsigned long action, void *__cpu) 304 { 305 int node, cpu = (unsigned long)__cpu; 306 struct page *page; 307 308 switch (action) { 309 case CPU_UP_PREPARE: 310 node = cpu_to_node(cpu); 311 per_cpu(cpu_profile_flip, cpu) = 0; 312 if (!per_cpu(cpu_profile_hits, cpu)[1]) { 313 page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0); 314 if (!page) 315 return NOTIFY_BAD; 316 per_cpu(cpu_profile_hits, cpu)[1] = page_address(page); 317 } 318 if (!per_cpu(cpu_profile_hits, cpu)[0]) { 319 page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0); 320 if (!page) 321 goto out_free; 322 per_cpu(cpu_profile_hits, cpu)[0] = page_address(page); 323 } 324 break; 325 out_free: 326 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]); 327 per_cpu(cpu_profile_hits, cpu)[1] = NULL; 328 __free_page(page); 329 return NOTIFY_BAD; 330 case CPU_ONLINE: 331 cpu_set(cpu, prof_cpu_mask); 332 break; 333 case CPU_UP_CANCELED: 334 case CPU_DEAD: 335 cpu_clear(cpu, prof_cpu_mask); 336 if (per_cpu(cpu_profile_hits, cpu)[0]) { 337 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]); 338 per_cpu(cpu_profile_hits, cpu)[0] = NULL; 339 __free_page(page); 340 } 341 if (per_cpu(cpu_profile_hits, cpu)[1]) { 342 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]); 343 per_cpu(cpu_profile_hits, cpu)[1] = NULL; 344 __free_page(page); 345 } 346 break; 347 } 348 return NOTIFY_OK; 349 } 350 #endif /* CONFIG_HOTPLUG_CPU */ 351 #else /* !CONFIG_SMP */ 352 #define profile_flip_buffers() do { } while (0) 353 #define profile_discard_flip_buffers() do { } while (0) 354 355 void profile_hit(int type, void *__pc) 356 { 357 unsigned long pc; 358 359 if (prof_on != type || !prof_buffer) 360 return; 361 pc = ((unsigned long)__pc - (unsigned long)_stext) >> prof_shift; 362 atomic_inc(&prof_buffer[min(pc, prof_len - 1)]); 363 } 364 #endif /* !CONFIG_SMP */ 365 366 void profile_tick(int type, struct pt_regs *regs) 367 { 368 if (type == CPU_PROFILING && timer_hook) 369 timer_hook(regs); 370 if (!user_mode(regs) && cpu_isset(smp_processor_id(), prof_cpu_mask)) 371 profile_hit(type, (void *)profile_pc(regs)); 372 } 373 374 #ifdef CONFIG_PROC_FS 375 #include <linux/proc_fs.h> 376 #include <asm/uaccess.h> 377 #include <asm/ptrace.h> 378 379 static int prof_cpu_mask_read_proc (char *page, char **start, off_t off, 380 int count, int *eof, void *data) 381 { 382 int len = cpumask_scnprintf(page, count, *(cpumask_t *)data); 383 if (count - len < 2) 384 return -EINVAL; 385 len += sprintf(page + len, "\n"); 386 return len; 387 } 388 389 static int prof_cpu_mask_write_proc (struct file *file, const char __user *buffer, 390 unsigned long count, void *data) 391 { 392 cpumask_t *mask = (cpumask_t *)data; 393 unsigned long full_count = count, err; 394 cpumask_t new_value; 395 396 err = cpumask_parse(buffer, count, new_value); 397 if (err) 398 return err; 399 400 *mask = new_value; 401 return full_count; 402 } 403 404 void create_prof_cpu_mask(struct proc_dir_entry *root_irq_dir) 405 { 406 struct proc_dir_entry *entry; 407 408 /* create /proc/irq/prof_cpu_mask */ 409 if (!(entry = create_proc_entry("prof_cpu_mask", 0600, root_irq_dir))) 410 return; 411 entry->nlink = 1; 412 entry->data = (void *)&prof_cpu_mask; 413 entry->read_proc = prof_cpu_mask_read_proc; 414 entry->write_proc = prof_cpu_mask_write_proc; 415 } 416 417 /* 418 * This function accesses profiling information. The returned data is 419 * binary: the sampling step and the actual contents of the profile 420 * buffer. Use of the program readprofile is recommended in order to 421 * get meaningful info out of these data. 422 */ 423 static ssize_t 424 read_profile(struct file *file, char __user *buf, size_t count, loff_t *ppos) 425 { 426 unsigned long p = *ppos; 427 ssize_t read; 428 char * pnt; 429 unsigned int sample_step = 1 << prof_shift; 430 431 profile_flip_buffers(); 432 if (p >= (prof_len+1)*sizeof(unsigned int)) 433 return 0; 434 if (count > (prof_len+1)*sizeof(unsigned int) - p) 435 count = (prof_len+1)*sizeof(unsigned int) - p; 436 read = 0; 437 438 while (p < sizeof(unsigned int) && count > 0) { 439 put_user(*((char *)(&sample_step)+p),buf); 440 buf++; p++; count--; read++; 441 } 442 pnt = (char *)prof_buffer + p - sizeof(atomic_t); 443 if (copy_to_user(buf,(void *)pnt,count)) 444 return -EFAULT; 445 read += count; 446 *ppos += read; 447 return read; 448 } 449 450 /* 451 * Writing to /proc/profile resets the counters 452 * 453 * Writing a 'profiling multiplier' value into it also re-sets the profiling 454 * interrupt frequency, on architectures that support this. 455 */ 456 static ssize_t write_profile(struct file *file, const char __user *buf, 457 size_t count, loff_t *ppos) 458 { 459 #ifdef CONFIG_SMP 460 extern int setup_profiling_timer (unsigned int multiplier); 461 462 if (count == sizeof(int)) { 463 unsigned int multiplier; 464 465 if (copy_from_user(&multiplier, buf, sizeof(int))) 466 return -EFAULT; 467 468 if (setup_profiling_timer(multiplier)) 469 return -EINVAL; 470 } 471 #endif 472 profile_discard_flip_buffers(); 473 memset(prof_buffer, 0, prof_len * sizeof(atomic_t)); 474 return count; 475 } 476 477 static struct file_operations proc_profile_operations = { 478 .read = read_profile, 479 .write = write_profile, 480 }; 481 482 #ifdef CONFIG_SMP 483 static void __init profile_nop(void *unused) 484 { 485 } 486 487 static int __init create_hash_tables(void) 488 { 489 int cpu; 490 491 for_each_online_cpu(cpu) { 492 int node = cpu_to_node(cpu); 493 struct page *page; 494 495 page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0); 496 if (!page) 497 goto out_cleanup; 498 per_cpu(cpu_profile_hits, cpu)[1] 499 = (struct profile_hit *)page_address(page); 500 page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0); 501 if (!page) 502 goto out_cleanup; 503 per_cpu(cpu_profile_hits, cpu)[0] 504 = (struct profile_hit *)page_address(page); 505 } 506 return 0; 507 out_cleanup: 508 prof_on = 0; 509 smp_mb(); 510 on_each_cpu(profile_nop, NULL, 0, 1); 511 for_each_online_cpu(cpu) { 512 struct page *page; 513 514 if (per_cpu(cpu_profile_hits, cpu)[0]) { 515 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]); 516 per_cpu(cpu_profile_hits, cpu)[0] = NULL; 517 __free_page(page); 518 } 519 if (per_cpu(cpu_profile_hits, cpu)[1]) { 520 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]); 521 per_cpu(cpu_profile_hits, cpu)[1] = NULL; 522 __free_page(page); 523 } 524 } 525 return -1; 526 } 527 #else 528 #define create_hash_tables() ({ 0; }) 529 #endif 530 531 static int __init create_proc_profile(void) 532 { 533 struct proc_dir_entry *entry; 534 535 if (!prof_on) 536 return 0; 537 if (create_hash_tables()) 538 return -1; 539 if (!(entry = create_proc_entry("profile", S_IWUSR | S_IRUGO, NULL))) 540 return 0; 541 entry->proc_fops = &proc_profile_operations; 542 entry->size = (1+prof_len) * sizeof(atomic_t); 543 hotcpu_notifier(profile_cpu_callback, 0); 544 return 0; 545 } 546 module_init(create_proc_profile); 547 #endif /* CONFIG_PROC_FS */ 548