xref: /linux/kernel/profile.c (revision c9933d494c54f72290831191c09bb8488bfd5905)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/profile.c
4  *  Simple profiling. Manages a direct-mapped profile hit count buffer,
5  *  with configurable resolution, support for restricting the cpus on
6  *  which profiling is done, and switching between cpu time and
7  *  schedule() calls via kernel command line parameters passed at boot.
8  *
9  *  Scheduler profiling support, Arjan van de Ven and Ingo Molnar,
10  *	Red Hat, July 2004
11  *  Consolidation of architecture support code for profiling,
12  *	Nadia Yvette Chambers, Oracle, July 2004
13  *  Amortized hit count accounting via per-cpu open-addressed hashtables
14  *	to resolve timer interrupt livelocks, Nadia Yvette Chambers,
15  *	Oracle, 2004
16  */
17 
18 #include <linux/export.h>
19 #include <linux/profile.h>
20 #include <linux/memblock.h>
21 #include <linux/notifier.h>
22 #include <linux/mm.h>
23 #include <linux/cpumask.h>
24 #include <linux/cpu.h>
25 #include <linux/highmem.h>
26 #include <linux/mutex.h>
27 #include <linux/slab.h>
28 #include <linux/vmalloc.h>
29 #include <linux/sched/stat.h>
30 
31 #include <asm/sections.h>
32 #include <asm/irq_regs.h>
33 #include <asm/ptrace.h>
34 
35 struct profile_hit {
36 	u32 pc, hits;
37 };
38 #define PROFILE_GRPSHIFT	3
39 #define PROFILE_GRPSZ		(1 << PROFILE_GRPSHIFT)
40 #define NR_PROFILE_HIT		(PAGE_SIZE/sizeof(struct profile_hit))
41 #define NR_PROFILE_GRP		(NR_PROFILE_HIT/PROFILE_GRPSZ)
42 
43 static atomic_t *prof_buffer;
44 static unsigned long prof_len;
45 static unsigned short int prof_shift;
46 
47 int prof_on __read_mostly;
48 EXPORT_SYMBOL_GPL(prof_on);
49 
50 static cpumask_var_t prof_cpu_mask;
51 #if defined(CONFIG_SMP) && defined(CONFIG_PROC_FS)
52 static DEFINE_PER_CPU(struct profile_hit *[2], cpu_profile_hits);
53 static DEFINE_PER_CPU(int, cpu_profile_flip);
54 static DEFINE_MUTEX(profile_flip_mutex);
55 #endif /* CONFIG_SMP */
56 
57 int profile_setup(char *str)
58 {
59 	static const char schedstr[] = "schedule";
60 	static const char sleepstr[] = "sleep";
61 	static const char kvmstr[] = "kvm";
62 	int par;
63 
64 	if (!strncmp(str, sleepstr, strlen(sleepstr))) {
65 #ifdef CONFIG_SCHEDSTATS
66 		force_schedstat_enabled();
67 		prof_on = SLEEP_PROFILING;
68 		if (str[strlen(sleepstr)] == ',')
69 			str += strlen(sleepstr) + 1;
70 		if (get_option(&str, &par))
71 			prof_shift = clamp(par, 0, BITS_PER_LONG - 1);
72 		pr_info("kernel sleep profiling enabled (shift: %u)\n",
73 			prof_shift);
74 #else
75 		pr_warn("kernel sleep profiling requires CONFIG_SCHEDSTATS\n");
76 #endif /* CONFIG_SCHEDSTATS */
77 	} else if (!strncmp(str, schedstr, strlen(schedstr))) {
78 		prof_on = SCHED_PROFILING;
79 		if (str[strlen(schedstr)] == ',')
80 			str += strlen(schedstr) + 1;
81 		if (get_option(&str, &par))
82 			prof_shift = clamp(par, 0, BITS_PER_LONG - 1);
83 		pr_info("kernel schedule profiling enabled (shift: %u)\n",
84 			prof_shift);
85 	} else if (!strncmp(str, kvmstr, strlen(kvmstr))) {
86 		prof_on = KVM_PROFILING;
87 		if (str[strlen(kvmstr)] == ',')
88 			str += strlen(kvmstr) + 1;
89 		if (get_option(&str, &par))
90 			prof_shift = clamp(par, 0, BITS_PER_LONG - 1);
91 		pr_info("kernel KVM profiling enabled (shift: %u)\n",
92 			prof_shift);
93 	} else if (get_option(&str, &par)) {
94 		prof_shift = clamp(par, 0, BITS_PER_LONG - 1);
95 		prof_on = CPU_PROFILING;
96 		pr_info("kernel profiling enabled (shift: %u)\n",
97 			prof_shift);
98 	}
99 	return 1;
100 }
101 __setup("profile=", profile_setup);
102 
103 
104 int __ref profile_init(void)
105 {
106 	int buffer_bytes;
107 	if (!prof_on)
108 		return 0;
109 
110 	/* only text is profiled */
111 	prof_len = (_etext - _stext) >> prof_shift;
112 	buffer_bytes = prof_len*sizeof(atomic_t);
113 
114 	if (!alloc_cpumask_var(&prof_cpu_mask, GFP_KERNEL))
115 		return -ENOMEM;
116 
117 	cpumask_copy(prof_cpu_mask, cpu_possible_mask);
118 
119 	prof_buffer = kzalloc(buffer_bytes, GFP_KERNEL|__GFP_NOWARN);
120 	if (prof_buffer)
121 		return 0;
122 
123 	prof_buffer = alloc_pages_exact(buffer_bytes,
124 					GFP_KERNEL|__GFP_ZERO|__GFP_NOWARN);
125 	if (prof_buffer)
126 		return 0;
127 
128 	prof_buffer = vzalloc(buffer_bytes);
129 	if (prof_buffer)
130 		return 0;
131 
132 	free_cpumask_var(prof_cpu_mask);
133 	return -ENOMEM;
134 }
135 
136 #if defined(CONFIG_SMP) && defined(CONFIG_PROC_FS)
137 /*
138  * Each cpu has a pair of open-addressed hashtables for pending
139  * profile hits. read_profile() IPI's all cpus to request them
140  * to flip buffers and flushes their contents to prof_buffer itself.
141  * Flip requests are serialized by the profile_flip_mutex. The sole
142  * use of having a second hashtable is for avoiding cacheline
143  * contention that would otherwise happen during flushes of pending
144  * profile hits required for the accuracy of reported profile hits
145  * and so resurrect the interrupt livelock issue.
146  *
147  * The open-addressed hashtables are indexed by profile buffer slot
148  * and hold the number of pending hits to that profile buffer slot on
149  * a cpu in an entry. When the hashtable overflows, all pending hits
150  * are accounted to their corresponding profile buffer slots with
151  * atomic_add() and the hashtable emptied. As numerous pending hits
152  * may be accounted to a profile buffer slot in a hashtable entry,
153  * this amortizes a number of atomic profile buffer increments likely
154  * to be far larger than the number of entries in the hashtable,
155  * particularly given that the number of distinct profile buffer
156  * positions to which hits are accounted during short intervals (e.g.
157  * several seconds) is usually very small. Exclusion from buffer
158  * flipping is provided by interrupt disablement (note that for
159  * SCHED_PROFILING or SLEEP_PROFILING profile_hit() may be called from
160  * process context).
161  * The hash function is meant to be lightweight as opposed to strong,
162  * and was vaguely inspired by ppc64 firmware-supported inverted
163  * pagetable hash functions, but uses a full hashtable full of finite
164  * collision chains, not just pairs of them.
165  *
166  * -- nyc
167  */
168 static void __profile_flip_buffers(void *unused)
169 {
170 	int cpu = smp_processor_id();
171 
172 	per_cpu(cpu_profile_flip, cpu) = !per_cpu(cpu_profile_flip, cpu);
173 }
174 
175 static void profile_flip_buffers(void)
176 {
177 	int i, j, cpu;
178 
179 	mutex_lock(&profile_flip_mutex);
180 	j = per_cpu(cpu_profile_flip, get_cpu());
181 	put_cpu();
182 	on_each_cpu(__profile_flip_buffers, NULL, 1);
183 	for_each_online_cpu(cpu) {
184 		struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[j];
185 		for (i = 0; i < NR_PROFILE_HIT; ++i) {
186 			if (!hits[i].hits) {
187 				if (hits[i].pc)
188 					hits[i].pc = 0;
189 				continue;
190 			}
191 			atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
192 			hits[i].hits = hits[i].pc = 0;
193 		}
194 	}
195 	mutex_unlock(&profile_flip_mutex);
196 }
197 
198 static void profile_discard_flip_buffers(void)
199 {
200 	int i, cpu;
201 
202 	mutex_lock(&profile_flip_mutex);
203 	i = per_cpu(cpu_profile_flip, get_cpu());
204 	put_cpu();
205 	on_each_cpu(__profile_flip_buffers, NULL, 1);
206 	for_each_online_cpu(cpu) {
207 		struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[i];
208 		memset(hits, 0, NR_PROFILE_HIT*sizeof(struct profile_hit));
209 	}
210 	mutex_unlock(&profile_flip_mutex);
211 }
212 
213 static void do_profile_hits(int type, void *__pc, unsigned int nr_hits)
214 {
215 	unsigned long primary, secondary, flags, pc = (unsigned long)__pc;
216 	int i, j, cpu;
217 	struct profile_hit *hits;
218 
219 	pc = min((pc - (unsigned long)_stext) >> prof_shift, prof_len - 1);
220 	i = primary = (pc & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
221 	secondary = (~(pc << 1) & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
222 	cpu = get_cpu();
223 	hits = per_cpu(cpu_profile_hits, cpu)[per_cpu(cpu_profile_flip, cpu)];
224 	if (!hits) {
225 		put_cpu();
226 		return;
227 	}
228 	/*
229 	 * We buffer the global profiler buffer into a per-CPU
230 	 * queue and thus reduce the number of global (and possibly
231 	 * NUMA-alien) accesses. The write-queue is self-coalescing:
232 	 */
233 	local_irq_save(flags);
234 	do {
235 		for (j = 0; j < PROFILE_GRPSZ; ++j) {
236 			if (hits[i + j].pc == pc) {
237 				hits[i + j].hits += nr_hits;
238 				goto out;
239 			} else if (!hits[i + j].hits) {
240 				hits[i + j].pc = pc;
241 				hits[i + j].hits = nr_hits;
242 				goto out;
243 			}
244 		}
245 		i = (i + secondary) & (NR_PROFILE_HIT - 1);
246 	} while (i != primary);
247 
248 	/*
249 	 * Add the current hit(s) and flush the write-queue out
250 	 * to the global buffer:
251 	 */
252 	atomic_add(nr_hits, &prof_buffer[pc]);
253 	for (i = 0; i < NR_PROFILE_HIT; ++i) {
254 		atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
255 		hits[i].pc = hits[i].hits = 0;
256 	}
257 out:
258 	local_irq_restore(flags);
259 	put_cpu();
260 }
261 
262 static int profile_dead_cpu(unsigned int cpu)
263 {
264 	struct page *page;
265 	int i;
266 
267 	if (cpumask_available(prof_cpu_mask))
268 		cpumask_clear_cpu(cpu, prof_cpu_mask);
269 
270 	for (i = 0; i < 2; i++) {
271 		if (per_cpu(cpu_profile_hits, cpu)[i]) {
272 			page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[i]);
273 			per_cpu(cpu_profile_hits, cpu)[i] = NULL;
274 			__free_page(page);
275 		}
276 	}
277 	return 0;
278 }
279 
280 static int profile_prepare_cpu(unsigned int cpu)
281 {
282 	int i, node = cpu_to_mem(cpu);
283 	struct page *page;
284 
285 	per_cpu(cpu_profile_flip, cpu) = 0;
286 
287 	for (i = 0; i < 2; i++) {
288 		if (per_cpu(cpu_profile_hits, cpu)[i])
289 			continue;
290 
291 		page = __alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
292 		if (!page) {
293 			profile_dead_cpu(cpu);
294 			return -ENOMEM;
295 		}
296 		per_cpu(cpu_profile_hits, cpu)[i] = page_address(page);
297 
298 	}
299 	return 0;
300 }
301 
302 static int profile_online_cpu(unsigned int cpu)
303 {
304 	if (cpumask_available(prof_cpu_mask))
305 		cpumask_set_cpu(cpu, prof_cpu_mask);
306 
307 	return 0;
308 }
309 
310 #else /* !CONFIG_SMP */
311 #define profile_flip_buffers()		do { } while (0)
312 #define profile_discard_flip_buffers()	do { } while (0)
313 
314 static void do_profile_hits(int type, void *__pc, unsigned int nr_hits)
315 {
316 	unsigned long pc;
317 	pc = ((unsigned long)__pc - (unsigned long)_stext) >> prof_shift;
318 	atomic_add(nr_hits, &prof_buffer[min(pc, prof_len - 1)]);
319 }
320 #endif /* !CONFIG_SMP */
321 
322 void profile_hits(int type, void *__pc, unsigned int nr_hits)
323 {
324 	if (prof_on != type || !prof_buffer)
325 		return;
326 	do_profile_hits(type, __pc, nr_hits);
327 }
328 EXPORT_SYMBOL_GPL(profile_hits);
329 
330 void profile_tick(int type)
331 {
332 	struct pt_regs *regs = get_irq_regs();
333 
334 	if (!user_mode(regs) && cpumask_available(prof_cpu_mask) &&
335 	    cpumask_test_cpu(smp_processor_id(), prof_cpu_mask))
336 		profile_hit(type, (void *)profile_pc(regs));
337 }
338 
339 #ifdef CONFIG_PROC_FS
340 #include <linux/proc_fs.h>
341 #include <linux/seq_file.h>
342 #include <linux/uaccess.h>
343 
344 static int prof_cpu_mask_proc_show(struct seq_file *m, void *v)
345 {
346 	seq_printf(m, "%*pb\n", cpumask_pr_args(prof_cpu_mask));
347 	return 0;
348 }
349 
350 static int prof_cpu_mask_proc_open(struct inode *inode, struct file *file)
351 {
352 	return single_open(file, prof_cpu_mask_proc_show, NULL);
353 }
354 
355 static ssize_t prof_cpu_mask_proc_write(struct file *file,
356 	const char __user *buffer, size_t count, loff_t *pos)
357 {
358 	cpumask_var_t new_value;
359 	int err;
360 
361 	if (!zalloc_cpumask_var(&new_value, GFP_KERNEL))
362 		return -ENOMEM;
363 
364 	err = cpumask_parse_user(buffer, count, new_value);
365 	if (!err) {
366 		cpumask_copy(prof_cpu_mask, new_value);
367 		err = count;
368 	}
369 	free_cpumask_var(new_value);
370 	return err;
371 }
372 
373 static const struct proc_ops prof_cpu_mask_proc_ops = {
374 	.proc_open	= prof_cpu_mask_proc_open,
375 	.proc_read	= seq_read,
376 	.proc_lseek	= seq_lseek,
377 	.proc_release	= single_release,
378 	.proc_write	= prof_cpu_mask_proc_write,
379 };
380 
381 void create_prof_cpu_mask(void)
382 {
383 	/* create /proc/irq/prof_cpu_mask */
384 	proc_create("irq/prof_cpu_mask", 0600, NULL, &prof_cpu_mask_proc_ops);
385 }
386 
387 /*
388  * This function accesses profiling information. The returned data is
389  * binary: the sampling step and the actual contents of the profile
390  * buffer. Use of the program readprofile is recommended in order to
391  * get meaningful info out of these data.
392  */
393 static ssize_t
394 read_profile(struct file *file, char __user *buf, size_t count, loff_t *ppos)
395 {
396 	unsigned long p = *ppos;
397 	ssize_t read;
398 	char *pnt;
399 	unsigned long sample_step = 1UL << prof_shift;
400 
401 	profile_flip_buffers();
402 	if (p >= (prof_len+1)*sizeof(unsigned int))
403 		return 0;
404 	if (count > (prof_len+1)*sizeof(unsigned int) - p)
405 		count = (prof_len+1)*sizeof(unsigned int) - p;
406 	read = 0;
407 
408 	while (p < sizeof(unsigned int) && count > 0) {
409 		if (put_user(*((char *)(&sample_step)+p), buf))
410 			return -EFAULT;
411 		buf++; p++; count--; read++;
412 	}
413 	pnt = (char *)prof_buffer + p - sizeof(atomic_t);
414 	if (copy_to_user(buf, (void *)pnt, count))
415 		return -EFAULT;
416 	read += count;
417 	*ppos += read;
418 	return read;
419 }
420 
421 /*
422  * Writing to /proc/profile resets the counters
423  *
424  * Writing a 'profiling multiplier' value into it also re-sets the profiling
425  * interrupt frequency, on architectures that support this.
426  */
427 static ssize_t write_profile(struct file *file, const char __user *buf,
428 			     size_t count, loff_t *ppos)
429 {
430 #ifdef CONFIG_SMP
431 	extern int setup_profiling_timer(unsigned int multiplier);
432 
433 	if (count == sizeof(int)) {
434 		unsigned int multiplier;
435 
436 		if (copy_from_user(&multiplier, buf, sizeof(int)))
437 			return -EFAULT;
438 
439 		if (setup_profiling_timer(multiplier))
440 			return -EINVAL;
441 	}
442 #endif
443 	profile_discard_flip_buffers();
444 	memset(prof_buffer, 0, prof_len * sizeof(atomic_t));
445 	return count;
446 }
447 
448 static const struct proc_ops profile_proc_ops = {
449 	.proc_read	= read_profile,
450 	.proc_write	= write_profile,
451 	.proc_lseek	= default_llseek,
452 };
453 
454 int __ref create_proc_profile(void)
455 {
456 	struct proc_dir_entry *entry;
457 #ifdef CONFIG_SMP
458 	enum cpuhp_state online_state;
459 #endif
460 
461 	int err = 0;
462 
463 	if (!prof_on)
464 		return 0;
465 #ifdef CONFIG_SMP
466 	err = cpuhp_setup_state(CPUHP_PROFILE_PREPARE, "PROFILE_PREPARE",
467 				profile_prepare_cpu, profile_dead_cpu);
468 	if (err)
469 		return err;
470 
471 	err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "AP_PROFILE_ONLINE",
472 				profile_online_cpu, NULL);
473 	if (err < 0)
474 		goto err_state_prep;
475 	online_state = err;
476 	err = 0;
477 #endif
478 	entry = proc_create("profile", S_IWUSR | S_IRUGO,
479 			    NULL, &profile_proc_ops);
480 	if (!entry)
481 		goto err_state_onl;
482 	proc_set_size(entry, (1 + prof_len) * sizeof(atomic_t));
483 
484 	return err;
485 err_state_onl:
486 #ifdef CONFIG_SMP
487 	cpuhp_remove_state(online_state);
488 err_state_prep:
489 	cpuhp_remove_state(CPUHP_PROFILE_PREPARE);
490 #endif
491 	return err;
492 }
493 subsys_initcall(create_proc_profile);
494 #endif /* CONFIG_PROC_FS */
495