xref: /linux/kernel/profile.c (revision c537b994505099b7197e7d3125b942ecbcc51eb6)
1 /*
2  *  linux/kernel/profile.c
3  *  Simple profiling. Manages a direct-mapped profile hit count buffer,
4  *  with configurable resolution, support for restricting the cpus on
5  *  which profiling is done, and switching between cpu time and
6  *  schedule() calls via kernel command line parameters passed at boot.
7  *
8  *  Scheduler profiling support, Arjan van de Ven and Ingo Molnar,
9  *	Red Hat, July 2004
10  *  Consolidation of architecture support code for profiling,
11  *	William Irwin, Oracle, July 2004
12  *  Amortized hit count accounting via per-cpu open-addressed hashtables
13  *	to resolve timer interrupt livelocks, William Irwin, Oracle, 2004
14  */
15 
16 #include <linux/module.h>
17 #include <linux/profile.h>
18 #include <linux/bootmem.h>
19 #include <linux/notifier.h>
20 #include <linux/mm.h>
21 #include <linux/cpumask.h>
22 #include <linux/cpu.h>
23 #include <linux/profile.h>
24 #include <linux/highmem.h>
25 #include <linux/mutex.h>
26 #include <asm/sections.h>
27 #include <asm/semaphore.h>
28 #include <asm/irq_regs.h>
29 
30 struct profile_hit {
31 	u32 pc, hits;
32 };
33 #define PROFILE_GRPSHIFT	3
34 #define PROFILE_GRPSZ		(1 << PROFILE_GRPSHIFT)
35 #define NR_PROFILE_HIT		(PAGE_SIZE/sizeof(struct profile_hit))
36 #define NR_PROFILE_GRP		(NR_PROFILE_HIT/PROFILE_GRPSZ)
37 
38 /* Oprofile timer tick hook */
39 int (*timer_hook)(struct pt_regs *) __read_mostly;
40 
41 static atomic_t *prof_buffer;
42 static unsigned long prof_len, prof_shift;
43 
44 int prof_on __read_mostly;
45 EXPORT_SYMBOL_GPL(prof_on);
46 
47 static cpumask_t prof_cpu_mask = CPU_MASK_ALL;
48 #ifdef CONFIG_SMP
49 static DEFINE_PER_CPU(struct profile_hit *[2], cpu_profile_hits);
50 static DEFINE_PER_CPU(int, cpu_profile_flip);
51 static DEFINE_MUTEX(profile_flip_mutex);
52 #endif /* CONFIG_SMP */
53 
54 static int __init profile_setup(char * str)
55 {
56 	static char __initdata schedstr[] = "schedule";
57 	static char __initdata sleepstr[] = "sleep";
58 	static char __initdata kvmstr[] = "kvm";
59 	int par;
60 
61 	if (!strncmp(str, sleepstr, strlen(sleepstr))) {
62 		prof_on = SLEEP_PROFILING;
63 		if (str[strlen(sleepstr)] == ',')
64 			str += strlen(sleepstr) + 1;
65 		if (get_option(&str, &par))
66 			prof_shift = par;
67 		printk(KERN_INFO
68 			"kernel sleep profiling enabled (shift: %ld)\n",
69 			prof_shift);
70 	} else if (!strncmp(str, schedstr, strlen(schedstr))) {
71 		prof_on = SCHED_PROFILING;
72 		if (str[strlen(schedstr)] == ',')
73 			str += strlen(schedstr) + 1;
74 		if (get_option(&str, &par))
75 			prof_shift = par;
76 		printk(KERN_INFO
77 			"kernel schedule profiling enabled (shift: %ld)\n",
78 			prof_shift);
79 	} else if (!strncmp(str, kvmstr, strlen(kvmstr))) {
80 		prof_on = KVM_PROFILING;
81 		if (str[strlen(kvmstr)] == ',')
82 			str += strlen(kvmstr) + 1;
83 		if (get_option(&str, &par))
84 			prof_shift = par;
85 		printk(KERN_INFO
86 			"kernel KVM profiling enabled (shift: %ld)\n",
87 			prof_shift);
88 	} else if (get_option(&str, &par)) {
89 		prof_shift = par;
90 		prof_on = CPU_PROFILING;
91 		printk(KERN_INFO "kernel profiling enabled (shift: %ld)\n",
92 			prof_shift);
93 	}
94 	return 1;
95 }
96 __setup("profile=", profile_setup);
97 
98 
99 void __init profile_init(void)
100 {
101 	if (!prof_on)
102 		return;
103 
104 	/* only text is profiled */
105 	prof_len = (_etext - _stext) >> prof_shift;
106 	prof_buffer = alloc_bootmem(prof_len*sizeof(atomic_t));
107 }
108 
109 /* Profile event notifications */
110 
111 #ifdef CONFIG_PROFILING
112 
113 static BLOCKING_NOTIFIER_HEAD(task_exit_notifier);
114 static ATOMIC_NOTIFIER_HEAD(task_free_notifier);
115 static BLOCKING_NOTIFIER_HEAD(munmap_notifier);
116 
117 void profile_task_exit(struct task_struct * task)
118 {
119 	blocking_notifier_call_chain(&task_exit_notifier, 0, task);
120 }
121 
122 int profile_handoff_task(struct task_struct * task)
123 {
124 	int ret;
125 	ret = atomic_notifier_call_chain(&task_free_notifier, 0, task);
126 	return (ret == NOTIFY_OK) ? 1 : 0;
127 }
128 
129 void profile_munmap(unsigned long addr)
130 {
131 	blocking_notifier_call_chain(&munmap_notifier, 0, (void *)addr);
132 }
133 
134 int task_handoff_register(struct notifier_block * n)
135 {
136 	return atomic_notifier_chain_register(&task_free_notifier, n);
137 }
138 
139 int task_handoff_unregister(struct notifier_block * n)
140 {
141 	return atomic_notifier_chain_unregister(&task_free_notifier, n);
142 }
143 
144 int profile_event_register(enum profile_type type, struct notifier_block * n)
145 {
146 	int err = -EINVAL;
147 
148 	switch (type) {
149 		case PROFILE_TASK_EXIT:
150 			err = blocking_notifier_chain_register(
151 					&task_exit_notifier, n);
152 			break;
153 		case PROFILE_MUNMAP:
154 			err = blocking_notifier_chain_register(
155 					&munmap_notifier, n);
156 			break;
157 	}
158 
159 	return err;
160 }
161 
162 
163 int profile_event_unregister(enum profile_type type, struct notifier_block * n)
164 {
165 	int err = -EINVAL;
166 
167 	switch (type) {
168 		case PROFILE_TASK_EXIT:
169 			err = blocking_notifier_chain_unregister(
170 					&task_exit_notifier, n);
171 			break;
172 		case PROFILE_MUNMAP:
173 			err = blocking_notifier_chain_unregister(
174 					&munmap_notifier, n);
175 			break;
176 	}
177 
178 	return err;
179 }
180 
181 int register_timer_hook(int (*hook)(struct pt_regs *))
182 {
183 	if (timer_hook)
184 		return -EBUSY;
185 	timer_hook = hook;
186 	return 0;
187 }
188 
189 void unregister_timer_hook(int (*hook)(struct pt_regs *))
190 {
191 	WARN_ON(hook != timer_hook);
192 	timer_hook = NULL;
193 	/* make sure all CPUs see the NULL hook */
194 	synchronize_sched();  /* Allow ongoing interrupts to complete. */
195 }
196 
197 EXPORT_SYMBOL_GPL(register_timer_hook);
198 EXPORT_SYMBOL_GPL(unregister_timer_hook);
199 EXPORT_SYMBOL_GPL(task_handoff_register);
200 EXPORT_SYMBOL_GPL(task_handoff_unregister);
201 
202 #endif /* CONFIG_PROFILING */
203 
204 EXPORT_SYMBOL_GPL(profile_event_register);
205 EXPORT_SYMBOL_GPL(profile_event_unregister);
206 
207 #ifdef CONFIG_SMP
208 /*
209  * Each cpu has a pair of open-addressed hashtables for pending
210  * profile hits. read_profile() IPI's all cpus to request them
211  * to flip buffers and flushes their contents to prof_buffer itself.
212  * Flip requests are serialized by the profile_flip_mutex. The sole
213  * use of having a second hashtable is for avoiding cacheline
214  * contention that would otherwise happen during flushes of pending
215  * profile hits required for the accuracy of reported profile hits
216  * and so resurrect the interrupt livelock issue.
217  *
218  * The open-addressed hashtables are indexed by profile buffer slot
219  * and hold the number of pending hits to that profile buffer slot on
220  * a cpu in an entry. When the hashtable overflows, all pending hits
221  * are accounted to their corresponding profile buffer slots with
222  * atomic_add() and the hashtable emptied. As numerous pending hits
223  * may be accounted to a profile buffer slot in a hashtable entry,
224  * this amortizes a number of atomic profile buffer increments likely
225  * to be far larger than the number of entries in the hashtable,
226  * particularly given that the number of distinct profile buffer
227  * positions to which hits are accounted during short intervals (e.g.
228  * several seconds) is usually very small. Exclusion from buffer
229  * flipping is provided by interrupt disablement (note that for
230  * SCHED_PROFILING or SLEEP_PROFILING profile_hit() may be called from
231  * process context).
232  * The hash function is meant to be lightweight as opposed to strong,
233  * and was vaguely inspired by ppc64 firmware-supported inverted
234  * pagetable hash functions, but uses a full hashtable full of finite
235  * collision chains, not just pairs of them.
236  *
237  * -- wli
238  */
239 static void __profile_flip_buffers(void *unused)
240 {
241 	int cpu = smp_processor_id();
242 
243 	per_cpu(cpu_profile_flip, cpu) = !per_cpu(cpu_profile_flip, cpu);
244 }
245 
246 static void profile_flip_buffers(void)
247 {
248 	int i, j, cpu;
249 
250 	mutex_lock(&profile_flip_mutex);
251 	j = per_cpu(cpu_profile_flip, get_cpu());
252 	put_cpu();
253 	on_each_cpu(__profile_flip_buffers, NULL, 0, 1);
254 	for_each_online_cpu(cpu) {
255 		struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[j];
256 		for (i = 0; i < NR_PROFILE_HIT; ++i) {
257 			if (!hits[i].hits) {
258 				if (hits[i].pc)
259 					hits[i].pc = 0;
260 				continue;
261 			}
262 			atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
263 			hits[i].hits = hits[i].pc = 0;
264 		}
265 	}
266 	mutex_unlock(&profile_flip_mutex);
267 }
268 
269 static void profile_discard_flip_buffers(void)
270 {
271 	int i, cpu;
272 
273 	mutex_lock(&profile_flip_mutex);
274 	i = per_cpu(cpu_profile_flip, get_cpu());
275 	put_cpu();
276 	on_each_cpu(__profile_flip_buffers, NULL, 0, 1);
277 	for_each_online_cpu(cpu) {
278 		struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[i];
279 		memset(hits, 0, NR_PROFILE_HIT*sizeof(struct profile_hit));
280 	}
281 	mutex_unlock(&profile_flip_mutex);
282 }
283 
284 void profile_hits(int type, void *__pc, unsigned int nr_hits)
285 {
286 	unsigned long primary, secondary, flags, pc = (unsigned long)__pc;
287 	int i, j, cpu;
288 	struct profile_hit *hits;
289 
290 	if (prof_on != type || !prof_buffer)
291 		return;
292 	pc = min((pc - (unsigned long)_stext) >> prof_shift, prof_len - 1);
293 	i = primary = (pc & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
294 	secondary = (~(pc << 1) & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
295 	cpu = get_cpu();
296 	hits = per_cpu(cpu_profile_hits, cpu)[per_cpu(cpu_profile_flip, cpu)];
297 	if (!hits) {
298 		put_cpu();
299 		return;
300 	}
301 	/*
302 	 * We buffer the global profiler buffer into a per-CPU
303 	 * queue and thus reduce the number of global (and possibly
304 	 * NUMA-alien) accesses. The write-queue is self-coalescing:
305 	 */
306 	local_irq_save(flags);
307 	do {
308 		for (j = 0; j < PROFILE_GRPSZ; ++j) {
309 			if (hits[i + j].pc == pc) {
310 				hits[i + j].hits += nr_hits;
311 				goto out;
312 			} else if (!hits[i + j].hits) {
313 				hits[i + j].pc = pc;
314 				hits[i + j].hits = nr_hits;
315 				goto out;
316 			}
317 		}
318 		i = (i + secondary) & (NR_PROFILE_HIT - 1);
319 	} while (i != primary);
320 
321 	/*
322 	 * Add the current hit(s) and flush the write-queue out
323 	 * to the global buffer:
324 	 */
325 	atomic_add(nr_hits, &prof_buffer[pc]);
326 	for (i = 0; i < NR_PROFILE_HIT; ++i) {
327 		atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
328 		hits[i].pc = hits[i].hits = 0;
329 	}
330 out:
331 	local_irq_restore(flags);
332 	put_cpu();
333 }
334 
335 static int __devinit profile_cpu_callback(struct notifier_block *info,
336 					unsigned long action, void *__cpu)
337 {
338 	int node, cpu = (unsigned long)__cpu;
339 	struct page *page;
340 
341 	switch (action) {
342 	case CPU_UP_PREPARE:
343 		node = cpu_to_node(cpu);
344 		per_cpu(cpu_profile_flip, cpu) = 0;
345 		if (!per_cpu(cpu_profile_hits, cpu)[1]) {
346 			page = alloc_pages_node(node,
347 					GFP_KERNEL | __GFP_ZERO | GFP_THISNODE,
348 					0);
349 			if (!page)
350 				return NOTIFY_BAD;
351 			per_cpu(cpu_profile_hits, cpu)[1] = page_address(page);
352 		}
353 		if (!per_cpu(cpu_profile_hits, cpu)[0]) {
354 			page = alloc_pages_node(node,
355 					GFP_KERNEL | __GFP_ZERO | GFP_THISNODE,
356 					0);
357 			if (!page)
358 				goto out_free;
359 			per_cpu(cpu_profile_hits, cpu)[0] = page_address(page);
360 		}
361 		break;
362 	out_free:
363 		page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
364 		per_cpu(cpu_profile_hits, cpu)[1] = NULL;
365 		__free_page(page);
366 		return NOTIFY_BAD;
367 	case CPU_ONLINE:
368 		cpu_set(cpu, prof_cpu_mask);
369 		break;
370 	case CPU_UP_CANCELED:
371 	case CPU_DEAD:
372 		cpu_clear(cpu, prof_cpu_mask);
373 		if (per_cpu(cpu_profile_hits, cpu)[0]) {
374 			page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]);
375 			per_cpu(cpu_profile_hits, cpu)[0] = NULL;
376 			__free_page(page);
377 		}
378 		if (per_cpu(cpu_profile_hits, cpu)[1]) {
379 			page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
380 			per_cpu(cpu_profile_hits, cpu)[1] = NULL;
381 			__free_page(page);
382 		}
383 		break;
384 	}
385 	return NOTIFY_OK;
386 }
387 #else /* !CONFIG_SMP */
388 #define profile_flip_buffers()		do { } while (0)
389 #define profile_discard_flip_buffers()	do { } while (0)
390 #define profile_cpu_callback		NULL
391 
392 void profile_hits(int type, void *__pc, unsigned int nr_hits)
393 {
394 	unsigned long pc;
395 
396 	if (prof_on != type || !prof_buffer)
397 		return;
398 	pc = ((unsigned long)__pc - (unsigned long)_stext) >> prof_shift;
399 	atomic_add(nr_hits, &prof_buffer[min(pc, prof_len - 1)]);
400 }
401 #endif /* !CONFIG_SMP */
402 
403 EXPORT_SYMBOL_GPL(profile_hits);
404 
405 void profile_tick(int type)
406 {
407 	struct pt_regs *regs = get_irq_regs();
408 
409 	if (type == CPU_PROFILING && timer_hook)
410 		timer_hook(regs);
411 	if (!user_mode(regs) && cpu_isset(smp_processor_id(), prof_cpu_mask))
412 		profile_hit(type, (void *)profile_pc(regs));
413 }
414 
415 #ifdef CONFIG_PROC_FS
416 #include <linux/proc_fs.h>
417 #include <asm/uaccess.h>
418 #include <asm/ptrace.h>
419 
420 static int prof_cpu_mask_read_proc (char *page, char **start, off_t off,
421 			int count, int *eof, void *data)
422 {
423 	int len = cpumask_scnprintf(page, count, *(cpumask_t *)data);
424 	if (count - len < 2)
425 		return -EINVAL;
426 	len += sprintf(page + len, "\n");
427 	return len;
428 }
429 
430 static int prof_cpu_mask_write_proc (struct file *file, const char __user *buffer,
431 					unsigned long count, void *data)
432 {
433 	cpumask_t *mask = (cpumask_t *)data;
434 	unsigned long full_count = count, err;
435 	cpumask_t new_value;
436 
437 	err = cpumask_parse_user(buffer, count, new_value);
438 	if (err)
439 		return err;
440 
441 	*mask = new_value;
442 	return full_count;
443 }
444 
445 void create_prof_cpu_mask(struct proc_dir_entry *root_irq_dir)
446 {
447 	struct proc_dir_entry *entry;
448 
449 	/* create /proc/irq/prof_cpu_mask */
450 	if (!(entry = create_proc_entry("prof_cpu_mask", 0600, root_irq_dir)))
451 		return;
452 	entry->data = (void *)&prof_cpu_mask;
453 	entry->read_proc = prof_cpu_mask_read_proc;
454 	entry->write_proc = prof_cpu_mask_write_proc;
455 }
456 
457 /*
458  * This function accesses profiling information. The returned data is
459  * binary: the sampling step and the actual contents of the profile
460  * buffer. Use of the program readprofile is recommended in order to
461  * get meaningful info out of these data.
462  */
463 static ssize_t
464 read_profile(struct file *file, char __user *buf, size_t count, loff_t *ppos)
465 {
466 	unsigned long p = *ppos;
467 	ssize_t read;
468 	char * pnt;
469 	unsigned int sample_step = 1 << prof_shift;
470 
471 	profile_flip_buffers();
472 	if (p >= (prof_len+1)*sizeof(unsigned int))
473 		return 0;
474 	if (count > (prof_len+1)*sizeof(unsigned int) - p)
475 		count = (prof_len+1)*sizeof(unsigned int) - p;
476 	read = 0;
477 
478 	while (p < sizeof(unsigned int) && count > 0) {
479 		if (put_user(*((char *)(&sample_step)+p),buf))
480 			return -EFAULT;
481 		buf++; p++; count--; read++;
482 	}
483 	pnt = (char *)prof_buffer + p - sizeof(atomic_t);
484 	if (copy_to_user(buf,(void *)pnt,count))
485 		return -EFAULT;
486 	read += count;
487 	*ppos += read;
488 	return read;
489 }
490 
491 /*
492  * Writing to /proc/profile resets the counters
493  *
494  * Writing a 'profiling multiplier' value into it also re-sets the profiling
495  * interrupt frequency, on architectures that support this.
496  */
497 static ssize_t write_profile(struct file *file, const char __user *buf,
498 			     size_t count, loff_t *ppos)
499 {
500 #ifdef CONFIG_SMP
501 	extern int setup_profiling_timer (unsigned int multiplier);
502 
503 	if (count == sizeof(int)) {
504 		unsigned int multiplier;
505 
506 		if (copy_from_user(&multiplier, buf, sizeof(int)))
507 			return -EFAULT;
508 
509 		if (setup_profiling_timer(multiplier))
510 			return -EINVAL;
511 	}
512 #endif
513 	profile_discard_flip_buffers();
514 	memset(prof_buffer, 0, prof_len * sizeof(atomic_t));
515 	return count;
516 }
517 
518 static const struct file_operations proc_profile_operations = {
519 	.read		= read_profile,
520 	.write		= write_profile,
521 };
522 
523 #ifdef CONFIG_SMP
524 static void __init profile_nop(void *unused)
525 {
526 }
527 
528 static int __init create_hash_tables(void)
529 {
530 	int cpu;
531 
532 	for_each_online_cpu(cpu) {
533 		int node = cpu_to_node(cpu);
534 		struct page *page;
535 
536 		page = alloc_pages_node(node,
537 				GFP_KERNEL | __GFP_ZERO | GFP_THISNODE,
538 				0);
539 		if (!page)
540 			goto out_cleanup;
541 		per_cpu(cpu_profile_hits, cpu)[1]
542 				= (struct profile_hit *)page_address(page);
543 		page = alloc_pages_node(node,
544 				GFP_KERNEL | __GFP_ZERO | GFP_THISNODE,
545 				0);
546 		if (!page)
547 			goto out_cleanup;
548 		per_cpu(cpu_profile_hits, cpu)[0]
549 				= (struct profile_hit *)page_address(page);
550 	}
551 	return 0;
552 out_cleanup:
553 	prof_on = 0;
554 	smp_mb();
555 	on_each_cpu(profile_nop, NULL, 0, 1);
556 	for_each_online_cpu(cpu) {
557 		struct page *page;
558 
559 		if (per_cpu(cpu_profile_hits, cpu)[0]) {
560 			page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]);
561 			per_cpu(cpu_profile_hits, cpu)[0] = NULL;
562 			__free_page(page);
563 		}
564 		if (per_cpu(cpu_profile_hits, cpu)[1]) {
565 			page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
566 			per_cpu(cpu_profile_hits, cpu)[1] = NULL;
567 			__free_page(page);
568 		}
569 	}
570 	return -1;
571 }
572 #else
573 #define create_hash_tables()			({ 0; })
574 #endif
575 
576 static int __init create_proc_profile(void)
577 {
578 	struct proc_dir_entry *entry;
579 
580 	if (!prof_on)
581 		return 0;
582 	if (create_hash_tables())
583 		return -1;
584 	if (!(entry = create_proc_entry("profile", S_IWUSR | S_IRUGO, NULL)))
585 		return 0;
586 	entry->proc_fops = &proc_profile_operations;
587 	entry->size = (1+prof_len) * sizeof(atomic_t);
588 	hotcpu_notifier(profile_cpu_callback, 0);
589 	return 0;
590 }
591 module_init(create_proc_profile);
592 #endif /* CONFIG_PROC_FS */
593