xref: /linux/kernel/profile.c (revision ac6a0cf6716bb46813d0161024c66c2af66e53d1)
1 /*
2  *  linux/kernel/profile.c
3  *  Simple profiling. Manages a direct-mapped profile hit count buffer,
4  *  with configurable resolution, support for restricting the cpus on
5  *  which profiling is done, and switching between cpu time and
6  *  schedule() calls via kernel command line parameters passed at boot.
7  *
8  *  Scheduler profiling support, Arjan van de Ven and Ingo Molnar,
9  *	Red Hat, July 2004
10  *  Consolidation of architecture support code for profiling,
11  *	William Irwin, Oracle, July 2004
12  *  Amortized hit count accounting via per-cpu open-addressed hashtables
13  *	to resolve timer interrupt livelocks, William Irwin, Oracle, 2004
14  */
15 
16 #include <linux/module.h>
17 #include <linux/profile.h>
18 #include <linux/bootmem.h>
19 #include <linux/notifier.h>
20 #include <linux/mm.h>
21 #include <linux/cpumask.h>
22 #include <linux/cpu.h>
23 #include <linux/highmem.h>
24 #include <linux/mutex.h>
25 #include <linux/slab.h>
26 #include <linux/vmalloc.h>
27 #include <asm/sections.h>
28 #include <asm/irq_regs.h>
29 #include <asm/ptrace.h>
30 
31 struct profile_hit {
32 	u32 pc, hits;
33 };
34 #define PROFILE_GRPSHIFT	3
35 #define PROFILE_GRPSZ		(1 << PROFILE_GRPSHIFT)
36 #define NR_PROFILE_HIT		(PAGE_SIZE/sizeof(struct profile_hit))
37 #define NR_PROFILE_GRP		(NR_PROFILE_HIT/PROFILE_GRPSZ)
38 
39 /* Oprofile timer tick hook */
40 static int (*timer_hook)(struct pt_regs *) __read_mostly;
41 
42 static atomic_t *prof_buffer;
43 static unsigned long prof_len, prof_shift;
44 
45 int prof_on __read_mostly;
46 EXPORT_SYMBOL_GPL(prof_on);
47 
48 static cpumask_var_t prof_cpu_mask;
49 #ifdef CONFIG_SMP
50 static DEFINE_PER_CPU(struct profile_hit *[2], cpu_profile_hits);
51 static DEFINE_PER_CPU(int, cpu_profile_flip);
52 static DEFINE_MUTEX(profile_flip_mutex);
53 #endif /* CONFIG_SMP */
54 
55 int profile_setup(char *str)
56 {
57 	static char schedstr[] = "schedule";
58 	static char sleepstr[] = "sleep";
59 	static char kvmstr[] = "kvm";
60 	int par;
61 
62 	if (!strncmp(str, sleepstr, strlen(sleepstr))) {
63 #ifdef CONFIG_SCHEDSTATS
64 		prof_on = SLEEP_PROFILING;
65 		if (str[strlen(sleepstr)] == ',')
66 			str += strlen(sleepstr) + 1;
67 		if (get_option(&str, &par))
68 			prof_shift = par;
69 		printk(KERN_INFO
70 			"kernel sleep profiling enabled (shift: %ld)\n",
71 			prof_shift);
72 #else
73 		printk(KERN_WARNING
74 			"kernel sleep profiling requires CONFIG_SCHEDSTATS\n");
75 #endif /* CONFIG_SCHEDSTATS */
76 	} else if (!strncmp(str, schedstr, strlen(schedstr))) {
77 		prof_on = SCHED_PROFILING;
78 		if (str[strlen(schedstr)] == ',')
79 			str += strlen(schedstr) + 1;
80 		if (get_option(&str, &par))
81 			prof_shift = par;
82 		printk(KERN_INFO
83 			"kernel schedule profiling enabled (shift: %ld)\n",
84 			prof_shift);
85 	} else if (!strncmp(str, kvmstr, strlen(kvmstr))) {
86 		prof_on = KVM_PROFILING;
87 		if (str[strlen(kvmstr)] == ',')
88 			str += strlen(kvmstr) + 1;
89 		if (get_option(&str, &par))
90 			prof_shift = par;
91 		printk(KERN_INFO
92 			"kernel KVM profiling enabled (shift: %ld)\n",
93 			prof_shift);
94 	} else if (get_option(&str, &par)) {
95 		prof_shift = par;
96 		prof_on = CPU_PROFILING;
97 		printk(KERN_INFO "kernel profiling enabled (shift: %ld)\n",
98 			prof_shift);
99 	}
100 	return 1;
101 }
102 __setup("profile=", profile_setup);
103 
104 
105 int __ref profile_init(void)
106 {
107 	int buffer_bytes;
108 	if (!prof_on)
109 		return 0;
110 
111 	/* only text is profiled */
112 	prof_len = (_etext - _stext) >> prof_shift;
113 	buffer_bytes = prof_len*sizeof(atomic_t);
114 
115 	if (!alloc_cpumask_var(&prof_cpu_mask, GFP_KERNEL))
116 		return -ENOMEM;
117 
118 	cpumask_copy(prof_cpu_mask, cpu_possible_mask);
119 
120 	prof_buffer = kzalloc(buffer_bytes, GFP_KERNEL|__GFP_NOWARN);
121 	if (prof_buffer)
122 		return 0;
123 
124 	prof_buffer = alloc_pages_exact(buffer_bytes,
125 					GFP_KERNEL|__GFP_ZERO|__GFP_NOWARN);
126 	if (prof_buffer)
127 		return 0;
128 
129 	prof_buffer = vmalloc(buffer_bytes);
130 	if (prof_buffer)
131 		return 0;
132 
133 	free_cpumask_var(prof_cpu_mask);
134 	return -ENOMEM;
135 }
136 
137 /* Profile event notifications */
138 
139 static BLOCKING_NOTIFIER_HEAD(task_exit_notifier);
140 static ATOMIC_NOTIFIER_HEAD(task_free_notifier);
141 static BLOCKING_NOTIFIER_HEAD(munmap_notifier);
142 
143 void profile_task_exit(struct task_struct *task)
144 {
145 	blocking_notifier_call_chain(&task_exit_notifier, 0, task);
146 }
147 
148 int profile_handoff_task(struct task_struct *task)
149 {
150 	int ret;
151 	ret = atomic_notifier_call_chain(&task_free_notifier, 0, task);
152 	return (ret == NOTIFY_OK) ? 1 : 0;
153 }
154 
155 void profile_munmap(unsigned long addr)
156 {
157 	blocking_notifier_call_chain(&munmap_notifier, 0, (void *)addr);
158 }
159 
160 int task_handoff_register(struct notifier_block *n)
161 {
162 	return atomic_notifier_chain_register(&task_free_notifier, n);
163 }
164 EXPORT_SYMBOL_GPL(task_handoff_register);
165 
166 int task_handoff_unregister(struct notifier_block *n)
167 {
168 	return atomic_notifier_chain_unregister(&task_free_notifier, n);
169 }
170 EXPORT_SYMBOL_GPL(task_handoff_unregister);
171 
172 int profile_event_register(enum profile_type type, struct notifier_block *n)
173 {
174 	int err = -EINVAL;
175 
176 	switch (type) {
177 	case PROFILE_TASK_EXIT:
178 		err = blocking_notifier_chain_register(
179 				&task_exit_notifier, n);
180 		break;
181 	case PROFILE_MUNMAP:
182 		err = blocking_notifier_chain_register(
183 				&munmap_notifier, n);
184 		break;
185 	}
186 
187 	return err;
188 }
189 EXPORT_SYMBOL_GPL(profile_event_register);
190 
191 int profile_event_unregister(enum profile_type type, struct notifier_block *n)
192 {
193 	int err = -EINVAL;
194 
195 	switch (type) {
196 	case PROFILE_TASK_EXIT:
197 		err = blocking_notifier_chain_unregister(
198 				&task_exit_notifier, n);
199 		break;
200 	case PROFILE_MUNMAP:
201 		err = blocking_notifier_chain_unregister(
202 				&munmap_notifier, n);
203 		break;
204 	}
205 
206 	return err;
207 }
208 EXPORT_SYMBOL_GPL(profile_event_unregister);
209 
210 int register_timer_hook(int (*hook)(struct pt_regs *))
211 {
212 	if (timer_hook)
213 		return -EBUSY;
214 	timer_hook = hook;
215 	return 0;
216 }
217 EXPORT_SYMBOL_GPL(register_timer_hook);
218 
219 void unregister_timer_hook(int (*hook)(struct pt_regs *))
220 {
221 	WARN_ON(hook != timer_hook);
222 	timer_hook = NULL;
223 	/* make sure all CPUs see the NULL hook */
224 	synchronize_sched();  /* Allow ongoing interrupts to complete. */
225 }
226 EXPORT_SYMBOL_GPL(unregister_timer_hook);
227 
228 
229 #ifdef CONFIG_SMP
230 /*
231  * Each cpu has a pair of open-addressed hashtables for pending
232  * profile hits. read_profile() IPI's all cpus to request them
233  * to flip buffers and flushes their contents to prof_buffer itself.
234  * Flip requests are serialized by the profile_flip_mutex. The sole
235  * use of having a second hashtable is for avoiding cacheline
236  * contention that would otherwise happen during flushes of pending
237  * profile hits required for the accuracy of reported profile hits
238  * and so resurrect the interrupt livelock issue.
239  *
240  * The open-addressed hashtables are indexed by profile buffer slot
241  * and hold the number of pending hits to that profile buffer slot on
242  * a cpu in an entry. When the hashtable overflows, all pending hits
243  * are accounted to their corresponding profile buffer slots with
244  * atomic_add() and the hashtable emptied. As numerous pending hits
245  * may be accounted to a profile buffer slot in a hashtable entry,
246  * this amortizes a number of atomic profile buffer increments likely
247  * to be far larger than the number of entries in the hashtable,
248  * particularly given that the number of distinct profile buffer
249  * positions to which hits are accounted during short intervals (e.g.
250  * several seconds) is usually very small. Exclusion from buffer
251  * flipping is provided by interrupt disablement (note that for
252  * SCHED_PROFILING or SLEEP_PROFILING profile_hit() may be called from
253  * process context).
254  * The hash function is meant to be lightweight as opposed to strong,
255  * and was vaguely inspired by ppc64 firmware-supported inverted
256  * pagetable hash functions, but uses a full hashtable full of finite
257  * collision chains, not just pairs of them.
258  *
259  * -- wli
260  */
261 static void __profile_flip_buffers(void *unused)
262 {
263 	int cpu = smp_processor_id();
264 
265 	per_cpu(cpu_profile_flip, cpu) = !per_cpu(cpu_profile_flip, cpu);
266 }
267 
268 static void profile_flip_buffers(void)
269 {
270 	int i, j, cpu;
271 
272 	mutex_lock(&profile_flip_mutex);
273 	j = per_cpu(cpu_profile_flip, get_cpu());
274 	put_cpu();
275 	on_each_cpu(__profile_flip_buffers, NULL, 1);
276 	for_each_online_cpu(cpu) {
277 		struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[j];
278 		for (i = 0; i < NR_PROFILE_HIT; ++i) {
279 			if (!hits[i].hits) {
280 				if (hits[i].pc)
281 					hits[i].pc = 0;
282 				continue;
283 			}
284 			atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
285 			hits[i].hits = hits[i].pc = 0;
286 		}
287 	}
288 	mutex_unlock(&profile_flip_mutex);
289 }
290 
291 static void profile_discard_flip_buffers(void)
292 {
293 	int i, cpu;
294 
295 	mutex_lock(&profile_flip_mutex);
296 	i = per_cpu(cpu_profile_flip, get_cpu());
297 	put_cpu();
298 	on_each_cpu(__profile_flip_buffers, NULL, 1);
299 	for_each_online_cpu(cpu) {
300 		struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[i];
301 		memset(hits, 0, NR_PROFILE_HIT*sizeof(struct profile_hit));
302 	}
303 	mutex_unlock(&profile_flip_mutex);
304 }
305 
306 void profile_hits(int type, void *__pc, unsigned int nr_hits)
307 {
308 	unsigned long primary, secondary, flags, pc = (unsigned long)__pc;
309 	int i, j, cpu;
310 	struct profile_hit *hits;
311 
312 	if (prof_on != type || !prof_buffer)
313 		return;
314 	pc = min((pc - (unsigned long)_stext) >> prof_shift, prof_len - 1);
315 	i = primary = (pc & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
316 	secondary = (~(pc << 1) & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
317 	cpu = get_cpu();
318 	hits = per_cpu(cpu_profile_hits, cpu)[per_cpu(cpu_profile_flip, cpu)];
319 	if (!hits) {
320 		put_cpu();
321 		return;
322 	}
323 	/*
324 	 * We buffer the global profiler buffer into a per-CPU
325 	 * queue and thus reduce the number of global (and possibly
326 	 * NUMA-alien) accesses. The write-queue is self-coalescing:
327 	 */
328 	local_irq_save(flags);
329 	do {
330 		for (j = 0; j < PROFILE_GRPSZ; ++j) {
331 			if (hits[i + j].pc == pc) {
332 				hits[i + j].hits += nr_hits;
333 				goto out;
334 			} else if (!hits[i + j].hits) {
335 				hits[i + j].pc = pc;
336 				hits[i + j].hits = nr_hits;
337 				goto out;
338 			}
339 		}
340 		i = (i + secondary) & (NR_PROFILE_HIT - 1);
341 	} while (i != primary);
342 
343 	/*
344 	 * Add the current hit(s) and flush the write-queue out
345 	 * to the global buffer:
346 	 */
347 	atomic_add(nr_hits, &prof_buffer[pc]);
348 	for (i = 0; i < NR_PROFILE_HIT; ++i) {
349 		atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
350 		hits[i].pc = hits[i].hits = 0;
351 	}
352 out:
353 	local_irq_restore(flags);
354 	put_cpu();
355 }
356 
357 static int __cpuinit profile_cpu_callback(struct notifier_block *info,
358 					unsigned long action, void *__cpu)
359 {
360 	int node, cpu = (unsigned long)__cpu;
361 	struct page *page;
362 
363 	switch (action) {
364 	case CPU_UP_PREPARE:
365 	case CPU_UP_PREPARE_FROZEN:
366 		node = cpu_to_node(cpu);
367 		per_cpu(cpu_profile_flip, cpu) = 0;
368 		if (!per_cpu(cpu_profile_hits, cpu)[1]) {
369 			page = alloc_pages_exact_node(node,
370 					GFP_KERNEL | __GFP_ZERO,
371 					0);
372 			if (!page)
373 				return NOTIFY_BAD;
374 			per_cpu(cpu_profile_hits, cpu)[1] = page_address(page);
375 		}
376 		if (!per_cpu(cpu_profile_hits, cpu)[0]) {
377 			page = alloc_pages_exact_node(node,
378 					GFP_KERNEL | __GFP_ZERO,
379 					0);
380 			if (!page)
381 				goto out_free;
382 			per_cpu(cpu_profile_hits, cpu)[0] = page_address(page);
383 		}
384 		break;
385 out_free:
386 		page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
387 		per_cpu(cpu_profile_hits, cpu)[1] = NULL;
388 		__free_page(page);
389 		return NOTIFY_BAD;
390 	case CPU_ONLINE:
391 	case CPU_ONLINE_FROZEN:
392 		if (prof_cpu_mask != NULL)
393 			cpumask_set_cpu(cpu, prof_cpu_mask);
394 		break;
395 	case CPU_UP_CANCELED:
396 	case CPU_UP_CANCELED_FROZEN:
397 	case CPU_DEAD:
398 	case CPU_DEAD_FROZEN:
399 		if (prof_cpu_mask != NULL)
400 			cpumask_clear_cpu(cpu, prof_cpu_mask);
401 		if (per_cpu(cpu_profile_hits, cpu)[0]) {
402 			page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]);
403 			per_cpu(cpu_profile_hits, cpu)[0] = NULL;
404 			__free_page(page);
405 		}
406 		if (per_cpu(cpu_profile_hits, cpu)[1]) {
407 			page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
408 			per_cpu(cpu_profile_hits, cpu)[1] = NULL;
409 			__free_page(page);
410 		}
411 		break;
412 	}
413 	return NOTIFY_OK;
414 }
415 #else /* !CONFIG_SMP */
416 #define profile_flip_buffers()		do { } while (0)
417 #define profile_discard_flip_buffers()	do { } while (0)
418 #define profile_cpu_callback		NULL
419 
420 void profile_hits(int type, void *__pc, unsigned int nr_hits)
421 {
422 	unsigned long pc;
423 
424 	if (prof_on != type || !prof_buffer)
425 		return;
426 	pc = ((unsigned long)__pc - (unsigned long)_stext) >> prof_shift;
427 	atomic_add(nr_hits, &prof_buffer[min(pc, prof_len - 1)]);
428 }
429 #endif /* !CONFIG_SMP */
430 EXPORT_SYMBOL_GPL(profile_hits);
431 
432 void profile_tick(int type)
433 {
434 	struct pt_regs *regs = get_irq_regs();
435 
436 	if (type == CPU_PROFILING && timer_hook)
437 		timer_hook(regs);
438 	if (!user_mode(regs) && prof_cpu_mask != NULL &&
439 	    cpumask_test_cpu(smp_processor_id(), prof_cpu_mask))
440 		profile_hit(type, (void *)profile_pc(regs));
441 }
442 
443 #ifdef CONFIG_PROC_FS
444 #include <linux/proc_fs.h>
445 #include <asm/uaccess.h>
446 
447 static int prof_cpu_mask_read_proc(char *page, char **start, off_t off,
448 			int count, int *eof, void *data)
449 {
450 	int len = cpumask_scnprintf(page, count, data);
451 	if (count - len < 2)
452 		return -EINVAL;
453 	len += sprintf(page + len, "\n");
454 	return len;
455 }
456 
457 static int prof_cpu_mask_write_proc(struct file *file,
458 	const char __user *buffer,  unsigned long count, void *data)
459 {
460 	struct cpumask *mask = data;
461 	unsigned long full_count = count, err;
462 	cpumask_var_t new_value;
463 
464 	if (!alloc_cpumask_var(&new_value, GFP_KERNEL))
465 		return -ENOMEM;
466 
467 	err = cpumask_parse_user(buffer, count, new_value);
468 	if (!err) {
469 		cpumask_copy(mask, new_value);
470 		err = full_count;
471 	}
472 	free_cpumask_var(new_value);
473 	return err;
474 }
475 
476 void create_prof_cpu_mask(struct proc_dir_entry *root_irq_dir)
477 {
478 	struct proc_dir_entry *entry;
479 
480 	/* create /proc/irq/prof_cpu_mask */
481 	entry = create_proc_entry("prof_cpu_mask", 0600, root_irq_dir);
482 	if (!entry)
483 		return;
484 	entry->data = prof_cpu_mask;
485 	entry->read_proc = prof_cpu_mask_read_proc;
486 	entry->write_proc = prof_cpu_mask_write_proc;
487 }
488 
489 /*
490  * This function accesses profiling information. The returned data is
491  * binary: the sampling step and the actual contents of the profile
492  * buffer. Use of the program readprofile is recommended in order to
493  * get meaningful info out of these data.
494  */
495 static ssize_t
496 read_profile(struct file *file, char __user *buf, size_t count, loff_t *ppos)
497 {
498 	unsigned long p = *ppos;
499 	ssize_t read;
500 	char *pnt;
501 	unsigned int sample_step = 1 << prof_shift;
502 
503 	profile_flip_buffers();
504 	if (p >= (prof_len+1)*sizeof(unsigned int))
505 		return 0;
506 	if (count > (prof_len+1)*sizeof(unsigned int) - p)
507 		count = (prof_len+1)*sizeof(unsigned int) - p;
508 	read = 0;
509 
510 	while (p < sizeof(unsigned int) && count > 0) {
511 		if (put_user(*((char *)(&sample_step)+p), buf))
512 			return -EFAULT;
513 		buf++; p++; count--; read++;
514 	}
515 	pnt = (char *)prof_buffer + p - sizeof(atomic_t);
516 	if (copy_to_user(buf, (void *)pnt, count))
517 		return -EFAULT;
518 	read += count;
519 	*ppos += read;
520 	return read;
521 }
522 
523 /*
524  * Writing to /proc/profile resets the counters
525  *
526  * Writing a 'profiling multiplier' value into it also re-sets the profiling
527  * interrupt frequency, on architectures that support this.
528  */
529 static ssize_t write_profile(struct file *file, const char __user *buf,
530 			     size_t count, loff_t *ppos)
531 {
532 #ifdef CONFIG_SMP
533 	extern int setup_profiling_timer(unsigned int multiplier);
534 
535 	if (count == sizeof(int)) {
536 		unsigned int multiplier;
537 
538 		if (copy_from_user(&multiplier, buf, sizeof(int)))
539 			return -EFAULT;
540 
541 		if (setup_profiling_timer(multiplier))
542 			return -EINVAL;
543 	}
544 #endif
545 	profile_discard_flip_buffers();
546 	memset(prof_buffer, 0, prof_len * sizeof(atomic_t));
547 	return count;
548 }
549 
550 static const struct file_operations proc_profile_operations = {
551 	.read		= read_profile,
552 	.write		= write_profile,
553 };
554 
555 #ifdef CONFIG_SMP
556 static void profile_nop(void *unused)
557 {
558 }
559 
560 static int create_hash_tables(void)
561 {
562 	int cpu;
563 
564 	for_each_online_cpu(cpu) {
565 		int node = cpu_to_node(cpu);
566 		struct page *page;
567 
568 		page = alloc_pages_exact_node(node,
569 				GFP_KERNEL | __GFP_ZERO | GFP_THISNODE,
570 				0);
571 		if (!page)
572 			goto out_cleanup;
573 		per_cpu(cpu_profile_hits, cpu)[1]
574 				= (struct profile_hit *)page_address(page);
575 		page = alloc_pages_exact_node(node,
576 				GFP_KERNEL | __GFP_ZERO | GFP_THISNODE,
577 				0);
578 		if (!page)
579 			goto out_cleanup;
580 		per_cpu(cpu_profile_hits, cpu)[0]
581 				= (struct profile_hit *)page_address(page);
582 	}
583 	return 0;
584 out_cleanup:
585 	prof_on = 0;
586 	smp_mb();
587 	on_each_cpu(profile_nop, NULL, 1);
588 	for_each_online_cpu(cpu) {
589 		struct page *page;
590 
591 		if (per_cpu(cpu_profile_hits, cpu)[0]) {
592 			page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]);
593 			per_cpu(cpu_profile_hits, cpu)[0] = NULL;
594 			__free_page(page);
595 		}
596 		if (per_cpu(cpu_profile_hits, cpu)[1]) {
597 			page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
598 			per_cpu(cpu_profile_hits, cpu)[1] = NULL;
599 			__free_page(page);
600 		}
601 	}
602 	return -1;
603 }
604 #else
605 #define create_hash_tables()			({ 0; })
606 #endif
607 
608 int __ref create_proc_profile(void) /* false positive from hotcpu_notifier */
609 {
610 	struct proc_dir_entry *entry;
611 
612 	if (!prof_on)
613 		return 0;
614 	if (create_hash_tables())
615 		return -ENOMEM;
616 	entry = proc_create("profile", S_IWUSR | S_IRUGO,
617 			    NULL, &proc_profile_operations);
618 	if (!entry)
619 		return 0;
620 	entry->size = (1+prof_len) * sizeof(atomic_t);
621 	hotcpu_notifier(profile_cpu_callback, 0);
622 	return 0;
623 }
624 module_init(create_proc_profile);
625 #endif /* CONFIG_PROC_FS */
626